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Abstract 

We developed histological methods to increase precision in measuring oocyte size and, for the first 

time, quantify changes in oocyte composition during ovarian development in penaeids. Wild-caught 

female Metapenaeus dalliRacek, 1957 from the Swan-Canning Estuary, Perth, Western Australia 

were used as a model species to compare the novel method to traditional techniques. Morphological 

analysis showed that ovarian development in M. dalli occurs in five stages: immature, early maturing, 

late maturing, mature, and post spawning, which is consistent with other penaeids. Analysis of key 

morphometric parameters of length and Gonad Somatic Index (GSI) showed that GSI provided the 

strongest discriminators of ovarian development. Oogenesis was similar to qualitative descriptions of 

other penaeid prawns and most-closely related to previous descriptions of Metapenaeus affinis Milne 

Edwards, 1837. Comparisons between the novel perimeter tracing and traditional single linear 

methods for measuring oocyte dimensions showed that greater precision was achieved by tracing. 

This resulted in a 17–40% reduction in the confidence limits of the means for all cell types measured. 

A novel histological technique of examining oocyte composition was also developed. This technique 

allowed for the relationship between stages of ovarian development and proportion by volume of 



oocyte types to be determined. The difference in the proportions of cell types between each stage of 

ovarian development was found to be statistically significant, except between immature and post 

spawning females. The novel methods developed in this study provide new opportunities in the study 

of ovarian development in penaeids and possibly in other species. 
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Introduction 

The western school prawn Metapenaeus dalliRacek, 1957 is a penaeid that occurs in inshore marine 

waters < 30 m in depth, from southern Java (Indonesia) and along the western coast of Australia from 

Darwin in the north to Cape Naturaliste in the south (Gray et al., 1983). In latitudes below 31ºS, 

however, it is only found in estuaries and is believed to complete its entire life cycle within these 

ecosystems (Potter et al., 1986, 2015). This species was once the focus of a small commercial and 

iconic recreational fishery in the Swan-Canning Estuary in south-western Australia (Smith, 

2006; Smithwick et al., 2011), but sustained low abundances led to a reduction in commercial fishing 

effort and the eventual closure of that fishery in the 1970s, and greatly reduced recreational fishing 

effort since the late 1990s (Maher, 2002). Despite the overall reduction in fishing pressure on M. dalli, 

stocks in the Swan-Canning Estuary have not recovered and a restocking program was considered the 

best option to overcome the long-term recruitment failure by bypassing the high mortality rate that 

often occurs in the early larval stages (Smith et al., 2007). The development of hatchery aquaculture 

techniques was initiated in 2012 and, to date, over 4.5 million post-larval prawns have been released 

(G. I. Jenkins, Australian Centre for Applied Aquaculture Research, Fremantle, Western Australia, 

unpublished data). While some information about the timing of reproduction and larval development 

in M. dalli is available (e.g., Potter et al., 1986; Crisp et al., 2016), detailed reproductive studies are 

required to ensure that the most mature broodstock are used, which maximizes hatchery production of 

larvae. 



Understanding the reproductive biology of any penaeid species requires the description and 

quantification of oocyte development, known as oogenesis. Previous studies of oogenesis in penaeids 

often combined observations of somatic changes in ovarian morphology with histological changes in 

approximate proportion, size and number of oocyte types. Oogenesis of a number of species have 

been described including Litopenaeus (Penaeus) setiferus (Linnaeus, 1767) (King, 

1948), Fenneropenaeus (Penaeus) merguiensis (De Man, 1888) (Tuma, 1967) and Penaeus monodon 

Fabricius, 1798 (Tan-Fermin & Pudadera, 1989). Such is the value of these descriptions that some 

have been applied to ecological studies of closely-related 

species Melicertus (Penaeus) latisulcatus (Kishinouye, 1896) (Penn, 1980), Metapenaeus endeavouri 

Schmitt, 1927, Metapenaeus ensisde Haan, 1844 (Courtney et al., 1989), Metapenaeus dobsoni Miers, 

1878 (De Croos et al., 2011), and Rimapenaeus (Trachypenaeus) similis Smith, 1885 (Bauer & Lin, 

