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Abstract
Could renewable energy be implemented rapidly and on a large scale to supply

the demand of stationary electrical grid systems? 

This thesis takes a step towards answering this question by simulating 100% 

renewable energy scenarios for the South-West Interconnected System (SWIS), 

which supplies electricity to most of the population and industry in the south-

west of Western Australia (SWWA). The SWIS is remarkable in that it is both 

isolated from other grids and currently has little available hydro-power. 

Solar and wind energy were chosen as the energy sources to be simulated 

because they are commercially mature technologies, already have a presence in 

the SWIS, are widely available in many other parts of the world, yet they are 

geographically and temporally variable. To simulate the operation of rooftop 

solar PV and large scale solar and wind power plants, heuristic models were 

built to generate synthetic hourly values of solar and wind energy resources 

anywhere within the SWWA. An integrated simulation of the SWIS grid was 

built using simple models of population increase, energy efficiency, distributed 

battery storage and seasonal power to gas storage. 

The construction schedules required to build a 100% renewable system for the 

SWIS by the year 2030 were found to be achievable for scenarios with a mix of 

solar PV, solar thermal and wind. If solar PV, wind and battery storage capacity

could maintain exponential growth, then the required growth rates are less than

current global growth rates. Energy efficiency would need to improve at a 

greater rate, though still moderate, than the current global improvement rate. 

However, the more that energy efficiency is improved, the lower the total 

demand, and the easier the task becomes for the other technologies. 

The findings of this thesis have positive implications for world-wide rapid 

transformation to low emission electricity generation.
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Chapter 1. Introduction

1 Introduction

1.1 Global warming

The world is warming. By the year 2012, the global mean surface temperature 

had risen by 0.85oC compared to 1880 (IPCC 2013). Since the mid 20th century, 

the main driver has been human activity. While there seems to be no broad 

international consensus on distinguishing dangerous climate change from 

acceptable climate change, a global average temperature rise of 2oC has become 

the de-facto international benchmark (Anderson and Bows 2008). Recent 

findings suggest that even a rise of 2oC may no longer result in a safe level of 

climate change, and that a rise of 1.5oC is safer (Steffen et al. 2015). 

There are gases in the atmosphere which trap heat and raise the temperature 

and have various natural source and sink processes. Pollutants that are released

into the atmosphere as a result of human activity and which contribute to 

enhanced warming are termed anthropogenic emissions, or more commonly 

greenhouse gas emissions. The primary anthropogenic emissions, in order of 

importance, are carbon dioxide gas (CO2), soot particles, methane gas (CH4), 

halocarbons, tropospheric ozone, and nitrous oxide gas (NO2). The need to 

reduce these emissions is becoming more urgent. Recent estimates require a 

drop in emissions by 2050 to between 5 and 30% of 2010 levels and also keeping

the atmospheric CO2 concentration under 430 ppm to limit temperature rise to 

1.5oC by 2100 (Pachauri et al. 2015).  Greenhouse gases such as NO2 or methane 

have well defined lifetimes and will reach stable concentrations in the 

atmosphere even if the rate of emission remains constant (Meehl et al. 2007). 

However the behaviour of CO2 is different. One reason for this is that the 
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1.1 Global warming

capacity of global carbon sinks is expected to fall as a consequence of human 

activity and temperature rise. Thus in order to prevent dangerous climate 

change, there must be a cap on the cumulative amount of carbon dioxide that 

will be released into the atmosphere (Meinshausen et al. 2009). If a position of 

global equity in per capita emissions is adopted, different countries will have 

different time-frames and trajectories for their carbon emission reductions.  

Countries with historical and current high annual emissions per capita (such as 

Australia) must reduce their emissions more quickly than low emissions per 

capita countries. Another reason that emissions must be reduced quickly is that 

about half of current global warming is being masked by aerosol particles 

(Jacobson 2009). So the Earth is not feeling the full impact of the warming yet. 

Reduction in aerosol particles in the atmosphere could result in sudden and 

dramatic changes in climate. There is also the possibility that the Earth's climate

system could reach a "tipping point" where there are irreversible impacts 

(Lontzek et al. 2015). The likelihood of a tipping point occurring is uncertain but

expected to increase with rising temperatures.

1.1.1 Greenhouse emissions from stationary electrical generation, and the 
SWIS grid

 In 2005-2006, electricity generation accounted for 45.5%, the largest component,

of Australia's primary energy consumption (Syed and ABARE 2007),  and 

approximately the same fraction of Australia's greenhouse gas emissions. Rapid

emissions reduction will therefore require rapid reduction in emissions from 

electricity generation. In the South West of Western Australia (SWWA), the 

principal electricity supply and distribution system is the South West 

Interconnected System, or SWIS (Figure 1.1). This grid presents an interesting 

case study for reducing emissions, because it is isolated from all other major 

grids, so there is no possibility of importing electricity to cover shortfalls, or 

2



Chapter 1. Introduction

exporting excess generation. Also there is also currently little available hydro-

power capacity that could be used for storage. Therefore the task of balancing 

generation with demand is more difficult. If the SWIS grid could be quickly 

converted to a low emissions system, while maintaining reliability, then many 

other places in a similar situation could too.
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Figure 1.1. Simple schematic of the SWIS grid backbone in the South West of Western Australia.

1.2 Pathways to emissions reduction

What are the options for reducing greenhouse emissions from energy 

generation and the risk of dangerous anthropogenic climate change? Four 

technological options have widely been suggested: using nuclear energy, using 

fossil fuels with carbon capture and storage (CCS), using renewable forms of 

energy, and finally geo-engineering. The first three options aim to reduce 

emissions, while the fourth option, geo-engineering, refers to a number of 

proposed technologies designed to alter the Earth's climate if deployed on a 

broad scale (Pachauri et al. 2015). Some forms of geo-engineering aim to reduce 

emissions, but other forms aim to reduce the net energy falling upon the earth 
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1.2 Pathways to emissions reduction

from the sun. Currently there is not enough evidence or experience to properly 

assess the benefits, and possible side effects of geo-engineering, so it is not 

considered further here. This thesis will concentrate on two forms of renewable 

energy, sun and wind, and will demonstrate how the SWIS grid could be 

rapidly converted to a low emissions energy system. 

With any of the technological options, improving energy efficiency so that 

energy demand is reduced will make the task easier. So from now on, any 

reference to renewable energy can be taken to also include energy efficiency 

measures.

1.3 Research questions 

The principal objective of this research is to answer the following questions:

1. Do existing solar and wind renewable energy systems currently offer the 

best path for achieving a rapid transition to a sustainable, low emission, 

electricity system for the South West of Western Australia? The principal 

criterion is the ability to rapidly expand generation and reduce 

greenhouse gas emissions. There are also ancillary criteria that should be 

considered, such as reliability, water use, and environmental impact. 

Cost is also an important factor. However, given the urgency of the 

climate situation, rapid reduction in greenhouse emissions must 

outweigh near term cost, or the long term cost is likely to be much 

greater, and could be catastrophic (Stern 2013).

2. As a corollary to the first question, just how far can the renewable energy

path be taken? Can solar and wind renewable energy systems, aided by 

storage and energy efficiency improvements, completely replace the 

4
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existing conventional generation systems? Is a 100% renewable energy 

system a technically feasible option for the SWIS?

1.4 Methodology

Even when considering a local level, the global context of any particular 

technology choice is important, as there are implications for the availability of 

infrastructure, skills-base, economies of scale, and possible materials shortages 

and manufacturing bottlenecks. Therefore the research methodology of this 

thesis will be divided into two parts:

1.  The first part is partly qualitative and will review the characteristics of 

each of the low emission technology options of nuclear, CCS, and 

renewable energy on a global scale. The potential advantages and 

disadvantages of each will be considered and compared. This review 

aims to assess the viability of renewable energy as an option for rapidly 

reducing greenhouse emissions (perhaps the only viable option). A 

search will be conducted for examples of large scale electrical grids that 

already operate wholly or substantially on renewable energy. Since most 

large grids still rely on fossil-fuel generation, a search will also be 

conducted for simulations of hypothetical 100% renewable energy 

systems based on existing grids.

2. The second part of this thesis will concentrate on developing a numerical

simulation of the SWIS grid powered by a combination of solar, wind, 

energy storage, and energy efficiency. Since solar and wind are the main 

resources that are available to be utilised in the SWWA, the aim will be 

to develop models for generating synthetic values of solar and wind 

power generation based on the spatial and temporal meteorological 
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characteristics of the SWWA region. Using these models, the energy 

generated by a hypothetical solar or wind power plant of arbitrary 

capacity, placed anywhere within the SWWA region, can be estimated. 

Models for the operation of battery storage and solar thermal storage 

will also be developed. These capabilities will be integrated into an 

overall simulation of power supply and demand on the SWIS grid. With 

load demand mediated by energy efficiency improvements and 

population increase, a number of hypothetical power system scenarios 

will be developed, with the aim of achieving 100% renewable generation 

of the load demand. All of these models will be kept as simple as 

possible to maximise the ability for interactive operation and the 

addition of more power stations or storage to the scenarios. The criteria 

for achieving 100% will be the ability to meet current SWIS grid 

reliability standards using renewable generation only. Additionally, the 

required capacity for each technology must be moderate enough to allow

a rapid time schedule for installation. Additional information about the 

methodology can be found in section 4.4.

1.5 Thesis structure

Chapter 1 has laid out the current situation, and the urgent challenge to 

minimise the risk of dangerous climate change by rapidly reducing greenhouse 

emissions. Chapter 2 will give a brief overview of nuclear energy, CCS and 

renewable energy and examine their potential to quickly reduce greenhouse gas

emissions from stationary electricity generation on a global scale. Chapter 3  

will compare these options and argue that renewable energy and energy 

efficiency are viable and rapidly scalable options. Chapter 4 will cover current 

examples and simulations of renewable energy electricity systems, laying out 
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the framework for the simulation of solar and wind energy (both commercially 

mature and widely available forms of renewable energy), and an integrated 100 

percent solar and wind system for the SWIS, using storage and energy 

efficiency. Chapter 5 will detail the methodology, calibration and validation for 

the meteorological simulation of solar irradiance in the SWIS region. This 

chapter is based on the journal article "A method for generating synthetic 

hourly solar radiation data for any location in the south west of Western 

Australia, in a world wide web page" (Laslett et al. 2014). Chapter 6 will detail 

the methodology and calibration of the solar thermal power model with 

storage. Chapter 7 will detail the methodology, calibration and validation for 

the meteorological simulation of wind power.  This chapter is based on the 

journal article "A simple hourly wind power simulation for the South-West 

region of Western Australia using MERRA data" (Laslett et al. 2016). Chapter 8 

will detail the integration of the wind and solar models into the simulation 

constructed for this thesis, which also allows for the balancing of supply and 

demand for the SWIS power system using storage, including solar thermal 

storage, and energy efficiency. Models for solar PV power generation, 

distributed battery storage and energy efficiency will be developed in this 

chapter.  Chapter 9 will discuss the results of the simulation. Chapters 6, 8, and

9 are based on the journal article "A large-scale renewable electricity supply 

system by 2030: solar, wind, energy efficiency, storage and inertia for the South 

West Interconnected System (SWIS) in Western Australia." (Laslett et al. 2017). 

Finally, chapter 10 will draw conclusions.
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2 Overview of low emissions technologies

This chapter provides an overview of the characteristics of commonly cited 

technological options for reducing greenhouse emissions from electricity 

generation. These are nuclear, CCS, solar and wind. Storage and energy 

efficiency measures are also included.

2.1 Nuclear power

Nuclear physics theory defines a stable nucleus as that with the least total 

energy. Experiments have found that the most stable nuclei are found in the 

middle of the periodic table.  Both lighter and heavier elements are less stable. 

Therefore, some heavier isotopes have the potential to fission, producing lighter

elements of lower total energy. The release of energy can be used for electricity 

generation. Some lighter elements also have the potential to fuse, producing 

heavier elements of lower total energy. The only nuclear technology in current 

wide-scale operation collects heat from the fission of the heavy unstable 

uranium 235 isotope (U-235), and converts the heat into electricity via steam 

turbines. Plutonium 239 (Pu-239), which is produced from neutron 

bombardment of U-238 in both standard and "fast-breeder" reactors, has also 

been used (Jacobson 2009), as has uranium 233 (U-233).

U-235 and Pu-239 by themselves decay slowly. However, fission of these 

isotopes can be triggered by bombardment with neutrons, and typically 

releases 2 to 3 neutrons for every neutron absorbed (Von Hippel and Bunn 

2010). Hence, when bombarded with neutrons from previous fission events, the 

rate of fission can be greatly increased, which in turn produces more neutrons 
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and leads to more fissions. This amplification is referred to as a chain reaction. 

In a nuclear bomb the chain reaction is uncontrolled. In a nuclear reactor, the 

chain reaction is controlled to generate a steady source of heat energy which 

can be converted into electricity. Materials that are capable of sustaining a 

nuclear chain reaction are called fissile.

2.1.1 Current status

Over the past 15 years, nuclear power generation has exhibited little growth. 

Globally in 2014 there were 391 commercial reactors in operation (Schneider 

and Froggatt 2015), 44 less than in 2009, and 53 less than the peak in 2002. In 

2014 the combined nuclear capacity was 337 GW, less than the 2008 capacity of 

370 GW. Despite the drop in reactor numbers, capacity increased from 2002 

until 2007, and remained steady until 2011. This was achieved through larger 

reactors replacing smaller ones, and through uprating the capacity of existing 

reactors (Schneider and Froggatt 2015). Actual energy generation peaked in 

2006. In 2011 the Fukushima disaster caused a sharp decline in the number of 

operating reactors, combined capacity and energy generation. All of these have 

begun increasing again since 2012. However new construction starts have 

declined since 2013, and at least 75% of all existing construction sites have been 

delayed. The average construction time for reactors completed between 2005 

and July 2015 was 9.4 years.

The global average age of nuclear plants has been increasing, and was 28.8 

years at mid 2015. The overall average age at shut down is about 25 years, but 

many early reactors only operated for a few years, and the age range of reactors

shut down since 2014 was from 36 to 42 years. Assuming an average reactor 

lifetime of 40 years before shut down, Schneider and Froggatt (2015) estimate 

that in addition to the 62 reactors listed as under construction, 19 extra reactors 
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would need to be ordered and built by 2020 to maintain the current number of 

operating reactors, and 188 reactors would be needed by 2030. This build rate is 

about four times the installation rate achieved between 2005 and 2014. 

Another possible way to maintain reactor numbers is to increase operational 

lifetime beyond 40 years on average. Reactor lifetime can be extended up to 60 

years in the US, however, both uprating capacity and lifetime extension of 

reactors could pose extra safety risks and complicate decommissioning. Also 

since the reactors involved in the Fukushima disaster were at least 37 years old, 

more questions have been raised about extending reactor lifetimes, and there 

has been a tendency toward accelerated shut down of older reactors rather than

life time extension.

The overall picture of the current status of nuclear power raises doubts over the

ability to increase or even maintain its current share of world electricity 

production.

2.1.2 Life-time of reserves

There are varying estimates of the life-time of recoverable uranium ore reserves.

MIT (2003) estimated that a fleet of 1500 reactors, each generating 1000 MWe,  

operating for 50 years requires about 15 million tonnes of uranium. Using these 

figures, a single 1 GWe reactor requires 200 tonnes per year. Capacity factor is 

the ratio of actual electricity generated compared to the amount that would be 

generated if the plant ran continuously at rated power. Operational nuclear 

capacity in the year 2008 was about 370 GWe (Schneider et al. 2009) and 

generated about 2600 TWh, or on average 297 GWe operating continuously, 

giving an average capacity factor of ~0.8. Assuming that a 1 GWe reactor will 

consume 200 tonnes of uranium per year, operating at a capacity factor of 1, the 

current nuclear fleet requires about 59 kilotonnes per year. Known resources of 
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uranium were also estimated at about 3 to 4 million tonnes. Using the figure of 

4 million, there is approximately 68 years of supply at current nuclear 

generation rates. Nuclear power supplies about 14% of world electricity 

demand (Schneider et al. 2009), so if nuclear power were scaled up to supply all

of the current demand, current reserves would last about 9.5 years. This figure 

will be even less if there is growth in demand. Hohmeyer and Trittin (2008) 

estimated global reserves as between 6.7 and 23 years, at current usage rates. 

However, MIT (2003) estimated that a doubling in price of uranium would 

multiply the reserves by a factor of 10, giving 95 years of reserves at current 

global demand rates, or 680 years at current nuclear generation rates. Mudd 

(2014) concluded that uranium supply is mostly an economic and political 

issue, rather than a resource constraint issue.

Another source of nuclear fuel is the weapons grade uranium and plutonium 

presently held in global nuclear bomb stockpiles (Pearce 2008). This can be 

considered a favourable option, because there is no extra energy use or 

greenhouse emissions from the mining and processing of un-enriched ore. 

WNA (2009) estimated that there are about 2000 tonnes of highly enriched 

uranium and about 260 tonnes of weapons grade plutonium in Russian and 

United States (US) weapons stockpiles. These in total could displace enough 

uranium mine production to give an extra 13 years of fuel reserve at current 

nuclear generation rates. If nuclear generation was scaled up to meet all of the 

current global electricity demand, there would be an extra 1.8 years of fuel 

reserve.

There are large quantities of low grade uranium ore in the earth's surface and in

sea water at low concentrations. For both, the energy needed to extract the 

uranium is likely to exceed the energy that can be produced (Diesendorf 2005). 

MacKay (2010) discussed a sea water extraction technique developed in Japan, 
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but noted that most of the water in the sea is inaccessible, and that ocean 

current systems cycle water around approximately once every 1000 years. The 

issue of net energy return was raised, and also the collector area required to 

scale up this technology to meet global energy demand.

Fast breeder technology produces plutonium from the spent fuel of 

conventional reactors. The plutonium can also be used to produce energy, 

effectively multiplying the fuel reserves by up to 60 times (Diesendorf 2005).  

However, MIT (2003) recommended against the use of breeder technology or 

one-pass spent fuel recycling. The reasons given were cost, short-term waste 

management issues, proliferation risk, and safety issues.

2.1.3 Grid penetration

High penetrations of nuclear power into an electricity system raise a number of 

technical issues. The mechanisms of radioactive decay chain kinetics are 

complex. Delayed neutron emission means that changing the heat output level 

of a nuclear reactor core by changing the neutron chain reaction kinetics is a 

complex process that must be performed gradually (Patterson 1983). Nuclear 

reactor start up and shut down can take many hours. Nuclear plants have long 

ramping times and a limited ability to reduce output (Denholm and Margolis 

2006). They can be designed and configured for more rapid ramping, but have 

shown a higher unscheduled outage rate when operated at less than maximum 

output (Martinot 2016). The case of France might serve as an illustration. France

has a large difference between summer lowest load and winter highest load. 

The large winter peaks are due to the wide-spread use of electric space and 

water heating. These peaks are not covered by nuclear, but by fossil fuel plants 

or imports (Schneider et al. 2009). This suggests that nuclear is not suitable for 

meeting peak load demand.
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Another issue arises from the large unit size of reactors and unplanned shut 

downs. Such shut downs for whatever reason (e.g. earthquake, safety problem, 

terrorist incident, or even a problem elsewhere in the grid) can withdraw large 

amounts of power very suddenly, especially if more than one reactor must be 

shut down (Lovins 2009). As mentioned above, reactors can't restart quickly 

after a shut down. In one example, the August 2003 north east US blackout, 9 

nuclear reactors were forced to shut down, even though the problem did not 

originate with them. For the first 3 days after shut down, their combined power 

output was less than 3% of normal, and their average power output over 12 

days after shut down was less than 50% (Lovins 2009).

2.1.4 Radioactive waste

When fission occurs, U-235 and Pu-239 nuclei split unevenly into a range of 

fission by-products with atomic masses centred around 95 and 135 (Patterson 

1983). The fission by-products tend to be beta radiation emitters, emitting fast 

moving electrons as excess neutrons change to protons. Some neutrons are 

captured by other nuclei rather than causing fission, so heavy trans-uranic 

isotopes are also produced, all of which are unstable and prone to alpha, beta, 

and gamma ray emission. Hence the operation of a nuclear reactor produces 

radioactive wastes that present health and environmental risks on a time scale 

of tens of thousands of years (MIT 2003). The many millions of tonnes of 

uranium mine tailings can also remain dangerously radioactive for tens of 

thousands of years (Patterson 1983). At the end of their operational lifetime, 

many parts of a nuclear reactor will be contaminated with radioactivity, and 

must remain isolated from the environment and public access for many years. 

There has been no successful demonstration of a disposal system for these 

nuclear wastes (MIT 2003). Although there have been proposals for 'fast-burner'

reactors that would fission the problematic long-lived radioactive wastes and 

14



Chapter 2. Overview of low emissions technologies

reduce the long time periods required for isolation, two reviews have 

concluded that the process is not effective enough to avoid the need for long 

term repositories and the heightened operational and proliferation risk is not 

justified (Von Hippel and Bunn 2010).

2.1.5 Safety

The safety risk of current nuclear fission technology comes from three kinds of 

events: an accident that releases radiation or radioactive material anywhere in 

the fuel chain, an act of terrorism, or an exchange of nuclear weapons. The 

Chernobyl accident in 1986 demonstrated the disastrous consequences of a 

major nuclear reactor accident. The reactor at Chernobyl used a design with a 

positive void coefficient, meaning that loss of cooling causes reactor heat output

to increase (Shlyakhter and Wilson 1992). There was also no outer containment 

shield. Therefore the nuclear industry hoped that bad design and poor 

operation could be blamed, and that such an accident would never happen in 

the west (Thomas 2012). MIT (2003) made two estimates of core damage 

frequency due to accident, based on US reactor designs. One is based on the 

historical record of reactor operation in the US from 1957 to 2002. The one 

incident of core damage at Three Mile Island in 1979 gave an estimate of 1 in 

2679 reactor years, or just under 4x10-4 per year per reactor. The other estimate 

was based on identification of possible failures that could occur in a reactor, 

and their probabilities and consequences. This method produced an estimate of 

1x10-4 incidents per year per reactor. Under a scenario of tripling of US nuclear 

generation capacity by 2050, and using the second more optimistic estimate, 4 

core accidents would occur in 50 years. A core damage accident does not 

necessarily mean a release of radiation into the environment, or to reactor 

workers. However MIT (2003) considered that this accident rate was 

unacceptably high, because of the significant public health risk, and the loss of 
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public confidence in nuclear power even if containment was successful in all 

four cases. Additionally, little is known about the safety of the overall fuel cycle,

other than reactor operation.

The earthquake and tsunami that hit Japan in 2011 demonstrated that Western 

designed reactors are vulnerable to unexpected events, such that the frequency 

of core damage accidents may be greater than estimated. At the Fukushima Dai-

Ichi nuclear reactor complex, four operating reactors shut down successfully 

(with two already shut down), but grid power to the cooling systems was cut, 

and the emergency backup generators were crippled by the tsunami (Aoki and 

Rothwell 2013). The severity of the accident was magnified by high level 

management failures in the aftermath of the earthquake. Cooling systems were 

not restored, leading to hydrogen explosions, fuel core meltdowns, and release 

of radiation into the environment. Four years after the accident, high radiation 

levels remain inside each reactor building, hampering clean up efforts 

(Schneider and Froggatt 2015). Large quantities of radioactive water, used to 

cool the fuel cores, are accumulating on site. Storage and leakage into the 

environment are a constant problem. Both the Chernobyl and Fukushima 

disasters have led to long term population displacement, widespread health 

effects, and enormous economic costs.

Accidents are not the only hazard posed by current nuclear fission technology. 

Jacobson (2009) linked the presence of a civilian nuclear power program with 

the ability to build a nuclear weapon. A precise probability of nuclear weapon 

exchange was not calculated, but a scenario involving the detonation of 

weapons onto cities totalling 1.5 mega tonnes Trinitrotoluene (TNT) equivalent 

was defined, and a rough estimate of 1 event in 30 years due to war or terrorism

was calculated. This scenario was estimated as only about 0.1% of the yield 

range of a full-scale nuclear war. The author also noted that globally there is 
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enough nuclear material to produce more than 3 times the current number of 30

000 nuclear warheads. However, these estimates must be set against the fact 

that there has been no hostile nuclear weapon exchange in over 65 years. The 

increased proliferation risk associated with the use of breeder technology or 

one-pass spent fuel recycling was one of the reasons why MIT (2003) 

recommended against the deployment of these technologies. Spent fuel 

recycling was used by India as a cover for their covert nuclear weapon program

(Von Hippel and Bunn 2010). Martin (2015) raises concern over the threat to 

civil liberties and Patterson (1983) raises the spectre of a totalitarian social 

structure becoming necessary to ensure the safety of nuclear reactors and 

materials.

2.1.6 New reactor designs

Nuclear fission reactors have been categorised into 4 classes, or "generations" 

(from I to IV), with most currently operating reactors in generations II or III 

(Schneider et al. 2009). Generation IV is not expected to become available for the

next 20 years. Since 2000, a "generation III+" class has been defined. These are 

distinguished from generation III by the greater use of "passive safety" systems, 

where safety relies more on inherent design features, rather than on active 

engineered systems. Four units were in operation in Japan as of 2009, with 

several more under construction.

MIT (2003) considered that a core damage accident frequency of 1 in 100,000 

reactor years (a 10 fold reduction on their estimate of current risk), or less than 1

accident in 50 years, was an acceptable level for a three fold expansion of US 

nuclear capacity by 2050. The authors also cited claims by advanced light water 

reactor designers that they can meet this standard. However, no new reactor 

design has completed an operational lifetime, and hence their safety record 
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remains uncertain. Doubts have been raised about the overall safety of reactors 

with passive safety features, for two reasons. Firstly, the pressure generated by 

gravity-fed passive emergency cooling systems is less than pump-driven active 

systems, and hence performance is less certain in situations where hot fuel may 

produce high back pressures. Secondly, the reliability requirements for the 

active safety systems have been loosened, and less robust containment has been

allowed (Von Hippel and Bunn 2010).

US nuclear generation in 2008 was 800 TWh (Schneider et al. 2009), or about 

31% of the world total of 2600 TWh. Hence on a global scale, to achieve a risk 

probability of less than 1 accident in 50 years, the core damage frequency would

need to be less than 1 in 325,000 reactor years, or 3x10-6 per reactor per year.

2.1.7 Breeder and burner reactors

Breeder reactors use an existing neutron source (most probably a fissile fuel) to 

transform other non-fissile materials (such as the much more common U-238) 

into fissile isotopes, producing more fissile fuel than they consume and thus 

extending the lifetime of the original fuel (Cochran 2010). Fast breeder 

technology can produce plutonium from the spent fuel of conventional reactors,

which can be used to produce energy, effectively multiplying fuel reserves by 

up to 60 times (Diesendorf 2005). Breeder reactors were originally proposed as 

far back as World War II, but initial development programs tailed off as 

uranium reserves for conventional reactors were found to be more abundant 

than expected, and growth in nuclear generation less than expected (Cochran 

2010). MIT (2003) also recommended against the use of breeder technology or 

one-pass spent fuel recycling. The reasons given were cost, short-term waste 

management issues, proliferation risk, and safety issues. Research interest has 

persisted, as breeder reactors can also be used to convert heavy transuranic 
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elements present in existing nuclear waste into lighter fission products 

("burning"), reducing the volume of waste and the level of radioactivity 

(Cochran 2010). However, as mentioned in section 2.1.4 above, this process is 

not considered effective enough to avoid the need for long term repositories 

and leads to heightened operational and proliferation risk.

Generally, breeder reactor operation has not been successful, with multiple and 

lengthy shut downs, and many sodium coolant fires. Russia has achieved 

respectable operational levels in the BN-600 breeder reactor by using multiple 

redundant steam generators. The system can tolerate frequent sodium fires by 

switching from one damaged generator to another while the first is repaired. A 

further breeder reactor, the BN-800, has begun operation, although still 

operating at much reduced capacity.

2.1.8 Thorium cycle

Thorium fission is thought to offer potential advantages over uranium fission. 

Thorium is estimated to be three times more abundant in the Earth's crust 

(Kazimi 2003). In general there is less long-lived, hazardous radioactive waste 

produced by the thorium cycle than the uranium or plutonium cycles. The 

thorium cycle is also considered to offer better proliferation resistance. Thorium

could be used to develop nuclear weapons, but is more difficult than using 

plutonium. Concerns have been raised that U-233 could easily be diverted from 

a thorium reactor to make a nuclear or dirty bomb (Ashley et al. 2012).

There are also disadvantages to the thorium cycle when compared to the 

conventional uranium cycle. Naturally occurring thorium ore has a 

predominant isotope, Th-232, that is not in itself fissile, and unlike uranium ore,

does not have significant quantities of fissile isotopes that can be used to 

generate neutrons to sustain a continuous nuclear reaction. Instead an external 
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source of neutrons must be supplemented with the fuel, such as U-233, U-235 or

Pu-239. However, thorium is harder to use in existing light-water reactors, 

because of the build up of neutron absorbing intermediate products. Another 

option is to insert Th-232 into the surrounding blankets of breeder reactors, 

which supply the neutrons, as proposed in the Indian nuclear program (Von 

Hippel and Bunn 2010). India has limited local supplies of uranium but a much 

greater thorium resource. Th-232 has already been used to blanket balls of U-

235 in high temperature gas cooled reactors, thus acting as an extender to the U-

235 fuel (Schaffer 2013). These and other thorium reactor technologies, such as 

molten salt reactors (D. G. Green 2015),  are in the research and development 

stage, but are not expected to make any significant contribution to world energy

production for at least another 20 years (Schneider and Froggatt 2015).

2.1.9 Nuclear fusion

Another kind of nuclear reaction might have potential for electricity generation.

Hydrogen fusion involves the fusing of deuterium-2 or tritium-3, which are 

heavier isotopes of hydrogen, to form helium. Deuterium can be obtained from 

sea water. The more unstable tritium-3 (half-life 12 days) isn't found abundantly

in nature, but can be manufactured from lithium. Hydrogen fusion technology 

is in the experimental stage. Even with steady technological progress, fusion 

power is not expected to be available in significant quantities before the second 

half of the 21st century (Turnbull et al. 2015).

2.1 Carbon capture and storage (CCS)

Geosequestration, or Carbon Capture and Storage (CCS) is a technology that 

attempts to capture the carbon dioxide produced in the fossil fuel combustion 

process and store it for long periods of time, thus preventing the carbon dioxide
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from entering the atmosphere (Diesendorf 2006a). CCS can be divided into 

three phases: capture, transportation, and storage.

Currently there are three main methods of capture: "pre-combustion", or before 

the fuel is burnt to provide energy; "post-combustion", or after the fuel is burnt; 

and "oxy-fuel combustion", which involves injection of oxygen during 

combustion resulting in easier post-combustion separation (IPCC 2005). In 

many cases, a post-combustion system can be 'bolted on' to an existing power 

station. Also under development are fuel cell systems that convert fossil fuel to 

electricity in an electro-chemical reaction without combustion (Damen et al. 

2006). CO2 can be captured from the fuel cell after the reaction has taken place, 

or the fuel can be reformed to separate CO2 beforehand, creating hydrogen as 

the fuel. Fuel cell systems have shown the potential to operate at higher 

conversion efficiencies (sometimes more than 50%) than combustion processes. 

Natural gas is considered to have lower emissions than coal, but in some gas 

fields, CO2 emissions may offset this advantage, so capture at the point of 

extraction (rather than the point of combustion) may be required as well 

(Diesendorf 2006a). There may also be significant fugitive methane emissions.  

The two main methods of CO2 transport are via pipeline and via ship. Possible 

storage methods include geological storage (in formations such as oil and gas 

fields, unminable coal beds and deep saline formations), ocean storage (direct 

release into the ocean water column or onto the deep sea floor), storage in 

mineral carbonates, and industrial consumption of CO2 (IPCC 2005). Geological 

storage can be divided into the use of depleted oil and gas reservoirs, use of 

deep saline aquifers, using CO2 in enhanced oil and gas recovery (EOR), and 

using CO2 in enhanced coal bed methane recovery (ECBM).
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2.1.1 Global potential

The global storage potential in geological formations is uncertain but is 

estimated to be at least about 2000 Gt CO2 (IPCC 2005). There could be much 

more storage potential in saline formations. Ocean CO2 storage capacity could 

be in the range of thousands of gigatonnes, but depends on what level of 

atmospheric stabilisation is achieved, and on environmental constraints. 

Industrial consumption is not expected to contribute much to emissions 

reductions. In 2009, the fossil fuel emission rate was about 30 Gt CO2 per year 

(Jacobson 2009).

The proximity between emissions sources and potential carbon storage sites is 

an important factor in determining the technical and economic feasibility of 

CCS. IPCC (2005) used a criterion of 300 km proximity for assessing the 

geographical match between point sources of carbon emissions and possible 

geological storage sites, concluding that many point sources are in proximity to 

storage sites, but in general there is a lack of information regarding the 

proximity of sources to potential storage sites. Globally, only a small proportion

of large point sources of carbon emissions are within proximity to potential 

ocean storage sites. By 2050, around 30 to 60% of CO2 emissions from electricity 

generation will be technically suitable for capture. There is also potential for 

capture from biomass plants, but the proximity of storage sites to future large 

biomass plants has not been studied.

2.1.2 Australian potential

The storage potential for CCS in Australia has been estimated as 740 Gt CO2 

(Bradshaw et al. 2002). In 2005-2006, electricity generation accounted about 45%

of Australia's greenhouse gas emissions (Syed and ABARE 2007), or very 

roughly around 250 Mt CO2 per year. So there is enough storage capacity for 
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many hundreds of years of emissions. However, technical factors such as 

multiple well site interference, and the need to keep the reservoir pressure 

below the fracture pressure, place limitations on maximum storage rates 

(Allinson et al. 2009). A maximum storage rate of 100 to 115 Mt CO2 per year 

was estimated (Bradshaw et al. 2002), implying that CO2 can't be stored at a 

high enough rate to capture total emissions. Only just under half of annual 

electricity emissions could be stored. 

2.1.3 Current technological status

CCS can be applied to large point sources of CO2 emissions (IPCC 2005), but not

small point sources (e.g. vehicles with internal combustion engines). However, 

CCS could still contribute to emissions reductions in transport if there is a large-

scale switch towards using electric or hydrogen based power trains in the 

vehicle fleet, and the electricity or hydrogen is produced from fossil fuels. 

Direct conversion of fossil fuel to electricity or hydrogen using fuel cells is in 

the demonstration phase (Damen et al. 2006). Pre-combustion and post-

combustion capture are considered to be technologically and economically 

feasible under certain circumstances (IPCC 2005), while oxyfuel combustion is 

in the demonstration phase (Leung et al. 2014). There already exists a mature 

market for transport by pipeline, and transport by ship is considered to be 

economical under certain circumstances.

Storing carbon using EOR is an economically mature storage technology and 

could be used for storage in old gas and oil fields. There have been several 

small scale pilot and commercial deep saline aquifer storage projects, but there 

is a need for more post-injection monitoring. ECBM is in the demonstration 

phase but reduction in permeability of the coal seam is a technical issue needing

to be solved. All forms of ocean storage are still in the research phase. Ocean 
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storage does not include storage in oil or gas fields that happen to be 

underneath the ocean. Storage in mineral carbonates is in the research and 

demonstration phase, but there remain a number of uncertainties (Leung et al. 

2014). Industrial consumption is commercially mature, but is not expected to 

contribute much to emissions reductions (IPCC 2005). Another possibility is 

storing carbon by reaction of CO2 with metal oxides to form stable carbonates. 

However the natural reaction rate is slow and must be enhanced by pre-

treatment of the minerals, which is presently energy intensive. This technique is

generally in the research phase, although some projects using metal oxides from

waste streams are in the demonstration phase.

Extending the findings of Viebahn et al. (2007) globally, some countries may 

face the need for large-scale replacements or substitutions of fossil-fuel plants in

the next 10-15 years, either to meet emissions targets or to replace plants at the 

end of their lifetimes. This is before many CCS technologies may be 

economically mature. In this case retrofitting is the only feasible way for CCS to 

make a significant contribution to reducing emissions. Scott et al. (2015) suggest

that the current storage creation rate of CCS systems is insufficient to match the 

rate of reductions in greenhouse gas emissions required to prevent dangerous 

climate change.

2.1.4 Advantages and problems of CCS

A potential advantage of CCS is that it offers the possibility of deep cuts to CO2 

emissions without disrupting existing energy supply systems and the global 

economy. However Diesendorf (2006a) highlights a number of problems, 

including increased water use and pollution, land degradation, worker health 

problems, and high danger levels. The main reason for these problems is that 

extra energy must be diverted to the geosequestration operation, reducing 
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overall efficiency and increasing the amount of fossil fuel that must be 

combusted per unit output of energy. This also means extra cost. Both 

industrial fixation and production of carbonates will require mining of the raw 

materials and disposal of the carbon products in land-fill. Each will require 

additional transport and land clearing (IPCC 2005), which may detract from the

net carbon storage.

A major concern is the risk of leakage from the storage sites. In addition to 

releasing CO2 back into the atmosphere, negating the benefit of CCS, there are 

potential risks to human health. High leakage rates combined with stable 

atmospheric conditions could cause local CO2 concentrations in the air that are 

high enough to harm animals or people (IPCC 2005). In addition to human 

health concerns, elevated CO2 concentrations in the shallow sub-surface include

harmful or lethal effects on plants and subsoil animals and groundwater 

contamination.  The potential effects of large scale leakages include higher 

greenhouse emissions, suffocation of humans and animals, acidification of 

waterways, damage to ecosystems, and if brine from saline aquifers is pushed 

to the surface, contamination of drinking water and soil salinity (Diesendorf 

2006a).

IPCC (2005) found that the risk of leakage of CO2 from pipelines is low (perhaps

lower than existing hydrocarbon pipelines), but a sudden and large leakage of 

CO2 could be quite dangerous to human health.  Geological storage leakage can 

be categorised as either abrupt (maybe through an injection well failure or 

through an abandoned well), and gradual (through undetected faults, fractures 

or wells). Based on existing experience and modelling, IPCC (2005) claim that 

well selected and managed geological formations are very likely to retain 99% 

of stored CO2 over 100 years, and likely over 1,000 years. Trapping mechanisms 

could make the stored CO2 more secure over time, such that it might be 
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retained for up to 1,000,000 years. The authors also claim there is no known 

mechanism for sudden CO2 leakage from ocean storage. However, Jacobson 

(2009) claims that leakage rates over such time scales are impossible to predict. 

Liquified CO2 injected into the ground will be under high pressure and take any

opportunity to escape. The low pH value of CO2 will tend to weather rock over 

time, and if a leak does occur, there is uncertainty over whether it would be 

detected, or if the leak could be plugged, especially if it is happening over a 

wide area. Where CO2 is bound in limestone or other non-volatile minerals, 

then the risk of leakage will be presumably much less, but these sites may be 

hard to find (Diesendorf 2006a). Jacobson (2009) highlights the risk of leakage 

through existing rock fractures and porous soil, or new fractures resulting from 

earthquakes. Another potential problem is that CCS itself may cause small 

earthquakes. Pressure build-up caused by CO2 injection could trigger small 

seismic events (IPCC 2005). Ocean storage has the potential to increase water 

acidity and the carbon will return to the global carbon cycle eventually. 

Viebahn et al. (2007) notes the extra emissions from mining and transport (due 

to the higher energy requirement of CCS), as well as extra emissions of 

methane.

2.1.5 Lifetime of world fossil fuel reserves

Shafiee and Topal (2009) estimated that coal reserves in 2005 equate to about 

65% of world fossil fuel reserves with oil and gas split approximately evenly for

the remaining 35%.  Using a model that accounts for increases in consumption, 

the authors estimated that reserves for coal, oil, and gas will last for 106, 34, and

36 years respectively. Using 2005 as a base year, reserves for coal, oil, and gas 

would last until 2111,  2039, and 2041 respectively. If coal is substituted for oil 

and gas after 2041, coal reserves will be exhausted sooner. Gadonneix et al. 

(2010) was slightly more optimistic, estimating the ratio of reserves to annual 
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consumption in 2008 for coal, oil, and gas to be 128, 41, and 54 respectively. 

Using 2008 as a base year, reserves for coal, oil, and gas would last until 2136, 

2049, and 2062 respectively. If the use of CCS technologies decreases the 

efficiency of energy conversion, then these estimates must be reduced further. 

The conclusion that must be drawn is clear: using CCS can only be a temporary 

solution, as fossil fuels are likely to run out over the next century. There must 

eventually be a global transition to other energy sources.

2.2 Renewable energy

Renewable energy systems are those that harvest natural energy fluxes and 

convert the captured energy into a form usable by human civilisation. The 

energy fluxes can be divided into three categories according to their origin 

(Hohmeyer and Trittin 2008). Energy from the sun striking the earth is the first 

source, providing a solar radiation resource over large areas of the Earth’s 

surface.  This source in turn drives global wind and wave systems and the 

hydrological cycle which provides water at high potential energy, and biomass 

through photosynthesis. The second source is radioactive decay within the 

Earth’s crust which provides heat for geothermal energy. The third source is the

gravitational energy of the moon (and to a lesser extent the sun), which powers 

the ocean’s tides.

2.2.1 Global potential of renewable energy

Many of these natural energy fluxes are essentially inexhaustible over the time-

frame of the life of the Earth and contain many times the current global energy 

use of human society (Hohmeyer and Trittin 2008).  Table 2.1 gives estimates of 

the available energy fluxes. These fluxes provide a free 'fuel', but are often 

diffuse, variable, and distributed over the Earth's surface in a pattern different 
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to the current distribution of energy demand. This thesis will concentrate on 

solar and wind as the two forms of renewable energy that have the most 

commercially mature systems for harvesting and conversion into electricity, are 

widely available in the SWWA region, and already have a presence on the SWIS

grid. Bioenergy is also discussed, as it provides one means for long term energy

storage across seasons, and the South West region of Western Australia has 

potential bioenergy resources. Wave energy is also under active development 

and modelling the potential contribution to the SWIS grid is worthwhile for a 

future study.

Table 2.1. Renewable energy resources in 2004.

Renewable source Annual energy flux  (EJ/y) Ratio of annual flux to 

annual demand

Solar omitted omitted

Wind omitted omitted

Hydro omitted omitted

Bioenergy omitted omitted

Ocean (wave and tidal) omitted omitted

Geothermal omitted omitted

Current annual energy demand (2004) omitted omitted

 Source: Hohmeyer and Trittin (2008).

2.2.2 Solar energy

Solar radiation is diurnal and most intense at lower latitudes (Hohmeyer and 

Trittin 2008). There are two currently commercially available methods for 

generating electricity from solar energy: Photovoltaic (PV) cells, which convert 

photons directly into electricity; and solar thermal, which converts the photons 

into heat as an intermediate step. The heat is then converted into electricity. 
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2.2.2.1 Solar PV

In PV cells the energy of incident photons causes electrons to jump to a higher 

energy quantum state, providing a source of electrical potential (voltage). 

Electricity flows when there is a pathway for the electrons to flow back into the 

lower energy state. Only photons within a certain energy range can be utilised, 

and the efficiency of conversion is low, less than 20% for most current 

commercially available PV cells. However efficiencies are on a continuous 

improvement pathway (Hohmeyer and Trittin 2008), with the best laboratory 

cells reaching 40% at highly concentrated solar intensities, and cells with 

efficiencies greater than 20% about to enter high volume production (Owano 

2015). Conversion efficiency falls at low values of solar irradiance and if the cell 

temperature increases (Huld et al. 2010). Direct current (DC) to alternating 

current (AC) conversion losses also reduce overall efficiency. Despite these 

limitations, the use of solar PV has grown strongly, doubling about every two 

years on average (Jean et al. 2015). Global installed capacity reached 177 GW in 

2014, compared to 3.7 GW in 2004, giving an average annual growth rate of 47%

(REN21 2015).

Although higher efficiency cells are more expensive, collector systems can focus

and concentrate sunlight, reducing the required PV cell area. Because these 

systems can only focus direct sunlight, their suitability for more cloudy climates

has been questioned (Barnham et al. 2006). If there are more clouds, the 

proportion of diffuse to direct sunlight tends to be greater. However, tests have 

shown that in many Japanese cities which have cloudy maritime climates, a 

concentrator system could generate around twice as much electricity per unit 

area as a conventional flat plate system.

29



2.2 Renewable energy

2.2.2.1.1 Technological status of PV

Barnham et al. (2006) plotted the future trends in PV using three "generations". 

The first generation of crystalline cells have efficiencies of around 20%. The 

second generation, comprising of thin film or other technologies, when fully 

developed will have similar efficiencies but lower cost per kW, and the third 

generation, using novel approaches, aim to have efficiencies higher than 30% or 

much lower costs per kW, or both. Although the distinctions are becoming 

blurred, these different generations roughly correspond to the classification of 

PV cells into commercial wafer, commercial thin film, and emerging thin film 

by Jean et al. (2015). The first generation is in wide-scale commercial production

and costs have fallen dramatically (Meneguzzo et al. 2015). There is active 

research to achieve higher efficiencies and use less silicon, but theoretical 

efficiency is limited to around 31% (Barnham et al. 2006). Second generation 

solar cells are commercially available with cadmium telluride cells reaching 

efficiencies of around 16% (Meneguzzo et al. 2015). Third generation cells 

include organic materials and nanocrystalline solar cells. They are mostly in the 

research stage, with efficiencies just above 10% (M. A. Green et al. 2015). 

However perovskite cells have achieved efficiencies of around 20% in the 

laboratory.  Concentrating solar PV cells have attained efficiencies of more than 

40% in the laboratory. The trends for this technology are clear: increasing 

efficiencies, falling costs, and rapidly rising installed capacity. The growing 

production volumes of solar PV cells mean that costs are also falling due to 

economies of scale (Köberle et al. 2015).

2.2.2.1.2 Material constraints

Solar PV currently only provides a small fraction of global energy demand (Jean

et al. 2015). The question arises as to whether there will be any material 

constraints if capacity is scaled up to meet a significant part of this demand. 
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Although there have been shortages of PV grade silicon, this has been due to 

manufacturing capacity bottlenecks rather than a shortage of silicon. For large 

scale deployment of first generation polycrystalline silicon solar PV cells, there 

may be, however, shortages of silver, which is used as an electrode, and flat 

glass, which is used as a substrate and encapsulation layer. For second 

generation thin-film PV cells, substituting indium oxide electrodes with zinc 

oxide electrodes may avoid limitations to large-scale deployment due to limited

indium reserves. However copper indium gallium selenide (CIGS) cells may 

still face supply limitations. For high efficiency cells used in concentrator 

systems, reserves of germanium (Ge) might limit large scale deployment, unless

more abundant gallium (Ga) is substituted for Ge. With the pace of research 

and progress in solar PV technology, it is very difficult to predict where future 

bottlenecks may lie. Many of the newer PV technologies currently in the 

research phase require less material and use materials that are widely 

abundant.

