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 2 

Abstract 16 

As commercial fishing activity shifts to target different grounds over time, spatial 17 

gaps can be created in catch rate data and lead to biases in derived indices of fish 18 

abundance. Imputation has been shown to reduce such biases.  In this study, the 19 

relative performance of several imputation methods was assessed using simulated 20 

catch rate datasets. Simulations were carried out for three fish stocks targeted by a 21 

commercial hook and line fishery off the south-western coast of Australia: Snapper 22 

(Chrysophrys auratus), West Australian Dhufish (Glaucosoma hebraicum), and 23 

Baldchin Groper (Choerodon rubescens). For High Growth scenarios, the mean 24 

squared errors (MSEs) of Geometric and Linear imputations were lower, indicating 25 

higher accuracy and precision, than Base method (constant value) imputations.  For 26 

Low Growth scenarios, the lowest MSEs were achieved for Base method imputations.  27 

However, for the final standardised and imputed abundance indices, the Base method 28 

index consistently demonstrated the largest biases.  Results demonstrate the 29 

importance of selecting an appropriate imputation method when standardising catch 30 

rates from a commercial fishery that changed its spatial pattern of fishing over time.  31 

 32 

 33 

 34 

  35 
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 3 

Introduction 36 

 37 

Conventional statistical methods, including generalized linear models (GLMs), are 38 

routinely used to standardize commercial catch-per-unit-of-effort (CPUE) data into 39 

indices of relative fish abundance for stock assessment. However, missing CPUE data 40 

from some areas and times often occurs due to the highly mobile nature of 41 

commercial fishing and can lead to biases in the resulting indices of fish abundance. 42 

The use of suitable imputation methods, such as those recommended by Walters 43 

(2003), have proven useful for reducing such biases. 44 

 45 

However, despite the frequency and importance of this issue the performance of 46 

alternative CPUE imputation models (in the absence of relevant auxiliary data; see 47 

Ono et al, 2015) has not been investigated. The model suggested by Walters (2003), 48 

referred to in this paper as the Base method, imputes a constant value for each period 49 

of missing data.  The imputed value is based on conventional rules for imputation, 50 

including taking the mean value, nearest neighbour (i.e., in time) and last observation 51 

carried forward (LOCF). Walters (2003) demonstrated that his imputations reduced an 52 

apparent bias that manifested in an initial rapid decline in CPUE.  The steepness of 53 

this initial decline was likely reflecting localized effects of fishing on fish population 54 

abundance as opposed to stock-wide trends.  This effect is more generally known as 55 

hyperdepletion (Hilborn and Walters 1992).  56 

 57 

More recently, Carruthers et al. (2011) used simulations to demonstrate how Base 58 

method imputations could be incorporated into a statistical CPUE standardisation 59 

using GLMs. Importantly, this method accounted for the prospect that the trend of 60 
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 4 

CPUE may be different in different areas.  As such, this is an improvement over more 61 

conventional spatial imputation procedures such as kriging (Matheron 1963; Isaaks 62 

and Srivastava 1989). Ono et al. (2015) also used simulations to evaluate Base 63 

method imputations and found that the incorporation of ancillary data, such as from 64 

Baited Remote Underwater Video (Bornt et al. 2015; McLaren et al. 2015) or diver 65 

surveys (Russ and Alcala 1998; Russ et al. 2003), could result in less biased 66 

imputations for U.S. groundfish species. However, for many fisheries CPUE datasets, 67 

such ancillary data are often not available when CPUE data are missing.  68 

 69 

The aim of this study is to evaluate the effectiveness of several alternative imputa- 70 

tion methods for use in CPUE standardisation against the Base (i.e., constant imputed 71 

value) method, for predicting historical trends in relative abundance, in cases where 72 

no ancillary data are available for informing imputations. Each of the alternative 73 

imputation methods is a simple empirical function calculating the trend of imputed 74 

values (Linear, Geometric, Negative Exponential, Logistic).  Simulations are used to 75 

evaluate imputation method performance for the CPUE of three species targeted by 76 

the commercial hook and line fishery off the west coast of Australia: Snapper 77 

(Chrysophrys auratus), West Australian Dhufish (Glaucosoma hebraicum), and 78 

Baldchin Groper (Choerodon rubescens). This fishery is presently the West Coast 79 

Demersal Scalefish Interim Managed Fishery (WCDSIMF), which comprises 80 

approximately 60 licensed fishing vessels that have collectively landed over 300 81 

tonnes of demersal scalefish each year, since 2008 (Fig. 1, Fairclough et al. 2014a).  82 

Prior to the commencement of the WCDSIMF, commercial operators harvested 83 

demersal scalefish from these grounds using hook and line gear, as part of the 84 

statewide open-access “wetline” fishery (Wise et al. 2007). The performance of the 85 
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 5 

Base and alternative imputation methods is evaluated by comparing trends in imputed 86 

values against population trajectories, mean squared errors of the imputed values, and 87 

derived indices of fish abundance.  88 

 89 

Materials and methods 90 

Overview 91 

The simulation model was designed to generate catch and effort data with similar 92 

properties to historical logbook data reported to the Department of Fisheries, 93 

Government of Western Australia (DoFWA) by commercial hook and line fishers 94 

operating in these waters since 1975 (Wise et al. 2007). Simulated catch and effort 95 

data were generated for each vessel’s activities within each grid block of ocean, 96 

delineated by degree lines of latitude and longitude (60′ blocks), over a 30-year time 97 

period.  Fish population and fishery dynamics were simulated over finer spatial scales 98 

(10′ blocks), with alternative scenarios run for different levels of population growth 99 

rate and fishing depletion, types of adult movement, and spatial autocorrelation (Fig. 100 

1).  The fleet was subdivided into several non-overlapping “management areas”, to 101 

emulate the relatively localized patterns of fishing by each vessel and recently 102 

implemented (i.e., since 2008) spatial entitlements (Crowe et al. 1999; Marriott et al. 103 

2011; Fairclough et al. 2014a).  Stochasticity was incorporated using Monte Carlo 104 

resampling for 200 model iterations, within each of 24 simulated scenarios (Table 1). 105 

 106 

Missing data were created for randomly selected 60′ blocks by specifying that 107 

commercial fishing did not occur for one of three time periods (Years 1—10; Years 108 

11—20; Years 21—30).  A matrix of estimated marginal means (EMMs; Searle et al. 109 

1980), for combinations of 60′ block with year, was then predicted from a GLM fitted 110 
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 6 

to these data.  The Base method and four alternative imputation methods were applied 111 

to fill in those cells corresponding to the missing data.  Imputed EMM matrices were 112 

converted into indices of abundance by averaging across the levels of block within 113 

each year and then compared against the trajectory of simulated population abundance 114 

to assess the relative performance of each method. 115 

 116 

Model inputs: data and parameter estimates 117 

Commercial catch and effort data were obtained from statutory fishing returns sub- 118 

mitted to the DoFWA by licensed operators in the WCDSIMF for the calendar years 119 