1994), and in laboratory studies aimed at improving the reproductive potential of species such as M. 

ensis (Yano, 1985), Farfantepenaeus paulensis Pérez Farfante, 1967 (Peixoto et al., 

2005a), Litopenaeus vannamei Boone, 1931 (Palaclos et al., 2003) and Penaeus esculentus Haswell, 

1879 (Keys & Crocos, 2006). Recent histological observations of oogenesis in two 

species, Metapenaeopsis dalei Rathbun, 1902 (Sakaji et al., 2000), and Metapenaeus Monoceros 

Fabricius, 1798 (Abraham & Manisseri, 2012), however, have shown marked differences in 

development of oocytes compared to the aforementioned studies, particularly in the formation of 

cortical bodies during the final maturation stage before spawning. This highlights the need for target-

specific histological descriptions of oocyte size and composition during development of each species 

of interest. 

Furthermore, histological observations of broodstock responses in penaeids, both to environmental 

parameters (Crocos & Kerr, 1983; Courtney & Masel, 1997; Cha et al., 2004) and to laboratory 

experiments aimed to enhance production in domesticated aquaculture stock (Medina et al., 

1996; Bindhuja et al., 2013), have been limited by their inability to quantify their effects on 

oogenesis. In the past, a combination of macroscopic and histological descriptions of oogenesis had 

been conducted by visual approximation only, such as those by Ayub & Ahmed (2002) and Peixoto et 



al. (2003), but observations concurred with development in other penaeid species (see Dall et al., 

1990). For oogenesis to be precisely quantified, a microscopic method with replication at the cellular 

level is the only way to confirm changes in oocyte composition of gonads. Two key factors must be 

addressed for this to occur. Firstly, more precise methods of measuring the dimensions of oocyte cells 

must be found than is currently available and, secondly, these measures should be applied to a 

standardized method of quantifying the biovolume contributions of each oocyte cell type in a given 

area or volume within the gonad. 

Cell size has traditionally been determined by taking single linear measures across a pre-determined 

axis at the equatorial plane with an ocular micrometer, with the equatorial plane defined as the largest 

possible two-dimensional area of a cell that included complete sections of nucleus in each cell 

(e.g., Peixoto et al., 2005b). Precise measurements are nevertheless difficult to obtain using this 

method, due to the in-situ compression of the oocyte cells into non-geometric shapes. For example, 

inaccuracies have been shown in studies of several penaeids, i.e., Metapenaeus affinisMilne Edwards, 

1837 (Ayub & Ahmed, 2002), M. monoceros (Abraham & Manisseri, 2012), and F. 

merguiensis (Tuma, 1967). New methods would therefore require the use of modern technologies to 

precisely quantify changes in oocyte size and composition during oogenesis. Solving these problems 

offers new opportunities to examine whether ovarian development in penaeids is consistent across 

different regions, fisheries and/or species and also in determining whether the effects of laboratory 

treatments to enhance reproductive condition are successful. 

With this in mind, the aims of this study were to: (1) compare and contrast the ovarian development 

of M. dalli with other penaeids to verify its use as a model species by describing its morphological 

and histological changes during ovarian development, (2) use preserved histological samples of M. 

dalli ovaries to develop a more precise method for measuring oocyte dimensions and (3) further use 

preserved histological samples to develop a quantitative method of assessing the relationship between 

oogenesis and ovarian development in penaeids. Such novel methods should improve the precision of 

measures of size, and quantify the number and relative composition of oocyte cells during maturation 



and subsequent recovery after spawning, allowing for more effective analysis of ovarian maturity in 

fisheries and aquaculture research. 

 

Materials and methods 

Collection of biological material 

Female specimens of M. dalli were collected at night from the shallow waters of the Swan-Canning 

Estuary (31°56′50″S, 115°54′58″E) between December 2013 and March 2015, using a hand trawl net 

that was 1.5 m high, 4 m wide and constructed from 9 mm mesh. Upon collection, individuals were 

categorized using macroscopic observations into one of four stages of ovarian maturity, (immature, 

early maturing, late maturing and mature) on the basis of the descriptions in Ayub & Ahmed (2002). 

