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Abstract 

Phaseolus vulgaris (common bean) is an important food crop in Sub-Saharan Africa. Low 

soil nitrogen limits the productivity of P. vulgaris in Kenya and a greater exploitation of 

symbiotic nitrogen fixation, resulting from interactions with rhizobia, has the potential 

to improve yields.  To enable the increased use of the symbiosis in Kenyan agriculture in 

the future, studies in this thesis examined the genetic diversity of rhizobia that nodulate 

P. vulgaris in the central and western parts of Kenya, their nitrogen-fixing capabilities, 

and their competitiveness against Rhizobium tropici CIAT 899, a leading commercial 

inoculant strain for P. vulgaris. Lastly, studies investigated the relative importance of the 

genotypes of resident soil rhizobia, soil rhizobial population densities, inocula densities, 

and levels of soil nitrogen, in determining nodule occupancy by R. tropici CIAT 899 

inoculated onto P. vulgaris.  

Phylogenetic studies using 16S rRNA and recA genes indicated at least five species of 

Rhizobium viz., R. sophoriradicis, R. phaseoli, R. leucaenae, R. paranaense and R. etli nodulate P. 

vulgaris in Kenya. In addition to the five species, strains that likely belong to new species 

in the genus Rhizobium also widely nodulate P. vulgaris in Kenyan soils. In glasshouse 

studies, recovered strains were variably effective on Kenyan cultivars of P. vulgaris and 

11 fixed as much nitrogen as R. tropici CIAT 899. From the 11, strains such as NAK 

227, NAK 288, NAK 214 and NAK 157 were also highly competitive in liquid co-

inoculation assays, carried out with the aid of gusA and celB marker genes, and are 

potential future inoculants for P. vulgaris in Kenya.  The genotype of the rhizobia in the 

soil was found to be the primary determinant of the nodule occupancy achieved by the 

inoculant strain, a finding that conflicts previous reports that indicated nodule 

occupancy was mainly determined by soil rhizobial densities.  The rhizobial genotypes 

varied in their rhizosphere competence and in their ability to preferentially nodulate the 

host, suggesting these two traits are important for the successful colonization of P. 

vulgaris nodules by rhizobia.  

It is anticipated that future studies will leverage on the results in this thesis, to develop 

locally-targeted inoculation solutions that optimize nitrogen fixation in P. vulgaris in 

Kenya, and to elucidate the molecular basis for preferential nodulation in P. vulgaris. 
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1.1 Nitrogen fixation 

Nitrogen is an integral constituent of amino acids, nucleic acids, and many other 

biologically important organic and inorganic compounds and, therefore, a major factor 

for the growth of all living things.  Although nitrogen (N2) is abundant in the 

atmosphere (78% of dry air), the strong triple bond between the nitrogen atoms makes 

N2 biologically inaccessible to most organisms. Consequently, for N2 to be usable for 

growth, it needs to be converted (fixed) into biologically active forms such as NH3, 

NH4
+ and NO3

- through artificial or natural processes (Galloway et al., 2004). Artificial 

N2 fixation is mainly achieved through the Haber-Bosch process, in which N2 and H2 

are combined under high pressure, in the presence of a catalyst, to form NH3 (Smil, 

2001). Natural N2 fixation occurs through lightning and, biologically, through a limited 

number of N2 –fixing bacteria (Boody & DeVore, 2006; Galloway et al., 2004).  

N2-fixing bacteria are free-living, endophytic, plant-associated, or symbiotic (Herridge et 

al., 2008; Vitousek et al., 2013). An important group of the symbiotic N2-fixers is 

rhizobia, soil bacteria that infect roots of legumes leading to the formation of nodules. 

Inside the nodules,  the bacteria (now called bacteroids) receive carbon and shelter, and 

in exchange reduce N2 for the plant (Herridge et al., 2008). The reduction of N2 into 

NH3 by rhizobial bacteroids is achieved through nitrogenase enzyme via the following 

equation: 

N2+ 8H+ + 8e- + 16ATP → 2NH3 + H2 + 16ADP +16Pi      

(Dixon & Kahn, 2004) 

The reduction of each mole of N2 is energetically demanding, requiring eight moles of 

protons, eight moles of electrons, and 16 moles of ATP.  

Symbiotic N2 fixation is a major source of biologically active forms of N for agriculture 

(Herridge et al., 2008), with approximately 26-27 million tonnes (Tg) of N fixed in 2016 

by crop legumes into agricultural systems. This figure is based on projections using an 

annual increase of 2.44% in the global area under these crops since 2005 (FAOSTAT), 

when 21 Tg of N was estimated to have been fixed (Herridge et al., 2008). Pasture and 

fodder legumes fix additional N, estimated to be half of that by crop legumes (Herridge 

et al., 2008).  
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At the farm level, symbiotic N2 fixation has several benefits. Firstly, legumes fix an 

average of 115 kg N/ha/yr (Herridge et al., 2008) and the additional N substantially 

increases the yield of legumes  and, in some instances, the yields of subsequent crops, 

through residual N depending on how much of the fixed N is harvested and removed 

from the agricultural systems (Giller, 2001; Peoples et al., 2009). Secondly, symbiotic N2 

fixation reduces the reliance on fertiliser-N for crop production. Fertiliser-N is costly, 

and its low efficiency can lead to environmental degradation through gaseous losses, 

leaching and surface runoffs (Crews & Peoples, 2004; Tilman et al., 2001; Vitousek et 

al., 1997).  

1.2 Legume-rhizobia symbioses  

Symbiotic N2 fixation involving legumes and rhizobia (hereafter simply referred to as N2 

fixation) progresses through a series of chemically controlled events, leading to the 

development of a root nodule, an organ that provides the micro-aerobic environment 

conducive for N2 fixation by rhizobia (Figure 1.1). The leguminous host supplies carbon 

to the bacteria and in return receives fixed N.  

1.2.1 Bacterial infection and nodulation  

Legume-rhizobia interactions are initiated by the release of flavonoids and other 

signalling compounds into the rhizosphere. These molecules trigger the expression of 

nodulation (nod) genes in rhizobia, through transcriptional activators, leading to the 

synthesis of Nod factors (Oldroyd, 2013). Nod factors are lipo-chitooligosaccharides 

molecules with an oligomeric backbone of β-1, 4-linked N-acetylglucosamine residues 

carrying modifications at both the reducing and non-reducing ends (Long, 1996; 

Oldroyd & Downie, 2008). The Nod factors then interact with plant-cell membrane 

kinases and trigger root hair deformation and calcium oscillations in the nuclei of 

cortical cells (Limpens et al., 2003; Madsen et al., 2003). The calcium oscillations are 

consequently perceived by a calcium and calmodulin-dependent protein kinase 

(CCaMK) which then promotes nodule organogenesis that occurs mainly by mitotic 

division of cells of the root cortex, resulting in the formation of a nodule primordium 

(Downie, 2014; Oldroyd et al., 2011).   

Concomitant with nodule morphogenesis is the root infection process. Rhizobia 

infection of legumes occurs through the epidermis, cracks, or root hairs (Boogerd & van 
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Rossum, 1997; Sprent, 2007).  In legumes that undergo root hair infection such as 

Phaseolus vulgaris (common bean) (Tate et al., 1994), Nod factors trigger root hair curling, 

encapsulating bacteria attached to the root hair surface with the aid of plant lectins and 

bacterial surface polysaccharides (Oldroyd & Downie, 2008). An invagination of the 

root hair tip then occurs and bacteria grow down an intracellular tunnel (infection 

thread), in two or three braided columns that increase in length and push at the tip of 

the infection thread (Gage, 2002). Most root hair infections occur from the entrapment 

of cells of one bacterial type by the root hair curl, but occasionally, more than one type 

may be trapped, leading to double occupied nodules (Gage, 2002). Infection threads are 

plant derived and can cross cell boundaries, allowing bacteria within to invade cells in 

the root cortex, and by endocytosis, a plant-derived membrane encapsulates the bacteria 

within the infected plant cell. It is within these structures called symbiosomes that 

bacteria differentiate into bacteroids, their N2 fixing forms (Oldroyd & Downie, 2008). 

In some legumes, bacteroids transform irreversibly into greatly-enlarged polyploid 

forms, while in others such as P. vulgaris, endoreduplication is absent (Maróti & 

Kondorosi, 2014). Symbiosomes may contain single or multiple bacteroids (Cermola et 

al., 2000).  

 

Figure 1.1: A schematic representation of the basic steps involved in the legume nodulation 

process. In step (1) flavonoids excreted by the legume host induce synthesis of Nod factors in 

rhizobia. Root hairs perceive the Nod factors and trigger calcium spiking and cortical cell 

divisions that lead to nodule organogenesis. (2) Root hair curling encapsulates attached bacteria. 

(3) An invagination of the root tip forms a growing tube filled with dividing bacteria in what is 

called an infection thread. (4) The infection thread branches out and bacteria encapsulated in a 

symbiosome invade plant cells, differentiate and fix N2. Image (without modification) from 

Oldroyd (2013).  

 

Legumes form either indeterminate or determinate nodules, with the type of nodule 

formed determined by the legume (Ferguson et al., 2010). Indeterminate nodules 

1 2 3 4
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originate from the inner cortical cells, and the apical meristem continuously produces 

new cells that get infected with bacteria, leading to a developmental gradient and 

cylindrical nodules (Figure 1.2B). Legumes that form indeterminate nodules include 

Pisum sativum (pea), Medicago spp., and Trifolium spp.  

Determinate nodules mostly arise from the outer cortex and have a transient meristem 

in which synchronous division of infected cells leads to spherical nodules (Figure 1.2A) 

that last for a few weeks  (Cermola et al., 2000; Ferguson et al., 2010; Sprent, 2007). 

Uninfected cells may intersperse the infected cells and nodule surfaces may contain 

prominent secondary aerenchyma called lenticels (Cermola et al., 2000; Tate et al., 1994). 

This nodule type is found in some of the major crop legumes, such as P. vulgaris, Glycine 

max (soybean) and Arachis hypogea (peanut). 

 

 

 

Figure 1.2: Images of (A), a cross section of a determinate nodule of G. max and (B), a 

longitudinal section of an indeterminate nodule of M. trancatula. Abbreviations: IR-infected 

region, ICs-infected cells, UCs-uninfected cells, IC-inner cortex, VB-vascular bundles, OC-outer 

cortex, M-meristem, IZ-invasion zone, TZ-transition zone, NFZ-N2 fixation zone and SZ- zone 

of senescence. Image, without modification, from Brear et al. (2013). 

1.2.2 Mechanism of N2 fixation 

The legume host fuels the energy demands of N2 fixation and in return acquires fixed N. 

Carbon assimilated through photosynthesis, mainly in the form of sucrose, is 

transported into the root nodules (Kouchi & Yoneyama, 1986; Lodwig & Poole, 2010), 

A B
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where, in the cytosol of nodule cells it is hydrolysed into glucose and fructose by 

sucrose synthase (Gordon et al., 1999). Fructose and glucose are oxidised to 

phosphoenolpyruvate (PEP) through glycolysis and PEP subsequently into 

dicarboxylates (Colebatch et al., 2004). Malate is the principle dicarboxylate transported 

via the Dct system into bacteroids where it undergoes assimilation by gluconeogenesis 

or is catabolized via enzymes of the tricarboxylic acid (TCA) cycle to provide the 

reductant and ATP required for N2 fixation (Lodwig & Poole, 2010; Mus et al., 2016).  

The nitrogenase complex, which catalyses N2 fixation in bacteroids, consists of iron (Fe) 

and molybdenum-iron (MoFe) proteins. The Fe protein is a homodimer that contains a 

[4Fe-4S] cluster and 2MgATP binding sites while the MoFe protein is a heterotetramer 

containing a P-cluster [8Fe-7S] and a FeMo cofactor [7Fe-9S-Mo-C-homocitrate]. The 

FeMo cofactor is the site for substrate reduction (Burgess & Lowe, 1996; Lancaster et 

al., 2011; Seefeldt et al., 2004). Catalysis proceeds in three basic steps: (a) reduction of 

the Fe protein by electron donors such as ferredoxin, (b) transfer of electrons from Fe 

protein to the P-cluster and MgATP hydrolysis, and (c) transfer of electrons from P-

cluster to the FeMo cofactor and subsequent N2 reduction (Dixon & Kahn, 2004; 

Seefeldt et al., 2004). As nitrogenase is O2 sensitive, oxidation is prevented by the host-

controlled O2 diffusion barrier operating across the nodule cell membranes, reversible 

O2 binding by leghaemoglobin and high respiratory consumption of O2 by bacteroids 

(Mus et al., 2016; Udvardi & Poole, 2013). 

The NH3 produced from N2 fixation diffuses across the bacteroid membrane into the 

symbiosomal space where it is protonated into NH4
+ and exported into the plant cell 

(Mus et al., 2016). NH4
+ is assimilated by the plant using glutamine synthetase and 

glutamate synthase forming glutamine, which is the principal nitrogen metabolite for the 

synthesis of different amino acids, nucleic acids and other nitrogen-containing 

compounds (Mus et al., 2016). In legumes such as P. vulgaris, the nitrogen compounds 

are further metabolised into allantoin and allantoic acid via the purine biosynthetic 

pathway and exported to the rest of the plant through the xylem (Hungria & Kaschuk, 

2014; White et al., 2007).  

1.2.3 Effectiveness of N2 fixation 

Although the process of N2 fixation proceeds through similar steps in most legumes 

(Section 1.2.1 and 1.2.2), the symbiotic relationships formed fix highly variable amounts 
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of N2 (Buttery et al., 1997; Cardoso et al., 2012; Giller et al., 1998; Hungria et al., 2000; 

Hungria & Kaschuk, 2014). However, the outcomes of interactions can broadly be 

grouped into four categories (Howieson et al., 2005):   

i. Non-infective: no nodulation occurs (Nod-) 

ii. Infective but ineffective: nodules form but no N2 fixation occurs (Nod+Fix-) 

iii. Partially effective (Nod+Fix+) 

iv. Effective (Nod+Fix++) 

1.2.3.1 Causes of variability in N2 fixation 

In agriculture, symbiotically effective relationships (type iv) are desirable as they lead to 

the fixation of the most N, resulting in higher yields (Hungria et al., 2006). However, as 

not all symbioses are effective, an understanding of the causes of the variability is 

required, to form the basis for strategies to maximise the benefits from N2 fixation. The 

outcomes of symbiotic relationships depend on legume × rhizobia × environment 

interactions.  

Host  

Legume symbioses have degrees of specificity mediated by the exchange of signalling 

molecules between the host and rhizobia (Section 1.2.1), and compatibility between the 

partners at each stage influences nodulation and N2 fixation leading to the four 

outcomes (Oldroyd, 2013). As a generalisation, closely related legumes groups such as 

cultivars have similar N2 fixation outcomes (i-iv above) with the same rhizobia, under 

controlled conditions. However, the amount of N2 fixed may vary depending on 

differences in characteristics such as growth potential (N demand) and length of the 

vegetative period (Buttery et al., 1997; Graham et al., 2003; Hardarson & Atkins, 2003).  

Exceptions to the generalisation exist. In a study by Sadowsky and Cregan (1992), 

Glycine max cv. Hill was ineffective with Bradyrhizobium elkanii USDA 61, a strain that 

was effective on G. max cv. Williams. The ineffectiveness of USDA 61 on cv. Hill is 

linked to the Rj4 allele of the host (Faruque et al., 2015; Tsukui et al., 2013). The fact 

that these exceptions are not common suggests that in an agricultural context, cultivar 

choices may be important, but are not the greatest sources of variability in effectiveness 

of N2 fixation.  

 



 Chapter 1 

 

8 
 

Strain  

The effectiveness of N2 fixation in legumes varies depending on the rhizobial partner 

(Figure 1.3). To exploit this variability, numerous studies have successfully identified 

strains that achieve high rates of N2 fixation with different legumes and in many cases 

used them as inoculants to improve yields (Bianco et al., 2013; Cardoso et al., 2012; 

Howieson et al., 2005; Hungria et al., 2000; Hungria et al., 2006; Rahmani et al., 2011; 

Waswa et al., 2014). 

 

 

Figure 1.3: An example of variability in N2 fixation in a single host due to differerent rhizobial 

strains. Data shows symbiotic effectiveness (measured as dry shoot weight per plant) of thirteen 

rhizobial strains on Trifolium subterraneum (clover) cv. Gosse (Collins et al., 2002). 

 

Despite the selection and use of effective rhizobial strains as inoculants being a 

common practice for decades (Bullard et al., 2005), the basis for the observed 

differences in strain effectiveness is only beginning to be understood. Symbiotic 

interactions proceed through three major stages, of a) partner recognition, b) infection 

and invasion and c) release from infection threads, intracellular existence and N2 

fixation (Section 1.2.1 and 1.2.2). The variability in N2 fixation (outcomes i-iv) is 

therefore expected to stem from differences in the success of strains at each of these 

stages.  

At the beginning of the molecular dialogue, rhizobial strains need to have a nodD gene 

that can be activated by the legume-derived signalling molecules, such as flavonoids. 

Incompatibility at this stage leads to outcome (i) (Downie, 2014).  
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Following a successful signal recognition, the molecular dialogue persists during the 

infection and invasion phase (Niehaus et al., 1998). All the molecular determinants of a 

successful invasion are not known, but bacterial surface polysaccharides (e.g. 

lipopolysaccharides (LPS) and exopolysaccharides (EPS)) appear to play a significant 

role. In M. trancatula, an LPS mutant Sinorhizobium meliloti Rm6963 formed enlarged 

infection threads, and the outcome was an ineffective phenotype characterised by small 

white nodules (outcome ii). The authors hypothesized that LPS was necessary for 

continued division and persistence of the symbionts during infection and invasion, to 

suppress host defence mechanisms (Niehaus et al., 1998). In addition to LPSs, nod genes 

are required for the development of normal infection threads (Ardourel et al., 1994; 

Walker & Downie, 2000).   

The molecular signalling during the internalisation of rhizobia into root cortical cells, 

differentiation into bacteroids, intracellular existence and N2 fixation is very poorly 

understood, but again LPSs and extracellular polysaccharides appear to play a prominent 

role (Banba et al., 2001; Mathis et al., 2005).  LPSs are modified as rhizobia develop into 

bacteroids (Kannenberg & Carlson, 2001) and as was shown with Rhizobium sp. strain 

NGR234, mutants unable to undertake this LPS modification, were partially effective 

(outcome iii) on siratro, T. vogelii and cowpea. They formed nodules with low levels of 

legheamoglobin and few bacteroid-containing cells (Broughton et al., 2006). The LPS 

modifications were hypothesised to mediate proximity and adhesion at the bacterium-

plant interface, thereby affecting symbiotic functions that could include the invasion 

process, cell division within the symbiosomes, exchange of metabolites, and the 

suppression of the plant defence response (Kannenberg & Carlson, 2001). All these 

functions are important in determining the outcomes of symbioses.  

Rhizobia also differ in the amounts of poly-β-hydroxybutyrate (PHB) (Lodwig et al., 

2005; Trainer & Charles, 2006) they accumulate, and conflicting evidence exists on the 

effect of this trait on N2 fixation. PHB is an intracellular carbon storage polymer 

produced by free-living rhizobia and bacteroids of determinately nodulating legumes 

(Lodwig et al., 2005; Trainer & Charles, 2006), although a recent study has shown 

indeterminate nodules can also accumulate small quantities of PHB (Terpolilli et al., 

2016). PHB is speculated to be a means for rhizobia to hoard carbon to benefit 

subsequent generations (Ratcliff et al., 2008) or a sink for reductive power that allows 

the TCA cycle to operate under microaerobic conditions (Cevallos et al., 1996; Terpolilli 
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et al., 2016). PHB mutants are of lesser, equal or higher N2 fixing capacity (Aneja et al., 

2005; Cevallos et al., 1996; Lodwig et al., 2005) but the interpretation of findings from 

these studies is limited by the pleiotropic nature of PHB genes. Mutants are also 

defective in EPS production (Aneja et al., 2004; Trainer, 2009) and utilisation of various 

carbon sources (Cai et al., 2000; Cevallos et al., 1996; Lodwig et al., 2005). Additional 

studies that do not use mutants are required to further investigate whether strain 

differences in PHB accumulation are associated with variability in N2 fixation.  

Environment 

Finally, abiotic and biotic environmental factors also influence the effectiveness of 

symbiotic interactions (Giller et al., 1998; Graham et al., 2003; Hungria & Vargas, 2000; 

Zahran, 1999). N2 fixation is closely linked to the physiological state of the host, and 

environmental factors that reduce plant growth such as nutrient deficiencies, salinity, 

unfavourable pH, drought, diseases and extreme temperatures, influence the amount of 

N2 fixed (Hungria & Vargas, 2000; Zahran, 1999). These stresses also impact on the 

survival of rhizobia and therefore their ability to colonise plant roots and form nodules 

(Graham et al., 1994; Zahran, 1999).  N2 fixation is also related to the plant demand for 

N, with soil N unavailability being conducive for N2 fixation and conversely, high 

amounts of mineral N suppressing nodulation and N2 fixation (Mortier et al., 2012; 

Zahran, 1999). Under field conditions, soil biota can influence N2 fixation through 

microbial competition and antagonisms (Yates et al., 2011). For example, the presence 

of ineffective rhizobia reduces the overall effectiveness of symbioses as these form 

ineffective nodules that result in a reduction in the outputs of N2 fixation (Gerding et 

al., 2014).  

The above review of the literature shows that the host, rhizobia and the environment 

have roles in determining N2 fixation outcomes. In an agricultural context, the choice of 

the host, at the cultivar level, sometimes influences N2 fixation outcomes. However, 

cultivar × strain interactions are not reported in major crop legumes such as P. vulgaris 

(Buttery et al., 1997) and cultivar selection has not been the focal point of efforts to 

improve N2 fixation, although attempts have been made to breed for N2 fixation  

(Herridge & Rose, 2000). Additionally, cultivar choices in food crops are often under 

the influence of consumer preferences (Broughton et al., 2003) and therefore a slightly 

higher cumulative N2 fixation is unlikely to make a compelling case for the adoption of a 

particular cultivar, unless other desirable attributes are already present or are successfully 
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bred into the cultivar.  Consequently, a microbiological approach to enhancing N2 

fixation through the collection and screening rhizobia for N2 fixation is more common 

(Bianco et al., 2013; Cardoso et al., 2012; Howieson et al., 2005; Hungria et al., 2000; 

Hungria et al., 2006; Rahmani et al., 2011; Waswa et al., 2014). The success with this 

approach is exemplified by the soybean story in Brazil where soybean inoculated with 

highly effective strains can fix over 300 kg N ha-1 Brazil (Hungria et al., 2006). Despite 

these successes, the benefits from inoculation with effective strains are sometimes 

limited by the presence of ineffective indigenous strains (Thies et al., 1991a). This 

challenge is greater in legumes that nodulate with a wide range of rhizobia (such as P. 

vulgaris) and to improve the yields of these legumes, in addition to symbiotic 

effectiveness, the challenge of rhizobial competition occasioned by their symbiotic 

promiscuity needs to be addressed.   

1.2.4 Symbiotic promiscuity  

Some legumes, such as P. vulgaris and Macroptilium atropurpureum (siratro), fix N2 with 

different species of rhizobia (Martinez-Romero, 2003; Perret et al., 2000). This 

characteristic, known as promiscuity, is in contrast to that of legumes such as  P. sativum 

and Vicia faba (broad bean) that have a restricted host range (Perret et al., 2000).  

Symbiotic promiscuity increases the number of potential competitors to inoculant 

strains, leading to a high incidence of inoculation failure (Vlassak et al., 1997).  

Considerable research efforts have gone into understanding the molecular basis of 

symbiotic promiscuity (Perret et al., 2000) and known mechanisms include the synthesis 

of diverse plant signalling molecules, multiple nodD alleles in rhizobia and perception of 

diverse Nod factors by the host (Del Cerro et al., 2015; Laeremans & Vanderleyden, 

1998).  

In P. vulgaris, roots exude a cocktail of flavonoids that interact with NodD proteins and 

activate transcription of nod genes that code for the enzymes that synthesize Nod factors 

(Hungria et al., 1992; Hungria et al., 1991; Laeremans & Vanderleyden, 1998). Since 

different flavonoids show specificity in their ability to interact with various nodD genes, 

the various flavonoids produced by P. vulgaris allow the initiation of a molecular dialogue 

with diverse rhizobia (Laeremans & Vanderleyden, 1998; Spaink et al., 1987). In 

addition to roots exuding diverse flavonoids, rhizobia that nodulate P. vulgaris commonly 

harbour multiple copies of nodD genes. As an example, Rhizobium tropici CIAT 899 has 

five nodD alleles (Del Cerro et al., 2015; Ormen  o-Orrillo et al., 2012). Having different 
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nodD alleles extends the host range of rhizobia as it increases possible nodD-flavonoid 

combinations (Peck et al., 2006).  

Secondly, P. vulgaris roots can perceive and respond to different Nod factors (NFs), 

further enabling promiscuity. NFs are a family of lipo-chitooligosaccharides of species-

specific size and saturation (Long, 1996; Perret et al., 2000). Rhizobia-specific 

substitutions of the reducing and non-reducing glucosamine residues occur (coded by 

several nod genes) and, in addition to the NF core structure (coded by nodABC), are 

known determinants of host range through specific interactions membrane-bound NF 

receptors on hair root cells (Perret et al., 2000; Radutoiu et al., 2003; Radutoiu et al., 

2007; Rodpothong et al., 2009). Although some strains of rhizobia that nodulate P. 

vulgaris produce few NFs (Poupot et al., 1993) other strains produce an incredibly high 

number of different NFs with up to 52 types reported from Rhizobium tropici CIAT 899 

(Estévez et al., 2009; Guasch-Vidal et al., 2013; Morón et al., 2005). This variability of 

NFs produced by strains that can nodulate P. vulgaris suggests that the host can perceive 

a wide range of NFs.  

The above mechanisms and others (Perret et al., 2000) enable symbiotic promiscuity, 

but actual promiscuity requires the presence of a promiscuous host and multiple 

microsymbiont partners. In the absence of diverse microsymbionts, the capacity for 

promiscuity does not affect inoculation outcomes. However, in the presence of multiple 

compatible rhizobia, competition occurs between the native rhizobia and inoculant 

strain for the formation of nodules (Vlassak et al., 1997). Rhizobial groups differ in 

characteristics such as growth rates and utilization of carbon compounds, traits that 

might influence competition outcomes and knowledge on the predominance of taxa or 

strains is expected to be useful to the management of rhizobial competition. Such 

knowledge gained through taxonomic and diversity studies, also informs on the genetic 

relationships among rhizobia, rhizobial preferences of the host and the dynamics of 

exchange of genetic material (Martinez-Romero, 2003).  

1.3 Methods to study taxonomy and diversity of rhizobia 

Various tests help determine whether a strain belongs to a known or novel taxon. These 

tests are guided by the Bacteriological Code, subsequent revisions, directions from the 

International Journal of Systematic and Evolutionary Microbiology, or minimal 

standards set by International Code of Nomenclature of Prokaryotes subcommittees 
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(Graham et al., 1991; Lapage et al., 1992; Parker et al., 2015; Tindall et al., 2010). Once a 

primary test or tests place a strain unequivocally in a described taxon, further 

characterization for purposes of identification is not necessary (Tindall et al., 2010).  

Rhizobial phenotypic characteristics such as cell shape, colony morphology, pH range, 

temperature range, biochemical tests, and chemotaxonomic characters such as fatty acid 

profiles are commonly used in the identification of rhizobia (Tindall et al., 2010). 

However, as phenotypic traits on their own cannot be used for unequivocal assignment 

to a taxon, these are mainly used as pre-requisites to DNA methods or to corroborate 

DNA methods.  

The most frequently used technique for the identification of rhizobia is the sequencing 

of 16S rRNA genes. Ribosomal ribonucleic acid (rRNA) genes (16S, 23S and 5S) are 

highly conserved because of the fundamental role of ribosomes in protein synthesis and 

carry considerable evolutionary information (Woese, 1987). Although 23S rRNA genes 

carry the most genetic information, their large size makes them unsuitable for routine 

sequencing and, consequently, the smaller-sized 16S rRNA genes (~1,500 bp) are the 

primary genes for phylogenetic identification (Rosselló-Móra & Amann, 2001; Tindall et 

al., 2010).  In general, strains with less than 97% sequence similarity belong to different 

species while those with a similarity less than 95% belong to different genera (Gevers et 

al., 2005; Stackebrandt & Goebel, 1994). Partial sequences of 16S can be used for 

phylogenetic purposes, but at least 1300 bp are required for a reliable grouping (Yarza et 

al., 2014). 

Due to the conserved nature of 16S rRNA genes, they are useful in identifying a strain 

to the genus level but may fail to differentiate between closely related species (Fox et al., 

1992). For example, the type strain for the recently described Rhizobium sophorae strain 

CCBAU 03386 shares 100% 16S rRNA sequence similarity with Rhizobium laguerreae 

FB206T but showed only 25.8% relatedness by DNA-DNA hybridization (DDH) (Jiao 

et al., 2015). An additional drawback with the use of 16S rRNA is that some bacteria 

have multiple copies of 16S rRNA genes that may show sequence divergence. These 

copies are often identical (Boucher et al., 2004; Klappenbach et al., 2001) but may vary 

by up to 6%  (Wang et al., 1997). Importantly, as with other genes, 16S rRNA may also 

be subject to recombination or horizontal gene transfer further reducing its reliability 

when used as the sole gene for phylogenetic studies (Gevers et al., 2005). 
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These drawbacks necessitate the use of additional genes that increase the correlation of 

data obtained with DDH. Increasingly, in addition to 16S rRNA comparison, strains are 

analysed by comparing several housekeeping genes in a multilocus sequence analysis 

(MLSA). The number of housekeeping genes used in an MLSA for rhizobia species 

identification varies and examples includes two by Vinuesa et al. (2005), three by Aserse 

et al. (2012), five by Rivas et al. (2009) and six by Degefu et al. (2013). The sequences of 

the housekeeping genes are either compared individually or more commonly as 

concatenated sequences (Tindall et al., 2010). MLSA is used to provide deeper 

branching in phylogenetic trees to differentiate species closely related by 16S rRNA 

sequences.  

In summary, to correctly assign a root nodule bacterium to a known taxon, it is required 

that after confirmed and reproducible nodulation of a legume (Graham et al., 1991), the 

strain should be assessed by method(s) empirically proven to correlate with DNA-DNA 

hybridization (e.g. 16S rRNA for genus assignment and MLSA for species assignment). 

For the description of novel taxa, DDH and other supporting discriminant tests 

prescribed by the Bacteriological Code are required to be undertaken (Tindall 2010).  

Classifications below the species level include biovars (bv.), symbiovars (sv.) and strains.  

Generally, in bacteriology, a biovar refers to a group of strains discernible from others 

in a species by physiological or biochemical means.  However, when applied to rhizobia, 

it is indicative of host range, and the term symbiovar (symbiotic variety) has been 

suggested to be more suitable as it more accurately reflects symbiotic genes and host 

range  (Rogel et al., 2011). As an example, R. leguminosarum has symbiovars phaseoli, 

trifolii and viciae that enable the species to nodulate P. vulgaris, Trifolium spp. and Vicia 

spp. respectively (Rogel et al., 2011). Symbiovars are assigned based on host range 

studies or by DNA sequencing of nod genes such as nodC or nodA (Faghire et al., 2012; 

Mnasri et al., 2012; Rogel et al., 2011; Rouhrazi et al., 2016).  Diversity at the strain level 

is mainly assessed using DNA fingerprinting techniques. These methods include 

enterobacterial repetitive intergeneric consensus (ERIC) (De Bruijn, 1992) and 

randomly amplified polymorphic DNA-PCR (Richardson et al., 1995). These techniques 

have the power to distinguish rhizobia at the strain level(Thies et al., 2001).  
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1.4 Phaseolus vulgaris 

1.4.1 Cultivation of P. vulgaris 

P. vulgaris is an annual, mostly self-pollinated leguminous plant cultivated for food in 

many parts of the world. P. vulgaris originated in Mesoamerica and diverged, about 

110,000 - 165,000 years ago, into Mesoamerican and Andean gene pools that are now 

partially reproductively isolated (Bitocchi et al., 2012; Koinange & Gepts, 1992; Mamidi 

et al., 2013; Schmutz et al., 2014). P. vulgaris was then domesticated independently in 

Mesoamerica and the Andes approximately 7,000 years ago, and cultivation has over the 

centuries spread from these two domestication centres to large areas in the tropics and 

subtropics.  

Through a mixing of the two gene pools during the many years of cultivation, with the 

rare introgression between domesticated and wild relatives, highly variable landraces and 

cultivars are grown today (Broughton et al., 2003).  One such variability is in growth 

habit. Determinate (bush) types are marked by a terminal inflorescence during 

developmental stages and remain erect and of short stature.  Indeterminate types have 

long vines, with growth continuing until plant senescence. Indeterminate types are either 

erect, prostrate or climbers, and have higher grain yields than determinate types (Kelly et 

al., 1987).  

Presently, P. vulgaris is the most important crop legume for direct human consumption 

with over 45 million tonnes of beans produced in 2013 (FAOSTAT), primarily in Latin 

America, Sub-Saharan Africa (SSA), and Asia (Figure 1.4).  The consumption of P. 

vulgaris is mainly as dry grain (dry beans) or as a green pod (green beans). Less 

frequently, the immature seed or leaves are eaten.  Beans provide dietary protein, 

carbohydrates, fibre and are a good source of vitamins and minerals such as potassium 

and phosphorous (Broughton et al., 2003).  Consumption varies across the globe but is 

highest in Sub-Saharan Africa, with the annual per capita consumption as high as 66 kg 

in parts of Kenya (Broughton et al., 2003). 
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Figure 1.4: Average production share of (A) dry beans and (B) green beans by region 
for the period between 1993 and 2013 (FAOSTAT). 