2.2.2.2 Solar thermal

Solar thermal power systems differ from PV systems in that photons are not 

directly converted into electrons. There is an intermediate stage of conversion 

into heat energy (phonons). Because of this intermediate stage, solar thermal 

systems have the potential to store energy and provide electrical capacity on 

demand, even through the night. As with concentrated PV, a collector system 

focuses and concentrates direct sunlight onto a heat absorber medium. This 

absorber medium then transfers the heat into steam to drive a turbine, or to a 

heat storage medium. In some designs, the heat absorber medium is the same as

the heat storage medium. Four types of collector systems have been commonly 

used. They are parabolic trough, linear fresnel collector, stirling dish, and 

power tower (Baharoon et al. 2015). The first two are categorised as "line focus" 
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technologies, while the last two are known as "point focus" technologies. Line 

focus collectors are cheaper and technically easier to produce, but point focus 

technologies can achieve higher light concentration and higher temperatures. 

Higher temperatures allow higher thermal to electrical conversion efficiencies 

and lower cost per unit of energy generated. Line focus technologies have 

single vertical axis sun tracking, while point focus technologies have dual axis 

sun tracking. Solar thermal plants are considered to have a high ramping 

capability (Denholm and Mehos 2011).

2.2.2.2.1 Technological status 

Solar thermal plants without storage have been operating for two decades 

(Hohmeyer and Trittin 2008), and since 2005, there has been increasing 

commercial production, with global capacity growing from 354 to about 3425 

MW in 2013 (Bilgili et al. 2015). Parabolic trough technology can be considered 

commercially mature because it has been operating commercially for more than

28 years (Baharoon et al. 2015), and most of the currently operating solar 

thermal plants use parabolic trough receivers. There are also a number of solar 

power tower projects in operation or under development (Tian and Zhao 2013). 

They are considered more suitable for achieving very high temperatures and 

hence greater efficiencies (Vignarooban et al. 2015). Very few linear fresnel 

collector or stirling dish systems are in operation, although research is ongoing. 

Recently a 125 MWe linear fresnel collector system was commissioned in India.

2.2.2.2.2 Thermal storage 

Heat storage systems can be classified into three types in order of ascending 

storage capacity: sensible heat storage, latent heat storage, and chemical heat 

storage (Tian and Zhao 2013). Sensible heat storage stores and releases energy 

by raising and lowering the temperature of the storage medium. Currently 

molten salts are favoured for the heat storage material because of their high 
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temperature thermal stability, low vapour pressure, low viscosity, high thermal 

conductivity, non-flammability and low toxicity. The use of molten salt heat 

storage has been commercially proven, but corrosion can become a problem, 

mainly because of the higher temperatures achievable with molten salt than 

with other possible materials (Vignarooban et al. 2015). There are several 

parabolic trough solar thermal power stations currently in operation from 50 to 

150 MW in capacity and with 7 to 8 hours of molten salt thermal storage (Tian 

and Zhao 2013).  A 110 MW solar power tower station with 10 hours of molten 

salt thermal storage is operating in California (NREL 2016). Latent heat storage 

stores energy by injecting heat into a material and causing a phase change 

(either from solid to liquid or liquid to gas) rather than increasing the 

temperature. Energy is released by reversing the phase change. With 

thermochemical storage, heat is absorbed by an endothermic chemical reaction, 

and released when the reaction is reversed. Latent and chemical heat storage 

have the potential for much higher storage capacity, but must overcome current

limitations in heat transfer ability, durability, and chemical stability. They are 

still in the research phase.

2.2.2.3 Environmental impacts of solar energy technologies

Tsoutsos et al. (2005) list the possible adverse environmental impacts of solar 

energy technologies, including visual impact, land use requirements for large-

scale stand-alone power stations, water use requirements in arid areas, 

accidental release of toxic materials during construction, manufacturing and 

operation, thermal pollution, and possible fauna deaths from flying into the 

focused light of solar thermal and concentrating solar PV systems. These 

impacts must be balanced against the positive environmental consequences of 

avoided CO2 emissions, avoided climate change, and associated habitat 

retention; and compared with the environmental impacts, including continuous
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emissions of toxic chemicals during operations, and water use of the displaced 

fossil-fueled or nuclear generators. In the case of roof-top and distributed PV 

generators, habitat destruction during operation maybe negligible, although the

land use requirements of large-scale PV manufacturing centres must be taken 

into account. Avoidance of the necessity of grid upgrades and/or extensions 

may be of great benefit to habitat and aesthetic appeal retention. Large utility 

scale PV generators may have significant land clearing requirements however 

(Hernandez et al. 2014), with the potential for habitat destruction and 

biodiversity loss. Currently, the total land use requirement for large scale PV 

generators is about 3.4 ha/MW (Ong et al. 2013). This value would decrease 

with improving solar PV cell efficiencies, but the land use of large-scale PV 

manufacturing centres must also be taken into account. Large scale 

concentrating solar energy technologies also have significant land use 

requirements, currently estimated at about 4.0 ha/MW (Ong et al. 2013). 

Hertwitch et al. (2015) found that the land use requirements for both these solar

technologies were generally less than for coal fired power generation (with or 

without CCS). Nevertheless, careful siting would be required to minimise 

habitat and biodiversity loss. Hence some sites with a high solar resource may 

be unsuitable.

Hosenuzzaman et al. (2015) points out that low emission solar PV systems have 

positive environmental and human health effects as they replace fossil fuel 

generation. Emissions of CO2, NOx and SO2 gases are reduced, noise is reduced, 

and incidence of respiratory and cardiovascular diseases are lowered. However,

in the case of some types of PV cells, small quantities of toxic material may be 

released in the event of fire.
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2.2.3 Wind energy

Approximately one percent of the solar energy absorbed by the Earth is 

converted to kinetic energy in the form of atmospheric wind, which is 

eventually dissipated by friction with the Earth’s surface (Peixoto and Oort 

1992). Wind turbines convert part of the kinetic energy of wind into the 

rotational energy of the turbine, which is in turn converted into electrical 

energy via an electromagnetic generator.

2.2.3.1 Technological status

Wind energy is currently the most widely used (in terms of energy generated) 

form of renewable energy (other than existing large-scale hydro and traditional 

biomass). Global wind power capacity reached around 370 GW in 2014, 

compared to 48 GW in 2004 (REN21 2015), an average annual growth rate of 

22% per year. The vast majority of large scale wind farms have used horizontal 

axis turbines (Islam et al. 2013). The capacity of the largest individual turbines 

has increased from under 100 kW in the 1980s to over 1 MW by 2010, with a 

corresponding increase in size. Most large wind turbines are located on land 

but there is a trend to locate large turbines offshore. Recently, interest in vertical

axis wind turbines has increased, as these are thought to hold several potential 

technical and environmental advantages.

2.2.3.2 Material constraints

In the case of a large-scale global deployment of wind power in order to achieve

completely renewable energy supply, Smith Stegen (2015) raises the possibility 

of shortages of rare earth materials needed for generator permanent magnets, 

noting that one country, China, dominates processing of rare earth materials, 

and urges a concerted diversification effort for the scale up of wind energy. 

Possible strategies to mitigate shortages include reducing or eliminating the use
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of rare earth materials in permanent magnets, substituting permanent magnets 

for other technologies, recycling, and opening new mines. One possibility is to 

use switched reluctance generator wind turbines, which do not require 

permanent magnets (Mendez et al. 2014). Some wind turbine manufacturers 

already avoid the use of neodymium in their turbine generators.

2.2.3.3 Environmental effects of wind turbines

Habitat displacement and tree removal are two environmental concerns 

regarding the building of wind turbines. Threats to bird life are often cited as an

objection to wind turbines. However, compared to other threats, the present 

impact of wind turbines is quite small. The mortality rate in the US is only 

0.014% of the biggest cause of death: buildings and windows (DOE 2008). If 

wind power generation in the US grew to 20% of the total electrical energy 

generated, a factor of approximately 26 to 1, then this figure would rise to 

0.37%, and for 100% of electrical energy, 1.83%, assuming there were no other 

synergistic effects on bird mortality that would cause the mortality rate to rise 

faster than in linear proportion to wind power generation. Jacobson (2009) also 

compared bird deaths due to wind turbines with other causes of death in the 

US, with similar findings. The number of bird deaths due to turbines was 

extrapolated to a global scenario of large scale deployment of wind power, with

1.4 to 2.3 million 5 MW turbines installed. The number of bird deaths was 

estimated to be from 1.4 to 14 million per year, which is less than 1% of the 

deaths due to other anthropogenic causes. From the figures given for US bird 

deaths due to other causes, the minimum number of deaths in the US alone is 

200 million per year, which is much more than the maximum global death 

estimate due to wind turbines. However Tabassum-Abbasi et al. (2014) claims 

that bird population decline due to large scale deployment of wind power may 

be greater than predicted by linear extrapolation of present bird death rate 
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statistics. There are several reasons. Many previous studies have not taken into 

account scavenger removal before deaths are recorded. As wind power scales 

up, more sites with higher potential fatality rates need to be used. The effect of 

wind farms on birth rates must also be considered as habitat displacement 

reduces the number of available nesting sites.

Conversely, estimations of fatality rates often do not take into account the bird 

lives that would be saved if wind power enabled conventional generators to be 

retired, reducing greenhouse emissions and other pollution. The Royal Society 

for the Protection of Birds concluded that climate change is the most serious 

threat to wildlife (Macintosh and Downie 2006), which implies that well sited 

wind turbines are likely to have a net beneficial effect on birds and other wild-

life. Islam et al. (2013) suggest that using vertical axis wind turbines may reduce

bird fatalities as birds will perceive the turbine outline as a solid object and 

avoid the space that the blades move through altogether. Tabassum-Abbasi et 

al. (2014) propose a number of planning and management practices to minimise

bird deaths, including providing corridors along bird flight paths within large 

wind farms.

Some studies in the US and Canada have raised concerns about the number of 

bat deaths caused by wind turbines (DOE 2008). Bats are relatively long lived 

mammals with low re-productive rates and so populations may be particularly 

susceptible to long-term decline due to wind-turbine fatalities. Macintosh and 

Downie (2006) found that the mortality rate for birds and bats from wind 

turbine collisions is typically less than five birds and five bats per turbine per 

year. However, some sites may pose higher localised risks so care must be taken

with siting of individual wind turbines and wind farms. The same planning and

management practices proposed by Tabassum-Abbasi et al. (2014) for birds can 

also be applied to bats.
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Potential impacts on humans living near wind turbines include noise, shadow 

flicker, and electromagnetic interference (Tabassum-Abbasi et al. 2014). DOE 

(2008) rates the sound generated by a modern wind turbine at a distance of 350 

m as between the sound level of a quiet bedroom and a car travelling at 64 kph. 

Macintosh and Downie (2006) rate the noise level of a 10 turbine wind farm at 

350 m very similarly, slightly more than a quiet bedroom and less than a car 

travelling at 64 kph at 100 m, indicating that at the turbine spacing of most 

modern wind farms, the closest turbine will dominate the noise generation and 

that this is a low level provided an adequate buffer zone surrounds the wind 

farm. Tabassum-Abbasi et al. (2014)  found that the annoyance from wind farm 

noise may be greater than expected because it is generated in otherwise quiet 

areas, and that the noise often varies with wind speed and direction, making it 

more difficult to ignore. However the authors also noted that annoyance tends 

to be greater if the turbine is visible, and that those who receive an economic 

benefit from the turbine are less likely to be annoyed. No direct links have been 

found between turbine noise and health effects, such as sleep disturbance or 

psychological distress, so any perceived health effect is probably mediated by 

annoyance. On large modern turbines, shadow flicker may be seen up to almost

5 km away near dawn or dusk, but the region of visibility moves with the 

position of the sun. Modern turbines with non-metal blades have reduced 

electromagnetic interference, however there are many more of them and many 

more people with portable electronic devices. Both effects can be minimised by 

siting wind farms away from areas of human activity.

Macintosh and Downie (2006) report that the incidence of turbine fires in 

Australia has been very low, with only 2 fires reported in 20 years of operation, 

neither of which spread beyond the turbine. The fact that wind turbines are 
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likely to be placed in previously cleared land lowers the risk of a turbine fire 

spreading.

Lu et al. (2009) report that world-wide, large-scale implementation of wind 

power could result in significant alteration to global atmospheric circulation, 

that may affect the wind resource even in locations far from existing wind 

farms, although no significant change to temperatures are foreseen.

2.2.3.4 Effect of climate change on the wind resource 

Because the energy density in the wind is proportional to the cube of the wind 

speed, changes in the average wind speed and wind speed distribution could 

have significant impacts on wind power generation at a particular site (Pryor 

and Barthelmie 2010). A warmer global climate means there is more heat energy

in the climate system, which might be expected to cause generally higher wind 

speeds. However, there may be significant changes to the geographic 

distribution of wind speeds, the variability at a particular site, turbulence 

intensity, and the frequency distribution of extreme wind speeds, extreme 

direction changes, and gusts. Energy density is also proportional to air density, 

and air density is inversely proportional to temperature, so a warming trend 

will lead to a slight decline in energy density at the same wind-speed. An 

increase in the frequency of temperature extremes may affect turbine operation,

with more icing in some locations and more high temperatures in others. Since 

many wind turbines lie in coastal regions, and increasingly off-shore, sea level 

rise may have an impact on foundations, towers, and road access. All of these 

may impact on energy generation, and stress loadings, which will impact on 

maintenance costs, design cost, financial returns, and safety, but the overall 

effect of climate change on the wind resource is uncertain so far.
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2.2.4 Variability of supply and grid integration of solar and wind power

Bayless (2010) summarised the traditional objections to large-scale deployment 

of variable generators onto an electrical grid. A number of criteria were 

provided that must be met for the stability of the system to be maintained. They

are capacity, the ability to remain running under varied conditions, and 

frequency control. Base load generation plants were defined as plants of large 

capacity that generate energy at a virtually constant rate at low cost. It was 

claimed that these plants currently provide the elements of stability on typical 

grids, and that on a global scale, most base load plants are coal based or 

nuclear, with some combined cycle natural gas and large hydro. Wind, solar, 

and small hydro were dismissed as variable sources that usually generate far 

from load centres, and require more transmission infrastructure. Geothermal 

and biomass, although not as variable, were also claimed to have geographical 

and capacity limitations. Solar thermal plants with storage, which can generate 

at night, were neglected.

Bayless (2010) claimed that to provide capacity, renewables require extra 

reserves or added storage, something that conventional (fossil and nuclear) 

plants provide for themselves. Indeed the "capacity credit" for a generator, 

defined as the capability to generate power on demand, has traditionally been 

regarded as zero for a variable renewable energy generator, unless some kind of

storage or backup is added (Perez et al. 2009). Another of the requirements, 

frequency control, is aided by electo-mechanical inertia in the system, which is 

currently provided by the large turbines of conventional fossil and nuclear 

power stations (Bayless 2010). Large scale wind power (with lots of small 

turbines) could also provide significant inertia, but because their distance from 

the load is likely to be much further than conventional plants, response time 

and transients may be a problem. Ramping rate is the speed at which a 
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generator can change output. The more inertia there is in the system, the less 

ramping rate capacity is needed by backup generation. Bayless (2010) identified

coal as a technology with generally high inertia but low ramping rate capacity, 

nuclear with even lower ramping rate capacity, and gas-turbines as a 

technology with high ramping rate capacity. The author claimed that with lots 

of smaller generating units online (as may be with renewables) transmission 

flows will be more unpredictable, with more rapid ramping rates, and 

maintaining stability will be more complex and difficult. Bayless (2010) also 

claimed that while conventional plants are mostly independent of one another 

(except for hurricanes), renewables such as hydro, wind and solar are not, 

because they are dependent on the weather, although the author did allow that 

widely dispersed wind and solar farms have low correlation and this reduces 

overall variability.

These objections can be contested. Although batteries and photovoltaic systems 

have no intrinsic rotational inertia, there are ways in which they could provide 

faster responding active voltage and frequency stability control to compensate 

for the reduced system inertia. Battery storage systems have a very rapid 

response rate and can provide voltage and frequency stability capability if they 

are maintained in a partially charged state (Cha et al. 2012). They can also 

provide 'synthetic rotational inertia' or 'inertia mimicking' (Ulbig et al. 2013). 

Solar PV systems can also be configured to provide synthetic inertia (Rahmann 

and Castillo 2014). The fuels for coal, gas, and nuclear are often only found far 

from load centres. In the case of nuclear, this is often in a different country 

(though not in the Australian case). Hence there is a real possibility of supply 

disruptions. In reality it is highly unlikely that large capacity new conventional 

power plants of any kind will be able to be sited near urban centres. Coal has 

significant pollution problems, coal and nuclear have water requirements, and 
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nuclear in particular will suffer from the "Not In My Back Yard" (NIMBY) 

syndrome. The transportation of fuel and perhaps water may also require new 

infrastructure and extra surface area. While the transport fleet runs on fossil 

fuels, any fuel transport requirements, whether fossil or nuclear, will decrease 

net energy generated, increase emissions and thus reduce the mitigation 

effectiveness. In the case of coal generation on the SWIS, energy is generated at 

the point of coal extraction (Collie) rather than the main load centre (Perth). Gas

is however piped to Perth from the north-west of Western Australia. 

Hence contrary to the claim that renewable power will need more grid 

infrastructure, new conventional plants may need as many new transmission 

lines as utility scale renewable plants. Generation systems distributed within 

the existing grid, whether renewable or conventional, may avoid the need to 

reserve more land area and large capital outlays for additional transmission 

lines. Although the best biomass resource may be far from load centres, it can 

also be transported to plants close by. According to Hohmeyer and Trittin 

(2008), the majority of the capital cost of electrical power systems is in the 

transmission and distribution systems, and not the power plants themselves.

The claim that conventional plants are mostly independent of one another 

ignores the evidence. Several nuclear plants at once can be affected by an 

earthquake or tsunami (Japan), large scale grid failure (US 2003 blackout), or 

weather (France). An August 2003 blackout shut down 20 US and Canadian 

reactors instantly and without warning (Sovacool 2009). In Japan, a data 

falsification scandal in 2002 caused the shut down of 17 nuclear reactors 

(Schneider and Froggatt 2015). Seven nuclear reactors produced no electricity 

after an earthquake in July 2007, and the Fukishima disaster of 2011 resulted in 

the total shut down of Japan's entire nuclear fleet.
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It is worth examining the variability of the two most mature forms of renewable

energy, wind and solar PV, in more detail.

2.2.4.1 Wind variability

DOE (2008) found that wind generation variability for 14 turbines to be small 

(average 0.4%) for short time periods (in the order of one second) but increasing

to 7% for time periods in the order of one hour. As the number of turbines is 

increased, the variability decreases. The same report also presented the results 

of a study that shows decreasing hourly capacity factor variability as more 

wind farms from a wider geographic area over Minnesota and North Dakota 

are included in the analysis. There is also a decrease in the frequency of very 

high or very low hourly capacity factors. Giebel (2000) found that the combined 

wind power output data estimated from 60 meteorological stations in Europe 

was much smoother than the output data from any single station. Sinden (2007) 

showed that correlation between the wind power output of two sites decreases 

with distance, being on average less than 0.2 for distances greater than 800 km. 

2080 pairs of sites throughout the UK were compared.

All of these studies suggest that as the amount of wind generation in a power 

supply system is increased, then the variability does not increase as much as 

expected or may actually decrease. Widén et al. (2015) reviewed a wide range of

studies and concluded that there was clear evidence that installing wind 

generators with a wide geographic dispersion reduces variability in aggregate 

power output. 

Archer and Jacobson (2003) found that the frequency of low wind events over a 

network of 8 sites in the central US was less than 2%, which is greater than the 

reliability of conventional generation. DOE (2008) claimed that actual data and 

mesoscale numerical modelling show that a sudden loss of all wind power on a 
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system as a result of loss of wind is not a likely event. However, there may still 

be occasions when there is little wind across a large geographical area, for 

example when a large anticyclone crosses the region. Sinden (2007) showed that

low wind speed events (less than 4 ms-1) affecting more than half of the United 

Kingdom (UK) did occur, although in less than 10% of all hours in a year of 

measurements. There were no hours in which a low speed event affected the 

whole UK.

2.2.4.2 Integrating wind power into the grid

Several studies have examined the feasibility of introducing large amounts of 

wind energy into power supply grids. Sovacool (2009) found nine studies that 

showed variability becoming easier to manage, not more difficult, as more 

variable renewable energy sources were deployed. Smith et al. (2007) claimed 

that the primary considerations for wind power penetration up to 20-30% are 

economic rather than physical. DOE (2008) pointed out that wind is an energy 

resource rather than a capacity resource but Sinden (2007) cited a number of 

studies that conclude that wind power does reduce the need for conventional 

fossil fuel capacity.

The amount of conventional capacity which can be reliably foregone is termed 

"capacity credit". DOE (2008) cited a number of methods of estimating capacity 

credit (here termed Effective Load Carrying Capacity or ELCC) that give results

ranging from 5 to 40% of rated wind plant capacity, the variability depending 

primarily on the timing of wind energy production compared to the times of 

high system load. Holttinen et al. (2007) found that the capacity credit of wind 

power in the German power system varies with season and is quite low (5.1-

8.6%), but this has been calculated with a very high reliability requirement 

(99%). The same study also found that as wind capacity increased in the Irish 
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power system, capacity credit (in MW) increased at a less than linear rate. 

Capacity credit had a high of about 35% at 500 MW capacity, reducing to about 

14% at 3500 MW capacity. There was a similar trend in Norway (30% at low 

wind penetration down to 14% at 15% penetration), but the decrease was 

reduced by geographic dispersion of wind farms. The same trend was found in 

England, where capacity credit was similar to capacity factor at low wind 

penetration levels, but decreased as wind penetration increased. Despite this 

noted decrease, Archer and Jacobson (2007) found that there was no saturation 

in benefits as the number of interconnected wind farms increased. Holttinen et 

al. (2007) summarised these results by stating that wind capacity credit will be 

higher in cases of low wind penetration, larger geographic dispersion, and/or 

high capacity factor at times of peak load (or more generally, if there is a 

positive correlation between wind output profile and system load profile). 

Zhang et al. (2013) confirmed these findings.

2.2.4.3 Wind backup generation 

Diesendorf (2006b) claimed that at low penetrations of wind energy, no further 

backup is required because the grid already has peak load capability to handle 

fluctuations in demand. However this will change as penetration increases. 

Additional peak-load backup is required in the event of a lull (purchasing 

power from another grid is not an option for the SWIS), but this does not have 

to be operated continuously. The author also claims that when conventional 

power stations break down, they are generally off line for longer than wind-

lulls or sunless days. Diesendorf (2006b) estimated that at 20% wind 

penetration from geographically dispersed wind-farms, to maintain the same 

level of supply reliability, extra peak-load capacity equivalent to around 25% of 

the wind-power capacity needs to be added to the system.
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This may be too stringent. In one example reported by DOE (2008), extra 

reserve capacity equivalent to 7% of the wind generation capacity was needed 

to reach 25% wind energy penetration. This study also found that managing 

large output variations and steep ramping rates over short time periods (less 

than 1 hour) may pose challenges in areas with smaller regulation and load-

following capacity, but for wind capacity penetrations (rated wind capacity 

divided by maximum load capacity) of between 20 and 35% these variations 

were within the capabilities of the expected extra needed reserve capacity. 

Holttinen et al. (2007) reported estimates of increased reserve requirement for 

many areas in Europe (and Minnesota in the US), ranging from 1 to 5% of wind 

capacity at lower penetration levels (5-15%) to 4 to 9% of wind capacity at 

higher penetration levels (15 to 25%). In a recent wide ranging study, Holttinen 

et al. (2013) found an emerging trend toward allocating reserves dynamically 

based on the state of the power system, wind generation and load.

The two results, that wind power can provide a capacity credit at a set 

reliability rating, enabling other generation units to be retired; and that wind 

power also requires extra reserve generation capacity to be added, appear to 

contradict each other, but in fact the two types of generation capacity are 

different. Diesendorf (2006b) sums this up by stating that at high penetrations, 

wind power changes the optimum economic mix of base-load generators to 

peak load generators in favour of more peak-load and less base load.  Base-load

generators are characterised by high capital cost, low operating cost at peak 

efficiency, inability to respond quickly without significantly reducing efficiency 

if forced to operate at other than rated power, and they can't be switched on or 

off quickly. In contrast,  peak-load generators are characterised by low capital 

cost, high running cost, can respond rapidly to changes in demand, and can be 

switched on and off quickly.
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This does not necessarily mean that wind power's effectiveness in reducing 

greenhouse gas emissions is significantly compromised as penetration 

increases. Macintosh and Downie (2006) concluded that at 20% wind energy 

penetration in the UK, emission savings are reduced by a little over 1% by the 

need to provide extra services. Note that although in most cases the extra 

reserve generators are assumed to be fossil based, there is no requirement that 

they be so. Holttinen et al. (2007) points out that the wide-scale uptake of solar 

generation may aid in the smoothing out of the variability of individual 

technologies.

There are several small electricity systems in Australia with a high penetration 

of wind power, including King Island in Tasmania, Denham in Western 

Australia, and Mawson in the Australian Antarctic Territory (Outhred 2003). 

Denham has flywheel backup as does Coral Bay, which also has over 70% 

penetration of wind power.

An alternative that may reduce reserve requirements is the concept of 

deliberately over-rating wind-farm capacity and curtailing excess generation 

(Cavallo 1995). Overall capacity factor will be higher than expected from a 

typical wind farm. The cost of the extra wind turbines is compensated by the 

lower cost per kWh of the lower capacity transmission line, leading to little or 

no increase in the overall cost of the combined system. Instead of curtailment, 

excess generation could be used for on-site hydrogen or methane production 

(Jentsch et al. 2014).

2.2.4.4 Wind weather forecasting

Wind weather forecasting is one potential way to reduce the costs of 

uncertainty in wind power production. Physics based models tend to show 

better long term (up to 48 hours ahead) and wide-scale prediction, while 
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statistics based models show better short term prediction, up to 6 hours ahead 

(Lei et al. 2009). Often the two approaches are combined to improve accuracy, 

and over the last decade the incorporation of artificial intelligence based 

methods such as artificial neural networks, and fuzzy logic has resulted in 

further improvements. Foley et al. (2012) reported errors of 10% for one hour 

forecasts, rising to 20% for 48 hour ahead forecasts. Because wind farms are 

often placed at sites that amplify the effects of local topographical features, it 

has also been shown to be worthwhile to incorporate fine-scale localised wind 

flow models (Georgilakis 2008). Georgilakis (2008) also claims that geographic 

dispersion and weather forecasting can be synergistic, such that the aggregate 

wind forecasting error for multiple geographically dispersed wind-plants can 

be reduced by 30 to 50% compared to the total of the individual wind-plant 

forecasting errors.

 According to Ahlstrom et al. (2005), wind forecasting already has become 

valuable for scheduling other power sources in advance. However, as the 

installed wind power capacity increases, a small error in the wind forecast 

results in larger errors in power output prediction (Chen and Blaabjerg 2009). 

The exact timing of passage of weather fronts can be difficult to predict, which 

can lead to large errors in the exact timing prediction of changes in wind power 

production (Georgilakis 2008). 

2.2.4.5 Solar PV variability and grid integration

The technical potential of solar PV is many times greater than global electricity 

consumption but the variability of the supply presents challenges for large scale

implementation into existing electrical grids. On a daily time scale, solar PV 

power variability is more predictable than wind. After dawn there will be a 

large up ramp, before dusk there will be a large down ramp, no solar 
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availability during the night, and peak availability around the middle of the 

day (Milligan et al. 2015). There can be large variability at a single location 

during the day from cloud transients, but this is moderated by having many 

geographically dispersed generators. So just how much PV can be realistically 

integrated into existing electrical grids? Denholm and Margolis (2006) point out

that the large conventional generators that supply most grids have a minimum 

output level below which the plant must be shut down, leading to costly and 

potentially lengthy start up procedures. So, if there are times when PV output is

high enough and load demand is low enough to meet this threshold, then the 

PV output will most likely be rejected to avoid shut down. The authors found 

that if the minimum conventional generator output level is 35% of peak load, 

then the maximum economically realistic energy contribution for PV is about 

17% of system energy demand. However if the flexibility of the conventional 

generators is increased, then the amount of PV can be increased. If the 

minimum conventional output level is 20%, then the maximum PV level rises to

25%, and if the minimum conventional output level is 0% (meaning generators 

can be switched off and on without economic penalty), then up to 50% PV 

energy contribution may be economically feasible. To increase PV penetration 

beyond this point, load shifting and/or energy storage will be required. Eltawil 

and Zhao (2010) conducted a literature survey of studies into the impact of high

penetration of distributed PV generators into typically existing electricity grid 

configurations. Penetration was defined as the ratio of nameplate PV capacity to

maximum load. Several studies suggested that the maximum practical 

penetration limit was quite low. An upper limit of 5% was suggested if all of the

PV comes from one geographically concentrated power station, the limit being 

imposed by ramp-rate limitations of the conventional generators in the event of 

cloud transients causing rapid swings in PV power output. This limit might be 
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increased to 15% if the PV distributed generation was geographically dispersed.

However, the authors found other studies suggesting that the upper limit is 

significantly greater, possibly up to 50%. 

Contrary to this view of PV generators as undermining grid stability, PV 

systems can contribute to system stability during peak load demand times by 

operating at less than maximum possible power output (Rahmann and Castillo 

2014). This enables them to provide synthetic inertia by altering generated 

power in response to changes in system frequency.

To achieve very high penetration levels, the issue of how well PV supply can 

match the load demand becomes important. Mitchell et al. (2009) found that in 

the last 5 to 10 years the hot weather peak load (a time when the benefit to the 

grid of PV generation is high due to its ability to reduce peak load required 

from conventional generators) for a site near Sydney, Australia, has extended 

from 3pm to 6pm, and is high as late as 8pm (daylight saving time when the 

sun sets). Aligning at least some of the panels in a north-westerly direction 

rather than directly north would shift the peak generation point of the PV 

generators to a later time which more closely matched the peak load profile, 

although the overall yearly average generation would be reduced. 

2.2.4.6 Short term variability versus log term variability 

These studies provide evidence of the feasibility of large scale deployment of 

variable solar and wind energy generation into electrical grids, at least up to a 

certain penetration, without loss of reliability. Sovacool (2009) found evidence 

that the variability of renewables became easier to manage the more they were 

deployed. Despite this evidence, the traditional view of increased difficulty 

with more deployment has been entrenched in many places. Sovacool (2009) 

conducted a survey of 45 different institutions connected with electricity 
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generation in the US, and found that many system operators and utilities 

considered renewable energy resources to be inadequate providers of base load 

and peaking power due to factors such as forecasting complexity, the need for 

supplemental generation, and grid interaction. Since then however, views have 

been changing, with system operators becoming more comfortable with 

variable energy generators as experience increases, and the realisation that in 

some respects, for example recovery after a disturbance, they offer superior 

performance to conventional generators (Milligan et al. 2015).

In reality, fossil and nuclear plants were also found to have shortcomings, 

including outages, cost variance, and variance in demand forecasts (Sovacool 

2009). Outages were found to vary between 5 and 20% of the time. Even though

it can be anticipated, nuclear power plant refuelling in the US shuts down a 

reactor for an average of 37 days every 17 months (Lovins 2007). Thus the 

maximum reliability of nuclear power plants is on average 93 percent. If a large 

unit size fossil or nuclear generator trips, the system must deal with the loss of 

large blocks of power (maybe even 1000 MW or greater) instantly. Because of 

their large unit size and long construction lead times, conventional and nuclear 

plants were found to suffer from completion delays, cost over-runs, and 

variance in demand forecasts (Sovacool 2009). These add uncertainty to the 

system. It is much harder to forecast demand several years in advance than it is 

to forecast the weather a day or two in advance, which necessitates a deliberate 

over-estimation of demand forecasts and increases costs. The large up-front 

capital cost, payable years before any electricity is generated, also increases 

financial risk and complicates financing. Perhaps this is why construction 

'boom and bust' cycles for fossil and nuclear plants have occurred since 1980 in 

the US.
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Thus it could be said that while wind and solar introduce short time-scale 

uncertainties into the system, nuclear and coal-CCS and other large scale forms 

of energy generation introduce long-time scale uncertainties into the system. It 

has been argued that responsiveness to short time scale uncertainties have 

already been built into the system: load demand is also highly dependent on the

weather, so regardless of supply variability, reserve and rapid response 

capacity must be built into the system anyway. Sovacool (2009) notes: "the 

entire electric utility system is already built to address variability, just of a 

different type". Sovacool (2009) found that the higher technical reliability and 

small unit size, combined with accurate weather forecasting actually gives 

variable renewable systems an advantage: changes in supply can be predicted 

and prepared for in advance. It could be said that the single failure criterion is a

lot easier to meet for a generation system based on renewables, since the 

capacity of a single wind turbine or solar array is much smaller.

On longer time-scales, Sovacool (2009) concluded that the shorter lead times 

and smaller unit sizes for solar and wind projects enable a more accurate 

response to load growth, and reduce the financial risks associated with 

financing plant construction for several years before they start producing any 

electricity.

2.2.4.7 Paradigm of flexibility

Rather than base-load or peak-load generators, Peter et al. (2007) divided 

different energy sources into the categories of "fluctuating" and "adjustable". 

Denholm and Hand (2011) examined the overall flexibility of power systems 

and concluded that both conventional and renewable technologies contain a 

mix of 'flexible' and 'inflexible' generation systems. The challenge is to match 
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these two types on a continuous basis. The paradigm of 'base-load' and 'peak-

load' generation could be considered to be outdated. Another paradigm shift 

could also be added to the list: that of demand side management. Even Bayless 

(2010) suggested demand response as another level of control to bolster system 

stability. During the 2008 Texas wind drop (Ela and Kirby 2008), selective 

shedding of industrial loads meant that households and critical services such as

hospitals were not affected. This raises the possibility of using the raw materials

of flexible industrial processes as another way to store energy and help balance 

supply with demand. Demand management coupled with the transformation of

electric power systems towards lots of smaller generators distributed over the 

grid increases the potential to reduce the frequency of massive blackouts and 

means that the 'hard failure' paradigm of current systems can become a 'soft 

failure' paradigm.

2.2.5 Bioenergy

Bioenergy is the conversion of biological material into energy. Residues and 

wastes from agricultural, forestry and municipal operations are presently the 

main sources of biological material, or biomass (Gadonneix et al. 2010). Hence 

bioenergy can be thought of as an indirect form of solar energy, as most 

biological species either collect and store energy from the sun, or consume other

species that do so. The period of time between initial collection of the solar 

energy and final use by human civilisation could be decades for some forestry 

operations. This time period is greater than solar and wind energy systems, but 

much less than fossil fuels, which are solar energy stored on geological time-

scales. Because most forms of bioenergy feedstock, commonly called biomass, 

can be stored, electricity generation is subject to less variability than solar or 

wind resources. 
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2.2.5.1 Technological status

Bioenergy technologies can be divided into three generations (Ho et al. 2014). 

First generation bioenergy technologies convert sugar and starch crops (e.g. 

sugar cane, corn, and maize) or oil bearing crops into a form that can be used 

for energy production or transportation fuels. Concerns have been raised that 

increases in bioenergy production may lead to competition for land currently 

used for food production (Gadonneix et al. 2010). Second generation 

technologies aim to convert the non-edible portions of plants (called 

lignocellulosic material) into a form usable for energy generation. These have 

the potential to avoid displacement of crops grown for food. Third generation 

technologies, such as the utilisation of algae, aim for integrated production of 

energy, transportation fuels, and bio products. Algae has an added advantage 

in that it can use saline or waste water resources (Ho et al. 2014).

Biomass is available in solid, liquid and gaseous forms, and "upgrading 

technologies" that convert bulky raw biomass into denser and more effective 

energy carriers are currently under development (Gadonneix et al. 2010). 

Pelletisation is in commercial operation, while pyrolysis is in the demonstration

phase and both torrefaction and hydrothermal upgrading are in the research or 

early demonstration phase (Gadonneix et al. 2010).

Currently there are three technological streams for electrical power generation: 

combustion, co-firing, and anaerobic digestion (Gadonneix et al. 2010). There 

are also three major types of combustion technology currently under 

consideration: direct combustion, gasification, and pyrolysis (Evans et al. 2010). 

Direct combustion, also called incineration, combusts the biomass with high 

levels of oxygen present, into carbon dioxide and water. The resulting hot gases

are used to heat water into steam which drives a turbine. Gasification combusts 

the biomass with low levels of oxygen present, to produce gases that are fed to 
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a gas turbine. Pyrolysis combusts the biomass with no oxygen present, to 

produce gases, or combustible liquids, that are fed to a gas turbine. If the liquid 

or gas is transportable, pyrolysis has the potential to spatially separate the 

biomass combustion stage from the electricity generation stage.

Steam cycle direct combustion is in commercial operation (Gadonneix et al. 

2010). Gas turbines fuelled by biomass gasification (BIG-GT), with promise of 

higher electrical conversion efficiency, are not yet in the large scale commercial 

phase (Asadullah 2014), although integrated gas combined cycle systems using 

residue from pulp and paper production are (IEA 2007). Some systems 

combining gasification with a steam cycle are in the early commercial phase 

(Gadonneix et al. 2010). Pyrolysis is in the research and development stage 

(Digman et al. 2009). Two other technologies, Stirling engine and organic 

Rankine cycle combustion, are both in the demonstration phase (Gadonneix et 

al. 2010).

Combustion is the most common form of generation, generally in the form of 

Combined Heat and Power (CHP) systems (REN21 2010), leading to an increase

in the overall efficiency of energy production. Direct co-firing with coal power 

plants is also in commercial operation, parallel co-firing is in the pre-

commercial stage, and indirect co-firing is in the demonstration phase. One 

stage anaerobic digestion is in commercial operation, while 2-stage anaerobic 

digestion and biogas upgrading is in the early-commercial stage. Microbial fuel 

cells are in the research phase (Gadonneix et al. 2010). 

In 2013, bioenergy electricity generation reached 396 TWh (IEA 2014), or about 

1.8% of total world electricity generation.
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2.2.5.2 Australian and Western Australian potential

Currently, bioenergy in Australia comes mainly from sugar cane residue, wood 

waste, and gas capture from waste landfill and sewage (Geoscience Australia 

and ABARE 2010). Landfill gas is generated by the decomposition of organic 

wastes in anaerobic conditions, and has been found to contain around 50% 

methane by volume (WMAA 2007). Methane has a greenhouse gas potential 

over 20 times that of carbon dioxide. Therefore energy generation by conversion

of landfill methane to carbon dioxide reduces emissions in two ways. Emissions

of methane to the atmosphere are replaced by emissions of the less potent 

carbon dioxide, and the energy generated also avoids emissions from fossil 

energy generation. If the organic waste came from a biological source, then the 

carbon dioxide was originally removed from the atmosphere, and thus the 

carbon cycle becomes emissions neutral. Potential future resources of bioenergy

are crop and food residues from harvesting and processing of agricultural and 

silvicultural crops, energy crops, and urban solid wastes (Geoscience Australia 

and ABARE 2010). Since most municipalities are aiming to reduce the material 

flow to landfill, any expansion of landfill gas capacity is uncertain.

The wheatbelt is a series of land areas stretching across the southern portion of 

Australia that is characterised by generally flat terrain and rainfall in the range 

of 300 to 600 mm per year, falling mainly in the winter season (Bartle and Abadi

2010). The wheatbelt lies between the higher rainfall southern coastal regions 

and the arid interior, and has an area of approximately 100 million hectares 

(Bartle et al. 2007). It was estimated that around 20 million hectares was 

cropped for grains and oil seeds in 2004-2005. Investigation of the potential for 

bioenergy crops in the wheatbelt was originally motivated by salinity control. 

Development of second generation lignocellulosic technologies has the 

potential to complement existing agriculture rather than replacing it, and 
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concurrently rehabilitate salt-damaged land or at least help to prevent further 

damage (Bartle and Abadi 2010). One particular candidate technology, the use 

of oil-mallee crops, has been extensively studied. These species have the ability 

to re-sprout from the root system after harvesting (called coppicing). Thus there

can be several harvests without the need to regrow from a sapling. 

Wu et al. (2008) found that the ratio of biomass energy content to non-

renewable energy input (called the energy ratio) exceeded 40 to 1 for oil mallees

grown in the Western Australian wheatbelt. Most of the non-renewable energy 

inputs came from harvesting and transport, so there is potential for 

improvement. In contrast, canola grown for biodiesel in the same region 

achieved an energy ratio of less than 7. The energy productivity in the context 

of biomass is defined as the energy contained in the biomass per unit area 

planted per unit time. Wu et al. (2008) estimated an average energy 

productivity for oil mallee in the Western Australian wheatbelt of around 206.3 

GJ per ha per year (57.31 MWh per ha per year). Bartle et al. (2007) estimated 

the land area usable for cropping and pasture in the wheatbelt of Western 

Australia as 16.6 million hectares. The authors also considered that only about 

50% of this area had a soil type that was suitable for growth of woody crops for 

biomass, establishing an upper limit to capacity. IEA (2007) estimated the 

electrical conversion efficiency of a dry biomass combustion power plant at 

between 30% and 34%. So if an area equal to 2.5% of the usable Western 

Australian wheat belt was devoted to oil mallee crop rotation for example, and 

a biomass plant with a conversion efficiency of 30% was used to generate 

power, then the potential average output capacity would be around 814 MW. 

This does not mean that 2.5% of usable land has been withdrawn from food 

production. It might be considered necessary to use this land for salinity control

in any case.
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Municipal Solid Waste (MSW) represents another potential source of bioenergy.

Residual MSW is left after the recyclable and organic contents have been 

removed. Murphy and McKeogh (2004) found that the energy content in 

residual MSW is dependent on the plastics content. Residual MSW with no 

plastic has an energy content of 4 GJ/tonne, while Residual MSW that is all 

plastic has an energy content of around 13.5 GJ/tonne. In Ireland the energy 

content of MSW was found to be 13.26 GJ/tonne, similar to the Netherlands 

(13.5 GJ/tonne), Denmark (11.3 GJ/tonne), and Japan 12.6 (GJ/tonne). Two 

combustion technologies that have been used to recover energy from MSW are 

incineration and gasification. Murphy and McKeogh (2004) estimated that 

incineration could generate 0.564 MWh of electricity for every tonne of MSW 

combusted, and gasification 1.083 MWh. Thus the conversion efficiencies for 

incineration and gasification in Ireland would be 15.3% and 29.4% respectively. 

Psomopoulos et al. (2009) found that from actual operating data for the US, one 

tonne of MSW could generate 0.6 MWh of electricity on average, but did not 

specify an average energy content. At an electrical conversion efficiency of 

15.3%, the energy content would be about 14.1 GJ/tonne, similar to the other 

countries mentioned above.

However, recycling is considered a more favourable use of waste than energy 

recovery as there is less embodied energy required to recycle many materials 

than to extract them from raw materials or ores (WMAA 2007). There is the risk 

that energy recovery could divert materials that would otherwise be recycled, 

especially if there is competition for high energy content materials such as 

plastics. However, contrary to this expectation, Psomopoulos et al. (2009) found

that communities in the US with waste to energy generation facilities had a 

higher rate of recycling than those without. Globally, many jurisdictions have 

implemented a policy of maintaining a waste 'hierarchy', with recycling given a 
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higher priority. The aim is to recycle all that is feasible before energy recovery is

performed.   

WAWA (2012) reported that almost 5.4 million tonnes of material were 

disposed to landfill in Western Australia in 2009. Almost 1.3 million tonnes 

came from municipal sources, 3.135 million tonnes from construction and 

demolition, and 0.967 million tonnes from the commercial and industrial sector.

If 1 million tonnes of landfill were used to generate electricity per year 

(approximately 18.5% of the 2012 estimate), then 600 GWh of electricity could 

be produced per year, based on the findings by Psomopoulos et al. (2009) 

above. This is an average generation capacity of about 68.5 MW. If the average 

conversion efficiency were increased by using more gasification plants, from 

15.3% to 22% for example, then the average generation capacity would rise to 

about 98.5 MW. However, if all plastics were recycled and thus removed from 

the residual MSW then the energy content would decrease. If the energy 

content dropped to around 4 GJ/tonne, then incineration at 22% efficiency of 1 

million tonnes per year would generate 241 GWh of electricity per year, or an 

average capacity of 27.5 MW. Gasification at 30% efficiency would generate 329 

GWh of electricity per year, or an average capacity of 37.6 MW.

2.2.5.3 Environmental issues

For bioenergy generation from agricultural and forestry operations, the aim is 

for low overall greenhouse emissions, as there is a cycle of storage of carbon 

from the atmosphere in the biological growth phase, and release of the same 

amount of carbon in the harvesting and energy conversion phase (Hohmeyer 

and Trittin 2008). The growth phase is then repeated. Psomopoulos et al. (2009) 

concluded that about 64% of the combustible biomass found in MSW in the US 

could be considered renewable, implying that the materials were originally 
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derived from plant or animal organic matter grown in a similar carbon storage 

cycle. However, there have been concerns that bioenergy greenhouse emissions 

are higher than expected (Hohmeyer and Trittin 2008). Two proposed 

mechanisms are the release of nitrous oxide (N2O), and land clearing. N2O has a

greenhouse potential approximately 300 times greater than CO2 (Gutierrez 

2005). Land clearing by burning stimulates N2O emissions. If the land is then 

used for agricultural purposes, the available nitrogen in the soil is increased by 

the use of fertilisers and atmospheric deposition, among other processes. The 

rate of N2O emissions is increased.  However, in Western Australia, the use of 

oil-mallee crops is designed to combat salinisation and generate electricity and 

other bio-products using existing cleared land, rather than by clearing new 

land.

The emission intensity of a waste combustion process is inversely dependent on

the combustion temperature, but also dependent on the nitrogen content of the 

waste (Gutierrez 2005). Hence combustion processes with higher temperatures, 

such as gasification should be favoured. Also with gasification, the nitrogen 

content of the fuel is mostly converted to ammonia which can be easily 

removed. Psomopoulos et al. (2009) rated nitrogen oxide emissions from MSW 

power plants as less than coal-fired power plants, but more than natural gas 

fired power plants. However, if residual MSW is not converted to energy or 

some other product, then the alternative is landfill. Decomposing trash emits 

carbon dioxide and methane, some of which will escape into the atmosphere 

even in landfill sites with a gas collection system. Methane is a potent 

greenhouse gas. Also combustion of MSW can reduce the volume of residual 

waste. Therefore the need to clear land for new landfills is reduced.

Emissions of odours and toxins from MSW energy recovery operations is also a 

significant concern. However Psomopoulos et al. (2009) found that toxic 
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emissions from waste to energy operations in the US, particularly dioxins and 

mercury, has significantly decreased in recent years, due to tighter standards 

and introduction of emissions control technology, to the point where other 

sources such as fossil power stations and backyard burning have much higher 

toxin emissions. Landfill gas and sewage gas often need to be scrubbed to 

remove sulphur compounds and other trace elements that cause air pollution 

(Rasi et al. 2011), including sewage gas utilised for power generation at 

Woodman point in Western Australia (Charles et al. 2006).

Coarse Woody Debris (CWD) in native forests plays a significant environmental

and ecological role. Because of slow decomposition rates, CWD provides a 

component of wildlife habitat in many Australian forest types, and carbon can 

remain stored for long periods of time (Woldendorp et al. 2002). In forests 

around the world, it has been found that downed logs can provide sites for 

seedling establishment, and CWD is important for nutrient cycling, stream 

quality and aquatic habitat. However, there have been few Australian studies 

into the role of CWD. Therefore, CWD should not be considered as a potential 

fuel source for bioenergy production.