All prawns were chilled in an ice slurry until mortality, but not frozen to prevent potential damage to 

cells. A subset of those individuals whose gonads were classified as mature was first transferred to an 

aquaculture facility for spawning to demonstrate immediate effects on ovarian tissue of 

spawning/atresia, i.e., the regression of acidophilic oocytes that have failed to be spawned, held under 

conditions modified from Laubier-Bonichon & Laubier (1976). Briefly, on arrival, the mature females 

were disinfected with a solution of 1 ppm formaldehyde for 30 min and placed in aerated holding 

tanks overnight (ASEAN, 1978). They were then stocked into 300 l conical base tanks with a flat 

mesh-lined floor at a density of up to 15 individuals per tank for 48 h. Tanks were filled with water 

with a salinity of 33‰ drawn from a bore accessing a saline aquifer, which was aerated constantly 

and maintained at a temperature of ~26° C with 0:24 h light: dark photoperiod. After spawning the 

females were transferred to an ice slurry as per the other individuals. 

Morphology and histology 

A subset of 25 individuals from each of the immature, early maturing, late maturing, and mature 

stages together with 25 post-spawned individuals from the aquaculture facility was examined in the 

laboratory. Each specimen was weighed to the nearest 10 mg (wet weight) using a Sartorius A200S 



top balance and its carapace length, i.e., orbital indent at the anterior end to the posterior edge of the 

carapace, measured to the nearest 0.1 mm using a Sontax 150 mm digital caliper. Ovarian tissue was 

then carefully excised and the Gonad Somatic Index (GSI) calculated using the equation GSI = (gonad 

weight / total weight) × 100. Subsamples of anterior or first abdominal sections of the excised gonads 

were immediately fixed before histological analysis for at least 48 h in a solution of tetraborate-

buffered 10% formaldehyde with ~33‰ salinity. 

The fixed gonad samples were then embedded into paraffin block and 6 µm sections taken as 

per Bell et al., (1988). Sections were then stained with haematoxylin and eosin using the method 

adapted from Quintero & Gracia (1998). The resultant sections were then imaged using a Tucsen 9 

MP camera mounted onto a compound microscope at 100 x magnification. The TSView 7 software 

package was used to download the images for analysis. Oocytes from these imaged samples were then 

characterized and compared to published histological descriptions (i.e.,Tuma, 1967; Ayub & Ahmed, 

2002). 

From these images, five oocytes of each type per slide were selected ad-hoc from 10 haphazardly 

selected slides and measured via two methods with ImageJ 1.48 64-bit software, producing 50 

measures of each cell type overall for each method. The first method was the traditional single linear 

measure to determine diameter (Ayub & Ahmed, 2002). Diameter was measured parallel to the long 

axis of each mounted slide. The second method was the measurement of the external circumference 

by tracing the perimeter of each cell. Both measurements were taken as close to the equatorial plane 

as possible, with this plane being defined by those oocytes that showed the largest possible two-

dimensional surface area and included complete sections of nucleus within each cell. In cortical 

oocytes where the nucleus is not visible, this was defined as the largest possible area of cytoplasm that 

could be found with cortical bodies of uniform size and shape around the periphery. 

Measurements were made at the equatorial plane to ensure that only sections of whole cells were 

used. Partial sections of cells are often created as oocytes are contorted into non-geometric shapes by 

being compressed in the ovary. Each measurement was made on a digital image at 100× 

magnification then re-calibrated to µm using an image of a micrometer at the same magnification. 



Once perimeter measures were made, equivalent diameter and spherical biovolume were calculated 

using the following equations, assuming that oocytes released from gonads take on a spherical form. 

Diameter (sphere) = circumference / π 

Volume (sphere) = (4/3) × π × r3, where r = diameter /2 

The diameters measured or calculated using the traditional linear measure and new perimeter method 

were compared to determine which technique provided the most consistent results, as demonstrated 

by the size of the 95% confidence limits. 

Oocyte development 

The oocyte types present in each developmental stage were described visually from the images taken 

from the slides, as per traditional methods (i.e.,Tuma, 1967; Ayub & Ahmed, 2002). The relationship 

between the relative proportions of each oocyte type present and the stages of development were then 

examined to determine trends in oocyte development between stages. 