Production of P. vulgaris is mainly in small-scale farm holdings ranging from 1-10 ha 

(Broughton et al., 2003; Graham & Ranalli, 1997). Yields are highly variable. For 

example, in 2013, average dry bean yields of 4,907 kg ha-1, 3183 kg ha-1, and 2093 kg ha-1 

were harvested in Ireland, Netherlands and the USA, respectively. In the same year, 

average yields were 659 kg ha-1 in Kenya (FAOSTAT).  Reasons for the differences in 

yield include differences in the yield potential of cultivars grown, climatic conditions, 

and low soil fertility in critical nutrients such as N (Broughton et al., 2003; Graham & 

Ranalli, 1997; Katungi et al., 2009; Marinus, 2015).  

P. vulgaris is capable of fixing N2, and although the potential for P. vulgaris to fix N2 is 

reputed to be low (Bliss, 1993; Peoples et al., 2009), the use of effective, competitive 

and well adapted rhizobial strains in soils with low N can lead to high yields. In Brazil, 

the use of rhizobial inoculants was reported to increase yields of P. vulgaris by up to 900 

kg ha-1 (Hungria et al., 2000).  

1.4.2 Effectiveness of P. vulgaris symbiosis 

Of the agriculturally important legumes, P. vulgaris shows relatively low rates of N2 

fixation (Herridge et al., 2008; Peoples et al., 2009). The global average shoot N fixed in 

farmers’ fields by P. vulgaris is 15 kg N ha-1 (Peoples et al., 2009). This rate is well below 

soybean (137 kg N ha-1), pea (108 kg N ha-1), lentil (71 kg N ha-1), cowpea (20 kg N ha-1), 

pigeon pea (59 kg N ha-1) and groundnut (103 kg N ha-1) (Peoples et al., 2009).    

The comparatively low rates of N2 fixation in P. vulgaris observed in the field are 

attributed to several factors. The first of these are inherent characteristics that include a 

A B
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short vegetative period (Graham et al., 2003), and a low respiratory efficiency of its N2 

fixation in comparison to other legumes (Witty et al., 1983). Secondly, low N2 fixation 

rates result from the cultivation of a plant with relatively high nutrient requirements in 

low input systems  deficient in nutrients critical for growth and N2 fixation such as 

phosphorus and molybdenum  (Bressers, 2014; Brodrick et al., 1995; Broughton et al., 

2003; Giller et al., 1998).  

Furthermore, genetically heterogeneous cultivars of P. vulgaris are grown, and these 

exhibit differences in the amounts of N2 they fix (Bliss, 1993; Buttery et al., 1997; 

Hardarson & Atkins, 2003), symbiotic tolerances to nitrate (Park & Buttery, 1989), 

nutrient  use efficiencies (Ramírez et al., 2013; Vadez et al., 1999) and affinities towards 

various rhizobia (Aguilar et al., 2004; Oliveira et al., 2011). In spite of all this variability, 

cultivar choice in many areas is primarily based on consumer taste preferences and less 

on traits related to N2 fixation (Broughton et al., 2003; Graham & Ranalli, 1997).  

Another factor that leads to low level of N2 fixation in P. vulgaris is a low degree of 

inoculant use (Peoples et al., 2009), and the use of a small number of inoculant strains in 

very diverse ecological zones. For example, R. tropici CIAT 899 is widely used in eastern 

and southern Africa to inoculate P. vulgaris (Bala et al., 2011) despite the strain being 

poorly adapted to some soils in the region (Anyango et al., 1998). Additionally, the 

promiscuity of P. vulgaris exacerbates the problem of competition. Most soils used to 

cultivate P. vulgaris contain high numbers of variably effective rhizobia compatible with 

P. vulgaris, and these resident rhizobia are known to inhibit responses to inoculation 

(Anyango et al., 1995; Hungria & Vargas, 2000; Kawaka et al., 2014; Thies et al., 1991a)  

1.4.3 Diversity of P. vulgaris-rhizobia 

P. vulgaris nodulates and fixes N2 with a broad range of rhizobial species in up to five 

genera (Table 1.1). The rhizobial species listed nodulate the host in-situ, were trapped 

from soils in the glasshouse, or nodulated following inoculation as pure cultures (ex-situ). 

Generally, strains that nodulate P. vulgaris in-situ belong to the genus Rhizobium, but this 

range is extended considerably to include species in other genera when ex-situ nodulators 

are considered (Table 1.1). A narrower range of rhizobia is isolated from the field than 

from relocated soil samples or from inoculation with serially diluted soil (Alberton et al., 

2006; Bala et al., 2001) and one explanation for this is that P. vulgaris may have a level of 
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selectivity for certain rhizobial types in the field. Alternatively, ex-situ or in-situ methods 

of isolating rhizobia may favour the isolation of certain rhizobial species.  

In addition to the range of species capable of fixing N2 with the host, a greater number 

of rhizobial species can elicit ineffective nodules on P. vulgaris (Martinez-Romero, 2003; 

Michiels et al., 1998). This is because the stringency of Nod factor induction of nodule 

organogenesis has a lower stringency than is required for bacterial infection (Oldroyd & 

Downie, 2008). Rhizobia reported to form ineffective nodules with P. vulgaris are not 

included in Table 1.1. 

1.4.4 Spread of P. vulgaris rhizobia across the globe 

Different rhizobia nodulate, and fix N2 with P. vulgaris in various regions of the world 

(Table 1.1). The genetic diversity of these microsymbionts appears to increase with 

distance away from the Mesoamerican and Andean regions, the centres of origin of P. 

vulgaris, with only six species listed in Table 1.1 described from the two areas. This 

observation is consistent with the distance-decay theory of biological similarity where 

the diversity of organisms increases with distance from a source depending on dispersal 

limitation and niche difference (niche characteristics and competition) (Bell, 2010; 

Martiny et al., 2011; Nekola & White, 1999). 

Generally, at least four factors influence the nature, distribution, and population 

densities of P. vulgaris rhizobia across the globe. The first factor is the presence or 

absence of a legume host. This host could be P. vulgaris or an alternative compatible 

host. Rhizobia may have co-evolved with legumes (Aguilar et al., 2004; Heath et al., 

2012; Lowther & Patrick, 1993; Sprent, 2007) and nodulation is believed to have started 

soon after the origin of legumes 60 million years ago (Lavin et al., 2005; Sprent, 2008). 

Legumes such as P. vulgaris have been reported to preferentially nodulate with certain 

rhizobial types (Aguilar et al., 2004; Caballero-Mellado & Martinez-Romero, 1999; 

Montealegre et al., 1995) and can therefore potentially shape rhizobial diversity in soil. 
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Table 1.1: List of rhizobial species known to contain strains that nodulate and fix N2 with P. vulgaris  

 Species Type strain†                  Nodulation Origin of strain Reference 

   
In-situ  Ex-situ 

  
Field   Soil Culture 

1 R. tropici     Colombia Martinez-Romero et al. (1991) 

2 R. etli     Mexico Segovia et al. (1993) 

3 R. gallicum     France Armager et al. (1997) 

4 R. giardnii     France Armager et al. (1997) 

5 R. lusitanum     Portugal Valverde et al. (2006) 

6 R. phaseoli     NS* Ramirez-Bahena et al. (2008) 

7 R. vallis     China Wang et al. (2011) 

8 R. freirei     Brazil Dall’Agnol et al. (2013) 

9 R. paranaense     Brazil Dall’Agnol et al. (2014) 

10 R. azibense     Tunisia Mnasri et al. (2014) 

11 R. ecuadorense     Ecuador  Ribeiro et al. (2015) 

12 R. acidisoli     Mexico Román-Ponce et al. (2016) 

13 R. mesoamericanum     Mexico López-López et al. (2012) 

14 R. leucaenae     Brazil Ribeiro et al. (2012) 

15 R. grahamii     Mexico López-López et al. (2012) 

16 Sinorhizobium americanum     Tunisia Mnasri et al. (2012) 

17 Burkholderia phymatum     Morocco Talbi et al. (2010) 

18 R. sophorae     China Jiao et al. (2015) 

19 R. sophoriradicis     China Jiao et al. (2015) 

20 R. pisi     NS Ramirez-Bahena et al. (2008) 

21 R. leguminosarum      NS Ramirez-Bahena et al. (2008) 

22 R. mongolense     Mongolia Van Berkum et al. (1998) 

23 Parabulkholderia nodosa     Brazil Dall'Agnol et al. (2016) 

24 Sinorhizobium fredii     Spain Herrera-Cervera et al. (1999) 

25 Sinorhizobium meliloti     Spain Zurdo-Piñeiro et al. (2009) 

26 Bradyrhizobium elkanii     NS Hungria and Kaschuk (2014) 

†Type strain isolated from P. vulgaris 
*NS- Not specified



 Chapter 1 

20 
 

The methods and rates of dispersal of rhizobia from one location to another also 

determine prevalence of strains at a locality. Dispersal within short geographical 

distances (e.g. metres) is dependent on factors such as wind, slope and surface runoff 

(Lowther & Patrick, 1993; Woomer, 1990) while dispersal over long distances, that may 

span continents, is by the intentional or unintentional transport by humans. For 

example, rhizobia can be carried on or in legume seeds where they can remain viable for 

an extended period (Mora et al., 2014; Pe  rez-Ramirez et al., 1998). Consequently, the 

movement of legume seeds across markets unintentionally aids in the dispersal of 

rhizobia across geographical locations. R. tropici, widely distributed in Brazilian soils, is 

believed to have been introduced into Brazil from the Andes together with P. vulgaris 

seed by immigration and trade (Gomes et al., 2015). Rhizobial inoculant strains are also 

commonly sold or exchanged across countries with, for example, Rhizobium tropici CIAT 

899, isolated from Colombia (Martinez-Romero et al., 1991) being distributed as an 

inoculant for P. vulgaris in Kenya (Bala et al., 2011).  

Upon dispersal, the continued presence of strains depends on the adaptability of the 

dispersed strains to the environmental conditions in their new habitats. Differences in 

intrinsic characteristics of the strains such as tolerance to low or high pH, soil 

temperature, soil moisture, salinity, soil texture and nutrient efficiencies play a role in 

determining survival (Anyango et al., 1995; O'Hara, 2001; Zahran, 1999). Additionally, 

the availability of a compatible host will influence survival as the levels of rhizobial 

populations are significantly enhanced in the presence of a compatible host (Vlassak et 

al., 1996).  

Lastly, genetic exchange between rhizobia shapes the diversity of microsymbionts in any 

given region. Although the major reports on the genetic exchange between rhizobia 

mainly relate to Mesorhizobium sp. (Nandasena et al., 2007; Sullivan et al., 1995), genetic 

exchange exists in the many rhizobial species that nodulate P. vulgaris. The first set of 

evidence for this genetic exchange can be inferred from phylogenetic studies.  In the 

genus Rhizobium, species with relatively different chromosomal genetic makeup (<70%) 

may have identical symbiotic genes. For example, highly conserved symbiotic genes, 

symbiovar phaseoli, enable species such as R. etli, R. phaseoli, R. leguminosarum, R. sophorae 

and R. sophoriradicis to nodulate P. vulgaris (Jiao et al., 2015; Rogel et al., 2011; Rouhrazi et 

al., 2016).  The second set of evidence is experimental with for example Rao et al. (1994) 

and Brom et al. (2000) able to demonstrate the transmissibility of symbiotic plasmids 
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from  R. leguminosarum bv. trifolii and Rhizobium etli respectively into non-nodulating 

strains and consequently transferring nodulation ability. With the continuous 

introduction of rhizobia into new areas, previously non-symbiotic rhizobia may acquire 

symbiotic genes that may allow them to nodulate legumes. 

1.4.5 Rhizobia competition in P. vulgaris symbiosis 

The promiscuity of P. vulgaris and the widespread dispersal of compatible rhizobia make 

rhizobial competition an important aspect of P. vulgaris symbiosis. Competition for 

nodulation may arise when more than one rhizobial genotype capable of infecting a 

legume is within the plant’s rhizosphere (Yates et al., 2011). In P. vulgaris, this 

competition occurs between species of different genera such as S. americanum and R. 

gallicum in Tunisian soils (Mnasri et al., 2012); species of the same genus e.g. R. etli, R. 

gallicum, R. giardnii, R. leguminosarum  and S. fredii in a soil in Spain (Herrera-Cervera et al., 

1999); or between strains belonging to a single species (Pinto et al., 2007).  

Rhizobial competition has considerable influence on the outcomes of P. vulgaris 

inoculation as it can present a barrier to the ability of an inoculant strain to occupy a 

significant portion of the host nodules (Thies et al., 1991a). Thies et al. (1991b), using 29 

legume-site combinations estimated that 59% of the yield variability following 

inoculation of legumes was due to competition between the inoculant strain and the 

native rhizobia. Plants can only form a limited number of nodules, autoregulated 

through several mechanisms that include the use of a shoot-derived signal (Mortier et 

al., 2012).  Therefore, the preclusion of an elite strain from some or all the nodules on a 

legume, by ineffective strain(s), leads to a reduction in the overall amount of N2 fixed 

(Denton et al., 2002; Gerding et al., 2014; Thies et al., 1991a).  

1.4.5.1 Determinants of rhizobial competition outcomes 

Considerable research efforts have gone into trying to better understand rhizobia 

competition (Thies et al., 1991a; Triplett & Sadowsky, 1992; Yates et al., 2011). The 

legume host has a role in determining the outcomes of competition as exemplified in 

work by Sadowsky and Cregan (1992). In the study, Glycine max cv. Hill carrying the Rj4 

allele was shown to nodulate poorly with Bradyrhizobium elkanii strains USDA 61 and 

USDA 438. In contrast, Glycine max cv. Hill nodulated well with B. elkanii USDA 110. 

The basis of the incompatibility remains poorly understood but is suspected to stem 

from a discordancy between the hosts carrying the Rj alleles and the T3SS effectors 
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produced by the strains (Faruque et al., 2015; Tsukui et al., 2013). In P. vulgaris, the 

observation that wild accessions of P. vulgaris preferentially nodulate with rhizobia from 

their geographical origin (Aguilar et al., 2004) and that cultivar RAB39 preferentially 

nodulates with R. tropici UMR1899 (CIAT 899) in the presence of R. etli  (Montealegre et 

al., 1995) further supports the idea that hosts influence the outcomes of rhizobial 

competition. More recently in clover, Yates et al. (2008), demonstrated selective 

nodulation in two geographically and phenologically distinct clovers. Trifolium purpureum 

nodulated with its effective strain WSM1325, despite WSM1325 being outnumbered 

100-fold by the ineffective WSM2304. Similarly, T. polymorphum preferentially nodulated 

with its effective strain WSM2304 even when WSM2304 was outnumbered 100-fold by 

the ineffective WSM1325.  

In regards to the microsymbionts, investigations have centred on the impact of rhizobial 

population densities in soils on the outcomes of inoculation and the consensus appears 

to be that population density of soil rhizobia is inversely related to the inoculation 

response (Singleton & Tavares, 1986; Thies et al., 1991a, 1991b; Weaver & Frederick, 

1974). However, the specific numbers reported hampering inoculation response varies 

with the location. For example, Thies et al. (1991a) reported that 93 rhizobia per g of 

soil inhibited a response to the inoculation of P. vulgaris in Kuiaha, Hawaii, in soils with 

growth-limiting amounts of N.  In a study by Vargas et al. (2000), 700 rhizobia per gram 

of soil hindered the successful inoculation of P. vulgaris in the Cerrados of Brazil. In 

contrast, responses to the inoculation of P. vulgaris have been reported in soils with 103 

(Vlassak et al., 1996) and 105  rhizobia per g of soil (Hungria et al., 2000).  

Inoculation responses in the presence of high populations of background rhizobia 

(Hungria et al., 2000; Vlassak et al., 1996) are an intriguing phenomenon. For a response 

to inoculation to occur in these soils, the inoculant strain would need to out-compete 

the large populations of indigenous rhizobia for nodule occupancy.  This would require 

the inoculant strain to overcome the positional advantage that the soil rhizobia have in 

regards to accessing the infection sites of the developing root systems (López-García et 

al., 2002). P. vulgaris  is often cultivated in soils containing 104-106 rhizobia g-1 of soil 

(Alberton et al., 2006; Andrade et al., 1999; Anyango et al., 1995; Hungria et al., 2000; 

Kawaka et al., 2014; Langwerden, 2014) and how a response to inoculation in such high 

rhizobial backgrounds can occur is unknown. 
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The phenomenon above may be related to at least four factors: (a) the inoculum rate, (b) 

the ability of rhizobial strains involved to multiply in the rhizosphere of the host, (c) a 

host-mediated preferential nodulation with the inoculant strain or (d) an environmental 

influence on the interactions.  

The primary mode of inoculant delivery globally is through the application of rhizobia 

in peat directly onto seeds, with the aid of different adhesives (Herridge et al., 2014). 

With this delivery method, the rhizobia carrying capacity of the peat and the size of the 

seed, limit the number of rhizobia applied. The recommended rhizobial rates per seed 

are 103, 104 and 105 for small, medium and large seeded legumes respectively (Catroux et 

al., 2001b; Hungria et al., 2005; Lupwayi et al., 2000). The inoculum rates are unlikely to 

be the reason for different outcomes in researcher-managed experiments of Thies et al. 

(1991a) (93 cells g-1 soil inhibiting inoculation response) and Vlassak et al. (1996) 

(inoculation response observed in the presence of 103 cells per g-1 soil). However, 

variability in inoculum rates in farmer-managed fields, mainly stemming from 

differences in quality of the inoculant (Balume et al., 2015) may impact inoculation 

outcomes. In soils with low populations of native rhizobia, or in soils with no 

compatible rhizobia, increasing the dosage of the inoculant strain results in increases in 

the inoculation response (Hume & Blair, 1992; Patrick & Lowther, 1995). However, the 

effect of inoculation density on nodule occupancies in P. vulgaris, in the presence of high 

populations of resident rhizobia, is poorly understood. 

Another factor that may be related to an inoculation response in soils with a high 

population of native rhizobia is a superior rhizosphere competence of the inoculant 

strain in comparison to the native strains. Differences in rhizosphere competence may 

arise from differences in chemotaxis, motility, biofilm formation (Cooper, 2007; 

Frederix et al., 2014), utilisation of certain root exudates (Streit et al., 1992; Wielbo et al., 

2007), and growth rates (Li & Alexander, 1986). Inoculations in two successive years 

were required for an inoculation response in the study by Hungria et al. (2000) 

suggesting a build-up of the inoculant strain in the soil may have facilitated the response 

to inoculation. However, other factors such as a reduction the levels of the soil N may 

also have been responsible for the response to inoculation in the second year. It is 

currently not known whether rhizosphere competence could help inoculant strains 

overcome a naturalised rhizobia population in the range of 104-106 cells per g of soil.  
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The environment also influences the outcomes of competition. The role of biotic and 

abiotic factors in the growth, survival and symbiotic performance of rhizobia is well 

documented (Vlassak et al., 1997; Zahran, 1999), but uncertainties still exist. One such 

uncertainty is the role of soil mineral N in determining rhizobial competition outcomes. 

In P. vulgaris, low levels of soil N can stimulate early plant growth and consequently 

enhance N2 fixation (Da Silva et al., 1993; Müller et al., 1993; Tsai et al., 1993). 

However, higher N rates do not provide the “starter effect” and lead to a decrease in 

N2-fixation by suppressing nodule numbers and weights (Da Silva et al., 1993; Leidi & 

Rodriguez-Navarro, 2000; Tsai et al., 1993). The mechanisms of nitrate suppression of 

nodulation and N2 fixation are not fully known but may involve similar mechanisms as 

those participating in the autoregulation of nodulation (Mortier et al., 2012; Reid et al., 

2011) or through decreased supply of photoassimilates to nodules (Fujikake et al., 2003).   

While the roles of soil N in enhancing or suppressing nodulation and N2 fixation are 

well documented, the influence of N levels on rhizobial competition and nodule 

occupancy is less clear.  In studies by Vargas et al. (2000) and Caballero-Mellado and 

Martinez-Romero (1999), soil N was observed to influence the rhizobial types 

nodulating P. vulgaris. For example, nodule occupancy by R. tropici CIAT 899 decreased 

from 91% to 18% with the increase in levels of soil N while simultaneously, nodule 

occupancy by the native strains rose from 9% to 82% with the increase in soil N 

(Vargas et al., 2000). The authors hypothesised that the alteration in nodule occupancies 

resulted from either difference in nitrate tolerance by the strains or the production of 

altered root exudates that interact with the symbiosis and influence nodule occupancy 

outcomes (Caballero-Mellado & Martinez-Romero, 1999; Vargas et al., 2000). The effect 

of N is, however, equivocal as other reports indicate soil N has no influence on 

rhizobial competition and nodule occupancy outcomes (Abaidoo et al., 1990; Glyan’ko 

et al., 2009). As P. vulgaris is grown in farms with high soil N heterogeneity (Vanlauwe et 

al., 2016), the influence of N on the competition outcomes of rhizobia that nodulate 

this host needs to be clarified.   

From the review, above, many gaps in our current knowledge of the determinants of 

rhizobial competition outcomes are apparent. These areas need to be investigated. 

However, any advances in knowledge in this important area of competition require tools 

to assist in determining rhizobia in nodules, in the rhizosphere and in the bulk soil.  
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1.4.5.2 Strain typing in competition studies  

Rhizobial competition studies require methods to identify nodule occupants and to 

assess population densities. These methods should allow (a) reliable discrimination of 

rhizobia, preferably at the inter-strain level (b) rapid identification (c) cost-efficient 

analyses and (e) amenability to use with many strains. Currently, several methods are 

available, and these are variably suited to different studies. Methods in use exploit the 

phenotypic, proteomic or genotypic differences among strains. 

Phenotypic, proteomic and genotypic methods  

Phenotypic techniques include assessment of colony morphologies and biochemical 

characteristics. Melanin production (Blanco et al., 2010; Castro et al., 2000) and ELISA 

(Castro et al., 2000; Spriggs & Dakora, 2009) are examples of phenotypic characteristics 

that have been used to study rhizobia competition. Phenotypic characters do not offer 

sufficient discrimination between closely related strains, and in some instances, distantly 

related strains exhibit similar characteristics. For example, Cardoso et al. (2012) showed 

strains 2608 and 1281 were virtually indistinguishable using 12 phenotypic characters 

that included melanin production, bromothymol blue (BTB) reaction and a battery of 

colony characteristics. However, using nearly full length 16 S rRNA sequences, 2608 

was found to be related to Rhizobium giardnii strains, while 1281 grouped with members 

of the genus Stenotrophomonas. With ELISA, in addition to requiring sampling of nodules, 

cross reactions with other rhizobia can lead to false positive results (Hungria et al., 2000; 

Spriggs & Dakora, 2009). 

Proteomic approaches, such as the matrix-assisted laser desorption/ionization time of 

flight (MALDI-TOF) can differentiate between species, including very closely related 

species of Rhizobium indistinguishable by 16S (Ferreira et al., 2011; Martínez-Molina et 

al., 2016), between biovars (Šalplachta et al., 2013) and between some sub-specific 

groups (López Díez et al., 2016). However, the discriminatory power of MALDI-TOF 

MS below the species level is disputed (Karlsson et al., 2015), and therefore the utility of 

this method for strain level identification and subsequently competition studies is not 

clear. 

Genotyping methods include those based on DNA banding patterns, and may or may 

not involve a PCR amplification stage as well as DNA sequencing methods. Genotypic 

methods commonly used in rhizobia competition studies include DNA fingerprinting 

methods like enterobacterial repetitive intergeneric consensus (ERIC)-PCR, repetitive 
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extragenic palindromic (REP)-PCR, GTG5-PCR  and PCR with directed primers such as 

RP01 (Denton et al., 2002; Gerding et al., 2014). 

Among other drawbacks, a general one shared by phenotypic, proteomic and genotypic 

methods is the inability to rapidly and simultaneously identify nodule occupants on 

nodules on an entire root system. This problem is magnified substantially in legumes 

such as P. vulgaris that can form hundreds of nodules on a single root system. The 

sampling of nodules or isolates from nodules (Spriggs & Dakora, 2009; 

Wongphatcharachai et al., 2015), reduces the robustness of the data collected. 

Additionally, with these methods, the enumeration of bacterial numbers on roots, 

rhizosphere and in the bulk soil is challenging.  

Marker genes 

The insertion of genes that specify a selectable or phenotypically identifiable 

characteristic has for decades been useful in the ecological study of bacteria. Markers 

used in rhizobial competition studies include gusA (Denton et al., 2003; Pitkäjärvi et al., 

2003; Reeve et al., 1999; Shamseldin, 2007; Wilson et al., 1995), lacZ (Krishnan & 

Pueppke, 1992), luciferase (Cebolla et al., 1993; Pitkäjärvi et al., 2003), Green and 

DsRed fluorescent proteins (Duodu et al., 2008; Gage, 2002) and CelB (Sanchez-

Canizares & Palacios, 2013; Sessitsch et al., 1996). Of these markers, lacZ has been used 

the longest to tag bacteria, but a high background activity in rhizobia restricts the use of 

this gene in rhizobial competition studies (Sessitsch et al., 1998). The main 

disadvantages of luciferase and fluorescent proteins are that they require sophisticated 

amplification devices and fluorescent microscopes (Sessitsch et al., 1998).  

Two of the most robust gene markers used in gram-negative bacteria are the Escherichia 

coli gusA and the Pyrococcus furiosus celB.  gusA encodes a -glucuronidase (GUS) that 

cleaves glucuronides such as the synthetic 5-Bromo-4-chloro-3-indoxyl-beta-D-

glucuronide cyclohexylammonium salt (X-Glc) into a colourless product that is further 

oxidised into an insoluble coloured product (Jefferson et al., 1986). As GUS is not 

expressed in rhizobia or by their legume hosts, gusA markers are ideal for rhizobia 

nodule occupancy studies (Sessitsch et al., 1996; Wilson et al., 1995). GUS assays are 

simple to conduct and sensitive enough to allow nodules occupied by gusA marked 

strains to be easily identifiable (Reeve et al., 1999; Wilson et al., 1995). On the other 

hand, celB encodes a thermostable and thermoactive -glucosidase with a high -
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galactosidase activity (Voorhost et al., 1995). As rhizobia and their hosts contain heat-

labile -galactosidases, a heat inactivation step is used to eliminate endogenously 

expressed -galactosidases before assay with -galactosides (Sessitsch et al., 1996). The 

use of the two markers allows the simultaneous detection of nodule occupants on a root 

(Sanchez-Canizares & Palacios, 2013; Sessitsch et al., 1996). 

Delivery of marker genes into rhizobia  

Marker genes are introduced into rhizobia through different approaches. For example, 

gusA genes have been introduced into rhizobia through site-directed PCR methods 

(Sanchez-Canizares & Palacios, 2013) or with the aid of transposons (Reeve et al., 1999; 

Wilson et al., 1995) and plasmids (Shamseldin, 2007; Weilbo et al., 2010).  In general, 

delivery methods should (a) be easy to use, (b) enable rapid delivery of genes, (c) be 

amenable to use with many strains, (d) lead to stable marker genes even in the absence 

of selection, (e) not result in a phenotype either by interrupting essential genes or by 

excessive metabolic burden, (f) be non-specific and allow marking of relatively 

uncharacterized rhizobial strains, and (g) permit the monitoring of rhizobia in the free-

living state through suitable selection mechanisms.  

Site-directed methods can deliver marker genes into specific targets e.g. by fusion PCR 

and double recombination (Sanchez-Canizares & Palacios, 2013). However, these are 

significantly laborious and therefore not amenable to the marking of many strains, 

thereby limiting utility for marking a substantial number of strains. Additionally, the 

method needs considerable knowledge on the genome of strain to be marked to allow 

for decisions on suitable insertions sites. Genome information of strains to be included 

in competition assays in not always available.  

The current mode of choice for introducing marker genes into bacteria is through mini-

transposons, and a range of these is now available for marking of rhizobia (Reeve et al., 

1999; Wilson et al., 1995) (Figure 1.5). Although mini-transposons are widely used to 

introduce marker genes into rhizobia (Sessitsch et al., 1996), they suffer a few 

drawbacks. The major one being that they result in random integrations of introduced 

genes into the target genomes, potentially disrupting essential genes. Consequently,  the 

phenotypes of the mutants have to be checked (De Lorenzo et al., 1998; Wilson et al., 

1995) and preferably, the location of the transposon traced through PCR and 

sequencing techniques (Chun et al., 1997). The screening of mutants for mini-
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transposon insertion sites is a laborious process and is a fundamental limitation to the 

use of transposons to mark strains. However, for the marking of a few strains, the 

delivery of marker genes through mini-transposons is a suitable approach (Reeve et al., 

1999; Sessitsch et al., 1998; Wilson et al., 1995).  

 

 

 

Figure 1.5: Restriction maps of GUS mini-transposons (a) mTn5SSgusA11, with gusA gene, 

expressed constitutively from a tac promoter (b) mTn5SSgusA31, with gusA from a symbiotically 

active nifH promoter. Unmodified from Wilson et al. (1995) 

 

Plasmids are an alternative mode of introducing marker genes into rhizobia. While they 

are easy to conjugate into bacteria, their main disadvantages include instability in the 

absence of selection (Corich et al., 2001; De Gelder et al., 2007; Duodu et al., 2008; 

Gage et al., 1996) and the introduction of an extra metabolic load in the transconjugants 

(Silva et al., 2011).  

A stable, broad-host-range plasmid used with rhizobia is pJP2 (Figure 1.6) (Prell et al., 

2002).  pJP2 is maintained stably in R. leguminosarum bacteroids (Karunakaran et al., 

2005; Prell et al., 2002) while pTR102,  a plasmid with the same broad host range 

features and stability region is also stably maintained in Sinorhizobium meliloti strains re-

(a)

(b)
 1kb
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isolated from alfalfa nodules (Weinstein et al., 1992). The introduction of these plasmids 

into rhizobia has been reported to result in no detrimental phenotype in the 

transconjugants (Prell et al., 2002) in part due to a relatively low copy number and a 

relatively weakly expressed tac promoter (Giacomini et al., 1994). pJP2 is a mini-RK2 

derivative that has important RK2 elements that confer broad host range and stability. 

These are oriV, trfA (the replication initiation protein that allows replication in various 

hosts) and the par region (Jain & Srivastava, 2013; Yano et al., 2012).  

pJP2 uses two stability mechanisms. One mechanism avoids plasmid loss while the 

other eliminates the survival of plasmid-free cells. The parCBA operon encodes an 

active partition system that distributes plasmids (spatially) within the cell to ensure 

daughter cells receive a plasmid upon division (Easter et al., 1998; Sobecky et al., 1996). 

A second mechanism involves post-segregational killing relating to a toxin and an 

antitoxin (TA) system. In this particular TA (type II) system, parD codes for an antitoxin 

that neutralises a toxin from parE (Goeders & Van Melderen, 2014). A daughter cell that 

does not receive a plasmid dies, as no antitoxin is available to bind to and neutralise the 

long lasting toxin (Jiang et al., 2002).  

 

 

Figure 1.6: Physical and genetic map of the pJP2.  The promoter-probe vector encodes 

genes for tetracycline (tetA/tetR) and ampicillin (bla) resistance. In addition to these, 

RK2 genes trfA, oriV and oriT are incorporated as well as parCBA and parDE operons 

for plasmid stability (Prell et al., 2002).  
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Although RK2 derivatives such as pJP2 carry an origin of transfer (oriT), they are non-

conjugative as they lack tra genes (Bates et al., 1998) and therefore transconjugants can 

be grown together with other strains without the risk of transferring the marker gene.  

With the success of mini-RK2 derivatives in marking R. leguminosarum and S. meliloti  

(Karunakaran et al., 2005; Prell et al., 2002; Weinstein et al., 1992), a related mini-RK2 

derivative would be a useful tool for introducing marker genes rapidly into rhizobia in 

competition studies, although the stability of such a plasmid in an uncharacterised, 

unknown collection of rhizobia would need to be tested.  

1.5 P. vulgaris in Kenya 

P. vulgaris has been cultivated in Kenya for 400-500 years, following its introduction by 

Portuguese traders at the East African coast (Greenway, 1944). The average yield of P. 

vulgaris in Kenya is low, remaining below 659 kg ha-1 between 2004 and 2014 (Figure 

1.7). For comparison,  the average yield in Brazil in 2014 was 1034 kg ha-1 (FAOSTAT). 

The major causes of poor yields in Kenya include low yielding cultivars, diseases, 

drought and low soil fertility (Katungi et al., 2009).  

 

Figure 1.7: The average yield of P. vulgaris in Kenya in the years 2004-2014 (FAOSTAT) 

Because low soil N is a major limiting factor to the growth of this crop in Kenya, there 

is potential to increase yields of P. vulgaris through N2 fixation as has been achieved in 
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Brazil, where yield increases of up to 900 kg ha-1 were obtained through inoculation with 

an effective and ecologically adapted strain (Hungria et al., 2000). In Kenya, P. vulgaris is 

inoculated mainly with R. tropici CIAT 899 (Bala et al., 2011), and occasionally with R. 

etli USDA 2667 (Koinange, 2015). CIAT 899, the type strain for Rhizobium tropici was 

isolated from P. vulgaris in Colombia (Martinez-Romero et al., 1991) and is effective on 

P. vulgaris (Hungria et al., 2000; Hungria et al., 2003). The strain is tolerant to high 

temperatures and acidity (Hungria et al., 2000). Under acidic pH, CIAT 899 is 

competitive for nodulation of P. vulgaris (Hungria et al., 2003; Shamseldin, 2007; Streit et 

al., 1992) although more competitive strains have been reported (Anyango et al., 1998; 

Hungria et al., 2003). In near-neutral pH, CIAT 899 has been reported to be poorly 

competitive (Anyango et al., 1998; Streit et al., 1992). The strain is used as inoculant 

strain in Brazil (Hungria et al., 2000) and several countries in SSA (Bala et al., 2011).  