2008—2014. The fishing returns reported catch and effort for sessions of fishing 120 

lasting not more than 24 hours within 10� 	× 	10′ blocks for every trip completed by 121 

each vessel.  These logbook returns have recently (i.e., since 2008) been implemented 122 

to replace the historic Catch And Effort System (CAES) returns, upon which monthly 123 

summaries of catch and effort within 60′ blocks had been reported (Crowe et al. 124 

1999; Marriott et al. 2011).   125 

 126 

Records with nonzero catches of the study species from the first year of data 127 

collection (2008) and 10′ blocks with n > 3 catch records were identified as spatial 128 

population sub-units and included in preliminary analyses.  There were na sub-units 129 

identified for each stock (Table 2).  Local spatial population distributions were 130 

assumed to be represented by these blocks, except for outlying blocks, which did not 131 

share adjacent boundaries and were excluded (4.1 % of 10′ blocks for Snapper; 3.1 % 132 

for Baldchin Groper; 2.3 % for Dhufish).  As commercial fishing for demersal 133 

scalefish was prohibited in the Metro zone management area of the WCDSIMF 134 

(31−33°S) in 2008, the spatial distribution of charter fishing catches of Dhufish from 135 
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 7 

1 July 2002—30 June 2003, as reported in Wise et al. (2007), were used to define 136 

population sub-units for the corresponding simulated management area (�	: Fig. 1). 137 

 138 

Explanatory variables were selected and linear mixed models (LMMs) fitted to log-139 

transformed CPUE data following the methods of Fairclough et al. (2014b).  Crossed 140 

random effects terms were estimated for 10′ blocks (intercept) and vessels (intercept).  141 

The estimated variance component for residual errors was taken as an estimate of the 142 

variation within groupings of 10� block and vessel.  These estimates were converted 143 

into dimensionless coefficients of variation (sa, sv, 
�) by dividing the square root of 144 

each estimate by the mean of the response. These values were multiplied by the 145 

respective mean of the log-transformed simulated quantity and then squared to obtain 146 

the rescaled estimates of variance (Var�log	���∙,�)], 	Var�log	���)], Var���,�,�])1
. 147 

 148 

Available information on the population dynamics of Snapper, Dhufish and Baldchin 149 

Groper (Lenanton et al. 2009; Anon 2010; Fairclough et al. 2011; Wakefield et al. 150 

2011), were also used to obtain estimates for simulation model parameters
1
.  An 151 

initial assumed value for the rate of population growth proportional to population size 152 

(r = rinit) was the value of r from the discrete logistic model for population growth 153 

which resulted in a close approximation to the projected recovery trend of Ny, from 154 

� = 0.05�� to �$�, as calculated from a single-sex age-structured model (R. J. 155 

Marriott unpublished data).  As this calculated rinit was a highly uncertain estimate, a 156 

single “Low Growth” (%init − 2+,-) and “High Growth” (%init + 2+,-) input value was 157 

used for each stock, where +,- = /Var�%init].   This was done so that the influence of 158 

                                                        
1 Refer to Supplementary Data for details. 
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 8 

these different r inputs, representing plausible lower and upper bounds for its 159 

uncertainty, could be evaluated in simulated scenarios. 160 

 161 

The model 162 

Fish stocks were simulated as closed populations with density-dependent population 163 

growth according to the following model:  164 

(1)     165 

��,�grow = ��,� + ��,� 01max − 1max − 4min2��,� ��∙,�5 − ��,� 04min + 1max − 4min2��,� ��,�5	, 
(2) 166 

 ��,�6 = min7��,�grow − ∑ ��,�,� + ��,�move, 	��,�� 9	, 167 

where: ��,� is the number of fish in population sub-unit a and year y; 1max and 4min 168 

are the respective birth and death per capita rate processes at very low population 169 

sizes (% = 1max − 4min);  ��∙,� = :;<∑ ��,��  is the mean number of fish per sub-unit in 170 

year y; 	∑ ��,�,��  is the number of fish removed due to fishing by all vessels (v) in the 171 

fleet from sub-unit a in year y; and ��,�move was the net number of fish immigrating to 172 

sub-unit a from adjacent sub-units.  Equation (1) was a reformulation of the discrete 173 

form of the logistic population growth model, assuming simple linear density-174 

dependence in the population birth and death rates (Pianka 1974)
2
.  This model takes 175 

into account the two-stage life histories known for the study species, which involve a 176 

highly mobile (pelagic) larval phase and a more sedentary (benthic) post-larval and 177 

adult phase (Francis 1994; Berry et al. 2012; Gardner et al. 2015).  The second term in 178 

Equation (1) represents contributions (i.e., recruitment) due to density-dependent birth 179 

rates, where density-dependent effects are determined by the average of population 180 

                                                        
2 Refer to Appendix A for derivation. 

Page 8 of 47
C

an
. J

. F
is

h.
 A

qu
at

. S
ci

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.n

rc
re

se
ar

ch
pr

es
s.

co
m

 b
y 

M
U

R
D

O
C

H
 U

N
IV

E
R

SI
T

Y
 L

IB
R

A
R

Y
 o

n 
04

/1
1/

17
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 T
hi

s 
Ju

st
-I

N
 m

an
us

cr
ip

t i
s 

th
e 

ac
ce

pt
ed

 m
an

us
cr

ip
t p

ri
or

 to
 c

op
y 

ed
iti

ng
 a

nd
 p

ag
e 

co
m

po
si

tio
n.

 I
t m

ay
 d

if
fe

r 
fr

om
 th

e 
fi

na
l o

ff
ic

ia
l v

er
si

on
 o

f 
re

co
rd

. 



 9 

densities, across all population sub-units in year y.  The third term represents losses 181 

due to more localised density-dependent death rates (i.e., natural mortality), within 182 

that population sub-unit in year y.  Equation (2) shows that the numbers of fish 183 

changed from year y to y+1 due to assumed density-dependent per capita rate 184 

processes (��,�grow), followed by removals due to fishing (∑ ��,�,�� ), and then fish 185 

movements among adjacent sub-units (��,�move)3
.  For the Diffusion and DDHS 186 

(MacCall 1990) scenarios (not reported here
3
), ��,�move took either positive (net 187 

immigration) or negative (net emigration) values, otherwise ��,�move = 0.  A 188 

simplifying assumption was that the Na,y could not exceed the initial pre-fishing 189 

abundance for that sub-unit, Na,0. 190 

 191 

Catches by each vessel from each sub-unit and year were calculated accordingly: 192 

(3) 193 

��,�,� = min@AB�C DC,�,�,���,� , 0.95��,�F�GH 
where: B� is the catchability coefficient for vessel v; DC,�,�,� is the unit of fishing effort 194 

expended by vessel v during fishing event i within that sub-unit and year; and �GH is 195 

the lognormally distributed error term explaining the variability in catches among 196 

fishing events for each vessel within sub-units.  The constraint that no more than 197 

95 % of the sub-unit abundance could be caught was imposed to exclude the unlikely 198 

situation where all of the fish are caught by a vessel within a single year.  For 199 

simplicity, for the entire fleet and across management areas, DC,�,�,� = 1 and 200 