2.3 Storage

Energy storage is considered one of the methods for balancing supply and 

demand on electric grids with increasing amounts of variable power sources 

such as solar and wind (Zakeri and Syri 2015). In this context storage can be 

defined as a system that is able to accept excess electrical power from the grid, 

store it in some form, and then deliver it back to the grid in the form of 

electrical power when needed.  Storage technologies can be classified according 

to the physical form in which the energy is stored, such as gravitational, kinetic,

chemical, electrochemical, magnetic, or electrical. Commonly cited storage 
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technologies include pumped hydro, Compressed Air Energy Storage (CAES), 

flywheels, fuel cells, batteries, superconducting magnetic energy storage, and 

ultra-capacitors. Thermal storage associated with concentrating solar thermal 

power stations, although considered to be potentially highly useful for 

balancing supply and demand, does not strictly conform to this definition, as 

the input energy is in the form of photons rather than electrons, and is 

considered in section 2.2.2.2.2 above.

The cycle efficiency of a grid storage technology can be defined as the ratio of 

energy delivered back to the grid to the energy accepted from the grid. Zakeri 

and Syri (2015) considered flywheels and batteries to be the most efficient 

storage mechanisms for short-term energy storage. However storage loss rates 

from flywheels can be high, reducing suitability for storage at hourly or longer 

time scales. The self discharge rate for ultra-capacitors is lower, but higher than 

batteries. Pickard et al. (2009) implied that to achieve balance for a large 

electricity grid running entirely on variable sources, storage capacities in the 

order of GW days will be needed. There are several battery technologies in 

large scale commercial production, such as Li-ion, that may be suitable for short

term storage at the GW day scale.

For long term storage, Zakeri and Syri (2015) consider pumped hydro and 

CAES to be the most efficient options. However for the SWIS, there seems to be 

a shortage of these options at the GW day scale. There is currently no large scale

topographic pumped hydro capacity in the SWIS region, although SEN (2013) 

proposed using ponds on cliffs above the ocean near Geraldton and Albany, as 

well as existing dams in the hills east of Perth. Also, while conventional CAES is

a developed technology, it requires the use of fossil fuel for operation. 

Adiabatic CAES needs no fossil fuel input, but it is still in the research and 

development phase (Barbour et al. 2015). One potential long duration storage 
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option is a cycle of using excess generation to electrolyse water into a hydrogen 

or methane fuel (Jentsch et al. 2014). The fuel can then be stored, used for 

transport, or converted back into electricity at a later time when generation is 

insufficient, using either gas fired power stations, internal combustion engines 

or fuel cells. However the use of hydrogen as a storage medium might be less 

efficient than using batteries. Kaldellis et al. (2009) estimated the overall 

efficiency rate of hydrogen storage at 30 to 40%. Hadjipaschalis et al. (2009) also 

noted that the currently mature technologies for storing hydrogen have 

drawbacks. Pressurised hydrogen gas storage has a low volumetric energy 

density. Metal hydride storage has a higher energy density, but requires a 

thermal management system and typically uses rare earth materials, so resource

availability may be an issue. Hydrogen can be further converted to methane, 

resulting in improved stability, storage density, and allowing the use of existing

gas transportation and electricity generation infrastructure (Zakeri and Syri 

2015).  The estimate of overall efficiency is still low, at 33 to 40%. However, 

reasons for keeping this option under consideration are the potential for 

seasonal energy storage and high battery manufacturing energy requirements.

2.3.1 Material, energy and environmental constraints 

Barnhart and Benson (2013) found that although the production of bulk 

materials required for large scale storage battery deployment will need to 

increase substantially, the main limitation may be the manufacturing energy 

requirements for several prominent battery technologies, including lithium-ion 

and sodium sulphur batteries. Also, with current fossil fuel dominated energy 

generation, the emissions required to manufacture battery storage capacity are 

substantial (Ahmadi et al. 2015), meaning that several hundred cycles of 

operation are required for a net reduction in emissions. This may inhibit large-

scale deployment unless cycle lives are improved significantly. The reuse of 
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batteries produced for EV’s as stationary energy storage may improve net 

emission reductions (Ahmadi et al. 2015). There are also significant 

environmental issues with battery production which will become more 

prominent as manufacturing is scaled up. The electrodes of Li-ion batteries do 

not need to use toxic heavy metals such as cadmium and lead. However, nickel 

and cobalt are often used, and the electrolyte may also pose toxicity problems 

(Larcher and Tarascon 2014). The extraction and disposal of nickel and cobalt 

pose toxicity impacts (Peters et al. 2017). Substitution of nickel and cobalt with 

manganese is possible (Larcher and Tarascon 2014), and lithium iron phosphate

batteries do not use nickel or cobalt (Peters et al. 2017). A high level of recycling 

may also decrease net manufacturing energy requirements.

2.4 Energy efficiency 

Energy efficiency improvements can be defined as a reduction in the energy 

used for a given service (heating, lighting, etc.) or level of activity (WEC 2008). 

It does not refer to reduction in energy used by reducing services or level of 

activity (unless the same service can be achieved with a reduction in activity) - 

this is more accurately called energy conservation (Herring 2006). Hohmeyer 

and Trittin (2008) concluded that there is great synergy between the capacity of 

some renewable technologies of even relatively modest power density and 

efficient energy service demand.

Estimates of the potential for savings through energy efficiency measures vary 

widely. The potential can also be divided into two different categories: technical

potential, and economic potential (Saddler et al. 2004). Technical potential refers

to what is technically possible with no cost limitations. Economic potential 

refers to implementation of all measures that are cost effective, that is, at least 

break even in terms of cost savings through reduced energy demand versus the 
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cost of implementing the measures. NFEE (2003) makes estimates of the 

technical potential for energy savings through efficiency measures in the 

Australian economy. The residential sector could achieve savings of between 

34% and 73%; the commercial sector, between 27% and 70%; and the industrial 

sector, between 22% and 46%. These are overall energy savings, rather than 

electricity savings.

However, depending on the technologies used, energy efficiency measures may

encounter resource bottlenecks, similar to other renewable energy technologies. 

For example, many high efficiency Light Emitting Diode (LED) lights use rare 

earth elements (Smith Stegen 2015), so further upscaling may depend on 

finding substitute materials or technologies.

2.4.1 The "efficiency paradox"

There is a postulate that improvements in energy efficiency at the level of 

individual services might paradoxically lead to an increase in energy use. This 

is known as the energy efficiency paradox, and is also known as the Khazzoom-

Brookes postulate (Rubin 2007). Other common names are 'the Jevons Paradox" 

and the "rebound effect" (Sorrell 2009). The same critique has also come from 

parts of the environmental movement, who argue that improvements in 

materials and energy efficiency alone will not be effective. Changes in lifestyle, 

consumption, and outlook are required to reduce overall energy consumption 

and emissions (Herring 2006).

The efficiency paradox may be divided into three categories: direct rebound, 

indirect rebound, and system-wide rebound (Herring 2006). According to 

standard economic theory, the cost reduction of the service enabled by 

decreased energy use leads to increased market accessibility and hence 

increased demand for that service. This is direct rebound. Even if a particular 
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energy service user does not increase their demand for that service, the savings 

from cost reduction may be spent on another service that requires energy. This 

is indirect rebound. The third category, system-wide rebound, represents the 

sum effect of direct and indirect rebound on the whole energy system (i.e. 

economy), plus any other effects that emerge at the macro-level. For example, a 

technological change resulting in increased energy efficiency may change the 

consumption of a fuel or material, which changes the price and hence demand 

for that resource in other sectors of the economy, leading to a change in overall 

energy use.

If the total rebound effect is greater than zero, then energy savings from an 

energy efficiency measure will be less than expected from summing the 

individual unit efficiency gains. If the rebound effect is greater than 1 (or 100%),

then the energy efficiency measure has in effect backfired, causing greater 

energy use. Herring (2006) cited as evidence for the efficiency paradox that in 

Western Europe for the past 25 years (until 2006), overall energy use has 

increased, despite improvements in energy efficiency. Rubin (2007) described 

the same trend in the US. However, neither study quantifies the effect of 

population increase, and they do not present their evidence in terms of per 

capita energy use. Sorrell (2009) concluded that the evidence for actual backfire 

(rebound > 1) is inconclusive, and suggested that the amount of rebound may 

be dependent on the kind of energy efficiency improvement. Improvements in 

general purpose technologies such as steam engines (historically), electric 

motors, and computers may have a high rebound. Dedicated efficiency 

improvements, for example thermal insulation, may have lower rebound, 

because of smaller effects on economy wide productivity and economic growth.

These economy wide effects imply that rebound may be smaller in developed 

economies than in developing economies. Rebound may also be lower in high 
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income households than in low income households, who are saving money by 

energy conservation measures (i.e. forgoing energy services). For example, a 

high income household which already is completely air conditioned will not 

use more air conditioning if energy efficiency has improved, but a lower income

household may now be able to afford the more energy efficient air conditioning.
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3 Comparing nuclear, CCS and renewable 
energy

Each of the technological options examined in the previous chapter has its 

unique characteristics, however there are many factors that can be directly 

compared to assess the practicality of large scale deployment of each 

technology, and its effectiveness in helping to avoid dangerous climate change.

3.1 Greenhouse emissions comparison

In this section the estimated life cycle greenhouse gas emission intensities of 

solar, wind, bioenergy, storage, nuclear and CCS are compared. There is a wide 

variation in emission estimations for nuclear power. While the nuclear power 

generation process is, in itself, almost totally emission free, the whole nuclear 

fuel life cycle is not (Diesendorf 2005). Most of the stages in the life-cycle use 

energy that currently comes from fossil fuels, such as the mining and milling of 

uranium ore to produce yellow-cake (U3O8), the conversion of yellow cake into 

uranium hexafluoride (UF6), enrichment to increase the concentration of U-235, 

fabrication of uranium oxide (UO2) fuel rods, power station construction, 

operation and maintenance, storage, optional reprocessing, waste management 

of spent fuel, and power station de-commissioning. Sovacool (2008) surveyed a 

number of studies that produced estimates of emissions for the whole nuclear 

life cycle ranging from 1.4 g of carbon dioxide equivalent per kWh (g 

CO2e/kWh) to 288 g CO2e/kWh, with a mean value of 66 g CO2e/kWh. The 

author pointed to errors in methodology for both the low-end and high-end 

estimates. Pearce (2008) noted that life-cycle emissions for nuclear energy 
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would change if deployed on a large scale. For the currently mined high grade 

ores, the emissions per unit of energy generated for a nuclear plant are more 

likely to be in the range of the mean estimate given above, but for low grade 

ores, the emissions will be higher (Sovacool 2008), not only because more ore 

must be processed to obtain the same amount of yellow-cake, but also because 

the area of mine that must be reclaimed is greater. According to Pearce (2008), 

the extraction energy is inversely proportional to the ore concentration. Mudd 

and Diesendorf (2008) also found a dependence on ore grade if the grade 

dropped below 0.1% yellow-cake. Wallner and Wenisch (2011) predicted that 

emissions would increase to within a range of 82 to 210 g CO2e/kWh if the ore 

grade declined to the range of 0.01% to 0.02%. Norgate et al. (2014) estimated a 

life cycle emissions value of 33.9 g CO2e/kWh based on an extracted ore grade 

of 0.15%. The authors also reported a current world mean production ore grade 

in the order of 0.12%, and a world average ore grade in reserves of 0.042% 

based on 2009 data.  These disparate results can be collated into a general 

equation relating emissions to ore grade:

e=30.46+
0.52
og

(3.1)

where e is the greenhouse emission intensity in g CO2e/kWh, and og is the 

uranium ore grade in %.

Nugent and Sovacool (2014) surveyed a number of studies estimating the life 

cycle greenhouse gas emissions of solar PV and wind energy. A mean value of 

34.1 g CO2e/kWh was found for wind energy, and 49.9 g CO2e/kWh was found 

for solar PV. The emissions of nuclear power can be compared (Figure 3.1).
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Figure 3.1. Emission intensity of nuclear power with respect to uranium ore grade. Average emissions for 
solar PV of 49.9 g CO2e/kWh and wind of 34.1 g CO2e/kWh (Nugent and Sovacool 2014) are provided 
for comparison.

Norgate et al. (2014)  predicted that production ore grades would decline to 

around 0.01% by 2065 if nuclear power generation grows at a rate of 1.9% per 

year. However if nuclear power were to play a major part in meeting world 

electricity demand, then it must grow more quickly, and production ore grades 

would decline much more rapidly. Therefore although presently the emissions 

for nuclear power may be around 34 g CO2e/kWh, the value will rise with time 

and greater use, and it is reasonable to compare the mean value of 66 g 

CO2e/kWh found by Sovacool (2008) with the other technologies (Table 3.1).

The infrastructure emissions for storage systems refers to the greenhouse gases 

emitted during manufacture, installation and decommissioning of the storage. 

The total emission intensity of power output from storage will depend on the 

source of the input power and the round trip storage efficiency (Oliveira et al. 

2015). For renewable energy generation systems with no or low emissions 
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during operation, such as wind or solar PV, the total emissions intensity of 

power output from storage will be similar to the sum of the power source value 

and the storage infrastructure value. However in a power system containing 

both a renewable source and storage, not all the generated energy will be 

stored, so the overall emissions intensity of the system will be less than the sum 

of the power source technology value and the storage technology infrastructure 

value.

Table 3.1. Average life cycle greenhouse gas emission intensity for different energy generation 
technologies.

Technology Mean greenhouse gas emissions

(g CO2e/kWh)

Reference

Hydrogen storage infrastructure 3 Oliveira et al. (2015)

Battery storage infrastructure 50.6 Oliveira et al. (2015) 

Wind 34.1 Nugent and Sovacool (2014)

Solar PV 49.9 Nugent and Sovacool (2014)

Solar thermal 37

60-73 with molten salt thermal storage 

Whitaker et al. (2013)

Klein and Ruben (2013)

Bioenergy 81 Cherubini et al. (2009)

Nuclear 34 at ore grade 0.15%

66 average 

Norgate et al. (2014)

Sovacool (2008)

Gas (CCS) 247 Hertwich et al. (2015)

Oil (CCS) 190 Kleijn et al. (2011)

Coal (CCS) 201-263 Hertwich et al. (2015)

Gas (without CCS) 527 Hertwich et al. (2015)

Oil (without CCS) 850 Kleijn et al. (2011)

Coal (without CCS) 791-933 Hertwich et al. (2015)

Infrastructure for storage systems refers to manufacture, installation and decommissioning. During 
operation, emissions from stored power depend on the source power technology and round trip efficiency.

Emissions from the manufacture of renewable energy and storage technologies 

should decrease as the system wide emissions of the power supply grid falls 

(Pearce 2008). Similarly for nuclear power, reduction in ore grade and increase 

in required extraction energy may become less significant to life cycle emissions
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as mine site power supplies and ore transportation are sourced more and more 

from low emission energy sources. However Wallner and Wenisch (2011) found

that below an ore grade of 0.0086%, the required energy input for nuclear 

power exceeded the energy generated. 

There is considerable uncertainty over the level of fugitive emissions of 

greenhouse gases from the supply chain of coal and gas generation, both with 

or without CCS, such that the advantage of gas compared to coal may be 

significantly reduced (Bouman et al. 2015). 

3.2 Speed of emissions reductions

Because of the effect that higher atmospheric CO2 concentrations and 

temperatures might have on carbon sinks, and other mechanisms detailed in 

section 1.1 above, emissions avoided sooner are more important than emissions 

avoided later, and therefore, the speed at which each technology can begin to 

reduce emissions, and the amount that can be reduced per unit time, is 

important.

In the present day, manufacturing infrastructure for nuclear plants has greatly 

contracted from that experienced during the last peak nuclear building cycle 

around 1980 (Schneider et al. 2009), leading to significant construction schedule 

and project cost risk. Large scale investment in manufacturing infrastructure 

requires order certainty, which so far hasn't happened. Shortages of skilled 

labour have also been identified, with a large proportion of existing employees 

nearing retirement age. Both of these trends must be addressed before any 

increase in nuclear construction can take place. Given the currently aging 

nuclear reactor fleet, projections of nuclear power generation 40 years into the 

future have raised doubt that overall global nuclear capacity could expand 
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significantly before 2050, unless life-time extension beyond 40 years becomes 

standard (Schneider et al. 2009). However, since 2012, world nuclear power 

generation has begun to grow again (Schneider and Froggatt 2015), rising by 

around 50 TWh to 2410 TWh in 2014. This is still 9% lower than its 2006 peak of 

2660 TWh. In contrast, between 2006 and 2014, wind power generation grew by 

573 TWh (a greater than 5 times expansion), and solar generation grew by 181 

TWh (a greater than 40 times expansion) (Schneider and Froggatt 2015). Since 

Australia has little nuclear power plant manufacturing infrastructure or 

expertise, it is dependent on the global industry for any nuclear reactor 

program, unless it first builds its own infrastructure and expertise. 

Between 2006 and 2013, world bioenergy electricity generation rose steadily 

from about 200 TWh to about 400 TWh, an average growth rate of just over 10%

per year (IEA 2014). There has yet to be any significant impact on global 

electricity generation by CCS (Scott et al. 2015). In Australia, Saddler et al. 

(2004) concluded that a mix of extensive (but well within technical feasibility) 

energy efficiency improvements, renewable energy generation, and gas-fired 

generation could reduce emissions by more than five times as much as CCS 

alone in the year 2030, and cumulative emissions to 2030 by ten times as much. 

Out of these alternatives, the technologies that have demonstrated the greatest 

potential for growth in generation are solar, wind, and biomass. While nuclear 

has historically been established much earlier than solar and wind, generation 

had been declining until the last three years. Many questions remain over its 

future growth capability.
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3.2.1 Energy payback time and limits to expansion of low emission 
generation

To build an entire energy or electricity supply system based on low emission 

sources will require a huge transition that involves both the expansion of 

alternative capacity, the retirement of conventional power plants, and the 

training or re-training of large numbers of personnel. This effort to re-align 

energy systems on a large scale will require a large energy input in itself, and 

presently energy is sourced mainly from greenhouse intensive sources. The 

resultant pulse in greenhouse emissions may push the Earth's climate system 

over a tipping point (Steffen 2007).  Hence it is important to use as little energy 

as possible for this transition. An important metric for making choices about 

which low emission technologies to use is the Energy Pay Back Time (EPBT). 

The EPBT in years can be defined in general terms as:

EPBT=
Embodied energy

Annual energy generation
(3.2)

where embodied energy is the energy required to manufacture and deploy the 

technology. The EPBT can be said to represent how long a generator takes to 

pay back its "energy debt", and start generating low emissions energy for the 

system, and provides a quantitative comparison between technologies (Table

3.2). If an energy generation technology has a long EPBT, then the rate at which 

it can be scaled up, without significantly increasing the risk of encountering a 

tipping point, is restricted.

The EPBT estimate for energy efficiency is based on building insulation 

measures, and can be considered illustrative. Nevertheless, this result reinforces

the idea that energy efficiency measures would be a favourable initial option for

transformation to a low emissions energy system. However, it could be 

75



3.2 Speed of emissions reductions

expected that as the level of energy efficiency improvements increases, it will 

become progressively more difficult to apply further improvements. The 

required embodied energy and the EPBT will increase. The EPBT estimate for 

bioenergy is based on the Mongolian Salix plant (Wang et al. 2015). The EPBT 

for oil mallee may be similar, since both plants live in arid zones. No 

information could be found on the EPBT for CCS, perhaps because there are so 

few operational CCS plants. The long construction times and EPBT for nuclear 

power must call into question whether this technology can reduce emissions 

quickly enough and minimise the risk of reaching a tipping point.

Table 3.2. Energy Payback Time (EPBT) for low emission technologies.

Technology EPBT (years) Reference

Energy efficiency 0.1-1.5a Itard (2007)

Wind 0.2-0.67 Asdrubali et al. (2015)

Solar thermal 0.63-1.33 Asdrubali et al. (2015)

Solar PV 0.75-3.67 Asdrubali et al. (2015)

Bioenergy 3.2b Wang et al. (2015)

Nuclear 5.9-14.1 (2.5% to 0.01% ore grade) Lenzen (2008)

 aEnergy efficiency EPBT based on building insulation measures. bBioenergy EPBT is based on using 
Mongolian Salix plant. PV stands for photovoltaic.

In contrast, the modularity and scalability of many renewable energy 

technologies opens the possibility for them to self-supply the expansion in their 

generation capacity, in effect to becoming energy breeders and avoiding a large 

initial greenhouse emissions pulse. Fthenakis et al. (2008) examined 

hypothetical solar PV breeding systems for two different PV technologies and 

found that life cycle emissions could be significantly reduced. Boudghene 

Stambouli et al. (2014) proposed a Sahara desert solar PV breeder to take 

advantage of the abundant sun, space and sand. The aim is to establish up to 

100 GW of generation capacity by 2050.
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3.3 Cost

Comparing the cost of alternate low emission power generation technologies is 

complex, because of the different assumptions made over which parts of the life

cycle should be included. Also because of the dependence on climate of many 

renewable energy technologies, cost estimates will differ for different regions. A

common measure that is used to assess costs is the Levelised Cost of Energy 

(LCOE) (Darling et al. 2011). A recent comparison of US LCOE  (Lazard 2015) 

gave the ranking shown in Table 3.3, with a lower rank meaning a lower cost. 

Even though costs will be different in the SWWA, this comparison is useful 

because of the presence of operating nuclear power in the US. Also, energy 

efficiency and biomass were included in the comparison.

Table 3.3. Levelised Cost of Energy (LCOE) comparison between several alternative technologies in the 
United States. 

Technology LCOE range (US$/MWh) Rank

Energy efficiency omitted 1

Wind omitted 2

Solar PV utility scale omitted 3

Gas (without CCS) omitted 4

Biomass omitted 5

Coal (without CCS) omitted 6

Nuclear omitted 7

Solar PV rooftop commercial and industrial omitted 8

Solar thermal tower with storage omitted 9

Gas (peaking, without CCS) omitted 10

Solar PV rooftop residential omitted 11

The cost of nuclear power does not include decommissioning costs, and the cost of the wind and solar 
technologies does not include the cost of integration, estimated at between $2-10 per MWh. Source: 
Lazard (2015).

Energy efficiency measures were awarded the lowest costs of all, and as such 

should be given the highest priority for implementation. Although they have a 
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higher cost, the solar rooftop technologies can supply electricity at the point of 

demand, without having to travel through transmission and distribution grids.

Doubts have been raised over cost estimates of nuclear power. For example, 

even during a time of high construction rates in the 1970s, many reactors in the 

US were completed late and often over budget (Schneider et al. 2009). In recent 

times much fewer new reactors have been built, so calculating the actual costs is

more uncertain. Because of the long construction times, and small number of 

new reactors under construction, it is difficult to ascertain if economies of scale 

will lead to significant cost reductions. It is possible that shortage of skills and 

manufacturing capacity might mean that reactors built later will cost more. 

Insufficient standardisation of the newer  "generation III+" reactor design may 

also prevent cost reductions. By 2015, 16 out of 18 of these reactors under 

construction were behind schedule (Schneider and Froggatt 2015), which is 

bound to put upward pressure on costs. Schneider and Froggatt (2015) 

estimated the cost of the Fukushima disaster as at least US$100 billion and 

rising. However, this disaster may also have an effect on the cost of reactors yet 

to be built, as safety standards are tightened.

A recent estimate of LCOE for Australia (EPRI 2015) did not include energy 

efficiency or bioenergy, but did include CCS (Table 3.4). The need for extra 

storage and reserve generation under scenarios with very high penetration of 

variable renewable sources will also add to the cost. However, Delucchi and 

Jacobson (2011) concluded that the world could be completely supplied from 

renewable sources and storage at a similar cost to current energy prices. 

Mathiesen et al. (2011) found that 100 percent renewable energy systems may 

be economically beneficial compared to fossil fuel systems. The costs of solar 

thermal stations are currently higher, as they are not as far along the 

development curve. However, solar thermal stations with storage have value 
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because they can continue to generate power for longer periods than PV alone 

(reflected in the higher capacity factors in Table 3.4), including during the 

winter night time peak demand period. Elliston et al. (2014) found that the cost 

of a 100% renewable energy system for the national grid in Eastern Australia, 

including solar thermal stations, was competitive with fossil fuel based low 

carbon alternative systems, so a similar finding is plausible for the SWIS in 

Western Australia. Riesz et al. (2016) found that the lowest cost renewable 

energy system scenarios for Australia had very high levels of wind power 

generation. In contrast, the economic damage due to climate change could be at 

least several percent of global Gross Domestic Product (GDP) if greenhouse 

emissions are not mitigated (Revesz et al. 2014)

Table 3.4. Levelised Cost of Energy (LCOE) and capacity factor comparison between several alternative 
technologies for Australia. 

Technology LCOE range (A$/MWh) Capacity factor range Rank

Wind omitted omitted 1

Solar PV utility scale omitted omitted 2

Solar PV rooftop commercial omitted omitted 3

Gas (CCS) omitted omitted 4

Solar PV rooftop residential omitted omitted 5

Nuclear omitted omitted 6

Coal (CCS) omitted omitted 7

Solar thermal with 6h storage omitted omitted 8

The cost of nuclear power assumes a mature nuclear industry in Australia. The capacity factor is the ratio 
of the actual amount of electricity generated by the plant compared to the maximum amount that could be
generated. CCS retrofit of existing plants reduces power output by 32.5%. Source: EPRI (2015).

3.4 Water use

The SWWA is a semi arid region where fresh water supply can be restricted, so 

the water use of a power generation technology is of significant importance. 

Similarly to conventional power plants, most solar thermal stations use a steam 

turbine to generate electricity from heat, and the conversion efficiency depends 
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on the temperature difference between steam entering and leaving the turbine. 

A continuous supply of water will be needed if it is used to cool the steam. If air

cooling is used then much less water is needed (mainly to clean mirrors), but 

the temperature of the steam leaving the turbine is higher, and thermal to 

electrical conversion efficiency is lowered. However, because of the higher 

operating temperatures achievable by solar power towers, the steam entering 

the turbine is hotter and efficiency loss is less pronounced. Air cooling will be 

used on a number of solar power tower systems (Gesthuizen 2011). Jacobson 

(2009) estimates water use as 0.14 to 2.94 L/kWh, depending on whether water 

cooling is used. Baharoon et al. (2015) rates water use at 3 to 4 L/kWh if water 

cooling is used, and 0.2 L/kWh if air cooling is used. The water use is similar for

each type of collector except for Stirling dish systems which have air cooling 

only. Jacobson (2009) rates the water use of nuclear at 1.5-2.73 L/kWh, 

comparable to the majority of parabolic trough solar thermal power stations 

that use water cooling, but more than the air cooled power towers (Table 3.5).

Table 3.5. Water use for electrical power generation technologies.

Technology Water use (L/kWh) Reference

Wind 0.00379 Jacobson (2009)

Solar PV 0.15 Jacobson (2009)

Solar thermal air cooled 0.14-0.2 Jacobson (2009), Baharoon et al. (2015)

Bioenergy (Oil Mallee) 0.75 RIRDC (2001)

Gas (CCS) 1.13-1.18 Ou et al. (2016)

Nuclear 1.5-2.73 Jacobson (2009)

Coal (CCS) 2.94-3.52 Ou et al. (2016)

Solar thermal water cooled 2.94-4 Jacobson (2009), Baharoon et al. (2015)

Nuclear power plants require more water than fossil fuel plants (Jacobson 

2009).  Most is returned to the source at a higher temperature, but some is lost 

to evaporation. This raises potential issues of damage to water habitats. Because
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nuclear plants must be sited near water sources, they are vulnerable to flooding 

and storm surges, which might have a greater frequency and severity due to 

climate change. They will also be vulnerable to drought. Power generation 

relies on the temperature difference between steam and river or lake water, so 

nuclear plants may not be able to generate electricity if the water source 

becomes too hot (Jacobson 2009), as occurred during the European heat wave of

2004, when several nuclear reactors in France were shut down.

3.5 Conclusions

The advantages and disadvantages of each low emission power generation 

alternative are summarised in Table 3.6. Jacobson (2009) reviewed different 

energy options for mitigating global warming on a global scale. Air-pollution, 

mortality and energy security were also used as criteria. The technical ability of 

each technology to supply the stationary electrical generation and transport 

sectors was considered. For stationary generation, the use of wind power was 

found to be the most favourable, followed by other renewable energy 

technologies (except for large scale hydro). Even if safety, health and other 

environmental concerns are disregarded, both fossil CCS and nuclear are 

ultimately constrained by resource limitations unless there are significant new 

reserve discoveries or low energy use extraction techniques are developed. 

Hence further investment in deploying these technologies is a dead end unless 

alternatives such as renewables cannot be deployed quickly enough to avoid 

dangerous climate change, or cheaply enough to avoid the economic 

attractiveness of interim measures. However the growth rates of solar and wind

energy systems are currently much greater than either nuclear or CCS systems. 

The ability to expand nuclear and CCS systems fast enough to avoid dangerous 

climate change has been shown to be questionable (section 3.2).
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Table 3.6. Advantages and disadvantages of alternative technologies for reducing emissions from 
electrical power generation.

Technology Advantages Disadvantages

Nuclear power Current large installed base Can't provide peaking power 

efficiently, safety concerns, 

weapons proliferation, waste 

disposal, cost, poor scalability, 

slow pace of emission reductions,

resource limitations, high water 

use, threat to civil liberties

Renewable energy Modularity, good scalability,  

rapid pace of emissions 

reductions, wide distribution of 

resources

Variability, diffuse resource, 

need for storage or reserve 

generation, possible material 

constraints, possible constraint on

battery deployment, high water 

use for solar thermal with water 

cooled systems

Carbon Capture and Storage 

(CCS)

Can be applied to existing power 

plants

Poor scalability, unknown pace 

of emission reductions, leakage 

concerns, cost, health concerns, 

resource limitations, high water 

use

The use of renewable energy and energy efficiency seems to be the most viable 

option. On a global scale, there are more than enough renewable energy sources

to meet world energy demand, though some countries have more resources 

available than others. Embodied energy and life-cycle emissions of any of the 

technological choices, coupled with the risk of reaching a climate tipping point, 

mean there is an upper bound to their growth rate if they are to play an 

effective role in reducing greenhouse emissions. The goal of raising global 

living standards through wide scale provision of energy services must be met 

without excessive growth in high emission energy demand. Renewable energy 

breeding and improvements in energy efficiency are potential ways to achieve 

this. Some efficiency rebound is inevitable and perhaps desirable to widen 
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accessibility of energy services. To restrain net manufacturing energy 

requirements, recycling of batteries and improving their cycle lives will be high 

priorities if this technology is to be used for grid electrical energy storage on a 

large scale.

The short-term spatial and temporal variability of solar and wind energy 

systems is a challenge that must be met for these technologies to have a 

significant impact. Storage and the use of sustainable bioenergy as reserve 

generation are ways to balance the supply and demand variability. Conversely, 

the modularity, scalability, and short lead times of solar and wind technologies 

mean there is lower long-term demand and financial uncertainty than in large 

fossil or nuclear plants. Small fossil fuel cell or gas turbine technologies may 

also reduce long-term financial uncertainty. The distributed nature of many 

renewable energy forms and their localised sources of energy confers energy 

security advantages compared to fossil and nuclear power in many countries 

(though not in the case of Australia which has its own coal and uranium 

reserves). The lower levels of air pollution and waste disposal problems are also

advantages.
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4 Towards a low emissions SWIS grid

The global context of any particular technology choice used within the SWIS is 

important, as there are implications for the availability of infrastructure, skills-

base, economies of scale, and possible materials shortages and manufacturing 

bottlenecks. The previous chapters demonstrated that although concerns have 

been raised about the practicality of the renewable solution to low emission 

electricity generation, other studies have highlighted advantages, and indicated

that it might be the only viable option to reduce emissions fast enough. This 

chapter will look at examples and simulations of renewable energy electricity 

systems, and outline the ground work for developing a renewable energy 

simulation for the SWIS grid.

4.1 Examples of renewable energy electricity systems

Some places have already achieved, or plan to achieve, electricity systems based

almost completely on renewable energy sources. The island of El Hierro in the 

Canary group plans to generate all electricity from a combination of wind and 

solar, with a pumped hydro system balancing supply and demand. Energy 

efficiency is also expected to play a big part (Droege 2012). The Danish island of

Samso at times generates almost all of its energy demand from renewable 

sources, mainly wind. Supply and demand are matched on an hour by hour 

basis, by using bioenergy or transferring power to and from other grids. Some 

countries supply a large part of their electricity demand from hydroelectric 

resources, for example Uruguay, Bhutan, Albania (Gardiner 2013) and New 

Zealand (Sims et al. 2016). The Australian state of Tasmania also supplies 
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around 80% of electricity demand using hydroelectricity (ESIEP 2011), and the 

Australian Capital Territory has set a target for 100% renewable energy by 2020 

(ACT Government 2016). The electricity system of Iceland is 99% supplied from

renewable sources, based on hydro and geothermal energy (Droege 2012). The 

Icelandic economy contains heavy industries, but this example is atypical in 

that large scale geothermal and hydroelectric resources are not available to 

many other countries or regions. Instead, they must rely on locally available 

renewable energy resources that are likely to be spatially and temporally 

variable in nature, such as sunshine and wind. So far, not a single large scale 

electrical grid has transitioned to a 100% renewable system without the help of 

large scale hydro or interconnection with another grid.

4.2 Simulations of renewable energy electricity systems

There have been a number of scholarly articles published that use measured 

renewable energy resource data at specific locations to simulate how the large-

scale stationary energy needs of a country, state, or region might be supplied 

with renewable energy generation systems on an hour by hour basis.

Lehmann (2003) provided several scenarios for a 100% renewable energy 

system for Japan based on a combination of energy efficiency, solar, wind, 

geothermal, and hydro. Daily supply and load profiles were provided for a 

typical winter day, but only for a scenario which assumes a high level of energy

imports.

Barrett (2006) demonstrated the technical feasibility of a 95% renewable 

electricity system for the United Kingdom based on a combination of energy 

efficiency, wind, solar, wave, tidal, biomass, pumped hydro storage and 
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demand management, and provided sample annual supply and load profiles, 

and hourly profiles for typical winter and summer days.

Mills and Morgan (2007) showed simulations of the California and Texas 

electricity grids being supplied on an hour by hour basis over the whole of year 

2006 by solar thermal plants. The plants have a peak capacity equal to the peak 

recorded load in that year, 16 hours of thermal storage, and large excess 

collector area to supply the storage with energy. It was found in both cases that 

4 times the base collector area was necessary to completely supply the grids in 

all seasons, meaning that at low load times, excess capacity must be shed by 

turning part of the collector array away from the sun. The base collector area 

was defined as the collector area necessary to generate power at the peak 

capacity when solar insolation is at a maximum (solar noon at mid-summer on 

a clear day). The results were extrapolated to the entire US. It was noted that 16 

hours of storage would not be enough to guarantee supply in the event of 

prolonged poor weather events, but geographic diversity in siting of many 

smaller plants would tend to average this out. At 3 times the base collector area,

there was little need to shed excess capacity with 16 hours of storage, and it was

estimated that a total collector area of 177 km by 177 km could supply most of 

the US, with wind, hydro, solar PV and efficiency improvements supplying the 

rest. 

Peter et al. (2007) simulated a renewable energy system supplying the Spanish 

province of Catalonia. The simulation was run over 4 typical weeks, one each 

during Spring, Summer, Autumn and Winter, for the year 2006. The 'adjustable'

sources of hydro, geothermal, and biomass were used to balance supply with 

demand on an hour by hour basis, with a greater reliance on sun and wind 

during the Spring and Summer months, and a greater reliance on hydro-power,

geothermal, and biomass during Autumn and Winter when there was less sun 

87



4.2 Simulations of renewable energy electricity systems

and lower wind speeds. A synergy between resource availability and 

generation was noted, with higher precipitation in winter increasing the hydro-

resource. The greater demand for heat in winter also suggested a potential for 

co-generation from geothermal and biomass plants. 

Herbergs et al. (2009) simulated renewable energy supply and demand profiles 

for a "typical" country belonging to the Organisation for Economic Cooperation 

and Development (OECD) for one week in winter. Demand reduction from 

energy efficiency measures was included. The results indicated the possibility 

of supplying the energy demand completely from renewable sources.

Hoste et al. (2009) provided scenarios that match 100% renewable electricity 

supply with demand for California in 2020 with a combination of wind, solar, 

geothermal, and hydro. Hourly supply and demand profiles are provided for 

typical days in Spring and Summer.

Blackburn (2010) matched solar power generation at three sites and wind power

generation at a further three sites to load demand for the US State of North 

Carolina on an hourly, daily, and seasonal basis. Hypothetical wind and solar 

generation were scaled to produce approximately 80% of the average daily 

load, and balance between supply and demand was achieved using a 

combination of pumped hydro storage, biomass generation, gas turbine 

backup, purchase of power from other grids and demand management.

Connolly et al. (2011) developed scenarios for 100% renewable energy supply 

for Ireland, with different mixes of biomass, hydrogen, and renewable energy. 

The hydrogen energy system scenario had an electrolysis capacity of up to 10 

GW for conversion of excess electricity to hydrogen.
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Budischak et al. (2013) developed a 99.9% renewable energy supply simulation 

for a large regional grid in the eastern United States using solar, wind and 

storage, while Jacobson et al. (2015) developed a 100% renewable energy 

simulation for the whole of the United States based on solar PV, solar thermal, 

wind, wave power, geothermal, energy efficiency and hydropower.

Wright and Hearps (2010) developed a plan for 100% renewable energy 

electricity generation across the west, south, and east of Australia by 2020, 

based on concentrating solar thermal and wind power systems. Crop waste 

biomass and hydroelectricity were used as backup. This plan also covers 

transportation, heating and cooling energy, which is assumed to switch to 

electricity as a source rather than using fossil fuels. Balancing of the isolated 

SWIS grid is achieved by linkage to the eastern states National Electricity 

Market (NEM) grid via a long distance High Voltage Direct Current (HVDC) 

transmission line. The NEM grid extends from Tasmania to Queensland. The 

plan also aims to achieve a 20% improvement in energy efficiency. Modelling 

was carried out at half hourly intervals for the years 2008 and 2009. Solar 

irradiance data were obtained from satellite observations, and hourly wind 

power generation data were obtained from existing wind farms. Total 

generation was compared to historical load demand data.

Elliston et al. (2012) developed 100% renewable electricity scenarios for the east 

coast of Australia throughout the whole year of 2010 on an hour by hour basis. 

Solar PV, concentrating solar thermal and wind power systems were used for 

generation. Pumped hydro and biomass gas turbine plants were used to 

balance supply with demand. Similarly to Wright and Hearps (2010), solar 

irradiance data were obtained from satellite observations, and wind power 

generation data were obtained from existing wind farms. Total generation was 
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compared to historical load demand data. However the time scale was hourly 

rather than half hourly.

4.3 The use of energy storage and P2G technologies

Along with biomass, most of the above simulations relied on hydro-power as a 

backup to balance supply with demand on an hour by hour basis. Exceptions 

are Mills and Morgan (2007), which relied on solar thermal storage, and 

Budischak et al. (2013) who relied on different forms of large scale 

electrochemical storage, including batteries (which can consist of many small 

distributed systems). The hydro-power option is not currently available to the 

SWIS, but the use of energy storage technologies has been identified as having 

great potential to complement variable renewable energy systems (Luo et al. 

2015). Budischak et al. (2013) found that with very high deployment of variable 

renewable energy systems and varying load conditions, the storage not only 

must have enough energy, but also enough power generation capacity to meet a

portion of the instantaneous demand. As the share of renewable energy 

increased from 30% to over 90%, wider geographic distribution and more 

diverse forms of energy generation were required. The portion of instantaneous

demand required to be met by storage might even be reduced, such that there 

was a trade off between excess generation capacity (up to 3x load) and storage. 

The more capacity, the less storage. The balance between these two, to obtain 

the least cost scenario, will depend on the relative costs of each. Load 

curtailment and fossil backup are also options for meeting infrequent shortfalls.

Fossil generators increase emissions and cannot absorb excess generation to be 

used later, but existing plants can be used. Some loads may have the capability 

to increase with excess generation and curtail during times of shortfall. 

Weitemeyer et al. (2015) found that for Germany, storage was needed above 
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50% generation by wind and solar, and seasonal storage was needed at 

generation levels above 80%. The use of an integrated energy supply approach, 

where heating, cooling and transport energy demand are included along with 

electrical demand, and energy can be switched between all three forms and 

stored, is also considered to enhance the potential for utilisation of variable 

renewable energy sources (Lund et al. 2012), (B.V. Mathiesen et al. 2015). 

Although this thesis concentrated on the electrical demand only, the integrated 

energy approach can be utilised through what is commonly termed Power to 

Gas (P2G). Electricity is converted to a fuel, such as hydrogen or methane, for 

long term storage, and then reconverted back to electricity by burning the fuel 

in gas turbines, or by some other process (Cheng et al. 2009). Although the 

round trip efficiency is very low compared to other storage systems, the storage

capacity is very high, so this approach may also have the potential to provide a 

seasonal storage system (Weitemeyer et al. 2015), and thus reduce the power 

generation capacity required to be built in order to generate enough electricity 

during seasons of low wind and solar availability (Guandalini et al. 2015). 

However, although a few pilot plants are in operation, this technology has yet 

to be used on a large scale and requires further technical and economic 

development (Götz et al. 2016). In arid and semi arid regions, water consumed 

by the power to gas process could be a significant constraint, although seawater

has been used as a source (Götz et al. 2016). A portion of the water used in the 

P2G process can also be recycled (Davis and Martín 2014), and if the P2G plant 

is close to a gas turbine power plant, then the CO2 emitted can be fed back into 

the methane conversion process. However, steps must be taken to minimise 

leakage of stored methane, itself a potent greenhouse gas, to the atmosphere. 
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Flywheels can also provide energy storage, but are not suitable for seasonal 

storage because of the high energy leakage rates and short storage times 

(Ferreira et al. 2013).

4.4 Simulating a 100 percent renewable SWIS grid

The findings from chapter 3 indicated that solar and wind systems could 

rapidly expand generation and reduce greenhouse gas emissions from the 

SWIS. Reiterating the second research question from section 1.3,  just how far 

can the renewable energy path be taken? Can solar and wind renewable energy 

systems, aided by storage and energy efficiency improvements, completely 

replace the existing conventional generation systems? Is a 100% renewable 

energy system a technically feasible option for the SWIS? 

Although no large industrial economy is currently supplied completely by 

variable renewable energy sources such as sun or wind, section 4.2 above 

described a number of simulations that demonstrate the feasibility of such a 

system. Hence this study aims to use numerical simulation to examine the 

feasibility of achieving a 100% renewable SWIS grid, using a combination of 

solar, wind, energy storage, and energy efficiency. Solar PV and wind energy 

were chosen because they are commercially mature with falling costs, widely 

available in other places of the world, already have a presence in the SWIS, yet 

are geographically and temporally variable. Solar thermal energy was also 

chosen because it is considered to be a low emission technology with rapid 

response rates and storage capability, and is entering commercial operation, 

although on a smaller scale than PV or wind. Bioenergy is another option 

worthy of consideration, especially as a reserve source of energy, as it can be 

stored and used on demand.
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Both Wright and Hearps (2010) and Elliston et al. (2012) have used satellite solar

irradiance data and historical wind power generation data to estimate total 

power generation. This was then compared to historical demand data. This 

study will take a similar though slightly different approach. Hourly 

measurements of solar irradiance reaching the ground have been recorded at a 

number of weather stations throughout the SWWA. This data will be used to 

develop a regional solar irradiance model such that a solar thermal power 

station or solar PV station can be simulated no matter where it is sited within 

the SWWA. Measured hourly wind speed data at typical hub heights is not 

widely available within the SWWA, but satellite derived hourly wind speed 

estimates at 50 metres above ground level are available from the Modern-Era 

Retrospective Analysis for Research and Applications (MERRA) database 

(Rienecker et al. 2011). Using this data, a regional wind power generation 

model will be developed such that a wind farm can be modelled no matter 

where it is sited within the SWWA. This frees the overall simulation from 

having to use existing wind farm sites, a restriction of the above two studies. 

Both Wright and Hearps (2010) and Elliston et al. (2012)  have also emphasised 

the use of solar thermal storage and pumped hydro to balance supply and 

demand. This study will instead emphasise the use of solar thermal and battery 

storage. This is because of the current lack of pumped hydro capacity available 

to the SWIS grid. The potential of P2G storage will be investigated as a way to 

store energy seasonally.  Energy efficiency measures will also be modelled, as 

they have been shown to be among the most effective, rapid, and least cost 

ways of reducing emissions.

This study will compare the total generation to historical SWIS grid demand 

data on an hour by hour basis. This demand data is the sum of all residential, 

commercial and industrial loads. Why an hourly time scale? Typical summer 
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and winter daily demand curves for the year 2009 are shown in Figure 4.1. Peak

demand occurs in the afternoon during summer and evening during winter. 

Comparison at a coarser time scale, such as daily, will not capture this diurnal 

variation in demand. While the summer demand peak is well matched to solar 

PV output, in winter the demand peak lies after daylight hours. The difference 

between winter daily minimum demand and peak demand will likely be 

accentuated in the coming years as more and more solar PV is installed on 

home and commercial rooftops.
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Figure 4.1. Typical summer and winter daily load profile on the SWIS grid for the year 2009.

An hourly time scale allows comparison between the bulk quantities of energy 

generated and required.  However the hourly simulation must also be extended

to a yearly duration, as there are daily, weekly and seasonal variations in grid 

demand (Figure 4.2), and seasonal variations in renewable energy resources. On

shorter time scales, there already exist systems for balancing supply and 

demand, such as rotational inertia and primary and secondary frequency 

regulation. Because these systems operate at time scales much shorter than one 
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hour, they are not modelled here, except that any energy they require will be 

accounted for in the load profile. However, the characteristics and configuration

of the large scale power stations on the grid may affect their operation, which 

must be taken into account.
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Figure 4.2. Daily average SWIS load demand over one year for 2009. The starting date is 21st December.

The simulation developed in this study will be designed to maximise flexibility,

and enable the creation of different scenarios with different mixtures of solar 

PV, solar thermal, wind power and storage capacity. Currently the SWIS grid 

aims to achieve two reliability targets. The first reliability target is a less than 

0.05% Loss of Load Probability (LOLP), estimated as the fraction of time that 

energy generation fell short of the load demand (MR 2012). The second target is 

a 0.002% shortfall in generated energy over one year. When it is clear if it is 

possible for a renewable energy system to meet these standards, and just how 

much solar PV, solar thermal, wind power and storage capacity is required, an 

implementation schedule will be constructed and the feasibility of transitioning 

to a 100% renewable SWIS grid will be examined.
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Recent estimates require a drop in global emissions by 2050 to between 5 and 

30% of 2010 levels to limit temperature rise to 1.5oC by 2100 (Pachauri et al. 

