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Abstract:  
 

The synthesis and characterization of mono-, bis- and tris-glycinatochromium(III) complexes by 

UV-Vis, electron paramagnetic resonance (EPR), ATR-FTIR and Raman spectroscopy has been 

performed in this work. IR stretching bands obtained from DFT calculations of the mono-, bis- 

and tris-glycinatochromium(III) complexes are in good agreement with experimental data. 

Different mechanistic pathways were explored for the water exchange reactions of 

[Cr(+NH3CH2COO‒
)(H2O)5]

3+ and its conjugate base species including, associative interchange 

(Ia), and dissociative (D) mechanisms. The lowest activation enthalpies for the mono- and bis-

complexes are obtained for the Ia pathways with explicit outer sphere solvation (88 and 76 kJ 

mol−1), which are in good agreement with the experimental values (87 and 75 kJ mol−1). In 

comparison, tris-glycinatochromium(III) undergoes aquation via the dissociative (D) mechanism. 

Investigation of these systems in the pH range ~3.0 to ~8.5 by UV-Vis monitoring, helps identify 

the speciation of these complexes in physiological environments. 

 

Keywords: Mono-, bis- and tris-glycinatochromium(III) complexes, EPR, UV-Vis,  ATR-FTIR, 

Raman, DFT. 
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1. Introduction 

Chromium(III)−amino acid (AA) complexes are commonly found in nutritional supplements 

and their physiological activity is of biological importance [1−6]. Several studies [7−10] suggest 

that Cr(III) in nutritional supplements is of minimal benefit to the function of healthy biological 

systems. However, there has been significant evidence showing that daily treatment of alloxan-

induced diabetic (AID) mice with 500 and 1000 µg Cr/kg body weight (BW) of a Cr(III)−AA 

complex such as chromium methionine (CrMet) [10], has significant beneficial effects as an 

insulin enhancing treatment and is more effective than chromium trichloride hexahydrate 

(CrCl3.6H2O) and chromium nicotinate (CrNic). There are also reports suggesting that CrMet has 

a beneficial impact on body weight, triglyceride, total cholesterol and liver glycogen levels, 

while also reducing lipid metabolism [10]. However, the details of the bio-inorganic pathways 

for these complexes are not known. Trivalent chromium complexes administered orally will 

encounter a number of different physiological environments (pH and chemical conditions) as 

they pass through the body including the high acidity of the stomach and the slightly alkaline 

conditions of the bloodstream. These differing conditions provide opportunities for 

chromium(III) complexes to undergo ligand substitution. Furthermore, olation and precipitation 

can occur at neutral or alkaline pH. It also appears that the bioinorganic mechanism depends 

upon the ligands coordinated to chromium, with a very slow rate of exchange with the active 

sites of enzymes [1−2].  

It is well-known that the amino acids (AA) can adopt several forms including anion (AA‒), 

zwitterion (HAA), or cation (H2AA+)  (see Fig. 1a) depending on the pH of the solution.  
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Fig. 1. (a) Protolytic forms of glycine and amino acids (R is the amino acid side chain) and (b) 
Cr(III) metal interaction with the amino acid zwitterion to form monodentate Cr(III)  
complex (A).  

 

Characterization studies suggests that coordination of Cr(III) with amino acid ligands (e.g. 

glycine, serine and methionine) occurs through the glycinate nitrogen and carboxylate oxygen to 

form a chelate ring. However, side chain functional groups can also play a prominent role in 

metal ion binding at physiological pH. There have been a number of experimental investigations 

of Cr(III)-AA complexes [11−18]. For example, Abdullah et al. [12] measured the kinetics for 

the formation of tetra-aquaglycinechromium(III) (pH = 3.0‒3.8, temperature = 40‒45 °C and 

ionic strength = 0.4 mol dm‒3). They proposed an associative interchange (Ia) pathway with 

outer-sphere complexation involving glycine-hexa-aquachromium(III) (∆H
‡ = 87 kJ mol−1) or its 

conjugate base (∆H
‡ = 75 kJ mol−1) [12]. By contrast, the dissociative mechanism has been 

reported for reaction of [Cr(NH3)5(H2O)]3+ with glycine (∆H
‡ = 106 kJ mol−1 and ∆S

‡ = +23.5 J 

mol−1K‒1) [13]. In the pH range 3.0 to 4.5, chromium(III) will interact with amino acids in the 

zwitterion (HAA) and cationic (H2AA+) forms [11−12,16].  Therefore, the formation of the 

chromium(III)−AA complex (A) is coupled with the  acid dissociation equilibrium of the amino 

acid as shown in Fig. 1b.  
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Cr(III) can coordinate up to 3 glycinate ligands to give the mono-, bis-, and tris-

glycinatochromium(III) species. In addition to formation studies, there have been several 

experimental aquation studies of Cr(III)-AA complexes [17−22]. Kita et al. [23] obtained ∆H
‡ 

and ∆S
‡ values of 91.4 ± 2 kJ mol−1 and 17 ± 7 J mol−1 K‒1 for acid-catalysed and 66.7 ± 16 kJ 

mol−1 and ‒71 ± 53 J mol−1 K‒1 for base-catalysed aquation of [Cr(gly)3]. There is evidence that 

the acid-catalysed aquation of fac-[Cr(gly)3]
0 is initiated by dissociation of the Cr‒N bond [23]. 

They also determined that [Cr(gly)2(OH)2]
‒ undergoes base-catalysed aquation ~4 times faster 

than [Cr(gly)2(O‒gly)(OH)]‒. Furthermore, Kita and Lisiak reported [24] that the acid-catalysed 

aquation of the [Cr(ox)2(AA)]2‒ complexes (where AA = alanine (Ala‒), valine (Val‒) or cysteine 

(Cys‒)) involves formation of a metastable intermediate with a monodentate O-bonded ligand. 

Kiersikowska et al. also investigated [25−26] the acid- and base-catalysed aquation of fac-

[Cr(Aa)3] (Aa = Gly, Ala, Asn) and its aqua derivatives. However, to date there have not been 

any theoretical studies of the intimate details of ligand exchange on Cr(III)-AA complexes.  