∑ DC,�,�,� = I�C,�,� , with the level of simulated catch scaled by an input harvest ratio 201 

parameter (H) and B�.  Fishing by all vessels was simulated as a single event within 202 

                                                        
3 Refer to Supplementary Data for details. 
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 10

each time step, with each vessel constrained to operate within one of three (Snapper 203 

and Baldchin Groper: � , �J,	�$) or four (Dhufish: �J,	�$, �	, �K) simulated 204 

management areas (m; Fig. 1).  The number of vessels allocated to each m, as a 205 

proportion of the simulated fleet size, was commensurate with the number of 206 

population sub-units within that m, as a proportion of the total number na (Table 2).  207 

For simplicity, we assumed the spatial and temporal patterns of other sources of 208 

fishing mortality (e.g., from recreational catches) demonstrated the same patterns as 209 

those simulated for commercial fishing mortality.  210 

 211 

An input value for the average harvest ratio in Year 15, H:  212 

(4)  213 

L = �̅��∙, KN�I� 

was the (model-tuned) value that resulted in a level of relative depletion by Year 30: 214 

(5)  215 

O	�%) = 100	 ×	∑ ��,$��∑ ��,��  

that was within 1 of the pre-specified level for D.  The ��∙, K in Equation (4) is the 216 

average simulated sub-unit abundance in Year 15 and �̅ (average annual commercial 217 

catch), N�  (mean fish weight), and I� are fixed model inputs (Table 2).  Two 218 

alternative values for D were simulated: D = 50 % (Moderate Depletion) and D = 25 219 

% (High Depletion). The High Depletion scenario corresponded to a level that was 220 

between the DoFWA’s Threshold and Limit Reference levels (Wise et al. 2007), 221 

indicating an unsustainable level of fishing. The Moderate Depletion scenario 222 

simulated a stock abundance that was double the High Depletion level for Year 30 223 

Page 10 of 47
C

an
. J

. F
is

h.
 A

qu
at

. S
ci

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.n

rc
re

se
ar

ch
pr

es
s.

co
m

 b
y 

M
U

R
D

O
C

H
 U

N
IV

E
R

SI
T

Y
 L

IB
R

A
R

Y
 o

n 
04

/1
1/

17
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 T
hi

s 
Ju

st
-I

N
 m

an
us

cr
ip

t i
s 

th
e 

ac
ce

pt
ed

 m
an

us
cr

ip
t p

ri
or

 to
 c

op
y 

ed
iti

ng
 a

nd
 p

ag
e 

co
m

po
si

tio
n.

 I
t m

ay
 d

if
fe

r 
fr

om
 th

e 
fi

na
l o

ff
ic

ia
l v

er
si

on
 o

f 
re

co
rd

. 



 11

and was above the DoFWA’s Target Reference level (Wise et al. 2007), indicating a 224 

sustainable level of fishing.  225 

 226 

Stochastic processes 227 

Two hundred Monte Carlo iterations were run for each scenario.  The pre-fishing 228 

abundance in each sub-unit and vessel-specific catchability coefficients were 229 

calculated by sampling once, for each Monte Carlo iteration, from the respective 230 

parametric distributions:  231 

(6) 232 

log7��,�9	~	Normal7log7��∙,�9,	VarSlog7��∙,�9T9   233 

 (7) 234 

log7B�DU∙,∙, K��∙, K9	~	Normal7log7�∙̅,∙, K9,	Var�log���)]9 
where: ��∙,� = 2��∙, K	/	�1 + O/100) is the average starting abundance per sub-unit; 235 

log	��∙̅,∙, K) = log	���∙, KLG) − log	�IUW) is the logged mean catch per vessel per sub-unit 236 

per year; HC = PCH is the commercial harvest ratio; IUW = ∑ IW� 	/	IX is the average 237 

number of vessels per management area; DU∙,∙, K = ∑ D�,�, K/I� = 1;	�,� and PC, IW, IX 238 

are fixed model inputs (Table 2). Each B� was obtained from Equation (7) after Monte 239 

Carlo sampling by exponentiation and then dividing by ��∙, K.  The DC,�,�,� to be 240 

expended by each vessel within each respective management area m were randomly 241 

allocated among sub-units each year by resampling from a multinomial distribution, 242 

parameterised using a deterministic probability vector (Z�,�). Each	Z�,�	was directly 243 

proportional to the available Na,y prior to fishing (i.e., Z�,� = ��∈X,�/∑ ��,�	�∈X ), 244 

following Little et al. (2011).  In addition, variability among the catches of each 245 

vessel from each sub-unit in each year in Equation (3) was simulated by resampling 246 

from: 247 
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 12

(8)   248 

log��GH) ~Normal�0,	Var���,�,�]) .  249 

 250 

The period when missing data occurred determines the type of calculation required 251 

for imputation (e.g., Walters 2003).  Following Walters (2003), we named these three 252 

different types of missing data periods: (i) Before: data missing at the start of a CPUE 253 

data series; (ii) After: data missing from the end of a series; (iii) Gap: period of 254 

missing data, which is neither the Before or After type. Three 60′ blocks were 255 

randomly selected, without replacement, to have one of these missing data patterns, so 256 

that each type was represented once in each model iteration.  The simulated missing 257 

data patterns were: Before period (Years 1—10); Gap period (Years 11—20); After 258 

period (Years 21—30). Ten years was selected as the time period to simulate missing 259 

data because this was judged to be sufficiently long to detect possible effects of 260 

imputation, but not excessively long when compared to the age of most fisheries.  261 

Candidate 60′ blocks for simulating missing data were those with at least 10 sub-units 262 

because these were considered likely to generate sufficient CPUE observations to use 263 

for imputing the missing values.  The mean (± SE) size of the imputed area, as a 264 

proportion of simulated stock area, was 0.16 (± 0.06) for Snapper and Baldchin 265 

Groper, and 0.12 (± 0.04) for Dhufish (High Growth High Depletion scenarios). 266 

 267 

Standardisation model and imputations 268 

An overdispersed poisson GLM was selected for fitting to simulated catches in 269 

numbers (Ck,v,y) from each Vessel (v), Year (y), and 60′ block (Block; k), with log-270 

transformed effort (log Ek,v,y) modeled as an offset variable, following guidelines of 271 

Maunder and Punt (2004):  272 
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(9) 273 

 log7]S�^,�,�T9 = _�+_ ,�  ̀,�+_J,^`J,^+_$,�`$,�+_	,^,�`J,^`$,�+log7D^,�,�9 .  274 

The dispersion parameter was estimated to account for the prospect of over-dispersion 275 

in the simulated CPUE datasets (O’Neill et al. 2011; Marriott et al. 2014).  A matrix 276 

of EMMs, for observed combinations of 60′ block against year, were predicted using 277 

the fitted GLM.   278 

 279 

Five methods were applied to fill in those cells corresponding to missing data in this 280 