The inoculation of P. vulgaris in Kenya is not widespread, and the success rate of 

inoculation is low, with most studies reporting no response to inoculation even in 

instances when the crop responded to the application of fertiliser N (Musandu & 

Ogendo, 2001). Reasons for inoculation failure are speculated to include a low 

adaptability of inoculant strains to environmental conditions, and the presence of large 

populations of indigenous rhizobia soils (Anyango et al., 1998; Musandu & Ogendo, 

2001), although no study has assessed the competitiveness of inoculant strains against 

indigenous strains.  

Populations of rhizobia nodulating P. vulgaris in Kenyan soils range upward to 104 cells g 

g-1of soil (Anyango et al., 1995; Kawaka et al., 2014) and occasionally, some of these 

populations contain strains that are very efficient at fixing N2 (Anyango et al., 1995; 

Karanja & Wood, 1988; Kawaka et al., 2014; Muthini et al., 2014; Mwenda et al., 2011). 

For example, Kawaka et al. (2014) isolated KSM005 that outperformed the commercial 

inoculant CIAT 899 in biomass production in controlled glasshouse trials. However, 

greater efforts are required to create a bigger pool of candidate inoculant strains for 

adaptability assessment in different agro-ecological zones in Kenya. 

Despite the abundance of P. vulgaris rhizobia reported in Kenyan soils, and the potential 

of some of them to fix high amounts of N2, very little else is known about them. For 

example, beyond morphological assessment (Karanja & Wood, 1988; Kawaka et al., 

2014; Muthini et al., 2014), few researchers have attempted to classify rhizobia from 

Kenyan soils by molecular means (Anyango et al., 1995; Mwenda et al., 2011; Odee et 
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al., 2002). The most comprehensive of these was the study by Anyango et al. (1995) that 

by RFLP of genomic DNA and nifH copy number, found strains nodulating P. vulgaris 

in alkaline soils of Naivasha to be closely related to R. etli and R. leguminosarum bv. 

phaseoli and those nodulating P. vulgaris in acidic soils in Dakaini to be related to R. 

tropici.  It is now 21 years since the study by  Anyango et al. (1995) was published. Since 

1995, many new rhizobial species that fix N2 with P. vulgaris have been described (Table 

1.1) and others such as R. leucaenae (Ribeiro et al., 2012), R. freirei (Dall’Agnol et al., 2013) 

and R. paranaense (Dall’Agnol et al., 2014) have since been separated from what was R. 

tropici in 1995. An updated view of the rhizobia nodulating P. vulgaris in Kenya is needed. 

1.6 Aims of thesis 

Several knowledge and resource gaps exist in the P. vulgaris symbiosis, in Kenya and in 

general.  These gaps include a lack of effective, well adapted and competitive strains for 

use as inoculants in the diverse agroecological zones in Kenya, a lack of knowledge on 

the nature of rhizobia that presently nodulate P. vulgaris in Kenya and insufficient 

knowledge on the relative importance of factors currently believed to impact on the 

success of inoculating P. vulgaris in multi-strain environments.  

To address the gaps outlined above, the specific aims of this thesis are: 

1. To assess the genetic diversity and phylogeny of rhizobia nodulating P. vulgaris in 

select agro-ecological zones in Kenya 

2. To determine the effectiveness, in N2-fixation, of the strains on P. vulgaris and, 

additionally, explore any link between β-polyhdroxybutyrate accumulation in 

bacteroids and strain effectiveness 

3. Develop and test a dual gene-marker system based on gusA and celB genes for 

use in rapid screening of rhizobia for competitiveness in nodulating P. vulgaris 

4. Investigate the determinants of inoculation success in P. vulgaris in soils with 

high densities of resident rhizobia 
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2.1 Introduction  

In Kenya, low levels of soil N significantly limit the productivity of crops (Keino et al., 

2016). With P. vulgaris, N2 fixation has the potential to increase the current yields of 

below 700 kg ha-1 (Figure 1.7), but a deeper understanding of the P. vulgaris-rhizobia 

symbiosis in Kenyan soils is required. A critical step towards a greater understanding of 

any legume-rhizobia interaction is the genetic characterization of the rhizobia involved. 

Such characterization enhances knowledge on the genetic relationships among strains, 

the predominance of strains and the dynamics of exchange of genetic material.  

P. vulgaris is cultivated in central and western Kenya, among other parts of the country 

(Katungi et al., 2009). Although inoculation of the crop is rare, nodulation with native 

rhizobia, whose population is estimated to be as high as 104 cells g-1 of soil, occurs 

(Anyango et al., 1995; Kawaka et al., 2014). Studies indicate these rhizobia are variably 

effective on P. vulgaris (Anyango et al., 1995; Kawaka et al., 2014; Muthini et al., 2014) 

but little else is known about them e.g. their diversity, taxonomy or their nodulation 

genes. Previously, rhizobia nodulating P. vulgaris at two sites in Kenya grouped with 

members of R. etli, R. leguminosarum bv. phaseoli and R. tropici by host range, nifH copy 

number and genomic DNA restriction fragment fingerprints (Anyango et al., 1995). In a 

second study, two strains from P. vulgaris were identified as R. leguminosarum using a 230 

bp fragment of the 16S rRNA gene (Odee et al., 2002). To date, no other studies have 

genetically characterized the rhizobia that nodulate P. vulgaris in Kenyan soils. 

To form a better view of the nature of rhizobia nodulating P. vulgaris in Kenyan soils, I 

examined a collection of 197 rhizobial strains by genomic DNA fingerprinting; 

restriction fragment length polymorphism (RFLP) of PCR amplified of 16S rRNA 

(PCR-RFLP); and by the sequencing of 16S rRNA, recA and nodC genes.  
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2.2 Materials and methods 

2.2.1 Nodule collection, strain isolation and storage 

Nodules were sampled from P. vulgaris growing in farms with no known history of 

rhizobial inoculation in Nairobi, Kiambu, Meru and Siaya. Nodules were stored in silica 

gel in airtight vials before isolation of bacteria. Isolation was as described by Hungria et 

al. (2016). Briefly, desiccated nodules were re-hydrated in de-ionized water for 3 h 

before surface sterilization in 70% (v/v) ethanol for 1 min followed by immersion in 4% 

(v/v) sodium hypochlorite for 2 min. Nodules were then rinsed six times in sterile de-

ionized water and a nodule aseptically crushed in a drop of sterile de-ionized water 

before streaking of the ‘squashate’ on tryptone yeast (TY) media [0.5% tryptone (w/v), 

0.3% yeast extract (w/v), 0.087% CaCl2.2H2O (w/v), 0.75% agar (w/v), (pH 7.0)]. The 

streaked plates were incubated at 28ºC for 3 to 10 d, colonies sub-cultured onto fresh 

TY plates, and pure cultures stored in 15% (v/v) glycerol at -80ºC.  

In addition to these isolates, 12 strains from the N2Africa Project’s rhizobial collection 

were included in the study (Table 2.1). All but NAK 8, NAK 104, NAK 111, and NAK 

120 had been isolated from P. vulgaris (Table 2.1).   

Table 2.1: Rhizobial strains included in the study from N2Africa rhizobia collection at 
the Nairobi MIRCEN laboratory 

Strain Geographic origin* Host of isolation 

NAK 8 Embu (CK) Macroptilium atropurpureum** 
NAK 73A Nairobi (CK) Phaseolus vulgaris 
NAK 73B Nairobi (CK) Phaseolus vulgaris 
NAK 75 Nairobi (CK) Phaseolus vulgaris 
NAK 103 Busia (WK) Phaseolus vulgaris 
NAK 104 Busia (WK) Phaseolus vulgaris 
NAK 105 Busia (WK) Glycine max 
NAK 108 Busia (WK) Phaseolus vulgaris 
NAK 111 Busia (WK) Vigna unguiculata 
NAK 120 Busia (WK) Albizia sp. 
NAK 156 Kwale (CST) Phaseolus vulgaris 
NAK 157 Kwale (CST) Phaseolus vulgaris 
* CK-central Kenya, WK-western Kenya, CST-coastal Kenya 
** trap host 

In all, the study obtained nodule samples or strains from the central highlands, western 

and coastal Kenya (Figure 2.1), regions that differ ecologically in elevation, rainfall, and 

soil types (Table 2.2).  
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Figure 2.1: Map of Kenya showing geographical origin of nodule samples or strains: A 
(Embu), B (Busia and Siaya), C (Kwale), D (Kiambu and Nairobi) and E (Meru). For 
more details on these areas, see Table 2.2. The main cities in Kenya, Nairobi ( ) and 

Mombasa () are shown. Map generated with Google Earth.  

 
Table 2.2: A brief description of the geographic origins of nodules or strains, indicating 
administrative areas, altitudes, annual rainfall, and soil types  
Zonea 
 

Administrative area 
(county)b 

Approximate altitudes, annual rain and soil typesc 

A Embu (CK) 2000 m.a.s.l, 1500 mm, humic nitisols 
   
B Busia/Siaya (WK) 1200-1500 m.a.s.l, 1200-2000 mm, acrisols and ferralsols 
   
C Kwale (CST) 0-100 m.a.s.l, <500 mm, low fertility arenosols 
   
D Kiambu/Nairobi (CK) 1600-2000 m.a.s.l, 1200-1800 mm, humic nitisols 
   
E Meru (CK) 1700 m.a.s.l, 1500-2000 mm, cambisols 
aZones corresponding to those shown in Figure 2.1  
bCK-central Kenya, WK-western Kenya, CST-coast. Table 2.3 gives more specific locations of 
sampling points 
cGeneralized descriptions of sampling points 
 


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2.2.2 Strain authentication 

Isolates were first assessed for growth rates then authenticated. To determine growth 

rates, isolates were dilution-streaked onto TY plates, incubated at 28ºC and the time 

taken for colonies to appear recorded.   

Authentication experiments were conducted in a glasshouse under natural light during 

the months of October to March in Perth, Western Australia. These are months of 

bright sun with 12 to 14-h days and glasshouse air temperatures ranging between 22°C 

and 30°C. General procedures were as described by Yates et al. (2016a). Briefly, 3.5 L 

plastic pots were filled with wet medium-grade vermiculite and steam-sterilised for 3 h 

after which pots were covered with cling wrap and kept in a shaded glasshouse until 

sowing. P. vulgaris cv. KK08 seeds were selected for uniformity in size and weight, 

surface-sterilized by immersion in 70% (v/v) ethanol for 1 min and in 4% (v/v) sodium 

hypochlorite for 4 min before rinsing in six changes of sterile de-ionized water. The 

seeds were allowed to imbibe water for 2 h before pre-germination on water agar 

[0.75% (w/v) agar] in a 28°C incubator for 48 h.  

Strains to be authenticated were inoculated, from TY agar plates, into 10 mL TY broths 

and incubated at 28°C on a gyratory shaker set at 220 rpm and grown until early 

stationary phase. The cultures were centrifuged at 10,000 × g for 1 min, supernatant 

removed and cell pellets re-suspended in 10 mL sterile de-ionized water. The optical 

density (OD) of the resulting bacterial suspensions was measured at 600 nm and OD 

adjusted to 0.5 using sterile de-ionized water  to obtain approximately 5×108 cells mL-1.  

At the time of planting, pre-germinated seeds were aseptically placed into shallow holes 

in the vermiculite, and 1 mL of the freshly prepared cell suspensions applied onto each 

seed.  Three seeds were sown per pot and treatments had two pot replicates. Non-

inoculated control treatments received 1 mL of sterile de-ionized water at sowing. A 

capped watering tube was inserted into each pot and the pot surface covered with a thin 

layer of sterile polyethylene beads to prevent airborne contamination.  Each pot was 

watered with 100 mL of 2 × B&D nutrient solution (CaCl2, 2 mM; KH2PO4, 1 mM; 

ferric citrate, 20 µM; MgSO4, 0.5 mM; K2SO4, 0.5 mM; MnSO4, 2 µM; H3BO3, 4 µM; 

ZnSO4, 1 µM; CuSO4, 0.4 µM; CoSO4, 0.2 µM; Na2MoO4, 0.1 µM) (Broughton & 

Dilworth, 1971) supplemented with 10 mM NH4NO3 as starter N.   Plants were thinned 

to two plants per pot 7 d after sowing. 150 mL of N-free B&D nutrient solution was 
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added to pots twice per week, and pots watered with sterile distilled water as needed 

until harvest. Plants were assessed for root nodulation 28 d after inoculation.  

2.2.3 Genetic characterization 

2.2.3.1 Genomic DNA preparation 

Genomic DNA was extracted according to Baele et al. (2000). Briefly, strains were 

grown on TY agar plates and a bacterial colony suspended in 20 µL of lysis buffer 

(0.25% (w/v) sodium dodecyl sulfate, 0.05 M NaOH) before incubation at 95ºC for 5 

min. The lysate was centrifuged for 1 min at 16,000 × g followed by addition of 180 µL 

sterile de-ionized water. The resulting suspension was centrifuged at 16,000 × g for 5 

min to pellet cell debris, and the supernatant containing genomic DNA stored at -20ºC. 

2.2.3.2 Genomic DNA fingerprinting by PCR with nif-directed RP01 primer 

PCR was carried out using the nif-directed RP01 primer ′5-AATTTTCAAGC 

GTCGTGCCA-3′ (Richardson et al., 1995). As a control, two independent reactions of 

NAK 73 were set up to confirm the reproducibility of the method. A single reaction was 

carried out for all other strains. PCR reactions of 20 µL were performed with 4 µL of 5 

× PCR polymerization buffer from Fisher Biotec [composition of 1 × buffer: 67 mM 

Tris-HCl pH 8.8, 16.6 mM [NH4]2SO4, 0.45% (v/v) Triton X-100, 0.2 mg/mL gelatin 

and 0.2 mM dNTP’s], 3mM MgCl2, 1.25 µM RP01 primer, 2.5 U Taq DNA polymerase 

(Fisher Biotec), 1 µL DNA and UltraPure PCR grade water (Fisher Biotec) to 20 L. 

The thermal cycling conditions for the PCR were: 5 cycles at 94ºC for 30 s, 50ºC for 10 

s and 72ºC for 90 s; 35 cycles of 94°C for 30 s, 55°C for 25 s and 72°C for 90 s; and a 

final extension at 72°C for 5 min.  

The entire 20 L PCR reactions were each mixed with 3.2 L of 6 × loading dye 

(Thermo Fisher Scientific) then separated on 2% (w/v) agarose gel in 1 × TAE buffer 

(40 mM Tris, 20mM acetic acid, 1 mM EDTA) at 80 V for 180 min. Three lanes on 

each gel were loaded with 7 µL of 1 kb DNA ladder (Promega, catalogue # G5711) to 

act as size markers.  Gels were pre-stained with SYBR® Safe DNA gel stain (1:10,000). 

PCR products were visualised using a UV transilluminator before the capture of a digital 

image using GEL-DOC 2000 (Bio-Rad). The resulting fingerprints were analysed in 

Bionumerics v5.1 (Applied Maths, Belgium). The similarity among digitized profiles was 

calculated using the Pearson correlation, and an average linkage (UPGMA) dendrogram 
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was derived from the patterns. Strains showing >80% similarity in their banding 

patterns were grouped together as ‘RP01-PCR groups’. 

2.2.3.3 Restriction Fragment Length Polymorphisms (RFLP)-PCR of 16S rRNA 

genes 

The 16S rRNA genes were amplified from representative strains chosen from each of 

the RP01 groups, R. tropici CIAT 899, and R. leguminosarum 8002 using the primer pair 

27F (′5-AGAGTTTGATCCTGGCTCAG-3′) and 1492R (′5-ACGGCTACCTTGTTA 

CGACTT-3) (Lane, 1991). Each 25 µL PCR reaction contained: 12.5 µL of 2 × GoTaq® 

Green Master Mix [(pH 8.5), 400 µM dATP, 400 µM dGTP, 400 µM dCTP, 400 µM 

dTTP and 3 mM MgCl2], 0.4 µM 27F primer, 0.4 µM 1492R primer, 2 µL genomic 

DNA and UltraPure PCR grade water (Fisher Biotec) to 25 L. The thermal cycling 

conditions for the PCR were: initial denaturation at 94ºC for 120 s; 35 cycles of 94°C 

for 30 s, 55°C for 25 s and 72°C for 90 s; and a final extension at 72°C for 7 min. The 

PCR products were mixed with loading dye and separated on a pre-stained 1.5% (w/v) 

agarose gel in 1 × TAE buffer at 100 V for 60 min as described in Section 2.2.3.2.  

Bands of ~1500 bp were excised with a blade under a blue light transilluminator then 

purified with Promega’s Wizard®SV Gel and PCR clean-up system (catalogue # A1330) 

following manufacturer’s instructions.  

Purified PCR products were digested separately with the restriction enzymes HaeІІІ, 

MspІ, HhaІ and HinfІ (all from Promega) as recommended by the manufacturer. 

Briefly, digestion was carried out in 20 µL reactions that contained: 1 × restriction 

buffer (recommended and supplied with the restriction enzymes), 0.1 µg/µL acetylated 

BSA, 0.25 U/µL of an enzyme, and ~0.5 µg DNA. Digestion was carried out at 37°C 

for 4 h followed by separation in 2% (w/v) agarose at 80 V for 2 h, as already described. 

A digital image of the gel was captured using GEL-DOC 2000 (Bio-Rad) and banding 

patterns scored. A combination of RFLP patterns of the 16S rRNA fragments generated 

by the enzymes was used to group the isolates into ‘PCR-RFLP groups’. 

2.2.3.4 Amplification and sequencing of 16S rRNA gene 

Near full-length 16S rRNA genes were amplified from representatives of RFLP groups 

and purified as described in Section 2.2.3.3. Sequencing PCR was then performed, 

separately, with the 27F and 1492R primers using the Bigdye® Terminator v3.1 Cycle 

Sequencing Kit (catalogue # 4337454) as per Applied Biosystems’ instructions. Briefly, 

sequencing PCR was carried out in 10 µL reactions that contained: 1 µL of 2.5 × 
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Bigdye® terminator ready reaction mix, 1.5 µL of 5 × Bigdye® sequencing buffer, 0.6 

µM primer, ~90 ng DNA and UltraPure PCR grade water (Fisher Biotec) to 10 µL. The 

thermal cycling conditions for the PCR were: initial denaturation at 96ºC for 120 s; 25 

cycles of 96°C for 10 s, 50°C for 5 s and 60°C for 240 s. Sequencing reactions were 

purified by ethanol, EDTA and sodium acetate precipitation following protocol by 

Applied Biosystems. Sequence reads were obtained from an ABI model 377A 

automated sequencer (Applied Biosystems), manually edited and contigs assembled in 

Geneious® software (Biomatters Ltd, NZ). Sequences were then used to search for 

bacterial type strains with the highest 16S rRNA gene similarity values in EzTaxon-e 

(Kim et al., 2012) and these sequences imported into MEGA6. A phylogenetic tree was 

constructed using the Maximum Likelihood method (with best fit models) bootstrapped 

with 500 replicates (Tamura et al., 2011).  

2.2.3.5 Amplification and sequencing of recA gene 

Partial recA genes (~550 bp) were amplified from the strains analysed by 16S rRNA 

gene above, using recA6F (5-CGKCTSGTAGAGGAYAAATCGGTGGA-3) and 

recA555R (5-CGRATCTGGTTGATG AAGATCACCAT-3) primers (Martens et al., 

2007). PCR reactions of 25 µL were performed with 12.5 µL of 2 × GoTaq® Green 

Master Mix, 0.4 µM recA6F primer, 0.4 µM recA555R primer, 2 µL genomic DNA and 

UltraPure PCR grade water to 25 L. The thermal cycling conditions for the PCR were: 

initial denaturation at 95ºC for 120 s; 32 cycles of 94°C for 45 s, 60°C for 60 s and 72°C 

for 90 s; and a final extension at 72°C for 5 min. Separation of PCR products on 1% 

(w/v) agarose gel and purification were as described in Section 2.2.3.3. Purified 

amplicons were sequenced by Sanger technique using recA6F primer through the 

Australian Genome Research Facility (AGRF) followed by contig assembly on 

Geneious®.  recA sequences of test strains and those of highly similar type strains from 

GenBank were imported into MEGA6, aligned by Muscle and phylogeny reconstructed 

by the Maximum Likelihood method (with best fit models), bootstrapped with 500 

replicates.  

2.2.3.6 Amplification and sequencing of nodC gene 

Partial nodC genes (~620 bp) were amplified using nodCfor540F (5-TGATYGAYATG 

GARTAYTGGCT-3) and nodCrev1160R (5-CAAYAGCGAYTGGYTRTC-3) primers 

(Sarita et al., 2005). PCR reaction 25 µL were performed with 12.5 µL of 2 × GoTaq® 

Green Master Mix, 0.4 µM nodCfor540F, 0.4 µM nodCrev1160R primer, 2 µL genomic 
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DNA and UltraPure PCR grade water to 25 L. Thermal cycling conditions for the 

PCR were: initial denaturation at 95ºC for 120 s; 3 cycles of 95°C for 60 s, 50°C for 135 

s and 72°C for 60 s; 30 cycles of 94°C for 35 s, 50°C for 75 s and 72°C for 75 s; and a 

final extension at 72°C for 7 min.  Separation of PCR products on 1% (w/v) agarose gel 

and purification were as described in Section 2.2.3.3. Purified amplicons were sequenced 

by Sanger technique using nodCfor540F primer through the Australian Genome 

Research Facility (AGRF) followed by contig assembly on Geneious®.  The nodC 

sequences of test strains and those of highly similar type strains from GenBank were 

imported into MEGA6, aligned by Muscle and phylogeny reconstructed by the 

Maximum Likelihood method (with best fit models), bootstrapped with 500 replicates.  

2.3 Results 

2.3.1 Authenticated strains  

A total of 185 isolates were obtained from the sampled nodules for a total of 197 study 

strains (with the addition of 12 strains from the N2Africa rhizobial collection) (Table 

2.3). The origins of these isolates were; one strain from Embu (CK), 17 from Nairobi 

(CK), 25 from Meru (CK), 150 from Kiambu (CK), 12 from Busia/Siaya (WK) and two 

from Kwale (CK) (Table 2.3). On TY agar, an overwhelming majority of the strains (195 

of the 197) were fast growers (taking 1-4 d for colonies to appear). Only 2 strains, NAK 

105 and NAK 111, were slow growers (5-10 d for colonies to appear).  

Pure cultures of all isolates induced nodules on P. vulgaris and were therefore 

authenticated as rhizobia. The uninoculated controls did form any nodules, an 

observation that further supported the authentication of the 197 study strains as 

rhizobia.  
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Table 2.3: A list of rhizobial strains used in this study. Their geographical origins, original hosts, 
growth rate phenotypes and subsequent characterizations  
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NAK 8* Embu (CK) TH M. atropurpureum¥ F   − − − − 
NAK 73A* Runda, Nairobi (CK) STH P. vulgaris F   − − − − 
NAK 73B* Runda, Nairobi (CK) STH P. vulgaris F   − − − − 
NAK 75* Runda, Nairobi (CK) STH P. vulgaris F    − − − 
NAK 103* Butula, Busia (WK) TM P. vulgaris F       

NAK 104* Butula, Busia (WK) TM P. vulgaris F    − − − 
NAK 105* Butula, Busia (WK) TM G. max S    − − − 
NAK 108* Butula, Busia (WK) TM P. vulgaris F   − − − − 
NAK 111* Butula, Busia (WK) TM V. unguiculata S    − − − 
NAK 120* Busia (WK) TM Albizia sp. F       

NAK 156* Kwale (CST) TCP P. vulgaris F   − − − − 
NAK 157* Kwale (CST) TCP P. vulgaris F      − 
NAK 209 Loresho, Nairobi (CK) STH P. vulgaris F   − − − − 
NAK 210 Loresho, Nairobi (CK) STH P. vulgaris F       

NAK 211 Loresho, Nairobi (CK) STH P. vulgaris F   − − − − 
NAK 212 Loresho, Nairobi (CK) STH P. vulgaris F   − − − − 
NAK 213 Loresho, Nairobi (CK) STH P. vulgaris F   − − − − 
NAK 214 Loresho, Nairobi (CK) STH P. vulgaris F    − − − 
NAK 215 Loresho, Nairobi (CK) STH P. vulgaris F   − − − − 
NAK 216 Loresho, Nairobi (CK) STH P. vulgaris F    − − − 
NAK 217 Loresho, Nairobi (CK) STH P. vulgaris F   − − − − 
NAK 218 Loresho, Nairobi (CK) STH P. vulgaris F   − − − − 
NAK 219 Loresho, Nairobi (CK) STH P. vulgaris F   − − − − 
NAK 220 Loresho, Nairobi (CK) STH P. vulgaris F   − − − − 
NAK 221 Loresho, Nairobi (CK) STH P. vulgaris F   − − − − 
NAK 222 Loresho, Nairobi (CK) STH P. vulgaris F   − − − − 
NAK 223 Kabete, Kiambu (CK) STH P. vulgaris F    − − − 
NAK 224 Kabete, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 225 Kabete, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 226 Kabete, Kiambu (CK) STH P. vulgaris F    − − − 
NAK 227 Kabete, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 228 Kabete, Kiambu (CK) STH P. vulgaris F    − − − 
NAK 229 Kabete, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 230 Kabete, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 231 Kabete, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 232 Kabete, Kiambu (CK) STH P. vulgaris F    − − − 
NAK 233 Kabete, Kiambu (CK) STH P. vulgaris F    − − − 
NAK 234 Kabete, Kiambu (CK) STH P. vulgaris F    − − − 
NAK 235 Kabete, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 236 Kabete, Kiambu (CK) STH P. vulgaris F  − − − − − 
NAK 237 Kabete, Kiambu (CK) STH P. vulgaris F    − − − 
NAK 238 Kabete, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 239 Kabete, Kiambu (CK) STH P. vulgaris F       

NAK 240 Kabete, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 241 Kabete, Kiambu (CK) STH P. vulgaris F   − − − − 
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Table 2.3 cont’d           

NAK 242 Kabete, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 243 Kabete, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 244 Kabete, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 245 Wangige, Kiambu (CK) STH P. vulgaris F       

NAK 246 Wangige, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 247 Wangige, Kiambu (CK) STH P. vulgaris F    − − − 
NAK 248 Wangige, Kiambu (CK) STH P. vulgaris F    − − − 
NAK 249 Wangige, Kiambu (CK) STH P. vulgaris F    − − − 
NAK 250 Wangige, Kiambu (CK) STH P. vulgaris F  − − − − − 
NAK 251 Ndenderu, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 252 Ndenderu, Kiambu (CK) STH P. vulgaris F    − − − 
NAK 253 Ndenderu, Kiambu (CK) STH P. vulgaris F    − − − 
NAK 254 Ndenderu, Kiambu (CK) STH P. vulgaris F    − − − 
NAK 255 Ndenderu, Kiambu (CK) STH P. vulgaris F    − − − 
NAK 256 Ndenderu, Kiambu (CK) STH P. vulgaris F    − − − 
NAK 257 Ndenderu, Kiambu (CK) STH P. vulgaris F    − − − 
NAK 258 Ndenderu, Kiambu (CK) STH P. vulgaris F    − − − 
NAK 259 Ndenderu, Kiambu (CK) STH P. vulgaris F    − − − 
NAK 260 Ndenderu, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 261 Ndenderu, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 262 Ndenderu, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 263 Ndenderu, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 264 Ndenderu, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 265 Ndenderu, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 266 Ndenderu, Kiambu (CK) STH P. vulgaris F       

NAK 267 Ndenderu, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 268 Ndenderu, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 269 Ndenderu, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 270 Ndenderu, Kiambu (CK) STH P. vulgaris F    − − − 
NAK 271 Ndenderu, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 272 Ndenderu, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 273 Ndenderu, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 274 Ndenderu, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 275 Ndenderu, Kiambu (CK) STH P. vulgaris F    − − − 
NAK 276 Ndenderu, Kiambu (CK) STH P. vulgaris F    − − − 
NAK 277 Ndenderu, Kiambu (CK) STH P. vulgaris F    − − − 
NAK 278 Ndenderu, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 279 Ndenderu, Kiambu (CK) STH P. vulgaris F    − − − 
NAK 280 Ndenderu, Kiambu (CK) STH P. vulgaris F    − − − 
NAK 281 Ndenderu, Kiambu (CK) STH P. vulgaris F    − − − 
NAK 282 Ndenderu, Kiambu (CK) STH P. vulgaris F    − − − 
NAK 283 Ndenderu, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 284 Ndenderu, Kiambu (CK) STH P. vulgaris F     − − 
NAK 285 Ndenderu, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 286 Ndenderu, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 287 Ndenderu, Kiambu (CK) STH P. vulgaris F       

NAK 288 Ndenderu, Kiambu (CK) STH P. vulgaris F    − − − 
NAK 289 Ndenderu, Kiambu (CK) STH P. vulgaris F  − − − − − 
NAK 290 Ndenderu, Kiambu (CK) STH P. vulgaris F    − − − 
NAK 291 Ndenderu, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 292 Ndenderu, Kiambu (CK) STH P. vulgaris F  − − − − − 
NAK 293 Ndenderu, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 294 Ndenderu, Kiambu (CK) STH P. vulgaris F       
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NAK 295 Muchatha, Kiambu (CK) STH P. vulgaris F    − − − 
NAK 296 Muchatha, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 297 Muchatha, Kiambu (CK) STH P. vulgaris F    − − − 
NAK 298 Muchatha, Kiambu (CK) STH P. vulgaris F    − − − 
NAK 299 Muchatha, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 300 Muchatha, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 301 Muchatha, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 302 Muchatha, Kiambu (CK) STH P. vulgaris F  − − − − − 
NAK 303 Muchatha, Kiambu (CK) STH P. vulgaris F    − − − 
NAK 304 Muchatha, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 305 Muchatha, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 306 Muchatha, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 307 Muchatha, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 308 Muchatha, Kiambu (CK) STH P. vulgaris F    − − − 
NAK 309 Muchatha, Kiambu (CK) STH P. vulgaris F    − − − 
NAK 310 Limuru, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 311 Limuru, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 312 Limuru, Kiambu (CK) STH P. vulgaris F       

NAK 313 Limuru, Kiambu (CK) STH P. vulgaris F    − − − 
NAK 314 Limuru, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 315 Limuru, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 316 Limuru, Kiambu (CK) STH P. vulgaris F    − − − 
NAK 317 Limuru, Kiambu (CK) STH P. vulgaris F    − − − 
NAK 318 Limuru, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 319 Limuru, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 320 Limuru, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 321 Limuru, Kiambu (CK) STH P. vulgaris F    − − − 
NAK 322 Limuru, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 323 Limuru, Kiambu (CK) STH P. vulgaris F  − − − − − 
NAK 324 Limuru, Kiambu (CK) STH P. vulgaris F    − − − 
NAK 325 Limuru, Kiambu (CK) STH P. vulgaris F    − − − 
NAK 326 Tigoni, Kiambu (CK) STH P. vulgaris F    − − − 
NAK 327 Tigoni, Kiambu (CK) STH P. vulgaris F    − − − 
NAK 328 Tigoni, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 329 Tigoni, Kiambu (CK) STH P. vulgaris F    − − − 
NAK 330 Tigoni, Kiambu (CK) STH P. vulgaris F    − − − 
NAK 331 Tigoni, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 332 Tigoni, Kiambu (CK) STH P. vulgaris F    − − − 
NAK 333 Tigoni, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 334 Tigoni, Kiambu (CK) STH P. vulgaris F       

NAK 335 Tigoni, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 336 Tigoni, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 337 Tigoni, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 338 Tigoni, Kiambu (CK) STH P. vulgaris F    − − − 
NAK 339 Tigoni, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 340 Tigoni, Kiambu (CK) STH P. vulgaris F    − − − 
NAK 341 Tigoni, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 342 Limuru, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 343 Limuru, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 344 Limuru, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 345 Limuru, Kiambu (CK) STH P. vulgaris F    − − − 
NAK 346 Limuru, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 347 Limuru, Kiambu (CK) STH P. vulgaris F   − − − − 
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NAK 348 Limuru, Kiambu (CK) STH P. vulgaris F  − − − − − 
NAK 349 Limuru, Kiambu (CK) STH P. vulgaris F       

NAK 350 Kiambu  (CK) STH P. vulgaris F    − − − 
NAK 351 Kiambu  (CK) STH P. vulgaris F      − 
NAK 352 Kiambu  (CK) STH P. vulgaris F   − − − − 
NAK 353 Kiambu  (CK) STH P. vulgaris F    − − − 
NAK 354 Kiambu  (CK) STH P. vulgaris F     − − 
NAK 355 Kiambu  (CK) STH P. vulgaris F   − − − − 
NAK 356 Ruaka, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 357 Ruaka, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 358 Ruaka, Kiambu (CK) STH P. vulgaris F       

NAK 359 Ruaka, Kiambu (CK) STH P. vulgaris F    − − − 
NAK 360 Ruaka, Kiambu (CK) STH P. vulgaris F    − − − 
NAK 361 Ruaka, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 362 Ruaka, Kiambu (CK) STH P. vulgaris F   − − − − 
NAK 363 Kinoru,Meru (CK) TH P. vulgaris F    − − − 
NAK 364 Kinoru,Meru (CK) TH P. vulgaris F   − − − − 
NAK 365 Kinoru,Meru (CK) TH P. vulgaris F   − − − − 
NAK 366 Kinoru,Meru (CK) TH P. vulgaris F   − − − − 
NAK 367 Kinoru,Meru (CK) TH P. vulgaris F    − − − 
NAK 368 Kinoru,Meru (CK) TH P. vulgaris F    − − − 
NAK 369 Kinoru,Meru (CK) TH P. vulgaris F    − − − 
NAK 370 Kinoru,Meru (CK) TH P. vulgaris F   − − − − 
NAK 371 Kinoru,Meru (CK) TH P. vulgaris F  − − − − − 
NAK 372 Kinoru,Meru (CK) TH P. vulgaris F   − − − − 
NAK 373 Kinoru,Meru (CK) TH P. vulgaris F   − − − − 
NAK 374 Kinoru,Meru (CK) TH P. vulgaris F   − − − − 
NAK 375 Kinoru,Meru (CK) TH P. vulgaris F    − − − 
NAK 376 Kinoru,Meru (CK) TH P. vulgaris F   − − − − 
NAK 377 Kinoru,Meru (CK) TH P. vulgaris F   − − − − 
NAK 378 Kinoru,Meru (CK) TH P. vulgaris F   − − − − 
NAK 379 Kinoru,Meru (CK) TH P. vulgaris F   − − − − 
NAK 380 Kinoru,Meru (CK) TH P. vulgaris F   − − − − 
NAK 381 Kinoru,Meru (CK) TH P. vulgaris F   − − − − 
NAK 382 Kinoru,Meru (CK) TH P. vulgaris F       

NAK 383 Kinoru,Meru (CK) TH P. vulgaris F   − − − − 
NAK 384 Kinoru,Meru (CK) TH P. vulgaris F      − 
NAK 385 Kinoru,Meru (CK) TH P. vulgaris F    − − − 
NAK 386 Kinoru,Meru (CK) TH P. vulgaris F   − − − − 
NAK 387 Kinoru,Meru (CK) TH P. vulgaris F       

NAK 403 Sidada, Siaya (WK) TM P. vulgaris F  − − − − − 
NAK 405 Sidada, Siaya (WK) TM P. vulgaris F  − − − − − 
NAK 407 Sidada, Siaya (WK) TM P. vulgaris F  − − − − − 
NAK 440 Sidada, Siaya (WK) TM P. vulgaris F  − − − − − 
NAK 441 Sidada, Siaya (WK) TM P. vulgaris F  − − − − − 
NAK 458 Sidada, Siaya (WK) TM P. vulgaris F  − −    

*Isolates from the N2Africa rhizobia collection; ‡locality, administrative county and generalised location within 

Kenya (CK: central Kenya, WK-western Kenya, and CST-coastal Kenya); †STH-subtropical highland, TH-tropical 

highland, TCP-tropical coastal plain, TM-tropical midland; ¥Trap host; #Growth rate on YMA/TY media: F (1-

4 d to appear) S (5-10 d to appear); $Authenticated as rhizobia on P. vulgaris;  done,  − not determined 
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2.3.2 Diversity of strains based on RP01-PCR 

One hundred and eighty three (183) of the 197 isolates were successfully typed by 

RP01-PCR. PCR reactions with 14 isolates did not result in products that could be 

analyzed further. The successful PCR amplifications generated 5-15 bands following 

electrophoresis (Figure 2.2), resulting in banding patterns that differed by strain. 