 

Recently we reported [27−29] theoretical studies of aquation of chromium(III) chloride and 

other dihalides under acidic conditions, as might be found in the stomach after oral ingestion of 

these species. A key finding in these studies was the importance of outer-sphere solvation on the 

reaction mechanism. We have also studied [29] the aquation of conjugate-base systems of 

chromium(III), which is favourable under physiological conditions (pH ~ 7.4), where once again 

outer sphere solvation is involved in the reaction mechanism. Therefore, the study of these 

systems leads to a better understanding of the stability and speciation under physiological 

conditions, prior to binding to enzymes or peptides. Investigation of the aquation of mono-, bis-, 



  

6 
 

and tris-glycinatochromium(III) complexes may also provide insight into the stability of 

chromium(III) protein complexes. Recently, Uddin et al. [30] studied the synthesis of the fac-

[Cr(gly)3] complex, which was fully characterized by elemental analysis, AAS, ESI-mass 

spectrometry, UV-Vis, EPR and 1H NMR spectroscopy. Furthermore, the electrochemical 

properties of fac-[Cr(gly)3] were investigated by cyclic voltammetry and the thermal 

decomposition determined using differential scanning calorimetry (DSC).  

 

To date, no computational mechanistic studies have been reported for the aquation of open-type 

monodentate and closed-type bidentate systems of glycinato-chromium(III) ([Cr(gly)x(H2O)6-

2x]
(3-x)+ where x = 1 ‒3) and their conjugate bases species. Therefore, the major objective of this 

study is to provide a detailed investigation of the pathways for these processes using DFT 

calculations. Theoretical calculations are complemented by experimental characterisation of 

[Cr(gly)(H2O)4]Cl2, [Cr(gly)2(H2O)]Cl, and [Cr(gly)3] by elemental analysis, thermal analysis, 

UV−Vis, EPR, ATR-IR, and Raman spectroscopy.  

 

2.  Experimental  

2.1. Reagents 

Chromium(III) chloride hexahydrate, CrCl3.6H2O (Sigma-Aldrich, ≥98.0%), glycine (Sigma-

Aldrich, ≥98.5%), ethanol (LabServ, 99.8%)  and sodium hydroxide (Sigma-Aldrich, 98.5%) 

were used without further purification. Millipore filtered deionized water was used throughout 

the experimental work. 

2.2. Analytical Methods 

Elemental analysis (C, H, and N) was performed using the microanalytical unit, J Science lab 

JM 11 analyzer. Determination of Cr was carried out using atomic absorption spectroscopy (a 
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Varian AA50 spectrometer with air/C2H2 flame atomization) after digestion of the samples with 

69% HNO3 (Merck). Chloride present in the complexes was assessed by Volhard’s method.  

Thermal analysis was conducted using a PerkinElmer STA 8000 TGA-DSC instrument. Before 

the heating routine program was activated, the entire system was purged with argon for 10 min at 

a rate of 20 mL/min, to ensure that the desired environment was established. Thermogravimetric 

analysis (TGA) experiments were performed with a heating rate of 20 °C min−1 from 30 to 1000 

°C. High-purity argon gas was used at a constant flow rate of 20 mL/min. Solution ultraviolet-

visible (UV-Vis) spectra were recorded on a HP 8453 UV-Vis spectrophotometer over the range 

190−1100 nm. A Bruker EMX EPR spectrometer running the Xenon software with a Bruker ER 

036TM NMR tesla meter was used to measure the X-band spectra of the solid Cr(III) complexes 

with EP parameters:  center field, 3200 G; sweep width, 6000 G; width TM, 200 G; Frequency 

Mon, 9.79 GHz; microwave power, 2.0 mW; microwave attenuation, 20.0 dB; conversion time, 

4.0 ms; gain, 30dB; modulation amplitude, 4.0 G; modulation frequency, 100 kHz; resolution, 

15000 and sweep time, 60 s. For frozen solution samples, the EPR tube was flushed with with 

nitrogen gas for 2 min before analysis and the samples frozen by slow immersion in a liquid 

nitrogen bath. EPR parameters for frozen samples were gain, 1.0 × 104; modulation frequency, 

100 kHz; modulation amplitude, 1 G; conversion time, 0.41 ms; time constant, 81.92 ms; sweep 

time, 41.98 s; field center, 3350 G; sweep width, 6400 G; frequency, 9.531415 GHz; and power, 

2.0 mW. 

Infrared analysis was carried out using a Perkin Elmer FT-IR with a universal ATR sampling 

accessory. ATR spectra were generated using 4 scans with a resolution of 4 cm‒1 in a range of 

4000‒350 cm‒1. A constant pressure between the ATR foot, sample and ATR crystal was 

achieved using an in-built pressure gauge and software monitor. Raman analysis was conducted 
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using a Nicolet 6700 FT-IR with NXR FT-Raman module. Raman spectra were collected with: 

1064 nm excitation wavelength, 90o detection angle, CaF2 beam splitter, InGaAs detector, gain 

of 1, optical velocity of 0.3165, aperture of 150, focus and side-to-side settings optimised, laser 

power of 1.5 W and 256 scans with resolution of 8 cm‒1 in the range 4000‒200 cm‒1.  

The pH of solutions was measured using LabCHEM-pH meter with a PBFB electrode and 

calibration of the pH combination electrode was carried out. 

 

2.3. Preparation of [Cr(gly)(H2O)4]Cl2 and [Cr(gly)2(H2O)2]Cl   

 The fac-[Cr(gly)3] complex was synthesized and fully characterized as reported previously [30]. 

The mono- and bis-glycinatochromium(III) chloride complexes were synthesised in the current 

study using 1:1 and 1:2 ratios of Chromium(III) chloride hexahydrate, CrCl3.6H2O and glycine, 

prepared according to a similar method used for the tris-system [19,30]. The solid product was 

collected by vacuum filtration, washed with ethanol and dried at 100°C in an oven. A greenish 

(light blue) product was obtained for mono-glycinatochromium(III) chloride and a red (light 

pink) solid was isolated for bis-glycinatochromium(III) chloride. The yield of the reactions were 

1.35 g (57%) for mono- and 1.37 g (69%) for bis-dentate chromium(III) glycinate complexes. 

These complexes were characterised by thermogravimetry, UV-Vis, ATR-FTIR, Raman, and 

EPR spectroscopy in the solid state (room temp.) and frozen solution state (100 K). Anal. Calcd 

for C2H12Cl2CrNO6: C, 8.93; H, 4.50; Cl, 26.36;  N, 5.21; Cr, 19.33. Found: C, 8.91; H, 4.93; Cl, 

26.43;   N, 4.85; Cr, 18.87. Anal. Calcd for C4H12ClCrN2O6: C, 17.69; H, 4.45; Cl, 13.06;   N, 

10.31; Cr, 19.15. Found: C, 16.67; H, 4.46; Cl, 12.97;   N, 10.28; Cr, 18.71. 