Block × Year matrix of EMMs (Table 3).  These were the Base method, which is 281 

equivalent to the method used by Walters (2003) and Carruthers et al. (2011), and 282 

four other non-Base methods.  Each method used observed EMMs (inferred â ,�) for 283 

the kth Block to calculate imputed values (ab̂ ,�) to replace the missing EMMs for that 284 

Block.  285 

 286 

Imputation calculations also varied according to the type of missing data period 287 

(Before, Gap, After).  The Base method imputed a constant value for each type: 288 

Before type imputed values ab̂ ,� are the mean of the first three observed 289 

â ,�	�i.e., :c	∑ â ,� $�d  ); Gap type ab̂ ,�	are the mean of the â ,� preceding and following 290 

the gap (i.e., mean�â , �, â ,J )); After type ab̂ ,� are the last observed â ,� in the series 291 

(i.e., â ,J�) (Walters 2003). The non-Base methods are empirical functions calculating 292 

alternative trends for the imputed ab̂ ,�: Linear, Geometric, Negative Exponential and 293 

Logistic. The Linear method is the simplest for imputing changing relative abundance 294 

in the absence of fishing, although it may not be biologically realistic. Geometric and 295 

Logistic method imputations are consistent with the shape of typical density-296 

independent and density-dependent recoveries in population abundance in the absence 297 
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 14

of fishing, respectively.  Imputations by the Negative Exponential method mirror 298 

those of the Geometric method, and have been included for completeness. (Table 3)  299 

 300 

The non-Base methods use a value for the year (y=A) preceding, or at the 301 

commencement of, the missing data (Before: ab̂ ,e = :c	∑ â ,� $�d  ; Gap: Ik,A = Ik,10; 302 

After: Ik,A = Ik,20) and for the year (y=B) following or ending that missing data period 303 

(Before: Ik,B = Ik,11; Gap: Ik,B = Ik,21; After: ab̂ ,f = â ,e + _bGap�i − j)) to map the 304 

respective imputation function to the observed â ,� (Table 3).  For the After type 305 

imputations, the _bGap is calculated to use information in the available Ik,y (i.e., the 306 

linear rate of change in Ik,y either side of Gap missing data) to extrapolate the ab̂ ,f.  307 

Occasionally missing values arose for 60′ blocks outside of the simulated 10-year 308 

missing data periods due to random chance.  In those cases, imputations were done 309 

using the same method, to result in fully imputed Block × Year matrices. 310 

 311 

Imputed EMM matrices were converted into indices of abundance by averaging 312 

across the levels of Block within each Year (Punt et al. 2000).  Indices were also 313 

generated for standardised CPUE calculated without imputation (No Impute method), 314 

and as predicted from the fitted GLM omitting the interaction term with no 315 

imputations (Main Effects method).  Residuals from the fitted GLM were 316 

bootstrapped 1,000 times to calculate the variances of the log-transformed imputed 317 

values, as well as the bias-adjusted 95 % confidence intervals for each index of 318 

abundance, following Marriott et al. (2014). 319 

 320 
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Evaluating imputation methods 321 

The ab̂ ,� and �^,� for each 60′ block and year were normalised so that the trends in 322 

imputed indices versus population abundances could be visually compared on plots at 323 

the same scale, for each type (Before, Gap, After) and method of imputation.  324 

Normalised values for the ab̂ ,� were calculated by dividing by the mean of the 325 

observed â ,� used for Base method imputations (i.e., divide the ab̂ ,� by: :c	∑ â ,� $�d   326 

for Before imputations; mean�â , �, â ,J ) for Gap imputations; or â ,J� for After 327 

imputations; Table 3).  Normalised values for the �^,�	population abundances were 328 

calculated in a similar manner (e.g., divide the �^,�	to be compared with normalised 329 

Before type ab̂ ,� by :c	∑ �^,� $�d  ).  Although plots for all scenarios are available
4
, 330 

only those for High Growth, High Depletion are presented here, as the a priori 331 

expectation was that this simulated state would demonstrate the greatest contrasts in 332 

�^,�. 333 

 334 

Log-transformations were done to transform imputed CPUE with assumed 335 

multiplicative error structure into values with assumed additive errors for calculating 336 

mean squared errors (MSEs). The MSE of the logged ab̂ ,� was calculated for each 337 

type and method to measure relative performance: 338 

(10)  339 

MSEnlog7ab̂ ,� + 19o = BiasJ nlog7ab̂ ,� + 19o + Var nlog7ab̂ ,� + 19o		, 
where: 340 

(11) 341 

Bias nlog7ab̂ ,� + 19o = log�ab̂ ,� + 1) − log�r^,� + 1)		;  342 

                                                        
4 Refer to Supplementary Data for plots of other simulated scenarios. 
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Var�log�ab̂ ,�+1)) was the variance of the log-transformed bootstrapped values for 343 

ab̂ ,�; and the r^,� values were the corresponding �^,�  that had been transformed to 344 

the same scale as the ab̂ ,�.  MSE values were averaged across years to provide an 345 

overall measure of the relative accuracy and precision of imputed values for each type 346 

and method (i.e., average MSE).  347 

 348 

Results 349 

Trends and biases in imputed values 350 

Graphs of normalised imputed values against normalised population abundances 351 

demonstrate that some imputed indices reflect better the underlying trend of localised 352 

(i.e., within 60′ blocks) abundances than others during missing data (no fishing) 353 

periods (Fig. 2). The relative precision of mean imputed values (not shown) was 354 

generally lower for Baldchin Groper than for Snapper and Dhufish, reflecting the 355 

higher level of stochastic variation used to simulate Baldchin Groper abundances and 356 

CPUE (specified using 
�, 
�, 
�; Table 2).  Before type imputations underestimated 357 

normalised relative abundances for all stocks, with clear differences between imputed 358 

trends when comparing the Base method with the other (non-Base) methods. Greater 359 

variation was apparent among the non-Base methods for Gap and After type 360 

imputations than for Before type imputations (Fig. 2). 361 

 362 

Before type imputations by the Base method underestimated the normalised 363 

abundance trend by a constant amount, on average (Fig. 2). However, the non-Base 364 

methods demonstrated a gradual reduction in this bias from Years 1 to 10 of the 365 

missing data period. These patterns were also demonstrated for Before type 366 

imputations in other scenarios (Low Growth, High Depletion; High Growth, 367 
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Moderate Depletion; Low Growth Moderate Depletion), with smaller biases apparent 368 

for scenarios with Low Growth (r), Moderate Depletion (D), or both
5
. 369 

 370 

Population abundances for 60′ blocks and periods with no fishing were observed to 371 

recover from previously depleted states during Gap (Years 11-20) and After (Years 372 