Images of each slide were uploaded to Adobe Photoshop CS6, where 400 × 400 µm gridlines were 

applied. These dimensions were chosen on the basis that at least six replicate grids could be obtained 

from each slide for analysis. From this, three grid squares were haphazardly selected to enumerate 

each cell type over the two-dimensional plane. This involved counting the number of oocytes of each 

cell type within each square, taking care to only include cells in, or near, to the equatorial plane. Cells 

that overlapped grid boundaries were only considered when crossing the left or top sides of the 

nominated grid square(s), as adapted from the standard haemocytometer method of counting cells 

(ASEAN, 1978). 

Once each oocyte type was enumerated, the total biovolume for that type of oocyte in each replicate 

was calculated by multiplying the number of that oocyte type by its corresponding mean biovolume 

(see equation below). This was done to standardize the biovolume of each cell type in each replicate. 

Once calculated, the proportions of each oocyte type at each stage were compared and contrasted to 

determine the relationship between relative oocyte abundance and macroscopic stage of development. 



Total biovolume (oocyte type) = mean biovolume  

(oocyte type) n  (oocyte type) 

Statistical analysis 

One-way analysis of variance (ANOVA) was used to determine whether carapace length and GSI 

differed among various stages of ovarian development. Analysis of the linear relationship between the 

loge mean and loge standard deviation of each data set was used to determine which transformations, if 

any, were required, to meet the test assumption of homogeneity of variance for each of the above two 

data tests (Clarke et al., 2014a). This analysis indicated that a square root transformation of GSI 

values were required, while carapace length required no transformation. When ANOVA detected a 

significant difference, post-hoc tests were conducted using Tukey’s HSD to elucidate the pairs of 

ovarian stages that were responsible for each of those differences. In this and all tests, a null 

hypothesis of no significant difference between a priori groups was rejected when P was < 0.05. 

To determine which of the two methods for calculating cellular diameter (see above) was the most 

precise, the data for each of the five oocyte types was analyzed using multiple pairwise comparisons, 

via two-tailed F-tests. If a significant difference in magnitude of variance was detected, the magnitude 

of that difference was quantified by calculating the percentage change in variance from the single 

linear to the new perimeter method. All univariate analyses were performed using SPSS version 22 

software (IBM, 2013). 

Multivariate analysis to determine whether the percentage contributions of the biovolumes of each 

type of oocyte present (i.e., oocyte composition) differed among ovarian development stages was 

conducted using a one-way Analysis of Similarities (ANOSIM; Clarke & Green, 1988) test using the 

PRIMER v7 software package (Clarke & Gorley, 2015). Prior to analysis, the percentage 

contributions of the biovolumes of each cell type from each section were visualized using shade plots 

and an appropriate transformation selected using the criteria in Clarke et al., (2014b). In this case, a 

square-root transformation was used to avoid any tendency for a cell type to be excessively dominant. 

This pre-treated data was used to produce a Bray-Curtis resemblance matrix, which was, in turn, 



subjected to the one-way ANOSIM test. To visualize the patterns exhibited by oocyte type among the 

125 replicate samples, a non-metric multidimensional scaling (nMDS) ordination plot (Clarke, 1993) 

was constructed from the above resemblance matrix. To simplify and further illustrate the histological 

differences between stages, a second (centroid) nMDS plot was produced using a distances among 

centroids matrix, which creates averages in the ‘Bray-Curtis space’ from the 25 replicate samples 

representing each stage (Lek et al., 2011). Stacked bar histograms, representing the untransformed 

percentage contributions of the various cell types were included to indicate which types of oocytes 

were responsible for the changes in cellular composition during each stage of oogenesis. 

 

Results 

Macroscopic observations 

The gonad in situ, from the dorsal carapace to the dorsoventral section of the tail above the anus 

showed macroscopic changes between each of the five stages. 

 Stage 1 (immature). Gonad not visible through the exoskeleton, requiring dissection to 

observe. Gonad translucent in appearance and smooth textured, with the diameter in the mid-

section smaller than the intestinal tract directly below. Anterior lobes present, although 

undeveloped. 