 

2.4. Computational Methods 
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Standard hybrid density functional theory calculations were carried out with Gaussian 09 [31]. 

The geometries of all complexes in this study were fully optimized in the gas phase and solvent 

(water) at the PBE0/cc-pVDZ level of theory, which we have previously shown to give excellent 

agreement with experiment for the activation enthalpies for aquation of related species [27−29]. 

The effect of solvent (water) on the structures and energetics of each complex was investigated 

using the polarisable continuum model (PCM) of Tomasi and co-workers [32−33]. Vibrational 

frequencies were obtained for all optimized structures to check for the absence of imaginary 

frequencies for reactants, intermediates and products and for the presence of a single imaginary 

frequency for each transition state. For all the reaction pathways discussed in this study, the 

transition states were also analyzed using the intrinsic reaction coordinate (IRC) method. The 

final structures obtained from each IRC were further optimized in order to positively identify the 

reactant and product complexes to which each transition state is connected.  

 

Natural bonding orbital (NBO) [34] analysis was performed and the charges were calculated. The 

HOMO and LUMO energies were determined from the ground state quartet geometries. 

Enthalpies of activation and entropies of activation were calculated at 298.15 K. In the figures, 

all distances are in angstroms (Å), angles in degrees (º) and the energies in kJ mol‒1. Unless 

otherwise stated, all values given in the text were obtained at the PBE0/cc-pVDZ level in 

solution (PCM). The optimized structures and the relative energies of reactants, intermediates, 

transition states, and products for all pathways are shown in Tables ST1 to ST7 and Figs. S1 to 

S49 of the Supporting Information (SI). The volume of activation (∆V
‡) and reaction volume 

(∆V) were correlated to the change in the Cr−L bond lengths of the TS, reactant and product as 

reported previously [27−29]. 
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The [Cr(gly)3]
0 complex can occur as either a facial or meridional isomer. The XRD crystal 

structure for [Cr(gly)3]
0 reported by Bryan et al. [19] shows only the facial isomer, which implies 

that this isomer is the most stable in the solid state. However, our DFT calculations of the 

complex with PCM solvation indicate that the energies of the fac- (I) and mer- (II) isomers are 

almost identical with the meridional structure very slightly favoured (~ 0.5 kJ mol−1) at PBE0/cc-

pVDZ (Fig. 2). There have been some reports that suggest that glycine can also form chelate 

rings via coordination of the two carboxylate oxygen atoms. Therefore, for completeness the 

stability of two additional structures of the form [Cr(gly)2(O2CCH2NH2)] (III and IV) were 

investigated and found to be  less energetically stable than those with facial configuration by 30 

and 40 kJ mol−1.   

 

Fig. 2. (a) Optimized structures of the conformers for [Cr(gly)]3 at PBE0/cc-pVDZ; (b)  
maps of electrostatic potential (0.02 electrons Bohr−3) (red = electron-rich, blue = electron-
deficient).  

As reported recently [30], the calculated Cr−N and Cr−O bond distances for fac-[Cr(gly)3] are in 

good agreement with the experimental X-ray crystal data [19]. The calculated average values for 
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the Cr−N and Cr−O bond lengths of mer-[Cr(gly)3] are 2.107 and 1.944 Å, respectively (Table 

ST1 of the SI).  

 

Fig. 3. Optimized conformations of precursor [Cr(gly)2(H2O)2]
+ for (a) cis-conformers (V‒VII 

forms) and (b) trans-conformers (VIII‒IX forms) at PBE0/cc-pVDZ. 

 

Three different cis-conformations of [Cr(gly)2(H2O)2]
+ were investigated with structure (V) 

the most stable (Fig. 3). Isomers, VI and VII were higher in energy by 1.5 and 6.3 kJ mol−1, 

respectively. Two trans isomers of [Cr(gly)2(H2O)2]
+ (VIII and IX) were also investigated and 

were found to be 4.1 and 19.1 kJ mol−1 higher in energy than (V). Isomers of the mono-

glycinatochromium(III) complex were also investigated including closed-type bi-dentate (X)  

and open-type mono-dentate via intramolecular Cr−N ring opening (Fig. 4). 
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Fig. 4. Optimized structures of [Cr(gly)(H2O)4]
2+ and [Cr(+NH3CH2COO‒)(H2O)5]

3+  
at PBE0/cc-pVDZ.  

 

3. Results and Discussion 

3.1. Synthesis and characterization of [Cr(gly)(H2O)4]Cl2, [Cr(gly)2(H2O)2]Cl  and [Cr(gly)3]
0
  

Mono- and bis-glycinatochromium(III) chloride complexes were synthesized using a similar 

procedure to that reported previously for [Cr(gly)3]0 [30]. Elemental analysis (% C, H, Cl, N, and 

Cr) data confirm the formation of mono- and bis-glycinatochromium(III) chloride complexes. 

Previously, elemental analysis (% C, H, N, and Cr) and electrospray mass spectrometry (ESI-

MS) data confirm the formation of the [Cr(gly)3] complex [30]. In our earlier work [30], the 

solid-state UV-Vis spectrum of the synthesised fac-[Cr((gly)3]
0 complex revealed two spin-

allowed d‒d transitions with absorption bands at 388 nm and 510 nm. However, several studies 

have shown that the absorption spectra of Cr(III) complexes can have significant solvent and pH 

dependence. For example, Emerson and Graven [35] measured the UV/Vis spectra of 

chromium(III) perchlorate solutions within a pH range of 2‒5 and noted a transition in the 

absorbance, corresponding to the conversion of the chromium(III) perchlorate solution to 
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[Cr(H2O)5OH]2+ [36]. Consequently they were able to report the equilibrium constant for the 

acid dissociation reaction of [Cr(H2O)6]
3+ to [Cr(H2O)5OH]2+.  Therefore the solvent dependence 

of UV/Vis spectra of the complexes in this study (CrCl3.6H2O (or [Cr(H2O)4Cl2]
+), 

[Cr(gly)(H2O)4]Cl2, [Cr(gly)2(H2O)2]Cl,  and fac-[Cr(gly)3]
0) was investigated. The two major 

spin-allowed d-d bands for the chromium(III) chloride [Cr(H2O)4Cl2]
+  starting material were 

observed at 443 nm (20.6 M‒1 cm‒1) and 634 nm (21.0 M‒1 cm‒1) in water at pH 3.86 (Figs. 5a 

and S1 to S2 of  the SI). Previously, Elving and Zemel examined, [Cr(H2O)4Cl2]
+ in 12 M HCl,  

reporting bands  at 450 nm (27.9 M‒1 cm‒1) and 635 nm (23.9 M‒1 cm‒1) [37].  