21-30) missing data periods (Fig. 2).  The gradual increase in Linear and Logistic Gap 373 

type imputations with year more closely approximated relative abundance than Base 374 

and Negative Exponential Gap type imputations. Gap type imputations by the 375 

Geometric method better approximated relative abundances for Snapper and Dhufish 376 

than for Baldchin Groper for the High Growth, High Depletion scenario (Fig. 2), but 377 

this result was variable among the other simulated scenarios5.  378 

 379 

Similar population trajectories were observed among stocks during the After missing 380 

data periods for the High Growth, High Depletion scenario (Fig. 2).  The Base method 381 

underestimated relative abundances by an increasing amount in later years, whereas 382 

the non-Base methods overestimated relative abundances to a greater extent in later 383 

years.  This difference between methods was apparent in all other scenarios, except in 384 

cases where population abundances did not recover as much during the missing data 385 

period, such as in some of the Moderate Depletion scenarios simulated for Snapper 386 

and Dhufish5.   387 

                                                        
5  Refer to Supplementary Data for details. 
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 388 

Mean Squared Errors of imputed values 389 

Medians of the average MSEs were consistently lower for imputations of Snapper and 390 

Dhufish standardized CPUE than for Baldchin Groper (Fig. 3).  This indicated better 391 

average performance of imputations for Snapper and Dhufish than for Baldchin 392 

Groper, in terms of the accuracy and precision for imputations matching relative 393 

abundances. Medians of the average MSEs were also generally lowest for Before type 394 

imputations and highest for After type imputations (Fig. 3).  Furthermore, although 395 

truncated axes omit outliers, or upper whiskers, or both from some of these plots, the 396 

relatively high variation in average MSEs is readily apparent.  This reflects simulated 397 

levels of stochastic variation within each of the scenarios.  398 

 399 

Across all scenarios and types of imputation, medians for the Base method were 400 

lowest (indicating best performance) in the majority of cases (Table 4a).  However, 401 

there was also a conspicuous influence of the selected level for r on results. For most 402 

of the Low Growth scenarios, Base method imputations had the lowest medians of 403 

average MSE, but for most of the High Growth scenarios Geometric or Linear 404 

imputations demonstrated the lowest medians (Table 4a). The effect of D, although 405 

less pronounced than that of r, was also apparent.  In Moderate Depletion scenarios 406 

Base method imputations most often had the lowest median but in High Depletion 407 

scenarios Geometric imputations most often had the lowest median (Table 4a).  408 

 409 

Aside from the High Growth High Depletion scenarios, the Base method consistently 410 

demonstrated the lowest median of average MSE for Before type imputations (No 411 

Movement scenarios; Fig. 3, Table 4b).  However, for Gap and After type 412 
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 19

imputations, in most cases (and especially for High Depletion scenarios) the 413 

Geometric or Linear methods produced the lowest medians of average MSE (Table 414 

4b).  The Base method produced the lowest medians for Gap and After type 415 

imputations done in Moderate Depletion scenarios simulated for Dhufish and for Gap 416 

type imputations of Low Growth Moderate Depletion scenarios simulated for Snapper 417 

and Baldchin Groper.   It is important to acknowledge, however, the relatively wide 418 

variation in values above and below some of these medians, and in some cases, the 419 

relatively small differences between them (Fig. 3). 420 

 421 

Indices of abundance 422 

At the stock level, the initial decline in normalised Iy in simulation Years 1–10 was 423 

greater than the corresponding decline in normalised Ny, indicating an effect of 424 

hyperdepletion in indices of abundance for High Growth, High Depletion scenarios 425 

with No Movement (Fig. 4).  However, this hyperdepletion bias was reduced for all 426 

imputed indices.  Hyperdepletion biases for each method are more clearly shown on 427 

plots of mean relative error (sD� = log7normalised	a�9 − log	�normalised	��)) as a 428 

declining mean REy with year (i.e., as compared to the horizontal line for relative 429 

abundance, mean7sD�9 = 0; Fig. 5).  The sharp increases in mean REy from Years 430 

10 to 11 and 20 to 21 correspond with unstandardised increases in CPUE following 431 

effort shifts into 60′ blocks that had not been fished for the previous 10 year period.   432 

 433 

Hyperdepletion biases were most conspicuous from Year 3 to 10, from Year 12 to 20, 434 

and from Year 22 to 30, for the Main Effects, No Impute, and Base method indices 435 

(High Growth, High Depletion, No Movement scenarios, Fig. 5).  The pattern of 436 

mean REy was generally more stable, and closer to zero in the final year, for non-Base 437 

Page 19 of 47
C

an
. J

. F
is

h.
 A

qu
at

. S
ci

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.n

rc
re

se
ar

ch
pr

es
s.

co
m

 b
y 

M
U

R
D

O
C

H
 U

N
IV

E
R

SI
T

Y
 L

IB
R

A
R

Y
 o

n 
04

/1
1/

17
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 T
hi

s 
Ju

st
-I

N
 m

an
us

cr
ip

t i
s 

th
e 

ac
ce

pt
ed

 m
an

us
cr

ip
t p

ri
or

 to
 c

op
y 

ed
iti

ng
 a

nd
 p

ag
e 

co
m

po
si

tio
n.

 I
t m

ay
 d

if
fe

r 
fr

om
 th

e 
fi

na
l o

ff
ic

ia
l v

er
si

on
 o

f 
re

co
rd

. 



 20

methods than for the Base method (Fig. 5).  A lower negative mean RE30 for the Base 438 

method indicates that estimates of relative abundance for that final year would be 439 

more negatively biased than those from non-Base methods.  This larger average 440 

(negative) relative error for the Base method in Year 30 was consistent across all 441 

other scenarios, although the relative differences in the mean RE30 between methods 442 

was variable
6
.  443 

 444 

Discussion 445 

Simulation evaluations demonstrated that, in some cases, alternatives to the Base 446 

method of Walters (2003) could result in a reduced bias and an increased precision of 447 

imputed standardised CPUE.  Geometric and Linear imputations were more accurate 448 

and precise than Base method imputations in High Growth scenarios, but the Base 449 

method imputations were more accurate and precise in Low Growth scenarios.  An 450 

effect of the specified level of relative depletion (although less pronounced than that 451 

of specified growth) also influenced the relative accuracy and precision of different 452 

imputations.  However, in all scenarios, imputed indices of stock abundance 453 

demonstrated lower biases than non-imputed indices, which was consistent with 454 

results from other studies (Walters 2003; Campbell 2004; Carruthers et al. 2011; Ono 455 

et al 2015).  The Main Effects (no Block × Year interaction and no imputation) index 456 

demonstrated the largest hyperdepletion biases and underestimated relative 457 

abundances in the final year by the largest amounts.  Of the imputed indices, the Base 458 

method index demonstrated the largest biases, and these results were found to be 459 

consistent in other simulated movement and spatial autocorrelation scenarios not 460 

                                                        
6 Refer to Supplementary Data for details. 
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presented
7
.  These results demonstrate that standardisation of CPUE sampled from a 461 

commercial fishery that changed its spatial pattern of fishing over time requires two 462 

key steps, in order to obtain accurate and precise results: (i) a spatial factor by year 463 

interaction term; and (ii) an appropriate imputation model. 464 

 465 

This study used a simulation model tailored to generate CPUE data with missing 466 

observations for demersal scalefish species caught by the WCDSIMF.  However, 467 

although aspects of model structure were specific to this fishery, many simplifying 468 

assumptions were made, in order to elucidate those more general phenomena 469 

concerning CPUE imputations (Roughgarden 1998).  Accordingly, we believe that 470 

these results should be transferable to other studies, and particularly for those fisheries 471 

that target demersal scalefish with pelagic larval dispersal and more site-attached 472 

adult life stages.  In addition, the study species are monitored as indicators for 473 

assessing and managing the suite of demersal scalefish species harvested by the 474 