 Stage 2 (early maturing). Gonad visible through dorsal exoskeleton. Upon dissection gonad 

appears thin with a white-yellow or green-yellow granular appearance. Anterior lobes 

enlarged and extend forward into the carapace, while the posterior lobes greater in size than 

the intestinal tract. 

 Stage 3 (late maturing). Gonad clearly visible through the exoskeleton, taking on a green 

granular appearance. Texture of the dissected gonad firmer and lobes nearly filled out. 

Anterior lobes fully-formed, but do not fill the carapace completely. An ‘arrow head’ shape 

begins to form posteriorly in the final abdominal segment above the anus. 



 Stage 4 (mature). Gonad now clearly visible through the exoskeleton, expanding in size to 

occupy much of the carapace and a significant portion of the abdominal region. Upon 

dissection has a dark-green or green-brown granular appearance and a distinct ‘arrow head’ 

formed in the posterior end. 

 Stage 5 (post spawning). Gonad either slightly visible or no longer visible through the 

exoskeleton. Upon dissection, gonad appears opaque-white or white-yellow and smooth in 

texture. A red hue present in some samples. 

Carapace length and gonad somatic index 

Carapace lengths were shown by one-way ANOVA to differ significantly among stages of 

development (F = 11.84, df = 4, 124, P < 0.001), with Tukey’s post hoc test determining that 

immature and early maturing females had a smaller mean carapace length (~ 19 mm) than the late 

maturing, mature and post-spawned females (~ 21–22 mm; Fig. 1). Overlap in 95% confidence limits 

of some of the stages of ovarian development indicates that it is not well defined by carapace length. 

A one-way ANOVA of the GSI values demonstrated that they differed significantly among the stages 

of development (F = 250.8, df = 4, 124, P < 0.001), with Tukey’s post-hoc test demonstrating that 

significant differences existed between all stages, except between early maturing and post spawning 

(Fig. 2). The mean GSI values increased sequentially from 0.58 when immature to a maximum of 

6.90 when mature, followed by a sharp decrease at post spawning to 1.97. 

Observations of oocyte appearance 

Preliminary observations indicated that the arrangement of oocyte cells varied greatly between 

individuals within each stage of development, with the in situ observations of development indicating 

that oocyte cells migrate from the germinal zone (Fig. 3a) to the periphery of the ovary during 

development. Cell types such as yolky and cortical oocytes later become bound by follicle cells just 

prior to spawning. Using the criteria defined by Ayub & Ahmed (2002), five types of oocytes 

(chromatin nucleolar, perinucleolar, yolkless, yolky, and cortical), were identified in addition to 

follicle cells in ovarian sections stained in haematoxylin and eosin. These cells showed a progression 



in size, with earlier stages comprising primarily basophilic cellular material, staining blue, tending to 

shift to acidophilic cellular material, staining red, during the later stages of ovarian development. 

Oocyte cells migrate away from the germinal zone (Fig. 3a) as they develop from chromatin nucleolar 

to cortical oocytes, leaving room for new cells to be produced. The appearance of each oocyte type is 

described below. 

Chromatin nucleolar oocyte (Fig. 3a). Constructed primarily of a densely basophilic nucleus, 

containing chromatin material in no particular arrangement. Cell has very little cytoplasm that is 

completely basophilic. 

Perinucleolar oocyte (Fig. 3a). Exhibits a densely basophilic nucleus with a larger basophilic 

cytoplasm. Basophilic nucleoli are arranged around the periphery of the nuclear membrane. Follicle 

cells appear to arrange themselves around the outside of some perinucleolar oocytes (Fig. 3a). 

Yolkless oocyte (Fig. 3b). Cytoplasm now clearly acidophilic, with nuclear membrane clearly 

defined. 

Yolky oocyte (Fig. 3c). Cytoplasm now exhibits acidophilic yolky ‘plates’ or granules that include 

cytoplasmic vesicles and/or cortical crypts. Chromatin material and nucleoli are much greater in 

number than the yolkless oocyte, resulting in the nuclear membrane becoming denser and less 

distinguishable. Each yolky oocyte has a layer of follicle cells surrounding each cell. 