 

Fig. 5. UV-visible (UV-Vis) spectrum of CrCl3.6H2O, [Cr(gly)(H2O)4]Cl2, [Cr(gly)2(H2O)2]Cl  
and fac-[Cr(gly)3]

0 in the range 350‒800 nm at pH ~3.0 to ~8.3, in water. The concentration of 
the species are c = 11, 21, 14, and 9 mM, respectively.  
 

During formation of mono-glycinatochromium(III) complex at pH 3.07, these two main bands 

are observed to shift to 433 nm (18.5 M‒1 cm‒1) and 591 nm (16.6 M‒1 cm‒1), respectively (Fig. 

5). With the addition of a second glycine ligand to form bis-glycinatochromium(III) at pH 3.76, 
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there is a further shift of the bands to 409 nm (23.6 M‒1 cm‒1) and 553 nm (27.2 M‒1 cm‒1). 

Finally, the two bands are located at 395 nm (23.6 M‒1 cm‒1) and 527 nm (44.2 M‒1 cm‒1) for 

tris-glycinatochromium(III) at pH 6.02 (Fig. 5). Bryan et al. [19] reported the solid UV/Vis 

spectrum of fac-[Cr(gly)3]
0 and assigned 4A2g →

4T2g to the 503 nm transition and 4A2g →
4T1g (F) to 

the 384 nm transition. On this basis, the longer wavelength peaks above can be tentatively 

attributed to the 4A2g →
4T2g transition and the shorter wavelength peaks to the 4A2g →

4T1g (F) 

transition in the octahedral (Oh) approximation. Mono- and bis-glycinatochromium(III) 

complexes are intermediates in both the step-wise formation and aquation of tris-

glycinatochromium(III) [38−39]. Therefore, the progress of these reactions can be monitored by 

shifts in these two peaks. As noted above, raising the pH of solutions of chromium(III) species 

can lead to the formation of the corresponding conjugate base species, which also leads to 

changes in the absorption spectra. UV-Vis absorption spectra of solutions of CrCl3.6H2O, 

[Cr(gly)(H2O)4]Cl2, [Cr(gly)2(H2O)2]Cl,  and fac-[Cr(gly)3]
0 at elevated pH are shown in Fig. 5b. 

Notably, when the pH of CrCl3.6H2O and [Cr(gly)(H2O)4]Cl2 solutions was raised to ~ 8.1, the 

samples became cloudy and turned purple indicating the formation of the corresponding 

conjugate base complexes and subsequent formation of oligomeric species. However, 

[Cr(gly)2(H2O)2]Cl  and fac-[Cr(gly)3]
0 complexes were less susceptible to this change in pH and 

gave identical spectra under acidic and alkaline conditions as shown in Fig. 5b. The aqueous 

deprotonation of [Cr(gly)x(H2O)6-2x]
(3-x)+ (where x = 1 ‒ 3), and their conjugate bases was 

investigated by DFT using reactions of the following form:  

[Cr(H2O)5 (OglyH)]3+  �  [Cr(H2O)4(gly)]2+
 + H3O

+                (1) 
 
[Cr(H2O)4(gly)]2+

 + H2O  �  [Cr(H2O)4(OH)(gly)]+
  + H3O

+   (2) 
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Consequently, we have calculated aqueous Gibbs free energies for deprotonation (∆Gdp) using  

reactions (1) and (2), for the mono-, bis-, and tris-species. The ∆Gdp values decrease for these 

two reactions  from tris- through to the mono-species (see Figs. S2A−S2B in the SI), with a 

variation of ~ 35 and ~ 111 kJ mol‒1 , respectively, across the series. The large positive ∆Gdp 

values for the tris- and bis-species indicates that deprotonation of these complexes is not 

favourable and corresponds with the experimentally observed inertness towards mildly alkaline 

conditions. The lower calculated ∆Gdp for mono-glycinatochromium(III) represents a greater 

propensity for formation of the corresponding conjugate base species and is consistent with the 

experimentally observed colour change and precipitate formation. 

 

 

Thermogravimetric (TG) analysis under argon was carried out to determine the stability of 

the mono- and bis-glycinatochromium(III) chloride complexes (Figs. 6a and S3 in the SI). In this 

work, the differential scanning calorimetry (DSC) curves show three endothermic stages of mass 

loss in the temperature ranges (a) (50 °C to 280 °C), (b) (350 °C to 480 °C), and (c) (750 °C to 

920 °C) for mono- and bis- complexes with a heating rate of 20 °C min−1 from 30 to 1000 °C. 

The first stage shows a gradual weight loss indicating the release of lattice water for both mono- 

and bis- complexes. A second mass loss occurs around 383 °C for mono-, 413 °C for bis- and 

424 °C for tris-glycinatochromium(III) [30] (Fig. 6a) corresponding to the decomposition of the 

glycine ligand(s). Notably, the transition temperature increases across the series from mono, bis 

and tris-glycinato complexes, reflecting the increased stability with increased chelation. 

However, these transition temperatures are lower than the value recently reported by Freitas et al. 

[40] (472 °C) for tris(8-hydroxyquinolinate)chromium(III). 
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Fig. 6. (a) Thermogravimetric (TG) analysis and analysis of X-band EPR spectra for tris-, bis- 
and mono-glycinatochromium(III) species, (b)  in solid state (room temp.), (c) in frozen state 
(100 K) and 15.3 mM (red), 14.4 mM (violet) and 20.9  mM (dark blue) in H2O, respectively.  

The paramagnetic behaviour of these octahedral chromium(III) complexes should be 

sensitive to these changes in coordination environment and can be characterized by two different 

X-band EPR signals. The g = ~2 β‒signal is a broad isotropic signal and the g = 3.5−5.5 δ‒signal 

is a positive lobe in the region [41−43]. In this study, the broad β‒signal of the solid EPR 

gradually decreases from 1.9924 to 1.9886 for mono-, bis-, and tris-glycinatochromium(III) 

complexes, respectively, (Fig. 6b).  For the mono-, bis-, and tris-glycinatochromium(III) series of 

complexes, the Cr(III) coordination environment changes from (CO2)(NH2)(H2O)4 to 

(CO2)2(NH2)2(H2O)2 to (CO2)3(NH2)3, respectively. Values obtained in the frozen solution state 

at 100 K in H2O are slightly lower (g = 1.9710, 1.9737, and 1.9787 [30], for mono-, bis- and tris-
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glycinatochromium(III) species, respectively) (see Fig. 6c), which may be the result of solvent 

effects [30,43].  