WCDSIMF (Wise et al. 2007; Anon 2011; Fairclough et al. 2014a).  Therefore, 475 

results should be relatively robust to possible future changes of indicator species, or 476 

uncertainties in more species-specific (e.g., age-based) life history processes not 477 

simulated. 478 

 479 

Other simulation studies have selected different mechanisms for generating the 480 

missing CPUE. Campbell (2004) modeled random effort distribution and spatial 481 

contraction as candidate exploitation patterns to generate missing observations.  More 482 

recently, Campbell (2015) simulated a dataset for imputation using parameter 483 

estimates from a delta-GLM fitted to a subset of commercial broadbill swordfish 484 

                                                        
7 Refer to Supplementary Data for details. 
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CPUE with one missing year × quarter × region stratum.  Carruthers et al. (2011) 485 

simulated age-structured fish population dynamics and imposed fishing dynamics 486 

including hyperstability and hyperdepletion scenarios, which related to shifts in 487 

targeted effort towards or from different species.  Ono et al. (2015) included 488 

hyperstable and hyperdepleted ancillary data to use for imputations, with missing 489 

CPUE occurring due to the simulated creation of marine reserves.  These different 490 

mechanisms were more or less specific to each simulated fishery, and thus created 491 

particular types of missing data pattern to explore effects of CPUE imputations.  492 

 493 

This study generated missing observations by randomly selecting areas to simulate 494 

each of three different types of missing data period.  This excluded the potentially 495 

important (but unknown) influence of historical increases effective fishing effort, as 496 

identified from a survey of past and current skippers (Marriott et al. 2011).  It also 497 

assumed that any effect from other sources of fishing mortality (e.g., from 498 

recreational fishing), acting upon fish in locations where and when there were missing 499 

data, was negligible.  In addition, in all scenarios steeper declines were observed for 500 

the resulting standardised indices than in population trajectories, reflecting an 501 

underlying hyperdepletion in the simulated CPUE. However, the presented simulation 502 

facilitated balanced comparisons of imputation methods, for each scenario and type of 503 

imputation calculation (Before, Gap, After), across 200 different hypothetical missing 504 

data patterns. Furthermore, as the comparisons were done across a wide variety of 505 

simulated missing data patterns, this lends support to the extension of presented 506 

findings to other fisheries with different spatiotemporal patterns of missing CPUE.  507 

 508 
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Various methods have been proposed to address biases arising due to spatial gaps in 509 

the CPUE datasets.  Campbell (2004) proposed a method that uses the mean or 510 

maximum of values predicted from the statistical model fitted to CPUE for other 511 

fished regions or grid blocks in that year to impute the missing values.  More recently, 512 

Campbell (2015) has proposed a range of other imputation methods.  One, called the 513 

“infill” method, involves fitting a delta-GLM, with all higher-order interactions of 514 

time with year, to a subset that excludes years with missing data.  For each year, the 515 

ratios of standardised CPUE predicted for a spatial unit requiring imputation, to each 516 

of the other spatial units, are calculated.  The mean of the ratios for that spatial unit is 517 

then rescaled for the main effect of year and used to impute the corresponding 518 

missing value in the complete dataset.  Other methods proposed by Campbell (2015) 519 

involve fitting the delta-GLM without the higher order interactions of time with year 520 

and then predicting the missing value from the fitted model.   521 

 522 

Alternative approaches by Walters (2003) and Carruthers et al. (2011) address this 523 

problem by assuming a value for areas with missing data that is independent of the 524 

values in the fished areas.  Using a value that is independent of the values in the 525 

fished areas is appropriate because localised effects of fishing on abundances in 526 

fished areas may not be representative of abundance trends in the missing data areas 527 

(Walters 2003).  The results from this study, however, have shown that local 528 

abundances in areas without CPUE may not be static.  Therefore, imputing using 529 

values from fished areas, or using a constant value independent of the fished areas 530 

(e.g., as in the Base method), may not be optimal for reducing biases that might arise 531 

due to missing CPUE.   532 

 533 
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The approach by Ono et al. (2015) to use ancillary data from the missing data areas to 534 

impute is an improvement upon the constant value imputations because it allows for 535 

the prospect of changing abundances in those areas with missing CPUE.  This method 536 

is also ideal because imputations are informed by known changes in localised 537 

abundance within those areas.   Indeed, the resulting ancillary data-imputed index was 538 

shown to have reduced biases when compared to the constant value-imputed index for 539 

simulated datasets in that study (Ono et al. 2015).   540 

 541 

However, the difficulty with the Ono et al. (2015) method is that it requires ancillary 542 

data from the areas with missing CPUE to be available.  Carruthers et al. (2011) 543 

suggested that, in such cases, abundances in missing year-strata could be predicted 544 

within an integrated spatially structured population dynamics model.  Another 545 

approach is to use information in the available CPUE data, plus a biologically 546 

plausible function for changing localised fish abundance (e.g., Geometric), to impute 547 

the missing values. In many of the presented simulations, this latter approach was 548 

shown to be superior in reducing these biases, as compared to the constant value (i.e. 549 

Base) imputation method.  550 

  551 

The choice of method to use for calculating an index of abundance should be 552 

influenced by characteristics of available data, as well as fishery-specific 553 

considerations (Campbell and Tuck 1996 in Campbell 2004).  Accordingly, such 554 

considerations should also extend to the selection of an appropriate method for 555 

imputing missing CPUE.  Firstly, some understanding into the nature (and ideally the 556 

cause) of missing observations should be sought.  For instance, some management 557 

changes, such as introducing fishing effort quotas or marine reserves, might shift 558 
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commercial fishing effort away from some areas.  In these instances, one of the non-559 

Base methods might be suitable because local abundances would be expected to 560 

recover in areas no longer fished. However, if missing CPUE arose due to some 561 

process that affects localised abundances in unknown ways (e.g., the reallocation of 562 

commercial fishing to some other type of extractive activity), it might be prudent 563 

instead to expend available resources into the collection of ancillary data for making 564 

imputations, following Ono et al. (2015). Secondly, as there was an important effect 565 

of per capita population growth rate (r) on the relative bias and precision of 566 

imputations, prior knowledge of this parameter could be useful.  If r is considered 567 

likely to be towards the upper end of the range simulated for this study (i.e., 0.05–568 

0.45), then Geometric or Linear imputations would be preferable to those from the 569 

Base method, based on the presented simulations.  A third (but not the last) important 570 

consideration is the spatial scale and length of time over which imputations will be 571 

done.  Campbell (2004) suggests that imputations should always be done at the finest 572 

spatial scale possible and Ono et al. (2015) demonstrated that imputing across a larger 573 

proportion of the sampled stock area is likely to increase the amount of bias reduction.  574 