2015), and many global emission reduction studies set a target year of 2050 

(Loftus et al. 2015). However, Australia as a historical and current high per 

capita emission country has an obligation to reduce emissions more quickly. 

Therefore 2030 was set as the target year for completing the renewables 

transition, less than 15 years from the present. The demand data will be 

upwardly adjusted for projected increase in population to the year 2030,  and 

energy efficiency improvements will be deducted.

The output from rooftop PV will also be deducted from the total grid demand 

data. Therefore demand data from the year 2009 was chosen as the baseline, 

because after this time, rooftop solar PV began to make significant inroads into 

demand profiles. Since most rooftop PV is 'behind the meter', only net grid 

demand is recorded, and so after 2009 it is not possible to separate the amount 

of intrinsic energy demand from the amount of PV generation.
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5 Solar irradiance model

This chapter will detail the development of a regional hourly solar irradiance 

model, which is needed to simulate power generation from solar PV and solar 

thermal power stations. First of all some background information about the 

components of solar radiation and the statistical modelling of solar power 

generation will be presented. Then the model development methodology and 

results will be detailed in the following sections. This chapter is based on the 

journal article "A method for generating synthetic hourly solar radiation data 

for any location in the south west of Western Australia, in a world wide web 

page" (Laslett et al. 2014).

5.1 Background

Systems  that  utilise  solar  energy  are  now  a  globally  significant  method  to

generate low emission energy.  It is insufficient to use an average daily value of

solar radiation to simulate these systems because solar radiation reaching the

ground can vary significantly within a single day. Energy demand can also vary

widely over the course of a day. To investigate the balancing requirements of

systems that use significant amounts of solar energy, there is a need to develop

algorithms  to  simulate  radiation  on  finer  time-scales.  For  the  purposes  of

developing an interactive simulation of solar energy systems in the South West

Region of Western Australia, an algorithm to generate synthetic hourly solar

radiation data over a range of locations, with diurnal and seasonal variations

that are a reasonable representation of actual local conditions, is needed. 
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Previously, for many locations solar radiation has only been measured on a 

horizontal surface. Hence much theoretical work and synthetic data algorithm 

development has concentrated on horizontal surfaces (e.g. Mora-Lopez and 

Sidrach-de-Cardona (1998) and Hontoria (2002)). In this chapter, all references 

to the word 'horizontal' refer to radiation falling on a horizontal surface rather 

than the component of radiation travelling in a horizontal direction. These 

horizontal surface algorithms are generally inadequate for the simulation of 

most solar power generating devices, because the collecting surfaces are usually

not horizontal. Radiation incident on the earth's surface can be divided into 

three components, and the degree of tilt from the horizontal affects each 

component differently. The three components are the beam (also called direct) 

component that has come from the sun; the diffuse component, resulting from 

radiation that has been scattered in the atmosphere; and the reflected 

component, resulting from radiation reflected off other surfaces. The diffuse 

and reflected components are indirect, although there is a dependence on the 

beam radiation they originate from. Radiation falling on a horizontal surface 

includes both beam and diffuse components lumped together (in theory, the 

reflected component is zero for horizontal surfaces in isotropic surroundings). 

Solar power systems that use mirrors to focus and concentrate radiation utilise 

only the beam component. Photovoltaic (PV) surfaces utilise all three 

components.

Under clear skies, each component of radiation can be theoretically estimated 

from the position of the sun in the sky and variations in Earth's orbit. If clouds, 

haze, smoke, fumes, or atmospheric pollutants are present, then the beam 

component will be reduced in a spectrum dependent way, and since the diffuse 

and reflected components are dependent on the beam component, they will also

be affected. The characterisation of these effects over varying time and spatial 
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scales is one of the biggest challenges facing any synthetic data generation 

algorithm. 

Full scale physics-based meteorological or global circulation models are very 

computationally intensive and usually require a super computer. However, if 

measured irradiance data is available, then there is the possibility of using 

simpler empirical techniques to predict future irradiance. Graham et al. (1988) 

posited that any data set, real or synthetic, that captures underlying 

climatological behaviour and has similar probability characteristics to a long 

term historical data set, if it existed, should be sufficient to simulate the 

performance of a solar power generation system. Gazela and Mathioulakis 

(2001) detailed methods for constructing a "Typical Meteorological Year" (TMY)

database from long term weather data. The database would typically contain 

values for several variables, including solar irradiation, over an entire year, and 

ideally, represent the gamut of typical weather patterns for a particular 

location. However Muneer et al. (2007) pointed to a common problem with 

existing solar radiation data sets: the beam and indirect components are seldom

measured independently. Graham et al. (1988) pointed to another common 

problem. To accurately assess the performance of many systems that use solar 

radiation, radiation data on a time scale that captures transient changes are 

required. For example, hourly data is necessary to capture changes in the 

position of the sun throughout the day. Measurements on these fine time scales 

are not available in many places in the world. It may be possible to get 

reasonably accurate estimates for missing data by using alternate synoptic 

information such as pressure, temperature, and cloud cover. Models that can do

this are called Meteorological Radiation Models (MRMs).

Generation of fine time scale variation using common statistical distributions 

has been investigated. Semenov et al. (1998) found that using a normal 
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distribution to generate synthetic solar radiation values did not match well with

the distribution of measured solar radiation in general and at a site in the UK in 

particular. Punyawardena and Kulasiri (1996) compared 17 years of measured 

daily bright sunshine duration at a meteorological station in Sri Lanka with 

different statistical distributions and concluded that the best statistical fit was 

the Weibull distribution. Boland (1995) performed a Fourier spectrum analysis 

of solar radiation data for several sites in Australia (including two in Western 

Australia), and found that solar radiation followed seasonal and diurnal cycles.

Several algorithms attempt to generate finer time scale radiation data using 

data from longer time scales. Perhaps the simplest approach was taken by Celik

(2002), who generated clear sky radiation curves and then modified the 

amplitude such that the average daily radiation was similar to one of several 

typical daily values within a particular month. Hence atmospheric conditions 

such as cloudiness are taken into account in an overall fashion. This approach 

could be used to generate data on any time scale but does not capture any of the

transient variation that may be present on that time scale. Gordon and Reddy 

(1988) used data from widely varying climatic conditions to develop a simple 

functional form for the probability density function of daily radiation but found

that there is location dependence. More sophisticated Autoregressive Moving 

Average (ARMA) and Fourier analysis techniques have been developed to 

synthesise radiation data (Hontoria et al. 2002), but these have also been found 

to be location dependent.

In contrast, Liu and Jordan (1960) found much earlier that if the clearness index 

was used as the variable to be analysed, instead of radiation, then the 

probability features were quasi-universal. The clearness index (kt) is defined as 

the ratio of global (i.e. total) radiation falling on a horizontal plane at the surface
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of the Earth (Ih) to the total extraterrestrial radiation falling on a plane 

horizontal to the surface but at the top of the atmosphere (Ihex):

k t=
I h

I hex
(5.1)

The symbol Kt is commonly used to represent daily clearness index, the ratio of 

total daily radiation (H) falling on a horizontal plane at the surface to the total 

daily extraterrestrial radiation (Hex) falling on a plane horizontal to the surface 

but at the top of the atmosphere:

K t=
H
H ex

(5.2)

Graham et al. (1988) claimed that most of the seasonal variation in daily 

radiation is due to variation in the extraterrestrial radiation, which can be 

accounted for by using the clearness index. This finding has been prominent in 

the development of a number of empirical algorithms to synthesise data when 

measurements are only available on a longer time scale. These algorithms 

operate over different time scales, such that it is conceivable to use them in 

cascade, ultimately synthesising data on an hourly or finer time scale, when 

measurements are only available on a monthly or yearly time scale. Mora-

Lopez and Sidrach-De-Cardona (1998) proposed a method to generate synthetic

hourly values of the clearness index directly from monthly average values of 

the daily average clearness index. The method involved incorporating a 

seasonal component as well as a component related to the diurnal sun cycle. 

However, the authors found the algorithm was not universal.
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Both Graham and Hollands (1990) and Aguiar and Collares-Pereira (1992) 

developed well known algorithms to synthesise hourly data from daily average 

clearness index values, with time of day dependent probability distributions. 

The Aguiar and Collares-Pereira (1992) algorithm, called the TAG algorithm, 

claimed better statistical consistency between the synthetic data and measured 

data for clearer months. Also, since a wider range of locations were used to 

develop the TAG algorithm, it may perhaps be more widely applicable. 

Remund et al. (1998) provided modifications to the TAG algorithm for locations

where the sun might be occluded by the skyline, such as in mountainous 

regions.

There have been several models using Artificial Neural Networks (ANNs) 

developed to generate synthetic hourly data from average daily solar radiation. 

Hontoria et al. (2002) developed an ANN model based on data from several 

locations in Spain, and found that their model matched the measured data more

closely than either the Graham and Hollands (1990) or Aguiar and Collares-

Pereira (1992) models. However Reikard (2009) reported mixed results, with 

ANN models significantly outperforming autoregressive models only at higher 

temporal resolutions, in the order of a few minutes. ANN models can also be 

much more numerically intensive. More recently, satellite remote sensing data 

has been used to provide estimates of surface radiation. The quantity of data 

required to comprehensively represent solar radiation behaviour over all 

seasons and cover an entire region would be large. 

A number of shortcomings with the clearness index approach have become 

apparent. The beam and diffuse components of radiation falling on a horizontal

surface are bundled together into measurements of the clearness index. 

Generation of synthetic radiation values for surfaces oriented at an angle other 

than horizontal will require individual quantification of these components and 
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also the reflected component. Since both clearness index and the diffuse 

component are affected by atmospheric processes such as clouds, it was hoped 

that there might be a close relationship between the two (Hollands and Huget 

1983). However, it has been found that the diffuse component can vary widely 

for very similar values of clearness index. Skartveit et al. (1998) found that 

clouds have a complex effect on the diffuse component. For example, in the case

of broken or scattered cloudiness conditions, the diffuse component can be so 

high that the measured clearness index exceeds the theoretical clear sky value. 

Perez et al. (1990) identified two limitations of using the clearness index: firstly, 

there is a dependency not only on atmospheric processes, but also on solar 

elevation. Secondly, the complexity of the diffuse component relationship 

means that in some situations it might be impossible to differentiate two 

different cloud conditions with the same clearness index. The authors proposed 

the use of a normalised clearness index that is solar elevation independent as a 

possible solution to the first limitation.

Approaches that use cloudiness metrics rather than clearness index have also 

been taken. Yang and Koike (2002) developed a Sky Clearness Indicator (SCI) 

coefficient that accounts specifically for cloud effects, modifying the surface 

global horizontal radiation from its clear sky value. Butt et al. (2010) developed 

a method of estimating cloudiness using high frequency (2 minute interval) 

measurements of global horizontal surface irradiance. Although this method of 

defining cloudiness was somewhat imprecise, the authors found a straight-line 

relationship between the diffuse fraction (ratio of diffuse horizontal irradiance 

to global horizontal irradiance) and their cloudiness metric for two locations in 

the Amazon.

Clearness index usually has lower values earlier and later in the day because of 

the increased air mass sunlight travels through when the sun is low in the sky. 
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In contrast, cloudiness metrics are not expected to exhibit such a strong trend 

because they modify the clear sky transmissivities rather than directly 

modifying the solar radiation. As such, they perhaps can be claimed to be a 

"purer" measure of the local cloud condition at the time. There is a hierarchy 

here. Direct measurements of radiation contain effects due to variations in 

Earth's orbit, the position of the sun in the sky, air mass, and cloud condition. 

Measurements of clearness index contain effects due to the latter two, and 

cloudiness metrics aspire to capture only the cloud condition. 

In this chapter, the aim was to develop a numerically simple algorithm that can 

generate synthetic values of radiation data for any location within the South 

West region of Western Australia, with hourly, diurnal and seasonal variations 

in solar radiation that give a reasonable representation of actual local 

conditions. Australia lies in the Southern hemisphere, so simply using models 

developed for Northern hemisphere locations may not achieve this aim. Lanini 

(2010) pointed out that stratospheric sulphate aerosol content is higher in the 

Northern hemisphere, increasing the diffuse fraction. Hence a new model was 

developed that is a combination of the approaches of Yang and Koike (2002) 

and Aguiar and Collares-Pereira (1992). Firstly, equations to estimate the 

theoretical clear sky values for beam, diffuse, and reflected radiation were 

obtained from previous studies. Then, to represent the effects of cloud, a 

coefficient of cloudiness was defined that modifies all three components of clear

sky radiation individually, and so can be used to model the performance of 

both concentrating solar power systems and tilted PV systems on cloudy days. 

An autoregressive algorithm was developed to generate synthetic hourly values

of this cloudiness coefficient, with parameters that are themselves seasonally 

and locationally dependent and able to be calibrated with locally measured 

data from Western Australia.
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It was considered that using latitude and longitude as the location coordinates 

would not lead to the numerically simplest operation of the model. Latitude 

provides information about the position of the sun in the sky, but there is little 

more direct information about climatic conditions in latitude and longitude 

values. For example, they do not say whether the location is over land or sea. In 

Western Australia, the climate is usually drier further inland. There are two 

areas of higher annual rainfall, one in the South West corner, and one in the 

tropical North. Since clouds are needed to generate rain, a correlation between 

cloudiness patterns and rainfall patterns can be expected. So if location 

coordinates are represented by a distance along the coast from a set starting 

position, and then a distance inland from this point on the coast, the 

relationship between seasonal solar radiation and location might take a simpler 

form. The model was developed to mimic this geographic pattern of annual 

rainfall.

The development of this new model indicates that the approach of using a pure 

cloudiness metric and alternate positional coordinates can provide an algorithm

that is simple enough to use interactively and provide a viable alternative to 

using satellite data. There is scope for adaptation to other parts of the world 

with a similar pattern of declining inland rainfall, such as the West coast of 

North America, the West coast of South Africa, and the West coast of South 

America.

5.1.1 Irradiance in clear sky conditions

The first stage in developing a model for irradiance in cloudy conditions is to 

estimate irradiances for clear sky conditions. This has already been done in 

previously developed theory (e.g. Kumar et al. (1997), Gates (2003) or Liu and 
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Jordan (1960)). Later, in the methods section, new equations for modifying the 

clear sky irradiances due to the effects of cloud are developed.

The solar altitude angle, α, the vertical angle of the sun to the surface of the 

Earth, affects the amount of solar energy reaching the Earth not only because of 

geometrical effects but also because of the amount of air the light has to travel 

through. The sine of the solar altitude angle, sinα, can be calculated directly 

from the day of the year, time of day, and estimates of variation in Earth's orbit 

(see Appendix A).  The air mass ratio, M, is the ratio of the atmospheric path 

length a beam of light must travel through, compared to the path length if the 

sun was at the zenith (i.e. the shortest path length). One of the most numerically

simple approximation formulas for M as a function of sinα comes from Young 

(1994):

M=
1 .002432 sin2 α+ 0 .148386 sin α +0 . 0096467

sin3α+ 0 .149864 sin2α+ 0 . 0102963sin α +0 .000303978
(5.3)

This approximation has the advantage that the solar altitude angle does not 

have to be explicitly calculated.

The total (or global) irradiance falling on the Earth's surface at the ground can 

be divided into three types: the beam irradiance, Ib, the diffuse irradiance, Id, 

and the reflected irradiance, Ir (Figure 5.1). Beam irradiance comes directly from

the sun, and is also called direct irradiance. The extraterrestrial beam irradiance,

Io (W/m2), is the irradiance arriving at the top of the atmosphere on a plane 

perpendicular to the direction of the sun. The fraction of of incident light that 

travels through a medium is called a transmittance. The beam irradiance 

arriving at the Earth's surface, Ib (W/m2), also on a plane perpendicular to the 
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direction of the sun, can be related to Io by defining a beam radiation 

atmospheric transmittance, tb, such that:

I b=t b I o (5.4)

tbcs is the beam atmospheric transmittance under clear sky conditions. At very 

high elevations with extremely clear air, tbcs may be as high as 0.8, while for a 

clear sky with high turbidity it may be as low as 0.4 (Gates 2003).

I 
b

I 
o

I 
d

I 
r

Sun

Top of Atmosphere

Ground α

Figure 5.1. The three types of irradiance falling upon a surface perpendicular to the position of the sun in 
the sky. Io is the extraterrestrial beam irradiance. Ib is the beam irradiance falling on the surface. Id is the 
diffuse irradiance falling on the surface. Ir is the reflected irradiance falling on the surface. α is the solar 
altitude angle.

A simple formula based on Bourghers law (Kreith and Kreider 1978) can be 

used to estimate tbcs from M:

t bcs=K b1e
Kb2 M (5.5)
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where Kb1 and Kb2 are constants. Kb2 is an absorption constant and is negative. If 

a surface is oriented in a direction other than perpendicular to the sun's position

in the sky, then the incident beam irradiance will be reduced. Many data sets 

and many studies deal only with measurements of solar radiation falling on a 

horizontal surface. Therefore expressions for horizontal surface radiation must 

be developed if comparison with these models is to be made. The beam 

irradiance falling on a horizontal surface, Ihb (W/m2), will be:

I hb=I o t bsin α (5.6)

Diffuse radiation arises from beam radiation that has been scattered by the 

atmosphere. The diffuse irradiance Id (W/m2) on a plane at the Earth's surface 

can be related to the extraterrestrial beam irradiance Io (W/m2) by defining a 

diffuse atmospheric transmittance, td such that:

I d=0.5 I o td sin α (1+cos (tilt )) (5.7)

where tilt is the vertical angle of the plane compared to the horizontal. This 

equation implies that for surfaces tilted at angles other than horizontal, the 

diffuse irradiance will be less because the surface will not "see" the full sky 

hemisphere (Rudy 1997). If the surface is vertical, then the diffuse radiation 

falling on it will be halved, as it only "sees" half of the full sky hemisphere. Liu 

and Jordan (1960) formulated the following relationship between clear sky 

diffuse transmittance tdcs and the beam atmospheric transmittance under clear 

sky conditions tbcs:

t dcs=0.271 – 0.294 t bcs (5.8)

108



Chapter 5. Solar irradiance model

This equation implies that a higher beam transmittance means less diffuse 

radiation, as would be expected. Beam transmittance tbcs for a dust free clear sky

typically ranges from 0.4 to 0.8, and the corresponding diffuse transmission 

coefficient tdcs ranges from 0.153 to 0.037 (Gates 2003).  The diffuse irradiance 

falling on a horizontal surface, Ihd (W/m2), will therefore be:

I hd=I o (0.271 – 0.294 t bcs)sin α  (5.9)

For a surface under consideration, a part of both the beam and diffuse 

components of clear sky radiation may be reflected by the surroundings. Based 

on a formula given by Gates (2003), the reflected radiation falling on a surface, 

Ir (W/m2), in isotropic surroundings can be related to Io by:

I r=0.5r g I o t r sin α (1−cos ( tilt ) ) (5.10)

where tr is the reflectance transmittance, and rg is the ground reflectance 

coefficient averaged over the solar wavelength spectrum (see Monteith and 

Unsworth (1990)). Gates (2003) gives a reflectance coefficient for vegetation of 

0.2, and also a formula that relates the clear sky reflectance transmittance trcs to 

the clear sky beam transmittance tbcs:

t rcs=0.271+0.706 t bcs (5.11)

such that if clear sky beam transmittance increases, then so does clear sky 

reflectance transmittance. If the surroundings are not isotropic, then in principle

it is still possible to explicitly model reflected radiation, but the equations will 

be complex and site specific. For a horizontal surface, tilt is zero, and the 

estimate for reflected radiation from equation 5.10 is zero. In this case:
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I hcs=I o(t bcs+t dcs)sin α (5.12)

where Ihcs is the clear sky irradiance falling on a horizontal surface (W/m2). Note 

that multiple reflection effects between the Earth's surface and the atmosphere 

are present even if the tilt is zero. These effects can be modelled or made 

implicit in the diffuse transmittance estimation. For an example see Suckling 

and Hay (1977). Some authors have included an explicit term for these effects 

(Davies et al. 1985). It may be more important to have an explicit term if 

multiple cloud layers are modelled, as for example in Yang and Koike (2002), 

and there is a need to differentiate between intrinsic cloud behaviour and 

ground-atmosphere reflection effects. 

5.2 Method

So far, theoretical equations for the transmittances tb, td, and tr have been 

formulated for clear skies, based on results from previous studies. To effectively

model radiation under all weather conditions, there is a need to quantify the 

behaviour of these transmittances under cloudy conditions. In this chapter, a 

new metric of cloudiness was defined, its effects on tb, td, and tr were quantified, 

and an algorithm for generating synthetic cloudiness values at any location in 

the South West region of Western Australia was developed. The algorithm was 

calibrated and verified using cloudiness values obtained from hourly horizontal

surface radiation data measured at a set of meteorological stations. Use of the 

word 'horizontal' refers to radiation falling on a horizontal surface.

5.2.1 Defining cloudiness

Previous studies have attempted to quantify cloudiness from observation (e.g. 

Muneer et al. (2007)). However, it is not simply the amount of cloud that 
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matters. Cloud type, height, distribution, and layering will also affect irradiance

in an ever-changing manner. To maintain simplicity, no distinction was made 

between these different aspects of cloudiness. Instead the level of cloudiness 

was quantified by how much beam transmittance is affected. A cloudiness 

transmission factor, tc, was defined as a fractional modifier to the clear sky 

beam transmittance, tbcs, due to cloudy conditions:

t b=t c t bcs  (5.13)

The "cloudiness"(c) was defined such that the cloudiness transmission factor tc 

is reduced by increasing cloudiness until tc is zero when c is one:

t c=1−c  (5.14)

How much will cloudiness affect the diffuse transmittance, td? A diffuse 

cloudiness function, kcloud(c), was defined that modifies the clear sky diffuse 

transmittance tdcs:

t gh=t b+t d=(1 – c )t bcs+k cloud (c ) t dcs (5.15)

where tgh is the global irradiance transmittance for radiation falling on a 

horizontal surface. The observation by Butt et al. (2010) that the diffuse fraction,

kd, increases in a straight-line fashion with cloudiness was represented using:

k d =
t d

t gh

=k dcs(1+K dr c) (5.16)

where kdcs is the clear sky diffuse fraction, and Kdr is a slope constant. Combining

equations 5.15 and 5.16 gives
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k cloud (c )=
(1−c ) (1+K dr c)

1 – K dr c
t dcs

t bcs

(5.17)

If the value of Kdr is high enough, then for some values of tbcs, the kcloud function 

increases with increasing cloudiness before reaching a maximum and then 

decreasing (Figure 5.2), and there are two possible values of cloudiness for the 

same value of kcloud.
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Figure 5.2. kcloud as a function of cloudiness for sinα = 0.1, M = 9, tbcs = 0.3 and tdcs = 0.182. The 4 curves 
are for 4 different values of Kdr: 0.25, 0.5, 0.75, 1 and 1.5.

How much will cloudiness affect the reflectance transmittance, tr? Hay (1979) 

implied that the reflected irradiance under cloudy conditions remains 

proportional to the global horizontal irradiance, and hence the reflectance 

transmittance will remain equal to the global horizontal transmittance:

t r=t gh=t b+ t d=(1 – c) tbcs+k cloud (c) tdcs (5.18)
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5.2.2 Estimating cloudiness

To quantify the range and distribution of cloudiness over the South West of 

Western Australia, a way to estimate cloudiness from measured data was 

developed. Hourly horizontal solar radiation data from a network of 31 

Western Australian Department of Agriculture weather stations for the years 

2007 and 2008 were obtained. The data were originally stored in units of kJ/m2 

for 1 hour of radiation, so each value was divided by 3.6 to obtain a value for 

average hourly irradiance in units of W/m2. Instrumentation error has the 

greatest relative effect when the sun is near the horizon and measured values of

radiation are low. To minimise this error, only the data collected when the sine 

of the solar altitude angle, sinα, was greater than 0.1 were used.

Values for global horizontal transmittance, tghm, were obtained from these 

measurements using

t ghm=
I hm

I hex
(5.19)

where Ihm is the measured hourly horizontal solar irradiance (W/m2), and Ihex is 

the extraterrestrial horizontal irradiance (W/m2). Ihex was calculated using:

I hex=S oOF sin α  (5.20)

where So is the solar constant and OF is the orbital correction factor. These can 

be calculated or estimated from the day of the year, time of day, and location  

(see Appendix A). The solar constant So has been the subject of some debate. A 

value of 1367 W/m2 has been widely used and was adopted here, but is subject 

to small variations due to solar activity (Gueymard 2004).

The cloudiness was estimated by combining equations 5.15 and 5.17 to give:
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c=
t gcs−t ghm

t gcs+K dr(1−
t gcs

tbcs
)t ghm

(5.21)

The value of Kdr was set to 0.8 so that the denominator of equation 5.21 was 

always positive for all values of global horizontal transmittance tghm obtained 

from measurements.

The daily average cloudiness cd was calculated as the average of the hourly 

cloudiness values for those hours when the sun was above the horizon. If cd was

less than 0.05 and no hourly value of cloudiness was greater than 0.1, then the 

day was categorised as a clear sky day. A total of 4141 days (out of 21422 days 

of measured data across the 31 stations) were clear sky days.

A downhill simplex error minimisation algorithm (Press et al. 1992) was used to

find the optimum values for Kb1 and Kb2 (see equation 5.5) that gave the best fit 

between the theoretical clear sky irradiance and the measured irradiance on the 

chosen clear sky days. To prevent negative cloudiness transmission factors, an 

additional weighting term was introduced within the error function calculation 

of the simplex algorithm so that if on any hour of any day (not just the clear sky 

days) the measured cloudiness using equation 5.21 exceeded 1 (tc < 0), then the 

error value was dramatically increased.

5.2.3 Generation of daily cloudiness

The measurements for each day from each station were divided into two data 

sets, a training set and a test set (also called the calibration set and the 

validation set). The training set was used to establish the parameters of the 

algorithm. The synthetic data generated by the algorithm were then compared 

to the test data points. Because of the different ways that models from other 
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studies have separated data for calibration and validation, two different 

methods of separating data were used. In the first configuration, the measured 

data from each station were split almost equally into calibration data and 

validation data by assigning each day of data to one of the two groups using a 

pseudorandom number generator. In the second configuration, all the data 

from 7 stations (or about one quarter of the total) were reserved for validation 

data to test the algorithm. All the data from other 24 stations were used as 

training data to calibrate the algorithm. 

Following the lead of Boland (1995) concerning seasonal variation in radiation, 

the monthly average of the mean daily cloudiness, and the monthly standard 

deviation in mean daily cloudiness were represented as varying sinusoidally 

with month:  

cdavmon≈K cd 1+K cd 2sin(π
6

(month+K cd 3)) (5.22)

cdsdmon≈K cd4+ K cd5 sin(π
6

(month+K cd6 )) (5.23)

where month is the month of the year (from 1 to 12). The sinusoid coefficients 

Kcdi (i = 1 to 6)  were estimated for each station in the training data set by using 

the downhill simplex method to minimise the sum of the absolute errors 

between measured and estimated values of cdavmon and cdsdmon.

In order to estimate the value of cdavmon and cdsdmon for any location in Western 

Australia, a geographic relationship for the Kcdi coefficients was established. A 

shape map of the Western Australian Coastline was constructed from the 

GEODATA COAST 100K 2004 data package published by Geoscience Australia 
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(2004). This data set is based on a 1:100,000 scale map sheet. The shape map 

consists of a vector map of the coastline and state border in longitude and 

latitude coordinates. It does not include any of the islands off the coast of 

Western Australia that are included in the data package. Note that the distance 

along a coastline will depend on the precision of the coastline representation, 

with higher precisions generating longer distances. There were 74032 vertices in

the constructed shape map, so a global simplification algorithm (Visvalingam 

and Whyatt 1993) was used to simplify the map down to a 500 vertex coastline 

map (Figure 5.3). The coastline is represented by a straight line segment drawn 

between each pair of vertices.

The intersection between the coastline and the state border with the Northern 

Territory in the north east corner was used as the starting point for calculating 

coastal distance. The position of each meteorological station in (cpos,cdist) 

coordinates, where cpos is the distance along the coastline and cdist is the 

shortest distance to the coast, was calculated from the latitude and longitude 

coordinates using Euclidean geometry.

To establish the geographic relationship, the value of each coefficient Kcdi (i = 

1,6) was assumed to vary in a way roughly mimicking the rainfall pattern in 

Western Australia. That is, in a piecewise straight-line fashion along the 

coastline, and with a combination of initial increase and then exponential decay 

as distance inland from the coast increases. The value of each coefficient was 

estimated by interpolation using a number of setpoints positioned along the 

coast. See Appendix A for the detailed algorithm. The downhill simplex 

algorithm was used to optimise the number, position, and value of the set 

points such that the overall sum of the absolute errors between estimated and 

measurement derived values of the Kcdi coefficients at each of the meteorological

stations in the training data set was minimised.
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N

Figure 5.3. Simplified coastline of Western Australia and locations of meteorological stations.

To establish the frequency distribution of the daily cloudiness, the residual 

variable yd was calculated for each day in each month of the training data set 

using the measured values for cdavmon and cdsdmon:

yd=
cd ( measured ) – cdavmon( mon)

cdsdmon (mon )
(5.24)

The inverse cumulative frequency distribution, Cf -1, of these values of yd was 

approximated for each station in the training data set using:

Cf −1(r )≈K cf1+K cf2 r+K cf3 r2
+K cf4 r8 (5.25)

where r is the cumulative frequency. One purpose of using the residual variable

yd was to remove seasonal effects. However, because of the high number of 

clear sky days at many stations, the residual variables for each month were not 
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normally distributed and had predominantly positive skews. The coefficients 

Kcfj j = 1 to 4 were found to retain a seasonal dependence as well as the expected 

locational dependence, so they were estimated using the same technique as for 

cdmonav and cdmonsd:

K cfj≈K
cd ( 4+3j )

+K
cd (5+3j )

sin(π
6 (month+K

cd ( 6+3j ))) for j=1,4 (5.26)

The sinusoid Kcdi coefficients, i = 7 to 18, were also adjusted for location using 

piecewise straight-line interpolation between coastal setpoints and a 

combination of linear and exponential functions for distance from the coast. As 

before, for each Kcdi the downhill simplex algorithm was used to optimise the 

number, position, and value of the coastal setpoints, such that the overall sum 

of the absolute errors between estimated and measurement derived values of 

the Kcdi coefficients at each of the stations in the training set was minimised. In 

total, 18 Kcdi coefficients are generated for each location using this technique 

(Table 5.1).

Table 5.1. Sinusoid coefficient indices.

Variable estimated Index for mean Index for amplitude Index for season shift

cdavmon 1 2 3

cdsdmon 4 5 6

Kcf1 7 8 9

Kcf2 10 11 12

Kcf3 13 14 15

Kcf4 16 17 18

Synthetic values of the residual variable yd were obtained by generating 

pseudorandom values of r with a uniform frequency distribution between 0 and

1 and then transforming backwards:
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yd≈Cf −1 (r ) (5.27)

Synthetic values of mean daily cloudiness, cd, were calculated from yd using:

cd=cdavmon+cdcsdmon yd (5.28)

5.2.4 Generation of hourly cloudiness

The measured hourly cloudiness values from every station were lumped 

together and categorised according to the sine of the solar altitude angle sinα 

and the average daily cloudiness cd. This assumes that for a given cd, the 

statistical characteristics of cloudiness are the same for any location in Western 

Australia. The following function was used to estimate the average hourly 

cloudiness, chm, as a function of sinα and cd:

  chm(cd , sin α )=cd(1+ Kh0

(1−cd )

(1+ Kh1 cd
2 )

(sin α+K h2 sin2 α+ Kh3 sin3 α )) (5.29)

The coefficients Kh0 to Kh3 were determined from the training data. Each 

measured cloudiness value was placed into one of 200 bins arranged in a 2 

dimensional grid according to variations in steps of 0.05 for average daily 

cloudiness cd and 0.1 for the sine of the solar altitude angle sinα. The mean 

cloudiness for each bin was calculated. The values of Kh0 to Kh3 were optimised 

using a downhill simplex algorithm to minimise the sum of the absolute 

differences between the mean of the measured hourly cloudiness values in each

bin and chm. See Table A.2 in Appendix A for their values. With this function, 

when cd is zero (a clear sky day), then chm is zero regardless of the value of sinα 

or Kh0 to Kh3. Similarly, if cd is 1, then chm is 1.
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For each bin, the standard deviation of the measured cloudiness values from 

the mean hourly cloudiness in each bin was calculated and the following 

function was used to estimate the standard deviation:

σ (cd ,sin α )=cd (1−cd)( Kdv 0

(1+K dv1 cd )
+

K dv 2

(1+K dv3 cd )
sin α+

K dv 4

(1+K dv5 cd )
sin2 α) (5.30)

The coefficients Kdv0 to Kdv5 were determined by using a downhill simplex 

algorithm to minimise the sum of the absolute differences between the 

measured standard deviations in each bin and σ(cd,sinα). See Table A.2 in 

Appendix A for their values. With this function, when cd is zero (a clear sky 

day), then σ is zero regardless of the value of sinα or Kdv0 to Kdv5. Similarly, if cd is

1, then σ is zero.

The hourly cloudiness residual function, yh, was calculated for every measured 

hourly cloudiness value using:

yh=
c−chm(cd , sin α )

σ (cd , sin α )
(5.31)

It was found that a translated Weibull distribution gave a better fit to the 

frequency distribution curve for yh than a normal frequency distribution (Figure

5.4), although a zero significance value for the Kuiper statistical test (Press et al. 

1992) indicated that the distribution of yh could not be considered to be identical

to the Weibull distribution. Therefore a translated Weibull cumulative 

frequency distribution function was used to generate synthetic values of yh from

the output of a pseudorandom number generator:

r w=θw+λw (−ln (1−r ))
( 1

κ
w) (5.32)
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where r is a psuedorandom number between 0 and 1 with a uniform frequency 

distribution. rw has a Weibull frequency distribution with mean of 0 and 

standard deviation of 1. θw is the translation parameter, λw is the scale 

parameter, and κw is the shape parameter. See Table A.2 in Appendix A for the 

values of these coefficients.
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0.05

normal measured cloudiness

weibull

yh

Figure 5.4. Normalised frequency distribution of measured hourly cloudiness residual yh, compared to a 
normal distribution and a translated Weibull distribution.

Although time series analysis of hourly cloudiness values is limited by the short

continuous sequences available during daylight hours, calculation of partial 

autocorrelation coefficients of the residual yh showed a clear dependence on the 

cloudiness for the previous hour. Therefore, at each station and for each day, 

the relative first order autocorrelation between successive yh values was 

calculated. These values were placed into 1 of 10 bins according to daily 

average cloudiness, such that each bin has an average cloudiness range of 0.1. 
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The following function was used to estimate the average first order 

autocorrelation:

φ(cd )=K yac(1 – 8(cd – 0.5)3) (5.33)

where Kyac is the autocorrelation coefficient. Kyac was determined by minimising 

the sum of the absolute errors between the measured average autocorrelation 

values in each bin and ϕ(cd). See Table A.2 in Appendix A for the value of Kyac. 

Synthetic hourly cloudiness values were generated with a first order regression 

component and a random component using the following three equations:

σ d=√(1−φ(cd )
2) (5.34)

yh=φ(cd ) yh−1+σ d r w (5.35)

and

c=chm (cd , sin α ) + σ (cd ,sin α) yh (5.36)

where σd is the standard deviation of the random component, and c is the 

synthetic hourly cloudiness at hour h. For comparison with other models, 

synthetic values of horizontal irradiance Ih were calculated from the cloudiness 

using:

t gh=(1– c )t bcs+k cloud (c )t dcs (5.37)

I hex=1367OF sinα (5.38)
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and

I h=t gh I hex (5.39)

See Appendix A for the complete implementation of the algorithm. The values 

of the coefficients in Appendix A were calculated using all of the measured data

as training data.

5.3 Results and discussion

In order to assess the performance of the model, model generated synthetic data

and data derived from measurements were compared, and the overall 

differences quantified in a statistical manner. To capture seasonal and diurnal, 

as well as hourly, effects, the model was assessed on monthly, daily, and hourly

time scales. These results were compared with other models that estimate solar 

radiation over a region or several locations (see below). The following statistical

measures were used for comparison, depending on the study: Root Mean 

Square Error (RMSE), Mean Bias Error (MBE), Mean Absolute Percentage Error 

(MAPE), Standard Error (SE), and Mean Relative Variance (MRV). Definitions 

are given in appendix C. These measures were calculated for each station and 

then the average taken over all stations in the test data set. Because the results 

for the other studies were derived in different ways, two configurations of 

training and test data sets were assessed here (see Section 5.2.3). To avoid an 

artificially better ranking due to data set configuration, the results with the 

highest error were used for comparison.

5.3.1 Monthly average daily horizontal radiation

For each day of validation data, the daily average horizontal radiation, for both 

measured and synthetically generated data sets, was obtained from the hourly 
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horizontal radiation measurements. These daily values were in turn averaged 

over each month. The average RMSE between the measured and synthetic 

monthly values was 9.9% and the average magnitude of the MBE was 3.9%. The

average error according to three measures was within the upper end of the 

range of several other models (Table 5.2).

Synthetically generated values of monthly average daily radiation were also 

compared with satellite derived monthly averaged data (BOM 2012) for 392 

locations in the South West of Western Australia, compiled over the period 1990

to 2011. The RMSE was 19.2% (3.9 MJ/m2/day), and the MBE was -3.7% (-0.75 

MJ/m2/day), indicating that the model generated radiation is conservative.

Table 5.2. Model comparison of monthly average daily horizontal radiation errors.

Study Model type Region modelled MAPE

(%)

RMSE

(%)

SE 

(MJ/m2/month)

Mohandes (2000) Neural net Saudi Arabia 10.1

This model Autoregressive Southern Western 

Australia

8.3 9.7 55.15

Coops et al. (2000) Meteorological Locations in US, 

Glasgow, Canberra

54.75

Hutchinson et al. (1984) Angstrom, 

Meteorological

Australia 5.35

Sozen et al. (2005) Neural net Turkey 5.7

Reddy and Ranjan (2003) Neural net India 3.0

Mellit et al. (2005) Neural net Algeria 1.2

5.3.2 Daily average horizontal radiation

For the daily horizontal radiation values obtained in Section  5.3.1 above, the

average  RMSE  of  the  model  developed  here  was  33.7%  and  the  average

magnitude  of  the  MBE was 3.9%.  In  a  straightforward  comparison  of  daily

horizontal radiation values,  this model has a higher error than several  other

models (Table  5.3). However, it must be remembered that these other models
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use measured daily meteorological information, so their errors are expected to

be less.

Table 5.3. Comparison of daily horizontal radiation.

Study Model type Region modelled RMSE 

(MJ/m2/day)

Magnitude of 

MBE (MJ/m2/day)

This model Autoregressive Southern Western 

Australia

6.3 0.68

Liu et al. (2009) Meteorological China 3.95 0.04

Fortin et al. (2008) Meteorological 

and Neural net

Eastern Canada 3.74 – 5.45

Liu and Scott (2001) Meteorological Australia 2.89 – 3.24

Lyons and Edwards  

(1982)

Meteorological, 

measured 3 layer 

cloud amount

Western Australia 2.16 – 3.28

5.3.3 Hourly irradiance

The average RMSE for hourly horizontal irradiance for each day of validation

data was 43.1% and the average magnitude of the MBE was 3.9%. An example

of the model generated hourly horizontal irradiance data is given in Figure 5.5.

The models developed by Yang and Koike  (2002) and  Yang  et al. (2006) use

measured  hourly  meteorological  data  to  derive  a  Sky  Clearness  Indicator

coefficient (SCI) which is a measure of cloudiness. The SCI is used to estimate

horizontal  irradiance.  To  allow  for  more  direct  comparison  with  the  Yang

models,  synthetic  hourly  cloudiness  values  were  generated  by  the  model

developed here using measured daily average cloudiness (that is, the average

calculated  from  the  measured  hourly  cloudiness  values),  not  the  model

generated  daily  average  cloudiness.  This  will  remove  the  errors  present  on

diurnal and monthly time scales. Horizontal irradiance values were calculated

from these hourly cloudiness values. The average RMSE and MBE magnitudes

across all test data stations were 112.8 W/m2 and 6.7 W/m2 respectively. The
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RMSE is still higher than the results obtained by Yang and Koike  (2002) and

Yang  et  al. (2006),  which is  expected  as  these models  use  hourly  measured

meteorological data (Table 5.4).

Reikard  (2009) compared 6 models designed to forecast the hourly horizontal

irradiance at sites in the USA at time periods from 1 to 4 hours ahead of the

measured  value.  Some  of  the  measured  data  were  actually  modelled  data

derived from measured meteorological variables, including cloud cover. Hence

the results are also included here. The average Reikard model MAPE ranged

from 35.18% for the most accurate model to 51.64% for the reference model. In

contrast, this model achieved a lower MAPE of 29.1%, which is surprising given

that  only  the  measured  average  daily  cloudiness  was  used,  not  measured

previous  hourly  values.  This  result  supports  the  validity  of  using  an

autoregressive  approach  to  modelling  hourly  cloudiness  using  the  value  of

average daily cloudiness.

0 12 24 36 48 60 72
0

100

200

300

400

500

600

700

Measured Synthetic

Time (hours)

Ir
ra

d
ia

n
ce

 (
W

/m
2

)

Figure 5.5. Sample measured and synthetic hourly horizontal irradiance for a 3 day period, starting at 
midnight on the first day.
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Table 5.4. Hourly horizontal irradiance comparison of models that use a cloudiness coefficient.

Study Model type(s) Region modelled MAPE

%

RMSE

(W/m2)

MBE magnitude

(W/m2)

Reikard (2009) Regression, 

ARIMA, 

Meteorological,

Neural net

USA 35.18  –  

51.64

This model Autoregressive South West Western 

Australia

29.1 112.8 6.7

Yang and Koike 

(2002)

Meteorological Japan and Islands 96 11

Yang et al. (2006) Meteorological USA and Saudi 

Arabia

52 14.2

Results for the model developed in this chapter were obtained using daily average of measured hourly 
irradiance.

The model developed in this chapter has errors that are within the middle of 

the range of several other models that do not use a measure of cloudiness (Table

5.5). Kambezidis et al. (1998) reported a high RMSE, but a very low MBE for the 

model they developed.  Hence their model may warrant further development 

for use in the estimation of mean hourly irradiance. Many of the neural net 

models achieved very low errors. However, the concerns about neural net 

models expressed by Reikard (2009) of over fitting to noisy data must be kept in

mind. The purpose of model building is not to mimic the measured data 

exactly, but to produce a comprehensive representation of typical measured 

data behaviour. These results indicate that the model developed in this chapter 

is at least comparable to other models in this task.

Model generated values for the hourly clearness index kt (using measured daily 

average cloudiness) were calculated using equation 5.37. Values of kt were also 

generated using the Aguiar and Collares-Pereira (1992) TAG algorithm. The 

distributions of both these synthetic datasets were compared to measurement 
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derived values of kt (Figure 5.6). The RMSE between the synthetic values of the 

standard deviation of the hourly kt values, calculated for each day of 

measurement data, was 0.061 for the TAG algorithm and 0.043 for the model 

developed here. These two results indicate that the model did not match the 

distribution of the measurement values precisely, but performed slightly better 

than the TAG algorithm on the same Western Australian dataset.

Table 5.5. Comparison with other hourly irradiance models.

Study Model type Region 

modelled

RMSE

(W/m2)

Magnitude 

MBE(W/m2)

Monthly 

average 

hourly 

irradiance 

RMSE%

Magnitude 

Monthly average 

hourly irradiance

MBE%

Hourly 

Clearness

Index kt

MRV

Kambezidis et

al. (1998)

Meteorological, 

Sunshine 

duration

Athens, 

Lisbon

164.4-256.4 1.39-5.56

 Ahmad and 

Tiwari (2008)

Mean hourly 

irradiance 

profile

India 13.94 3.36

Muneer and 

Younes 

(2006)

Meteorological, 

Sunshine 

duration

Several 

locations in 

Europe, 

India, Japan 

and Middle-

East 

127.7 32.8

Seo et al. 

(2008)

Meteorological Several 

world 

locations

120.3 10.5

This study Autoregressive South west 

Western 

Australia

112.8 6.7 10.5 7.7 0.6671

Spokas and 

Forecella 

(2009)

Meteorological USA and 

several world

locations

111

Hontoria et al.

(2005)

Neural net Jaen and 

Andalucia 

provinces in 

Spain

0.1153

Results for the model developed this study are obtained using daily average of measured hourly 
irradiance.
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Figure 5.6. Normalised frequency distribution of clearness index kt from measured horizontal radiation, 
synthetically generated using the Aguiar and Collares-Pereira TAG algorithm, and derived from model 
cloudiness values.

5.4 Summary

This model was developed to simulate solar irradiance on an hourly time scale

for any location in the South West region of Western Australia. Because values

of cloudiness are generated rather than global horizontal irradiance, the beam,

diffuse and reflected components of irradiance can be obtained from the clear

sky values. Therefore this model can be used in simulations of different kinds of

solar  power  devices  and  different  tilt  angles  to  the  horizontal,  with  direct

applicability to both thermal and PV concentrating solar power systems. 

The results indicated that the model generated synthetic hourly horizontal 

radiation data with accuracies within the range of other models developed for 

wide areas or several locations, and hourly cloudiness data with reasonably 

similar statistical characteristics to the measured data. However there are likely 

to be areas where local climatic conditions will produce measurements with 
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significantly different cloudiness characteristics. Detailed measurement and 

analysis would be required to obtain better accuracy in these areas. Data from 

weather stations concentrated in the Southern and Western region of Western 

Australia have been used to test the simulation, because this area is more 

significant for the simulation of broad scale power generation due to the 

proximity of grid infrastructure and major load centres. The representation of 

more remote regions in Western Australia is likely to be poorer, but would be 

improved by incorporating measurement data from these regions.

The approach of using alternative position metrics to latitude and longitude to 

simplify the required calculations resulted in a model that uses 337 coefficients, 

or 837 including the 500 vertex coastline. This is equivalent to the direct 

representation of just over 2.2 months of hourly data at one location. As such 

this approach provides a viable alternative to using satellite data and has scope 

for adaptation to other parts of the world with a similar pattern of declining 

inland rainfall, such as the West coast of North America, and the West coast of 

South Africa. The model coefficients are listed in Appendix A.
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6 Solar thermal model with storage

The solar irradiance model developed in chapter 5 provides hourly values of 

solar irradiance, but this must be translated into output power for each type of 

solar generating plant. This chapter deals with solar thermal power stations, 

which have the capability to store energy for generation at a later time, and are 

also considered to be capable of fast ramping in response to changes in demand

or generation from other types of renewable energy power plants. Therefore 

they may be an important component for any renewable energy generation 

system for the SWIS.

The solar thermal stations modelled here were based on power tower systems 

that use dual tracking heliostat mirror fields to focus sunlight onto a central 

tower receiver. Thus the thermal medium temperature can be higher, allowing 

efficiency to be greater, or to offset the drop in efficiency from using air cooling 

instead of water cooling. Unlike PV systems, they can only utilise the direct 

beam component of solar irradiance. Because diffuse and reflected radiation are

coming from many different directions, it cannot be focused on the receiver by 

the mirrors.