  

3.2. Vibrational Spectra of [Cr(gly)3]
0
,[Cr(gly)2(H2O)2]Cl  and [Cr(gly)(H2O)4]Cl2 

The IR and Raman spectra of solid glycine, tris-, bis-, and mono-glycinatochromium(III) 

complexes are presented in Fig. 7 (see Figs. S4‒S13 and Table ST2 of the SI). These spectra 

indicate that glycine coordinates to Cr(III) in the mono-, bis-, and tris-systems via the 

carboxylate and amino groups (see Fig. S4 of the SI). For example, the [Cr(gly)3]
0 complex has 

six IR(Raman) frequencies attributed to NH2 motions including, asymmetric  (~3222 (~3248) 

cm‒1) and symmetric (~3134 (~3184) cm‒1) N‒H stretches, and the NH2 scissoring (~1590 

(~1593) cm‒1), twisting (~1311 (~1325) cm‒1), wagging (~1144 (~1161) cm‒1) and rocking 

(~752 (~746) cm‒1) vibrations (Figs. 7 and  S4‒S5 and Table S1). Furthermore, the −COO− 

stretching bands of the free glycine acid, ν(C꞊O) = 1586 (1564) cm‒1  and ν(C−O) = 1412 (1410) 

cm‒1, are transformed in the complexes via νas(COO−) and νs(COO−) stretching vibrations of the 

carboxylate group. In the spectrum of [Cr(gly)3]
0 the antisymmetric COO‒ vibrations appeared in 

the range 1690‒1630 (1658‒1629) cm‒1, whereas the symmetric COO‒ vibrations for the C‒O 

stretching bands are in the range 1425‒1379 (1430‒1405) cm‒1 (Fig. 7 and Table S1). As can be 

seen from these ranges, the variance between the νas(COO−) and νs(COO−) stretching vibrations 

of the carboxylate group is  larger than 200 cm‒1. Generally, differences of this magnitude 

between νas(COO−) and νs(COO−) are attributed to resonance, which arises when the carboxylate 

group is deprotonated or coordinated to a metal [44−46]. Guindy et al. [14] reported the IR 

spectrum of solid Cr(leu)2, which showed a  shift  of the carboxyl group (∆ν = νas − νs) of  254 
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cm‒1. Likewise for solid CrMet, the observed [9] difference is 219 cm‒1. There is reasonable 

agreement between the experimental and theoretical data (Table ST2 and Figs. S4‒S13 of the 

SI), for all three complexes. 

 

Fig. 7. ATR-IR (a‒d) and Raman (e‒h) spectra (1800‒350 cm‒1) for glycine tris-, bis-, and 
mono-glycinatochromium(III) complexes. 
 

In the spectrum of tris-, bis-, and mono-glycinatochromium(III) complexes, the C‒N 

stretching bands are observed at 1032 (1043), 1038 (1040) and  1039 (1041) cm‒1, respectively, 

whereas the free glycine band was observed at 1033 (1036) cm‒1 (see Table ST2). The C‒C‒N 

bending vibration of glycine with Cr(III) metal is assigned to the bands at 917 (894), 912 (923) 

and 898 (924) cm‒1 for tris-, bis-, and mono-glycinatochromium(III) species, respectively, 

whereas in the free glycine the band appears at 924 (893) cm‒1 (Fig. 7).  The O‒C‒O wagging 

vibration of these complexes is assigned to the bands observed at 696 (686), 695 (698) and 699 
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(707) cm‒1, respectively. The corresponding vibration of glycine is assigned to the band at 707 

(697) cm‒1. The Cr‒N stretching modes appear at 581 (578), 576 (577) and 515 (552) cm‒1, and 

the Cr‒O bands appear at 468 (470), 469 (475) and 416 (415) cm‒1, respectively. Guindy et al. 

[14] reported Cr‒O stretching bands in the 600 cm‒1 region for chromium(III) coordinated to DL-

leucine but they did not report a value for the Cr−N stretching band. The X-ray crystal structure 

of the facial tris(glycinate)chromium(III) complex has been reported by Bryan et al. [19], 

showing that the Cr‒N and Cr‒O bond distances are 2.068 and 1.965 Å, respectively, suggesting 

the Cr−N bond is weaker than the Cr−O bond and should have a higher frequency vibration. 

Robert et al. [47] measured the IR spectra of bis(glycine) complexes of Pt(II), Pd(II), Cu(II), and 

Ni(II) species, finding that the metal‒nitrogen stretching bands (550‒430 cm‒1) appear at higher 

frequencies than the metal‒oxygen stretching bands (420‒290 cm‒1), which is consistent with 

our systems. However, the effects of the molecular symmetry and H-bonding may also impact 

the ‒NH2 and ‒COO‒ modes [48−49]. Nevertheless, the IR stretching bands of the tris-, bis- and 

mono-glycinatochromium(III)  complexes in this study are in good agreement with theoretical 

values, which were obtained without explicit outer sphere solvation of the complexes (Table ST2 

and Figs. S4‒S13 of the SI).   

3.3. DFT Studies of glycinato-chromium(III) complexes  

The experimental characterization reveals that the tris-glycinatochromium(III) complex is quite 

stable in both solution and solid forms. In comparison, the TGA results imply that the mono-

glycinatochromium(III) complex is the least stable and therefore likely to be the most reactive. 