Similarities in banding patterns ranged from as low as 15% to as high as 98%. The 

duplicate reactions of NAK 73 had banding patterns with a similarity of 92%. Based on 

the similarity of banding patterns of the NAK 73 duplicates, and previously observed 

reproducibility of RP01-PCR and DNA fingerprints (Gevers et al., 2001; Richardson et 

al., 1995), strains showing greater than 80% banding pattern similarity were grouped 

together, resulting in 88 RP01-PCR groups (Figure 2.2). The high number of RP01-PCR 

groups was indicative of a large genetic diversity among the study strains.  

Additional analysis revealed that the similarity of strains by RP01-PCR was sometimes 

linked to their geographic origin. For example, 7 of 16 strains from Tigoni (Groups 21-

23) had RP01-PCR banding patterns with greater than 70% similarity, as had 10 of 25 

strains from Meru (Groups 69-70). Contrastingly, some RP01-PCR groups (≥70 

similarity) contained strains from diverse locations. For example, in RP01-PCR group 

50, NAK 103 isolated from Busia in western Kenya, had a banding profile with an over 

90% similarity to nine strains from Nairobi and Kiambu in central Kenya.  This finding 

indicated that in some instances, strains similar by RP01-PCR were localized to sampling 

regions, while in other instances similar strains were found in geographically disparate 

regions.  

2.3.3 Diversity of strains based on RFLP of PCR-amplified 16S rRNA  

At least 1,450 bp of 16S rRNA gene sequence was amplified for 85 strains 

representative of almost all RP01-PCR groups (Section 2.3.2). Digestion of the 85 

amplicons separately with MspІ, HaeІІІ, HinfІ and HhaІ and gel electrophoresis of the 

products resulted in 3-8 distinct banding patterns per restriction enzyme (Table 2.4).  

MspI had the greatest power to resolve differences in the 16S rRNA genes, giving eight 

different banding patterns (a-h). Digestion with HaeIII and HinfI resulted in 4 patterns 

(a-d) while HhaI gave 3 patterns (a-c). By combining the restriction patterns obtained 

with each of the four enzymes, the study strains generated nine PCR-RFLP groups 

designated 1-9 (Table 2.4).  
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A total of 55 strains, including the reference R. leguminosarum strain 8002, shared 

identical banding patterns for all four restriction enzymes and were grouped together 

(PCR-RFLP Group 1). Twenty strains belonged to PCR-RFLP Group 2 while four 

strains that included R. tropici CIAT 899 belonged to PCR-RFLP Group 3. Each of the 

remaining PCR-RFLP groups (4-9) had a single strain.  

Following the PCR-RFLP analysis, 18 strains were chosen for sequencing of near full-

length 16S rRNA genes. The choice of the strains was based on their representativeness 

of the PCR-RFLP groups, geographic origins and their perceived value in subsequent 

chapters on effectiveness and competition. The value was assessed using data from the 

visual assessment of the symbiotic performance of strains on P. vulgaris during 

authentication. 
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Figure 2.2:  Dendrogram generated after cluster analysis of the RP01-PCR fingerprints 

of isolates. The dendrogram was constructed using the UPGMA method using 

arithmetic averages with correlation levels expressed as percentage values of the Pearson 

correlation coefficient. *Duplicates of NAK 73 as a control. 
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Table 2.4: Groupings of rhizobia generated 
by RFLP analysis of 16S rRNA genes 

Strain‡ RP01 
group

† 
MspI Hha1 HinfI HaeIII 

RFLP 
16S 

rRNA 
group# 

8002 nd a a a a 1 

NAK 210 58 a a a a 1 

NAK 214 4 a a a a 1 

NAK 216 61 a a a a 1 

NAK 233 59 a a a a 1 

NAK 237 77 a a a a 1 

NAK 247 71 a a a a 1 

NAK 252 5 a a a a 1 

NAK 253 87 a a a a 1 

NAK 254 20 a a a a 1 

NAK 255 62 a a a a 1 

NAK 257 65 a a a a 1 

NAK 258 63 a a a a 1 

NAK 259 68 a a a a 1 

NAK 266 62 a a a a 1 

NAK 270 39 a a a a 1 

NAK 276 85 a a a a 1 

NAK 277 7 a a a a 1 

NAK 279 38 a a a a 1 

NAK 280 19 a a a a 1 

NAK 281 66 a a a a 1 

NAK 282 8 a a a a 1 

NAK 284 75 a a a a 1 

NAK 288 49 a a a a 1 

NAK 290 57 a a a a 1 

NAK 295 45 a a a a 1 

NAK 297 67 a a a a 1 

NAK 298 64 a a a a 1 

NAK 303 6 a a a a 1 

NAK 308 28 a a a a 1 

NAK 309 29 a a a a 1 

NAK 312 1 a a a a 1 

NAK 313 80 a a a a 1 

NAK 316 12 a a a a 1 

NAK 317 3 a a a a 1 

NAK 321 37 a a a a 1 

NAK 324 13 a a a a 1 

NAK 325 76 a a a a 1 

NAK 326 42 a a a a 1 

NAK 327 24 a a a a 1 

NAK 329 43 a a a a 1 

NAK 330 25 a a a a 1 

NAK 332 21 a a a a 1 

NAK 334 10 a a a a 1 

NAK 338 27 a a a a 1 

NAK 340 23 a a a a 1 

NAK 345 34 a a a a 1 

NAK 358 2 a a a a 1 

NAK 359 15 a a a a 1 

NAK 363 14 a a a a 1 

NAK 367 41 a a a a 1 

NAK 369 55 a a a a 1 

NAK 375 73 a a a a 1 

NAK 382 78 a a a a 1 

NAK 385 74 a a a a 1 

NAK 103 50 a a b b 2 

NAK 105 54 a a b b 2 

NAK 157 43 a a b b 2 

NAK 223 26 a a b b 2 

NAK 226 32 a a b b 2 

NAK 228 84 a a b b 2 

NAK 232 86 a a b b 2 

NAK 234 36 a a b b 2 

NAK 239 50 a a b b 2 

NAK 245 81 a a b b 2 

NAK 248 47 a a b b 2 

NAK 249 82 a a b b 2 

NAK 256 33 a a b b 2 

NAK 275 83 a a b b 2 

NAK 287 31 a a b b 2 

NAK 350 79 a a b b 2 

NAK 351 9 a a b b 2 

NAK 360 44 a a b b 2 

NAK 368 70 a a b b 2 

NAK 387 69 a a b b 2 

CIAT 899 nd c b a a 3 

NAK 120 88 c b a a 3 

NAK 349 17 c b a a 3 

NAK 104 16 c b a a 3 

NAK 294 51 b b b b 4 

NAK 353 52 d a a a 5 

NAK 384 53 e a b c 6 

NAK 75 46 f a b c 7 

NAK 354 35 g b c c 8 

NAK 111 18 h c d d 9 
‡Underlined strains were chosen for 16S rRNA gene 
sequencing in subsequent step. Reference strains R. 
leguminosarum strain 8002 and R. tropici strain CIAT 899 
are in bold  

†RP01 subgroup from Figure 2.2 

*Letters represent unique banding patterns on 1.5% 
agarose from digestion of 16S rRNA genes with the 
indicated endonucleases 

#16S rRNA groupings numbered 1-9 represent the 
combination of restriction patterns obtained with the 
four endonucleases  

nd- not determined 

 

 

 

16S restriction pattern* 
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2.3.4 Phylogeny of strains based on 16S rRNA gene 

A 1,292 bp alignment of sequenced 16S rRNA genes was analyzed and pairwise 

nucleotide identities within the 18 study strains ranged from 93.2% to 100%.  Pairwise 

nucleotide identities of the sequences to those of their closest type strains of described 

species (all in the genus Rhizobium) ranged between 99.5% and 100% (Appendix 1).  

A phylogeny based on the maximum likelihood algorithm placed the study strains into 

five clades (Figure 2.3). In clade A, five strains (NAK 210, NAK 266, NAK 312, NAK 

334 and NAK 358) had 100% nucleotide identity with the type strains of R. acidisoli, R. 

anhuiense, R. gallicum, R. laguerreae and R. sophorae. NAK 382 was also part of group A, 

sharing 99.7 to 99.9% sequence identity with members of this cluster. Due to the high 

sequence identities observed between the study strains and multiple described species, 

study strains in this clade could not be assigned to any of the species by 16S rRNA 

alone. 

Eight strains grouped into Clade B (NAK 287, NAK 239, NAK 103, NAK 245, NAK 

157, NAK 458, NAK 35 and NAK 387), clustering with type strains of five rhizobial 

species (R. phaseoli, R. fabae, R. pisi, R. etli and R. sophoriradicis). The pairwise nucleotide 

identities within this group ranged between 99.5% and 100%.  Minor sub-clades were 

observed, but these lineages were in most instances poorly supported by bootstrap 

values (<50%). Study strains falling into clade B could not be identified at the species 

level by 16S rRNA due to their high sequence identities to type strains of multiple 

species.  

NAK 120 and NAK 349 shared a 100% nucleotide identity with the type strains of R. 

jaguaris and R. paranaense forming clade C. This group was closely related to clade D, in 

which NAK 294 had a nucleotide sequence 100% identical to that of R. leucaenae USDA 

9039T. The 16S rRNA gene of NAK 294 also contained the 72 bp insertion found in the 

16S rRNA gene R. leucaenae USDA 9039T (Ribeiro et al., 2012). These sequences were 

however not part of the alignment used for the phylogenetic reconstruction as their 

removal had been necessitated by the need to trim sequences of test and type strains to 

an equal length following alignment.  NAK 384 was in clade E and was closely related 

to R. pusense. Study strains in clades C, D and E showed high sequence relatedness 

(>99.9%) to individual type strains of described rhizobial species, resulting in well 
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supported lineages (>70% bootstrap values). This suggested these strains could be 

identified at the species level by 16S rRNA alone. 

 

  

 

Figure 2.3: Maximum Likelihood phylogeny of the 16S rRNA gene showing the 
relationship between a subset of strains isolated in this study and their closest type 
strains. Accession numbers for type strain sequences are given after (T) denoting the 
type strains. There were a total of 1292 positions in the final dataset, and only node 
supports higher than 50% are labelled with a bootstrap value (500 replicates). The 
sequence of Bradyrhizobium japonicum USDA 6T was included as an out group. Bar 
indicates 1 nucleotide substitutions per 100 nucleotides. Evolutionary analyses were 
conducted in MEGA6 (Tamura et al., 2013).  
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2.3.5 Phylogeny of strains based on recA gene 

To further explore the phylogeny of the 18 strains analyzed by 16S rRNA (Section 

2.3.4), partial sequences of the recA gene (~500 bp) were obtained and aligned with recA 

sequences of the type strains of closely related rhizobial species following a BLAST 

search in GenBank. As the sequences of the type strains were considerably shorter than 

the sequences from this study, the final alignment was trimmed to 342 bp before 

analysis. The pairwise nucleotide identities within the study strains for this gene ranged 

from 82.4% to 100% while the pairwise nucleotide identities of the study strains to the 

sequences of their closest type strains of described species ranged between 93.6% and 

100% (Appendix 2).  

The phylogenetic analysis grouped the strains into seven clades (Figure 2.4). Clade A 

had a single strain, NAK 334, which had a 6.4% sequence divergence to the closest type 

strain and 5.4% divergence to the closest study strain.  Five strains (NAK 210, NAK 

266, NAK 312, NAK 358 and NAK 382) had nucleotide sequences that were 100% 

identical. These strains formed a well-supported monophyletic group (93% bootstrap 

value) that together with R. acidisoli FH13T, which had a 96.6% identical nucleotide 

sequence, made up clade B.  

Another five strains clustered with two type strains in two separate clades (C and D). 

The maximum sequence relatedness across members of the two clades was 95.6%.  In 

clade C, the nucleotide sequence of NAK 387 matched that of R. sophoriradicis CCBAU 

03470T 100% while in clade D, the sequences of NAK 458, NAK 103 and NAK 239 

were 100% identical to those of R. phaseoli ATCC 14482T. Also in this clade was NAK 

287, which had a 99.7% nucleotide sequence identity to the rest of the clade members.  

NAK 157 and NAK 245 had nucleotide sequence identities of 96.6% and 97.9% 

respectively to the type strain of R. etli in clade E.  

NAK 294 grouped with R. leucaenae USDA 9039T (97.9 % nucleotide identities) in one 

of the two subclades of clade F.  The second sub-clade contained NAK 349 and NAK 

120 that had 96.9% and 99.7% nucleotide identities to R. paranaense PRF 35, 

respectively. Members of the two sub-clades of F were separated from each other by a 

minimum of 4.1% sequence divergence. Clade G had NAK 384 grouping with R. pusense 

and R. radiobacter although sequences diverged by a minimum of 5.4%. 
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Overall, the recA sequence divergence of up to 17.6% among study strains and of up to 

6.4% between study strains and described species was considerably greater than the 

maximum of 0.5% seen with 16S rRNA genes thereby allowing a deeper phylogenetic 

branching with a greater power to resolve genetic relationships.  

 

Figure 2.4: Maximum Likelihood phylogeny of the recA gene showing the relationship 
between a subset of strains isolated in this study and their closest type strains. There 
were a total of 342 positions in the final dataset, and only node supports higher than 
50% are labelled with a bootstrap value (500 replicates). The sequence of Bradyrhizobium 
japonicum USDA 6T was included as an out group. Bar indicates 5 nucleotide 
substitutions per 100 nucleotides. Evolutionary analyses were conducted in MEGA6 
(Tamura et al., 2013). 
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2.3.6 Phylogeny based on nodC genes 

Partial nodC sequences were obtained from 15 of the 18 strains tested. No amplification 

was achieved with NAK 384, while poor quality sequence reads led to the omission of 

NAK 157 and NAK 351 sequences from the final analysis. The final alignment, 

following the addition of sequences from type strains and trimming to an equal length, 

was 489 bp.  The pairwise nucleotide identities within the study strains for this gene 

ranged from 48.2% to 100%. Except NAK 120, the nucleotide sequences of each study 

strain matched the sequence of at least one type strain by 100%. NAK 120 had a 

sequence divergent from that of any type strain by a minimum of 3.7% (Appendix 3). 

A phylogenetic analysis grouped the study strains into five clades (Figure 2.5). The 

corresponding nodC types were designated with Greek symbols (γ-a, γ-b, α, λ-a, λ-b) in 

line with previous reports (Aguilar et al., 2004; Rouhrazi et al., 2016). The strains NAK 

312, NAK 334, NAK 266, NAK 245 and NAK 358 had nucleotide sequences that were 

100% identical to the sequence of R. vallis CCBAU 65647T and were in clade I  (γ-a). 

Sequences of NAK 210, NAK 382 and NAK 387 were similarly 100% identical to those 

of R. sophoriradicis CCBAU 03470T in clade II (γ-b).  A 2.5% sequence divergence was 

seen between the two clades. However, the type strains of R. sophorae and R. acidisoli 

were positioned between the two clades and diverged from members of either clade by 

only 1.2% to 1.7%.  

Four strains, NAK 103, NAK 239, NAK 287 and NAK 458 shared a 100% sequence 

identity with R. etli CFN 42T and R. phaseoli ATCC 14482T and formed clade III (α). 

Members of clade III were separated from those in clade II and clade I by a 3.5% and 

3.9% sequence divergence, respectively.  

NAK 120 was on an isolated, well supported (100% bootstrap) lineage in clade IV and 

the corresponding nodC type was designated λ-a. The sequence identity between NAK 

120 and that of the closest type strains (of R. tropici and R. leucaenae) was 96.3% (3.7% 

divergence). Within clade V were NAK 294 and NAK 349. These two strains had 

nucleotide sequences that were 100% identical to those of R. tropici CIAT 899Tand R. 

leucaenae HBR12Tand 99.6% identical to R. lusitanum P1-7T and their nodC was designated 

λ-b. 
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Figure 2.5: Maximum Likelihood phylogeny of the nodC gene showing the relationship 
between a subset of strains isolated in this study and their closest type strains. There 
were a total of 489 positions in the final dataset, and only node supports higher than 
50% are labelled with a bootstrap value (500 replicates). The sequence of Bradyrhizobium 
japonicum USDA 6T was included as an out group. Bar indicates 2 nucleotide 
substitutions per 100 nucleotides. Evolutionary analyses were conducted in MEGA6 
(Tamura et al., 2013). Four different nodC types are labelled I-IV. 
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2.4 Discussion 

2.4.1 Diverse rhizobia nodulate P. vulgaris in Kenya 

In a four-tiered reductionist approach, the genetic diversity of rhizobia collected was 

first assessed by DNA fingerprinting through RP01-PCR, revealing a large genetic 

diversity at the strain level. DNA fingerprinting by RP01-PCR has power for strain level 

discrimination (Collins et al., 2002; Denton et al., 2002; Thies et al., 2001) and strains 

showing greater than 80% similarity were regarded as clones for purposes of further 

analysis. An 80% cut-off was set conservatively below (a) the reported relatedness of 

banding patterns of clonal strains with common DNA fingerprinting techniques 

(Gevers et al., 2001) and (b) the 92% similarity of the banding profiles of duplicated 

NAK 73 RP01-PCR reactions in this study. Even with the use of the conservative 80% 

similarity cutoff to group strains, 88 RP01-PCR groups were obtained from 197 strains 

(Figure 2.2), indicating substantial genetic diversity among the strains. 

The second major finding was that at least five current rhizobial species that can 

nodulate P. vulgaris occupy Kenyan soils. These are R. sophoriradicis, R. phaseoli, R. 

leucaenae, R. paranaense and R. etli. Strains were identified at the species level through the 

analyses of 16S rRNA and recA gene sequences following a preliminary estimation of 

the phylogeny of the rhizobial strains using PCR-RFLP analysis of 16S rRNA genes.  

An initial analysis of the relatedness of strains using RFLP of PCR-amplified 16 S rRNA 

genes has previously been used to analyze diversity in large rhizobia collections 

(Cardoso et al., 2012; Laguerre et al., 1996; Mnasri et al., 2007; Rouhrazi et al., 2016). 

The preliminary RFLP analysis in this study grouped 85 strains into nine groups (Table 

2.4) and based on the representativeness of PCR-RFLP groups and sampling locations, 

18 strains were selected for sequencing of the 16S rRNA and recA genes. 

Phylogenetic reconstruction based on the 16S rRNA genes revealed that the majority of 

the sequenced study strains grouped with described species closely related to R. 

leguminosarum and R. etli (Clade A and B respectively in Figure 2.3), hereafter referred to 

as R. leguminosarum and R. etli lineages. The 16S rRNA genes of described species in the 

R. leguminosarum and R. etli lineages are highly conserved due to recent speciation 

(Lopez-Guerrero et al., 2012). For example, within the R. leguminosarum lineage, the type 

strains of R. acidisoli, R. anhuiense, R. gallicum, R. laguerreae and R. sophorae have 16S rRNA 

genes that are 100% identical (Aserse et al., 2012; Jiao et al., 2015; Ribeiro et al., 2015). 
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Consequently, the study strains clustering with members of either of the two lineages 

could not be identified based on the 16S rRNA genes. However, NAK 349, NAK 120 

and NAK 294 (Clade C and D on Figure 2.3) were in the “R. tropici lineage” which 

displayed a well-supported phylogenetic branching. Consequently, NAK 349 and NAK 

120 were identified as R. paranaense while NAK 294 was identified as belonging to R. 

leucaenae. NAK 384 (Clade E on Figure 2.3) was identified as belonging to R. pusense, a 

species originally described from the rhizosphere of chickpea (Panday et al., 2011). 

However, nodC was not successfully amplified from NAK 384 and further studies are 

needed to ascertain the strain’s ability to nodulate P. vulgaris. 

The phylogeny based on recA clarified the status of some of the study strains that could 

not be resolved by 16S rRNA genes. recA has previously, individually or in 

concatenation with other housekeeping genes, been used to produce robust 

phylogenetic trees that complement 16S rRNA phylogenies in rhizobia systematics 

(Aserse et al., 2012; Dall’Agnol et al., 2014; Gaunt et al., 2001; Martens et al., 2007). In 

the current study, 16S rRNA and recA sequences were found to be statistically 

incongruent (P<0.05). However, large sections of the resulting phylogenetic trees were 

found to have similar topologies (Figure 2.3 and Figure 2.4), indicating that only a few 

taxa were responsible for the incongruence. Greater sequence divergence of the recA 

genes allowed the identification of all strains falling within the R. etli lineage, except 

NAK 351. NAK 103, NAK 239 and NAK 287 belonged to R. phaseoli, NAK 387 to R. 

sophoriradicis, while NAK 157 and NAK 245 to R. etli. NAK 351 did not group 

consistently with the same strains on the two phylogenetic trees, and its taxonomic 

position was not apparent.  

The analyses of the recA sequences of the strains falling within the R. leguminosarum 

lineage revealed that the recA sequences were highly divergent from those of any 

currently described rhizobial species. NAK 210, NAK 266, NAK 312, NAK 358 and 

NAK 382 had 100% identical recA nucleotide sequences amongst themselves but 

showed a maximum of 96.6% similarity in recA sequences to the type strain of any 

described species. The recA gene in NAK 334 had a 94.6% sequence similarity to the 

corresponding genes in the five strains above and a maximum of 93.6% similarity to the 

closest described species (R. acidisoli).  

Given the divergent recA sequences of NAK 210, NAK 266, NAK 312, NAK 358 and 

NAK 382, it is likely that they belong to novel species. The minimum sequence 



 Chapter 2 

60 
 

divergence between NAK 334 to that of a type strain of described rhizobial species was 

6.4%, while the lowest divergence between NAK 210, NAK 266, NAK 312, NAK 358 

and NAK 382 and a type strain was 3.4%. Of the currently described species in the 

genus Rhizobium, recA sequence divergence between species is as low as 2.7% (Appendix 

2). Examples of recA sequence divergence between type strains of described species 

include: 2.7% between R. fabae and R. pisi; 2.8% between R. sophorae and R. leguminosarum; 

2.8% between R. gallicum and R. mongolense; 3.4% between R. gallicum and R. azibense; 

3.7% between R. freirei and R. hainanense; and 3.7% between R. leguminosarum and R. 

laguerreae (Appendix 2). Although the sequencing of more housekeeping genes is 

required to fully confirm the taxonomy of NAK 334, NAK 210, NAK 266, NAK 312, 

NAK 358 and NAK 382, their high recA sequence divergence from type strains of 

described species suggests they likely belong to two novel rhizobial species in the genus 

Rhizobium.  

Profoundly, approximately 65% of the strains analyzed in this study might belong to 

putative novel taxa. All six strains likely to be of novel taxa belonged to PCR-RFLP 

group 1 as were 65% of the study strains (Table 2.4). Although the six strains were 

isolated from 6 separate sites in Nairobi, Kiambu and Meru (Table 2.3 and 2.4), the 

members of the wider PCR-RFLP group 1 were the predominant isolates from all 

sampling areas. By a similar analysis, 24% of the strains in this study belonged to species 

affiliated to the R. etli lineage, with R. phaseoli, R. sophoriradicis, and R. etli isolated. 

Sporadic P. vulgaris nodulators belonged to R. paranaense and R. leucaenae. An even greater 

diversity may exist in the rhizobial collection considering the conservative 80% cutoff 

used with RP01-PCR profiles and the insensitivity of the PCR-RFLP procedure. The 

two methods were utilized for the preliminary grouping of isolates.  

The findings on the taxonomy of the rhizobia were largely in agreement with those of 

Anyango et al. (1995) who isolated strains resembling  R. etli, R. leguminosarum and R. 

tropici from two locations in Kenya. Strains belonging to R. etli were isolated in this 

study. Although no R. leguminosarum or R. tropici were isolated in the current study, 

related species were recovered.  For example, R. paranaense and R. leucaenae, closely 

related to R. tropici, were in this study found to nodulate P. vulgaris in Kenya. R. leucaenae 

and R. paranaense were until 2012 and 2014, respectively, classified as R. tropici 

(Dall’Agnol et al., 2014; Ribeiro et al., 2012). Additionally, a significant number of 

strains found to belong to putative new taxa were within the R. leguminosarum lineage 
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(Figure 2.3), and these may relate to the R. leguminosarum found nodulating P. vulgaris in 

Kenya by Anyango et al. (1995). Thus the current study updates the knowledge on 

rhizobia that nodulate P. vulgaris in Kenyan soils. It reports that strains potentially 

belonging to new taxa are major nodulators of P. vulgaris in Kenyan soils and that at least 

five species of Rhizobium also nodulate P. vulgaris in Kenya.  

2.4.2 Rhizobia symbiovars nodulating P. vulgaris in Kenya 

The analysis of the nodC genes revealed that the study strains were polymorphic for the 

gene, with four nodC types observed (Figure 2.5). The nodC gene is used to assign 

rhizobia to symbiovars (sv.) (Faghire et al., 2012; Rogel et al., 2011; Rouhrazi et al., 

2016) and nodC types γ-a, γ-b and α placed strains in the sv. phaseoli while type λ-a and 

λ-b corresponded with sv. tropici (Figure 2.5). None of the study strains had nodC genes 

corresponding to sv. gallicum or sv. giardnii as has been reported elsewhere in strains 

from P. vulgaris in Ethiopia, France and Morocco (Armager et al., 1997; Aserse et al., 

2012; Faghire et al., 2012).  

The three alleles of the symbiovar phaseoli nodC seen in this study (γ-a, γ-b and α) have 

a wide global distribution among rhizobia nodulating P. vulgaris (Aguilar et al., 2004; 

Rouhrazi et al., 2016). For example, R. vallis CCBAU 65647T isolated from China (Wang 

et al., 2011) has a nodC type γ-a, R. sophoriradicis from China (Jiao et al., 2015) has type γ-

b,  while type α sequences have been reported in strains from Mexico (Aguilar et al., 

2004).  

NAK 120 had nodC type λ-a, which was different (3.7% sequence divergence) (Figure 

2.5; Appendix 3) from known strains in sv. tropici (Ormen  o-Orrillo et al., 2012). NAK 

294 and NAK 349 had nodC of type λ-b as did R. tropici CIAT 899T isolated from 

Colombia (Martinez-Romero et al., 1991) and R. leucaenae HBR12 from Ethiopia (Aserse 

et al., 2012).  

The nodC polymorphism among the strains has important implications on their host 

range. NodC proteins are determinants of chain lengths of lipo-chitoligosaccharides 

(LCOs) produced by rhizobia in response to flavonoids (Kamst et al., 1997). The length 

of the LCO significantly affects the structure of the LCO and hence its recognition by 

plant receptors and therefore host range (Oldroyd & Downie, 2008; Perret et al., 2000).  
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While it has been demonstrated that symbiovars are related to the host range (Rogel et 

al., 2011), differences in host range also exist within symbiovars.  For example, R. 

phaseoli ATCC 14482T nodulates Trifolium repens in addition to P. vulgaris (Ramirez-Bahena 

et al., 2008) while R. vallis CCBAU 65647T and R. sophoriradicis CCBAU 03470T nodulate 

P. vulgaris but not Trifolium repens (Jiao et al., 2015; Wang et al., 2011). The three strains 

are sv. phaseoli but show divergence in their nodC (α, γ-a, γ-b in corresponding order). 

In another report, R. etli CE3 nodulated Lotus japonicus while R. etli KIM5s did not 

(Pacios-Bras et al., 2002) in spite of both belonging to sv. phaseoli.  A reasonable 

speculation is, therefore, that the various nodC types within sv. phaseoli seen in the 

current study are linked to the host range of the strains, allowing some of the strains to 

associate with alternative hosts in the absence of P. vulgaris. 

Alternatively, the heterogeneity in nodC may relate to the P. vulgaris cultivars grown in 

Kenya. P. vulgaris of Mesoamerican origin has been reported to preferentially nodulate 

with strains carrying nodC type α in comparison to other nodC types (Aguilar et al., 2004). 

Kenyan farmers grow a mix of P. vulgaris from different centers of origin (Asfaw et al., 

2009) and as no attempt was made during nodule sampling to identify cultivars, the 

effect of cultivars on the prevalence of nodC types will need to be explored in future 

studies. Members of the putative novel taxa nodulating P. vulgaris in Kenya had either 

nodC type γ-a or γ-b and these are likely the primary nodC types of rhizobia that nodulate 

P. vulgaris in the agro-ecological zones covered in the study. Strains belonging to species 

in the R. etli lineage had nodC type α apart from NAK 245 that had nodC type γ-a. Inter 

taxa similarity of nodC types is suggestive of lateral transfer of these genes between 

members of different taxa nodulating P. vulgaris in Kenya.  

2.4.3 Concluding remarks 

Kenyan soils surveyed harboured at least five current Rhizobium spp. that can nodulate 

P. vulgaris. In Central Kenya, the major group of strains nodulating P. vulgaris likely 

belong to putative novel species.  Heterogeneity was seen in the nodC genes of the 

strains, and this might have important implications for the host range, survival and 

dominance of the strains. Additionally, this study demonstrated that rhizobia that 

associate with P. vulgaris in the centres of origin were present in Kenyan soils although 

only as minor nodulators. Approximately 65% of the bean symbionts recovered were 

genetically different by recA from any described species but, interestingly, were found to 

carry nodulation genes reported in rhizobia from other parts of the world. The results 
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presented here enhance existing knowledge on the distribution of P. vulgaris rhizobia and 

the prevalence of particular nodulation genes around the world.  

The strains described in this chapter have not been vigorously tested for their capacity 

to fix N2 and the next important step is to assess them for N2 fixation.  Some of the 

strains may form highly effective symbiosis with P. vulgaris and therefore be ideal 

inoculant strains for P. vulgaris in Kenya, due to a pre-adaption to Kenyan soil 

conditions.   
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3.1 Introduction 

Rhizobial strains differ in their ability to fix N2 (Section 1.2.3.1). Strains that fix large 

amounts of N can be applied as inoculants to increase the yield of host legumes, and, 

potentially, successive crops (Hungria et al., 2006; Peoples et al., 2009). However, 

inoculation of legumes does not guarantee yield gains and to increase benefits from 

inoculation, the inoculant strains need to be highly effective at N2 fixation with the host, 

well-adapted to the edaphic conditions in the area of introduction and competitive for 

nodulation of legume against indigenous rhizobial strains (Gerding et al., 2014).  

In Kenya, inoculation of P. vulgaris often does not result in any improvements in yields 

(Musandu & Ogendo, 2001; van der Bom, 2012). Many factors lead to the low success 

rate but a major one is the use of inoculant strains that do not meet the criteria of a 

good inoculant strain: effective, adapted and competitive. The main strain used for P. 

vulgaris inoculation in Kenya, R. tropici CIAT 899, is effective on Kenyan cultivars 

(Anyango et al., 1995; Kawaka et al., 2014) but is sometimes poorly adapted to the 

edaphic conditions in parts of the country. For example, CIAT 899 being an acid 

tolerant strain, has been shown to perform poorly in alkaline soils due to low 

adaptability  (Anyango et al., 1998). In such soils, effective indigenous strains might be 

better suited as inoculants due to their greater adaptability to the soil conditions 

(Howieson & Ballard, 2004; Hungria et al., 2000). To identify potential inoculant strains 

for P. vulgaris from among strains indigenous to Kenyan soils that are pre-adapted to 

Kenyan soils, I assessed the effectiveness of strains from Chapter 2 on P. vulgaris in 

controlled glasshouse conditions. The effectiveness of strains was assessed through the 

comparison of shoot dry weights, N content and nodule scores of inoculated plants 

with those of the CIAT 899 treatment. 