6.1 Method

A generic energy balance model was used to estimate the energy flow through 

the system. Thermal storage was modelled on a two tank molten salt system. 

Lower temperature molten salt is stored in the 'cold' tank, before being passed 

through the central tower receiver where it is heated and then stored in the 'hot'

tank. Some of this higher temperature molten salt is passed through a power 
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block where a steam turbine system uses the heat to generate electricity. This 

cools the molten salt and it is passed back to the cold tank. The cycle can be 

repeated as long as there is enough sunlight hitting the receiver to reheat the 

salt. 

Rated power output is maintained for as long as the combination of incoming 

solar radiation and heat storage allows. If the fraction of molten salt in the hot 

tank drops below a set operational minimum, then the thermal storage is 

considered to have been exhausted, and there will be no more electrical power 

output available from storage until the hot tank is replenished from solar 

radiation.

For each solar thermal station in a scenario, the following algorithm was used to

calculate the power output and energy stored. At a particular hour of the day, 

the available solar radiation power input, Pin (MW), to be converted into heat 

and then electrical output power was calculated using:

Pin=10−6 I bnca (6.1)

where Ibn is the beam irradiance falling normal to the collector array (W/m2), 

and ca is the collector surface area (m2). Ibn  is obtained from the solar radiation 

model (chapter 5). The required collector area is dependent on the rated power. 

Firstly, a reference, or 'design point', base collector area, car (m2), was calculated

by assuming that the rated output power, Prated (MW), would be achieved if the 

sun was at the solar zenith position (directly overhead), and a reference beam 

normal solar irradiance Ibnref (often around 1000 W/m2) was falling on the whole 

collector array:

car=106 Prated

I bnref est e te
(6.2)
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where est is the design point solar-to-thermal conversion efficiency, and ete is the 

design point thermal-to-electrical conversion efficiency. ete includes parasitic 

electrical power required to keep the plant operating. It can be expected that 

some of the collectors in the array are off line at any one time for 

troubleshooting or routine maintenance. In the simulation, this is assumed to be

a constant percentage of the total collector area. The online fraction olf can be 

defined as:

olf=1−
capcdown

100
(6.3)

where capcdown is the average percentage of the collector array that is off line at 

any one time. If the solar thermal station has no storage, then the collector area 

required to deliver the rated power to the load at the reference beam solar 

irradiance was calculated as:

can=
car
olf

(6.4)

 

where can is the no-storage collector area (m2). For solar thermal stations with 

thermal storage, the collectors must provide for the energy to be stored as well 

as that immediately transformed into electricity, thus the collector surface area 

will be greater and is dependent on the rated design storage time, ts (hours). For

the storage medium, the maximum energy stored per unit volume Esv (J/m3) 

over the rated storage time ts hours was calculated using:

Esv=C v (temphot−tempcold)(1−0.01r leak t s) (6.5)

where Cv is the storage medium volumetric heat capacity (J m-3°C-1),  temphot is 

the operating temperature of the storage medium (°C) after heating, tempcold(°C) 
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is the operating temperature of the storage medium after cooling to produce 

electricity, and rleak is a heat leakage loss term (% per h). The storage energy Ets 

(J) required to maintain the rated output power over the rated design storage 

time was calculated using:

Ets=3.6 x109Prated

t s
e te

(6.6)

 

Therefore the effective required storage medium volume svi (m3) can be 

calculated as the ratio of Ets and Esv:

svi=
3.6 x109Prated ts

eteC v (temphot−tempcold)(1−0.01 r leak ts)
(6.7)

The final storage volume sv (m3) was calculated assuming svi must be overrated

to compensate for troubleshooting and maintenance downtime:

sv=
svi
olf

(6.8)

 

Since not all of the storage medium will always be at the heated temperature 

temphot, the leakage loss rate will be less than lossmax. Hence the storage medium 

volume has also been overrated to compensate for any foreseeable thermal 

losses.

The total required collector area for operation and storage was calculated using 

the effective operational storage volume svi. To be able to load the storage 

medium with enough energy to provide the rated power for the rated storage 

time:

106 cas TDR est olf=3.6 x109 P rated t s
ete

+0.01r leak t sC v (temphot−tempcold)svi (6.9)
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where cas is the extra collector area required for storage (m2), and TDR is the 

total daily radiation (MJ/m2/d), which will depend on the location, season, and 

the local weather. Combining with equation 6.7 and rearranging gives:

cas=
3600t s Prated

TDR est eteolf
(1+

0.01r leak t s
1−0.01 rleak t s

) (6.10)

 

The solar multiple, sm, can be defined as the ratio of total required collector area

to collector area without storage:

sm=
can+cas
can

(6.11)

 

or

sm=1+
3.6 I bnref t s
1000TDR {1+

0.01 r leak t s
1−0.01 rleak t s} (6.12)

At high values of solar multiple, large single unit power towers can run into 

limitations on tower height, receiver size and heliostat distance from the central 

receiver (Turchi et al. 2010), hence sm was limited to a maximum value of 3.5. 

The total collector area ca (m2) was calculated using:

ca=can×sm (6.13)

The total effective collector area cae (m2)  is:

cae=olf×ca (6.14)

Choice of the value of TDR depends on how the solar thermal plant will be 

used. If a lower TDR from a typical winter day is chosen, then the solar multiple
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will be higher and the plant is more likely to be able to maintain output during 

the winter months. However the required heliostat field area and construction 

costs will be greater, and there will more likely be excess irradiance during the 

summer months, forcing some of the heliostats to move focus away from the 

receiver. Conversely a higher TDR will decrease the solar multiple but increase 

the likelihood of the plant not being able to heat all of the storage medium on a 

day of low TDR.

The design point solar to storage conversion efficiency est was divided into two 

components, the design point heliostat solar field efficiency esr (or the solar-to-

receiver efficiency) and the design point receiver-to-storage efficiency ert:

est=esrert (6.15)

Singer et al. (2010)  and Gauche et al. (2012) found that the heliostat solar field 

efficiency drops off from its design-point value at low solar altitude angles. The 

solar altitude angle α measures the vertical angular distance between the sun 

and the horizon. A heuristic equation was developed to approximate this effect 

(see also Figure 6.1):

Precin=Pin esr{0.2+sinα(0.2+
7.8

1+12 sinα )} (6.16)

where Precin is the input power from the solar field to the central receiver (MW).

There is also an efficiency drop when the solar power incident on the central 

receiver, Precin(MW), is much less than the design-point receiver input power 

Precr (MW), or more than Precr. A heuristic equation was developed to 

approximate this effect (see also Figure 6.2):
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Pstorein=Precin ert{0.775+0.45
(Precin /P recr)

1+(Precin /P recr)
3} (6.17)

where Pstorein is the power input to the thermal storage medium (MW).  The 

receiver was designed so that Precr is a multiple of the thermal power needed by 

the power block to generate Prated MW of electrical power:

Precr=
Prated sm

e te
(6.18)
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Figure 6.1. Approximation of solar to receiver efficiency drop off with low solar altitude angle.

If there is thermal storage, sm should be greater than 1 so that the receiver has 

enough capacity to transfer energy to the storage medium as well as the power 

block. The model also assumed that Precin did not exceed a maximum limit Precmax,

which is slightly larger than Precr. Some heliostats would be focused away from 

the receiver if there was excess solar power input.
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Figure 6.2. Receiver to storage efficiency drop off with low receiver input power.

Let Preq be the power output requested by the grid (MW). Preq can range from 

zero to Prated. Let Pout be the actual power output of the power plant (MW). Pout 

can range from zero to Preq. The design point storage-to-electrical efficiency was 

divided into design point storage to thermal efficiency etpb, power block 

thermal-to-electrical efficiency epb and parasitic losses:

e te=etpbe pb(1−0.01 r parasitic) (6.19)

where rparasitic is the plant electrical parasitic loss factor (%). Wagner and Zhu 

(2011) approximated power block efficiency decreases under partial load 

conditions (Figure 6.3) with:

Pout=ete Pstoreout (0.5628+0.8685 f out−0.5164 f out
2

+0.0844 f out
3 ) (6.20)

where Pstoreout is the power output from the thermal storage medium (MW) and 

fout = Pout/Prated.
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If Pstorein > Pstoreout, then energy is transferred to storage. Conversely, if Pstorein < 

Pstoreout, then energy is transferred from storage. As long as there is enough 

energy stored in the heated thermal storage medium, output power Pout is Preq. 

The change in heated fraction of the storage medium, Δfhot, for one time step of 

the simulation was estimated using:

Δf hot=
3.6x 109 t step(P storein−Pstoreout )

C v svi(temphot−tempcold)
−0.01 r leak t step  (6.21)

where tstep is the time step (h). If fhot reaches 1, then it was assumed that the 

power plant control system would allow no further increase by defocusing 

some or all of the heliostat collectors. If fhot falls below a threshold fhot,shutdown, the 

power plant goes to stand by, then shuts down if there is no more incident solar

power from the heliostats hitting the receiver. Output from the power plant is 

reduced to zero. If this occurs during night time, then Ibn will remain at zero 

until the next dawn and the power station will produce no power until then.

For the power station to restart, first the heliostats must focus, then the receiver 

must restart, and then the power block must restart. The heliostats were set to 

focus on the receiver after dawn when the solar altitude angle rose above the 

deploy angle αdeploy. They were also set to defocus and stow before dusk when 

the solar altitude angle dropped below αdeploy. The receiver was set to restart 

once incident solar power from the heliostats reached a minimum fraction frstartup

of receiver rated power Precr. The power block was set to restart once the 

receiver was fully operational. Both receiver and power block start ups were 

modelled as two stage processes (Tables 6.1 and 6.2). The receiver was shut 

down if the incident solar power dropped below frstartup, which happens 

immediately after the heliostats stow, before dusk.
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Figure 6.3. Storage to electrical efficiency drop off with low electrical output power.

Table 6.1. Start up stages for the solar thermal power tower receiver.

Stage Name Time period (h) Description

0 Shut down - The receiver is shut down. No thermal 

energy is transferred to storage.

1 Start up 0.2 The receiver is warming up. No thermal 

energy is transferred to storage.

2 Operating - Normal operation. Thermal energy 

transferred to storage

A maximum ramp rate condition and minimum operational power level was 

also placed on the output power Pout:

−maxramp<
Pout (t)−Pout(t−t step)

60 t step
<maxramp (6.22)

Pout≥f outminPrated (6.23)
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where maxramp is the maximum allowable ramping rate of the electrical output 

power (MW/min), and foutmin is the minimum operating level as a fraction of 

rated output power Prated. If the requested power Preq is lower than the minimum 

operating level, then Pout can be lowered, but the thermal power required by the 

power block will remain at the same level as if Pout = foutminPrated.

Table 6.2. Stages for the solar thermal power tower power block.

Stage Name Time period (h) Description

0 Shut down - Plant generates no electrical power

1 Start up 0.5 Heat transferred from storage to power 

block. No power generated. After time 

period is up, go to stage 3

2 Stand by 0.5 Heat transferred from storage medium to 

power block. No power generated. If 

more solar power is being transferred to 

receiver, then go back to stage 3 

(operating). Otherwise, after time period 

is up, go to stage 0 (shut down).

3 Operating - Normal operation.

The design-point operating temperature ranges and physical quantities used for

the simulation are given in Table 6.3 below.

6.2 Calibration results

There are no currently operating solar thermal power tower plants in the 

SWWA to compare the model with. Instead the model was calibrated to the 

power tower model used in the System Advisor Model (SAM) energy 

simulation system (Wagner 2008). The SAM model is based on the performance 

of a demonstration solar power tower plant. An example energy storage level 

comparison over one week between the two models is given in Figure 6.4.
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Table 6.3. Solar thermal station operating constants.

Constant Description Value

Ibnref Reference beam normal solar irradiance 986 W/m2a

TDR Total daily radiation used to calculate solar multiple 18 MJ/m2/db

esr Solar field efficiency at design point 57.5%c

ers Receiver-to-storage efficiency at design point 92.7%c

etpb Storage to power block efficiency 99%c

epb Power block thermal to electrical efficiency at design 

point

41.2%c

rparasitic Electrical parasitic losses 10%d

capcdown Average off line percentage of collector array and 

storage

10%e

tempcold Cooled storage medium temperature 290 °Ce

temphot Heated storage medium temperature 565 °Ce

rleak Thermal storage medium heat leakage rate 0.031% per hourf

fhot,shutdown Threshold heated fraction of thermal storage medium 

for shut down

0.05/storage time in hoursc

Cv Volumetric heat capacity 2.785 MJ/m3/°Cg

foutmin Minimum operational electrical output as a fraction of 

Prated

0.25c

αdeploy Solar altitude angle at which heliostats deploy and stow 8°c

frstartup Minimum receiver incident power as a fraction of 

receiver rated power

0.25c

maxramp Maximum ramp rate 6% of rated capacity/minh

aSpencer (1976). bGives solar capacity factor ~0.21. cCalibration with System Advisor Model (Wagner 
2008).dAvila et al. (2013). eSinger et al. (2010). fMadaeni et al. (2012). gBayon and Rojas (2013). 

hDenholm et al. (2013).

The solar field efficiency esr Root Mean Square Error (RMSE) between SAM and 

the model developed here was less than 4% over one year of simulation. The 

power output RMSE compared to SAM was less than 25%, and the stored 

energy RMSE was less than 10%. The overall solar to electric efficiency for a 

power tower with 15 hours storage was around 14.5%, slightly below the value 

of 15.8% predicted by Tyner and Wasyluk (2013) for a power tower with 13 
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hours of storage, but close to the value of 14.6% modelled by Hinckley et al. 

(2011) for a power tower with 6 hours of storage using SAM. It can be expected 

that efficiency will rise with increasing storage capacity, as more of the solar 

energy input can be captured and less is lost. Therefore these results indicated 

that the solar thermal model used in this thesis generates realistic but slightly 

conservative operational performance.
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Figure 6.4. Stored thermal energy over one week for 200 MW solar power tower with 15 hours storage. 
Comparison between solar thermal model and System Advisor Model (SAM).
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7 Wind power model

This chapter will detail the development of a regional wind power model for 

the SWWA. This model is needed to simulate power generation from existing 

wind farms connected to the SWIS and future hypothetical wind farms. First of 

all some background information about winds in the SWWA and the statistical 

modelling of wind power will be presented. Then the model development 

methodology and results will be detailed in the following sections. This chapter 

is based on the journal article "A Simple Hourly Wind Power Simulation for the

South-West Region of Western Australia Using MERRA Data." (Laslett et al. 

2016).

7.1 Background

The SWWA is characterised by a Mediterranean climate (Tan 2004), which is 

dominated by the eastward passage of high pressure sub tropical anti cyclonic 

cells. Mainly in winter, low pressure systems from the south cross the state 

every seven to ten days. Hence there are distinct differences in the seasonal 

wind speed variation at different places within the SWWA. Frequently, there is 

a strong diurnal sea/land breeze along the coastline (Pattiaratchi et al. 1997), 

more often in the summer months. This sea breeze can also penetrate as far 

inland as Kalgoorlie (Clarke 1989), which is about 350km from the nearest coast.

The wind speed at any site can be represented as the sum of several 

components operating at different temporal scales: seasonal, daily, diurnal, 

dependent and random. The seasonal component arises from the cyclical 

variation in the prevailing atmospheric systems as the earth orbits the sun. The 
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daily component arises from the passage of weather systems across a region 

with typical durations from 2 to 8 days (Burton et al. 2001). The diurnal 

component arises from the sea/land breeze system caused by temperature 

differences between the land and ocean. The dependent component arises 

because atmospheric phenomena can be persistent, resulting in a relationship 

between the wind speed at a particular time to the wind speed at previous 

times. Finally, most physical processes contain a random fluctuation component

and wind speed is no different.

For a model to adequately represent the wind power generation potential at 

any one place in the SWWA, it is necessary to capture the variability at each 

temporal scale (Suomalainen et al. 2012). It will also be necessary to capture the 

spatial differences in these variabilities across the whole region of the SWWA. 

There have been several simple models that generate synthetic time series 

values of wind speed at one or more sites (eg. Billinton et al. (1996) and Karki et

al. (2006)). These models attempt to mimic the observed statistical nature of the 

wind speed. There are also detailed models of wind speed at multiple sites or 

across a region that use meteorological physics, and tend to require much more 

computing power (Hill et al. 2012). This study will focus on the development of 

a statistical model designed to operate across the SWWA region.

The two parameter Weibull distribution has been the most widely used simple 

statistical representation of overall wind speed behaviour (Hill et al. 2012). The 

probability density function for this distribution is given by:

f (v )=(
k
λ
)(
v
λ
)
k−1

e
−(

v
λ
)
k

v≥0

f (v )=0 v<0   

(7.1)

146



Chapter 7. Wind power model

where v is the wind speed (m/s), f(v) is the probability density function, k is the 

shape parameter, and λ is the scale parameter. However, Carta et al. (2009) also 

reviewed other probability density functions used to represent wind speed 

frequencies, and concluded that although the Weibull distribution has some 

advantages over other distributions, it cannot adequately represent many of the

wind speed probability density functions that might be encountered in the real 

world. Gunturu and Schlosser (2012) found that use of the Weibull distribution 

could lead to both over and under estimations of the wind power resource 

available.

Autoregressive Moving Average (ARMA) models (Box and Jenkins 1976) have 

also been widely applied to the statistical representation and prediction of 

many kinds of time series data (for example Fu (2011) and Soman et al. (2010)) 

as well as wind speeds.  ARMA models are a combination of Autoregressive 

(AR) models, and Moving Average (MA) models, where the wind-speed value 

at time t is represented as the sum of a linear combination of wind speed values

at previous times and the linear combination of a series of random values. 

Purely autoregressive models use only the random value at the present time:

y (t)=∑
k=1

p

φk y (t−k )+ρ r (t) (7.2)

where y(t) is the wind speed residual at time mark t, y(t-k) is the wind speed 

residual at timemark t-k, and r(t) is a series of uncorrelated white noise error 

values which is identically distributed with a normal frequency distribution, 

zero mean, and standard deviation of one. y(t) is multiplied by the wind speed 

standard deviation and then added to the mean wind speed to get a wind speed

value. φk are the AR parameters, and σ is the random noise parameter. The 

value of ρ is adjusted depending on the value of the AR parameters so that the 
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standard deviation of y(t) remains at one. The AR order p is the maximum 

value of k with a non-zero value of φk. This is commonly written as an AR(p) 

model. ARMA models can capture the temporal dependency inherent in wind 

speed time series, while using a simple Weibull distribution cannot. However, 

Papaefthymiou and Klockl (2008) asserted that the frequency distribution 

(equivalent to the probability density function or PDF) of ARMA models rarely 

match the measured data, which can lead to under or over estimation of wind 

power. 

Wind speed behaviour can also vary over several temporal scales, such as 

seasonal, daily, diurnal, and hourly. Seasonal variation is commonly modelled 

using one or more sinusoidal cycles (eg Hill et al. (2012) and Ward and Boland 

(2007)). Daily average wind speeds vary from the seasonal average and can 

have a skewed distribution (Klink 2002). Weibull, log-normal, modified normal 

and modified exponential distributions have been used to represent these 

distributions (eg Klink (2002), Bogardi and Matyasovszky (1996) and Donatelli 

et al. (2009)). Carlin and Haslett (1982) proposed the use of a "squared normal" 

distribution to simply model Weibull-like distributions, based on Western 

Australian wind data. Daily wind speeds have also been found to have an 

autoregressive dependency (eg Mohandes et al. (1998), Tol (1997) and 

Suomalainen et al. (2012)). 

A common way of modelling diurnal trends has been to calculate the average 

measured wind speed at every hour of the day for each month or season (e.g. 

Hill et al. (2012)). Fixed cyclic functions have also been used (e.g. Donatelli et al.

(2009)). However these approaches don't explicitly catch the variation in peak 

daily wind speed magnitude and time that occurs throughout each month or 

season. ARMA models and high order AR models have also been developed 

that model diurnal variation (eg Billinton et al. (1996) and Haslett and Raftery 
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(1989)). Suomalainen et al. (2012) concluded that these approaches were not 

sufficiently realistic and developed a model that identified day types defined by

the time of day that the peak wind speed occurs, and defining a diurnal pattern 

for each day type.

After the seasonal, daily, and diurnal components of wind speed have been 

removed, what is left is the de-trended hourly wind speed. Similarly to the 

daily wind speed, the value at a particular time has a dependency on the values

at previous times, and ARMA models have been commonly used to model this 

effect.

However, the above form of ARMA equation has been found to be generally 

suitable for use only if the time series data and the error values are normally 

distributed. If the data is not normally distributed, then the choice of 

distribution for the random error values needed to produce the same 

distribution as the data is not clear (Lawrance and Lewis 1980). For example, 

Ward and Boland (2007) found that de-trended wind speeds at sites in South 

Australia had a double exponential distribution (also called a Laplace 

distribution). But Damsleth and El-Shaarawi (1989) found that even the 

simplest AR model (of order 1) would not necessarily generate a time series 

with a double exponential distribution, even if the random variable was given a

double-exponential distribution. Lawrance and Lewis (1980) suggested an 

alternate form of autoregressive equation, but with impractical restrictions on 

the allowable values of the autoregressive coefficients.

A possible solution is to convert the de-trended wind speed time series values 

into a normal distribution using a data transformation function. Mach et al. 

(2006) tested a number of transformations on different types of data. If the data 

are found to have an exponential distribution, then the authors recommended a
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power transformation to convert the data to a normal distribution. Although a 

double exponential distribution is symmetric about the mean, unlike a standard

exponential distribution, this might point the way to a suitable transformation 

function. If the data are found to have a Weibull-like distribution (such as daily 

wind speeds), then Mach et al. (2006) recommended the use of a Box-Cox or 

power law transformation to convert to a normal distribution. Widger (1977) 

used the square-root normal distribution to model wind speeds, suggesting that

taking the square-root of the data (power law 1/2) may effectively convert a 

Weibull-like distributed wind speed time series into a normal-like distributed 

series. Carlin and Haslett (1982) used a square-root transformation function on 

Western Australian wind data, and Brown et al. (1984) used a square-root 

transformation function on data from the Pacific Northwest region of North 

America. 

For an interactive hourly wind speed simulation, limiting the numerical 

complexity is important. However the simple Weibull model will be 

insufficient, as it does not account for persistence at this time scale. An ARMA 

model or some other model that accounts for persistence must be used. If a site 

has a significant diurnal component, then this must also be accounted for. This 

study found wind speed residuals that were not normally distributed. It was 

shown that using a model with normally distributed residuals led to 

significantly different, and less representative, statistical behaviour of the 

resulting wind power time series.

Several wind farms, each using a different wind turbine, are now often present 

on large scale electrical power grids. Hence once a representative time series of 

wind speeds at a reference height above ground has been generated, two 

further steps must be taken: scaling the wind speed to the hub height of a 
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particular turbine, and then converting the scaled wind speed to an electrical 

power output.

Horizontal wind speeds at different heights above ground often have different 

values. This effect is commonly called wind shear. There have been two 

equations commonly used to characterise the wind shear. The first is the 

logarithmic relationship: 

v2

v1

=

ln(
h2

zo
)

ln(
h1

zo
)

(7.3)

where v1 is the wind speed at height h1, v2 is the wind speed at height h2, and zo 

is the roughness length. This relationship is based on the physical aspects of 

atmospheric meteorological behaviour (Kubik et al. 2011). The simpler power 

law approximation is given by:

v2

v1

≈(
h2

h1

)
α

(7.4)

where v1 is the wind speed at height h1, v2 is the wind speed at height h2, and α 

is the wind shear exponent,  often set to 1/7 (Haslett and Raftery 1989). The 

logarithmic relationship implies that the wind shear at any one site does not 

change with time, and is based on the assumption that the atmosphere is in a 

neutrally stable condition where vertical air movement is neither encouraged or

resisted (Gunturu and Schlosser 2012). In wind power studies, this assumption 

is commonly justified by the idea that when horizontal wind speeds become 

high enough to start generating power, mixing will ensure the atmosphere 

becomes neutrally stable (Coppin et al. 2003). Thus inaccuracies due to the 

atmosphere being in a different state are more likely to occur at low wind 

151



7.1 Background

speeds which will have little impact on the prediction of generated power. 

However, both Smith et al. (2002) and Rareshide et al. (2009) found that this is 

not always the case, especially in inland areas, and there might be significant 

diurnal and seasonal variation in wind shear factor at high wind speeds. Smith 

et al. (2002) found that wind shear was generally higher at night and lower 

during the day, when it might even be negative. 

The specific power per unit area, P (W/m2),  in wind flowing past a wind 

turbine is a function of air density σair and the cube of wind-speed v:

P=
1
2
σ air v

3 W/m2 (7.5)

In practice, there is an upper limit to the fraction of this power that can be 

harvested, and a common approach to transforming wind speed into power 

output is to use a wind turbine power curve (Hill et al. 2012), which is a non-

linear transformation function (Figure 7.1). In part of the middle region of the 

curve, power output is proportional to the air density (Gunturu and Schlosser 

2012), hence an implicit assumption when using wind power curves is that the 

air density vertical profile at the turbine operational site is similar to the profile 

where the turbine was tested.

Holttinen (2005) reported that the wind power factor curve for an individual 

turbine must be modified if the wind power output from a whole wind farm, 

constructed using the same turbines, is required. This is probably due to 

variations in wind speed hitting different turbines within the wind farm. 

Generally Holttinen (2005) used a gentler full power transition slope and shut 

down slope with a decreased shut-down wind speed (Figure 7.1).
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Figure 7.1. Typical wind turbine and wind farm power curve.

Because weather systems and hence wind patterns can extend over a wide area,

wind farms sited close to each other are likely to have a significant correlation 

in wind speed and power output over time, but the correlation will decrease as 

the distance separating wind farms increases (Sinden 2007). Kavasseri and 

Nagarajan (2004) speculated that there would be less spatial correlation over 

shorter time scales because of local differences in topography and atmospheric 

behaviour, and more correlation over longer time scales due to global and 

regional weather system seasonal effects. Haslett and Raftery (1989) examined 

sites in Ireland and found a decaying exponential relationship for the 

correlation between hourly wind speeds at two sites and the distance between 

sites, with the exception that sites very close together but not coincident can 

have a correlation significantly less than one. Carlin and Haslett (1982) reported

decreasing wind speed correlation with distance for sites in Western Australia.

A regional SWWA wind power simulation model should take this phenomenon

into account. Correia and Ferreira de Jesus (2010) developed a first order vector 

AR model with user specified spatial correlation between several sites, and 
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Gibescu et al. (2006) used a decaying exponential relationship to model the 

spatial correlation between wind speeds at different sites. 

7.2 Method

In this study, a model was developed for the purpose of simulating wind power

generation for any site in the SWWA. Synthetic wind speeds were generated 

using square-root transformations of a normal distribution and AR models. 

Historical 50 metre wind speed data was used to calibrate the simulation at 

each temporal scale: seasonal, daily, diurnal, and hourly dependent, with a 

random fluctuation component also added. Spatial correlation was introduced 

by creating distance weighted semi-dependencies in the random numbers used 

to generate the daily and diurnal components of wind speed.

A spatially and temporally dependent wind shear conversion factor model was 

developed so that wind speed at different turbine hub-heights could be 

estimated from these 50m wind speeds. Measured wind data at two sites was 

used to calibrate the wind shear conversion factor model. Finally, synthetic 

wind farm power output data was generated from the hub-height wind speed 

using modified wind turbine power curves. The simulation wind power output 

was compared to measured Supervisory Control and Data Acquisition 

(SCADA) wind farm power output data at 6 existing wind farm sites. Grasmere

and Albany were considered to be separate, though adjacent, wind farms 

because different wind turbines are used at each site. The fit of the seasonal 

averages, and the daily, diurnal and hourly frequency distributions (equivalent 

to the probability density function or PDF) of the simulation and two other 

simpler models was compared to the SCADA data, to see which was sufficient 

to represent the statistical behaviour of the measured wind power output. The 
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two other models were a Weibull model, and an autoregressive model with 

normally distributed residuals. 

To obtain hourly wind speeds near the hub-heights commonly used in modern 

wind farms, the Modern Era Retrospective Analysis for Research and 

Applications (MERRA) database (Rienecker et al. 2011) was accessed.  A grid of 

hourly wind speeds at 50 metres above the surface of South Western Australia 

was obtained from this database. The grid contains 330 nodes (15 x 22) with a 

spacing of 2/3° in longitude (approximately 62.5 km), and 1/2° in latitude 

(approximately 56 km). The South West corner of the grid is at 112° east, 36° 

south, and the North East corner is at 126° east, 29° south. 106 of these nodes 

which are over land or close to the coastline were used to develop the 

simulation, with most concentrated near the coast-line (Figure 7.2).

The wind speeds were divided into 4 components for analysis: seasonal, daily, 

diurnal, and hourly. For all components, the distance from the coast of the wind

farm was an important parameter. In a process similar to Laslett et al. (2014), a 

shape map of the Western Australian coastline was constructed from the 

GEODATA COAST 100K 2004 data package published by Geoscience Australia 

(2004). This data set is based on a 1:100,000 scale map sheet. The shape map 

consists of a vector map of the coastline and state border in longitude and 

latitude coordinates. It does not include any of the islands off the coast of 

Western Australia that are included in the data package. A global simplification

algorithm (Visvalingam and Whyatt 1993) was used to simplify the map down 

to a 500 vertex coastline map.

The yearly average MERRA 50m wind speed varies across the SWWA with an 

average of 6.7 m/s and standard deviation of 2.6 m/s. Two modes of seasonal 

variation were recognised in the monthly average MERRA wind speeds (for 
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examples, see Figure 7.3). The first mode has a maximum during the summer 

months and a minimum during winter, and is predominant at mid latitudes. 

The second mode is significant at southern latitudes. Both are attenuated at sites

further inland.
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Figure 7.2. MERRA nodes used to simulate wind speed in the South-West region of Western Australia.

To simulate seasonal wind speed at a particular site, the yearly average wind 

speed Vyav was estimated to be the linear distance weighted average of the four 

yearly average wind speeds from the surrounding MERRA grid square. The 

seasonal wind speed at any particular day of the year was then calculated from 

Vyav using a weighted combination of each seasonal mode:
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V season=V yav (1+kslat 1V mode1(DOY )+kslat 2V mode2(DOY )) (7.6)

where DOY is the day of the year, Vseason is the seasonal wind speed at DOY, 

kslat1 and kslat2 are the weighting coefficients for each mode, and Vmode1 and Vmode2

are the magnitudes of each mode at DOY. kslat1 and kslat2 were found to have a 

dependency on latitude and distance from the coast. Vmode1 and Vmode2 were 

represented using piecewise linear functions. See Appendix B for the precise 

parameterisations.
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Figure 7.3. Seasonal MERRA wind speeds near Walkaway and Albany wind farms.

The distribution of MERRA daily average 50m wind speeds was found to have 

a similar shape to a translated Weibull distribution (Figure 7.4). Similarly to 

Carlin and Haslett (1982), the square-root residual of the MERRA daily average 

wind speed was found to have a normal-like distribution (Figure 7.5). The 

square-root residual was obtained by subtracting the mean of the square root 

wind speeds and then dividing by the standard deviation of the square root 

wind speeds. The standard deviation σd was found to have both a spatial and 

seasonal dependency. See Appendix B for parameterisations.
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Figure 7.4. Normalised frequency distribution of MERRA daily average 50m wind speed compared to a 
translated Weibull distribution.

Figure 7.5. Normalised frequency distribution of MERRA daily average 50m wind speed square-root 
residual compared to normal distribution.
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Examination of the auto-regression and partial auto-regression coefficients of 

the square-root residuals at each MERRA node (for example Figures 7.6 and 7.7)

indicated a possible Autoregressive (AR) signature with dependency of order 

two. The dependency could also possibly be a second order Moving Average 

MA(2) or combined ARMA(1,1) model. For the residual at each node, the least 

squares method (Zheng 2003) and numerical maximum likelihood estimation 

was used to calculate the Root Mean Square Error (RMSE) for ARMA models 

with coefficients up to order (5,4) (for example Table 7.1). These indicated that 

the pure AR models gave sightly lower RMSE values. For increasing AR order, 

the RMSE initially decreased and then substantially levelled off after order 2. To

confirm that an AR order of two was necessary and sufficient to capture most of

the dependency within the time series, the Bayesian Information Criterion (BIC)

(Schwarz 1978) was used in the following form:

BIC=n loge (RMSE
2
)+( p+q+1) logen (7.7)

where n is the number of data points (1827), p is the AR order and q is the MA 

order. BIC was calculated and ranked in ascending order for each ARMA(p,q) 

model, 0 ≤ p ≤ 5 and 0 ≤ q ≤ 4, at each node (for example Table 7.2). The model 

with the lowest BIC was ARMA(2,0) or AR(2). The value of the AR(2) 

coefficients were found to be fairly consistent across all of the MERRA nodes, so

the average coefficient values were used in the simulation.

To remove the seasonal and daily components, the 24 hour trend was found for 

each hourly MERRA wind speed value by calculating the average wind speed 

from 12 hours before to 11 hours after that hour. This trend was then subtracted

to obtain a de-trended hourly MERRA wind speed dataset. Similarly to 

Skidmore and Tatarko (1990), the simulation used a single sinusoid to represent

the diurnal wind speed: 
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vdiurnal=tmag cos(2π
(t−t peak )

t period )  tpeak - 0.75tperiod <  t  < tpeak + 0.25tperiod (7.8)

where t is the time of day (hours), tpeak is the time of day (hours) when the peak 

wind speed occurs within the de-trended dataset, tperiod is timespan between the 

beginning and the end of the sinusoid (hours), and tmag is the magnitude of the 

sinusoid (ms-1). 
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Figure 7.6. Example auto-correlation of the MERRA daily average wind speed square-root residual at a 
single node. Dashed lines indicate 95% significance levels for a population value of zero.

For each day, the difference between maximum and minimum wind speed 

values (in the de-trended MERRA dataset), and the hour when these occurred 

was used to formulate the magnitude, period, and peak hour of the sinusoid for

the simulation. The average peak hour was found to occur later as distance 

from the coast increased (Figure 7.8). This indicated that the peak sea-breeze 

front travels inland initially at about 33 kmh-1 (9.17 ms-1), which is consistent 
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with the average offshore land-breeze propagation speed of 32.4  ± 14.4 kmh-1 (9

± 4 ms-1) reported by Gille et al. (2005). 
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Figure 7.7. Example partial auto-correlation of the MERRA daily average wind speed square-root 
residual at a single node. Dashed lines indicate 95% significance levels for a population value of zero.

Table 7.1. Example Root Mean Square Error (RMSE) for different orders of Autoregressive Moving 
Average (ARMA) models of the MERRA daily average wind speed square root residual at a single 
MERRA node.

AR order

MA order

0 1 2 3 4

0 0.99993 0.87811 0.87811 0.87811 0.87811

1 0.87673 0.86891 0.86887 0.86887 0.86887

2 0.86863 0.86882 0.86870 0.86867 0.86864

3 0.86884 0.86887 0.86885 0.86884 0.86884

4 0.86829 0.86831 0.86830 0.86829 0.86829

5 0.86818 0.86819  0.86819 0.86819 0.86819

The Autoregressive (AR) order increases with each row downward, and the Moving Average (MA) order 
increases to the right.
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Table 7.2. Example Bayesian Information Criterion (BIC) and ranking in ascending order for different 
orders of Autoregressive Moving Average (ARMA) models of the MERRA daily average wind speed 
square root residual at a single MERRA node.

AR order

MA order

0 1 2 3 4

0 7.25

30

-459.93

20

452.42

24

-444.91

27

-437.40

29

1 -465.69

15

-490.90

2

-483.59

5

-476.07

8

-468.57

14

2 -492.09

1

-483.78

3

-476.79

7

-469.39

12

-462.01

18

3 -483.69

4

-476.06

9

-468.61

13

-461.17

19

-453.67

23

4 -478.51

6

-470.89

11

-463.46

17

-455.96

22

-448.46

26

5 -471.46

10

 -463.90

16

 -456.38 

21    

-448.86

25

-441.35

28

The Autoregressive (AR) order increases with each row downward, and the Moving Average (MA) order 
increases to the right. The ARMA(2,0), or AR(2), model had the lowest BIC (rank 1).

The sea-breeze magnitude, period, and peak hour variabilities were also found 

to have a seasonal dependence as well as dependence on distance from the 

coast-line. The diurnal component was subtracted from the de-trended hourly 

wind speed to obtain the hourly MERRA wind speed residual y. y was then 

normalised by subtracting the overall mean and dividing by the overall 

standard deviation, σ. σ was found to have a spatial dependence. Hill et al. 

(2012) found the de-trended wind speed distribution for sites in the UK to 

follow a normal distribution. However in this study the normalised residual y 

was found to roughly follow a double exponential distribution with a slight 

skew, rather than a normal distribution (Figure 7.9). Ward and Boland (2007) 

also found a double exponential distribution for wind data in South Australia.
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Figure 7.8. Variation in summer sea-breeze peak hour with distance from the coast-line.
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Figure 7.9. Normalised frequency distribution of MERRA 50m wind speed residual and transformed 
residual compared to normal distribution.
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As pointed out by Lawrance and Lewis (1980) and Damsleth and El-Shaarawi 

(1989), there is a tendency for autoregressive equations to produce time series 

with normal distributions, even if the distribution of the random term is not 

normal. Hence a data transformation function was required to convert the 

distribution of y to a normal-like distribution. Because a double exponential 

distribution is symmetric about the mean, a simple symmetric form of square-

root conversion was used on the data:

yn(t)=
(1.4−√1.96− y (t))

0.302
y (t)<0

yn(t)=
(√ y ( t)+1.96−1.4)

0.302
y (t )≥0

(7.9)

where yn(t) is the transformed hourly MERRA wind speed residual. The 

transformed distribution is more normal-like (Figure 7.9). The auto-correlation 

coefficients and partial auto-correlation coefficients of yn(t) for each node 

indicated that there was an Autoregressive (AR) dependency of order three 

within the yn(t) time series (For example Figures 7.10 and 7.11). However there 

remained possibly significant low levels of dependence at lags greater than 

three. In a similar procedure to the daily average wind speed square root 

residuals, the least squares method and numerical maximum likelihood 

estimation was used to calculate the Root Mean Square Error (RMSE) for 

models with coefficients up to order ARMA(5,4) for each residual (for example 

Table 7.3). These indicated that the pure AR models gave sightly lower RMSE 

values. For increasing AR order, the RMSE initially decreased and then 

substantially levelled off after order three. To confirm which AR order was 

necessary and sufficient to capture most of the dependency within the time 

series, the Bayesian Information Criterion (BIC) was calculated and ranked in 
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ascending order for each ARMA(p,q) model, 0 ≤ p ≤ 5 and 0 ≤ q ≤ 4, at each node 

(for example Table 7.4). For hourly data, n = 43824. 
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Figure 7.10. Example auto-correlation of the MERRA hourly wind speed transformed residual at a single 
node. 95% significance level for a population value of zero is ~0.01.
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Figure 7.11. Example partial auto-correlation of the MERRA hourly wind speed transformed residual at a 
single node. 95% significance level for a population value of zero is ~0.01.
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Table 7.3. Example Root Mean Square Error (RMSE) between different Autoregressive Moving Average 
(ARMA) models and the MERRA hourly wind speed transformed residual at a single node.

AR order

MA order

0 1 2 3 4

0 0.99501 0.59737 0.59737 0.59737 0.59737

1 0.45858 0.39830 0.39830 0.39830 0.39830

2 0.39308 0.39035 0.39018 0.39010 0.39010

3 0.38983 0.38982 0.38982 0.38982 0.38982

4 0.38981 0.38982 0.38987 0.38984 0.38983

5 0.38981 0.38983 0.38985 0.38983 0.38986

The Autoregressive (AR) order increases with each row downward, and the Moving Average (MA) order 
increases to the right.

The results were not definitive as models with the lowest BIC were a mixture of

ARMA(3,0) and ARMA(4,0). ARMA(3,0), or AR(3), models were chosen as the 

difference in RMSE values between the two models was small (typically < 1%).

Table 7.4. Example Bayesian Information Criterion (BIC) and ranking in ascending order for different 
orders of Autoregressive Moving Average (ARMA) models of the MERRA hourly wind speed 
transformed residual at a single node.

AR order

MA order

0 1 2 3 4

0 -428.19

30

-45136.44

26

-45125.75

27

-45115.06

28

-45104.38

29

1 -68311.50

25

-80651.62

21

-80640.93

22

-80630.25

23

-80619.34

24

2 -81807.56

20

-82409.56

19

-82436.04

17

-82442.40

16

-82435.33

18

3 -82524.81

1

-82517.95

3

-82507.11

5

-82496.83

7

-82485.26

10

4 -82518.49

2

-82505.93

6

-82485.36

9

-82481.62

11

-82472.63

13

5 -82507.70

 4

-82494.41

8

-82477.41

12

-82471.13

14

-82453.59

15

The Autoregressive (AR) order increases with each row downward, and the Moving Average (MA) order 
increases to the right.  In this case, the ARMA(3,0), or AR(3), model had the lowest BIC (rank 1).
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The AR(3) coefficient values were found to have a spatial dependency. See 

Appendix B for the full parameterisation of the spatial dependencies.

It was now possible to start generating synthetic hourly wind speed values. 

Firstly, the synthetic normally distributed hourly residual yns(t) was generated 

using a standard AR(3) equation:

yns(t)=φ1 yns(t−1)+φ2 yns( t−2)+φ3 yns(t−3)+ρr (t) (7.10)

where r(t) is a normally distributed random variable and ρ is set so that the 

standard deviation of yns(t) is one. φ1, φ2 and φ3 are the AR(3) coefficients (see 

Appendix B). The initial values of yns(t-1), yns(t-2) and yns(t-3) were set to 

standard normally distributed random values. The computational benefit of 

using the square-root data transformation in equation (7.9) is that generation of 

synthetic wind speed residuals requires a simple reverse transformation 

involving a calculation of the square:

ys(t)=1.96−(1.4−0.302 yns(t))
2 yns(t)<0

ys(t)=(1.4+0.302 yns( t))
2
−1.96 yns(t )≥0

(7.11)

where ys(t) is the synthetic hourly wind speed residual for wind farm w. The 

distribution of ys(t) was similar to the MERRA wind speed residual distribution,

but without the slight skew (Figure 7.12).

The synthetic average daily wind speed residual yds(t) was generated using a 

standard AR(2) equation:

yds(t)=φd1 yds(t−1)+φd2 yds( t−2)+ρd r d(t) (7.12)
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where ρd was set to a value such that the standard deviation of yds(t) is 1. rd(t) is 

a standard normally distributed random value. The initial values of yds(t-1), and 

yds(t-2) were set to standard normally distributed random values. 
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Figure 7.12. Normalised frequency distribution of MERRA and simulation hourly 50m wind-speed 
residual.

Synthetic daily average wind speeds vds(t) were generated by squaring yds and 

using Vseason as the average:

vds(t )=(√ V season+σd y ds(t ))
2
−σd

2 (7.13)

The σd
2 term is present to make the mean of vds(t) be Vseason. The hourly synthetic 

wind speed vs could now be assembled as the sum of the daily average 

component, the diurnal component, and the hourly dependent component:

v s(t)=vds(t)+vdiurnal (t)+σy s(t) (7.14)
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See Appendix B for the full wind speed simulation algorithm. vs is the wind 

speed 50 metres above the ground, but as the hub height of most modern wind 

turbines is higher than 50 metres, vs must be scaled to the hub-height wind 

speed vhh(t). 
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Figure 7.13. Change in average wind shear factor with time of day for a coastal site and an inland site.

The simpler power law estimation for wind shear (equation 7.4) was used 

because no extra information about surface friction is required. MERRA data 

was only available for one height, so measured data at different heights from 

two sites, one coastal and one inland, was used. This data indicated that the 

wind shear is more pronounced in inland areas, and varies with hour of the 

day, with wind shear exponent α being usually larger at night (Figure 7.13). 

There was also a seasonal variation superimposed on this, with α being even 

greater at night during the winter months.

Hourly wind farm power output was estimated from the hub height wind 

speed vhh using wind turbine power curves modified according to the findings 
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of Holttinen (2005) (Figure 7.1). The parameters for wind turbines used in the 

SWWA are given in Table B.1 of Appendix B. Since the SWWA has a generally 

low elevation, it was assumed that there was no significant difference in air 

density between the sites used to measure the turbine technical specifications, 

and the actual air density encountered by the turbines used in Western 

Australia. 

The model developed in this chapter, called here the 'transformed residual' 

model, was run for a period of 5 years, from 2009 to 2013.  The simulation was 

started by calculating the spatial and seasonal parameters for a chosen day of 

the year, then generating power output values hour by hour. Daily and 

seasonal parameters were recalculated at the beginning of each day. The 

simulated wind farm power output was compared to actual wind farm power 

output data for the SWIS grid, measured using the Supervisory Control And 

Data Acquisition (SCADA) system. Six of the largest wind farms connected to 

the SWIS grid were chosen for comparison. All of these wind farms have 

capacities greater than 10MW.  

The parameters used to generate the model synthetic seasonal wind speed Vseason

have a dependence on latitude and distance from the coast (see equation B.7), so

there is already an implicit correlation in the seasonal wind speed between two 

nearby sites. Correlation between the daily and diurnal components of wind 

speed for different wind sites was introduced using a matrix of distance 

weighted combinations of the random numbers used to generate these values. 

The weighting factor between two sites was given an inverse relationship to 

distance apart (equations B.11 to B.15), so that distant sites would be less 

correlated than nearer sites. The hourly autoregressive and random 

components of wind speed at each site were assumed to be uncorrelated. 
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Figure 7.14. Average correlation with inter wind farm distance for wind farm power output for the 
SWWA.

The MERRA 50m wind speeds were also scaled to hub-height and converted to 

wind power values. It was found that the distance correlation between these 

MERRA wind power values was greater than the SCADA data distance 

correlation (Figure 7.14), suggesting that there is an extra source of spatial 

variability other than the wind speed. Therefore the model was instead 

calibrated to the distance correlation values reported in Carlin and Haslett 

(1982) for wind measurements at several sites in Western Australia, which 

correspond more closely to the SCADA correlation.

To assess the simulation, the results from two other models were also 

compared. The first model, called here the 'Weibull' model, used the Weibull 

distribution to generate hourly time series wind speed data with no 

dependency on previous values of wind speed. The seasonal wind speed Vseason 

was used to calculate the scale parameter λ, and the shape parameter k was 
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estimated using the maximum likelihood method from the hourly wind speed 

data. The second model was the same as the transformed residual model, 

except that normally distributed residuals were used, with no data 

transformation. This model was called the 'normal residual' model. The average

of 10 simulation runs of all three models were compared to the measured 

SCADA wind power output data. Two statistical measures used to compare the

models with the measured data were the Root Mean Square Error (RMSE), and 

the Mean Bias Error (MBE). The RMSE is a measure of the magnitude of the 

difference between individual data points in each data set. The sign of the 

difference is ignored. The MBE is a measure of the average difference between 

individual data points in each data set, or whether the model generated data set

is biased higher or lower compared to the measured data on the whole. Here 

the sign of the difference is not ignored. Generally, a model with a lower RMSE 

than another fits the data more closely. In this study a model with a negative 

MBE might be considered more favourably than a model with a similar but 

positive MBE because under predicting wind power generation on the whole is 

more desirable than over predicting. Representing RMSE and MBE as a 

percentage gives an idea of how significant the error is compared to the average

value of the measured data. See Appendix C for definitions of these measures. 