Therefore we have investigated the mechanisms for aquation of these complexes.  
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3.3.1. Aquation mechanisms for open-type chromium(III) systems 

Under acidic conditions, the mono-glycinatochromium(III) complex, [Cr(H2O)4(gly)]2+  is 

expected to convert to [Cr(H2O)5(
+NH3CH2COO−)]3+ via a Cr−N ring opening with the two 

structures in equilibrium (see Figs. 3−4). This is supported by the observation of higher 

frequency vibrations for the Cr−N bonds compared with Cr−O bonds. In fact the Cr−N vibration 

of the tris complex has the highest frequency value in the series, suggesting it has the weakest 

Cr−N bond(s) and therefore will be most susceptible to ring-opening. Water exerts a weaker 

trans effect than carboxylate and hence there is an increase in the Cr−N bond strengths with 

aquation. All our attempts to locate a transition state for this ring opening process failed across 

the three bidentate systems. Therefore, we use the open-type structures 

([Cr(H2O)5(
+NH3CH2COO−)]3+) as the starting point for investigation of aquation reactions. The 

structures of the reactants, transition states and products involved in the interchange mechanism 

of the aquation of [Cr(+NH3CH2COO‒)(H2O)5]
3+ are presented in Scheme 1 and Figs. S14 to S16 

of the SI. 
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Scheme 1. Associative Interchange (Ia) mechanism for the aquation of 
[Cr(+NH3CH2COO‒

)(H2O)5]
3+ and [Cr(+NH3CH2COO‒

)(H2O)4(OH)]2+ with H2O. 
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As shown in Scheme 1, deprotonation of an inner sphere water molecule can also occur to 

give the conjugate base ([Cr(+NH3CH2COO‒)(H2O)4(OH)]2+), which can subsequently undergo 

aquation in a similar manner to the parent complex (Figs. S17 to S20). Aquation reactions of 

[Cr(+NH3CH2COO‒
)(H2O)5]

3+ can potentially occur via several different mechanisms including 

interchange and dissociative pathways. 

 

 The interchange pathway for aquation of both [Cr(+NH3CH2COO‒)(H2O)5]
3+ and 

[Cr(+NH3CH2COO‒)(H2O)4(OH)]2+  is initiated by outer sphere coordination of a water molecule 

to the Cr(III)-glycinate species as shown in Scheme 1 (Figs. S14 to S20 of the SI). For both the 

neutral and conjugate base complexes, the incoming H2O forms a hydrogen bond with an inner 

sphere water molecule, to give the stabilized precursor/reactant complex (R). The precursor 

structures (R) with outer-sphere coordination of the attacking nucleophilic water molecule 

involve bifurcated H-bonding to an inner sphere water molecule (H2O(inner)). Previously [27−29], 

we found that the precursor haloaqua Cr(III) structures with bifurcated bridging hydrogen bonds 

are energetically more stable than those with linear hydrogen bonds. IRC analysis of the 

transition states also confirms the bifurcated H-bonded structures (Scheme 1) as the precursors 

for aquation of both of [Cr(+NH3CH2COO‒)(H2O)5]
3+ and [Cr(+NH3CH2COO‒)(H2O)4(OH)]2+ 

along the interchange pathway (Figs. S14 to S20). For these precursor species the bifurcated 

HO‒H…O distances for H-bonding of Cr−H2Oinner with the outer sphere H2O molecule are 1.61 

and 1.63 Å for the parent system (Fig. S14) and 1.45 and 1.71 Å for the conjugate base system 

(Fig. S17 of the SI). These variations reflect differences in the electronegativity and distortion of 

geometry of these species.  
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Fig. 8. Energy profiles (kJ mol−1) for aquation via the interchange pathway of (a) 
[Cr(+NH3CH2COO‒

)(H2O)5]
3+ and (b) [Cr(+NH3CH2COO‒

)(H2O)4(OH)]2+ with nH2O (n =1‒3) in 
solution phase obtained at PBE0/cc-pVDZ. 

 

The energy profiles for aquation of [Cr(+NH3CH2COO‒
)(H2O)5]

3+ and 

[Cr(+NH3CH2COO‒
)(H2O)4(OH)]2+ are shown in Figs. 8a•8b and the enthalpies of activation 

( ∆ H‡), Gibbs energies of activation (∆ G‡) and entropies of activation ( ∆ S‡) are given in Table 1. 

Table 1  
Enthalpies (∆H

‡, kJ mol‒1), gibbs energies (∆G
‡, kJ mol‒1), and entropies (∆S

‡, J mol‒1K‒1) of 
activation for interchange pathways of [Cr(H2O)5(

+NH3CH2COO−)]3+ and [Cr(H2O)4(OH)( 

+NH3CH2COO−)]2+ with H2O in the solution phase at 298.15 K.a 

 

  [Cr(H2O)5(glyH)]
3+ 

   [Cr(H2O)4(OH)(glyH)]
2+

   

nH2O ∆H
‡
 ∆G

‡
 ∆S

‡
   ∆H

‡
 ∆G

‡
 ∆S

‡
   

1 114 128 ‒46 97 109 ‒42  

2 110 113 ‒11  
 

91 95 ‒14  

3 88 102 ‒47 76 86 ‒35 
a Optimized structures defined in Figs. S14 to S20 of the SI. 
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The aquation barrier for the conjugate base system is lower due to changes in the electronic 

environment and distortion of the complex geometry in the TSs  (Table 1 and Figs. 8a‒8b and 9). 

For example, the conjugate base system is less strained with a COO-…Cr…OH angle of 80.6° 

compared with a COO-…Cr…OH2 angle of 69.7° in the parent complex. Likewise, the 

Cr−O(inner) bond lengths are 2.01 and 1.82 Å for the parent and conjugate base systems, 

respectively. In comparison, the transition Cr…OOC distances are very similar in both systems, 

(2.35 Å and 2.39 Å) (Figs. S14 to S20 of the SI). Likewise, the Cr(III)…OH2 distances in the 

neutral and conjugate base are 2.36 Å and 2.39 Å, respectively.  

 

In our previous study [29] of cis-[Cr(H2O)4(OH)Cl]+ we found explicit outer-sphere 

water molecules are required to stabilise the transition states. Therefore, we also investigated the 

effects of inclusion of additional outer sphere water molecules on the aquation of 

[Cr(H2O)5(
+NH3CH2COO−)]3+ and it conjugate base species, via the interchange pathway (Figs. 