Leveraging on the effectiveness gradient present in the rhizobial collection, I also 

investigated the relationship between poly-β-hydroxybutyrate (PHB) accumulation in 

bacteroids, nodC alleles and strain effectiveness. In P. vulgaris symbiosis, the effect of 

poly-β-hydroxybutyrate (PHB) accumulation in bacteroids on N2-fixation remains 

unclear.  Previous studies using loss-of-function mutants unable to synthesize PHB 

have failed to elucidate the role of PHB in strain effectiveness (Cevallos et al., 1996; 

Lodwig et al., 2005) possibly due to the pleiotropic nature of PHB genes. PHB mutants 

are also defective in EPS production (Aneja et al., 2004; Trainer, 2009) and utilisation of 

various carbon sources (Cai et al., 2000; Cevallos et al., 1996; Lodwig et al., 2005), 
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characteristics that can alter symbiotic outcomes, independent of PHB accumulation. As 

an alternative to the use of mutants, I took advantage of the variability in N2 fixation by 

strains (isolated in Chapter 2) to explore the association between strain effectiveness and 

PHB accumulation. To do this, PHB accumulation of variably effective strains was 

scored from electron micrographs and correlated with effectiveness.  

Strains isolated from P. vulgaris in Kenya harboured at least five alleles of nodC that 

classified the strains into symbiovars phaseoli and tropici (Section 2.3.6). NodC is a 

determinant of host range in rhizobia (Perret et al., 2000) but it is not known if it is an 

indicator of strain effectiveness. To explore the relationship between nodC allele and 

effectiveness, I analysed the differences in effectiveness of strains with the various nodC 

alleles (Section 2.3.6).   

Lastly, I investigated the effectiveness of the P. vulgaris symbiosis. Strains evaluated for 

N2 fixation on legumes are identified as effective (or not) based on their performance 

against each other, a known reference strain, a N-free treatment, or against N-fed 

controls supplied with arbitrary amounts of N. As these approaches do not take into 

account the N requirements of the leguminous host, an “effective” strain may still not 

fix sufficient amounts of N to meet the N needs of the host. The ability of N2 fixation, 

by rhizobia, to meet the N demands of P. vulgaris under controlled conditions is unclear. 

Consequently, I assessed the ability of an “effective” strain to meet the N requirements 

of P. vulgaris. The dry matter yield and N content of plants inoculated with the best 

strain from those tested was compared to that of plants receiving incremental amounts 

of mineral N to give an indication of the limits of N2 fixation in P. vulgaris.  
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3.2 Materials and Methods 

3.2.1 Bacterial strains and P. vulgaris cultivar  

The studies in this chapter used a total of 54 rhizobial strains (Table 3.1). Fifty two of 

these represented the range of genetic diversity and geographical origin of the 197 

strains isolated from Kenyan soils in Chapter 2 (Section 2.3.1), while two were reference 

strains. The reference strains were R. tropici CIAT 899, the leading commercial inoculant 

strain for P. vulgaris in Kenya, and R. leguminosarum 8002, a well-studied P. vulgaris strain. 

P. vulgaris cv. KK08, a determinately growing cultivar, was obtained from Fred Baijukya 

(N2Africa Project) and used as a host.  

Table 3.1: A list of rhizobial strains used in this chapter  

Kenyan strains* Reference 

NAK 69, NAK 75, NAK 91, NAK 103, NAK 104, NAK 105, 

NAK 111, NAK 120, NAK 157, NAK 210, NAK 214, NAK 220, 

NAK 223, NAK 227, NAK 231, NAK 239, NAK 242, NAK 245, 

NAK 254, NAK 266, NAK 270, NAK 284, NAK 287, NAK 288, 

NAK 294, NAK 295, NAK 299, NAK 303, NAK 312, NAK 315, 

NAK 321, NAK 327, NAK 332, NAK 334, NAK 343, NAK 349, 

NAK 351, NAK 353, NAK 354, NAK 358, NAK 363, NAK 367, 

NAK 368, NAK 378, NAK 382, NAK 387, NAK 403, NAK 405, 

NAK 407, NAK 440, NAK 441, NAK 458 

This study 

Reference strains  

R. tropici CIAT 899 Martinez-Romero et al. (1991) 

R. leguminosarum 8002 Johnston et al. (1982) 

*More details in Table 2.3 

3.2.2 Assessment of N2 fixation  

Experiments to assess the effectiveness of strains were conducted in axenic vermiculite 

as described in Section 2.2.2, during the months of October to March in Perth, Western 

Australia. The study strains (Table 3.1) were assessed for N2 fixation on P. vulgaris cv. 

KK08 in four batches. Each batch included a CIAT 899 and an un-inoculated, N-free 

treatment. The fourth batch re-evaluated 11 strains that represented the range of N2 

fixation observed in the initial three batches. Treatments in batches 1-3 were replicated 

in three pots, while those in batch 4 were replicated in five pots. Each pot contained 

three plants that were thinned to two plants 7 d after inoculation. Plants were harvested 
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42 d after inoculation, shoots excised and dried for 48 h at 60°C then weighed. At the 

time of shoot excision, roots were removed from pots and carefully washed free of 

adhering vermiculite and scored for nodulation using a nodulation score developed in 

preliminary experiments used to optimise glasshouse growth conditions for P. vulgaris 

(Appendix 4). For plants from the fourth batch, the percentage N in dry shoots was 

assessed as additional indicator of N2 fixation. Dried shoots were pooled into two 

replicates, ground, and percentage N determined on a Leco F528 Nitrogen Analyzer at 

CSBP Soil and Plant Laboratory (Perth, Australia).  

For data analysis, shoot dry weights (SDW) of inoculated plants were expressed as a 

percentage of the mean weight of the CIAT 899 treatment in their respective batch 

experiment and the resulting data compared across batches. Strains inducing weights 

≥80%, 79%-50% 49-20% and <20% of CIAT 899 were as classified effective, partially 

effective, poorly effective and ineffective respectively. An analysis of variance 

(ANOVA) and Fisher’s LSD (Section 3.2.5) was used to further compare strain 

effectiveness. Similarly, ANOVA and a post hoc test were used to compare percentage 

N in dry shoots from batch 4. Linear and nonlinear regression models were used to 

explore relationships between percentage N and SDW; total shoot N and SDW; and 

nodule scores and SDW.  

3.2.3 Light and electron microscopy of nodules from variably effective 

strains 

Light and electron microscopy was used to explore the anatomy of nodules from 

variably effective strains, and to quantify poly-β-hydroxybutyrate (PHB) accumulation in 

bacteroids of variably effective strains. To do this, representative nodules were selected 

from effective, partially effective, poorly effective and ineffective symbioses (Section 

3.2.2) and light and electron microscope sections prepared as described by Spurr (1969) 

and Venable and Coggeshall (1965). Nodules were fixed overnight at 4°C in 3% (v/v) 

glutaraldehyde in 25 mM phosphate buffer (pH 7.0) before washing with a phosphate 

buffer and dehydration in a series of acetone solutions. Electron microscope material 

was post-fixed in 1% osmium tetroxide in 25 mM phosphate buffer (pH 7.0) for 2 h at 

room temperature before dehydration. Nodules were infiltrated with Spurr’s epoxy resin 

and for light microscopy sectioned into 1-2 µM slices using a glass knife and sections 

stained with 1% (w/v) methylene blue and 1% (w/v) azurr II. Electron microscope 

sections were cut at approximately 90 nm, mounted on copper grids before double 
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staining in aqueous uranyl acetate and lead acetate.  Light microscope examination was 

under an Olympus BX51 photomicroscope and photographs taken with an Olympus 

DP-70 camera while electron microscopy was on a Phillips CM100 Bio Twin 

Transmission Electron Microscope.  

Five bacteroids were chosen from representative electron micrographs of each strain 

and used to estimate the amount of PHB accumulated in each bacteroid by the 

‘counting squares method’. To do this, a square grid was created over an electron 

micrograph and the proportion (of total) of squares covering sections with PHB in each 

bacteroid determined. For squares partially overlaying areas with PHB, squares with 

PHB greater than half of the square area were counted as whole while those with less 

than half were ignored. The resulting data were then analysed by ANOVA and Tukey 

HSD (Section 3.2.5), and PHB accumulation compared with effectiveness.  

3.2.4 Comparing the growth of inoculated P. vulgaris cv. KK08 to that 

supplied with mineral N  

The growth response of P. vulgaris cv. KK08 was assessed using the vermiculite system 

(Section 2.2.2) across a range of N-feed rates given as 0, 16.8, 33.6, 67.2, 100.8, 134.5, 

168.1, 201.7 and 235.3 mg of N as NH4NO3 pot-1 week-1. In addition to the nine N 

treatments, one treatment was inoculated with CIAT 899 at sowing. All treatments 

received 100 mL of 10 mM NH4NO3 as starter N 3 d after planting. Mineral N 

treatments were commenced 10 d after planting. A 1 M solution of NH4NO3 was 

prepared and aliquots applied twice a week together with other nutrients to achieve the 

desired N application rate. All treatments were replicated four times in pots containing 

three plants, later thinned to two. Plants were harvested 35 d post-planting and shoots 

were dried and weighed before determination of the N content. All other experimental 

procedures were as described in Section 2.2.2 and 3.2.2.  

3.2.5 Data analysis 

Where applicable, data were subjected to an analysis of variance (ANOVA) using SPSS 

version 22 (IBM Corp, released 2013). ANOVA was preceded by a test for normality 

and equal variances (Levene’s test). Fisher’s LSD was then used when ANOVA was 

found to be significant.  
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3.3 Results 

3.3.1 Biomass and N accumulation in shoots of inoculated plants  

The N2 fixation effectiveness of 54 strains (including CIAT 899 and 8002) was assessed 

on P. vulgaris cv. KK08 by a combination of visual observation of plant vigour and leaf 

colour, assessment of nodulation, and an analysis of shoot dry weights. Un-inoculated 

plants were visibly chlorotic and lacked nodules, while inoculated plants were of variable 

leaf colour and vigour, and were nodulated (Figure 3.1).   

 

Figure 3.1: A, P. vulgaris cv. KK08 plants in the glasshouse showing differences in growth 

vigour and leaf colour, following inoculation with different rhizobial strains. B, a nodulated P. 

vulgaris root system. 

Shoot weights were expressed as a percentage of the weight of the CIAT 899 treatment 

in their respective batch experiment (Figure 3.2) to allow comparisons.  CIAT 899 

treatments had the highest mean shoot biomass accumulation, but post hoc 

comparisons using Fisher’s LSD indicated 11 strains isolated from Kenya (NAK 407, 

NAK 458, NAK 354, NAK 327, NAK 227, NAK 214, NAK 104, NAK 288, NAK 

239, NAK 157 and NAK 299) induced biomass comparable to CIAT 899 (P>0.05). 

Five strains (NAK 210, NAK 75, NAK 351, NAK 223 and NAK 69) did not result in 

dry matter yield greater than that of the un-inoculated control (LSD, P>0.05), although 

they induced nodules. There was a 12.5-fold difference in shoot dry matter between the 

A B
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most effective symbiosis (CIAT 899) and the least (NAK 210), indicating a considerable 

variability in the effectiveness of the strains.  

Strains were grouped into three effectiveness levels based on plant dry weights. Strains 

inducing weights ≥80%, 79%-50% 49-20% and <20% of CIAT 899 were classified 

effective, partially effective, poorly effective and ineffective respectively (Figure 3.2). 

Twelve strains, including CIAT 899, were selected representing the range of 

effectiveness observed and in a subsequent experiment, tested for N accumulation in 

the shoots. Effective strains in this subset were CIAT 899, NAK 458, NAK 239, NAK 

103 and NAK 287. Strains NAK 294, 8002, NAK 245, and NAK 334 were partially 

effective, NAK 312 and NAK 120 were poorly effective, while NAK 210 was 

ineffective. The lowest N concentration among the inoculated, of 3.17%, was found in 

the shoots of plants inoculated with NAK 210 while the highest N concentration, 4.5%, 

was from inoculation with NAK 120 (Figure 3.3).  

Plotting shoot N concentration against shoot dry weight of treatments revealed that 

shoot dry weight increased with increase in shoot N concentration until an apparent 

optimum of between 3.7%-4.1% nitrogen was reached (Figure 3.3). Two treatments, 

NAK 334 and NAK 120, displayed N concentrations higher than this optimum coupled 

with substantially reduced dry matter. A non-linear regression function provided the 

best fit for the dataset (R2=0.743) (Figure 3.3). As an example to illustrate the non-

linearity of SDW vs. %N, CIAT 899 induced the greatest biomass accumulation but 

shoots contained only 3.73% nitrogen. On the other hand, plants inoculated with NAK 

120 accumulated 42% of shoot matter accumulated by CIAT 899 plants but their N 

concentration was significantly higher at 4.5% (LSD, P<0.05).   
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Figure 3.2: Mean shoot dry weights of P. vulgaris cv. KK08 inoculated with 54 different rhizobia strains expressed as a percentage of CIAT 899 treatment. 

LSD (p<0.05)

Partially effective

Ineffective

Effective

Poorly effective
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Figure 3.3: Plot of nitrogen concentration (%N) and shoot dry weight (SDW) of inoculated P. 

vulgaris cv. KK08 plants fitted using a nonlinear regression model (solid line). R2=0.743. Data 

points are means of six SDW and two % N measurements.  

 

Total N in shoots was greatest in plants inoculated with NAK 458 (123.22 mg) although 

the amount was not statistically different (P>0.05) from that in CIAT 899-inoculated 

plants. Shoots of plants inoculated with NAK 210 plants accumulated the least amount 

of N (7.61 mg). Unlike N concentration, total shoot N was positively and linearly 

correlated with shoot dry weight (R2=0.976) (Figure 3.4).  
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Figure 3.4:  Plot of total shoot nitrogen (%N × SDW) and shoot dry weight (SDW) of 

inoculated P. vulgaris cv. KK08 plants fitted using a linear regression model (solid line). 

R2=0.976.  Data points are means.  

 

3.3.2 Nodulation in P. vulgaris  

Four main types of nodules were observed following the inoculation of plants with the 

different strains (Figure 3.5): pink nodules that varied in size from greater than 4 mm to 

less than  2 mm; white nodules, typically less than 2 mm in size; green nodules; and 

atypical nodules, such as those with extensive lenticels or tapered in shape.   

NAK 210

NAK 120

NAK 312

NAK 334

NAK 245

8002

NAK 294

NAK 287 NAK 103

NAK 239

CIAT 899
NAK 458



 Chapter 3 

 

75 
 

 

Figure 3.5: P. vulgaris root nodules. A: typical fixing desmodioid P. vulgaris nodule (from 

inoculation with CIAT 899). This was the most commonly observed type, and nodules 

exhibited the characteristic pink hue of fixing nodules and varied in number and size 

(range given in Appendix 4). Lenticels (marked L) are visible on the outer surface. B: 

nodules formed by NAK 287 showing a more extensive lenticel development. C: 

senescing nodule following inoculation with CIAT 899. The pink hue is replaced by a 

bright green pigment. D: partially effective nodules formed by NAK 210. Nodules are 

small, approximately 1 mm in diameter and the pink hue is not apparent. E: nodule with 

a distinctively smooth surface and lacking lenticels resulting from inoculation with NAK 

120. The nodule is tapered with a growing tip. F: hand section of the nodule in E. The 

interior contains a tri-lobed infected zone (arrows). The lobe towards the tapered end is 

less developed. Bar is 500 m.  
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The nodulation patterns, in general, differed in four ways: in nodule colour, nodule size, 

nodule number, and nodule distribution on the root system. These factors had 

significant interactions. For example, large (>4mm) pink nodules tended to be fewer 

(<100), and in the case of CIAT 899, were mostly in the crown of the root. On the 

other hand, NAK 210 formed numerous (>200) tiny (<1mm) white nodules on the 

laterals.   

Nodulation was assessed using the four the 4-point scale developed in a preliminary 

experiment (Appendix 4) and nodulation was found to be positively correlated with 

plant shoot dry weight (R2 of 0.87). 

3.3.3 Anatomy of nodules formed by variably effective strains 

Nodules from P. vulgaris inoculated separately with seven effective strains (CIAT 899, 

NAK 104, NAK 288, NAK 239, NAK 157, NAK 220, NAK 287), five partially 

effective strains (NAK 294, 8002, NAK 245, NAK 387, NAK 315, NAK 334), one 

poorly effective strain (NAK 312) and one ineffective strain (NAK 210) were sectioned 

and examined under a light microscope (Figure 3.6).  

Nodules examined had similar internal organization consisting of a kidney-shaped 

central tissue surrounded by peripheral tissues. Peripheral tissues, from the outside to 

the inside included lenticels, outer cortex, endodermis and inner cortex (parenchyma) 

containing vascular bundles. The central region in all nodules contained a mixture of 

infected and uninfected host cells with variations in the relative abundance of each type. 

Nodules formed by effective strains had a higher proportion of cells in the central zone 

infected when compared to uninfected (Figure 3.6). On the other hand, nodules formed 

by ineffective strains had infected cells interspaced with a high proportion of uninfected 

cells (Figure 3.6). Additionally, nodules formed by ineffective strains sometimes had 

small central infection zones when considered as fractions of the entire nodule (Figure 

3.6). Nodules formed by partially effective strains were not always readily distinguishable 

from those by effective strains based on the proportion of infected to uninfected cells 

(Figure 3.6B vs 3.6C).   
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Figure 3.6: Light micrographs of root nodules (traverse to the primary root axis) from 

inoculation of P. vulgaris cv. KK08 with 6 different strains. A: NAK 239 (effective). B: 

NAK 157(effective). C: NAK 245 (partially effective). D: NAK 334 (partially effective). 

E: NAK 312 (poorly effective). F: NAK 210 (ineffective). Nodule sections A, B and C 

contain a densely infected central zone, while D has a high percentage of infected cells 

in a relatively small infection area. E and F contain a central zone with a markedly large 

proportion of uninfected cells.  IC=infected central zone, UC=uninfected cells, R=root, 

VB=vascular bundle, L=lenticel.  

3.3.4 Poly-hydroxybutyrate (PHB) accumulation in bacteroids 

Nodules from P. vulgaris inoculated with nine variably effective strains were examined 

under an electron microscope (Figure 3.7). Effective strains were CIAT 899, NAK 354 

and NAK 287. Partially effective were NAK 294, 8002 and NAK 245 while NAK 312, 
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NAK 353 and NAK 120 represented poorly effective strains. Electron micrographs 

revealed two or more rod-shaped bacteroids were often contained in each symbiosome. 

In a few instances, pleomorphic bacteroids were observed (3.8C). All nodules contained 

bacteroids with white/clear zones indicative of accumulation of the carbon storage 

compound, PHB. CIAT 899 bacteroids accumulated the least amount of PHB (21% of 

total cell area). All other eight strains resulted in bacteroids with PHB as a high 

proportion of cellular area (71%-83%) and differences were not significant (HSD, 

P>0.05). 

 

Figure 3.7: Sample transmission electron micrographs of nodules of P. vulgaris 

inoculated separately with six variably-effective strains of rhizobia, showing 

accumulation of poly-β-hydroxybutyrate (PHB) in bacteroids. Inoculation was done 

with A, R. tropici CIAT 899. The arrow indicates a peribacteroid membrane (PM) 

encapsulating several bacteroids that are primarily devoid of PHB granules. B, NAK 

354 (PHB labelled shown with an arrow). C, NAK 245. Pleomorphic bacteroid is shown 

(arrow labelled PB). D, 8002. E, NAK 120 F, NAK 353. Bacteroids were 1-3 µm in 

length. Bar in A and B is 500 nm, and 1 µm for all other. Nodules had been harvested 

42 d after inoculation. 
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3.3.5 Link between nodC allele and effectiveness  

Fourteen of the 15 strains assessed for the nodC type (Section 2.3.6) were included in an 

analysis to investigate possible associations between nodC type and strain effectiveness. 

NAK 120 did not share a nodC type (λ-a) with any other strain and was, therefore, for 

statistical reasons excluded from the analysis. Each of the four remaining nodC types (γ-

a, γ-b, α, and λ-b) was represented by data from 2-5 strains each, inoculated on six 

plants. The mean shoot dry matter accumulated by the strains harbouring the four nodC 

types, was expressed as a percentage of that of CIAT 899 (Figure 3.8). The mean SDW 

of strains with nodC type γ-a was 46.6%, type γ-b was 62.1%, type λ-b was 80.6%, and 

type α was 88.2%. An analysis of variance (ANOVA) revealed significant variations in 

the effectiveness of strains based on nodC alleles, F (4, 11) = 15.276, p=0.000. A post 

hoc Tukey test revealed strains with nodC type γ-a and γ-b; γ-b and λ-a; α and λ-b did not 

differ significantly (p>0.05) in their effectiveness. Differences between others were 

significant (p<0.05).  

 

 

Figure 3.8: SDW of strains (as a percentage of CIAT 899) plotted against their nodC 

type. Error bars: 95% CI. 

γ-a γ-b α λ-a λ-b

nodC allele



 Chapter 3 

 

80 
 

3.3.6 Growth of P. vulgaris under mineral N in comparison to BNF  

An increase in the amount of N applied as NH4NO3 was strongly correlated with plant 

shoot mass (Pearson’s r=0.9) (Figure 3.9, 3.10). The relationship was curvilinear with a 

steeper sigmoidal slope at lower N rates indicating greater growth response to N, 

followed by decreased response to N application at higher rates. The highest mean 

shoot mass was achieved at 201 mg N pot-1 week-1. However, Fisher’s LSD indicated no 

significant differences (p>0.05) between treatments receiving 134-235 mg N pot-1 week-

1. The highest shoot dry matter achieved per plant under N fertilization (3.04 g) was 2.5 

times that of the CIAT 899 treatment (1.21 g).  

 

 

 

Figure 3.9: Differences in the vigour of P. vulgaris cv. KK08 plants supplied with increasing 

amounts of N in the form of NH4NO3. The green arrow shows the direction of increasing N 

rate. CIAT 899 treatment is indicated on the right.  

CIAT 899



 Chapter 3 

 

81 
 

 

Figure 3.10: Mean shoot dry weights (SDW) of P. vulgaris cv. KK08 plants receiving either N as 

NH4NO3 (o) or inoculated with CIAT 899 (×) taken after 35 d of growth. Data is the mean of 

six plants. Data fitted using a nonlinear regression model. R2 =0.991. 

The shoot N concentration (%N) of plants receiving mineral N showed a linear 

relationship with their dry matter content (R2=0.979). However, the SDW and % N 

measurements of CIAT 899 did not fit into this regression line. For the same 

concentration of N, CIAT 899 had significantly less biomass.  The mean SDW in 

inoculated plants containing 4% N was 1.21g, while at a similar N concentration (4%), 

plants supplied with mineral N had a mean SDW of 2.05 g (Figure 3.11).  

 

LSD(P>.05)

×
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Figure 3.11: Percentage shoot N concentration graphed against SDW in P. vulgaris cv. KK08 

plants receiving increasing rates of N as NH4NO3. Experimental SDW of CIAT 899 treatment 

(×) and expected based on N concentration (*) are shown. Plants were harvested 35 d after 

planting. Data fitted using a nonlinear regression model. R2 =0.979. 

 

 

  

CIAT 899×
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3.4 Discussion 

Studies in this chapter investigated the effectiveness of strains isolated from Kenyan 

soils on P. vulgaris and explored relationships between strain effectiveness and (a) 

anatomical nodule features, (b) PHB accumulation in bacteroids, and (c) nodC alleles 

harboured. Further, the studies evaluated the ability of the most effective strain to meet 

the N requirements of the host.  

3.4.1 The effectiveness of strains 

The 52 strains were found to be variably effective on P. vulgaris cv. KK08 (Figure 3.2). 

Importantly, the experiments uncovered highly effective strains which were as effective 

at N2 fixation as CIAT 899, a leading inoculant strain for P. vulgaris.  

To assess N2 fixation by each of the strains, the shoot dry weights of inoculated plants 

were compared to the shoot dry weight of plants inoculated with CIAT 899.  The dry 

weights of shoots are a common proxy for N2 fixation in systems deficient in N, such as 

the vermiculite system used in this study (Howieson et al., 2005). When N is the only 

growth limiting factor, the growth of plants is positively correlated with the availability 

of N (Andrews et al., 1999; Field & Mooney, 1986). Of the 52 strains analysed for N2 

fixation, 20 were characterized as effective, 13 as partially effective, 13 as poorly 

effective and seven as ineffective. The delineations were arbitrary but chosen to give 

reasonable categories of strain effectiveness in relation to CIAT 899, in line with 

previous categorisations of effectiveness (Howieson et al., 2005). Eleven of the effective 

strains were statistically equivalent to CIAT 899 at N2 fixation (P=0.05).  

A very high prevalence of effectiveness was observed among the strains collected for 

this study. Although Kawaka et al. (2014) and Anyango et al. (1995) reported a high 

proportion of effective rhizobial strains from among isolates from Kenya, the high 

percentage of effective strains seen in the current study may have resulted from the 

nodule sampling strategy used. The sampling targeted healthy bean plants and may 

therefore have skewed the effectiveness spectrum of the isolated strains towards the 

effective end. Consequently, the proportions of effectiveness observed in this study may 

not be reflective of the proportions of effective of strains in the soils in areas of nodule 

sampling.   

The 11 strains identified as being equal to CIAT 899 at N2 fixation are candidate strains 

for field evaluation and possibly represent adapted and highly effective inoculant strains 
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for P. vulgaris in Kenya. The candidate strains were isolated from diverse agro-ecological 

zones differing in soil types, rainfall, and temperatures (Chapter 2, Table 2.2) and are 

consequently expected to display adaptability to specific environmental stresses present 

in those areas. CIAT 899 is the strain of choice for inoculation of P. vulgaris in Kenya 

(Bala et al., 2011). The strain possesses some excellent characteristics such as high rates 

of N2 fixation, tolerance to environmental stresses such as soil acidity (Graham et al., 

1994) and high temperatures (Martinez-Romero et al., 1991), and is genetically stable 

under environmental stresses (Hungria & Vargas, 2000). However, with recent reports 

of its failure to improve P. vulgaris yields in Kenyan fields (Gicharu et al., 2013; van der 

Bom, 2012), a new set of strains like the ones isolated in this study will need to be tested 

for suitability as inoculants.  

3.4.2 Anatomical features of nodules  

This study characterized a large number of strains for effectiveness at fixing N2 with P. 

vulgaris resulting in a N2 fixation gradient (Figure 3.2) spanning the entire range expected 

(Howieson et al., 1995). Strains at different points in the N2 fixation gradient then 

provided an excellent opportunity to investigate key anatomical features of nodules 

induced by variably effective strains 

Effective strains formed nodules with a greater proportion of cells in the central zone 

infected with bacteroids in comparison to nodules formed by ineffective strains (Figure 

3.6). A mix of infected and uninfected cells in the central tissue of nodules is commonly 

found in phaseolid legumes (Sprent et al., 2013; Tate et al., 1994) in contrast to legumes 

such as Listia and Lotononis that contain a uniformly infected central tissue (Ardley et al., 

2013). The specific events leading to differences in proportions of infected and 

uninfected cells remain unclear but would be related to differences in the initiation, 

development and ramification of infection threads within the nodule cortex or the 

division of infected plant cells. Infection thread development is closely linked to Nod 

factor substitutions (Ardourel et al., 1994; Walker & Downie, 2000) while nodule 

invasion is known to be mediated by bacterial surface polysaccharides (Niehaus et al., 

1998; Pellock et al., 2000). Ineffective strains from this study may produce Nod factors 

that lack the correct substitutions to successfully colonize P. vulgaris nodules or may lack 

the right polysaccharides for enhanced nodule invasion.  
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Although further studies are clearly required to elucidate the determinants of 

effectiveness, the results indicate that the key limiting steps in P. vulgaris symbiosis are 

the infection and invasion steps. Analysis done ruled out bacteroid persistence and 

differences in N2 fixation by bacteroids as key determinants of symbiotic outcomes in 

the P. vulgaris-rhizobia symbiosis.  

3.4.3 PHB accumulation  

Except CIAT 899, all strains accumulated large quantities of poly-β-hydroxybutyrate 

(PHB) in bacteroids, regardless of their effectiveness (Figure 3.7). PHB is a lipogenic 

product synthesized by rhizobia in growth-limiting conditions (Willis & Walker, 1998; 

Zevenhuizen, 1981) and has been associated with enhanced cell survival in the absence 

of an external carbon supply (Zevenhuizen, 1981), ineffectiveness (Sprent et al., 2013) 

and competitiveness (Willis & Walker, 1998). Mutants incapable of PHB production are 

either of enhanced effectiveness (Cevallos et al., 1996) or of similar effectiveness 

(Lodwig et al., 2005; Willis & Walker, 1998) to wild types.  

In this study, no evidence was found linking PHB accumulation in bacteroids to 

effectiveness, which is contrary to suggestion by Sprent et al. (2013). PHB synthesis 

consumes carbon and reductant, but this carbon cost may be below the threshold 

detectable through differences in dry matter. Alternatively, the carbon cost of PHB may 

be compensated for by stimulation of N2 fixation by the additional carbon sink 

(Kaschuk et al., 2009). From our observations, PHB accumulation is unlikely to be a 

major determinant of strain effectiveness in P. vulgaris symbioses.  

3.4.4 nodC alleles   

The nodC type harboured by a strain was found to be linked to its effectiveness. Strains 

carrying nodC type α and λ-b displayed higher rates of N2 fixation in comparison to 

those with nodC types γ-a and γ-b (Figure 3.8). As already discussed in Chapter 2, NodC 

proteins are determinants of chain lengths of Nod factors produced by rhizobia in 

response to flavonoids. Since nodC genes are, in reported Rhizobium strains, located on 

the symbiotic plasmids, the genes may be considered as molecular markers of the 

general nature of symbiotic genes in a strain.  

Previously, in extensive selection experiments done in Brazil under controlled 

conditions, the most effective P. vulgaris strains almost exclusively belonged to R. tropici 
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or affiliate species in the ‘R. tropici group’ (Dall'Agnol et al., 2013; Hungria et al., 2003; 

Mostasso et al., 2002; Pinto et al., 2007).  Strains in these species carry nodC type γ-b that 

was in the current study found to be associated with high effectiveness (Figure 2.5; 

Figure 3.8).  

The other nodC type associated with high effectiveness was type α. The α allele of nodC 

is the dominant allele found in R. etli isolated from Mesoamerica (Aguilar et al., 2004), 

the origin of P. vulgaris (Bitocchi et al., 2012). In the current study, strains carrying nodC 

type α had the highest average rates of N2 fixation (Figure 3.8). It is hypothesised that 

the efficiency of nodC type α results from the co-evolution history it may share with the 

host. In a study by  Aguilar et al. (2004), Mesoamerican P. vulgaris nodulated 

preferentially, and sometimes even exclusively, with strains with nodC type α.  

Representatives of the dominant group of strains nodulating P. vulgaris in Kenya, likely 

to belong to novel species, carried nodC type γ-a (and occasionally type γ-b) and were, in 

general, ineffective. As these strains are different from any described before, it is highly 

likely that these ‘novel’ groups acquired the nodulation genes through lateral transfer 

from other ‘true’ P. vulgaris symbionts. Their nodC sequences were 100% identical to 

those described in other rhizobia (Figure 2.5). In cases of recent lateral transfer of 

symbiotic genes, low rates of N2 fixation in the recipients is not entirely surprising. In a 

study in Australia, resident Mesorhizobium strains that had acquired nodulation genes 

laterally from an inoculant strain were found to have lower rates of N2 fixation 

(Nandasena et al., 2007).   

The findings that nodC types α and γ-b were associated with higher effectiveness do not 

prove causation and, therefore, follow-up studies are required to establish causation. For 

example, nodulation genes, although transmissible, still tend to be tightly associated with 

the taxonomic positions of rhizobia. For example, in Chapter 2, nodC alleles were seen 

to be closely related to the taxonomic positions of the rhizobia. With notable 

exceptions, strains in the putative taxa mostly had nodC type γ-a, strains in species within 

the R. etli lineage had nodC type α and strains belonging to species in the R. tropici lineage 

had nodC type γ-b. With the link between nodulation genes and species, genetic 

differences between species may confound the interpretation of data obtained as genes 

unrelated to symbiotic genes may affect N2 fixation outcomes. Examples of genes, 

related to N2 fixation, carried in the chromosomes in members of the genus Rhizobium 
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include those that code for surface polysaccharides (Ormen  o-Orrillo et al., 2012).  The 

findings form a sound basis for interesting future studies.   

3.4.5 Ability of BNF to meet N demand in P. vulgaris  

Plants inoculated with CIAT 899, the most effective strain among those tested in this 

Chapter, accumulated approximately 40% the dry weight of the mineral N treatment 

that resulted in the highest SDW (Figure 3.11). The concentration of N in shoots of the 

plants inoculated with CIAT 899 was 4% (Figure 3.11), which was rather intriguing 

considering the N concentrations in shoots of plants inoculated with other effective 

strains (based on biomass assessment) were observed to be in the 3.7%-4.1% range 

(Figure 3.3).  

When inoculated plants had N concentrations significantly higher than the range above, 

a positive linear relationship with dry matter ceased to exist (Figure 3.3). A similar trend 

was not observed in plants treated with mineral N, where and a direct relationship 

between N concentration and weight of plants continued to exist well into the 5%-6% 

N level (Figure 3.11).  

One interpretation of the observed N concentration range in the inoculated plants is 

that N2 fixation is regulated to keep N levels within an optimal range in plant tissues. 

Similar levels of N concentrations can be calculated for inoculated P. vulgaris in other 

studies. For example, shoot %N in inoculated P. vulgaris plants ranged between from 

3.4% to 4.3% in the study by Buttery et al. (1997) and a maximum of 3.8% in Hungria 

and Kaschuk (2014). The optimal range of N shoot concentration may relate to a 

carbon: nitrogen ratio that regulates N2 fixation (Hartwig, 1998). Considering that N 

concentrations in shoots correlate with the photosynthetic capacity of plants and 

therefore yield (Field & Mooney, 1986), autoregulation of this nature would place a cap 

on possible benefits from BNF in P. vulgaris.  