7.3 Results

The three simulation generated overall average Capacity Factor (CF) values for 

the six largest wind farms connected to the SWIS (Albany and Grasmere are 

considered separate wind farms) were generally comparable to the measured 

SCADA values (Table 7.5), with differences less than 12%, except for Walkaway

wind farm, where the three models underestimated the yearly average CF by 9-

16%. The normal residual model slightly overestimated the yearly average CF. 
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The Weibull and transformed residual models underestimated the overall 

average CF. These two models generated similar CF values for 4 out of the 6 

wind farms. For Grasmere and Albany wind farms, the transformed residual 

model generated slightly lower values than the Weibull model. However the 

magnitude of the differences between these two models and the SCADA overall

CF were similar, indicating that the models were similarly close.

The errors between the simulation and SCADA yearly average capacity factors 

(Table 7.6) indicated that the Weibull model was slightly closer to the measured

SCADA data. The greatest RMSE error for the Weibull and transformed 

residual model occurred at the Walkaway wind farm, and for the normal 

residual model, the greatest error was at the Albany wind farm. These results 

indicated that actual power generation at the Walkaway wind farm is 

significantly greater than predicted by all the models, which are based on 

MERRA data. Local effects may be increasing wind speeds at this site. 

Comparing the SCADA and simulation monthly average capacity factors, the 

Weibull model achieved a lower RMSE than the other two models. However, 

the normalised frequency distribution of average daily capacity factors (Figure

7.15) indicated that the Weibull model generated a significantly different 

distribution to the measured SCADA data, with CF values concentrated on 

intermediate values between 0.2 and 0.5.

Although less pronounced, the normal residual model also generated a 

distribution more concentrated on intermediate values of CF. The transformed 

residual model generated a distribution closest to the SCADA distribution, with

a slight skew towards lower CF values, reflecting the slight conservative bias of 

this model.
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Table 7.5. SCADA and simulated overall average Capacity Factor (CF) for six wind farms within the 
SWWA using three simulation models: the Weibull model, the normal residual model, and the 
transformed residual model. 

Name

Capacity 

(MW)

Distance from 

Coast (km)

SCADA

CF

Weibull 

model CF

Normal 

residual 

model CF

Transformed 

residual CF

Grasmere 13.8 0.67 0.33 0.33 0.36 0.32

Albany 21.6 0.67 0.32 0.33 0.36 0.32

Mumbida 55 14.6 0.39 0.38 0.41 0.38

Emu Downs 79.2 23.6 0.35 0.33 0.36 0.33

Walkaway 89.1 15.8 0.43 0.36 0.39 0.36

Collgar 206 255 0.37 0.34 0.36 0.34

Model values are the average of 10 simulation runs.

These discrepancies were reflected in the error values (Table 7.6). The normal 

and transformed residual models achieved much lower RMSE values than the 

Weibull model. The transformed residual model achieved the lowest RMSE 

values overall, although the value for Mumbida wind farm was comparable to 

the normal residual model, and the value for Walkaway was significantly 

higher. The Weibull and normal residual models also generated a significantly 

different diurnal peak hour distribution (Figure 7.16). Peak hour is the hour of 

the day when CF (and hence wind power output) is at a maximum. The 

transformed residual model achieved lower RMSE values than the Weibull or 

normal residual models, except for Emu Downs wind farm, where the values 

were comparable. The hourly CF normalised frequency distribution (Figure

7.17) of the Weibull model fitted the SCADA distribution slightly better than 

the other two models. The transformed residual model again exhibited a slight 

skew towards lower CF values.
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Table 7.6. Errors in the yearly and monthly average Capacity Factor (CF) estimation, daily average CF 
frequency distribution, diurnal peak hour distribution and hourly average CF frequency distribution of 
three simulation models compared to measured SCADA wind power data.

Time scale Measure Weibull model Normal residual 

model

Transformed residual

model

Yearly RMSE(%) Grasmere

Albany

Mumbida

Emu Downs

Walkaway

Collgar

Average

1.74

9.77

4.59

7.71

15.11

9.0

8.0

Grasmere

Albany

Mumbida

Emu Downs

Walkaway

Collgar

Average

10.4

19.2

3.9

8.4

9.6

5.6

9.5

Grasmere

Albany

Mumbida

Emu Downs

Walkaway

Collgar

Average

5.3

9.6

5.4

9.7

16.1

10.4

9.4

MBE(%) Grasmere

Albany

Mumbida

Emu Downs

Walkaway

Collgar

Average

1.2

8.6

-4.6

-4.1

-14.5

-8.1

-3.6

Grasmere

Albany

Mumbida

Emu Downs

Walkaway

Collgar

Average

9.8

18.2

3.9

4.0

-7.6

-1.3

4.5

Grasmere

Albany

Mumbida

Emu Downs

Walkaway

Collgar

Average

-1.1

6.1

-5.4

-4.2

-15.2

-8.2

-4.6

Monthly RMSE(%) Grasmere

Albany

Mumbida

Emu Downs

Walkaway

Collgar

Average

15.4

20.4

12.5

16.9

18.9

17.3

16.9

Grasmere

Albany

Mumbida

Emu Downs

Walkaway

Collgar

Average

25.5

30.4

31.1

22.1

21.2

22.1

25.4

Grasmere

Albany

Mumbida

Emu Downs

Walkaway

Collgar

Average

30.0

30.3

26.8

23.4

24.0

24.1

26.4

MBE(%) Grasmere

Albany

Mumbida

Emu Downs

Walkaway

Collgar

Average

1.3

8.1

1.6

-4.1

-14.4

-5.2

-2.1

Grasmere

Albany

Mumbida

Emu Downs

Walkaway

Collgar

Average

9.5

16.6

12.2

4.0

-8.0

1.5

6.0

Grasmere

Albany

Mumbida

Emu Downs

Walkaway

Collgar

Average

-2.5

5.0

5.7

-4.0

-14.8

-4.1

-2.4

Daily frequency 

distribution

RMSE(%) Grasmere

Albany

Mumbida

Emu Downs

Walkaway

Collgar

Average

143

147

122

126

129

136

134

Grasmere

Albany

Mumbida

Emu Downs

Walkaway

Collgar

Average

32.5

40.7

35.1

25.5

28.8

25.1

31.3

Grasmere

Albany

Mumbida

Emu Downs

Walkaway

Collgar

Average

25.2

17.0

35.9

23.5

37.8

22.3

26.9

Diurnal peak hour 

distribution

RMSE(%) Grasmere

Albany

Mumbida

Emu Downs

Walkaway
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RMSE and MBE values are given as a percentage of the average SCADA capacity factor or average 
SCADA CF frequency.
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Figure 7.15. Normalised frequency distribution of average daily capacity factors. Three models (Weibull, 
normal residual, and transformed residual) are compared to measured SCADA wind power output data.
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Figure 7.16. Diurnal Capacity Factor (CF) peak hour distribution. Peak hour is the hour of the day when 
CF (and hence wind power output) is at a maximum. Three models (Weibull, normal residual, and 
transformed residual) are compared to measured SCADA wind power output data. The 25th hour is the 
same data point as the 1st hour and is provided for continuity.
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Figure 7.17. Normalised frequency distribution of average hourly capacity factors. Three 
models (Weibull, normal residual, and transformed residual) are compared to measured 
SCADA wind power output data.

7.4 Summary

Even though the Weibull model generated yearly capacity factors slightly closer

to the measured SCADA data than the transformed residual model, both the 

Weibull and normal residual models generated significantly different daily 

average capacity factor and diurnal peak hour distributions to the measured 

SCADA data, and hence would generate unrealistic statistical behaviour if they 

were used to simulate existing or hypothetical wind power systems in the 

SWWA. The transformed residual model generated daily average capacity 

factors and diurnal peak hours with a much closer distribution to the measured 

data and demonstrated the necessity of characterising the wind speed residual 

properly, and not blindly assuming that it has a normal distribution.
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Wind power is a distributed resource that is increasing in use world-wide. 

Therefore simulating the operation of large scale electrical grids with significant

levels of wind power is becoming more important. To do this it is necessary to 

build regional scale wind power models that can account for spatial, seasonal 

and hour by hour variation. The results from this chapter indicated that using 

MERRA data as the basis of such a wide area simulation is a viable method. The

MERRA dataset is freely available and covers the whole surface of the world, 

including many regions that would have no access to suitable hub-height wind 

speed data. 

The wind farm capacity factors were found to have a greater distance 

correlation when estimated from MERRA data, than when calculated directly 

from the measured SCADA data. Hence there may be more variability in air 

density, wind shear factor, wind farm wide wind speed variability, or some 

other factor than accounted for here. It is important to confirm this finding in 

future studies over other regions, as wind variability can have a significant 

effect on the operation of a large scale electrical grid. Simulations based on 

MERRA data can be built for any site or region in the world, but they must 

incorporate a means for correctly setting the distance correlation between wind 

farm sites.

The simulation in this instance was conservative. Although measured data were

used to calibrate the wind shear factor, similar simulations could be developed 

for regions with no available measured data. Setting the wind shear exponent to

zero would generate even more conservative synthetic power output data, but 

still usable because the 50m height above ground level is within the range of 

most modern wind turbine hub heights.
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The frequency distribution of the AR-based simulation capacity factor was 

similar to the measured data capacity factor, due to the use of the novel data 

transformation functions, which also have applicability to other sites that have 

an exponential wind speed residual distribution. Matching the measured and 

simulated wind power frequency distribution is important for detailed 

estimation of wind power potential. 

Similarly to Ward and Boland (2007), it was found that wind sites closer to the 

coast tended to have diurnal output peaks in the afternoon, earlier than those 

wind sites further inland which peak later in the evening. This implies that a 

mix of coastal and inland wind farm sites is beneficial for avoiding large peaks 

and lulls in wind power generation and maintaining a supply of wind power 

that is consistent with the peak in electricity demand.
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8 Integrated power system scenarios

Models for generating synthetic hourly solar irradiance, solar thermal power 

and wind power data over seasonal time scales for any location within the 

SWWA were developed in the previous chapters. These models do not 

reproduce average weather conditions, but reproduce typical conditions that 

capture variability on hourly, daily and seasonal time scales.

Using the solar irradiance model, a model for solar PV power generation will be

developed in this chapter. Solar PV generation already has a significant 

presence on the SWIS grid. Simple models for home battery storage, power to 

gas storage and energy efficiency will also developed, as these could have a 

significant future presence within the SWIS.

The SWIS already has systems to maintain electrical supply stability on sub-

hourly time scales. However, the operation of these systems could be impacted 

by changing the configuration and characteristics of power plants and storage. 

Hence before further model development could begin, a necessary first step will

be to examine the current SWIS grid in more detail, before describing the 

methods used to build the models.

When all of these models are in place, it will be possible to create hypothetical 

systems of multiple solar and wind power plants, all in different locations, and 

estimate the combined hourly power output of the entire system on an hour by 

hour basis. The hourly SWIS load demand, mediated by energy efficiency 

measures and population increase, can be compared to this combined power 

output and the percentage of renewable energy generation estimated. If enough

generation and storage capacity is added, then scenarios can be developed for 
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renewable energy systems that attempt to completely balance energy supply 

and demand in the SWIS on an hour by hour basis. Because the solar and wind 

resource varies both hourly and seasonally, the question remains whether these 

systems can balance supply and demand at every hour throughout the year.  

However, even if a scenario is developed that can do this, there is an additional 

requirement. Changing a large-scale fossil fuel dominated electricity system to 

run on renewable energy cannot happen overnight. While many global 

emission reduction studies set a target year of 2050 (Loftus et al. 2015), the 

urgency to reduce emissions means the transition should happen more quickly. 

Therefore a target year of 2030 will be set. For each scenario, the required 

installation rate of each technology to implement the system within this time 

frame will be estimated, while also taking into account population growth. To 

be a feasible option for rapidly reducing emissions and making the SWIS 100% 

renewable, the required capacity for each technology must be moderate enough

such that it can be installed within this short time scale.

The potential of power to gas seasonal storage systems to reduce the required 

build, and scenarios with very high levels of wind generation (as these may 

have the lowest cost), will also be examined.

8.1 The SWIS in more detail

The SWIS is made up of a transmission network and a number of sub-

transmission and distribution networks. The present configuration of energy 

generation systems connected to the SWIS is dominated by conventional fossil 

fuel power stations, with about 1600 MW of coal fired generation capacity, 1640 

MW of gas fired generation capacity, and a further 1310 MW of mixed gas and 

liquid generation capacity (IMOWA, 2015). The main load centre is the city of 

Perth, which is connected to three main transmission line corridors (see Figure
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8.1).  The SWIS is isolated from all other grids and does not currently have 

access to large-scale hydroelectric resources. Hence it is particularly dependent 

on 'spinning reserve' being provided by fossil fuel generation to maintain 

stability (Mullan et al. 2011). Spinning reserve refers to reserved excess capacity 

of high inertial mass generators that spin in synchronisation with the grid. The 

reserved capacity is not used until required. Around 317 MW of spinning 

reserve was maintained on the SWIS grid in 2013 (Western Power 2013). 

Renewable power plants are also already present. As of 2015, there was about 

460 MW of onshore wind capacity and almost 500 MW of roof top solar PV 

capacity connected to the SWIS.
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Figure 8.1. SWIS grid backbone links used by the model.

The word 'dispatchable' is commonly used to represent flexible generation 

systems which can adjust output according to demand, and 'non-dispatchable' 

to those that are variable and cannot adjust upwards to meet demand, such as 

wind and solar. Conventional coal fired power stations are considered to be 

dispatchable, but have a required minimum operational power output level. If 

output is below this level, they must either shut down completely or operate at 
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reduced efficiency. In reality, any generation system will have a degree of 

dispatchability (either more or less), that might differ over different time scales. 

Conventional power plants also often have a maximum sustainable ramp rate, 

which is a measure of how fast the power output can change (either rising or 

falling). Exceeding this rate could lead to higher maintenance costs or damage 

to the plant. In general, dispatchable generators are expected to respond to 

changes in the output of non-dispatchable generators and changes in demand 

to balance the system.

On sub-hourly time scales, there are systems to maintain a stable frequency and

voltage amplitude. Conventional grids have traditionally relied on synchronous

generators with a large rotational inertia for frequency stability control and fast 

voltage regulation for voltage stability and control. The inertia determines the 

initial rate of change of frequency in response to sudden changes in generator 

loading, before the primary and secondary stability control systems activate. 

The larger the inertia, the smaller the rate of change of frequency. The primary 

stability control systems attempt to arrest the frequency change, while the 

secondary control systems attempt to return the frequency to its reference 

value. Riesz et al. (2010)  estimated that there was around 12.4 GWs of inertia on

average in the SWIS grid, meaning that over 200 MW of power can be supplied 

or absorbed for a second with a frequency change of less than 1%. This inherent 

reserve gives active stability and safety systems more time to activate in 

response to a fault. The inertia is provided predominantly by conventional 

fossil fuel power plants. These power plants would be retired under a 100% 

renewable energy scenario, leading to a large reduction of inertia in the system. 

Therefore alternate means must found to maintain frequency and voltage 

stability. One possible option is to have some of the existing synchronous 

generators spinning but disconnected from their rotational energy source ('de-
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clutched'), in effect acting as synchronous compensators with no fuel input.  

Power losses in these generators could be up to 2% of the rated power (Da Silva

et al. 2001).

Batteries and photovoltaic systems can provide voltage control but have no 

intrinsic rotational inertia.  However, there are ways in which they could 

provide fast responding active frequency stability control, to compensate for the

reduced system inertia. Battery storage systems have a very rapid response rate 

and can provide frequency stability capability, if they are maintained in a 

partially charged state (Cha et al. 2012). They can also provide 'synthetic 

rotational inertia' or 'inertia mimicking' (Ulbig et al. 2013). The findings of Knap

et al. (2014) suggested that the inertia constant of lithium ion batteries is at least 

50 MWs per MW of output power. If the maximum battery charge and 

discharge rate was 0.2 MW per MWh of capacity (McCloskey 2015), then 1.24 

GWh of battery storage could provide a synthetic inertia similar to the present 

inertia within the SWIS grid (1.24 GWh is equivalent to a 7 kWh battery system 

installed in almost 20% of suitable houses. See section 8.3 below for a discussion

of possible storage capacities). 

PV systems can already respond to increases in system frequency by decreasing

generated power. They can also be deliberately operated at less than their 

maximum potential power at any one time, as determined by the solar 

irradiance. These 'de-loaded' PV systems can thus increase their generated 

power in response to decreasing system frequency (Rahmann and Castillo 

2014). Thus standalone PV systems could provide extra synthetic inertia during 

times of peak demand, but not at night.

The rotating generators of solar thermal power stations can also provide inertia.

However on the SWIS most solar thermal stations are likely to be far from the 
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main load centre (the greater Perth metropolitan area). If there is no central 

source of inertia, then the risk of these remote generators losing synchronism 

with one another increases. Wind turbines can be configured to provide 

synthetic inertia, and can more easily recover from faults or disturbances that 

could cause loss of synchronism. However, the risk of faults or disturbances in 

the grid isolating a wind farm (and its synthetic inertia) from the main load 

centre increases with longer transmission distances.

Vidal-Amaro et al. (2015) considered grid stability for high penetration 

(although not 100%) renewable energy scenarios. However, absent in many 

previous 100 percent renewable generation simulation studies is consideration 

of the potential threat to system stability from loss of inertia as conventional 

generators are replaced by renewable energy systems. As a consequence, 

possible increases in the required installed capacity of renewable energy and 

storage technologies, in order to deploy systems to mitigate the potential for 

instability, are not accounted for. For all the 100% renewable energy scenarios 

developed here, systems to maintain stability were implemented, and 

integrated into each scenario. The inertia for each scenario was estimated and 

compared to the 12.4 GWs of inertia in the current SWIS system.

8.2 Method

The scenarios are described in section 8.3. For each scenario developed, hourly 

values for solar radiation were generated at each location where a solar power 

station was placed, and hourly values for hub-height wind speed were 

generated at each location where a wind farm was placed. To translate these 

values into power generation, the behaviour of the energy collection and 

generation device at each location was modelled. The amount of non renewable

energy generation required for each hour was calculated using:
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nonre=Load y ,h−EEh−Pout , storage−glf rtpvPout , rtpv−∑
n=1

nlarge

glf n Pout ,n (8.1)

where nonre is the non-renewable power generation (MW), Loady,h is the 

simulated hourly baseline SWIS load demand at hour h for year y ≥ 2009 (MW). 

EEh is the load demand reduction at hour h due to any energy efficiency 

measures, if implemented (MW). Pout,storage is the output power from distributed 

storage, if present on the grid (MW). Pout,rtpv is the total output from rooftop solar

connected to the grid (MW). glfrtpv is the grid loss factor for distributed rooftop 

PV generation. glfn is the grid loss factor for large power station n. nlarge is the 

number of large-scale renewable power stations on the system. Pout,n is the 

output power for each station (MW). Each large power station could be 

modelled as a fixed PV array, a wind farm, or a solar thermal farm. If 

distributed storage is present in a scenario, then the simulation attempts to 

adjust Pout,storage so that nonre is zero.
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Figure 8.2. Typical summer and winter daily load profile on the SWIS grid for the year 2009.
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Publicly available half hourly demand data for the SWIS over seasonal time 

scales were aggregated into average hourly values. The total SWIS load demand

for every hour throughout the year of 2009 was used as a baseline for the load 

demand profile (for typical summer and winter daily profiles, see Figure 8.2). 

The year 2009 was chosen because after that time significant amounts of 

distributed roof top solar generation began to be connected to the grid, 

reducing daytime demand.

The effect of future population increase on baseline power demand was 

modelled by multiplying the 2009 load demand by a factor reflecting 

compounded yearly population growth:

Load y ,h=Load2009,h(1+
pop
100

)
( y−2009)

(8.2)

where Loady,h is the load profile for year y at hour h (MW), Load2009,h is the 2009 

profile at hour h (MW), and pop is the percentage yearly population increase. 

pop was set to a value of 2% per year, reflecting the average growth rate of 

Australian greater capital cities from 2013 to 2014 (ABS 2015). y was set to 2030 

to establish the implementation target year.

To assess whether complete renewable energy generation had been achieved, 

100 simulation runs under typical weather conditions were carried out for each 

scenario, and the maximum shortfall in renewable energy generation compared

to the load was recorded. Two SWIS reliability standards were used to access 

the shortfall. The first reliability standard was taken to be a 0.05% loss of load 

probability (LOLP), estimated as the fraction of time that renewable energy 

generation fell short of the load demand (MR 2012). The second standard was a 

0.002% shortfall in generated energy over one year. Renewable energy 
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generation capacity was added to each scenario until these standards were met 

for 95 runs out of 100.

8.2.1 Transmission losses

To model generation from regional power stations, transmission losses between

the stations and the load were estimated. In the SWIS system, the city of Perth is

the major load centre. To approximate the losses incurred when transporting 

power through the grid, it was assumed that all electricity generated by each 

power station travelled to Perth. Up-conversion losses from each power station 

to the grid, and down-conversion and distribution losses to the loads were each 

modelled as a set power percentage loss. The backbone of the SWIS grid was 

modelled as having several links (Figure 8.1). Any new power station added to 

the system attached a new grid link from the power station to the nearest 

backbone link.  All new links were assumed to use High Voltage Alternating 

Current (HVAC) technology, to allow easy interconnection with the existing 

HVAC grid.

Although cross-conversion losses between one grid link and another are likely 

to be lower than the up-conversion losses, they were assumed to be similar for 

modelling simplicity. Transmission losses were represented as a power 

percentage loss per 1000 kilometres of transmission line. The electricity 

generated by a power station would typically travel over several grid links 

before reaching Perth. For a power station n, 1 ≤ n ≤ nlarge, the total grid loss was 

estimated using:

glf n=(1−0.01ld){ ∏
i=0

nlink n−1

(1−0.01 lupi)}{∏
j=1

nlink n

e
(−
tl j d j

105 )

} (8.3)
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where nlinkn is the number of links travelled before reaching Perth, ld is the 

percentage down-conversion and distribution loss, lupi is the percentage up-

conversion loss from the power station when i=0 and the cross-conversion loss 

between grid link i and grid link i+1 when i > 0, tlj is the percentage 

transmission loss per 1000 km for grid link j, dj is the length of grid link j (km) 

and glfn is the total grid transmission factor (the fraction of power that reaches 

the end users in Perth) for the power station. glfn will be different for each 

power station, depending on its location, proximity to Perth, and which grid 

links the electricity travels through. The values used for each parameter are 

given in Table 8.1 below.

Table 8.1. Grid conversion and transmission loss parameters.

Parameter Description Value

lup Up-conversion and cross-conversion loss (%) 0.62a

ld Step-down and distribution loss (%) 9.5b

tl Line loss (% per 1000 km) 6.93c

aNegra et al. (2006).  bDortalina and Nadira (2005) and Masoum et al. (2010). cBahrman (2008).

Roof top solar PV was assumed to be scattered throughout the Perth 

distribution network and was subject to an 8% up-conversion and distribution 

loss on average (Koutroulis and Blaabjerg 2013), such that glfrtpv = 0.92. 2034 MW

of existing gas or mixed fuel gas turbines situated near Perth were also 

retrofitted or configured to operate in synchronous compensator mode, with 

the gas turbines de-clutched from the synchronous generators, which have 

some rotational inertia. This was to provide a stable frequency reference near 

the load centre for the more distant generators to synchronise with, and back-

up generation capacity in case of generator failures or shortfalls during periods 
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of sustained low solar and wind availability. There is usually no fuel input to 

the turbines, and the extra continuous load required to keep the back-up 

generators spinning was estimated to be about 41 MW, assuming the power 

required was 0.2% of the rated capacity of the generators (Da Silva et al. 2001).

8.2.2 Solar PV model

The global solar irradiance, Ig, is the total solar power per unit area falling on a 

flat surface and can be divided into three components: beam (also called direct),

diffuse, and reflected. The beam component has come directly from the sun, the

diffuse component results from radiation that has been scattered in the 

atmosphere, and the reflected component results from radiation reflected off 

other surfaces. The diffuse and reflected components are indirect, and they have

a complex relationship with the beam component, depending on clouds and 

atmospheric conditions.

The solar model developed in chapter 5 can generate hourly values of all three 

components, and PV systems can generally use them all. Fixed PV panels will 

not always be orientated perpendicular to the position of the sun as it moves 

through the sky, so the solar model recalculated irradiance each hour 

accounting for the changing angle of incidence between the sun and the panel.

An ideal solar cell has a power output that is linearly proportional to the global 

solar irradiance Ig. The performance ratio (PR) is a measure of how well a cell 

performs compared to an ideal cell  (Carr and Pryor 2004):

PR=( Pout

P rated
)/( I g

1000) (8.4)

where Pout is the electrical output power (W), Prated is the rated output (W) and Ig 

is measured in Wm-2. Carr and Pryor (2004) tested a number of cells in the Perth
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area and found PR values ranging from 0.79 to 0.93, with the highest values 

occurring during winter. The efficiency of solar cells has been found to decrease

with lower global irradiance and higher temperatures. To model this behaviour 

for fixed axis PV power stations and rooftop PV arrays, cell efficiency drop off 

was approximated by using an empirical expression for Pout:

Pout (Ig , DOY ,h)={16250+I g
2

25000+I g
2 } Ig

1000 {1−
0.17

4
(1+cos (

2π

365
(DOY−16)))(1+cos(

2 π

24
(h−14)))}Prated (8.5)

where DOY is the day of the year (1 to 365), h is the hour of the day and Pout will

have the same units as Prated (MW for a large power station). Using this 

approximation, when Ig decreases toward 0 Wm-2, cell efficiency will drop to 

65% of the ideal efficiency, comparable to the performance drop of a crystalline 

silicon PV cell (Huld et al. 2010). During summer in the middle of the afternoon,

Pout decreases further by up to 17% to account for heating related efficiency loss 

(Huld et al. 2010). Both of these effects will decrease PR.

For rooftop PV systems, the tilt angle from horizontal was set to be 22.6° (Jones 

et al. 2012), and panels were assumed to be facing northward, although in 

reality there will be a spread of orientations around these values. The baseline 

installed capacity of rooftop PV arrays was taken to be 500 MW for the start of 

2016, based on an installed capacity of 571 MW in early March 2016 (APVI 

2016).

There were more than 726,000 private dwellings in the greater Perth area in 

2011 (ABS 2011), of which under 10% are flats, units, apartments, or other types 

of dwelling that might be unsuitable for rooftop PV installation. The average 

floor area of houses in Australia is at least 150 m2 (DIT 2012). Assuming that on 

average, a roof area equal to 25% of the floor area is suitable for north facing PV

installation, then the total area per suitable house is 37.5 m2.  Assuming that the 
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current average size of a 250 W solar PV panel is 1.65 m2 (Good et al. 2016), then

22 panels could fit onto an average house, to give a maximum system size of 5.5

kW per house. If it was assumed that a 2% per year population growth rate 

translated into the same percentage growth in housing number, then the 

653,403 suitable houses (90% of 726,004)  in 2011 would grow into about 951,885

houses in 2030. Because of the spread of roof orientations, the simulation 

assumed a conservative total potential home rooftop capacity of 3.42 GW, 

consisting of 3.6 kW of north facing 22.6° tilt panels installed on 950,000 homes 

in 2030. Another factor that might affect the capacity is that the proportion of 

the population living in high density housing less suitable for rooftop PV will 

probably increase by 2030. Conversely, solar PV energy conversion efficiencies 

are also likely to increase by 2030.

For those scenarios with 100% renewable generation, the total PV capacity was 

de-loaded by 10% to enable frequency control capability. In reality, rooftop PV 

systems with battery storage would not need to operate in de-loaded mode 

(unless the battery storage level is low). If the batteries are installed behind the 

solar inverter, the inverter's output would still need to be limited to 90% of 

rated capacity for these systems, so that the batteries can inject at least 10% (if 

storage level is adequate), but the PV panels can still operate up to full output 

when also charging the battery. Nevertheless, the total PV capacity was de-

loaded, for model simplicity, and to avoid the assumption that all PV systems 

must be tied to a battery. For PV systems without storage, de-loading enables 

frequency control capability.

8.2.3 Existing and proposed wind farms

Wind is considered one of the cheapest forms of renewable energy, and 

renewable energy scenarios for Australia based on lowest cost have high 
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penetrations of wind generation capacity (Riesz et al. 2016). A number of wind 

farms are already connected to the SWIS, and the wind power model developed

in chapter 7 generated conservative values of simulated wind power generation

for the six largest wind farms (Table 8.2).

Table 8.2. Measured and simulated average yearly Capacity Factor (CF) for the six largest wind farms 
within the South West of Western Australia.

Name Capacity (MW) Measured CF Simulation CF

Grasmere 13.8 0.33 0.32

Albany 21.6 0.32 0.32

Mumbida 55 0.39 0.38

Emu Downs 79.2 0.35 0.33

Walkaway 89.1 0.43 0.37

Collgar 206 0.37 0.33

A number of new wind farms in the SWWA have already been proposed, with 

a total capacity of 1482 MW (Table 8.3).

Table 8.3. Proposed wind farms in the SWWA region.

Name Capacity (MW)

Dandaragan 513.4

Warradarge 250

Williams 210

Nilgen 132.5

Badgingarra 123

Coronation 104

Walkaway 2 94.05

Mileannup 55

Since the wind power model was developed to cover the SWWA region, rather 

than one location, the hypothetical generation from these proposed wind farms 

could be estimated, as well as any other site chosen for a wind farm. Addition 

of these proposed wind farms would bring the total wind capacity up to 1947 
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MW. However for scenarios with very high wind power generation, much 

more capacity would be needed.

8.2.4 Distributed battery storage model

Distributed energy storage for the simulation was loosely based on using 

batteries. Losses were incurred when energy is transferred from the grid to 

storage, and from storage to the grid. Additionally, limits were imposed on the 

maximum charging and discharging rates. For those scenarios with 100% 

renewable generation, the storage system was not allowed to become 

completely full or completely empty, so as to enable frequency stability control. 

For battery storage systems, the state of charge is often constrained between set 

limits to prolong battery life. In this study, storage capacity values refer to the 

capacity that is usable within these constraints rather than total capacity.  The 

settings used are given in Table 8.4 below:

Table 8.4. Distributed storage simulation parameters.

Parameter Value

Maximum allowed storage level 95% of rated capacity

Minimum allowed storage level 5% of rated capacity

Grid-to-storage conversion efficiency 89%a

Storage-to-grid conversion efficiency 89%a

Maximum charge rate to storage 0.2 MW per MWh of storageb

Maximum discharge rate from storage 0.2 MW per MWh of storageb

Self discharge rate 3% per monthc

Synthetic inertia 10 MWs per MWh of storaged

aBased on 90% round trip efficiency for Li-ion batteries (Soloveichik 2011) and 94% average PV inverter
efficiency (Koutroulis and Blaabjerg 2013). bMcCloskey (2015).  cMishra et al. (2015). d0.2 MW/MWh x 
50 MWs/MW (Knap et al. 2014).
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8.2.5 Power to gas (P2G) storage model

Since the SWWA region already has a natural gas supply network, methane 

was chosen as the gas storage medium. Estimates of the efficiency of the P2G 

process for methane range from 49% to 80% (Jentsch et al. 2014). The overall 

round trip efficiency (electricity to gas and back to electricity) depends on the 

efficiency of the gas turbine or other electrical generation technology. 

Weitemeyer et al. (2015) used a round trip efficiency of 30%. This study 

assumed that a P2G plant would only operate when there was excess renewable

electricity available, and so may operate at less than full capacity. The gas 

turbines were also assumed to operate at partial capacity in response to changes

in demand. Therefore the round trip efficiency was set at a lower value of 20% 

to account for efficiency losses due to these variable operating conditions. This 

is equivalent to an 18% efficiency drop at both the electricity to gas and gas to 

electricity conversion stages, which seems a reasonable amount to account for 

partial capacity efficiency losses. Since electricity was converted into methane 

only when excess generation was available, rather than at a constant rate, the 

total load demand was not increased. If charge level in the distributed energy 

storage system became low, then the P2G system was used to recharge the 

distributed storage, so that the overall combined generation capacity of both 

distributed storage and P2G could be maintained. The P2G storage methane 

leakage rate was set at 0.2% per month (Alvarez et al. 2012). Preliminary 

estimation of the extra greenhouse emissions at this leakage rate was less than 3

gCO2e/kWh.

8.2.6 Energy efficiency model

Improving the energy efficiency of the devices that use electricity is a type of 

demand-side management, where the demand is permanently decreased, rather

than increasing generation capacity. Modelling the improvement in 
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instantaneous power consumption, throughout the day, for a single appliance, 

device or machine would be complex and dependent on individual usage 

patterns. However, the model assumed that in aggregate, these would level out,

such that the saving in power demand through the day would be a constant 

fraction of the total load without efficiency improvements:

EEh=
eepc∗Load y, h

100
MW (8.6)

where eepc is the percentage energy efficiency improvement.

Estimates of technically possible improvements in energy efficiency vary. 

Backlund et al. (2012) estimated 25%, while Nadel et al. (2004) estimated a 

median value of around 33%. Chua et. al. (2013) estimated a 33% improvement 

in air conditioning efficiency was readily achievable (air conditioning is a 

significant portion of the summer peak load), and Matheisen et al. (2011) 

assumed a 50% decrease in household electricity consumption was possible by 

2050.  However, there is also significant household use of gas, which is not 

counted as part of the SWIS electrical demand. Some energy efficiency 

improvements could result in a shift from gas use to electricity use, for example 

induction cook tops replacing gas cook tops and reverse cycle air conditioning 

replacing gas heating. Also other barriers may prevent full implementation, and

the rebound effect, where efficiency improvements encourage greater use, may 

also reduce savings in energy use (Huntington 2011). Therefore a middle range 

improvement value of eepc = 30% was used as a reference in this thesis, with 

40% probably achievable. The current global average yearly reduction rate in 

energy intensity is around 1.5% (REN21 2016, 21). If energy demand on the 

SWIS decreased at the same rate every year, then after 15 years the energy 

197



8.2 Method

efficiency improvement would be about 20%, which was used as a lower 

bound.

8.3 Results

For the purpose of this study, the results of five scenarios were presented 

(Figures 8.3 to 8.7 and Table 8.5), although many more combinations are 

possible. The first scenario considered (S1) was a "small is beautiful" approach, 

where there is addition of more household solar and distributed storage 

capacity, but no more large power stations are added to the grid. Every suitable

home was provided with a 3.6 kW rooftop PV and 12 kWh battery storage 

system. Assuming there were about 950,000 suitable houses available by the 

time installation was complete, the total capacity was 3.42 GW of rooftop PV 

with 11.4 GWh of storage.
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Figure 8.3. Scenario S1, "Small is beautiful": 3.42 GW Rooftop PV, 11.4 GWh of storage, 30% EE 
improvements. PV stands for photovoltaic, EE stands for energy efficiency.

The PR of the roof top PV arrays was found to vary between 0.79 and 0.93, with 

the highest values occurring during winter. This was consistent with the 

findings of Carr and Pryor (2004). The modelling of this scenario indicated that 

although it was not possible to generate all of the power required by the SWIS 

using renewable energy, on many days the demand peak was substantially 
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reduced, and shifted to later in the evening (for example Figure 8.8). The 

storage system also significantly reduced the maximum ramp rate required 

from dispatchable generation to balance supply and demand from over 20 MW 

per minute to under 8 MW per minute.

In this scenario, approximately 20 kWh per household per day on average was 

generated over a year. This is enough to supply the electricity use of every 

household on average, even without energy efficiency improvements, or 

moderate improvements counteracted by a shift from gas to electricity use.   

To achieve 100% renewable energy generation, throughout the year, using only 

roof top PV arrays and storage required the addition of much more PV and 

storage capacity (Figures 8.4 and 8.9). This scenario (S2) required 19 GW of solar

PV and 90.25 GWh of storage to achieve the SWIS reliability standards of a 

LOLP less than 0.05% and yearly energy shortfall less than 0.002% under typical

weather conditions for 95 out of 100 years. This translates to about 20 kW of 

roof top PV and 95 kWh of storage per household. 
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Figure 8.4. Scenario S2, "PV": 19 GW Rooftop PV, 90.25 GWh of storage, 30% EE improvements. PV 
stands for photovoltaic, EE stands for energy efficiency.

Winter was found to be the most challenging season to meet the energy 

demand due to the reduced availability of the solar resource and shorter day 
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lengths. The storage requirement is at the upper end of the range of current 

electric vehicle battery capacities, but 20 kW of roof top PV per household is not

currently feasible, assuming there is little more rooftop area per house that 

could be utilised. However there is large untapped potential for commercial 

rooftop PV and the use of other surfaces. If a 250 W Solar PV panel has a surface

area of 1.65 m2, then 126 km2 of solar PV arrays would be required, which is 

about 2.3% of the surface area of the Perth greater metropolitan area of 5386 

km2 (AWDC 2011). A technical difficulty for this scenario is that the current 

SWIS grid is designed for power to flow unidirectionally from the transmission 

networks to the distribution networks. Residential households are connected to 

one of the distribution networks and may be supplied via roof top PV and 

home battery storage from other homes on the same network, but there may be 

imbalances in the supply and demand within each individual network. Also, 

some commercial or industrial loads may be connected to the higher voltage 

sub-transmission network and be inaccessible. Modification would be needed 

to enable bidirectional power flow between different distribution networks and 

the sub-transmission network. The maximum power shortfall encountered in 

100 years of simulation was 2450 MW, which is greater than the modelled back-

up generation capacity of 2034 MW, indicating this scenario could be 

vulnerable to sustained periods of low solar insolation in the Perth area. The 

reserve capacity would have to be increased, or an alternative seasonal energy 

storage or generation system would be needed to replenish the battery storage 

system. It would not be necessary to keep extra reserve capacity spinning as 

weather forecasting and the battery storage capacity would allow enough lead 

time for powering up.

An alternative (scenario S3) was to use solar thermal power stations with 

storage (Figure 8.5). In this scenario, a reference level of grid distributed 
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generation and storage was set, where overall household capacity reaches 3.42 

GW of PV and 11.4 GWh of battery storage, or 3.6 kW PV and 12 kWh per home

as before. The same again is added to commercial properties, to bring the total 

rooftop PV capacity to 6.84 GW and storage capacity to 22.8 GWh.
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Figure 8.5. Scenario S3, "Solar thermal": 2.8 GW solar thermal (15h thermal storage), 6.84 GW Rooftop 
PV, 22.8 GWh of storage, 30% EE improvements. PV stands for photovoltaic, EE stands for energy 
efficiency.

All further demand was met using a network of 14 solar thermal power 

stations, each with a capacity of 200 MW and molten salt thermal storage 

capacity of 15 hours. Four solar thermal stations were located to the east of 

Perth, to help stabilise the grid and take advantage of the solar resource in this 

low rainfall region. One of the stations was located fairly close to Perth to help 

provide high inertia centrally located generation, which provides a stable 

frequency reference for synchronous stability of remote generation. The largest 

cluster of solar thermal stations was located north of Perth to take advantage of 

the better solar resource at more northerly latitudes. Transmission line capacity 

from both of these clusters would need to be upgraded.

For this scenario, winter was again found to be the most challenging season to 

meet the energy demand, and there was usually excess capacity over the 

summer months. The maximum power shortfall encountered in 100 years of 
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simulation was 1163 MW, which is lower than the backup generation capacity 

of 2034 MW.

A high wind power scenario (S4) was considered next (Figure 8.6). With 2% per 

year population increase and 30% energy efficiency improvements, the yearly 

average SWIS power demand by the year 2030 would be about 2.1 GW. Hence 

if the currently proposed wind farms were built the total wind power capacity 

would rise to 1947 MW, which could supply around 30% of grid electrical 

demand assuming the overall capacity factor remains between 0.3 and 0.45, 

similar to the existing wind farms (see Table 8.2). To meet the whole demand, it 

was found that increasing the wind power capacity to nearly 8 GW was 

required, along with enough storage capacity to balance the peaks and troughs 

in wind power output. 
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Figure 8.6. Scenario S4, "Wind": 7.947 GW wind, 6.84 GW Rooftop PV, 166.25 GWh of storage, 30% 
EE improvements. PV stands for photovoltaic, EE stands for energy efficiency.

Assuming that the total rooftop PV capacity reaches 6.84 GW as in scenario S3 

before, it was found that a very large storage capacity of 166.25 GWh was 

needed to meet the SWIS reliability criteria 95% of the time over 100 simulation 

runs. This equates to 175 kWh of storage per home for 950,000 homes. If the 

storage capacity is the same as for scenario S3 above (22.8 GWh), then the 
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energy supply shortfall is about 3%. However, the reliability standards could be

met if a P2G plant capable of converting electricity to fuel at a rate of 450 MW 

was installed on the grid. In this scenario, about 80% of the energy generated 

was from wind.

Alternatively, if the currently proposed wind farms were built along with solar 

thermal stations (scenario S5), then only 2.5 GW of solar thermal capacity 

needed to be built instead of 2.8 GW (Figures 8.7 and 8.10). If less distributed 

storage was installed, then the required solar thermal capacity increased (Figure

8.11).
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Figure 8.7. Scenario S5, "Mixed Solar thermal and wind": 2.5 GW solar thermal (15h thermal storage), 
1.947 GW wind, 6.84 GW Rooftop PV, 22.8 GWh of storage, 30% EE improvements. PV stands for 
photovoltaic, EE stands for energy efficiency.

 The sensitivity of the solar thermal capacity to the level of distributed storage 

reduced in magnitude as storage capacity decreased to very low levels or 

increased to very high levels. At low levels, storage was the constraining factor, 

and was provided by the thermal storage of the power plants. At high levels, 

storage had saturated and generation capacity was the constraining factor, also 

provided by the solar thermal power plants.
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Figure 8.8. Scenario S1 example three day load profile of winter demand peak reduction using household 
3.6 kW rooftop solar systems with 12 kWh storage and 30% energy efficiency improvements. Winter was
chosen for this example for comparison with other scenarios. RTPV = rooftop photovoltaic arrays.
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Figure 8.9. Scenario S2 example winter three day load profile of complete renewable energy generation 
using 19 GW of solar PV systems with 90.25 GWh of storage and 30% energy efficiency improvements. 
Winter was chosen for this example because this season was found to be the most challenging to meet the 
energy demand due to the reduced availability of the solar resource and shorter day lengths.
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Figure 8.10. Scenario S5 example winter three day load profile of complete renewable energy generation 
using 2.5 GW of solar thermal stations (with 15h thermal storage), 1947 MW wind power, 6.84 GW 
rooftop solar PV systems with 22.8 GWh of storage and 30% energy efficiency improvements. Winter 
was chosen for this example because this season was found to be the most challenging to meet the energy 
demand due to the reduced availability of the solar resource and shorter day lengths. RTPV = rooftop 
photovoltaic arrays.

0 5 10 15 20 25 30 35 40
1.5

2

2.5

3

3.5

4

20% EE

30% EE

40% EE

450 MW P2G

Distributed storage capacity (GWh)

S
o

la
r 

th
e

rm
a

l p
o

w
e

r 
s

ta
tio

n
 c

a
p

a
ci

ty
 (

G
W

)

Figure 8.11. Solar thermal power plant capacity required for different levels of distributed storage 
capacity for variations of scenario S5. The input power capacity of the Power to Gas (P2G) system was 
450 MW with round trip efficiency of 0.2. EE stands for energy efficiency improvements.
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If a 450 MW P2G system was installed with round trip efficiency of 20%, similar

to the high wind scenario S4, then required solar thermal capacity was 

decreased significantly at all storage levels (Figure 8.11), and to 1.7 GW at the 

reference 22.8 GWh distributed storage level. Alternatively, if no P2G system 

was used but energy efficiency measures were increased from 30% to 40%, then 

another 500 MW of solar thermal capacity could be avoided at the reference 22.8

GWh storage level, reducing the total to 2 GW. At high storage levels this 10% 

increase in efficiency was almost as effective as the P2G system at reducing the 

required solar thermal capacity. However, if energy efficiency improvements 

only reached 20%, then the amount of required solar thermal capacity increased

by 700 MW at the reference 22.8 GWh distributed storage level.

Table 8.5. Installed capacity for each 100% renewable scenario for the SWIS electrical grid.

Scenario Energy 

efficiency

Solar PV Distributed 

storage

Power to 

gas

Solar 

thermal

Wind

Current SWIS capacity - 500 MW* 120 MWh* - - 465 MW

S2 PV 30% 19 GW 90.25 GWh - - 465 MW

S3 Solar thermal 30% 6.84 GW 22.8 GWh - 2.8 GW 465 MW

S4 Wind 30% 6.84 GW 166.25 GWh - - 7.947 GW

S4  + P2G 30% 6.84 GW 22.8 GWh 450 MW - 7.947 GW

S5 Mixed solar thermal and wind 30% 6.84 GW 22.8 GWh - 2.5 GW 1.947 GW

S5 + P2G 30% 6.84 GW 22.8 GWh 450 MW 1.7 GW 1.947 GW

S5 + less EE 20% 6.84 GW 22.8 GWh - 3.2 GW 1.947 GW

S5 + more EE 40% 6.84 GW 22.8 GWh - 2 GW 1.947 GW

*Estimated

The required capacities for each technology in each scenario were now finalised

(Table 8.5), and the required installation schedules for each scenario could be 

estimated (Table 8.6).
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Table 8.6. Yearly constant installation rates required for each 100% scenario to be completed by the year 
2030.

Scenario Energy 

Efficiency*

Solar PV Distributed 

storage

Power to

gas

Solar thermal Wind

S2 PV 2% 1267 MW 6017 MWh - - -

S3 Solar thermal 2% 187 MW 1520 MWh - 187MW

(or one 200MW 

plant per year for 14

years)

-

S4 Wind 2% 187 MW 11083 MWh - - 433 MW

S4 + P2G 2% 187 MW 1520 MWh 30 MW - 433 MW 

S5 Mixed solar

thermal and wind

2% 187 MW 1520 MWh - 167 MW

(or one 200 MW 

plant per year for 12

years and then one 

100 MW plant)

99 MW

S5 + P2G 2% 187 MW 1520 MWh 30 MW 113 MW

(or one 150 MW 

plant per year for 11

years and then one 

50 MW plant)

99 MW

S5 + less EE 1.33% 187 MW 1520 MWh - 213 MW 99 MW

S5 + more EE 2.67% 187 MW 1520 MWh - 133 MW 

(or one 200MW 

plant per year for 10

years)

99 MW

PV = photovoltaic arrays, EE = energy efficiency improvement. *% reduction of load demand with no 
efficiency improvements.