S14‒S20 of the SI). In this work, three outer sphere water molecules were also found to be 

necessary to lower ∆H
‡  (Table 2 and Figs. S14‒S20 of the SI). Hydrogen bonding between the 

departing glycinate ligand and the neighbouring water molecules assists the ligand transfer in 

these systems (Fig. 9). This is clearly demonstrated by the changes in activation enthalpies for 

the interchange pathway of [Cr(H2O)5(
+NH3CH2COO−)]3+

…3H2O and its conjugate base 

complexes  (88 and 76 kJ mol−1, which are in good agreement with experimental [12] results (87 

and 75 kJ mol−1). The hydrogen bonding network around these complexes with three water 

molecules makes a relatively significant contribution to ∆H
‡, as shown by the decreases in the 

activation enthalpies (26 and 21 kJ mol−1, respectively), compared to the corresponding one 

water systems (Figs. S14‒S20 of the SI). The Cr…‒OOCH2
+NH3 distances in the TSs of 
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[Cr(H2O)5(
+NH3CH2COO−)]3+

…3H2O complex and its conjugate base species are slightly longer 

than in the single H2O systems (0.03 Å and 0.14 Å, respectively). The oxygen atom of the 

incoming water molecule and glycinate ion of the leaving group exhibits relatively little change 

in charge across the one, two and three water systems as shown in the selected maps of 

electrostatic potential (Fig. 9) for the interchange mechanism. We have determined the changes 

in (∆∑ d(Cr−L)TS‒R) are ‒0.71 Å and ‒0.65 Å for [Cr(H2O)5(
+NH3CH2COO−)]3+ and it conjugate 

base species with H2O, which corresponds with a negative activation volume (∆V
‡)  associated 

with  an Ia mechanism, and  is consistent with experimental results [12].  

  

 

Fig. 9. Optimized transition structures of [Cr(H2O)5(
+NH3CH2COO−)]3+ and [Cr(H2O)4(OH) 

(+NH3CH2COO−)]2+ for (a) H2O, (b) 2H2O, and (c) 3H2O via interchange pathway and 
maps of electrostatic potential (0.02 electrons Bohr−3) (red = electron-rich,  
blue = electron-deficient).  
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For comparison, we have also investigated the dissociative (D) mechanism, which involves 

breaking the Cr(III)‒‒OOCH2
+NH3 bond with formation of a pentaqau- or tetraaquahydroxo-

coordinated intermediate (Scheme 2). The released ‒OOCH2
+NH3 ion is coordinated to the outer 

sphere of the intermediate complexes (I) to give an ion-pair as shown in Figs. S21 to S22 of the 

SI. 
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Scheme 2. Dissociative (D) mechanism for the reaction of [Cr(+NH3CH2COO‒
)(H2O)5]

3+. 

 

The enthalpy of activation, Gibbs energy of activation and entropy of activation for Cr(III)-

−OOCH2
+NH3 bond dissociation of [Cr(+NH3CH2COO‒)(H2O)5]

3+ are 138 kJ mol‒1, 144 kJ mol‒1 

and ‒22 J mol‒1 K‒1, respectively (see Table ST3 and Figs. S21−S22 of the SI), indicating that 

this pathway is energetically less favourable than the interchange pathway. However, we have 

previously [28−29] shown an improved model of the dissociation process is achieved when 

water is coordinated to the outer sphere of the complex, which also lowers ∆H
‡ for the 

dissociation step (Table ST3 of the SI (Figs. S21−22 of the SI). The ∆H
‡ values for the 

Cr‒OglyH dissociation of the precursor complex with an explicit outer sphere water molecule is 

lower (Fig. S22) by 5 kJ mol‒1 compared to bond dissociation without the outer sphere water 

molecule (Fig. S21). Nevertheless, the activation energy for this pathway remains substantially 

higher than for the interchange pathway discussed earlier. The Cr…OglyH distances in the TS, 
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without and with the outer-sphere water molecule are quite similar (2.69 Å to 2.66 Å, 

respectively) (Figs. SF21 to SF22 of the SI), reflecting the relatively small contribution the 

additional H-bonding makes to this process.  

 

In our previous work [30], we found that the UV-Vis spectrum of fac-[Cr(gly)3] in the solid 

state showed peaks at 510 nm (ν1) and 388 nm (ν2), whereas in DMSO the two spin-allowed 

peaks were shifted to longer wavelengths (518 nm and 393 nm, respectively). Bryan et al. [19] 

assigned the spin allowed d-d transition at 503 nm to 4A2g →
4T2g (ν1) and  384 nm  to 4A2g →

4T1g 

(ν2).  As noted here, the aqueous solution UV-Vis spectrum shows bands at 527 nm (44.2 M‒1 

cm‒1) and 395 nm (23.6 M‒1 cm‒1) and the pH of the solution is 6.02. One explanation for this is 

that in acidic aqueous solution, the tris complex undergoes Cr−N ring opening via an acid 

catalysed aquation pathway with coordination of a water molecule, and that this structure is in 

equilibrium with the closed structure. Protonation of the glycine ligands may occur via 

intramolecular hydrogen transfer to form the conjugate base. 
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Aquation of the [Cr(H2O)(gly)2(O−glyH) complex occurs via a two-step process. Firstly, direct 

Cr…O-glyH bond breaking and formation of an intermediate as shown in Scheme 3 (see Figs. 

S23−S24). Secondly, this intermediate can easily add H2O to form the corresponding product as 
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shown in Scheme 4.  The ∆H
‡ value for dissociation of the Cr‒gly bond for  this pathway is 97 

kJ mol−1 (Scheme 4 and Fig. S23 of the SI), with the amines being cis and the COO‒ groups 

having trans configuration.  Furthermore, the overall activation enthalpy is  97 kJ mol−1, which is 

in good agreement with the experimental23 value (91.4 ± 2 kJ mol−1) (Table ST4 and Fig. S24).  
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The aquated complexes can also undergo reaction via replacement of the aqua ligands. 

Therefore, we investigated Cr‒OH2 dissociation for cis and trans-[Cr(H2O)4(gly)]2+ with up to 

three explicit outer sphere water molecules ([Cr(H2O)4(gly)]2+
…nH2O, n = 0 to 3) (Table 2 and 

Figs. S25 to S33 of the SI). Dissociation of the Cr−OH2 bond (63 kJ mol−1) is a much lower 

energy process than dissociation of the Cr-OglyH bond (138 kJ mol−1). Overall, the addition of 

explicit outer-sphere water molecules has a relatively small effect on the activation enthalpy for 

this process. However, there is a noticeable difference in the activation parameters for the two 

isomers. For example, the dissociation of the Cr‒OH2 bond (TS) (Fig. 10a−10b) for cis-

[Cr(H2O)4(gly)]2+
…3H2O has ∆H

‡ = 62 kJ mol−1, whereas for the trans complex ∆H
‡ = 52 kJ 

mol−1 (Table 2 and Fig. 10). No interchange pathway was identified for water-water exchange on 

this complex. 
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Table 2  
Enthalpies (∆H

‡, kJ mol‒1), gibbs energies (∆G
‡, kJ mol‒1), and entropies (∆S

‡, J  
mol‒1K‒1) of activation for dissociation pathway of [Cr(H2O)4(gly)]2+ with nH2O 
in the solution phase at 298.15 K.a 

 

  cis-[Cr(H2O)4(gly)])]
2+

   trans-[Cr(H2O)4(gly)])]
2+

 

nH2O ∆H
‡
 ∆G

‡
 ∆S

‡
   ∆H

‡
 ∆G

‡
 ∆S

‡
 

0 63 67 ‒16  52 60 ‒26 
1 61 63    4   56 61 ‒16  

2 66 71 ‒15  59 60 ‒3 

3 62 63 ‒3  52 55 ‒8 
a Optimized structures defined in Figs. S25−S33 of the SI. 
 