Cortical oocytes (Fig. 3d). Nucleus appears absent or near absent. Cortical cells contain small oval-

shaped cortical bodies arranged on the internal periphery of the cytoplasm at the cell membrane. 

These bodies are a defining characteristic of the mature stage of the oocytes. 

Atreatic oocytes (Fig. 3e). Appear as remnants of acidophilic oocytes that failed to spawn, containing 

no cytoplasmic material or a nucleus. 

Oocyte size and composition 

Pairwise comparisons of the size of each of the five types of oocyte measured using the single linear 

or perimeter method, conducted using two-tailed F-tests, demonstrated that in all cases there was a 



significant difference in the variance (Table 1). The perimeter method resulted in a 17 to 40% 

reduction in the 95% confidence limits of the calculated diameter of the cell, depending on the type of 

oocyte. 

One-way ANOSIM detected a significant difference (Global R = 0.787, P = 0.001) in oocyte 

composition, with pairwise comparisons indicating that the contributions of the various cell types to 

each ovarian developmental stage were different in all stages, except between immature and post 

spawning (Table 2). This is illustrated on the nMDS plot where the points representing the gonads 

from immature and post spawning stages overlap considerably and are well separated from those 

points representing the other stages, which all form discrete groups (Fig. 4a). The centroid nMDS plot 

illustrates the clockwise progression in oocyte composition (Fig. 4b), with immature and post-

spawning ovaries comprised solely of chromatin and perinucleolar oocytes (Fig. 5). Although early- 

and late-maturing ovaries retained chromatin and perinucleolar oocytes, they were characterized by 

the presence of a substantial proportion of yolkless oocytes, with late-maturing gonads also containing 

yolky oocytes and a low proportion of cortical oocytes. By the mature stage, the ovary is comprised 

almost exclusively of yolky and cortical oocytes. Following spawning, these yolky and cortical 

oocytes are expelled or re-absorbed, leaving chromatin and perinucleolar oocytes. Thus, oocyte 

compositions in immature and post spawning ovaries are almost identical. 

 

Discussion 

Macroscopic observations 

Macroscopic and histological observations of the gonads of wild-caught female M. dalli showed that 

the oogenesis was separated into five distinct developmental stages, progressing from immature, to 

early maturing, late maturing, mature and finally post spawning. This is similar to previous works 

on L. setiferus (King, 1948), F. merguiensis (Tuma, 1967), Farfantepenaeus 

(Penaeus) brasiliensisLatreille, 1817 (Quintero & Gracia, 1998), and M. affinis (Ayub & Ahmed, 

2002). Macroscopic differentiation of maturity in M. dalli was possible for early maturing, late 



maturing and mature stages of ovarian development; however, the gonad of immature and post-

spawned individuals could not be distinguished from each other. The lack of differences in 

macroscopic observations for these two stages was due to the fact that the exoskeleton obscured the 

view of the gonad in situ, and that each gonad was relatively similar in size and colour. Differentiation 

of these stages was definitive only when gonad was excised and histological analysis was performed, 

with gonads taken from spawned individuals containing significant amounts of atreatic cells and 

extraneous material. Late maturing and mature gonads were considerably easier to distinguish 

externally through the exoskeleton in M. dalli than in F. brasiliensis (Quintero & Gracia, 1998), but 

are most consistent with findings from F. merguiensis (Tuma, 1967) and M. affinis (Ayub & Ahmed, 

2002). 

Carapace length and gonad somatic index 

Strong significant differences were observed in the GSI between stages of ovarian development in this 

study (P < 0.001), with GSI increasing sequentially from a minimum when immature, to a maximum 

when mature, before declining after spawning. The mean GSI of the mature stage in this study 

(6.9 ± 0.6) was similar to that recorded in the neighboring Peel-Harvey Estuary (7.0 ± 0.4) during the 

1987–88 breeding season. The far greater F-value for GSI (250.8) than carapace length (11.84) 

indicates that GSI provides a more precise measure of ovarian developmental stage. Although it was 

possible to differentiate overall ovarian development based on carapace length (P < 0.001), post 

hoc analysis indicated that the five ovarian developmental stages formed only two significantly 

different groups, i.e., immature and early maturing vs late maturing to post spawning. This provides 

relatively poor discrimination between stages of ovarian development. 