Solar PV, wind, and battery storage have exhibited the potential for exponential

growth in installed capacity, and energy efficiency improvements could be 

represented as a percentage reduction in energy demand. When compared to 

current global growth rates (Table 8.7), the required growth rates for these 
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technologies were either less or similar in most cases, except for the high PV 

and wind scenarios S2, S4 and S4+P2G, which would require accelerated roll 

out of distributed storage, and wind capacity for the high wind scenarios.

In all scenarios except the low efficiency scenario (S5 + less EE), to reach 30% 

energy efficiency improvements in 15 years would require an accelerated 

reduction in demand compared to the current global improvement rate. 

However the 2.35 to 3.35% rate of demand reduction per year seemed feasible, 

especially since the amount of reduction actually decreases as demand reduces.

Table  8.7. Yearly exponential installation rates for each 100% scenario to be completed by the year 2030.

Scenario Energy efficiency Solar PV Battery storage Wind

Current SWIS capacity - 500 MW* 120 MWh* 465 MW

Global growth rate 2015 1.5%a 28%b 50%c 17%b

S2 PV 2.35% 27.5% 55.5% -

S3 Solar thermal 2.35% 19% 41.9% -

S4 Wind 2.35% 19% 62% 20.8% 

S4 + P2G 2.35% 19% 41.9% 20.8% 

S5 Mixed solar thermal and wind 2.35% 19% 41.9% 10% 

S5 + P2G 2.35% 19% 41.9% 10% 

S5 + less EE 1.48% 19% 41.9% 10% 

S5 + more EE 3.35% 19% 41.9% 10%

*Estimate. a% reduction in energy intensity per year (REN21 2016). bREN21 (2016). cIRENA (2015).

There is currently no installed capacity of solar thermal power tower and power

to gas plants on the SWIS, so an exponential growth rate for these technologies 

could not be quantified. These are the least mature technologies. Required 

installed capacity for both was reduced by high installation rates of energy 

efficiency improvements and distributed storage.

For all of the 100% renewable energy scenarios (S2 to S5), it was found that 

winter was the most challenging time for the power systems, because of the 
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lower availability of solar and wind resources, and shorter day length. 

Therefore significant extra capacity had to be installed, resulting in generation 

overcapacity during the summer months.

For all of these scenarios, the reference storage capacity was 22.8 GWh. 

Reserving the upper and lower 5% of storage capacity to provide synthetic 

inertia meant that the storage system could provide at least 228 GWs of inertia, 

much greater than the 12.4 GWs of inertia on the present SWIS grid (Table 8.8), 

and also absorb or supply more than 4 GW of power for 15 minutes in response 

to a sudden load change or generation fault. 15 minutes is enough time for the 

spinning reserve generators to start generating power and provide spinning 

reserve if required. Hence the storage system could provide frequency stability 

control services as well. To provide these services a portion of the storage 

capacity would have to be connected directly to the transmission and sub-

transmission networks, rather than the distribution networks that connect most 

homes. The lowest storage level considered in Figure 8.11 was 1.24 GWh, 

enough to provide the same inertia as the present SWIS grid.

Table 8.8. Synthetic inertia from reserving the upper and lower 5% of storage capacity for each 100% 
renewable energy scenario.

Scenario Storage (GWh) Inertia (GWs) Current SWIS inertia (GWs)

S2 90.25 902.5 12.4

S3 22.8 228 12.4

S4 166.25 1662.5 12.4

S4 + P2G 22.8 228 12.4

S5 22.8 (1.24 to 40) 228 (12.4 to 400) 12.4

S5 + P2G 22.8 (1.24 to 40) 228 (12.4 to 400) 12.4

S5 + less EE 22.8 (1.24 to 40) 228 (12.4 to 400) 12.4

S5 + more EE 22.8 (1.24 to 40) 228 (12.4 to 400) 12.4
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For scenarios S3 to S5, most of the large generators are far from the main load 

centre (the Perth area). Therefore the spinning synchronous compensator 

reserve close to Perth may aid the synchronous stability of the large remote 

generators. In these scenarios, the maximum power shortfall encountered in 100

years of simulation was lower than the back-up generation capacity of 2034 

MW. This indicated that for those rare times of sustained and widespread low 

solar and wind generation, the reserve could most probably compensate for 

shortfalls without any load shedding.

Table 8.9. Potential peak power flow running through the three main transmission corridors to Perth for 
each 100% renewable energy scenario.

Scenario Generation type Southern corridor

(MW)

Eastern corridor

(MW)

Northern corridor

(MW)

Solar 0 0 10

S2 Wind 35 206 223

Total 35 206 233

Solar 0 800 2010

S3 Wind 35 206 223

Total 35 1006 2233

Solar 0 0 40

S4 Wind 1300 1706 4940

Total 1300 1706 4980

Solar 0 0 40

S4 + P2G Wind 1300 1706 4940

Total 1300 1706 4980

Solar 0 600 1940

S5 Wind 300 206 1440

Total 300 806 3380

Solar 0 600 1140

S5 + P2G Wind 300 206 1440

Total 300 806 2580

Solar 0 600 2640

S5 + less EE Wind 300 206 1440

Total 300 806 4080

Solar 0 600 1440

S5 + more EE Wind 300 206 1440

Total 300 806 2880
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Also in these scenarios, generation capacity tends to move from fossil fuel 

based generation in the south to solar and wind generation in the north and 

east, hence transmission capacity would need to be expanded along the 

northern and eastern corridors. With a back-up generation capacity of 2034 

MW, scenarios S3 to S5 were found to be potentially vulnerable to a 

simultaneous interruption of all transmission capacity along the northern 

corridor (Table 8.9). The distributed storage system could compensate for a 

short time, however transmission line expansion should use multiple lines to 

reduce the probability of complete failure, or else reserve capacity should be 

increased.
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9 Discussion

The results of this simulation indicated that for typical weather conditions it is 

feasible to supply 100% of the energy demand of the SWIS system, projected 

out to the year 2030, on an hour by hour basis using a combination of energy 

efficiency measures, residential and commercial roof top photovoltaic systems, 

solar thermal power stations with heat storage, wind power and distributed 

battery storage systems. All of these technologies are currently available, with 

energy efficiency, wind, solar PV, in large scale commercial operation and 

battery storage approaching large scale production. Although costs are not 

explicitly considered, the costs of wind power and solar PV have fallen rapidly 

over the past decade, to the point where new build wind power in particular 

can compete with new build fossil fuel power stations. However, the costs of 

solar thermal stations are currently higher, as they are not as far along the 

development curve.  For 100% renewables, the over-generation required to 

cover winter loads will increase the capital costs. The use of battery storage 

enabled buffering of the variable output of solar PV and wind farms, meaning 

that the maximum ramping rates required of the dispatchable generators could 

be limited, which has the potential to reduce costs during transition periods 

when both renewable power generators and conventional fossil based 

generators are connected to the grid. The level of storage needed in the 100% 

renewable energy storage scenarios meant that, as well as providing synthetic 

inertia, participation in primary and secondary frequency stability control 

services was possible. This would reduce the need to keep existing synchronous

generators spinning to provide these services, however they are needed to 

provide a backup in the case of generation shortfall or transmission line fault. 

213



9 Discussion

The estimated synthetic inertia for these scenarios (S2 to S5) was greater than 

the inertia currently on the SWIS grid, confirming that the amount of 

distributed battery storage is compatible with grid stability.

The solar thermal scenario S3 and mixed scenario S5 used 22.8 GWh of storage, 

which is equivalent to 0.95 gigawatt days. This is consistent with the claim by 

Pickard et al. (2009) that storage levels in the order of gigawatt days would be 

needed to maintain grid stability. However this level of storage came about 

from a 'bottom-up' approach. It was a tally of the storage capacity if 90% of 

homes installed a small 12 kWh storage system, and commercial buildings 

matched them. The PV scenario S2 required 90.25 GWh of storage (3.76 

gigawatt days), and the predominant wind scenario S4 with no P2G storage 

required a much higher 166.25 GWh (6.93 gigawatt days). These were 

determined by a 'top-down' approach of meeting the SWIS reliability standards.

Thus the claim by Pickard et al. (2009) was supported in these two scenarios.

The simulation assumed typical weather conditions in which the solar and 

wind resources are strongest in the summer season and weakest in the winter 

season, when day length is short. Similar to the findings of Elliston et al. (2012), 

the winter evening peak period was the most difficult to supply, and there was 

usually large overcapacity in the summer months. If winter weather conditions 

are encountered that cause a shortfall in generation from solar and wind, then a 

reserve source of energy could be used to maintain storage levels and required 

generation. 

The results of the scenarios with a P2G system indicated that this kind of 

system could act as a reserve and significantly reduce either the required solar 

thermal and storage capacity, or both, and may be necessary for a high wind 

power scenario to meet SWIS reliability standards without a very large amount 
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of storage. However this technology is still in the development stage. The 

balance between using more distributed storage or more P2G capacity would be

an economic decision as well as a technical one. Improving the flexibility and 

efficiency of P2G systems should be a priority. Improving energy efficiency 

reduced the capacity of solar thermal power, distributed storage or P2G needed

to supply the demand.

Alternatively to P2G, a renewable energy resource that is strong during the 

winter months, such as wave power (Hughes and Heap 2010), could be utilised.

Wave power technology is advancing into commercial operation and it is 

worthwhile modelling the potential contribution to the SWIS grid. Another 

possible option is the use of biomass, which can be stored on seasonal time 

scales until it is needed, but attracts controversy over the use of native forest 

wood for fuel and the substitution of food production for energy production. 

Oil mallee biomass (Wu et al. 2008), from land in the wheat belt that cannot be 

used for food, may avoid both problems. However the capacity for sustainable 

large-scale production must be modelled, and also biomass cannot utilise any 

excess summer electrical generation from solar and wind. There have been 

proposals for ocean water pumped hydro storage systems that utilise the height

of coastal cliffs (Hearps et al. 2014), as an alternative to only having battery 

storage. These could also store excess energy on seasonal time scales, and could 

utilise excess summer generation, although the main use is likely to be on daily 

time scales. 

The installation rates required to implement each of the scenarios differed 

significantly, particularly with the yearly addition of storage capacity required. 

The predominant wind scenario S4 required the highest uptake at almost 11.1 

GWh per year, or almost 64,000 homes per year with 175 kWh of storage each, 

which seems unrealistic. However if a more realistic storage level was reached, 
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and there was some other form of renewable energy available to cover the 

shortfall, then this scenario might be more viable. The mixed solar thermal and 

wind scenario S5 had the most balanced uptake rates, with reduced uptake rate 

for solar thermal power stations compared to the predominant solar thermal 

scenario S3. Solar thermal power station technology is perhaps the least 

commercially mature but the requirement to build one 200 MW plant per year 

seems feasible. Wind power is the most commercially mature technology, 

however uptake rates are limited by transmission line capacity limitations and 

necessary approval processes even though much of the land used by wind 

farms can still be used for other purposes. Use of the currently proposed new 

wind farm projects could be expected to reduce the lead times required. Energy 

efficiency, roof top PV, and distributed storage can perhaps be implemented the

fastest, as they require no or little extra land. The value of implementing energy

efficiency measures in reducing the required generation was demonstrated in 

scenario S5 and should be considered one of the most effective components of a 

large scale renewable energy electricity system. However, further 

improvements in energy efficiency become more difficult as efficiency 

improves. Use of the currently proposed new wind farm projects in the mixed 

solar thermal scenario S5 meant that 300 MW of solar thermal capacity was 

avoided compared to scenario S3, or about 15% of the installed wind power. 

This was within the 5-40% range of capacity credit (or effective load carrying 

capacity) for wind power found by DOE (2008) and similar to the Irish and 

Norwegian findings of around 14% at higher penetrations of wind power  

(Holttinen et al. 2007).

The development of this accessible interactive simulation tool that can be run in

a web browser allowed different scenarios to be easily considered and 

modified. However this tool cannot be used to decide precise locations for 
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renewable energy power stations, as the solar and wind models are designed 

for simplicity and quick computation. However its greatest strength is as a first 

approximation tool to gain an idea of the scale of renewable energy capacity 

required for the SWIS to move to a 100% renewable energy system. Much more 

detailed solar and wind resource modelling, land use mapping and 

transmission system planning would be required to decide the actual sites.

This study modelled a snapshot of the possible SWIS hourly demand profile in 

the year 2030. Faster population increase, large-scale adoption of electric 

vehicles or a large-scale switch from using gas to using electricity could all 

significantly increase the demand for electricity from the SWIS grid, and hence 

the need to build more renewable energy capacity and improve energy 

efficiency. Improvements in energy efficiency could compensate for population 

growth in the short to medium term. Reductions in transportation energy use 

would require significant uptake of public transport and reorganisation of 

economic activity and housing densities. The rooftop area available for PV 

could be affected by changes in the housing mix as population grows. 

Conversely, improvements in PV cell efficiency will increase the capacity 

available for a given rooftop area. The urgency of reducing emissions is 

balanced by renewable energy technologies that are expanding rapidly on a 

global scale, which makes the task realistic. This simulation demonstrates the 

feasibility of a 100% renewable energy system for the SWIS. Although the costs 

will be higher for a rapid build, the urgency of reducing greenhouse emissions 

and the far higher economic, social, environmental and health costs of failing to 

prevent dangerous climate change, as well as the increase in human mortality, 

mean there is every justification to pursue this option.
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10 Conclusions

This chapter addresses the original research questions and provides a wrap up 

of the main findings and implications of this research.

10.1 Research questions revisited

The principal objective of this research has been to answer the following 

questions:

1. Do existing solar and wind renewable energy systems currently offer the best 

path for achieving a rapid transition to a sustainable, low emission, electricity 

system for the South West of Western Australia? The principal criterion is 

the ability to rapidly expand generation and reduce greenhouse gas 

emissions. There are also ancillary criteria that should be considered, 

such as reliability, water use, and environmental impact. Cost is also an 

important factor. However, given the urgency of the climate situation, 

rapid reduction in greenhouse emissions must outweigh near term cost, 

or the long term cost is likely to be much greater.

2. As a corollary to the first question, just how far can the renewable energy path 

be taken? Can solar and wind renewable energy systems, aided by 

storage and energy efficiency improvements, completely replace the 

existing conventional generation systems? Is a 100% renewable energy 

system a technically feasible option for the SWIS?

These questions were answered in two parts. Firstly, an extensive literature 

search was conducted and three different options for reducing emissions 
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quickly were examined and compared. These options were nuclear power, 

Carbon Capture and Storage (CCS), and renewable energy. Secondly, models 

for solar power (both PV and solar thermal), wind power, storage (both battery 

and molten salt) and energy efficiency were developed. By comparing the total 

generation for a fleet of solar and wind stations with total load demand, on an 

hour by hour basis, several different scenarios for 100 percent renewable 

electricity supply for the SWIS grid were developed. The reliability and 

construction schedules for these scenarios were examined. 

10.2 Summary of key findings

10.2.1 Literature search

The literature search compared renewable energy to two other major options, 

nuclear power and carbon capture and storage. The relative merits of each 

option were summarised in Table 3.6 and repeated here in Table 10.1.

The growth rates of solar and wind energy systems were found to be currently 

much greater than either nuclear or CCS systems, and the ability to expand 

nuclear and CCS systems fast enough to avoid dangerous climate change was 

found to be questionable. Further investment in deploying these technologies 

would be a dead end unless alternatives such as renewables cannot be deployed

quickly enough to avoid dangerous climate change, or cheaply enough to avoid

the economic attractiveness of interim measures. The use of renewable energy 

and energy efficiency was found to be the most viable option, but many 

questions remain about the large-scale deployment of these technologies. On a 

global scale, there are more than enough renewable energy sources to meet 

world energy demand, though some countries have more resources available 

than others.
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Table 10.1. Advantages and disadvantages of alternative technologies for reducing emissions from 
electrical power generation.

Technology Advantages Disadvantages

Nuclear power Current large installed base Can't provide peaking power 

efficiently, safety concerns, 

weapons proliferation, waste 

disposal, cost, poor scalability, 

slow pace of emission reductions,

resource limitations, high water 

use, threat to civil liberties

Renewable energy Modularity, good scalability,  

rapid pace of emissions 

reductions, wide distribution of 

resources

Variability, diffuse resource, 

need for storage or reserve 

generation, possible material 

constraints, possible constraint on

battery deployment, high water 

use for solar thermal with water 

cooled systems

Carbon Capture and Storage 

(CCS)

Can be applied to existing power 

plants

Poor scalability, unknown pace 

of emission reductions, leakage 

concerns, cost, health concerns, 

resource limitations, high water 

use

Embodied energy and life-cycle emissions of any of the technological choices, 

coupled with the risk of reaching a climate tipping point, mean there is an 

upper bound to their growth rate if they are to play an effective role in reducing

greenhouse emissions. Renewable energy breeding and improvements in 

energy efficiency are potential ways to achieve a rapid transition to a low 

emission energy system, and also improvement in global living standards 

without increasing overall energy use. To restrain net manufacturing energy 

requirements and environmental impacts, recycling of batteries and improving 

their cycle lives will be high priorities if the current battery technologies are to 

be used for grid electrical energy storage on a large scale.
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The short-term spatial and temporal variability of solar and wind energy 

systems is a challenge that must be met for these technologies to have a 

significant impact. Storage and the use of sustainable bioenergy as reserve 

generation were identified as ways to balance the supply and demand 

variability. Conversely, the modularity, scalability, and short lead times of solar

and wind technologies mean there is lower long-term financial uncertainty than

in large fossil or nuclear plants. Small fossil fuel cell or gas turbine technologies 

may also reduce long-term financial uncertainty. The distributed nature of 

many renewable energy forms and their localised sources of energy confers 

energy security advantages compared to fossil and nuclear power in many 

countries (though not in the case of Australia which has its own coal and 

uranium reserves).  The lower levels of air pollution and waste disposal 

problems are also advantages.

10.2.2 Model development

The second part of this research involved simulation of hypothetical 100 percent

renewable energy (including energy efficiency) scenarios for electrical supply of

the SWIS grid. Models, which were simple and fast enough to allow for 

interactive operation, were built to simulate solar and wind resources on an 

hourly time scale for any location in the South West region of Western 

Australia. Simple models for solar PV power generation and battery storage 

were also developed. A generic solar power tower model with molten salt heat 

storage was developed and calibrated to the power tower model used by the 

System Advisor Model (SAM). With the integration of all these models, it was 

possible to simulate hour by hour energy generation and electricity demand for 

the overall SWIS grid, and develop scenarios for energy supply under different 

configurations of renewable energy systems. It was found that:

222



Chapter 10. Conclusions

1. For the solar model, if a single metric of 'cloudiness' was simulated, then 

the beam, diffuse and reflected components of irradiance could be 

efficiently obtained from the same components estimated for clear sky 

conditions. Hence the model could be used in simulations of both flat 

surface devices (such as PV) and concentrating solar power devices (such

as solar thermal), and the flat surface devices could be angled at different

tilt angles to horizontal. Since rainfall and cloudiness tend to decrease 

further inland from the coast of Western Australia, position along the 

coast and distance inland were used as alternative position metrics to 

latitude and longitude, to simplify the required calculations. Data from 

weather stations concentrated in the South West region of Western 

Australia were used to calibrate and test the simulation. The model 

generated synthetic horizontal radiation data on hourly, daily and 

seasonal time scales with accuracies in the range of other models 

developed for wide areas or several locations, and also generated hourly 

cloudiness data with reasonably similar statistical characteristics to the 

measured data. Therefore in other parts of the world with a pattern of 

declining rainfall inland from the coast, there is potential for using 

position along the coast and distance inland as alternative position 

metrics to latitude and longitude, to simplify the required calculations. 

2. Measurements of wind speed near the ground do not give a good 

representation of wind speeds at the hub height of modern wind 

turbines, so wind speed data at 50m above the ground from the MERRA 

global atmospheric database were used to calibrate the wind power 

generation model, along with hub-height measured data at two sites to 

characterise the wind shear.  Simulated wind power output on hourly, 

daily and seasonal time scales was compared to measured SCADA data 
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from wind farms already operating on the SWIS grid. Analysis of the 

MERRA data indicated that wind sites closer to the coast tended to have 

diurnal output peaks in the afternoon, earlier than those wind sites 

further inland which peak later in the evening. Also, the normalised 

residual of hourly wind speed had a double exponential distribution 

rather than a normal distribution. A translated square-root 

transformation function yn=(√(1.96+ ye )−1.4)/0.302  was used to convert 

this to a normal-like distribution so that autoregressive time series 

analysis could be used to develop the model. Wind farm capacity factors 

were found to have a greater correlation to other wind farms (as a 

function of distance) when estimated from MERRA data than when 

calculated directly from the measured SCADA data. Hence there may be 

more variability in air density, wind shear factor, wind farm wide wind 

speed variability, or some other factor than accounted for using solely 

MERRA data. Therefore the model used historical measured distance 

correlation data to calibrate distance correlation between wind farms, 

rather than MERRA data. Simulated wind power output was compared 

to measured wind power output at the six largest wind farms in Western

Australia. The simulation tended to generate slightly conservative wind 

power output values compared to the measured values. Since the 

MERRA database has global coverage, using it in other parts of the 

world to simulate hourly wind power generation from multiple wind 

farms is a viable option if hub height wind speed data is not available. 

However, possible discrepancies in distance correlation must be 

accounted for.

3. The year 2009 was the last year before significant amounts of rooftop 

solar PV systems were connected to the SWIS grid, so this year was used 
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as a base year for the hour by hour electricity demand profile. Starting 

with the level of renewable energy generation present in 2015, a target 

year of 2030 for complete renewable energy generation was set, and 

electricity demand was increased with population growth and then also 

potentially decreased if energy efficiency measures were deployed. The 

number of homes suitable for roof top PV and storage installation was 

projected to increase from around 653 000 in 2011 to around 950,000 by 

2030.  It was found that if energy efficiency measures reduced demand 

by 30%, and the 950,000 suitable homes each had a 3.6 kW rooftop solar 

array and 12 kWh of battery storage, then current residential electricity 

demand of 17 kWh per home per day could be supplied, and the 

demand peak would be reduced and shifted to later in the evening on 

many days. However the total SWIS demand could not be met.

4. The current SWIS reliability standards are a loss of load probability of no

more 0.05%,  and no more than a 0.002% shortfall in generated energy 

over one year. If energy efficiency was improved by 30%,  commercial 

roof tops and other surfaces were utilised such that 126 km2, or about 

2.3% of the surface area of the Perth greater metropolitan area of 5386 

km2, was covered in solar panels to bring capacity up to 19 GW, and 

90.25 GWh of storage (95 kWh per household on average) was added, 

then the SWIS grid could be completely powered from the sun, meeting 

the current reliability standards at least 95 times out of 100 under typical 

weather conditions. Even though summer peak demand is greater, 

winter was found to be the most challenging season to meet the energy 

demand due to the reduced availability of the solar resource and shorter 

day lengths. Because of the geographic concentration of most solar 
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power generation in one area, this scenario is more likely to be 

vulnerable to prolonged periods of low solar insolation around Perth.

5. A reference level for grid distributed generation and storage was set at 

6.84 GW of residential and commercial rooftop solar PV arrays, and 22.8 

GWh of battery storage. This was equivalent to 3.6 kW PV and 12 kWh 

storage per home for the 950,000 homes, with the same again added to 

commercial properties. With these systems in place, a combination of 

30% improvement in energy efficiency and 2.8 GW of solar thermal 

power stations (with 15 hours storage) could supply the total SWIS 

demand, meeting the current reliability standards. The winter months 

were again the most challenging time for meeting the demand.

6. Although onshore wind power is now one the cheapest forms of energy 

generation, a scenario relying mainly on wind power required nearly 8 

GW of wind power capacity, 6.84 GW solar PV and very large amounts 

of distributed storage (166.25 GWh), to meet the current reliability level 

of the SWIS grid. This high storage requirement might reflect the smaller 

geographic distribution of energy generation, in that solar is not 

generated from locations outside Perth city. If 22.8 GWh storage was 

used instead (similar to the previous scenarios), then the energy shortfall 

was about 3%, leaving open the possibility of using biomass or some 

other renewable energy source as a backup. Alternatively a Power to Gas

(P2G) system with a capacity to convert up to 450 MW of excess 

electricity from the grid into methane, and a round trip efficiency 

(electricity to gas to electricity) of 20% could provide seasonal storage 

and enable the high wind system to meet the reliability standards with 

22.8 GWh of distributed storage.
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7. Wind power could be used to reduce the required capacity of the solar 

thermal scenario. A combination of 30% improvement in energy 

efficiency, 1947 MW of currently proposed wind farms, 2.5 GW of solar 

thermal power stations (with 15 hours storage), with the reference 6.84 

GW of residential and commercial rooftop solar arrays, and 22.8 GWh of 

distributed storage could supply the total SWIS demand. 300 MW of 

solar thermal capacity was avoided, or about 15% of the installed wind 

power. This was within the 5-40% range for capacity credit found by 

DOE (2008) and similar to the Irish and Norwegian findings (Holttinen et

al. 2007). 

8. The sensitivity of the required solar thermal capacity to the level of 

distributed storage reduced in magnitude as storage capacity decreased 

to very low levels or increased to very high levels. At low levels, storage 

was the constraining factor, and was provided by the thermal storage of 

the power plants. At high levels, storage had saturated and generation 

capacity was the constraining factor, also provided by the solar thermal 

power plants.

9. If energy efficiency improvements could be increased to 40%, then a 

further 500 MW of solar thermal capacity was able to be avoided at the 

22.8 GWh distributed storage level, indicating that improving energy 

efficiency should be a priority for any renewable system roll out. 

Alternatively, around 10 GWh of distributed storage (see Figure 8.11) 

could be avoided at the 2.5 GW solar thermal capacity level, again 

emphasising the importance of energy efficiency improvements, given 

the possible embodied energy and environmental constraints to large 

scale battery production.
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10. A 450 MW P2G system with a 20% round trip efficiency significantly 

reduced the required solar thermal capacity at all levels of distributed 

storage. At very high levels of distributed storage, increasing energy 

efficiency became almost as effective as P2G at reducing the required 

solar thermal capacity.

11. The 100% renewable energy scenarios all had distributed storage on the 

grid. This storage was kept in a partially charged state so that synthetic 

inertia could be provided. The lowest level of storage considered was 

1.24 GWh, estimated to provide around 12.4 GWs of inertia, similar to 

the inertia presently on the SWIS grid. At the reference 22.8 GWh storage

level, the synthetic inertia was estimated to be at least 228 GWs, far more 

than presently on the SWIS grid.

12. The solar thermal scenarios used 22.8 GWh of storage as a reference, 

which is equivalent to 0.95 gigawatt days. This is consistent with the 

claim by Pickard et al. (2009) that storage levels in the order of gigawatt 

days would be needed to maintain grid stability. However this level of 

storage came about from a 'bottom-up' approach. It was a tally of the 

storage capacity if 90% of homes installed a small 12 kWh storage 

system, and commercial buildings matched them. The PV scenario 

required 90.25 GWh of storage (3.76 gigawatt days), and the 

predominant wind scenario required a much higher 166.25 GWh (6.93 

gigawatt days). These were determined by a 'top-down' approach of 

meeting the SWIS reliability standards. Thus the claim by Pickard et al. 

(2009) was supported by these scenarios.

13. For all of these 100% renewable energy scenarios, it was found that 

winter was the most challenging time for the power systems, because of 
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the lower availability of solar and wind resources, and shorter day 

length. Therefore significant extra capacity had to be installed, resulting 

in generation overcapacity during the summer months.

14. The installation rates required to implement each of the scenarios 

differed significantly, particularly with the yearly addition of storage 

capacity required. The predominant wind scenario required the highest 

uptake at almost 11.1 GWh per year, or almost 64,000 homes per year 

with 175 kWh of storage each. The mixed solar thermal and wind 

scenarios had the most balanced uptake rates, with reduced uptake rates 

for solar thermal power stations compared to the predominant solar 

thermal scenario. The required average yearly uptakes were a 2% 

improvement in energy efficiency per year, 187 MW of rooftop PV per 

year, 1520 MWh of distributed storage per year, 167 MW of solar thermal

capacity per year, and 99 MW of wind power per year. If the uptake of 

energy efficiency measures were increased to 2.67% per year, then the 

rate of solar thermal capacity uptake could be reduced to 133 MW per 

year. Compared to current exponential global growth rates of solar PV, 

wind, storage, and energy efficiency, only efficiency improvements 

needed to be implemented at a faster rate (2.35% per year exponential 

reduction in energy use compared to 1.5%).

The overall finding was that the answer to the second research question is yes. 

Solar and wind renewable energy systems, aided by storage and energy 

efficiency improvements, could completely replace the existing conventional 

generation systems. A 100% renewable energy system is a technically feasible 

option for the SWIS, and the required installation rates for many of the 

scenarios considered here are reasonable, given a short time frame of 

completion by 2030.  Although the costs will be higher for a rapid build, the 
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urgency of reducing greenhouse emissions and the far higher economic, social, 

environmental and health costs of failing to prevent dangerous climate change, 

as well as the increase in human mortality, mean the overall cost will still be far 

less. Care must be taken to minimise direct environmental impacts by siting 

wind farms and solar power stations on previously cleared land (such as farms)

if possible, away from bird migration corridors, and close to existing 

transmission line corridors.

Some preliminary cost estimates have been made for the 100% renewable 

energy scenarios (Laslett 2017). These estimates indicate that the S4+P2G 

scenario, with high wind capacity and utilising power to gas storage, is the 

cheapest at current prices, but there is great uncertainty over the costs of the 

nascent P2G technology. The cost of the mixed scenario S5 was reduced by 

increasing energy efficiency measures, which might be achieved using more 

mature technologies. Also the costs of many renewable energy technologies are 

falling at a rapid rate, so it is difficult to predict what balance of generation, 

storage and energy efficiency will be the most cost effective. The high wind 

scenario S4 (with no P2G) was the most expensive at current prices, because of 

the very high distributed storage levels required, followed by the high solar PV 

scenario S2, again because of the high levels of storage.

10.3 Limitations and further research

As with all models, there are limitations. A perfect model would need to be as 

complex as reality, and therefore useless. In particular, the following limitations

were noted, with scope for future model expansion and research:

1. Each scenario was simulated over 100 years, which would cover typical 

variations in weather conditions, but there was no simulation of atypical 
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weather conditions, particularly the frequency and duration of long 

periods of low solar and wind availability, and how this may be affected 

by climate change. 

2. The network of weather stations used to calibrate the solar model is 

limited in number, and the MERRA grid used to calibrate the wind 

model is limited to a north-south resolution of approximately 56 km and 

an east-west resolution of approximately 62.5 km. So these models are 

limited in their spatial precision and do not account for the local 

meteorological effects needed to predict exactly the sun and wind 

conditions for a particular site. Also no account is taken of land use, 

which may prohibit the use of a particular site for a renewable energy 

power plant. Much more detailed solar and wind resource modelling, 

land use mapping and transmission system planning would be required 

to decide actual sites for solar power stations or wind farms.

3. The simulation did not model correlations of demand with weather 

conditions, meaning that the required generation capacity or storage 

capacity for each scenario might be an overestimation. For example, days

with a high peak demand may be correlated with strong solar irradiance 

and high temperatures, but the simulation may have generated low solar

irradiance and/or wind speeds for that day, putting a greater burden on 

storage reserves to meet the demand, or requiring an increase in 

generation capacity to compensate for the low resource and meet the 

reliability conditions.

4. The electrical demand on the SWIS system would increase if there is a 

significant switch from gas to electrical appliances, or a significant 
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uptake of plug in hybrid or electric vehicles. In these cases, more 

generation and storage capacity would need to be added.

5. The number of options available for scenario building could be increased

if biomass and wave power modelling were incorporated, and might 

reduce the storage capacity required. It would be advantageous to model

as many different renewable energy resources and storage technologies 

as possible, as this will increase the options to provide a more balanced 

and diverse energy supply, which may also mitigate any material 

bottlenecks which may arise.

6. Since most of the distribution network is concentrated on Perth city, the 

potential for siting large scale power stations within the major part of the

distribution network is limited, other than for small scale solar and 

storage. These are already assumed to be located within the distribution 

network and can reduce capacity constraints. However there are areas 

outside of the Perth metropolitan area that might also suffer from 

network capacity constraints, such as Mandurah (Western Power 2016b) 

and the Geraldton area (Western Power 2016a). One possible solution is 

the deployment of concentrating solar thermal power stations with 

storage at strategic locations (Rutovitz et al. 2013). Capturing the value of

avoided network upgrades could improve the cost competitiveness of 

solar thermal.

7. Since there is high transmission capacity between the Collie area and 

Perth, it is worth examining options to continue generation from this 

area after coal is phased out. A solar thermal/biomass hybrid plant 

(Peterseim et al. 2014) is worth considering as there is potential biomass 

resource from oil mallee crops and waste streams that could be 
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transferred to Collie for power generation. However uneven topography 

may increase the cost of a solar thermal plant in the Collie region.

8. If hourly temperature data were available, a model that uses the 

synthetically generated hourly cloudiness to generate ambient 

temperature data could be developed. This model could be used to more 

accurately characterise the effect of temperature on solar PV power 

generation, and also on load demand, which is partially correlated with 

temperature.

9. The energy used and greenhouse gases emitted from manufacturing, 

construction and installation of energy efficiency measures are difficult 

to characterise in a generic fashion. Also the overall reduction in power 

demand on an hourly time scale from energy efficiency measures is 

probably more complex than characterised in this research. There is 

much scope for research in this area.

10. Explicit forms of demand management such as load curtailment and 

load shifting were not considered in this research. The ability to adjust 

the load to match the available generation has the potential to reduce the 

requirement for storage, and is worth modelling. Time of use pricing is 

one method of signalling to a flexible load when there is high demand 

and curtailment may be favourable. Pricing based both on generation 

availability and demand level could potentially reduce the needed 

storage capacity even more. Martinot (2016) introduces the paradigm of 

flexible demand to complement the requirement for flexible supply in a 

grid with high levels of variable renewable energy generation. Charging 

of electric vehicles has the potential to be a type of flexible demand. 

Charging schedules could respond to dynamic pricing or control signals 
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to shift charging into periods of high generation availability. How well 

this could fit in with driver travel requirements needs to be 

characterised. Conversion of the transport fleet to electric propulsion 

represents a convergence between transport energy use and stationary 

electrical energy use, and will significantly increase grid demand unless 

charging comes mainly from rooftop PV, in which case extra PV capacity

will be required. Since not every home is suitable for rooftop PV, it is 

likely that grid power flows will increase at the distribution level at least.

11. Even if global greenhouse emissions were stopped tomorrow, further 

warming is inescapable due to inertia in the Earth's climate system. 

Therefore it is important to take into account any effects of climate 

change on the solar and wind resources.

12. This research along with Elliston et al. (2012) mean that 100% renewable 

energy simulations now cover the main Australian electrical grids. 

Electrical generation in the north west of Western Australia and the 

Northern Territory remain to be simulated. Both these regions have a 

strong solar resource. Wright and Hearps (2010) laid out a vision for a 

fully connected Australia-wide electrical grid system. Under this plan 

the SWIS is connected both to the national electric grid (NEM) and the 

north west interconnected system (NWIS) in the north of Western 

Australia. Although it may not be necessary to connect these grids, this 

option is also worth modelling in more detail.

These multiple avenues for further research demonstrate that in many ways this

thesis is just the beginning. However, it is way past the time for action, not just 

research.
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10.4 Final words

It has been demonstrated that the SWIS grid can rapidly transition to the use of 

solar energy, wind energy and energy efficiency, whilst maintaining current 

levels of reliability. Because the SWIS is one of the more difficult cases, this 

result can be extended to a global scale. This thesis demonstrates that the 

required technology is already available, rapidly scaling, and decreasing in cost.

Although resource bottlenecks may become apparent at very high levels of 

global use of renewable energy, that is no impediment to rapidly moving at this

point in time.

Stern (2013) outlined some of the potentially catastrophic consequences of 

climate change and the horrific cost in human suffering that may occur. On a 

global scale, these include drought, desertification, flooding, heat stress, 

erosion, loss of tree cover, deforestation, cyclones, storm surges, salination, sea 

level rise, and bush fires. These would be accompanied by biodiversity loss, 

agricultural collapse, and human migration on scales never before seen in the 

period of human civilisation. Recent simulations have suggested that Antarctic 

ice sheet melting might cause global sea levels to rise more than expected and 

take thousands of years to reverse (DeConto and Pollard 2016), but most sea 

level rise might be avoided if global temperature rise is kept under 1.5oC. Thus 

the urgency is greater than ever. 

If it does turn out that these warnings are overblown, then the downsides of our

rapid mitigation action are few. We will still end up with a clean, diversified, 

resilient, energy system. The question is no longer "can we change to a 

renewable energy system?". The question is now "why aren't we changing to a 

100% renewable energy system as fast as possible?"
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Glossary

α Solar altitude angle (radians) or wind shear exponent

αdeploy Solar altitude angle at which heliostats deploy and stow

Δfhot Change in solar thermal storage heated fraction for one time step (°c)

κw Translated Weibull distribution shape coefficient

λ Weibull scale parameter

λw Translated Weibull distribution scale coefficient

φ Autocorrelation coefficient constant

φd1 Synthetic daily wind speed residual first order auto-regression coefficient

φd2 Synthetic daily wind speed residual second order auto-regression coefficient

φk Generic k-th order auto-regression parameter

φw,1 Synthetic hourly wind speed residual first order auto-regression coefficient for wind farm w

φw,2 Synthetic hourly wind speed residual second order auto-regression coefficient for wind farm w

φw,3 Synthetic hourly wind speed residual third order auto-regression coefficient for wind farm w

ρ Generic hourly wind speed residual random noise component standard deviation 

ρd Synthetic daily average wind speed residual random noise component standard deviation

ρw Hourly wind speed residual random noise component standard deviation for wind farm w

σ Synthetic average hourly cloudiness standard deviation or generic hourly wind speed standard 

deviation coefficient

σair Air density (kg/m3)

σd Random component standard deviation

σdbw Base daily wind speed standard deviation coefficient for wind farm w  (m1/2s-1/2)

σdw Seasonally adjusted daily wind speed standard deviation coefficient for wind farm w  (m1/2s-1/2)

σmonth Monthly mean standard deviation of daily average cloudiness 

σw Hourly wind speed standard deviation coefficient for wind farm w  (ms-1)

θw Translated Weibull distribution location coefficient

AC Alternating current

afw Diurnal peak time coefficient for wind farm w

asbw Diurnal peak time coefficient for wind farm w

awt Wind farm wide power curve parameter for turbine type wt (m-2s2)

afterdawnw,m Time of day at 4 hours after dawn for wind farm w during month m (h)

am Diurnal wind magnitude constant component coefficient

AR Autoregressive model

ARMA Autoregressive moving average model

awsfw,m Wind shear factor coefficient for wind farm w

azimuth Horizontal angle between a line perpendicular to the surface and a line running due north, with 
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angles east of north being positive and west of north being negative (degrees)

b Day of year angle for equation of time (radians)

bwt Wind farm wide power curve parameter for turbine type wt (m-3s3)

beforeduskw,m Time of day at 1 hour before dusk for wind farm w during month m (h)

bfw Diurnal peak time coefficient for wind farm w

BIC Bayesian information criterion

BIG-GT Biomass gasification gas turbine

bm Diurnal wind magnitude daily wind speed component coefficient

bsbw Diurnal peak time coefficient for wind farm w

bwsfw Wind shear factor coefficient for wind farm w

c Cloudiness

ca Collector area (m2)

cae Total effective collector area (m2)

CAES Compressed air energy storage

can No-storage collector area (m2)

capacityw Full power capacity for wind farm w (MW)

capcdown Average off line percentage of solar thermal collector array and storage

car Reference collector area (m2)

cas Collector area required for storage (m2)

CCS Carbon capture and storage

cd Daily average cloudiness

cdavmon Monthly mean of daily average cloudiness

cdist Distance inland from the nearest part of the coastline (km)

cdistw Distance inland of wind farm w from the nearest part of the coastline (km)

cdsdmon Monthly standard deviation in mean daily cloudiness

CF Capacity factor

cf-1 Inverse cumulative frequency distribution function

cfw Diurnal peak time coefficient for wind farm w

CH4 Methane

chm Synthetic average hourly cloudiness

CHP Combined heat and power

cic Tilted surface sun angle calculation coefficient

cicc Tilted surface sun angle calculation coefficient

cics Tilted surface sun angle calculation coefficient

CIGS Copper indium gallium selenide

cik Tilted surface sun angle calculation coefficient

cikc Tilted surface sun angle calculation coefficient

ciks Tilted surface sun angle calculation coefficient

cis Tilted surface sun angle calculation coefficient

ciss Tilted surface sun angle calculation coefficient

clca Tilted surface sun angle calculation coefficient
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cline Cumulative distance along coastline  (km)

cm Diurnal wind magnitude peak component coefficient

CO2 Carbon dioxide

cosazr Cosine of the azimuth

coslat Cosine of the latitude

costilt Cosine of the tilt angle

cpos Distance along the coastline from the Northern Territory border (km)

csm Wind shear seasonal coefficient for month m

Cv Storage medium volumetric heat capacity (joules m-3°c-1)

CWD Coarse woody debris

cwsfw Wind shear factor coefficient for wind farm w

cwt Wind farm wide power curve parameter for turbine type wt (m-3s3)

d Square of distance along one line segment of coastline map (km2) or square of distance between 

wind farm w and coast-line segment i (km2)

d1 Square of distance from a location to beginning vertex of coastline line segment (km2) or distance 

factor 1 between two wind farms (km)

d2 Square of distance from a location to end vertex of coastline line segment  (km2) or distance factor 2

between two wind farms (km8)

dawn Sunrise local time (h)

DC Direct current

dfw Diurnal peak time coefficient for wind farm w

distw1w2 Distance estimate between wind farm w1 and wind farm w2 (km)

dj Length of grid link j (km)

dm Square of distance along coastline line segment to point nearest a location (km2) or diurnal wind 

magnitude variation coefficient

dmin Square of current minimum distance from coastline to a location (degrees2) or square of distance 

inland from the nearest part of the coastline (km2)

dmm Mid-month cumulative day of year array

dom End of month cumulative day of year array

DOY Day of year, 1 = 1st January, 365 = 31st December (366 during leap years)

ds Declination angle of the earth's spin axis with respect to the sun (radians)

ds Solar declination angle (radians)

dt Diurnal wind magnitude peak hour factor

dusk Sunset local time (h)

dx Horizontal distance estimate between two wind farms (km)

dy Vertical distance estimate between two wind farms (km)

dv Diurnal wind magnitude daily wind speed factor

dwsfw Wind shear factor coefficient for wind farm w

ECBM Enhanced coal bed methane recovery

EEh Load demand reduction at hour h due to any energy efficiency measures if implemented (MW)

ELCC Effective load carrying capacity
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EOR Enhanced oil and gas recovery

EOT Equation of time (h)

epb Power block thermal to electrical efficiency at design point

EPBT Energy pay back time (y)

ers Receiver-to-storage efficiency at design point

esr Solar field efficiency at design point

est Solar thermal solar-to-storage efficiency

Esv Maximum energy stored per unit volume (joules/m3)

ete Solar thermal storage-to-electrical efficiency

etpb Storage to power block efficiency

Ets Storage energy required to maintain rated output power over rated design storage time (joules)

f Length fraction along coastline line segment to point nearest a location or probability density 

function (also frequency distribution) for wind as a function of wind speed

f0c Coastal first seasonal mode maximum amplitude 

f0mc Coastal first seasonal mode maximum amplitude by month array

f0w First seasonal mode maximum amplitude for wind farm w

f0i Inland first seasonal mode maximum amplitude 

f0mi Inland first seasonal mode maximum amplitude by month array

f1 Second seasonal mode maximum amplitude

f1m Second seasonal mode maximum amplitude by month array

fardist Ar parameter distance factor

farlat Ar parameter latitude factor

fdcw1,w2 Distance correlation factor between wind farm w1 and wind farm w2

fdctot Sum of raw distance correlation factors between wind farm w and all other wind farms

fdctotsq Reciprocal of the sum of squares of the fractional distance correlation factors between wind farm w 

and all other wind farms

fdistw Diurnal distance coefficient

fhot Fraction of storage medium heated to temphot

fhot,shutdown Threshold heated fraction of thermal storage medium for shut down

filat Latitude interpolation factor

filon Longitude interpolation factor

flatw Diurnal latitude coefficient

fmm Seasonal mode maximum amplitude linear interpolation coefficient

fout  Solar thermal power station electrical output as a fraction of prated

foutmin Minimum operational electrical output as a fraction of prated

fpk Diurnal wind sinusoid peak hour distribution factor 1

fpk2 Diurnal wind sinusoid peak hour distribution factor 2

frstartup Minimum receiver incident power as a fraction of receiver rated power

fseason Seasonal coefficient

fshearw Wind shear distance coefficient

fsm Seasonal coefficient by month array
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ft Wind shear factor time coefficient

Ga Gallium

g CO2e/kWh Grams of carbon dioxide equivalent per kilowatt hour

GDP Gross domestic product

Ge Germanium

glf Grid power loss factor between power plant and load centre (Perth), or in the case of rooftop PV, 

the distribution loss factor

H Global daily radiation falling a horizontal surface (MJ/m2)

h1 Height above ground (m)

h2 Height above ground (m)

hd Measured data value

hdav Average of the measured hourly values of hd

Hex Global daily radiation falling a horizontal surface at the top of the atmosphere (MJ/m2)

hhwt Hub height for wind turbine wt (m)

hm Model generated synthetic data value

hr Hour of day

hs Hour angle (radians)

hsd Time between sunrise and noon, or noon and sunset (h)

HVAC High voltage alternating current

HVDC High voltage direct current

Ib Beam irradiance (W/m2)

Ibn Beam normal solar irradiance (W/m2)

Ibnref Reference solar beam normal irradiance

Id Diffuse irradiance (W/m2)

Ig Global solar irradiance (W/m2)

Ih Horizontal global irradiance (W/m2)

Ihb Horizontal beam irradiance (W/m2)

Ihcs Clear sky horizontal global irradiance (W/m2)

Ihd Horizontal diffuse irradiance (W/m2)

Ihex Extraterrestrial solar irradiance onto a plane parallel with a horizontal plane on the surface (W/m2)

Ihm Measured horizontal irradiance (W/m2)

Io Extraterrestrial solar irradiance falling on a surface perpendicular to the direction of the sun 

(W/m2)

Ir Reflection irradiance on a tilted surface (W/m2)

justafterdawnw,m Time of day of 2 hours after dawn for wind farm w during month m (h)

k Weibull shape parameter

k0w Seasonal variation mode 0 coefficient

k1w Seasonal variation mode 1 coefficient

Kb1 Clear sky beam transmittance magnitude constant

Kb2 Clear sky beam transmittance absorption constant

Kcd Coastal inland distance coefficient
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Kcf Daily average cloudiness cumulative frequency distribution coefficient

kcloud Diffuse radiation cloudiness transmission factor

Kcp Coastal position setpoint coefficient

kd Diffuse fraction

kdcs Clear sky diffuse fraction

Kdr Diffuse fraction cloud slope coefficient

Kdv Hourly cloudiness standard deviation estimation coefficient

Kh Average hourly cloudiness estimation coefficient

Km Coastal setpoint constant

Ksac Solar altitude angle coefficient

Ksas Solar altitude angle coefficient

kslat1 Weighting coefficient for seasonal mode 1

kslat2 Weighting coefficient for seasonal mode 2

kt Irradiance clearness index

Kt Daily or monthly radiation clearness index

Kyac Autocorrelation coefficient constant

lat Latitude (degrees north of equator)

lati Latitude of coast-line map vertex i (degrees)

latmerrai Latitude of MERRA grid nodes i,j,  j = 1 to nlon (degrees)

latmerrain Latitude of nearest MERRA node with latitude greater than latw (degrees)

latw Latitude of wind farm w (degrees)