The structures for the corresponding dissociation of [Cr(OH)(H2O)3(gly)] + are shown in Figs. 

S34 to S39 of the SI. The ∆H
‡ values for the Cr‒OH2 dissociation in the [Cr(OH)(H2O)3(gly)] 

+
…nH2O (n = 0‒2) complexes are lower  than for the parent species by 7 to 11 kJ mol‒1 (Table 

ST5 of the SI). In both systems, the values for Cr…OH2 dissociation from the trans position are 

9 to 12 kJ mol‒1 lower than the corresponding values for the cis-systems (Table ST5 and Figs. 

S34‒S39).  

 

Fig. 10. Energy profiles (kJ mol−1) for the dissociation pathway of (a) cis and (b) trans position 
dissociation of [Cr(H2O)4(gly)]2+

…nH2O (n =0‒3) in solution phase obtained at PBE0/cc-pVDZ. 
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The bis-glycinatochromium(III) complex can also undergo reaction via release of an inner-

sphere water molecule. The transition structures for the Cr(III)…OH2
+ bond dissociation step of 

cis-[Cr(+NH3CH2COO‒)2(H2O)2]
+ (A and B) (Figs. S40‒S42 of the SI), and trans-

[Cr(+NH3CH2COO‒)2(H2O)2]
+ (C) (Figs. S43‒S45) are shown in Fig. 11. The enthalpies of 

activation for these different conformations are 57, 62 and 80 kJ mol−1, respectively (Table ST6 

of the SI). The oxygen atom of the departing water molecule is more negatively charged in the 

TS of the trans-system (−0.962) than in either of the cis-TS structures investigated (−0.920 and 

−0.926), which suggests a trans-effect in these complexes in the order H2O < NH2R < −O2CR. 

(Fig. 11). Furthermore, NBO [33] charge analysis of the TSs shows an increase in the positive 

charge on Cr(III) compared to R as shown in Fig. S46 of the SI. The ∆H
‡ values for the 

corresponding conjugate base systems are 54, 52 and 41 kJ mol−1 (Table ST7), respectively, due 

to changes in the electronic environment and the trans-effect of OH− in system C (see Figs. 

S47−S49 of the SI).  

 

Fig. 11. Structures of cis (A‒B) and trans (C) position dissociation of [Cr(H2O)(gly)2]
+ 

…H2O 
and  maps of electrostatic potential (0.02 electrons Bohr−3) (red = electron-rich, 
blue = electron-deficient).  
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3.5. Discussion 

In this study, we have carried out a detailed investigation of the associative interchange (Ia) 

and dissociation (D) mechanisms for the aquation of mono- and tris-(glycinato) chromium(III) 

complexes. The activation enthalpies for aquation of  [Cr(H2O)5(NH3
+CH2COO−)]3+ and its 

conjugate base were found to be 88 and 76 kJ mol−1 respectively, via the Ia pathway with 

inclusion of explicit outer sphere solvation (3H2O), which is in good agreement with 

experimental [12] results (87 and 75 kJ mol−1). Outer-sphere solvation makes a significant 

contribution to ∆H
‡, as shown by the decreases in the activation enthalpies (26 and 21 kJ mol−1, 

respectively), compared to the corresponding one water systems. Significantly, higher enthalpies 

of activation were obtained via the dissociative pathway for the mono-glycinatochromium(III) 

complex (138 kJ mol‒1 and 144 kJ mol‒1, respectively). However, for the sterically crowded 

[Cr(gly)3] complex, the dissociative mechanism was identified as the preferred aquation 

pathway.  

 

A key feature of the UV-Vis experimental investigation of the mono-, bis- and tris-

glycinatochromium(III) bidentate complexes is the effect of  pH. In the highly acidic 

environment of the stomach (pH = 3−4), orally ingested nutritional supplements will likely 

undergo slow aquation, leading to a mixture of mono-, bis- and tris-glycinatochromium(III) 

complexes. However, when these complexes enter the duodenum they will encounter an 

environment with a much milder pH, the mono-glycinatochromium(III) complex is expected to 

undergo rapid deprotonation to form the corresponding conjugate base species.  

 

 



  

31 
 

4. Conclusions 

We have prepared mono-, bis- and tris-glycinatochroium(III) species and characterized them by 

thermogravimetry, UV-Vis (in the range pH of ~3.0 to ~8.5), EPR (both solid and frozen states), 

ATR-FTIR and Raman spectroscopy. Vibrational frequencies calculated at PBE0/cc-pVDZ are 

in good agreement with experimental values. The TGA-DSC analysis indicates a progressive 

structural change along the decomposition reaction, with major endothermic transitions found at 

370, 390, and 424.0 ⁰C [30] for mono-, bis- and tris-glycinatochromium(III) species, 

respectively. Geometries (bond lengths and bond angles) at PBE0/cc-pVDZ are in good 

agreement with the X-ray crystal data of fac-[Cr(gly)3] [19]. Aquation of the mono-

glycinatochromium(III) complex is found to follow the associative interchange (Ia) pathway for 

the ring-opened isomer with ∆H
‡ values in good agreement with the experimental data [12], for 

both parent and conjugate base forms of the complex. In comparison, tris-

glycinatochromium(III) undergoes aquation via the dissociative (D) pathways. These results may 

provide further insight into whether or not these complexes can either undergo binding to 

proteins or can form oligomers in biological systems. 
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Synopsis: Mono-, bis- and tris-glycinatochromium(III) complexes were synthesized and fully 

characterized. The effects of pH on aquation were investigated experimentally by UV-Vis 

spectroscopy and theoretically by DFT calculations and provide insight to the physiological 

speciation of these complexes. 
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