The increase in carapace length with ovarian developmental stage is due to the fact that the breeding 

of M. dalli occurs during the warmer summer period (October-March), which coincides with a 

significant increase in somatic growth rates (Potter et al., 1986, 1989). Carapace lengths of mature M. 

dalli in this study (22.3 mm) closely matched those of female Metapenaeus bennettaeRacek & Dall, 

1965 (22.4 mm) in Moreton Bay, Queensland (Courtney & Masel, 1997). It is noteworthy that the 

range of carapace lengths between late maturing to post spawning female M. dalli in this study (20.6–



22.3 mm) are larger than corresponding values recorded in the neighboring Peel-Harvey Estuary in 

1987–88 (17.9–20.7 mm; Potter et al., 1989). This demonstrates that although the GSI of mature 

females is similar between these two systems, the size of individual females is greater in the Swan-

Canning Estuary. 

Oocyte size and development 

During ovarian development, distinct changes were observed in oocyte size and composition from the 

immature stage, through early and late maturation to the mature stage. At post spawning, the ovary 

was similar in appearance to that of the immature stage; however, the post-spawned ovary could be 

distinguished by the presence of large deposits of non-oocyte material and atreatic oocytes. While the 

changes in oocyte composition are consistent with those observed in M. affinis (Ayub & Ahmed, 

2002), they differ from those of M. monoceros (Abraham & Manisseri, 2012) and M. dalei (Sakaji et 

al., 2000). This is due to the last two species containing oocytes without cortical bodies at the mature 

stage. 

Measurements of oocyte diameter using the new perimeter method were found to reduce the range of 

the 95% confidence limits by between 17–40% for each of the five oocyte types when compared to 

those calculated using the single linear method. This increased level of precision is particularly useful 

when quantifying the effects of spatial, temporal, nutritional, and environmental changes on ovarian 

conditioning in the field and/or in the laboratory. The method developed in the current study would 

have enhanced findings by Rao (1973), who found considerable differences in oocyte size from wild 

caught M. dobsoni, P. indicus, and P. stylifera from Cochin when compared to other parts of India. 

Similarly, findings by Ayub & Ahmed (2002), which compared oocyte sizes in M. affinis, P. indicus, 

and P. stylifera from coastal waters off Pakistan, with similar environments in India, would have been 

more precise. In laboratory studies for aquaculture purposes, this quantitative method of assessing 

ovarian development can be applied to studies exploring the effects of altering food composition, 

physiology and/or rearing conditions in broodstock domestication. Quantitative analysis of these 

treatments on ovarian development in Melicertus (Penaeus) kerathurus (Forskål, 1775) (Medina et 

al., 1996), F. paulensis (Peixoto et al., 2005b), P. esculentus (Keys & Crocos, 2006), and P. 



monodon (Marsden et al., 2007) would have significantly enhanced the qualitative histological 

comparisons that were made. 

Ovarian oocyte composition 

Relationships between oocyte composition and ovarian development in this study indicated that the 

greatest diversity in oocyte cells existed during proliferation phase of the early and late maturing 

stages, with cortical oocytes making up the majority of cells present in the mature stage. This 

phenomenon has been described in several other studies and by Dall et al. (1990), but without any 

statistical analysis to support these claims. This study is therefore the first to statistically demonstrate 

changes in oocyte composition with each developmental stage. Given the nature of the pairwise 

comparisons between stages analyzed histologically, and the absence of chromatin, perinucleolar and 

yolkless oocytes in mature gonads, it could be assumed that the final maturation process is rapid. 