Another important observation was that inoculated plants had reduced dry weights in 

comparison to those given mineral N, for a given N concentration in tissues (Figure 

3.11), indicative of the energy cost of N2 fixation in P. vulgaris. Nitrogen content, 

photosynthesis and CO2 assimilation are linearly correlated (Evans, 1989; Field & 

Mooney, 1986). The observed differences in dry weights at the same shoot N 

concentration are likely from allocations of assimilated CO2 to different sinks. In 

symbiotic plants, there is greater carbon sequestration towards nodulation (Minchin & 
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Witty, 2005). Also, N2 fixation has a higher respiratory demand in comparison to nitrate 

reduction (Finke et al., 1982; Herridge et al., 2015; Minchin & Witty, 2005). From the 

data collected, it was clear that N2 fixation is associated with lower N use efficiency -the 

ability of a genotype to acquire nutrients and use them for the production of biomass or 

utilizable material.  

It is important to note that biomass accumulation is not perfectly correlated with grain 

yields as high supply of N stimulates biomass but can be limiting to N remobilization 

into pods and seeds (Baligar et al., 2001; Masclaux-Daubresse et al., 2010). 

Consequently, the results presented do not relate to seed yield, but only to biomass 

accumulation.  

3.4.6 Scoring of nodulation and atypical nodules 

A 4-point rating score for P. vulgaris was developed based on characteristics relevant to 

P. vulgaris nodulation (Appendix 4). Scores were found to correlate highly with shoot 

biomass (R2=0.87, data not shown). Nodule rating scores are useful tools that provide 

data to corroborate other symbiosis measurements. Nodule rating systems have been 

developed for different legumes (Corbin et al., 1977; Yates et al., 2016a) but the utility 

of these rating scores across legumes is limited as diverse legumes exhibit different 

nodulation patterns.  

NAK 120 was seen to induce a small fraction of oddly shaped nodules uncharacteristic 

of P. vulgaris. These nodules had smooth outer surfaces, lacked lenticels and were 

tapered. The oblong shape was in contrast to the spherical nodules usually seen on P. 

vulgaris. These nodules had a pink interior indicative of N2 fixation (Figures 3.5E-F). 

While Sesbania rostrata has been reported to produce both determinate and indeterminate 

nodules (Fernández-López et al., 1998), a similar plasticity in nodule morphology has 

not been reported in P. vulgaris. NAK 120 was isolated from Albizia sp., a legume tree in 

the tribe Ingeae (Brown 2008), a tribe that forms indeterminate ceasalpiniod nodules 

(Corby, 1988). NAK 120 belongs to Rhizobium paranaense (Chapter 2). It is speculated 

that the atypical nodules induced by NAK 120 result from incompatibilities between the 

strain and the host. The exact nature of the incompatibility remains unknown.  
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3.4.7 Concluding remarks 

In addition to unearthing candidate inoculant strains, work in this chapter delivered 

significant contributions to the knowledge of the indicators of effectiveness in P. 

vulgaris-rhizobia symbiosis. PHB accumulation in bacteroids was found to be unrelated 

to strain effectiveness while the nodC genes, and the ability of a strain to colonise the 

nodule cortex, were found to be important determinants of symbiotic outcomes.  These 

findings serve to narrow the research areas critical in the P. vulgaris-rhizobia symbiosis 

for further studies. Studies in this chapter also questioned the ability of biological N2 

fixation to meet the N demand of P. vulgaris. Evidence was found for an optimal shoot 

N concentration range in inoculated plants. With tissue N known to be closely linked to 

plant growth and yield, a regulation of N concentration in inoculated P. vulgaris to within 

the range observed would likewise place a cap on the maximum growth on yield 

benefits possible from inoculation. Data collected also hinted at low N use efficiency in 

inoculated plants. 

In addition to inoculant strains being effective, they also need to be competitive. To 

conduct competition experiments, strain identification is required and the next chapter 

describes the development of a dual marker gene system for rhizobial competition 

studies.  
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4.1 Introduction 

The preclusion of an elite strain from some or all the nodules on a legume, by 

ineffective strain(s), leads to a reduction in the overall amount of N2 fixed (Denton et 

al., 2002; Gerding et al., 2014; Thies et al., 1991a). Up to 59% of the yield variability in 

legumes following inoculation is reported to be related to nodule occupancy (Thies et 

al., 1991b), highlighting the need to screen potential inoculant strains for 

competitiveness and to understand rhizobial competition better.  

Rhizobial competition studies require methods to reliably distinguish between rhizobial 

strains in the soil, on the rhizosphere and in the nodules. Standard approaches to 

distinguish strains rely on phenotypic, proteomic and genotypic differences among 

strains. Examples of these methods include melanin production, ELISA, MALDI-TOF, 

and RP01-PCR (Blanco et al., 2010; Gerding et al., 2014; Martínez-Molina et al., 2016; 

Spriggs & Dakora, 2009). The above methods suffer at least one of several drawbacks: 

insufficient discrimination, cross-reactions, expense, and/or labour intensiveness (Li et 

al., 2009; Ludwig, 2007). An alternative approach that sidesteps the need for intrinsic 

strain differences is the use of marker genes. Marker genes encode fluorescent proteins 

(Chalfie et al., 1994; Gage, 2002; Shaner et al., 2013) or enzymes that cleave 

chromogenic substrates into coloured products following oxidation (Sessitsch et al., 

1998).  

Two markers previously used in rhizobial competition studies are gusA and celB genes.  

The gusA gene encodes a -glucuronidase (GUS) that cleaves glucuronides, in the 

presence of oxygen, into an insoluble coloured product (Jefferson et al., 1986). GUS 

activity is absent in rhizobia or from legumes, making gusA markers ideal for rhizobial 

nodule occupancy studies (Reeve et al., 1999; Sessitsch et al., 1996; Wilson et al., 1995). 

On the other hand, celB encodes a thermostable and thermoactive -glucosidase with a 

high -galactosidase activity (Voorhorst et al., 1995). Rhizobia and their hosts contain 

heat labile -galactosidases, and a heat inactivation step is used to eliminate endogenous 

-galactosidases before assay with -galactosides (Sessitsch et al., 1996). The co-

inoculation of plants with strains marked separately with the two markers allows the 

simultaneous detection of nodule occupants (Sanchez-Canizares & Palacios, 2013; 

Sessitsch et al., 1996). 
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The method of choice for introducing gene markers into rhizobia is through the use of 

mini-transposons (Anyango et al., 1998; Reeve et al., 1999; Sessitsch et al., 1996; Wilson 

et al., 1995). Transposons are efficient and easy to use, but their use necessitates that the 

mutants constructed are screened to ensure that competition for nodule occupancy or 

nodulation itself is not compromised by the transposon insertion (Sessitsch et al., 1998). 

Recently, Sanchez-Canizares and Palacios (2013) succeeded in separately marking two 

Rhizobium strains with celB and gusA at predetermined sites in the genomes, by fusion 

PCR and double recombination. This approach described above generated stable 

mutants but is still a laborious procedure that is not suited for use with a large number 

of strains and requires prior knowledge of genome of the target organism. 

The delivery of marker genes into rhizobia can also be achieved through plasmids. 

Plasmids are easy to use but can be unstable in bacteria (Corich et al., 2001; De Gelder 

et al., 2007; Duodu et al., 2008; Gage et al., 1996) or they can generate an excessive 

metabolic load in the bacteria (Silva et al., 2011). However, stable broad-host-range 

plasmids have been used with rhizobia. One such example, pJP2, is stably maintained in 

R. leguminosarum (Karunakaran et al., 2005; Prell et al., 2002) in planta in the absence of 

selection. However, the efficiency of its parCBA/DE operon in the stabilization of 

plasmids in diverse rhizobia is unknown.  

To facilitate the assessment of the competitiveness of rhizobia isolated from Kenyan 

soils for nodulation of P. vulgaris, I synthesised and cloned celB into the backbone of 

pJP2. The plasmid carrying celB was then conjugated into diverse rhizobia from Kenyan 

soils and investigated for stability. The marked strains were then assessed for 

competitiveness against CIAT 899, chromosomally marked with gusA using a mini-

transposon. 

This chapter reports an efficient dual-marker system, involving a plasmid and a mini-

transposon, suitable for the marking of large numbers of rhizobia in the study of nodule 

occupancy in P. vulgaris. Further, the Chapter reveals the competitiveness of rhizobial 

strains from Kenyan soils against a leading inoculant strain.  
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4.2.1 Bacterial strains, plasmids and media 

Strains and plasmids used in the study are listed and described in Table 4.1. E. coli 

strains were routinely cultured in lysogeny-broth (LB) media at 37ºC and rhizobia in 

tryptone yeast (TY) media at 28ºC (Hungria et al., 2016). For solid media, agar was 

added to 1.5% (w/v). All liquid cultures were incubated on a gyratory shaker set to 220 

rpm. Media were supplemented with the following antibiotics and substrates as required 

(µg mL-1): chloramphenicol (20), spectinomycin (100 for E. coli  and 200 for rhizobia), 

streptomycin (100 for E. coli  and 200 for rhizobia),  nalidixic acid (75), tetracycline (20), 

X-Glc  (50), X-Gal (50), and  5-aminolevulinic acid (50). 

Table 4.1: Bacterial strains and plasmids used or constructed in this chapter 

Strain/Plasmid Relevant characteristics Source/Reference 

   
E. coli   
S17.1  Carrying pCAM131(mTn5SSgusA31) 

or  pCAM111 (mTn5SSgusA11) 
λpir SmR SpR ApR 

Wilson et al. (1995) 

ST18 E. coli S17.1 λpir ∆hemA (ALA 
auxotroph) 

Thoma and Schobert (2009) 

   
Rhizobia   
R. tropici CIAT 899 NxR, CmR, SpS, SmR Martinez-Romero et al. 

(1991) 
R. leguminosarum bv. phaseoli 
8002 

 Johnston et al. (1982) 

   
NAK 091, NAK 103, NAK 104, 
NAK 120, NAK 157, NAK 210, 
NAK 214, NAK 220, NAK 227, 
NAK 231, NAK 239, NAK 242, 
NAK 245, NAK 254, NAK 266, 
NAK 284, NAK 287, NAK 288, 
NAK 295, NAK 299, NAK 303, 
NAK 312, NAK 315, NAK 321, 
NAK 327, NAK 332, NAK 334, 
NAK 351, NAK 358, NAK 363, 
NAK 367, NAK 368, NAK 378, 
NAK 382, NAK 387, NAK 407, 
NAK 458, 

Rhizobium sp. This work 

   
Plasmids   

pJP2 gusA,  TcR ApR Prell et al. (2002) 
pMK-RQ-CelBmNG KmR This work 
pGM01 TcR ApR, celBmNG This work 

4.2.2 Marking of CIAT 899 with gusA 

4.2.2.1 Transfer of mini-transposons into CIAT 899  

Two mini-transposons containing gusA - mTn5SSgusA11 (gusA driven by the constitutive 

tac promoter) and mTn5SSgusA31 (gusA driven by the symbiotically active nifH promoter) 
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were separately transferred into recipient CIAT 899 from the donor strain E. coli S17.1, 

an RP4 integrant, by bi-parental mating (Reeve et al., 2016). Briefly, CIAT 899 was 

cultured for 3 d to stationary phase in TY broth while E. coli S17.1, was started from a 

culture grown overnight with spectinomycin and streptomycin, and grown to log phase 

(~OD600nm of 0.4) in LB broth with antibiotic selection. A 5 mL aliquot of each of the 

two cultures was separately concentrated by centrifugation (10,000 × g for 1 min), the 

pellet re-suspended in 200 µL saline (0.89% NaCl, w/v), mixed in a 1:1 ratio and a 100 

µL aliquot spotted onto TY agar. The plate was incubated overnight at 28ºC and the 

culture spot re-suspended in 1 mL saline. Mutants were initially selected by plating the 

mating mix onto TY containing chloramphenicol, nalidixic acid, spectinomycin and 

streptomycin, before checking for GUS expression on TY with X-Glc agar. GUS-

positive clones were stored in 15% (v/v) glycerol at 80ºC. Subsequently, antibiotic 

pressure was applied on mutants with spectinomycin and streptomycin.  

4.2.2.2 Characterization of marked strains by morphology and growth rate 

Two mutants from independent matings showing strong GUS activity on X-Glc plates 

were selected and named CIAT 899-G1 and CIAT 899-GE. CIAT 899-G1 carried 

mTn5SSgusA11 while CIAT 899-GE had mTn5SSgusA31. The two marked strains were 

streaked on TY plates (with and without antibiotic selection), and colony characteristics 

compared to those of the wild type.  

To determine growth rate, a colony of wild-type CIAT 899, CIAT 899-G1 and CIAT 

899-GE was inoculated separately into 5 mL TY broth (with antibiotic selection in the 

case of the two mutants) then incubated for 2 d. A 5 µL aliquot of the 2 d culture of 

each strain was then inoculated into 20 mL TY broth (with and without selection) in 

duplicates, and optical density at 600 nm assessed at nine intervals over a 27 h 

incubation period. At each point, OD600nm values were read twice, and the mean value 

recorded before graphing of spectra-photometric values against incubation time. The 

mean generation time (MGT), in minutes, was calculated during log phase using the 

formula:  

      (
 

   
)                                            (Eq. 4.1) 

Where X=OD600 at time 1, Y=OD600 at time 2 and D=duration in minutes between time 1 and time 2.  
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4.2.2.3 N2 fixation and competitiveness of mutants  

Wild-type CIAT 899, CIAT 899-GE and CIAT 899-G1 were assessed for capacity to fix 

N2 on P. vulgaris cv. Kenya Tamu following procedures described in Section 3.2.2. The 

treatments were replicated four times, and plant shoots were excised 42 d after sowing, 

dried at 70ºC for 72 h then weighed. Roots were stained with X-Glc as per Section 

4.2.2.4. 

To assess competitiveness of marked strains for nodulation of P. vulgaris against the 

wild-type, all three strains were separately grown in 5 mL TY broth (with antibiotics for 

G1 and GE) to mid-log phase (OD600nm of 0.5) then washed twice by pelleting (10,000 × 

g, 1 min) and re-suspending in deionised water.  Subsequently, each of the cell pellets 

was re-suspended in 5 mL de-ionised water and OD600nm adjusted with deionised water 

to give a final OD600nm of 0.2. These cell suspensions were serial diluted to yield final 

concentrations of approximately 2×104 cells mL-1 followed by a 1:1 mixing of CIAT 

899-G1 and CIAT 899-GE separately with the wild-type CIAT 899. A 1 mL aliquot of 

suspensions pre and post mixing was used for viable count determination on TY plates 

(with and without antibiotics) by the Miles and Misra drop plate count method (O’Hara 

et al., 2016). In the glasshouse, a 1 mL aliquot of the mixtures was applied per pre-

germinated seed. Three seeds were inoculated and sown per pot but thinned to two 

plants after 7 d. Each treatment, including the un-inoculated, had three pot replicates. 

Other procedures and maintenance of plants in the glasshouse were as described in 

Section 3.2.2. Plants were harvested after 21 d, roots stained with X-Glc (4.2.2.4), 

followed by scoring of nodules by colour. The number of blue or unstained nodules was 

counted and a competitive index (CI) calculated as, the mutant-to-wildtype ratio in the 

nodules divided by the corresponding ratio in the inoculum.  

CI of Y=(
        

        
)  (

    

    
)                                 (Eq. 4.2) 

 
 
CI is competitiveness index; Y is the mutant strain, its nodules or colonies; X is the wildtype, its 

nodules or colonies; and cfu is colony forming units mL-1 of inoculum. 
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4.2.2.4 Nodule staining procedure 

Staining of roots for GUS was performed as described by Wilson et al. (1995). Each 

root was vacuum-infiltrated for 30 min with 200 mL GUS staining buffer (50 mM 

NaPO4, 1 mM EDTA (pH 8.0), 0.1% (v/v) Triton X-100, 0.05% (w/v) SDS, 0.1% 

(w/v) Sarkosyl and 200 µg mL-1 of X-Glc) prior to a 24 h incubation at 37°C with 

agitation (200 rpm). Stained roots were then destained in 4% (w/v) sodium hypochlorite 

for 30 min, rinsed and stained nodules counted.  

4.2.2.5 Determination of mTn5SSgusA31 insertion-site in CIAT 899-GE  

Chromosomal DNA flanking mTn5SSgusA31 was identified by a method modified from 

the semi-random two-step PCR protocol of Chun et al. (1997). The modified method 

involved three rounds of PCR (Figure 4.1). Genomic DNA was extracted from CIAT 

899-GE using Promega’s Wizard® DNA Purification Kit according to manufacturer’s 

instructions and 3 µL (~120 ng) used as template for PCR 1.  PCR 1 was performed 

using GUS 134 primer (Table 4.2) in a 25 µL reaction (Table 4.3) using the PCR 1 

program (Table 4.4). The product of PCR 1 was diluted 5-fold with PCR grade water 

and 1 µL used as the template for PCR 2. PCR 2 was carried out in a 25 µL reaction 

(Table 4.3) with GUS 134 primer paired with, separately, CEKGRNB1, CEKGRNB2, 

CEKGRNB3 or CEKGRNB4 (Table 4.2). Reactions were carried out using PCR 2 

program (Table 4.4). 1 µL aliquots of 5-fold dilutions of PCR 2 products were used as 

DNA templates for PCR 3 performed in 25 µL reactions (Table 4.3) with WIL3 primer 

and CEKG4 primer (Table 4.2) following PCR 3 program (Table 4.4).   

Products of PCR 3 were separated in 1% (w/v) agarose, excised and purified, as 

described in Section 2.2.3.3. Purified amplicons were sequenced by Sanger technique 

using WIL3 and CEKG4 primers through the Australian Genome Research Facility 

(AGRF). 

Homology searches and sequence comparisons were performed with the sequence data 

obtained using the NCBI BLASTN search algorithm to identify transposon sequences 

and CIAT 899 sequences. Primers were designed, to confirm the mTn5 insertion site, to 

span either flanking DNA and IE or flanking DNA and OE (Table 4.5). The primers 

were used in 25 µL PCR reactions containing: 12.5 µL of 2 × GoTaq® Green Master 

Mix [(pH 8.5), 400 µM dATP, 400 µM dGTP, 400 µM dCTP, 400 µM dTTP and 3 mM 

MgCl2], 0.4 µM IE-R/OE-R primer, 0.4 µM IE-F/OE-F primer, 80 ng genomic DNA 

and UltraPure PCR grade water (Fisher Biotec) to 25 L. PCR thermal cycling 
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conditions were: initial denaturation at 95ºC for 120 s; 32 cycles of 94°C for 45 s, 55°C 

for 60 s and 72°C for 90 s; and a final extension at 72°C for 5 min. Products were 

separated on 1% agarose gel, purified and sequenced with IE-F and OE-F primers 

through the Australian Genome Research Facility (Section 2.2.3.3). BLASTN was used 

to search for highly similar sequences in GenBank to those obtained. 

 

 

Figure 4.1: Primer binding sites in PCR strategy to determine the insertion point of 

mTn5SSgusA31 in CIAT 899-GE genome. Primers are not drawn to scale. P-promoter, IE-

inner end, OE-outer end, Sp/Sm-genes for spectinomycin and streptomycin resistance, gusA-

promoterless gusA coupled to a promoter (P). 

 

 

Table 4.2: Sequences of oligonucleotides used  

Primer Sequence Source/Reference 

CEKG4 5′-GGCCACGCGTCGACTAGTAC-3′ Chun et al. (1997) 
CEKGRNB1 5′-GGCCACGCGTCGACTAGTACNNNNNNNNNNGCGCGC-3′ W. Reeve# 
CEKGRNB2* 5′-GGCCACGCGTCGACTAGTACNNNNNNNNNNGCCGCC-3′ This study 
CEKGRNB3* 5′-GGCCACGCGTCGACTAGTACNNNNNNNNNYICCGCC-3′ This study 
CEKGRNB4* 5′-GGCCACGCGTCGACTAGTACNNNNNNBBBBNCCGCC-3′ This study 
GUS 134 5′-CTT GTA ACG CGC TTT CCC AC-3′ W. Reeve# 
WIL3 5′-GAATGCCCACAGGCCGTCGAG-3′ Wilson et al. (1995) 

ACGT-Standard nucleotides; N-any; Y-C or T; B-C or G or T; I-Inosine  
*The specific sequences on the 3' end that follow the degenerate were generated by searching for 

motifs approximately every 1000 bp in the genome of CIAT 899 (GenBank: CP004015.1) and 

provide an initial clamp near the transposable element to allow initial amplification. 
#Murdoch University, Perth, WA 
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Table 4.3: PCR reaction components for a 25 µL reaction 

PCR 1 PCR 2 PCR 3 

PCR reagent µL PCR reagent µL PCR reagent µL 
PCR water 9 PCR water 10.5 PCR water 10.5 
2× GoTaq Green 12.5 2× GoTaq Green 12.5 2× GoTaq Green 12.5 
GUS 134 (50 µM) 0.5 GUS 134 (50 µM) 0.5 WIL3 (50 µM) 0.5 
DNA (40 ng µL-1) 3 CEKGRNB1-4 (50 µM) 0.5 CEKG4 (50 µM) 0.5 
  5-fold dil PCR1  1 5-fold dil PCR2  1 

 

 

Table 4.4: Thermal cycling conditions for typing of transposon insertion site 

PCR 1 PCR 2 PCR 3 

Conditions Cycles Conditions  Cycles Conditions Cycles 
94°C 2 min  ×1     
      
94°C 30s ×10 94°C 30s ×1 94°C 30s ×30 
60°C 30s 42°C 30s    60°C 30s    
70°C 90s 70°C 3 min 70°C 90s 
      
  94°C 30s ×1 70°C 7 min ×1 
  41°C 30s      
  70°C 3 min   
      
  94°C 30s ×1   
  40°C 30s      
  70°C 3 min   
      
  94°C 30s ×1   
  39°C 30s      
  70°C 3 min   
      
  94°C 30s ×1   
  38°C 30s      
  70°C 3 min   
      
  94°C 30s ×24   
  60°C 30s      
  70°C 3 min   

 

 
Table 4.5: Sequences of oligonucleotides used to amplify regions flanking OE and IE 
in CIAT 899-GE 
Primer Sequence Target region Reference 

IE-F 5′-CGATTGCCTTGAACTCACGG-3′ Xanthine phosphoribosyltransferase  This study 
IE-R 5′-CGAAGTAATCGCAACATCCGC-3′ Sp/Sm region of mTn5SSgusA31 This study 

OE-F* 5′-CTTGTAACGCGCTTTCCCAC-3′ gusA  of mTn5SSgusA31 W. Reeve# 

OE-R 5′-GAACGGCTCCAAGGAAGTGG-3′ Universal Stress Protein A  This study 
*Same as GUS134 
#Murdoch University, Perth, WA 

  



 

99 
 

4.2.3 Marking of rhizobia with celB gene 

4.2.3.1 Construction of a stable, broad-host-range CelB plasmid 

DNA sequences coding for CelB (Voorhorst et al., 1995) and mNeonGreen (Shaner et 

al., 2013) proteins were obtained from GenBank and edited in Geneious® software to 

remove unwanted restriction sites and incorporate XbaI and PstI sites on the flanks for 

cloning.  CelB and mNeonGreen amino acid sequences were maintained and put under 

the control of a constitutive tac promoter. Once in silico design was complete, the 

sequence was sent to GeneArt™ (ThermoFisher Scientific) where the synthetic genes 

were assembled from synthetic oligonucleotides. The 2,369 bp fragment was cloned into 

pMK-RQ (KmR) to create pMK-RQ_celBmNG (Figure 4.2) and final construct verified 

by sequencing. pMK-RQ_celBmNG was digested with PstI and XbaI, releasing a 2,337 

bp fragment that was gel purified and ligated into pJP2 digested with PstI+XbaI, 

creating pGM01.  

 

 

Figure 4.2:  Maps of pMK-RQ_celBmNG and pJP2. In pJP2, the promoter-probe vector 

encodes genes for tetracycline and ampicillin resistance. In addition to these, RK2 genes trfA, 

oriV and oriT are incorporated as well as par genes for plasmid stability (Prell et al., 2002). Note 

the PstI and XbaI sites that enabled the excision of CelBmNG region from pMK-

RQ_celBmNG into the uidA region of pJP2. 
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Restriction digestions and ligation mentioned above were carried out largely according 

to instructions by the manufacturer of enzymes (Promega). Briefly, double restriction 

enzyme digests with XbaI and PstI of pMK-RQ_celB-mNG and pJP2 were carried out 

in 20 L reactions containing the following at indicated concentrations: 1 × of 

Promega’s restriction buffer H, 2 g L-1 acetylated BSA, 10ng L-1 DNA and nuclease 

free water to make up to 19 L. A 0.5 L aliquot of each of the two enzymes was then 

added followed by digestions for 4 h at 37C.  Enzymes were heat inactivated at 74C 

for 15 min prior to separation of fragments in 1% (w/v) agarose gel, excision and 

purification (Section 2.2.3.3). For ligation, a 20 L, 1:2 vector to insert, ligation mix 

contained the following: 2 L (c. 100ng) pJP2 (with uidA removed with PstI and XbaI), 

10 L (~200 ng) of insert, 2 L T4 ligase buffer, 5.67 L water and 0.33 L T4 DNA 

ligase. Ligation was carried out overnight at room temperature (approx. 15C) and 

products (pGM01) transformed into E. coli ST18.  

4.2.3.2 Transformation of pGM01 into E. coli ST18 

Before transformation, electrocompetent ST18 cells were prepared as follows. ST18 was 

cultured overnight in 50 mL LB with 5-aminolevulinic acid (ALA) at 28ºC with shaking 

(250 rpm). The overnight culture was sub-cultured into four 250 mL LB-ALA flasks and 

incubated to an OD600nm of 0.2. Cultures were placed on ice, pelleted at 4C by 

centrifuging (1,000 × g) for 20 min, the supernatant decanted and the pellet re-

suspended in 15 mL of sterile 10% (v/v) glycerol with 20 mM -mercaptoethanol. This 

process was repeated twice with re-suspension in 15 mL of 10% (v/v) glycerol. Finally, 

the pellet was re-suspended in 200 L of 10% (v/v) glycerol, and aliquots of 40 L 

transferred into 1.5 mL tubes, frozen in dry ice and stored at -80C until required. 

The plasmid pGM01 was transformed into ST18 by electroporation. A 40 L aliquot of 

competent cells was thawed on ice and mixed with 10 ng DNA from ligations above. 

The mixture was transferred into a chilled 0.1 cm cuvette and sample electroporated 

using a Biorad Genepulser II electroporator (2.5 kV, 200 , 25 F) for 5 s. To the 

cells in the cuvette, 1 mL SOC medium (0.5% (w/v) yeast extract, 2% (w/v) tryptone, 

10 mM NaCl, 2.5 mM KCl, 10 mM MgSO4 and 20 mM glucose) supplemented with 

ALA was added and solution transferred into a 15 mL snap-cap tube before 2 h of 

incubation at 37°C with shaking (200 rpm). Aliquots of 10 L, 100 L and 200 L were 

spread-plated onto LB plates with selection (50 g L-1 tetracycline) and X-Gal (50 g 
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L-1). Colonies appearing on selection plates were screened for pGM01 presence as 

detailed in 4.2.3.4 by PCR and by a -galactosidase assay. 

4.2.3.3 Conjugal transfer of pGM01 into rhizobia  

The plasmid pGM01 was transferred from ST18 into 39 rhizobial strains (Table 4.1) by 

bi-parental mating as per Section 4.2.2.1. Before mating, ST18 carrying pGM01 was 

cultured in LB supplemented with tetracycline and ALA. Mating mixes were spotted on 

TY plates with ALA for overnight incubation and selection of transconjugants was on 

TY supplemented with tetracycline. All other steps were as described in Section 4.2.2.1. 

For the designation of transconjugants carrying pGM01, a capital letter C was added to 

strain codes.  

4.2.3.4 Confirmation of presence of pGM01 and expression of thermostable CelB 

In addition to growth on tetracycline plates, the presence of pGM01 in ST18C and 

rhizobia was confirmed by PCR. Primers PGM949F (5′-GGAGAAGTACCGC 

AAGCTGT-3′) and PGM1537R (5′-CCGTTCTCTGGTAGATCGCC-3′) were 

designed to amplify a 589 bp region internal of the celB gene on pGM01. A 25 µL PCR 

reaction was carried out with the following components in the stated final 

concentration: GoTaq® Green Master Mix (1×); PGM949F (1.0 µM); PGM1537R (1.0 

µM); DNA template (one colony) and nuclease free water to 25 µL. Thermal cycling 

conditions for the PCR were: initial denaturation 94°C for 4 min; 30 cycles of 94°C for 

45 s, 55°C for 45 s and 72°C for 60 s; and a final extension at 72°C for 7 min. PCR 

products were separated in 1% (w/v) agarose gel (Section 2.2.3.3.) 

To confirm CelB expression and activity, a -galactosidase assay modified from that 

described by Terpolilli (2009) was carried out. Strains carrying pGM01 were grown in 

TY or LB broth with selection. Unmarked rhizobia and E. coli BW 20767, acting as 

controls, were cultured without antibiotic selection. At log phase, 1.5 mL aliquots of the 

cultures were separately pelleted (10,000 × g, 1 min) followed by suspension of cells in 1 

mL of enzyme buffer [50 mM NaPO4 (pH 7.0), 1 mM EDTA (pH 8.0)]. The 

suspensions were pipetted in equal halves into 1.5 mL tubes, one-half of the tubes 

incubated at 70C for 45 min while the remaining half was left to sit on the bench at 

room temperature. 50 L chloroform and 25 L SDS (0.1%, w/v) were then added to 

all tubes and tubes vortexed for 10 s. A 50 L aliquot was removed from each tube and 

separately added to 450 L buffer Z (50 mM NaPO4, 1 mM EDTA, 10 mM 
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mercaptoethanol, 10 mM ONPG) and incubated for 30 min at 37C. At the end of the 

incubation period, 500 L of 1 M Na2CO3 was added to stop the reaction and presence 

or absence of yellow colour noted or determined at OD420nm. An alternative method 

used was to re-suspend duplicate cultures in enzyme buffer, incubate half at 70C for 45 

min, add chloroform and SDS to lyse as above and finally add Magenta-Gal and 

incubate at 37C for 30 min.  

4.2.3.5 Characterization of transconjugants by morphology and growth rate 

The 39 rhizobial strains marked with pGM01 and their unmarked parents were streaked 

on TY with and without selection and after 4 d of incubation, compared in their colony 

characteristics. Additionally, a subset of seven strains was selected from the 39 for 

comparison of growth rates between parental strains and pGM01 transconjugants.  

Representative strains selected were NAK 120, NAK 103, NAK 334, NAK 210, NAK 

287, NAK 239 and CIAT 899. Growth curves and growth rates were determined in 

antibiotic free TY broth as described in Section 4.2.2.2 by sampling 14 times for 

spectrophotometric measurements over a 27h period. 

4.2.3.6 Plasmid stability in the absence of selection 

Three strains carrying pGM01 were selected to test the ability of pGM01 to be 

maintained in rhizobia in the absence of antibiotic selection.  Sub-cultured from 

stationary phase cultures, NAK 334C, NAK 120C and NAK 210C were grown into log 

phase (OD600nm of 0.5) in TY broth with tetracycline. From these cultures, 5 µL aliquots 

were separately and in duplicates sub-cultured into 20 mL TY broth without antibiotics, 

mixed and 1 mL aliquot immediately removed before incubation of remainder at 28°C 

on a shaker set at 220 rpm.  The 1 mL aliquot was serially diluted for determination of 

CFU mL-1 on TY (without tetracycline) by the Miles and Misra plate count method 

(O’Hara et al., 2016). One dilution from the Miles and Misra process was spread on TY, 

incubated and 100 isolated colonies replica patched on TY and TY-tetracycline plates. 

Growth on TY-tetracycline plates indicated the presence of pGM01.  

Incubated cultures were grown to log phase (OD600nm of 0.5), and two aliquots removed. 

The first, a 1 mL aliquot was used for viable cell count by the Miles and Misra plate 

count, spread plating and replica patching as described above. The second, a 5 µL 

aliquot was sub-cultured and mixed into fresh 20 mL TY broth before the immediate 

removal of a 1 mL aliquot for a viable count on TY, spread plating and replica patching 
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as earlier described. This process of culturing and sub-culturing while counting total 

populations and tetracycline resistant proportions, at start and end times was repeated 

eight times.  

Comparison of the number of cells present at the start of culture and end of culture 

allowed determination of the number of generations elapsed for each culture period 

using the formula. 

Generations elapsed=   (                  )     (                   )           (Eq. 4.3) 

4.2.4 Competitiveness of celB-marked strains against CIAT 899-GE for 

nodulation of P. vulgaris 

All strains marked with celB were separately cultured in 5 mL TY broth with tetracycline 

until log phase (OD600nm of 0.5). CIAT 899-GE (gusA) was similarly cultured in TY 

containing spectinomycin and streptomycin while wild-type CIAT 899 was grown in 

antibiotic-free TY broth. A 1 mL aliquot of each culture was pelleted, washed twice free 

of media with sterile deionised water by centrifugation (10,000 × g, 1 min) and cells re-

suspended in 1 mL sterile deionised water. The optical density of suspensions was 

determined and using sterile deionised water, volumes adjusted to give an OD600nm of 0.1 

(theoretical 1× 108 cells mL-1) before a serial dilution to give a theoretical concentration 

of approximately 1 × 104 cells mL-1. All strains at this concentration were mixed 1:1 with 

a CIAT 899-GE suspension of a similar concentration and 1 mL aliquots of mixtures 

separately applied on pre-germinated seeds. A 1 mL aliquot of each mixture was spared 

for viable cell counts on antibiotic free TY agar and TY with appropriate antibiotics by 

the Miles and Misra plate count. Two seeds were inoculated and sown per pot filled 

with steam-sterilized sand and treatments were replicated three times. Plants were 

maintained in the glasshouse as described in Section 3.2.2, harvested 21 d after 

inoculation and roots stained.  