However, Carruthers et al. (2011) point out that imputing over very fine spatial scales 575 

may lead to biased imputations from values estimated with low sampling precision 576 

due to smaller average sample sizes per spatial unit.  577 

 578 

Imputing over relatively long time periods could also be problematic, particularly for 579 

Before and After type imputations, which extend outside of the year range for which 580 

CPUE had been observed.  This is clearly not ideal and is analogous to extrapolation, 581 

which is an unsafe form of model prediction (e.g., Ramsey and Schafer 1997; Zar 582 

1999; Faraway 2005).  Although the presented simulations imputed missing CPUE 583 
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across relatively long time periods (10 years), in no cases did imputations fall outside 584 

of the observed range of CPUE.  However, implausible After type imputations (e.g., 585 

very large or negative values) may be calculated when done over a relatively long 586 

time period, or when using relatively high or negative values calculated for _bGap 587 

(Table 3), or both. 588 

 589 

Missing CPUE may be an important consideration for future assessments of these 590 

species in the WCDSIMF in light of recent (i.e., since 2008) changes to spatial 591 

management arrangements, which have resulted in the prohibition of commercial 592 

fishing from some areas.  Although recent assessments have focused on monitoring 593 

performance indicators within each management area (e.g., Fairclough et al. 2014a; 594 

Fairclough et al. 2014b), the spatial distribution of each stock traverses several.  Thus, 595 

if an index of stock-wide abundance is sought, such as for the purpose of 596 

incorporating into an integrated age structured stock assessment model, some strategy 597 

for dealing with a lack of information from closed areas will be required.  598 

 599 
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Tables 752 

Table 1.  Simulation model scenarios. Movement = simulated fish movements among 753 

adjacent spatial population sub-units (10′ blocks); DDHS = Density-Dependent 754 

Habitat Selection (MacCall 1990). ** = Not reported here
8
.  755 

Scenario Stock Movement 

Spatial 

Autocorrelation Growth 

Depletion 

Year 30 

1 Snapper None No Low 0.25�� 

2 Snapper None No Low 0.50�� 

3 Snapper None No High 0.25�� 

4 Snapper None No High 0.50�� 

5 Snapper Diffusion ** No Low 0.25�� 

6 Snapper Diffusion ** No Low 0.50�� 

7 Snapper Diffusion ** No High 0.25�� 

8 Snapper Diffusion ** No High 0.50�� 

9 Snapper DDHS ** No Low 0.25�� 

10 Snapper DDHS ** No Low 0.50�� 

11 Snapper DDHS ** No High 0.25�� 

12 Snapper DDHS ** No High 0.50�� 

13 Baldchin Groper None No Low 0.25�� 

14 Baldchin Groper None No Low 0.50�� 

15 Baldchin Groper None No High 0.25�� 

16 Baldchin Groper None No High 0.50�� 

17 Dhufish None No Low 0.25�� 

18 Dhufish None No Low 0.50�� 

19 Dhufish None No High 0.25�� 

20 Dhufish None No High 0.50�� 

21 Dhufish None Yes ** Low 0.25�� 

22 Dhufish None Yes ** Low 0.50�� 

23 Dhufish None Yes ** High 0.25�� 

24 Dhufish None Yes ** High 0.50�� 

                                                        
8 Refer to Supplementary Data for further details. 
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Table 2. Fixed constants used in simulations. N/A = not applicable, ** = not reported here
9
, - = not done. 756 

 757 

Parameter Snapper Baldchin 

Groper 

Dhufish Source 

Population dynamics     

“Low” growth, ↓ r 0.1 0.15 0.05 Preliminary 

“High” growth, ↑ r 0.35 0.45 0.30 Preliminary 

Mean fish weight, N� (kg fish
-1

) 2 3 5 Anon (2010) 

No. population sub-units, na  141 126 167 CPUE dataset 

No. 60′ blocks, nk 8 7 12 CPUE dataset 

No. management areas, nm 3 3 4 Specified value (Fig. 1) 

Spatial sub-unit CV, sa 0.047 0.177 0.059 CPUE dataset
9
 

Spatial autocorrelation, λ N/A N/A 0.75 Specified value
9
 

Spatial autocorrelation, +�,u,� N/A N/A 0.104 CPUE dataset
9
 

Movement: Diffusion rate 0 % 0 % 0 % Assumed: base case 

 10 %**   Within the range reported in Lenanton et al. (2009). 

Movement: DDHS, V: ↑ r ↑ D 500** - - Tuned parameter
9
  

Movement: DDHS, V: ↑ r ↓ D 1 300** - - Tuned parameter
9
  

Movement: DDHS, V: ↓ r ↑ D 12 000** - - Tuned parameter
9
  

Movement: DDHS, V: ↓ r ↓ D 18 750** - - Tuned parameter
9
  

                                                        
9 Refer to Supplementary Data for further details. 
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Parameter Snapper Baldchin 

Groper 

Dhufish Source 

Fishery dynamics     

“Moderate” depletion, ↓ D 50 % 50 % 50 % Specified value 

“High” depletion, ↑ D 25 % 25 % 25 % Specified value 

Percent commercial catches, PC 80 % 50 % 50 % Anon (2010) 

Mean commercial catch, �̅ (kg yr
-1

)  254 000 33 600 185 000 Mean of observed catches: 

    1990—2005; St John and King (2006) 

Fleet size, nV 19 19 23 CPUE dataset
9
 

Multinomial size parameter, v 16 8 8 CPUE dataset
9
 

Vessel log-CPUE CV, sv 0.111 0.424 0.141 CPUE dataset
9
 

Residual error log-CPUE CV, 
� 0.217 0.374 0.218 CPUE dataset
9
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Table 3. Imputation methods. ymis denotes the years of missing data, with ab� denoting 758 

the imputed value for year y, for each of three different types of missing data period: 759 

Before (Years 1—10); Gap (Years 11—21); After (Years 22—30). Refer to footnotes 760 

for further details. 761 

 762 

Method Formula
10,11,12

 Footnote(s) 

Base ab� = w 																	ae		1 ≤ ymis ≤ 10mean�ae,	af)		11 ≤ ymis ≤ 20																			ae			21 ≤ ymis ≤ 30 

 

Linear ab� = ae + _b�y − j) 13
 

Geometric ab� = wae{n /��|e)∙log�}~ }�⁄ )�~��) 	o					_b > 0													ae	72 − {�b ���|e)9					_b < 0 

14
 

Negative 

Exponential ab� = �ae + af �1 − {n /��|e)∙log�}� }~⁄ )�~��) 	o�					_b > 0
ae − af �1 − {n /��|e)∙log�}� }~⁄ )�~��) 	o�					_b < 0 

 

Logistic ab� = �ae + � + � − �1 + �{|���|e) 					_b > 0
af + � − � − �1 + �{|���|e) 					_b < 0 

15,16,17,18 

 763 

  764 

                                                        
10 IA  = value for the year (y=A) preceding or commencing a missing data period 

(Before: ae = :c	∑ a� $�d  ; Gap: IA = I10; After: IA = I20). 
11 IB = value for the year (y=B) following or ending a missing data period (Before: IB 