Changes in GSI between late maturing and mature stages also support this assertion, indicating that 

much of the energetic and nutritional reserves during this period are bestowed to the oocytes, 

particularly lipids (Cahu et al., 1994), α-tocopherol, and ascorbic acid (Cahu et al., 1995). Post-

spawning absorption of atreatic oocytes and extraneous material in the gonad may act as a recovery 

mechanism to stave off mortality after spawning, allowing for recovery and repeated spawning, but 

additional environmental stressors may increase mortality during this sensitive period. The novel 

method of determining the size of oocytes in the ovaries of penaeids developed in this study showed a 

much greater precision than the traditional techniques previously used. Having using these measures, 

multivariate statistical analyses were employed to describe the relationship between oocyte 

composition and ovarian development, resulting in the first quantifiable data to be obtained by any 

study of oogenesis for a penaeid. New opportunities now arise in the application of these methods in 

studies of the ovarian development in penaeids, with practical applications in assessing the 

reproductive performance of wild-caught female prawns and those held under the influence of 

alimentation, relatively different to what would be found in natural environment. 
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Figure 1. Mean carapace length of female Metapenaeus dalli at each of the five stages of ovarian 

development. Error bars represent 95% confidence limits and the letters indicate significant 

differences among stages as determined by Tukey’s HSD test. 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 2. Mean Gonad Somatic Index (GSI) values for female Metapenaeus dalli at each of the five 

stages of ovarian development. Error bars represent 95% confidence limits and the letters indicate 

significant differences among stages as determined by Tukey’s HSD test. 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 3. Representative photographs of haematoxylin and eosin stained oocytes of (A) immature, (B) 

early maturing, (C) late maturing, (D) mature, and (E) post-spawning female Metapenaeus dalli at 

250× magnification. Images of cells were taken at the ovarian development stage at which they first 

appear. FC, follicle cells; CR, chromatin nucleolar oocytes; PO, perinucleolar oocytes; GZ, germinal 

zone; N, nucleus; N’, nucleoli; VES, cytoplasmic vesicles; CO, cortical bodies; AT, atreatic cell. Bar 

= 50µm. 

 

 

 

 

 

 

 

 

 

 



Figure 4. A. Non-metric multidimensional scaling (nMDS) ordination plot derived from a Bray-Curtis 

resemblance matrix of the square-root transformed percentage biovolumes of each type of oocyte 

from 25 female Metapenaeus dalli from each of the five stages of ovarian development. B. Centroid 

nMDS ordination plot, derived from distance among centroid matrices constructed from the above 

Bray–Curtis resemblance matrix. Arrows on dotted lines indicate the progression in development of 

ovaries from immature to post spawning. 

 

 

 

 

 

 

 

 

 

 



Figure 5. Mean percentage contributions of the biovolumes of each type of oocyte in 

female Metapenaeus dalli from each of the five stages of ovarian development. 

 

 

 

 

 

 

 

 

 

 

 

 



Table 1. Mean diameters (µm) and ± 95% confidence limits of five types of oocyte present in the 

ovaries of female Metapenaeus dalli during ovarian development, calculated using single linear and 

perimeter methods. The significance values (P) of F-tests are provided together with the percentage 

reduction in confidence limits achieved using the perimeter method. 

 

 

Oocyte type  

Linear  

measure  

Perimeter 

measure  P  

% 

reduction  

Chromatin  26.59  ± 1.78  23.32  ± 1.48  0.001  17  

Perinucleolar  55.46  ± 4.41  60.63  ± 2.96  0.000  33  

Yolkless  94.94  ± 6.31  102.69  ± 3.79  0.003  40  

Yolky  128.84  ± 6.95  131.79  ± 4.48  0.001  35  

Cortical  143.05  ± 7.98  152.55  ± 5.55  0.000  30  

 

 

 

 

 

 

 

 

 



Table 2. Pairwise R statistic and significance level (P) values derived from a one-way ANOSIM of the 

square-root transformed percentage biovolumes of each type of oocyte from female Metapenaeus 

dalli in each of the five stages of ovarian development. Insignificant pairwise comparisons (P > 0.05) 

are shaded grey. 

 

 Immature  Early maturing  Late maturing  Mature  

Early maturing  0.816   

Late maturing  0.901  0.427   

Mature  1.000  1.000  0.934   

Post spawning  0.018  0.833  0.903  1.000  
 

This is a non-significant and the comparison cell of Immature-Post spawning background needs to be 

shaded in grey. 
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