Roots were first stained with GUS buffer (Section 4.2.2.4) and following overnight 

incubation at 37ºC, incubated in a 70°C oven for 2 h to destroy endogenous β-

galactosidases. CelB staining was then done by vacuum-infiltrating each root for 30 min 

with 200 mL Magenta-gal staining buffer (50mM NaPO4, 1mM EDTA (pH 8.0), 0.1% 

(v/v) Triton X-100, 0.05% (w/v) SDS, 0.1% (w/v) Sarkosyl and 200 µg mL-1 Magenta-

gal) prior to a further 24-hour incubation at 37°C with agitation (200 rpm). Stained roots 

were then de-stained as earlier described (4.2.3.4) and scored for colour. 
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Competitiveness index of strains for nodulation of P. vulgaris was calculated using the 

formula in Section 4.2.2.3. 

4.2.5 Data analysis 

Where applicable, data were subjected to an analysis of variance (ANOVA) using SPSS 

version 22 (IBM Corp, released 2013). ANOVA was preceded by a test for normality 

and equal variances (Levene’s test). Least significant difference (LSD) was then used 

when ANOVA was found to be significant.  
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4.3 Results 

4.3.1 Marking of R. tropici CIAT 899 with gusA 

The two mini-transposons carrying gusA genes were readily mobilized from the donor 

strain E. coli S17.1 into CIAT 899, as evidenced by the growth and isolation of colonies 

on TY plates supplemented with nalidixic acid, chloramphenicol, spectinomycin and 

streptomycin. On X-Glc plates, the CIAT 899 mutants also expressed GUS, a 

phenotype not observed in wild-type CIAT 899. Colonies of mutants marked with gusA 

under the constitutive Ptac (mTn5SSgusA11), developed a blue hue on X-Glc plates while 

those carrying a symbiotically active gusA driven by PnifH (mTn5SSgusA31) required 

several days of incubation to turn blue (Figure 4.3).  

 

 

 

Figure 4.3: Differential staining of CIAT 899 marked with gusA growing on TY media 

supplemented with X-Glc after 2 d of incubation.  G1, G2, G3 carry a constitutively expressed 

gusA gene while GA, GD, GE carry a symbiotically active gusA gene. Colonies of GA, GD and 

GE, required several days of incubation to turn blue. 

4.3.1.1. Effect of mini-transposons on growth and morphology of marked strains 

Two GUS mutants of CIAT 899 namely, CIAT 899-C1 and CIAT 899-GE, were 

selected from the many mutants obtained and assessed for similarities, in colonial 

morphologies,  to wild-type CIAT 899 on plain TY.  Following 4 days of incubation at 

28ºC, colonies of all three strains were found to be 1.5 to 2.5 mm in diameter, circular 

with smooth margins, semi-translucent, elevated and very mildly mucoid (Figure 4.4). 

No differences were noted in the characteristics of the colonies.  

G1 G2 G3

GA GD GE
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Figure 4.4: Colonies of R. tropici CIAT 899 and its two gusA mutants G1 and GE after 4 d on 

TY agar plates at 28ºC. Scale bar is 2 mm. 

In antibiotic-free TY broth media, CIAT 899, CIAT 899-GE and CIAT 899-G1 had 

growth curves typical of batch cultures (Figure 4.5). The three strains experienced a lag 

phase that lasted between 5 to 10 h with CIAT 899-GE displaying a relatively a longer 

lag period. CIAT 899-GE also reached a maximum optical density at a relatively lower 

value than the wild-type and CIAT 899-G1. However, the slopes during log phase were 

quite similar and mean generation times calculated from the curves were 111 min for 

wild type CIAT 899, 119 min for CIAT 899-G1 and 112 min for CIAT 899-GE, and 

were not significantly different from each other (p>0.05).  
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Figure 4.5: Representative growth curves (OD600nm versus time in hours) of wild-type CIAT 

899 (—) and two of its gusA mutants, CIAT 899-G1 (–-–) and CIAT 899-GE (–-–). OD600nm 

values of cultures were taken at nine intervals over 27 h and used to plot the graphs. Mean 

generation times, in minutes, calculated during log phase were: CIAT 899=111, CIAT 899-

G1=119 and CIAT 899-GE=112. The mean generation times of the mutants did not differ 

significantly from that of the wild-type (p>0.05).  

 

4.3.1.2 Effect of mini-transposons on N2 fixation and competitiveness of marked 

strains 

CIAT 899-G1, CIAT 899-GE and wild-type CIAT 899 induced pink nodules on P. 

vulgaris cv. Kenya Tamu. Plants in the un-inoculated treatment did not form any 

nodules. On staining with X-Gluc, nodules resulting from inoculation with CIAT 899-

G1 and CIAT 899-GE were blue, while those from inoculation with the wild type 

remained unstained. In addition to nodules, background staining of roots was also 

observed in plants inoculated with the CIAT 899-G1 (Figure 4.6). In the CIAT 899-GE 

treatment in which no root staining occurred (Figure 4.6). CIAT 899-G1 has gusA under 
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the constitutive Ptac promoter while CIAT 899-GE carries gusA under PnifH, which is 

symbiotically active.  

 

 

Figure 4.6: Roots of P. vulgaris cv. Kenya Tamu inoculated with, A, wild-type CIAT 899, B, 

CIAT 899-G1 and C, CIAT 899-GE after 24-h staining in X-Glc solution. In addition to 

nodule staining, plants inoculated with CIAT 899-G1 showed high levels of background root 

staining (A). Plants inoculated with CIAT 899-GE (B) showed only nodule staining while those 

inoculated with the wild-type had unstained roots and nodules (C).  

 

The mean shoot dry weight of a plant inoculated with CIAT 899-G1 was 3.61 ±0.20 g, 

3.54 ±0.39 g for CIAT 899-GE and 3.28 ±0.23 g for the wild type. The differences in 

the three means were not statistically significant (LSD, P>0.05), indicating that the 

insertions did not compromise the N2-fixing abilities of the two marked strains.  

 

A B C
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In the experiment to test the competitiveness of CIAT 899-G1 and CIAT 899-GE 

against wild-type CIAT 899 for nodulation of P. vulgaris, the CIAT 899-G1 + CIAT 899 

inoculum applied per seed (~1.4 ×104 cells) at sowing contained 49.7% G1 and 50.3% 

wild type cells. The CIAT 899-GE + CIAT 899 inoculum applied per seed (~1.6 ×104) 

had 50.2% of GE and 49.8% of wild-type cells. Upon harvest, roots contained both 

blue and unstained nodules following incubation in X-Glc. Blue nodules were scored as 

being occupied by the gusA-marked CIAT 899-G1 or CIAT 899-GE while unstained 

nodules were scored as being occupied by the wild-type CIAT 899. Less than 10% of 

nodules had both blue and unstained portions, indicative of dual occupation, and these 

were omitted from consideration when analyzing competitiveness. Plants in the un-

inoculated treatment did not form any nodules.  Mean proportions of nodules occupied 

by the marked strains were 52.3% in the CIAT 899-G1 + CIAT 899 treatment and 

50.3% in the CIAT 899-GE + CIAT 899 treatment. CIAT 899-G1 and CIAT 899-GE 

were found to be of equal competitiveness to wild type CIAT 899 for nodulation of P. 

vulgaris ‘KT’.  The two marked strains were also of equal competitiveness (P>0.05). 

4.3.1.3 Insertion site of mTn5SSgusA31 in the genome of CIAT 899-GE 

The location of the mini-transposon (mTn5SSgusA31) in the genome of CIAT 899-GE 

was identified by a semi-random PCR strategy. The second PCR of the 3-PCR protocol 

yielded similarly sized products (Figure 4.7), but re-amplification of these with internal 

primers in PCR 3 yielded differently sized products (Figure 4.7).  
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Figure 4.7: Images (on previous page) of agarose gel electrophoresis of products of PCR 2 (A) 

and PCR 3 (B) in the typing of the mTn5SSgusA31 insertion site in the CIAT 899-GE genome. 

In A, Lanes 1 to 4 are reactions with GUS 134 primer paired with CEKGRNB1, CEKGRNB2, 

CEKGRNB3 and CEKGRNB4, respectively. In B, Lanes 1 to 4 are reactions of products in 

corresponding lanes in image A with WIL3 and CEKG4 primers. Circled bands were excised 

for sequencing. M=1 kb DNA ladder (Promega) 

 

Fragments in the expected size range (700 bp-1,000 bp) were excised from the gel for 

sequencing and alignments in Geneious® revealed a 904 bp consensus sequence. This 

region was analyzed by BLASTN (discontiguous megablast). A 64 bp region aligned 

with gusA sequences, 257 bp with nifH sequences and 556 bp with the universal stress 

protein gene (uspA) of CIAT 899 (Figure 4.8). 

 

 

Figure 4.8: BLASTN results, showing the distribution of blast hits on the 904 bp 

consensus query sequence. Bases 1-64 (A) aligned with gusA sequences, 65-321 (B) 

aligned with nifH sequences of Rhizobium and Bradyrhizobium while 349-904 aligned with 

uspA in Rhizobium and Bradyrhizobium.  The 27 bp region between B and C did not find 

matches. The 27 bp included the 19 bp repeat flanking mTn5SSgusA31 on the OE.  

The BLAST results suggested the mini-transposon had inserted 6 bp from the 3' end of 

uspA gene, splitting the 846 bp gene into two parts of 6 bp and 840 bp.  To confirm 

this, insertion junctions at both the IE and the OE ends of mTn5SSgusA31 were amplified 

using primers designed from the CIAT 899 genome (GenBank: CP004015.1). Primer IE-F 

(Table 4.5), complementary to Xanthine phosphoribosyltransferase gene downstream of 

uspA in the CIAT 899 genome, and IE-R (Table 4.5), complimentary to Sp/Sm region 

of mTn5SSgusA31, were successfully used to amplify 750 bases around the IE (Figure 

4.9).  Similarly, primer OE-F (Table 4.5), binding to gusA in mTn5SSgusA31, and OE-R 

A B C
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(Table 4.5), binding to uspA, amplified 800 bp around the OE junction in CIAT 899-

GE (Figure 4.9).  

 

 

Figure 4.9: Image of agarose gel electrophoresis of PCR products following amplifications of 

the IE and OE junctions of mTn5SSgusA31 in the genome of CIAT 899-GE.  Lanes 1 and 2 are 

loaded with the products of amplifying the IE junction with the primer pair IE-F and IE-R. 

Lanes 3 and 6 are reactions of the negative controls. Lanes 4 and 5 are loaded with the products 

of amplifying the OE junction with the primer pair OE-F and OE-R. M=1 kb DNA ladder 

(Promega) 

 

Sequences of the products from the above amplifications gave the expected hits in 

BLAST, thereby confirming the insertion point of mTn5SSgusA31 in the genome of 

CIAT 899-GE. A reconstruction of the insertion point is shown in Figure 4.10. 
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Figure 4.10: A schematic representation of the insertion point of mTn5SSgusA31 in the 

chromosome of R. tropici CIAT 899-GE. Insertion occurred 6 bp upstream of the universal 

stress protein A gene (uspA) stop codon. uspA neighbourhood is shown as well as the map of 

the transposon. The symbiotically active PnifH is labelled P. Map of mTn5SSgusA31 adapted 

from that of Wilson et al. (1995). uspA locus tag: RTCIAT899_CH07670 

*Xanthine phosphoribosyltransferase **molybdenum cofactor synthesis domain-containing protein 
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4.3.2 Stable broad-host-range CelB plasmid (pGM01) expressed in rhizobia   

4.3.2.1 Construction of pGM01 

The CelB-mNeonGreen fragment was synthesized and cloned into pMK-RQ to form a 

4, 647 bp pMK-RQ_celBmNG. Restriction digestion of pMK-RQ_celBmNG with 

XbaI and PstI released a 2,337 bp celB-mNeonGreen fragment and other smaller 

fragments (Figure 4.11). The celB-mNeonGreen fragment was successfully purified 

from the gel and ligated to the pJP2 backbone, following the excision of iudA with XbaI 

and PstI (Figure 4.11), to form a 12,736 bp pGM01 (Figure 4.12).  

 

 

 

Figure 4.11: Gel image of electrophoresed products of restriction digestion of pJP2 (Lanes 1 to 

4) and pMK-RQ_celB-mNG (Lane 5) with XbaI and PstI. Lane 6 was loaded with uncut pJP2. 

Products circled in green were excised and ligated together to form pGM01. M=1 kb DNA 

ladder (Promega) 
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Figure 4.12: Map of pGM01 plasmid (12,736bp). pGM01 has a pJP2 backbone (Prell et al., 

2002) carrying the par stability region, replication protein gene, ampicillin and tetracycline 

resistance genes. Additionally, pGM01 carries genes coding for CelB and mNeonGreen protein. 

Note: The green fluorescent protein, mNeonGreen, was poorly expressed in the vector 

and was therefore not used as a marker in any work presented in this thesis.    

 

4.3.2.2 Conjugation of pGM01 into rhizobia and expression of thermostable β-

glucosidase 

The plasmid pGM01 was successfully transformed into E. coli ST18 and conjugated into 

39 strains of rhizobia by bi-parental mating. Unlike the wild types, transconjugants grew 

in media containing tetracycline.  The presence of the plasmid in the transconjugants 

was further confirmed by the amplification of a 589 bp region using the primer pair 

PGM9459F and PGM1537R (primer pair internal of celB) (Figure 4.13).  
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Figure 4.13: Gel electrophoresis image of PCR products with PGM949F and PGM1537R 

primer pair.  Lane 1: pJP2 as a control, Lane 2: pGM01 as a positive control, Lane 3: NAK 

103C*, Lane 4: 8002C*, Lane 5: NAK 103, Lane 6: 8002, and Lane 7: No DNA. Templates 

containing the celB region show a strongly amplified 589bp fragment (Lane B, C, and D). 

Marker: 1 kb Promega ladder.  

Additionally, heat treating transconjugants by incubation at 70ºC for 45 min before the 

addition of magenta-Gal, confirmed the product of the engineered celB to be heat stable, 

as, in contrast to the transconjugants, wild-types did not show any β-galactosidase 

activity following heat treatment (Figure 4.14).  

 

Figure 4.14:  β-galactosidase activity (indicated by magenta colour) of (A) E. coli BW27067 (B) 

E. coli ST18 (C) NAK 103 (D) E. coli ST18C and (E)NAK 103C cell lysates following the 

addition of Magenta-gal. Tubes F, G, H, I and J are cell lysates of strains in A, B, C, D and E, in 

corresponding order, but with Magenta-gal added following heat treatment. The two 

transconjugants, E. coli ST18C and NAK 103C, in tubes I and J respectively, retain β-

galactosidase activity after heat treatment. 
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4.3.2.3 Effect of pGM01 on growth rate and morphology of rhizobia  

Rhizobia carrying pGM01 were compared by colony characteristics to their wild types. 

On both selective and non-selective media, the transconjugants were indistinguishable 

from their unmarked wild-types by characteristics such as colony size, colour, elevation 

and mucoidness (Figure 4.15).  

 

Figure 4.15: Colonies of six strains (NAK 287, NAK 334, NAK 210, NAK 239, CIAT 899 and 

NAK 120) and their celB carrying-pGM01 transconjugants (NAK 287C, NAK 334C, NAK 

210C, NAK 239C, CIAT 899C and NAK 120C)  after 4 d on TY agar plates with or without 

tetracycline at 28ºC. Each photo panel contains one wild-type strain on plain TY and it’s 

transconjugant on plain TY and TY with tetracycline. No morphological differences were noted 

between transconjugants and their unmarked wild types. Scale bar is 2mm.  
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To further test for similarities or differences between the marked strains and their 

unmarked wild-types, growth rates were determined, by spectrophotometric means, for 

a subset of seven strains. The growth curves were highly similar (Figure 4.16) and the 

mean generation times were similar between the transconjugants and the wild-types 

(p>0.05).  

 

 

Figure 4.16: Graphs showing truncated growth curves of strains CIAT 899, NAK 120, NAK 

210, NAK 287, NAK 334, NAK 239 and NAK 103 carrying pGM1 (---) and their wild-types 

(—). The wild-types and their transconjugants were grown in non-selective 20 mL TY broth at 

28°C with aeration (220 rpm), and OD600nm determined 14 times over a 27 h period.   

 

4.3.2.4 Stability of pGM01 in rhizobia in the absence of antibiotic selection 

Three transconjugants carrying pGM01 were assayed for their ability to retain the 

pGM01 plasmid in the absence of antibiotic selection over approximately 80 

generations. No loss of pGM01 was observed in NAK 120C and NAK 210C over the 

80 generations (Figure 4.17). In the absence of selection, and in contrast to NAK 120C 

and NAK 210C, NAK 334C lost pGM01 and after 22 generations, only approximately 

NAK 120CIAT  899 NAK 210 NAK 287 NAK 334 NAK 239 NAK 103
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50% of cells still retained pGM01. The assay was terminated at approximately 80 

generations, at which point only 7% of NAK 334C cells still harboured pGM01 (Figure 

4.17). 

 

 

Figure 4.17:  Maintenance of pGM01 plasmid in strains NAK 120, NAK 210 and NAK 334 in 

the absence of antibiotic selection. Strains were grown to mid-log phase in TY broth with 

tetracycline and sub-cultured in TY broth without antibiotic. The culture was allowed to grow to 

mid-log and then diluted. This was done for eight consecutive times. Differences in viable 

counts at start and end time points were used to calculate generations elapsed while the 

proportion of cells with pGM01 at each time point was determined by replica patching 100 

colonies onto TY plates with tetracycline.   

 

 4.3.3 Competitiveness of strains against CIAT 899-GE for nodulation of P. 

vulgaris 

Nodule occupancy was determined by visual observation of the nodules following 

staining of roots on all but four treatments that had poor plant growth. Nodules 

occupied by CIAT 899-GE were blue while those occupied by strain carrying pGM01 

were magenta (Figure 4.18).  Occasionally, nodules stained both blue and magenta, 
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indicating dual infections (Figure 4.19). Additionally, some nodules were either fully 

unstained or had unstained portions (Figure 4.20). Inoculation with seven strains 

resulted in unstained or partially stained nodule phenotypes, representing 18% of strains 

tested. The seven were NAK 103, NAK 287, NAK 299, NAK 315, NAK 334, NAK 

368 and NAK 407. In the calculation of competitiveness indices, fully unstained nodules 

were scored as magenta as these are likely to have arisen from nodulation by the celB-

marked strains as no nodules were found in the un-inoculated treatments and, 

additionally, no unstained nodules were seen when plants were only inoculated with 

CIAT 899-GE.  Re-isolation from the unstained nodules was not possible because roots 

had been heat-treated as part of the staining process. Dual occupied nodules, as 

indicated by portions of magenta and blue or unstained and blue, were omitted from 

consideration in the computation of the competitiveness of the strains.  

 

 

Figure 4.18: P. vulgaris root nodules following co-inoculation with a gusA marked R. tropici CIAT 

899-GE (blue nodules) and strains carrying the celB encoding plasmid, pGM01 (magenta 

nodules). The identity of the pGM01-carrying strain is indicated on each photo. Scale bar is 1 

cm.  
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Figure 4.19: Dual nodule occupancy in P. vulgaris root nodules following co-inoculation with a 

gusA marked R. tropici CIAT 899-GE (blue portions) and strains carrying the celB encoding 

plasmid, pGM01 (magenta portions). The identity of the pGM01-carrying strain is indicated on 

each photo. Scale bar is 1 cm.  

 

 

 

Figure 4.20: Fully unstained or partially unstained P. vulgaris root nodules following co-

inoculation with a gusA marked R. tropici CIAT 899-GE and strain NAK 407, carrying the celB 

encoding plasmid, pGM01. Scale bar is 1 cm. 
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The competitiveness of co-inoculated strains was calculated as described in Section 

4.2.2.3 (Eq. 4.2). CIAT 899 marked with celB (CIAT 899C) was found to be of equal 

competitiveness to CIAT 899 marked with gusA (CIAT 899-GE) (Figure 4.21). A 

competitiveness value of 1 is indicative of competitiveness equal to that of CIAT 899-

GE. Seven (7) strains were found to out-compete CIAT 899-GE for nodulation of P. 

vulgaris while 17 strains were out-competed by CIAT 899-GE (LSD, P<0.05) (Figure 

4.21). Some of the more competitive strains were NAK 103, NAK 287, NAK 315 and 

NAK 277. Very uncompetitive strains included Rhizobium sp. strain 8002, NAK 303 and 

NAK 367.  

 

 

Figure 4.21: Graph showing the competitiveness of 35 strains for nodule occupancy of P 

vulgaris cv. KK08 nodules, against CIAT 899-GE. Columns are means of 2-6 plant replicates. 

Bar ± 1 standard error of mean. Competitiveness Index (CI) is defined as test strain (carrying 

pGM01)-to-CIAT 899-GE ratio in the nodules divided by test strain-to-CIAT 899-GE ratio in 

the inoculum. A CI of 1 indicates equal competitiveness to CIAT 899-GE. 
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4.4 Discussion 

4.4.1 Dual marker system 

The work presented in this chapter succeeded in developing and evaluating pGM01, an 

IncPα broad-host-range plasmid carrying celB marker gene, for suitability in marking 

diverse rhizobia. pGM01 was found to be stably maintained in most the rhizobial strains 

tested, both in vitro and in nodules. The plasmid was rapidly mobilizable into rhizobia by 

bi-parental conjugation, facilitating the screening of a large number of strains for 

competitiveness in nodulating P. vulgaris.  

In this study, the celB gene on the pGM01 plasmid was expressed in free-living and 

symbiotic rhizobia and importantly, all tested marked strains were not altered in their 

growth characteristics or their competitiveness for nodulation of P. vulgaris (Figures 4.15, 

4.16 and 4.21). The lack of a detrimental phenotype was in agreement with observations 

by Duodu et al. (2008) who noted no detrimental effects on growth, survival and 

nodulation of tagging R. leguminosarum bv. trifolii strains with plasmid-borne GFP or 

DsRed. Although Corich et al. (2001) reported the formation of tiny nodules by strains 

carrying a plasmid-borne lacZ marker, the phenotype is likely attributable to an over-

expression of the lacZ gene under the strong synthetic promoter (Psyn).  In pGM01, the 

celB expression is driven by Ptac, a constitutive promoter that is weakly expressed in 

Rhizobium spp. (Giacomini et al., 1994) and this may explain the lack of any atypical 

nodule phenotypes or aberrant growth rates indicative of a plasmid-related energy drain 

on the marked strains.  

The broad host range nature of pGM01 was confirmed by the successful transfer, 

expression and maintenance of the plasmid in diverse genetic backgrounds that included 

R. tropici (CIAT 899), R. sophoriradicis (NAK 387), R. phaseoli (NAK 458, NAK 287) R. 

paranaense (NAK 120), R. etli (NAK 157) and others of potentially undescribed taxa 

(NAK 266, NAK 210, NAK 312, NAK 358) (Figure 4.21). However, despite pGM01 

having an RK2 backbone belonging to the IncPα family of plasmids shown to be stably 

maintained in a wide range of Gram-negative bacteria (Easter et al., 1998), plasmid loss 

was observed in some strains. For example, NAK 334C lost pGM01 when grown in vitro 

in the absence of antibiotic selection (Figure 4.17). Unstained nodules (Figure 4.20) were 

observed following inoculation of plants with seven of the 35 marked strains, including 

NAK 334C, indicating a loss of plasmids in these strains.   
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Loss of introduced plasmids has been observed before in rhizobia (Corich et al., 2001; 

Duodu et al., 2008; Gage et al., 1996) but instability in rhizobia of plasmids bearing the 

RK2 backbone is unknown. The RK2 backbone encodes two stability mechanisms that 

had previously demonstrated to be efficient in a narrow range of rhizobia (Prell et al., 

2002; Weinstein et al., 1992). The stability mechanisms are encoded by the parCBA/DE. 

The parCBA operon encodes an active partitioning system that distributes plasmids 

within the cell to ensure daughter cells receive a plasmid upon division (Easter et al., 

1998; Sobecky et al., 1996) while parDE is responsible for post-segregational killing 

relating to a toxin and an antitoxin (TA) system. The reason for pGM01 instability in 

some rhizobial backgrounds will need to be investigated. One possibility is a 

degradation of the toxin-antitoxin (TA) stability system encoded by pGM01 through 

cross-reaction with a homologous or different TA system naturally encoded by some 

strains (Goeders & Van Melderen, 2014). In spite of the instability observed with some 

strains, pGM01 was stable in >80% of the strains tested.   

For the simultaneous detection of nodule occupants in P. vulgaris during competition 

studies, strains carrying pGM01 were co-inoculated with CIAT 899 marked with gusA 

using a mini-transposon.  The aim of the rhizobial competition studies was to 

investigate the extent to which the individual Kenyan strains limit the occupancy of P. 

vulgaris nodules by CIAT 899 in Kenyan soils. Therefore, the chromosomal marking of 

CIAT 899 using a mini-transposon was found suitable as only one reference strain 

needed to be marked.  

From this work, two CIAT 899 mutants with a chromosomal gusA marker gene are now 

available. In CIAT 899-GE, the gusA is expressed from a symbiotically active PnifH that, 

as previously reported (Wilson et al., 1995), resulted in strong gusA expression localized 

in nodules (Figure 4.6C). The mTn5SSgusA31 in CIAT 899-GE was found inserted in 

the universal stress protein A gene (uspA) (Figure 4.10). The exact biochemical role of 

uspA in bacteria is unknown but it is upregulated in stress conditions such as exposure 

to UV light, carbon starvation, heat shock and metals (Kvint et al., 2003). Two other 

genes in the annotated CIAT 899 genome (GenBank: PC40615) are designated putative 

uspA genes (loci tags RTCIAT899_CH02385 and RTCIAT899_PC04615), but a low 

amino acid identity of the two to the uspA disrupted in CIAT 899-GE suggested the 

three genes are not functionally equivalent.  
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When subcultured, the uspA insertion mutant had a considerably longer lag phase than 

was seen with the wild-type but after the lag phase, the mutant grew at a rate 

indistinguishable from that of the wild-type (Figure 4.5).  A similar growth phenotype 

was observed in E. coli defective in UspA synthesis and was linked to a possible role of 

UspA in the flow of carbon in the central metabolic pathways of E. coli (Nyström & 

Neidhardt, 1993). However, CIAT 899-GE (uspA::mTn5-Sp/Sm-gusA) was unaltered in 

nodulation and competitiveness, thus the gene is unlikely to be involved in symbiotic N2 

fixation in P. vulgaris.  

4.4.2 Competitiveness of strains against CIAT 899 

CIAT 899 was found to be more competitive than a majority of the 34 strains isolated 

from Kenyan soils, with only approximately 20% of the strains outcompeting CIAT 

899.  

Subsequent analysis involving effectiveness data (Chapter 3) and the competitiveness 

data revealed a weak positive correlation between effectiveness and competitiveness of 

strains (R2=0.23). To illustrate this, NAK 312 (poorly effective) and NAK 287 

(effective) were at least as competitive as CIAT 899 while NAK 210 (ineffective) and 

NAK 458 (effective) were less competitive than CIAT 899. Strains that were both 

competitive and effective and, therefore, offer promise as future P. vulgaris inoculant 

strains include NAK 227, NAK 288, NAK 287, NAK 157, NAK 104, and NAK 214.  

CIAT 899 is the major P. vulgaris inoculant in Kenya (Bala et al., 2011). Therefore, 

findings in this chapter, in addition to revealing potential inoculant strains, reveal the 

rhizobial genotypes likely to be permissive or restrictive to the successful nodulation of 

P. vulgaris by CIAT 899 in Kenyan soils.  

4.4.3 Concluding remarks 

Work in the chapter developed and tested pGM01, a broad-host-range plasmid carrying 

celB that was found suitable for use in rhizobial competition studies. The introduction of 

the plasmid into rhizobia was rapid. For the majority of the strains, the plasmid was 

expressed and maintained stably in vitro and in nodules. Consequently, pGM01 is a 

useful tool for nodule occupancy studies. pGM01 was combined with a second marker 

borne on a mini-transposon to successfully screen 34 rhizobial strains isolated from 

Kenyan soils for occupancy of P. vulgaris nodules in a competitive scenario.  
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However, the competition experiments conducted involved the application of 

competing strains as liquid cultures on germinating seeds, and while informative as a 

preliminary analysis, do not mirror competition scenarios as they occur in the field 

following inoculation.  Combining pre-inoculated soil and seed inoculation may be a 

better way to mimic competition under field settings and therefore arrive at more 

accurate predictions of the competitive nature of strains.  
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The determinants of  inoculation 
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5.1 Introduction 

 The inoculation of P. vulgaris with rhizobia, to boost N2 fixation and enhance yields, is a 

common practice in many parts of the world. However, the outcomes of inoculation 

vary greatly, with success and failure reported (Giller et al., 1998; Hungria et al., 2000; 

van der Bom, 2012). This variability in response to inoculation is largely due to the 

presence of indigenous rhizobia that compete with the inoculant for nodule initiation 

sites on roots of P. vulgaris (Thies et al., 1991b).   

A considerable amount of research effort has been expended to understand rhizobial 

competition, especially towards elucidating the role of population densities of 

indigenous rhizobia in determining responses to inoculation. The population density of 

soil rhizobia is believed to be inversely related to the inoculation response (Thies et al., 

1991b). However, there is no unanimity in literature on the density or nature of 

indigenous rhizobia capable of inhibiting a response to inoculation. For example, while 

as few as 93 or  700  rhizobia per g of soil can present an insurmountable barrier to 

successful inoculation of P. vulgaris (Thies et al., 1991a; Vargas et al., 2000), inoculation 

response has been achieved in soils with 103 to 105 rhizobia per g of soil (Hungria et al., 

2000; Hungria et al., 2003; Vlassak et al., 1996). These variations in responses at 

different rhizobial densities indicate that other factors, beside the population density of 

indigenous rhizobia, strongly influence the outcomes of inoculating P. vulgaris.  

One possible factor is the genotype(s) of the background rhizobia. Rhizobia differ in 

many attributes such growth rates, carbon-source preferences, ability to colonise the 

rhizosphere of legumes and affinities towards legume hosts (Aguilar et al., 2004; Yates et 

al., 2008). Such strain differences are expected to lead to variable inoculation outcomes. 

However, no known studies have investigated the importance of different background 

rhizobial genotypes to the outcomes of inoculating P. vulgaris. 

Inoculant quality is a second factor that might result in variable responses to the 

inoculation of P. vulgaris (Graham & Ranalli, 1997). A good quality inoculant contains at 

least 109 cells of rhizobia g-1 carrier and delivers at least 105 rhizobia per seed to large 

seeded legumes (Catroux et al., 2001a; Hungria et al., 2005; Lupwayi et al., 2000). In 

some instances, the population threshold is not maintained throughout the shelf-life of 

the inoculants (Balume et al., 2015) leading to suboptimal numbers being applied onto 

seeds. As was shown by Hume and Blair (1992) on soybean, applying a suboptimal 
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inoculum dosage onto a specifically nodulating legume in soils with few or no 

compatible rhizobia leads to a greatly reduced response to inoculation.  P. vulgaris 

nodulates promiscuously and is commonly grown in soils with  104-106 rhizobia per g of 

soil (Alberton et al., 2006; Andrade et al., 1999; Anyango et al., 1995; Hungria et al., 

2000; Kawaka et al., 2014; Langwerden, 2014) and the role of inocula dosage in 

determining response to inoculation in high rhizobial backgrounds is unclear. 

A third factor that might influence inoculation outcomes is soil mineral N. In addition 

to the potential of soil N to suppress or inhibit nodulation and N2 fixation (Hartwig, 

1998), soil N can alter the nodule occupancy outcomes in multi-strain environments. 

The alteration in nodule occupancies is believed to be either due to differences in nitrate 

tolerance by the strains (Vargas et al., 2000) or the production of altered root exudates 

by the host that interact with the symbioses (Caballero-Mellado & Martinez-Romero, 

1999). The effect of N is, however, equivocal as other studies have found soil N to have 

no role in determining the infection success of one strain over another (Abaidoo et al., 

1990; Glyan’ko et al., 2009). Farmers grow and inoculate P. vulgaris in soils that vary in N 

and knowledge on the influence of soil N on the establishment and success of 

inoculants would be valuable.  

Studies in this chapter aimed to improve the understanding of the outcomes of P. 

vulgaris inoculation by investigating the role of the rhizobial genotype, background 

rhizobial population size, inoculant dosage and mineral N in the nodule occupancy 

outcomes of CIAT 899, in the presence of high soil numbers of R. paranaense NAK 120, 

Rhizobium sp. NAK 210 and R. phaseoli NAK 287, all isolated from Kenyan soils. The 

study applied the dual marker system developed in Chapter 4 to identify nodule 

occupants and to enumerate rhizobia at different stages of the two experiments 

conducted.  
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5.2 Materials and Methods 

5.2.1 Bacterial strains and P. vulgaris cultivar 

Studies in this chapter used CIAT 899-GE, CIAT 899C, and three strains from Kenyan 

soils viz., R. paranaense NAK 120C, Rhizobium sp. NAK 210C and R. phaseoli NAK 287C. 

CIAT 899-GE carries genes for gusA and resistance to spectinomycin (Section 4.3.1). 

NAK 120C, NAK 210C, NAK 287C and CIAT 899C carry pGM01 which codes for 

celB and tetracycline resistance (Section 4.3.2). Marked strains were as competitive and 

fixed similar amounts of N as parental strains (Section 4.3.1.2; 4.33). In Experiment 2 of 

this chapter, CIAT 899-GE was used as the seed inoculant and the rest were, 

independently, used as soil inocula. The ‘soil strains’ differed in their relative 

effectiveness and competitiveness (Figure 5.1) and were therefore suitable in evaluating 

the effect of different soil rhizobial genotypes on the nodule occupancy of a seed-

applied inoculant strain (CIAT 899-GE). All experiments were conducted with P. vulgaris 

cv. Kenya Tamu.  