= I11; Gap: IB = I21; After: IB was a value projected for Year 30). 
12 Projected IB for After period: af = ae + _bGap�i − j). _bGap is the calculated linear 

rate of change in Iy either side of an observed Gap period of missing data. 
13 _b = �af − ae)/�i − j) 
14 _bJ = :~��	log	���b ��~��)�� +1] 
15 � = |af − ae| 
16 � = �1											if	� ≥ 10.001			if	� < 1 

17 � = �� − 1 

18 � = Jlog��|�)|2log�f|e  
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Table 4.  Summaries for medians of average MSEs. n = number of cases (stocks ×765 	scenarios ×		imputation types); Neg. Exp. = Negative Exponential; ↑ r = High 766 

Growth; ↓ r  = Low Growth; ↑ D = High Depletion; ↓ D  = Moderate Depletion. 767 

 768 

a) Summaries by category: Percentage of cases with lowest median
19,20

. 769 

 n Base Linear Geometric Neg. Exp. Logistic 

All 72 40.3 22.2 23.6 4.2 9.7 

↑ r 36 11.1 30.6 41.7 8.3 8.3 

↓ r 36 69.4 13.9 5.6 0.0 11.1 

↑ D 36 27.8 19.4 30.6 8.3 13.9 

↓ D 36 52.8 25.0 16.7 0.0 5.6 

↑ r ↑ D 18 0.0 16.7 50.0 16.7 16.7 

↑ r ↓ D 18 22.2 44.4 33.3 0.0 0.0 

↓ r ↑ D 18 55.6 22.2 11.1 0.0 11.1 

↓ r ↓ D 18 83.3 5.6 0.0 0.0 11.1 

 770 

b) Methods with lowest median: No Movement Scenarios
21

. 771 

Stock Scenario Type 

Before Gap After 

Snapper     

 ↑ r ↑ D Neg. Exp. Geometric Geometric 

 ↑ r ↓ D Base Linear Logistic 

 ↓ r ↑ D Base Linear Geometric 

 ↓ r ↓ D Base Base Logistic 

Baldchin Groper     

 ↑ r ↑ D Logistic Linear Geometric 

 ↑ r ↓ D Base Linear Geometric 

 ↓ r ↑ D Base Linear Geometric 

 ↓ r ↓ D Base Base Linear 

Dhufish     

 ↑ r ↑ D Logistic Geometric Geometric 

 ↑ r ↓ D Base Base Base 

 ↓ r ↑ D Base Linear Linear 

 ↓ r ↓ D Base Base Base 

                                                        
19 Scenarios in Table 4a include Diffusion and DDHS for Snapper and Spatial 

Autocorrelation for Dhufish: see Supplementary Data. 
20 Highest percentages in bold 

21 This presentation does not reflect the size of differences between medians or that in 

many cases there is a large overlap in distributions of average MSE between methods, 

so please refer also to Fig. 3 when interpreting these results.  
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Figure Captions 

Figure 1: Spatial distribution of simulated stocks and fishery management areas. i) 

Left panel: Spatial management areas for the WCDSIMF (2008—2014). Hatched area 

identifies depths < 250 m, within which the majority of fishing effort occurs. Overlaid 

boxes outline simulated stock boundaries (right panels). Dashed grey line separates 

simulated �J and �$ management areas; otherwise northern and southern boundaries 

of the simulated management areas align with those for the fishery. ii) Right panels: 

Simulated stocks. Solid squares are 10′ blocks identifying population sub-units. Grey 

squares are 10′ blocks obtained from 2002/03 Charter fishing logbook returns in Wise 

et al. (2007).  Grey degree lines of latitude and longitude delineate 60′ blocks. 

Simulated management areas: �  = diagonal hatching; �J = white; �$ = vertical 

hatching; �	 = dots; �K = wave hatching. 

 

Figure 2:  Comparison of mean imputed values with population abundance for each 

stock and type of missing data period: High Growth, High Depletion, No Movement 

scenarios. Error bars are standard errors presented for means of population 

abundances. Grey shading covers the estimated marginal means predicted from a 

fitted GLM for observed combinations of 60′ block (k) and years (y), which were 

used to calculate the imputed values
22

. The missing data period and imputed values 

are those outside of the grey shading. 

 

Figure 3: Box and whisker plots of average MSEs for different stocks, No Movement 

scenarios. Average MSE = MSE of imputed values averaged across years within each 

model iteration. Methods: Base (B); Linear (Li); Geometric (G); Negative 

                                                        
22 Results for alternative Growth and Depletion scenarios presented in Supplementary 

Material. 
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Exponential (NE); Logistic (L). Medians represented as horizontal white lines, lower 

and upper hinges are the first and third quartiles, whiskers extend to the most extreme 

data point which is no more than 1.5 times the interquartile range from the box. 

 

Figure 4: Mean normalised Iy and mean Ny (± standard error for population abundance 

and Geometric-imputed indices), High Growth, High Depletion scenario: Stocks. 

Error bars are standard errors for mean Ny representing stochastic variation across 200 

iterations of the simulation model. 

 

Figure 5: Mean relative error, High Growth, High Depletion scenario: Stocks.  

Relative error, sD� = log7normalised	a�9 − log	�normalised	��)
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Snapper	   Baldchin	  Groper	  

West	  Australian	  Dhufish	  
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 1 

Appendix A.  Simulation model derivation. 

The model used to simulate ��,�grow was derived from the discrete form of the logistic 

model for population growth, which assumed linear density-dependence in the 

population birth and death rates (Pianka 1974):  

(A.1)  

��,�grow = ��,� + ���,� �1 − ��,���,��		, 
where r was the per capita rate of population growth: 

(A.2) 

� = �max − �min 
with bmax and dmin representing the respective b and d at very low population sizes. 

The starting abundances (��,�) were taken as the upper asymptotic values for each 

respective population sub-unit and thus defined its ecological carrying capacity 

(Krebs 1994) at unfished equilibrium: 

(A.3) 

��,� = �max − �min��� + ��� 		, 
where ���  and ���  represent the respective rates of change in b and d with changing 
Na,y.   

 

For simplicity (and since there was no available evidence to assume otherwise), we 

assume symmetric rates of linear density-dependence in b and d, thus ��� = ��� .  
Hence, from Equations (A.2) and (A.3) it can be seen that ���  and ��� can be 
expressed in terms of bmax, dmin and ��,�: 
(A.4) 
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 2 

��� = ��� = �max − �min2��,� 		, 
so Equation (A.1) can be reformulated as: 

(A.5) 

��,�grow = ��,� + ��,� ��max − �max − �min2��,� ��,�� − ��,� ��min + �max − �min2��,� ��,��		. 
The second term in Equation (A.5) represented contributions (i.e., recruitment) due to 

density-dependent birth rates and the third term represented losses due to density-

dependent death rates (i.e., natural mortality).  Hence, replacing the Na,y within 

brackets of the second term in Equation (A.5) with  ��∙,�	gives us Equation (2). 
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