LCOE Levelised cost of energy

ld Grid step-down and distribution loss (%)

len Distance along one line segment of coastline (km)

LED Light emitting diode

Loady,h Swis load demand for year y at hour h (MW)

LOLP Loss of load probability

lon Longitude (degrees east of Greenwich)

loni Longitude of coast-line map vertex i  (degrees)

lonmerraj Longitude of MERRA grid nodes i,j, i = 1 to nlat (degrees)

lonmerrajn Longitude of the nearest MERRA node with longitude greater than lonw (deg)

lonw Longitude of wind farm w (degrees)

lossfact Thermal storage loss factor (sec-1)

lossmax Maximum loss factor (W/m3)

lr Latitude of wind farm w in radians (radians)

lup Grid up-conversion and cross-conversion loss (%)

M Optical air mass ratio

MA Moving average model

MAPE Mean absolute percent error

maxramp Maximum solar thermal station ramp rate (% rated capacity/min)

MBE Mean bias error
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mdoy Mid-month day of year array

MERRA Modern era retrospective analysis for research and applications

MSW Municipal solid waste

nightw,m Time of day at 3 hours after dusk for wind farm w during month m (h)

N Number of data points

NEM National electricity market (covering the eastern states of Australia)

NIMBY Not in my back yard

nlarge Number of large-scale renewable power stations

Nlat Number of horizontal MERRA grid lines (22)

nlink Number of grid links travelled by power between power station and load centre (Perth)

Nlon Number of vertical MERRA grid lines (15)

NO2 Nitrous oxide

noon Local time at which solar altitude is maximum (h)

nonre Non-renewable power generation (MW)

NREL National renewable energy laboratory

Nwf Number of wind farms

OECD Organisation for economic cooperation and development

OF Orbital factor

olf Online fraction 

p Autoregressive model order

P Specific power per unit area  (W/m2)

P2G Power to gas

Pin Available power input from sun (W)

pop Percentage yearly population increase (% per year)

Pout Power plant actual output power (MW) 

powerw Power output for wind farm w (MW)

PR Performance ratio

Prated Power plant rated output power (MW)

Precin Solar power incident on the central receiver (MW)

Precr Design-point receiver input power (MW)

Precmax Maximum receiver input power (MW)

Preq Power plant output power requested by the grid (MW)

Pstorein Power input to thermal storage

Pu-239 Plutonium 239 isotope

Pstoreout Power output from thermal storage

PV Photovoltaic

q Moving average model order

r Generic normally distributed random variable or random number with uniform frequency 

distribution between 0 and 1, often used as a cumulative frequency value.

rd Generic normally distributed random variable for daily synthetic wind speed residual generation

rdcw,i Distance weighted combination random variables for wind farm w,  i = 1 to 4
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rg Ground reflectance coefficient

rh Standard normally distributed random variable for hourly synthetic wind speed residual 

generation

rleak Thermal storage medium heat leakage rate

RMSE Root mean square error

rparasitic Solar thermal electrical parasitic losses

rw Random number with translated Weibull frequency distribution of mean 0 and standard deviation 

1

rw,i Normally distributed random variables for wind farm w,  i = 1 to 4

SAM System advisor model

sinα Sine of solar altitude angle

sinazr Sine of the azimuth

sinlat Sine of the latitude

sintilt Sine of the tilt angle

sm Solar multiple

So Solar constant (1367 W/m2)

sv Final storage volume (m3)

svi Effective required storage volume (m3)

SWIS South west interconnected system

SWWA South west of Western Australia

t Time of day (h)

tb Beam(or direct) radiation atmospheric transmittance

tbcs Clear sky beam radiation atmospheric transmittance

tc Cloudiness transmission factor

td Diffuse radiation atmospheric transmittance

tdcs Clear sky diffuse radiation atmospheric transmittance

TDR Total daily radiation (j/m2)

tempcold Cooled thermal storage medium temperature (°c)

temphot Heated thermal storage medium temperature (°c)

tfreqw,0 Frequency of yesterday's diurnal wind sinusoid for wind farm w (radians per h)

tfreqw,1 Frequency of today's diurnal wind sinusoid for wind farm w (radians per h)

tgh Global horizontal radiation transmittance

Th-231 Thorium 231 isotope

Th-232 Thorium 232 isotope

tghm Measured global horizontal radiation transmittance

tilt Vertical angle between a surface and the horizontal plane (degrees)

tl Line power loss over one grid link (%/1000km)

tmag Generic magnitude of diurnal wind sinusoid (ms-1)

tmagw,0 Magnitude of yesterday's diurnal wind sinusoid for wind farm w (ms-1)

tmagw,1 Magnitude of today's diurnal wind sinusoid for wind farm w (ms-1)

TNT Trinitrotoluene explosive
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tod Time of day in local time (h)

todnoon Time of day when solar noon occurs (sun is midway between sunrise and sunset) (h)

tpeak Generic time of day when peak wind speed occurs in de-trended dataset (h)

tpeakw,0 Peak hour of yesterday's diurnal wind sinusoid for wind farm w (h)

tpeakw,1 Peak hour of today's diurnal wind sinusoid for wind farm w (h)

tperiod Generic timespan of diurnal wind sinusoid (h)

tperiodw,0 Period of yesterday's diurnal wind sinusoid for wind farm w (h)

tperiodw,1 Period of today's diurnal wind sinusoid for wind farm w (h)

tr Reflected radiation atmospheric transmittance

trcs Clear sky reflected radiation atmospheric transmittance

ts Design storage time (h)

tsbw Sea breeze peak time of day base value for wind farm w (h)

tstartw,0 Start time of day of yesterday's diurnal wind sinusoid for wind farm w (h)

tstartw,1 Start time of day of today's diurnal wind sinusoid for wind farm w (h)

tstep Simulation time step (h)

tstopw,0 Stop time of day of yesterday's diurnal wind sinusoid for wind farm w (h)

tstopw,1 Stop time of day of today's diurnal wind sinusoid for wind farm w (h)

tz Time zone (+8 hours for Western Australia) (h)

U3O8 Yellow-cake

U-233 Uranium 233 isotope

U-235 Uranium 235 isotope

U-238 Uranium 238 isotope

UF6 Uranium hexafluoride

UK United Kingdom

UO2 Uranium oxide

US United States

v Wind speed (m/s)

v1,v2 Wind speed at heights h1,h2  (m/s)

vcw,t Wind farm wide cut-in wind speed for turbine type wt (ms-1)

vcow,t Single turbine cut-in wind speed for turbine type wt (ms-1)

Vdavw Daily average wind speed base value (ms-1)

Vdavlw Daily average wind speed base value from yesterday (ms-1)

Vdiurnal Generic diurnal wind speed (ms-1)

Vdiurnalw Diurnal wind speed for wind farm w (ms-1)

vds(t) Synthetic daily average wind speed (ms-1)

vfw,t Wind farm wide power curve level-off threshold wind speed for turbine type wt (ms-1)

vhhw Hub height wind speed for wind farm w (ms-1)

vhmw Daily average wind speed trend (ms-1)

vi1 Interpolated wind speed 1 (ms-1)

vi2 Interpolated wind speed 2 (ms-1)

Vmode1 Magnitude of seasonal mode 1
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Vmodee2 Magnitude of seasonal mode 2

vrw,t Wind farm wide reference wind speed for turbine type wt (ms-1)

vrow,t Single turbine reference wind speed for turbine type wt (ms-1)

vsw,t Wind farm wide shut down wind speed for turbine type wt (ms-1)

vs(t) Synthetic hourly wind speed (ms-1)

Vseason Generic seasonal wind speed (ms-1)

Vseasonw Seasonal wind speed for wind farm w (ms-1)

vsow,t Single turbine shut down wind speed for turbine type wt (ms-1)

Vyav Yearly average wind speed (ms-1)

Vyavij Yearly average wind speed at MERRA node i,j i = 1 to nlat, j = 1 to nlon (ms-1)

Vyavw Estimate of yearly average wind speed at wind farm w (ms-1)

wsf Wind shear factor

wsfbasew,m Base wind shear factor for wind farm w during month m

xi Horizontal position coordinate for coast-line map line segment i (km)

xw Horizontal position coordinate for wind farm w (km)

y Year or hourly wind speed residual

yd Daily cloudiness residual

yds Synthetic daily average wind speed residual 

ydw,0 Daily average wind speed residual for wind farm w

ydw,1 Daily average wind speed residual for wind farm w from yesterday

ydw,2 Daily average wind speed residual for wind farm w from two days ago

yh Hourly cloudiness residual

yi Vertical position coordinate for coast-line map line segment i (km)

yn Transformed hourly MERRA wind speed residual

yns Generic synthetic normally distributed hourly wind speed residual

ynsw,0 Synthetic normally distributed hourly wind speed residual for wind farm w for present hour

ynsw,1 Synthetic normally distributed hourly wind speed residual for wind farm w for previous hour

ynsw,2 Synthetic normally distributed hourly wind speed residual for wind farm w for two hours before 

present

ys Generic synthetic hourly wind speed residual

ysw Present hour synthetic wind speed residual for wind farm w 

yw Vertical position coordinate for wind farm w (km)

z Random variable uniformly distributed between 0 and 1

zo Roughness length (m)

246



Appendices

A Solar simulation model

The following algorithm for generating synthetic hourly cloudiness at any 

location was used. Cloudiness mean and variance change throughout the day 

as a function of average daily cloudiness and solar altitude angle. This 

algorithm is split into 4 sections. The first section must be computed once per 

location:

(1.1) From the latitude and longitude of the location (lon, lat), use Euclidean 

geometry and the coastline shape map coordinate data to calculate the coast 

position cpos and distance from the coast cdist (both in km). The coastline shape 

map consists of 500 vertices in longitude and latitude coordinates (loni, lati), i = 1

to 500. The first vertex is the start of the coastline and is where the coast crosses 

the Northern Territory border. The coastline is approximated by a set of line 

segments, each defined by a pair of adjacent vertices (loni,lati) (loni+1,lati+1), i = 1 to

499. 

(i) Calculate:

x=111.195 (lon−129 ) cos( π
180

lat)

y=111 .195 lat

(A.1)
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(ii) Set cline = 0 and dmin = 108. Starting at i = 0, perform the following iteration 

steps (iii) to (vi) for each line segment in turn:

(iii) Calculate:

xi=111.195(lon i−129)cos( π
180

lat i)

y
i
=111 .195 lat

i

(A.2)

xi+ 1=111.195(lon i+1−129)cos( π
180

lat i+1)

y
i+1

=111 .195 lat
i+1

(A.3)

d= (x
i+1

–x
i)

2+( y
i+1

–y
i)

2

d 1=( x–x
i)

2+( y–y
i)

2

d 2=( x–x
i+1)

2+( y–y
i+1)

2

f=
1
2 (1+

(d 1 – d 2)
d )

(A.4)

(iv)

 if f <0, d m=d 1 and f =0

else if f >1, d m=d 2 and f =1

else d m=d 1− f 2 d

(A.5)

(v)

 If d m<d min , d min=d m and cpos=cline+ f ×len (A.6)
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(vi) Update cline, then go back to (iii) and repeat the calculations for the next 

line segment, until all are done:

cline=cline+len (A.7)

(vii) Calculate:

cdist=√(d min) km (A.8)

After the calculation has been performed on all line segments, cpos will be the 

distance from the start to the point along the coastline (in km) that is closest to 

the location. cdist will be the distance (in km) from this point to the location.

(1.2) Using the coastal setpoints, piecewise straight-line interpolation, and 

exponential function, calculate the coefficients Kcdi i = 1 to 18. For each Kcdi, there 

is a set of Nkmi coastal setpoints (cposi,j,Kmi,j) j = 1 to Nkmi (see Table A.1 for the 

values of these coefficients). Find the two adjacent coastal positions cposi,j and 

cposi,j+1 such that cpos lies between the two. Using straight-line interpolation, 

calculate Kcpi:

K cpi =Kmi,j+(K mi,j+1−K mij )
(cpos−cposi,j )

(cposi,j+1−cposi,j )
(A.9)

Calculate Kcdi using the distance from the coast cdist and two additional distance

parameters Kmi,Nkmi+1 and Kmi,Nkmi+2:

 K cdi =K cpi (1+K mi,Nkmi+1 cdist )e
−K mi,Nkmi+2 cdist

(A.10)
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(1.3) Calculate the cosine and sine of the latitude:

coslat= cos ( lat )

sinlat=sin ( lat )
(A.11)

where lat is the latitude.

(1.4) For surfaces tilted at angles other than horizontal, calculate the following 

parameters:

cosazr=cos (azimuth )

sinazr=sin (azimuth )

clca=coslat cosazr

cics=sinlat cosazr

(A.12)

where azimuth is the horizontal angle between a line perpendicular to the 

surface and a line running due north, with angles east of north being positive 

and west of north being negative. For surfaces with dual axis sun tracking, it is 

not necessary to calculate these parameters. For fixed surfaces, the following 

two parameters can be calculated here instead of hourly:

costilt= cos ( tilt)

sintilt=sin ( tilt )

(A.13)

where tilt is the vertical angle of the surface from the horizontal.

250



The second section must be computed at the beginning of each month:

(2.1) Calculate the monthly mean average daily cloudiness and monthly 

standard deviation of the average daily cloudiness using:

 cdavmonth =K cd1 +K cd2 sin(π
6 (month+K cd3))  

 σ month=K cd4 +K cd5sin(π
6 (month+K cd6))  

(A.14)

(2.2) Calculate the four cumulative frequency distribution coefficients using:

K cfj=K
cd ( 4+3j)

+K
cd (5+3j )

sin(π
6 (month+K

cd (6+3j ))) for j=1,4 (A.15)

The third section must be calculated at the beginning of each day:

(3.1) Generate a random number r, with a uniform distribution between 0 and 1.

(3.2) Calculate the average daily cloudiness normalised residual value y using

y=K cf1 +K cf2 r+K cf3 r 2+K cf4 r8 (A.16)

(3.3) Calculate the average daily cloudiness using:

cd=cdavmonth+σ month y (A.17)
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(3.4) Calculate the autocorrelation coefficient ϕ using:

φ=K yac (1– 8(cd – 0.5)3) (A.18)

 See Table A.2 for the value of Kyac.

(3.5) Calculate the random component standard deviation σd using:

σ d=√(1−φ2) (A.19)

(3.6) Calculate the equation of time value, EOT (h), and the time of day at solar 

noon, todnoon (h):

B=
2π
365

( DOY −81) radians

EOT=
9 .87sin (2B )−7 .53cos ( B )−1 .5sin ( B )

60
hours

tod noon=12−( longitude
15

−tz)−EOT hours

(A.20)

where DOY is the day of the year and tz is the time zone (+8 hours for Western 

Australia).
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(3.7) Calculate the declination angle ds and the solar altitude angle constants Ksas 

and Ksac:

d s=0.40928 sin(2π
365

(284 +DOY )) radians

K sas=sin (d s) sinlat

K sac=cos(d s )coslat

(A.21)

(3.8) Calculate the orbital factor OF:

OF=1+0. 0344cos (0 . 0172142 DOY ) (A.22)

(3.9) For surfaces that are not horizontal, and are fixed or have vertical axis sun 

tracking, calculate the following parameters. If the surface has dual axis sun 

tracking, it is not necessary to calculate these parameters.

cikc=sin (d s ) sinlat

ciks=sin (d s) clca

ciss= cos(d s) sinazr

cicc=cos (d s ) coslat

(A.23)

If the surface is fixed, the following parameters can be calculated here instead of

hourly:

cik = cikc costilt – ciks sintilt

cis=ciss sintilt

cic=cicc costilt + cics sintilt

(A.24)
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The fourth section must be calculated for each hour,  h, from 1 to 24.

(4.1)  Calculate the hour angle hs:

hs=
π

12
(tod noon – h+0.5) radians (A.25)

(4.2) Calculate the sine of the solar altitude angle, sinα:

sin α=K sas+K sac cos (hs ) (A.26)

If sinα is greater than zero, then the sun is above the horizon. Otherwise, set all 

solar irradiances to zero and go to the next hour. 

(4.3) Calculate the hourly average cloudiness chm using:

chm=cd(1+K h0

(1−cd )

(1+K h 1 cd
2 )

(sin α+ Kh 2 sin2 α+K h 3 sin3 α )) (A.27)

See Table A.2 for the values of Khi, for i = 0 to 3.

(4.4) Calculate the hourly average standard deviation using:

σ=cd (1−cd )( K dv 0

(1+K dv1 cd)
+

K dv 2

(1+K dv 3cd)
sin α+

K dv 4

(1 +K dv5 cd )
sin2 α) (A.28)

See Table A.2 for the values of Kdvi, for i = 0 to 5.
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(4.5) Generate a random number r, with a uniform distribution between 0 and 1.

(4.6) Map r to a translated Weibull distribution using:

r w=θw +λw (−ln (1−r ))
( 1

κ
w) (A.29)

See Table A.2 for the values of θw, λw and κw. 

(4.7) Generate a cloudiness residual yh using:

yh =φyh−1 +σd r w (A.30)

yh-1 is the residual for the previous hour. If h is the first hour on or after sunrise 

to be calculated then use yh-1 = 0.

(4.8) Generate the synthetic hourly cloudiness c using:

 c=chm + σyh (A.31)

(4.9) Calculate the air mass ratio M, and the clear sky beam and diffuse 

transmissivities tbcs and tdcs:

M=
1 .002432 sin2 α+0 .148386 sin α +0 .0096467

sin3α+ 0 .149864 sin2α+ 0 .0102963sin α +0 .000303978

t bcs=K b1e
Kb2 M

t dcs=0.271−0.294 tbcs

(A.32)

See Table A.2 for the values of Kb1 and Kb2.
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(4.10) Calculate the diffuse transmittance cloudiness coefficient kcloud(c):

k cloud (c )=
(1−c ) (1+K dr c)

1 – K dr c
t dcs

t bcs

(A.33)

where Kdr is set to 0.5.

(4.11) For horizontal surfaces (assuming diffuse radiation can be utilised), 

calculate the beam and diffuse transmittances tb, td, the global horizontal 

transmittance tgh, the horizontal beam and diffuse irradiance components Ihb and

Ihd, and the global horizontal irradiance Ih:

t b=(1 –c) tbcs

t d=kcloud (c ) t dcs

t gh=t b+t d=(1–c ) tbcs+k cloud (c )t dcs

I hex=1367 OF sin α

I hb=tb I hex

I hd=t d I hex

I h=t gh I hex

(A.34)

(4.12) For surfaces at angles other than horizontal, calculate the beam irradiance

Ib. Firstly, calculate the extraterrestrial irradiance Io (W/m2):

I o=1367OF (A.35)
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For vertical axis sun tracking surfaces, calculate the following parameters:

costilt=sin α

sintilt=√(1−sin2 α )

cik=cikc costilt – ciks sintilt

cis=ciss sintilt

cic=cicc costilt + cics sintilt

(A.36)

For fixed and vertical axis sun tracking surfaces, calculate the beam irradiance 

Ib:

I b=I o t b(cik+cis sin (hs )+cic cos (hs )) (A.37)

For dual axis sun tracking surfaces, calculate the beam irradiance Ib:

I b=I o t b (A.38)

(4.13) For photovoltaic surfaces, calculate the diffuse and reflection components

of the irradiance, Id and Ir. For fixed photovoltaic surfaces:

I d=0.5 I o td sin α (1+costilt )

t r=tb+t d

I r=0.5r g I o t r sin α (1−costilt )

(A.39)

where rg is the ground reflectance coefficient. See Table A.2 for the value of rg. 
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For vertical axis and dual axis sun tracking photovoltaic surfaces, costilt = sinα, 

so:

I d=0.5 I o td sin α (1+sin α )

t r=tb+t d

I r=0.5r g I o t r sinα (1−sinα )

(A.40)

(4.13) The global irradiance falling on the surface can now be calculated. For 

photovoltaic surfaces,

I g=I b+ I d + I r (A.41)

For concentrating mirror surfaces,

I g=I b (A.42)

The 334 coefficients were generated using all the measured data from every 

station as calibration data:

258



Table  A.1. Coastal set points and distance parameters.

i Nkmi Coastal setpoints Distance parameters
1 7 (0.000121233,0.181881)(4358.68,0.118325)(5855,0.196657)

(6107.18,0.308299)(6382.57,0.361306)(7578.43,0.241622)

(7704.56,0.112202)

-4.74725e-05,0.00129837

2 9 (0.00211302,0.149049)(5295.77,0.00929281)(6062.87,0.0743396)

(6170.42,0.0544799)(6817.07,0.0385803)(6919.46,0.0462027)

(7019.46,0.00995161)(7324.11,0.0279123)(7424.38,0.0251248)

0.0126305,0.00709556

3 6 (3557.6,13.8123)(5548.36,8.12282)(6936.52,6.38246)(7133.08,2.9477)

(7263.64,14.263)(7626.37,2.83333)

-4.62672e-15,-9.41605e-16

4 5 (183.127,0.140565)(5548.28,0.163597)(6177.15,0.181829)

(7276.71,0.194041)(8058.94,0.15176)

8.20061e-05,0.000200941

5 9 (4.82931e-05,0.0619347)(5548.36,0.0382522)(5648.53,0.0125194)

(5951.32,0.0278242)(6414,0.00509126)(6544.79,0.0112567)

(6644.79,0.021321)(7238.27,0.00511463)(7939.27,0.0704454)

0.0146506,0.00801621

6 8 (1.03457e-05,13.243)(5948.94,8.23257)(6438.31,12.9464)

(7155.63,4.14219)(7263.64,13.999)(7377.2,7.63296)(7718.7,1.97949)

(9614.86,2.64167)

8.16237e-14,-1.96663e-14

7 8 (759.862,-1.15271)(4450.09,-0.888514)(5855,-1.04833)(6095.42,-

1.43222)(6382.57,-1.70468)(7096.81,-1.37403)(7297.2,-1.49405)

(7645.29,-0.922309)

-0.000668503,4.28529e-06

8 9 (2804.47,0.374811)(5655.77,0.0806366)(6339.57,0.353919)

(6439.57,0.109719)(6680.68,0.182641)(7096.81,0.0446732)

(7634.3,0.0769718)(8069.9,0.414361)(9195.84,0.0299513)

0.0266459,0.00849817

9 8 (278.366,8.43906)(4434.12,8.01394)(6059.16,14.3246)

(6897.37,12.0145)(7142.72,19.6262)(7333.4,14.2362)

(7783.43,16.4985)(8659.08,9.26487)

4.22435e-16,-4.45298e-16

10 8 (1.67366,1.75907)(2590.43,0.168708)(5782.19,0.90459)

(5969.6,1.43466)(6069.64,2.28332)(6433.7,2.91901)(7353.76,2.06326)

(7821.81,0.298694)

-0.0004577,0.00125533

11 8 (1.85017e-07,1.34352)(5823.34,0.289987)(5923.36,0.778804)

(6049.55,0.886153)(6177.76,1.40718)(6721.28,0.682705)

(7101.11,0.220369)(7338.59,0.501468)

0.0162485,0.0083404

12 6 (1.56914e-12,2.53601)(5753.42,2.17944)(5934.42,21.3562)

(6177.72,19.5243)(7169.75,18.1674)(7269.75,21.8962)

4.9505e-15,7.50947e-15

13 7 (196.582,0.251853)(4694.57,0.613485)(5782.25,1.08065)

(6107.18,0.355968)(6463.88,0.397888)(6565.85,0.252028)

(6936.44,0.411005)

0.0133546,0.00437936

14 6 (3586.43,0.14879)(5541.96,1.21734)(5641.96,0.779202)

(6107.96,0.592607)(7215.47,0.346493)(7429.46,0.540601)

0.00817635,0.00410551

15 7 (3.78325e-05,16.7796)(3556.04,21.1344)(5927.72,20.0101)

(6165.06,13.6784)(6863.41,12.7892)(6963.41,21.9553)

(7316.56,26.1913)

-2.25303e-10,-5.96227e-12

16 9 (0.00116518,2.29642)(4383.42,2.99919)(6081.62,1.63957)

(6186.12,1.45255)(6294.7,1.08039)(6891.98,1.22188)

(6991.98,1.83623)(7232.26,1.11177)(7455.14,2.80992)

0.0010551,0.0001511

17 7 (1.92816e-12,1.21493)(5782.25,0.966054)(6058.36,0.763544)

(6315.79,0.174561)(6936.45,0.298013)(7364.85,0.143312)

(7732.08,0.690034)

0.0172375,0.00741007

18 9 (1096.22,20.1305)(3940.9,19.6107)(6637.71,10.9754)

(6761.42,6.77296)(6897.98,15.706)(6997.98,5.88923)(7396.6,9.65186)

(7603.63,8.74399)(8422.38,8.22955)

5.81999e-14,2.03159e-15

259



Table  A.2. Model cloudiness generation coefficients

Coefficients Values

Khi, i = 0,3 3.53164,6.58553,-2.65914,1.53216

Kdvi, i = 0,5 2.9409,3.05052,-4.08909,4.88456,1.14796,1.03685

kyac 0.342923

θw -1.82568

λw 2.05741

κw 1.89893

Kb1 0.85295

Kb2 -0.114757

rg 0.2
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B Wind simulation model 

The following algorithm for generating synthetic hourly wind farm output 

power at any location within the SWWA was used. This algorithm is split into 4

sections depending on how often computation is required. Latitude and 

longitude values are in degrees, but all sine and cosine terms assume the 

argument is in radians, and the cos-1 term produces a value in radians. The 

simulation can be started on any day of the year, and at any hour of the day, by 

setting the day of the year variable DOY and hour of the day variable hr to the 

desired values. DOY can range from 1 to 365 (or 1 to 366 for modelling leap 

years), and hr from 0 to 23. The initial values of daily and hourly residuals ydw,0 ,

ydw,1,  ynsw,0, ynsw,1 and ynsw,2 are set to standard normally distributed random 

values. For a simulation of Nwf wind farms, to enable distance correlation to be 

set, at each hour the wind power for each wind farm w = 1,Nwf is calculated 

together. 

The first section must be computed once before the simulation begins:

(1.1) Calculate wind shear seasonal coefficients. For month m, m = 1 to 12, 

calculate:

csm=cos (
π
6

(m−6)) (B.1)

(1.2) Set daily auto-regression coefficients

φd 1=0.523237

φd 2=−0.160552

ρd=0.88102

(B.2)
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The second section must be computed once per wind farm w, w = 1,Nwf, before 

the simulation begins:

(2.1) From the latitude and longitude of the location of wind farm w (lonw, latw), 

use Euclidean geometry and the coastline shape map coordinate data to 

calculate the distance from the coast cdistw (in km). The coastline shape map 

consists of 500 vertices in longitude and latitude coordinates (loni,lati), i = 1 to 

500. The first vertex is the start of the coastline and is where the coast crosses 

the Northern Territory border. The coastline is approximated by a set of line 

segments, each defined by a pair of adjacent vertices (loni,lati) (loni+1,lati+1), i = 1 to

499. First calculate the horizontal and vertical position coordinates for wind 

farm w.

xw=111.195(lonw−129)cos(
π

180
lat w)  

yw=111.195 latw  

(B.3)

Set dmin = 108. For each line segment i = 1 to 499, calculate

x i=111. 195((loni+ loni+1)

2
−129)cos( π

180

( lat i+lat i+1)

2 )  

y i=111 . 195
(lat i +lat i+1)

2
 

d=(xw−x i)
2
+( yw− y i)

2  

if (d<dmin)dmin=d

(B.4)

Calculate

cdist w=√(d min ) km (B.5)
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(2.2) If the grid of MERRA yearly average wind speeds have locations 

[latmerrai,lonmerraj], where latmerrai is the latitude (degrees) and lonmerraj is the 

longitude (degrees) of node i,j, i = 1 to Nlat, j = 1 to Nlon, then let the matrix of 

MERRA year average wind speeds be denoted by Vyavij. For wind farm w, if 

latw is the latitude, and lonw is the longitude, then find latmerrain, the latitude of 

the nearest MERRA node with latitude greater than latw, and find lonmerrajn, the 

longitude of the nearest MERRA node with longitude greater than lonw, then 

calculate the average yearly wind speed vyavw:

fi lat=
(latw−latmerra in)

(latmerra in−latmerra in-1)

fi lon=
(lonw−lonmerra jn)

(lonmerra jn−lonmerra jn-1)

vi1=(1−filat )vyav in-1,jn-1+ fi latvyav in,jn-1

vi2=(1−filat )vyav in-1,jn+ filat vyav in,jn

vyavw=(1− filon)vi1+ fi lon vi2

(B.6)
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(2.3) For each wind farm w, calculate the seasonal variation coefficients, the 

diurnal and wind shear distance coefficients, and the diurnal latitude and peak 

time coefficients:

k 0w=
0.0395956(latw+34)

1+0.00794402(latw+34)
3 +

latw+34

2(50+cdistw )

k 1w=
0.0804696

(1+0.741463(lat w+35.1))(1+
cdistw
200

)

fcw=
1

1+(
cdistw

75
)

2

fdistw=
(100+cdistw )

(200+cdistw )

fshearw=
cdist w

(50+cdistw )

awsf w ,m=0.005(1−csm)(1−fshearw) m=1,12

bwsf w=0.056+0.0625 fshearw

cwsf w=0.01+0.1 fshearw

dwsf w=0.005+0.08125 fshearw

flatw=
1

36+latw

asbw=16.5+
32.5cdist w

(700+3 cdistw)

bsbw=1.75−
6.25cdistw

(125+5cdistw)

af w=0.72+0.21 fdistw

bf w=0.394 fdistw−0.08 flatw−0.572

cf w=1.75+0.13 fdistw−0.5 flatw

df w=0.261−1.16 fdistw

(B.7)
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(2.4) For each wind farm w, calculate the hourly and daily auto-regression 
coefficients:

farlat=0.05+0.4
(36+ latw)

(37+ latw)

fardist=
1

1+
cdist w
100

φw, 1=farlat (1.28+0.17 fardist )

φw, 2=farlat(−0.55−0.27 fardist )

φw, 3=farlat(0.095+0.07 fardist )

ρw=0.45−
0.051

(1+
cdistw

50
)

σ w=(1−
0.15

(1+0.01 cdistw)
)(1−

0.15
(36+ latw)

)

σdbw=0.43 (0.91+
0.09

(1+0.01cdistw)
)(0.67+

1.32
(39+latw)

)

(B.8)
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(2.5) For each wind farm w, and month m, m = 1 to 12, calculate dawn and dusk 

times. Let mdoy = [ 15,44,75,105,136,166,197,228,258,289,319,350]

DOY=mdoy [m ]

b=0.017453(DOY−81)

eot=
(9.87 sin(2b)−7.53cos (b)−1.5 sin(b))

60
            

ds=−0.40928 sin(0.0172142(284+DOY ))

noon=12.275−eot−
(lonw−115.87)

15

lr=0.017453lat w

hsd=3.8197186 cos−1
(
−sin (lr)sin (ds)
cos (lr)cos(ds)

)

if (hsd<0)hsd=−hsd

dawn=noon−hsd

dusk=noon+hsd

justafterdawnw ,m=dawn+2                  

afterdawnw ,m=dawn+4            

beforeduskw ,m=dusk−1

nightw ,m=dusk+3

wsfbasew,m=0.11+0.0625 fshearw+0.02 csm  

(B.9)
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(2.6) For each wind farm w, that uses wind turbine type wt, modify reference 

velocities for the individual turbine to represent overall wind farm operation. If 

another wind farm uses the same type of turbine, this step does not have to be 

repeated.

vcwt=vcowt−0.5

vrwt=vrowt+5

vf wt=0.4 vcwt+0.6vrowt

vswt=vsowt−3

cwt=
0.5

(vrwt−vf wt )
3

bwt=
0.5

(vf wt
3
−vcwt

3
)

awt=−bwt vcwt

(B.10)

where parameters with suffix o refer to the original individual wind turbine 

parameters. vcowt is the cut-in wind speed, vrowt is the reference wind speed (the 

speed at which the turbine reaches full power output), and vsowt is the shut-

down wind speed. These parameters can be obtained from the wind turbine 

technical specifications. Values for some turbines which are used in the 

simulation are given below in Table B.1. awt, bwt, and cwt are constants associated 

with the partial power section of the turbine power curve.
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Table B.1. Wind turbine power curve parameters.

Turbine Capacity (MW) vco (m/s) vro (m/s) vso (m/s) Hub-height (m)

ENERCON-E40 0.6 2.5 12 28 46

ENERCON-E48 0.8 2.5 14 28 50

ENERCON-E53 0.8 2.5 14 28 73

ENERCON-E66 1.8 2.5 15 28 65

ENERCON-E70 2.3 2.5 15 28 64

ENERCON-E126 7.5 2.5 17 28 135

VESTAS-V82 1.65 3.5 12.5 20 78

VESTAS-V90 1.856 4 12 25 80

VESTAS-V112 3 3 12 25 119

GE 2.5-100 2.5 3 12.5 25 75

REPOWER 3.4M104 3.4 3.5 13.5 25 78

(2.7) For each wind farm w, calculate distance correlation weighting coefficients 

fdc. Estimate distw1w2, the distance between wind farm w1 and wind farm w2 (km), 

and fdcw1w2, the distance weighting factor between wind farm w1 and wind farm 

w2 for every possible pair of wind farms w1 and w2. For wind farms w1 = 1 to Nwf -

1, and for wind farms w2 = w1+1 to Nwf:

dx=111.195((lonw 1−129)cos (
π

180
latw 1)−(lonw 2−129)cos (

π
180

latw 2))

dy=111.195 (latw 1−latw 2)

distw1w 2=√dx2
+dy2

d1=
distw 1w 2

60

d2=(
distw 1w 2

500
)

8

fdcw 1,w 2=
1

(1+d1)(1+d2)

fdcw 2,w 1=fdcw 1,w 2

fdcw 1,w 1=1

(B.11)
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For wind farms w = 1 to Nwf

fdctot= ∑
w1=1,Nwf

fdcw ,w 1 (B.12)

fdcw ,w 1=
fdcw ,w 1

fdctot
for w1 = 1 to Nwf (B.13)

fdctotsq=
1

∑
w1=1,Nwf

fdcw ,w 1
2

for w1 = 1 to Nwf (B.14)

fdcw ,w 1=fdcw ,w1 fdctotsq for w1 = 1 to Nwf (B.15)

fdcw , Nwf+1=fdctotsq (B.16)

The third section must be calculated at the beginning of each day (hr = 0), and at

the beginning of the simulation if hr does not start at 0.

(3.1) Calculate the seasonal variation coefficient fseason, first seasonal mode 

maximum amplitude coastal and inland components f0c and f0i, and the second

seasonal mode maximum amplitude f1 (all same for every wind farm). Let:

dom[13] = {0,31,59,90,120,151,181,212,243,273,304,334,366},

dmm[14] = {-15,15,44,75,105,136,166,197,228,258,289,319,350,380},

fsm[13] = { -1,-1,-1,-0.5,0,0.5,1,1,1,0.5,0,-0.5,-1 },

f0mi[14] = { 0.75,1.8,0.75,0.6,-1.0,-0.4,-0.5,-1.7,-1.7,0.4,0.5,1.4,0.75,1.8 },

f0mc[14] = { 1.2,1.5,0.5,0.7,-0.6,-0.7,-0.6,-0.7,-1.25,-0.3,0,0.6,1.2,1.5 }, and

f1m[14] = { -0.3,0,0.3,-0.25,-0.6,-0.75,0.5,0.12,0.25,1,-0.25,0.1,-0.3,0 }
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Unless the simulation is just beginning, increment day of year DOY by 1. From 

DOY, find the month m  (m = 1..12) such that dom[m-1] < DOY ≤ dom[m], and the 

mid-month number mm (mm = 1..13) such that dmm[mm-1] < DOY ≤ dmm[mm].

fseason=1+ fsm [m ]

f mm=
(doy−dmm[mm−1])

(dmm [mm ]−dmm [mm−1])

f 0c= f 0mc[mm−1]+ f mm(f 0mc [mm]−f 0mc[mm−1])

f 0 i=f 0mi[mm−1]+ f mm( f 0mi[mm]−f 0mi [mm−1])

f 1=f 1m [mm−1]+ f mm( f 1m[mm]−f 1m [mm−1])

(B.17)

(3.2)  For  each  wind  farm  w,  calculate  the  first  seasonal  mode  maximum
amplitude:

f 0w=fcw f 0c+(1−fcw) f 0 i (B.18)

(3.3) For each wind farm w, calculate the seasonal wind speed:

Vseasonw=Vyavw(1+k 0w f 0w+k1w f 1)
(B.19)

At the beginning of the simulation only, set vdavw to Vseasonw.

(3.4) For each wind farm w, calculate the sea breeze peak time:

tsbw=asbw+bsbw fseason

if (tsbw < 0) tsbw = 0

if (tsbw > 23) tsbw = 23

(B.20)
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(3.5) For each wind farm w, generate four normally distributed random 

numbers, rw,i, i = 1..4. For each rw,i, z is a random number uniformly distributed 

on (0,1):

rw ,i=
(z0.135

−(1−z )0.135
)

0.1975 (B.21)

(3.6) For each wind farm w, distance weight the random variables rdcw,i, i = 1 to 

4:

rdcw ,i= ∑
q=1,N wf

fdcw , qr q,i  
(B.22)

(3.7) For each wind farm w, calculate the average daily velocity. The previous 

daily autoregressive residual calculations are moved one day back and today's 

daily residual ydw,0 is calculated.

ydw ,2= ydw ,1

ydw ,1= ydw ,0

ydw ,0=φd 1 ydw ,1+φd2 ydw ,2+ρd rdcw , 1

(B.23)

Move previous  daily  average  wind  speed  one day  back,  and  apply  reverse
square root transformation to ydw,0. 

vdavlw=vdavw

σdw=(1+0.225 fseason)σdbw

vdavw=(√Vseasonw+σdw ydw ,0)
2
−σdw

2

if (vdavw>16.5)vdavw=16.5

if (vdavw<1)vdavw=1

(B.24)
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(3.8) For each wind farm w, calculate the diurnal component coefficients. The 

previous day's calculations are moved one day back (a late peaking diurnal 

component from the previous day may still remain active into the present day).

tpeakw ,0=tpeakw , 1−24

tperiodw ,0=tperiodw ,1

tfreqw ,0=tfreqw ,1

tstartw ,0= tstartw ,1−24

tstopw, 0=tstopw ,1−24

tmagw , 0=tmagw, 1

(B.25)

(3.9) Calculate today's diurnal component peak time of day, tpeakw,1

f pk=af w+bf w fseason

f pk2=cf w+df w fseason

tpeakw ,1=15−0.5( f pk 2−rdcw ,2) rdcw ,2<−f pk 2

tpeakw ,1=7.5+0.5 fseason−3 (f pk−rdcw ,2) −f pk2<rdcw, 2<−f pk

    if -fpk < rdcw,2 < fpk

       {tsbw=asbw+bsbw fseason

           if (tsbw < 0) tsbw = 0

           if (tsbw > 23) tsbw = 23 

        tpeakw, 1=tsbw+3rdcw ,2 }

tpeakw ,1=7.5+0.5 fseason+3(rdcw, 2−f pk) f pk<rdcw, 2< f pk 2

tpeakw ,1=15+0.5 (rdcw ,2−f pk 2) rdcw , 2> f pk 2

while tpeakw,1 < 0 add 24 hours to tpeakw,1 

while tpeakw,1 ≥ 36 subtract 24 hours from tpeakw,1

(B.26)
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(3.10) Calculate this days diurnal component period tperiodw,1

tperiodw ,1=24+2 rdcw ,3 tpeakw ,1<6

tperiodw ,1=16−fseason+(3−0.75 fseason)rdcw ,3 6≤ tpeakw ,1

if  tperiodw,1 < 6  tperiodw,1 = 6

if  tperiodw,1 > 36  tperiodw,1 = 36

(B.27)

(3.11) Calculate this days diurnal component magnitude tmagw,1

dt=tpeakw ,1−8.5

dv=vdavw−5+0.25 fseason

am=−0.825−0.66 fseason

bm=0.1485+0.033 fseason

cm=3.2959−0.21327 fseason−0.7755 /(1+0.5dt 2
)

dm=0.275−0.1155 fseason+0.11vdavw

tmagw,1=(1−0.15 flatw (2−fseason ))(am+bm vdavw+cm/(1+0.15 dv2
))+dm rdcw ,4

if (tmagw,1 < 0) tmagw,1 = 0 

if (tmagw,1 > vdavw) tmagw,1 = vdavw 

if (tmagw,1 > 7) tmagw,1 = 7 

(B.28)

(3.12) Calculate tstartw,1, tstopw,1, and tfreqw,1. Make sure today's diurnal 

component doesn't start before midnight (hr = 0).

if ( tpeakw , 1 < 12)  { tmagw ,1=−tmagw , 1 , tpeakw ,1=tpeakw ,1+
tperiodw ,1

2
} (B.29)

tstartw ,1=tpeakw , 1−
3 tperiodw , 1

4

if ( tstartw ,1 < 0)  { tperiodw , 1=1.333 tpeakw, 1 , tstartw ,1=0}  

(B.30)
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tstopw, 1=tpeakw ,1+
tperiodw ,1

4

tfreqw ,1=
2π

tperiodw ,1

(B.31)

The fourth section must be calculated each hour for each wind farm:

(4.1) For each wind farm w, calculate total hourly wind speed, where hr is the 

hour of the day. First generate a normally distributed random number, then 

move the previous hourly autoregressive calculations one hour back and 

calculate this hour's synthetic normally distributed residual ynsw,0. z is a random

number uniformly distributed on (0,1):

 rh=
(z0.135

−(1−z )0.135
)

0.1975

ynsw ,3= ynsw ,2

ynsw ,2= ynsw ,1

ynsw ,1= ynsw ,0

ynsw ,0=φw ,1 ynsw, 1+φw , 2 ynsw ,2+φw ,3 ynsw , 3+ ρwr h

(B.32)

Apply reverse data transformation to calculate this hour's synthetic wind speed 

residual ysw:

ysw=1.96−(1.4−0.302 ynsw ,0)
2 ynsw ,0<0

ysw=(1.4+0.302 ynsw ,0)
2
−1.96 ynsw ,0≥0

(B.33)
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Calculate diurnal wind speed:

vdiurnalw=0

vdiurnalw=vdiurnalw+tmagw ,0cos (tfreqw,0(hr−tpeakw ,0)) tstart w,0<hr< tstopw ,0

vdiurnalw=vdiurnalw+tmagw ,1 cos (tfreqw ,1(hr−tpeakw ,1)) tstartw,1<hr<tstopw ,1

(B.34)

Calculate daily average wind speed trend:

vhmw=vdavlw+
hr (vdavw−vdavlw)

24
(B.35)

Calculate total hourly wind speed:

vw=vhmw+vdiurnalw+σw ysw

if (vw<0)vw=0 (B.36)
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(4.2) For each wind farm w, calculate wind shear factor and hub height wind 

speed. m is the number of the current month.

if (hr< justafterdawnw,m) hr=hr+24

if (hr<beforeduskw ,m)

 { if (hr<afterdawnw ,m)  

      wsf=wsfbasew ,m+0.5(hr− justafterdawnw,m)(awsf w ,m(vw−5)−bwsf w)

   else 

     wsf=wsfbasew ,m+awsf w ,m(vw−5)−bwsf w   }

else

 { if (hr<nightw ,m)

     wsf=wsfbasew ,m+0.25 (hr−beforedusk w ,m)(cwsf w+dwsf w (8−vw))  

     else 

     wsf=wsfbasew ,m+cwsf w+dwsf w(8−vw) }

if (wsf <0)wsf=0

if (wsf >0.7)wsf=0.7

vhhw=vw (
hhwt
50

)
wsf

(B.37)

where hhwt is the hub height of turbine wt used by wind farm w, and vhhw is the
hub-height wind speed of wind farm w.
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(4.3) Calculate wind farm power output for each wind farm w, using wind 

turbine wt:

if (vhhw≤vcwt )CF=0

else

  { if (vhhw≥vrwt)

     {if (vhhw>vswt)  

        { vd=vhhw−vswt

           if (vd≥6)CF=0            

            else

            if (vd≥3)

             CF=
(vd−6)

2

18

              else

              CF=1−
vd2

18
 }         

         else CF=1  }

      else

        if (vhhw≤vf wt) CF=awt+bwtvhhw
3

        else

         { vd=vrwt−vhhw

           CF=1−cwt vd
3  }}

powerw=CF∗capacityw

(B.38)

where capacityw is the full power capacity of wind farm w.

(4.4) Advance the hour of the day variable hr by 1. If hr ≥ 24, advance the day of 

year variable DOY by 1 and set hr = 0. If DOY > 365 (or DOY > 366 if a leap year 

is being modelled), set DOY = 1.
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C Formulation of statistical measures

The Root Mean Square Error (RMSE) is calculated using:

RMSE=
1
N √ ∑

i= 1

N

(hm
−h

d )2

where hd is the measured data value, hm is the model generated synthetic data value, and N is the number of data points.

RMSE can be represented as a percentage value by dividing by the mean value of hd and multiplying by 100.

The Mean Bias Error (MBE) is calculated using:

MBE=
1
N

∑
i=1

N

(h
m

−h
d )

MBE can be represented as a percentage value by dividing by the mean value of hd and multiplying by 100. The RMSE is

a measure of the magnitude of the difference between individual data points in each data set. The sign of the difference 

is ignored. The MBE is a measure of the average difference between individual data points in each data set, or whether 

the model generated data set is biased higher or lower compared to the measured data on the whole. Here the sign of 

the difference is not ignored. Generally, a model with a lower RMSE than another fits the data more closely. In this 

study a model with a negative MBE might be considered more favourably than a model with a similar but positive MBE

because under predicting power generation on the whole is more desirable than over predicting. Representing RMSE 

and MBE as a percentage gives an idea of how significant the error is compared to the average value of the measured 

data.

The Mean Absolute Percentage Error (MAPE) is calculated using:

MAPE=
1
N

∑
i=1

N |hm
– h

d|
h

d

To be represented as a percentage value, the MAPE can be multiplied by 100.  The Mean Relative Variance (MRV) is

calculated using:

MRV=

∑
i=1

N

(hm – hd )2

∑
i=1

N

(h
d

– h
dav

(h))2

where hdav(h) is the average of the measured hourly values hd for hour h. Standard error for monthly average of daily 

values is calculated using:

SE=
1

12 √ ∑
m=1

12

((hmdav
(m)−h

dav
(m))dim(m ))2

where hdav(m) is the monthly average of the measured daily values, hmdav(m) is the monthly average of the model 

generated synthetic daily values, and dim(m) is the number of days in each month.
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