 

Figure 5.1: The relative effectiveness (A) and competitiveness (B) of NAK 120C, NAK 210C, 

NAK 287C and CIAT 899C.  Effectiveness was calculated by expressing shoot dry weights 

(SDW) as a percentage of SDW of CIAT 899. Competitiveness Index was determined from 

liquid coinoculations by dividing strain-to-CIAT 899-GE ratio in the nodules by strain-to-CIAT 

899-GE ratio in the inoculum.  
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5.2.2 Experiment 1: Rhizosphere competence of strains 

Bacterial strains differ in their ability to survive and multiply in the rhizosphere of plants 

and a preliminary experiment was carried out to determine whether differences in 

rhizosphere competence were responsible for differences in competitiveness (for 

nodulation) of the four rhizobial genotypes. To do this, NAK 287C, NAK 210C and 

NAK 120C were co-inoculated with CIAT 899-GE onto P. vulgaris at a low density as 

liquid inoculum and the proportion of each strain in the rhizosphere and in nodules 

subsequently determined.  

Inoculations 

The five strains were grown in TY broth with appropriate antibiotic selection and 

suspensions of 2 × 103 cells mL-1 made in sterile deionised water (Section 4.2.4). 

Suspensions were mixed in a 1:1 ratio to give four combinations viz.; CIAT 899C/CIAT 

899-GE, NAK 120C/CIAT 899-GE, NAK 210C/CIAT 899-GE and NAK 

287C/CIAT 899-GE. For each combination, a 1 mL aliquot was removed and used for 

viable cell counts by the Miles and Misra method (O’Hara et al., 2016) on TY (plain TY, 

TY with spectinomycin (200 µg mL-1), and TY with tetracycline (20 µg mL-1) and 1 mL 

of the remainder applied per pre-germinated seed at sowing in 3.5 L pots filled with a 

steam-sterilized sandy soil (2 ppm N, 0.08% (w/w) organic C, pH (CaCl2) 7.1). Seeds in 

the un-inoculated control treatment received 1 mL of sterile de-ionized water per seed. 

Treatments were replicated in eight pots, each sown with two seeds and randomized in a 

naturally-lit glasshouse maintained at 22°C. On emergence, plants were thinned to one 

per pot. All other procedures, including maintenance of plants, were as per Section 

3.2.2.  

Assessing rhizosphere colonization 

Seven days after inoculation, four pots were selected from each treatment, plants 

carefully removed from the pots and roots gently shaken to remove excess soil. The 

roots, together with tightly adhering soil, were transferred into pre-weighed 50 mL 

sterile falcon tubes, weighed, and diluted 10-fold (w:v) with sterile water before shaking 

for 30 min at medium speed on an Analite wrist shaker (Analite Pty, Australia). Viable 

cell counts of the resulting suspensions were then determined by the Miles and Misra 

technique on TY agar, TY with spectinomycin (200 µg mL-1), and TY with tetracycline 

(20 µg mL-1).  
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Assessing nodule occupancies 

Plants in the remaining pots were harvested 17 d after inoculation and roots double 

stained with X-Glc and Magenta-Gal (Section 4.2.4). Nodules of each colour were then 

counted and the competitiveness of each strain, against CIAT 899-GE, for nodulation 

of the host was calculated (Section 4.2.2.3). 

5.2.3 Experiment 2: Evaluating the effect of four factors on nodule 

occupancy by seed-applied CIAT 899-GE 

Experimental design 

In total, four factors were evaluated for their effect on nodule occupancy by seed-

applied CIAT 899-GE: soil rhizobial genotypes (4), soil population densities (2), seed 

inocula densities (2), and soil N (2). The effect of supplementary N on nodule 

occupancy was only tested in soils inoculated with NAK 120C and NAK 210C and an 

incomplete factorial experiment was designed (Table 5.1). All combinations had four 

pot replicates, each with two plants. Plants were arranged in randomized blocks in a 

naturally-lit glasshouse maintained at 22°C.  

Inoculation of potted soil to 102 and 105 rhizobia g-1 of dry soil 

To facilitate the evaluation of the effect of soil population densities on the nodule 

occupancy of seed-applied CIAT 899-GE, two distinct populations of NAK 120C, 

NAK 210C, NAK 287C and CIAT 899C were established. The four strains were grown 

to mid-log phase in TY broth with appropriate antibiotics and cell suspensions with an 

OD600nm of 0.2 (approximately 2 × 108 cells mL-1) separately prepared in sterile deionised 

water following washing of cells (Section 4.2.4).  These suspensions were further serially 

diluted in sterile de-ionized water and approximately 2.72 × 105 and 2.72 × 108 cells 

separately suspended in 80 mL aliquots of sterile water. These numbers resulted in 102 

and 105 rhizobia per gram of dry soil respectively when inoculated into 3.2 kg sandy soil 

(2 ppm N, 0.08% (w/w) organic C, pH (CaCl2) 7.1) containing 15% moisture.  

The 80 mL bacterial suspensions were aseptically (in laminar flow hood) mixed with the 

steam-sterilized pot soil in a zip lock bag and the soil returned into the pots. At this 

point, 2 g of the inoculated soil was removed from each pot and together with a soil 

sample from an uninoculated pot, used to enumerate bacteria by the Miles & Misra 

technique on TY medium supplemented with tetracycline (within 2-4 h).  
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Table 5.1: Combinations in the incomplete factorial design used (Experiment 2) 

 FACTORS 

 Soil 
rhizobial 
genotype 

Population 
density (g-1 

soil)* 

Inoculum rate 
(CIAT 899-
GE seed-1)** 

Nitrogen*** 

1 NAK 120C 102 104 0 

2 NAK 120C 102 106 0 

3 NAK 120C 102 104 1 

4 NAK 120C 102 106 1 

5 NAK 120C 105 104 0 

6 NAK 120C 105 106 0 

7 NAK 120C 105 104 1 

8 NAK 120C 105 106 1 

9 NAK 210C 102 104 0 

10 NAK 210C 102 106 0 

11 NAK 210C 102 104 1 

12 NAK 210C 102 106 1 

13 NAK 210C 105 104 0 

14 NAK 210C 105 106 0 

15 NAK 210C 105 104 1 

16 NAK 210C 105 106 1 

17 NAK 287C 102 104 0 

18 NAK 287C 102 106 0 

19 NAK 287C 105 104 0 

20 NAK 287C 105 106 0 

21 CIAT 899C 102 104 0 

22 CIAT 899C 102 106 0 

23 CIAT 899C 105 104 0 

24 CIAT 899C 105 106 0 

Controls     

25 0 0 0 0 

26 0 0 0 2* 

*Rhizobial densities at soil inoculation **from use of inoculant carrying 107 or 109 rhizobia g-1 
of peat ***0=no nitrogen, 1=1.2 mL of 1 M ammonium nitrate pot-1 week-1, 2=2.4 mL of 1 M 

ammonium nitrate pot-1 week-1 
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 Pots containing inoculated soils were then covered with cling wrap and kept in a 

shaded glasshouse maintained at 22°C for 4 d before sowing.  

Preparation of inoculants and seed inoculation  

To evaluate the effect of seed inoculation rate on nodule occupancy, two peat 

inoculants of CIAT 899-GE carrying 109 and 107 rhizobia g-1 peat were prepared and 

used to inoculate P. vulgaris seed.  

To prepare the inoculant carrying 109 rhizobia g-1 peat, 50 mL of a stationary phase 

culture of CIAT 899-GE was injected into 150 g of sterile peat and cured for 10 d at 

28oC. At the end of the curing period, five 1 g samples were removed from the prepared 

inoculant and the concentration of rhizobia determined by the Miles & Misra technique. 

The inoculant carrying 107 rhizobia g-1 peat was prepared 2 hours before it was required 

for seed inoculation. 1 g of the cured inoculant carrying 109 rhizobia g-1 peat was mixed 

into 99 g of sterile peat removed from a 150 g packet of peat injected with 50 mL sterile 

deionised water. The population of rhizobia in the new inoculant was assessed as 

described earlier for the inoculant carrying 109 rhizobia g-1 peat.  

Seeds were inoculated with the two inoculants prepared above to obtain two seed 

inocula dosages using standard techniques (Yates et al., 2016b). Briefly, 2 parts of 40% 

(w/v) gum arabic were separately mixed with 1 part of peat carrying 109 rhizobia g-1 or 

107 rhizobia g-1 peat. To inoculate approximately 200 seeds weighing 132 g with any of 

the inoculants, the seeds were surface sterilised (Section 2.2.2) and left to dry in the 

laminar flow hood prior to mixing with 3 mL of the inoculant-sticker slurry in a zip lock 

bag. Inoculated seed was spread out on sterile paper in a laminar flow hood and left to 

dry for 2 h. Five seeds from each treatment were randomly selected, set aside and later 

used for the determination of rhizobia numbers per seed by the Miles and Misra method 

following a shaking of each seed in 10 mL sterile water for 10 mins on an Analite wrist 

shaker (Analite Pty, Australia). Of the remaining seeds, two were sown per pot 

containing soil rhizobia. For the uninoculated treatment and the N-control treatments, 

surface sterilised seed was sown into steam sterilised soil. Except for the nitrogen 

treatments described below, plants were maintained with nutrient solutions and sterile 

deionised water (Section 2.2.2). Three weeks after sowing, the pots were flushed with 

sterile deionised water to prevent salt accumulation in pots and application of nutrients 

resumed. Plants were harvested 30 d after sowing, roots separated from the shoots, 
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rinsed then double stained with X-Glc and Magenta-Gal (Section 4.2.4) before counting 

of nodules by colour.  

Nitrogen treatments 

To assess the effect of soil N on nodule occupancies, two levels of N were maintained 

in the NAK 120C and NAK 210C treatments. Pots either received no N or received 0.6 

mL of 1 M ammonium nitrate per pot twice per week. The uninoculated N-controls 

received 1.2 mL of ammonium nitrate per pot twice per week.  

Monitoring of rhizobia populations in potted soils 

The population size of the soil rhizobia in pots were assessed at sowing, 10 d after 

planting and at 30 d after planting. Approximately 2 g of soil was extracted from 2 pots 

in each treatment from between 5 to 10 cm below the pot surface using a sterile straw 

core. The soil extraction was approximately 5 cm away from the nearest plant. The exact 

weight of the samples was then determined before viable cell counts by the Miles and 

Misra plate count on TY containing tetracycline, with the initial 10-fold dilutions done 

on a weight to volume basis.  

5.2.4 Data analysis 

Data were analysed by means with standard errors, Pearson’s correlation and where 

applicable, an analysis of variance (ANOVA) using SPSS version 22 (IBM Corp, 

released 2013). ANOVA was preceded by a test for normality and equal variances 

(Levene’s test). Tukey’s HSD was then used when ANOVA was found to be significant 

(statistical significance was set at 0.05). Competitiveness Index was calculated as per 

Section 4.2.2.3. 
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5.3 Results 

5.3.1 Experiment 1: Rhizosphere competence of strains  

To assess the role of rhizosphere competence in nodule occupancy and strain 

competition, the four rhizobial genotypes were co-inoculated with CIAT 899-GE at low 

densities (approximately 1,900 rhizobial cells seed-1) and rhizosphere counts and nodule 

occupancies determined (Table 5.2).  

When CIAT 899C and CIAT 899-GE were co-inoculated at an equal ratio, the ratio was 

maintained in the rhizosphere and in the nodules (Table 5.2).  The NAK 287C/CIAT 

899-GE co-inoculation resulted in a decline in the proportion of NAK 287C from 44% 

at inoculation to 14% in the rhizosphere as determined on tetracycline plates after 7 d. 

Unstained nodules were observed on plants in this treatment (Figure 5.2:C) and as these 

were attributabed to curing of pGM01 from NAK 287C (no nodules were found on 

uninoculated plants or unstained nodules in any other treatments), all unstained nodules 

were regarded as occupied by NAK 287C. Consequently, although NAK 287C appeared 

to multiply poorly in the rhizosphere (14%) in comparison to CIAT 899-GE (86%), 

50% of the nodules were occupied by NAK 287C. However, the true density of NAK 

287C in the rhizosphere of plants may have been higher than recorded because cells 

cured of pGM01 could not be enumerated on tetracycline plates.  

In the NAK 210C/CIAT 899-GE treatment, 43% of the cells in the inoculum were 

NAK 210C but this proportion fell to 2% in the rhizosphere, resulting in 5% nodule 

occupancy (Table 5.2). In this treatment, greater rhizosphere multiplication of CIAT 

899-GE resulted in a superior nodule occupancy. Lastly, the proportion of NAK 120C 

in the NAK 120C/CIAT 899-GE treatment declined from 41% at inoculation to 14% 

in the rhizosphere.  Surprisingly, the strain did not occupy any nodules, suggesting that 

in addition to rhizosphere competence, other factors may influence nodule occupancy 

(or competitiveness) of a strain.  
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Table 5.2: Measured parameters following inoculation of CIAT 899-GE separately with CIAT 899C, NAK 120C, NAK 210C and NAK 287C 

†STRAINS INOCULATION RHIZOSPHERE NODULATION 
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899C|899-GE 824±*11|1049±17 44|56 5.97×106±4×105|7.53×106±1×106 45|55 65.8±9|83.8±16 44|56 149.6±25 
        
NAK 287C|CIAT 899-GE 837±9|1063±6 44|56 1.82×106±6×105|1.17×107±2×106 14|86 66.4±10¥|65.6±11 50|50 132±21 
        
NAK 210C|CIAT 899-GE 857±55|1137±61 43|57 1.80×105±5×104|1.20×107±2×106 2|98 4±2|82.5±15 5|95 86.5±17 
        
NAK 120C|CIAT 899-GE 760±21|1073±60 41|59 2.01×106±6×105|1.28×107±3×106 14|86 0|87.5±29 0|100 87.5±29 
† Strains co-inoculated together, separated by a bar. Subsequent data is also similarly separated to correspond to relevant strain 

*Values after ± sign indicates standard error of means 
‡Rhizosphere numbers are given per g of rhizosphere matter (roots and adhering soil) 
¥unstained nodules were counted as occupied by NAK 287C as they were inferred to arise from infection by NAK 287C cells that had lost pGM01 
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Figure 5.2: Photographs of stained P vulgaris cv. Kenya Tamu root nodules 17 d after 

inoculation with (A) NAK 120C/CIAT 899-GE (B) NAK 210C/CIAT 899-GE (C) 

NAK 287C/CIAT 899-GE and (D) CIAT 899C/CIAT 899-GE. Unstained nodules 

(arrow) were seen in the NAK 287C/CIAT 899-GE treatment (C).  
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5.3.2 Experiment 2: Competition between seed-inoculated CIAT 899-GE 

and soil-borne rhizobia 

5.3.2.1 Rhizobial population densities in inoculated soil  

Low cell density inoculation  

Population estimates were not obtained from samples taken 2-4 h after soil inoculation 

as cell numbers were below the detection threshold for the enumeration method used. 

At planting, the populations of the four strains ranged between 4.4 × 104 and 8.7 × 104 

cells g-1 of soil and did not differ significantly (p<0.05) from each other (Figure 5.3 & 

Appendix 5).  Ten days later, the bacterial populations in the soils had increased, with an 

overall mean of 2.7 × 105 ± 6 × 104 cells g-1 of soil.  At this sampling, homogenous soil 

population sizes (Tukey’s HSD, P=0.05) were observed in all soils except soil inoculated 

with NAK 210C which had a population significantly lower than in NAK 287C and 

NAK 120C treatments (Figure 5.3 & Appendix 2). Except for NAK 287C treatment, 

the soil populations increased between day 10 and day 30 after planting. At 30 days, 

populations of all strain treatments differed significantly (p<0.05) from each other 

(Figure 5.3 & Appendix 5).  

NAK 120C and NAK 210C treatments receiving supplementary N had similar 

population levels at planting and 10 d to those receiving no N. At 30 days, significant 

differences (p<0.05) were seen between the two N levels with the rhizobial populations 

being lower in the soil receiving supplementary N (Figure 5.3 & Appendix 5). 

High cell density inoculation  

The mean population of rhizobia, 2-4 h after inoculation was 1.2 × 105 ±2 × 104 cells g-1 

soil while at planting, the mean soil populations across the strain treatments ranged 

between 8.3 × 105 and 3.4 × 106 cells g-1 of soil. NAK 210C had the lowest population 

at this time but was only statistically (p<0.05) less than NAK 287C treatment (Figure 5.3 

& Appendix 5).  Ten days after planting, rhizobial populations in the pots had increased 

more than two-fold from those at planting to between 1.15 × 106 and 6.28 × 106 cells g-1 

of soil. Statistically, the populations of NAK 120C and NAK 210C were different from 

those of NAK 287C and CIAT 899C.  The period between day 10 and day 30 after 

planting saw slight population increases in NAK 120C and CIAT 899C and decreases in 

NAK 287C and NAK 210C. NAK 287C treatments suffered the most significant 

population decline during this period. At day 30, as was seen in the pots inoculated at 
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low density, the populations in all treatments differed statistically from each other 

(Figure 5.3 & Appendix 5).  

The addition of nitrogen to NAK 120C and 120C treatments did not alter (p<0.05) 

population outcomes at the time of inoculation or by the day of planting in comparison 

to no nitrogen. However, from the 10th day after planting, strain-dependent population 

differences started to emerge (Figure 5.3 & Appendix 5). 

 

Figure 5.3: The rhizobia population (logarithmic cfu g-1 of soil) changes in the bulk soil 
inoculated separately with four strains (NAK 120C−/– –, NAK 210C−/– –, NAK 287C− and 
CIAT 899C−) at low (A and C) and high (B and D) cell densities over the experimental period. 
Panels C and D show the effect of supplementary N on soil populations of NAK 120C and 
NAK 210C following low and high cell density inoculations (dashed lines represent treatments 
with supplementary N). The low and high cell density soils were inoculated at 102 and 105 cells 
g-1 of soil respectively. Data points are means of duplicates and marked with the same letter, are 
not significantly different at 0.05 level using Tukey’s HSD. For panels C and D, statistical 
comparisons are only made between the two N levels of the same strain treatment.  
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5.3.2.2 Nodule occupancies by seed-inoculated CIAT 899-GE 

Strain differences in their ability to outcompete seed-inoculated CIAT 899-GE 

When P. vulgaris inoculated with CIAT 899-GE was sown into soil containing NAK 

120C (at either density), 65%-91% of the nodules were occupied by CIAT 899-GE, 

depending on other factors. The nodule occupancy by CIAT 899-GE ranged from 2%-

15% in soils with NAK 210C, 1%-2% in soils with NAK 287C, and 1%-9% in soils 

with CIAT 899C (Table 5.3). An analysis of the means of the respective nodule 

occupancies revealed that the ability of strains to preclude CIAT 899-GE from nodules 

varied in increasing order from NAK 120C, NAK 210C, CIAT 899C to NAK 287C 

(Table 5.3) indicating that nodule occupancy by CIAT 899-GE is dependent on the 

rhizobial genotype in the soil. 

Effect of rhizobial soil population density on nodule occupancy by seed-

inoculated CIAT 899-GE 

Seed-applied CIAT 899-GE formed 72%-90% of the nodules in soils containing NAK 

120C at the low density (approx. 104 cells g-1 of soil at planting) and 65%-79% of the 

nodules in the soils with NAK 120C at the high density (approx. 106 cells g-1 of soil at 

planting) (Table 5.3). As the differences were significant (P<0.05), the data shows that 

the nodule occupancy by CIAT 899-GE was influenced by the density of NAK 120C in 

the soil, with a greater nodule occupancy by the inoculant at the lower soil rhizobial 

density. Similarly, nodule occupancy by CIAT 899-GE in soils carrying NAK 210C 

varied (P<0.05) depending on the density of rhizobia in the soil, with a 9%-15% 

occupancy in the low-density soil and 2%-5% in the high-density soil (Table 5.3).  

In soils containing NAK 287C and CIAT 899C, nodule occupancy by CIAT 899-GE 

was greater in soil with the lower rhizobial density, in comparison to soil with higher 

rhizobial density, but the differences were not significant (P>0.05) (Table 5.3). This data 

indicates that while reducing the population density from 106 to 104 cells g-1 of soil at 

planting increased nodule occupancy by the inoculant, the magnitude of the effect was 

strain dependent.  
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Effect of inoculation rate on inoculant nodule occupancy 

Two peat inoculants of CIAT 899-GE carrying 1.62 × 107 and 1.45 × 109 cells gram-1 

were prepared and used to inoculate P. vulgaris resulting in a low and high seed 

inoculation rate of 7.37 ×104 ±3.8×103 and 6.58 ×106 ±3.7×105 cells seed-1 respectively. 

The low inoculation rate resulted in 72%-86% nodule occupancy by CIAT 899-GE in 

soils with NAK 120C, which was a significantly lower (P<0.05) than the 90%-91% 

nodule occupancy achieved with the higher inoculation rate (Table 5.3). Similarly, the 

higher inoculation rate improved nodule occupancy by the inoculant strain in soils 

carrying CIAT 899C from 1% to 5%-9%. In soils with NAK 210C and NAK 287C, 

varying the inoculation rate of CIAT 899-GE did not significantly (P=0.05) alter nodule 

occupancy (Table 5.3), indicating benefits from increasing inoculation rate are 

dependent on the genotype of rhizobia resident in the soil.  

Effect of soil nitrogen on nodule occupancy by CIAT 899-GE 

Only soils carrying NAK 120C and NAK 210C were subjected to variable N 

application. Nodulation was observed in all plants receiving supplementary N, indicating 

the amount of N applied was not sufficient to inhibit nodule formation, although 

nodules were smaller than those on plants receiving no supplementary N.  

In both treatments (NAK 120C and NAK 210C), the addition of N had no effect 

(P>0.05) on the nodule occupancy outcomes of CIAT 899-GE (Table 5.3), suggesting 

changes in the soil N level have no consequences for nodule occupancy with these 

strains.  
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Table 5.3: Nodule occupancies attained by the seed-applied CIAT 899-GE and soil strains 

under the different experimental conditions 

 Rhizobial 
genotype in 

soil 

Rhizobial 
density at 

planting (g-1 
soil)* 

Inoculant 
rate (CIAT 

899-GE 
seed-1)** 

Soil N*** Nodule 
occupancy 
by CIAT 

899-GE (%) 
n=8 

Nodule 
occupancy 

by soil strain 
(%) 
n=8 

1 NAK 120C 6.7×104 L 0 72±6 28±6 

2 ″ ″ H 0 91±3 9±3 

3 ″ 3.1×104 L 1 86±3 14±3 

4 ″ ″ H 1 90±3 10±3 

5 ″ 0.91×106 L 0 65±5 35±5 

6 ″ ″ H 0 80±3 20±3 

7 ″ 1.1×106 L 1 66±8 34±8 

8 ″ ″ H 1 78±6 22±6 

9 NAK 210C 5.0×104 L 0 15±2 85±2 

10 ″ ″ H 0 14±4 86±4 

11 ″ 2.2×104 L 1 10±3 90±3 

12 ″ ″ H 1 9±3 91±3 

13 ″ 0.83×106 L 0 3±1 97±1 

14 ″ ″ H 0 4±1 96±1 

15 ″ 0.72×106 L 1 2±2 98±2 

16 ″ ″ H 1 5±1 95±1 

17 NAK 287C 4.4×104 L 0 2±1 98±1 

18 ″ ″ H 0 2±.4 98±.4 

19 ″ 2.2×106 L 0 1±.3 99±.3 

20 ″ ″ H 0 1±.8 99±.8 

21 CIAT 899C 0.87×105 L 0 1±.4 99±.4 

22 ″ ″ H 0 9±2 91±2 

23 ″ 3.4×106 L 0 1±.6 99±.6 

24 ″ ″ H 0 5±1 95±1 

25 0 0 0 0 0 0 

26 0 0 0 2* 0 0 

*SE are indicated in Appendix 5 

**L=7.4 × 104, H=6.6 × 106 

***0=no nitrogen, 1=1.2 mL of 1 M ammonium nitrate pot-1 week-1, 2=2.4 mL of 1 M ammonium nitrate 

pot-1 week-1 
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5.3.2.3 Ranking of factors  

The effect sizes of the four factors on nodule occupancy outcomes were compared and 

partial eta squared measures calculated (Table 5.4). The genotype of the strain in the soil 

accounted for the biggest variance in nodule occupancy outcomes. The population 

density of the soil strain had the second highest effect on outcomes, and inoculum 

density was third. Nitrogen had the least effect on nodule occupancy by CIAT 899-GE. 

A significant interaction was only seen between rhizobial genotype and inoculum 

density (Table 5.4).  

 

Table 5.4: The effect sizes of soil rhizobial genotype, background rhizobial population density, 

seed inoculation rate and nitrogen on nodule occupancy outcomes by CIAT 899-GE in P. 

vulgaris cv. Kenya Tamu.  

Source df F Sig. Partial Eta 

Squared 

Rhizobial genotype 3 800.533 .000 .935 

Population density 1 24.232 .000 .126 

Inoculum density 1 10.054 .002 .056 

Nitrogen 1 .010 .922 .000 

Genotype * Nitrogen 1 2.878 .092 .017 

Genotype * Population density 3 2.492 .062 .043 

Genotype * Inoculum density 3 6.388 .000 .102 

Nitrogen * Population density 1 .103 .749 .001 

Nitrogen * Inoculum density 1 1.586 .210 .009 

Population density * Inoculum density 1 .473 .493 .003 

Genotype * Nitrogen * Population density 1 3.433 .066 .020 

Genotype * Nitrogen * Inoculum density 1 2.226 .138 .013 

Genotype * Population density * Inoculum density 3 .092 .965 .002 

Nitrogen * Population density * Inoculum density 1 1.014 .315 .006 

Genotype * Nitrogen * Population density * Inoculum density 1 .620 .432 .004 

Error 168    

Total 192    

Corrected Total 191    
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5.4 Discussion  

5.4.1 Soil rhizobial genotype as the main determinant of nodule occupancy 

by the inoculant  

The results from this chapter indicated that the outcomes of inoculating P. vulgaris were 

mainly determined by the rhizobial genotype in the soil. Other factors - soil rhizobial 

density, inoculum rate, and soil N - had minimal (or no) effect on the nodule occupancy 

by the inoculant strain. This finding differs from that of Thies et al. (1991b), who 

reported that the success of inoculating legumes almost entirely depended on rhizobial 

densities in the soil. In the study by Thies et al. (1991b), the genotypes of the soil 

rhizobia were not surveyed. 

Nodule occupancy data from Experiment 2 indicated that depending on the genotype of 

the soil strain, seed-inoculated CIAT 899-GE occupied between 1% and 91% of the 

nodules on P. vulgaris (Table 5.3). The genotype effects on nodule occupancies were 

significant (P<0.05) and a partial eta2 of 0.935 indicated a large proportion of the 

variability in nodule occupancies was attributable to the rhizobial genotype (Table 5.4). 

Results showed that although rhizobial density is important (partial eta2 of 0.126), its 

effect is much lower than that of rhizobial genotype (Table 5.4). P. vulgaris is often 

cultivated in soils with high rhizobial densities in the range of 104 to 106 rhizobia g-1 soil 

(Alberton et al., 2006; Andrade et al., 1999; Anyango et al., 1995; Hungria et al., 2000; 

Kawaka et al., 2014; Langwerden, 2014; Thies et al., 1991b) and two densities of 

approximately 104 and 106 rhizobia g-1 soil at planting were established in a controlled 

experiment (Figure 5.3) to mimic field densities. Seed-applied CIAT 899-GE occupied a 

higher number of nodules in soils carrying R. paranaense NAK 120C and Rhizobium sp. 

NAK 210C at 104 cells g-1 soil in comparison to when soils carried 106 cells of either 

strain g-1 soil. In soils carrying R. phaseoli NAK 287C and CIAT 899C, soil densities did 

not alter nodule occupancy by the inoculant. NAK 120C and NAK 210C were the least 

competitive among the four strains used (Figure 5.1) indicating that population densities 

were only slightly important in soils with uncompetitive genotypes. In soils carrying the 

equally competitive CIAT 899C or the more competitive NAK 287C, nodule occupancy 

by CIAT 899-GE was the same at either soil density (Table 5.3).  

Previous studies evaluating the effect of population sizes of indigenous rhizobia on 

inoculation of legumes used field sites characterised by MPN (Singleton & Tavares, 
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1986; Thies et al., 1991b), overlooking the roles played by the different rhizobial 

genotypes in the soil in influencing nodule occupancy by the inoculant. Consequently, 

different inoculation responses are reported in soils with similar rhizobial densities or, a 

low rhizobial density inhibits inoculation response in P. vulgaris (Thies et al., 1991a) 

while a higher one does not (Hungria et al., 2000; Hungria et al., 2003; Vlassak et al., 

1996). These studies did not evaluate whether strain genotypes were present that either 

inhibited or allowed inoculation response.  

In the current study, individual rhizobial genotypes were analysed, and in this 

deconstructed factorial, (which still allowed the experimental soil strain the positional 

advantage enjoyed by strains in field settings), the key role of rhizobial genotypes in 

inoculant nodule occupancy was examined. From the nodule occupancy data,  

inoculation responses would be expected in soils containing NAK 120C at up to 106 

cells g-1 of soil while no response would be expected in soils containing NAK 287C at 

104 cells g-1 of soil. Although it is unknown whether substantially higher inoculant 

nodule occupancies would have been achieved at lower densities of NAK 287C (e.g. at 

100 cells g-1 of soil), such low densities are irrelevant to studies with P. vulgaris because 

cultivation of the crop is generally in soils with rhizobia in the range of 104-106 cells g-1 

soil (Alberton et al., 2006; Andrade et al., 1999; Anyango et al., 1995; Hungria et al., 

2000; Kawaka et al., 2014; Langwerden, 2014). Are soil rhizobial numbers important 

determinants of inoculation response in P. vulgaris? From the findings of the current 

study, the answer appears to be ‘numbers of what?’.  

Inoculation rates had a small effect on nodule occupancy as indicated by a partial eta2 of 

0.056 (Table 5.4). The inoculum dosages applied, of approximately 7 × 104 and 7 × 106 

rhizobia per seed were, respectively, below and above the 105 rhizobia per seed 

recommended for the inoculation of P. vulgaris (Bullard et al., 2005; Hungria et al., 2005; 

Lupwayi et al., 2000). However, the findings here indicated that, in soils with rhizobia at 

densities found in soils used to cultivate P. vulgaris, a high inoculum density improved 

nodule occupancy only slightly, depending on the competing soil rhizobial genotype. 

The interaction effects of the inoculum dosage and rhizobial genotype were significant 

(Table 5.4), highlighting the importance of the genotype of the soil rhizobia in the final 

nodule occupancy outcomes of an inoculated legume. 

The current study also found that a low level of supplementary mineral N had no effect 

on the nodule occupancy of the strains (Table 5.3; Table 5.4). These findings are 
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consistent with those of  Abaidoo et al. (1990) but appear inconsistent with those of 

Caballero-Mellado and Martinez-Romero (1999) who reported that some rhizobial 

groups failed to nodulate P. vulgaris with the addition of mineral N. The N applied in the 

current study reduced nodule size. This rate may have been higher than found in soils 

used to cultivate P. vulgaris, especially in SSA, where nodule sizes have not been reported 

to be diminished by soil N. CIAT 899, NAK 120 and NAK 210 did not appear to be 

sensitive to mineral N as their nodule occupancies were unaffected by added N. 

Although N was found to not affect the nodule occupancy of the strains used, in view 

of reports of nitrate sensitivity with some strains (Caballero-Mellado & Martinez-

Romero, 1999), screening of candidate inoculant strains for nitrate tolerance may be 

useful, because P. vulgaris is cultivated in soils heterogeneous in N. Such experiments 

would add an extra level of complexity to glasshouse experiments, but would make 

them more closely matched to field conditions.  

5.4.2 Strain influence on nodule occupancy is effected through rhizosphere 

competence and preferential nodulation 

a) Rhizosphere competence 

Experiment 1 revealed that CIAT 899C, NAK 120C, NAK 210C and NAK 287C 

differed in their ability to colonise the rhizosphere of P. vulgaris when co-inoculated with 

CIAT 899-GE.  In general, data revealed that strains exhibiting greater rhizosphere 

competence had greater success at occupying root nodules. Correspondingly, strains 

that poorly colonized the rhizospheres occupied fewer nodules. For example, CIAT 

899-GE, which formed more nodules when co-inoculated with NAK 120C and NAK 

210C at almost equal ratios, greatly outnumbered the two strains in the rhizosphere 

following inoculations (Table 5.2). The data from co-inoculation of NAK 287C and 

CIAT 899-GE appeared to be an exception to this rule, but rhizosperic numbers of 

NAK 287C were not reliably enumerated on tetracycline plates due to loss of pGM01 

from this strain. For all other combinations, superior nodule occupancy by CIAT 899-

GE was preceded by its superior rhizosphere numbers.  

Rhizosphere competence is related to a range of factors including survival and growth 

of strains under prevalent environmental conditions such as pH (Anyango et al., 1998), 

as well as other characteristics intrinsic to strains such as growth rates (Li & Alexander, 

1986), tolerance to microbial antagonisms (Mrabet et al., 2006), chemotaxis and motility 
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(Cooper, 2007), root attachment and biofilm formation (Janczarek et al., 2015a). 

Additionally, roots of legumes secrete flavonoids and other low molecular weight 

organic compounds such as sugars and amino acids that may favour the growth and 

multiplication of certain rhizobia. Streit et al. (1992) observed that the ability of strains 

to degrade aromatic compounds commonly secreted by plant roots was correlated with 

greater rhizobial competitiveness for nodulation of P. vulgaris. Although the basis for 

differences in rhizosphere colonization among the study strains were not investigated, 

rhizosphere competence was observed to be a key characteristic that determined nodule 

occupancy by the different rhizobial genotypes.  

b) Preferential nodulation 

Strains also differed in their relative ‘affinities’ for P. vulgaris. This difference was 

deduced from the observation that rhizospheric ratios of co-inoculated strains were (in 

instances) disproportionate to their nodule occupancy ratios. For example, 14% of 

rhizobia in the rhizosphere of plants inoculated with a suspension of NAK 120C/CIAT 

899-GE were NAK 120C, but all nodules were occupied by CIAT 899-GE (Table 5.2). 

In experiment 2, the soil densities of the four strains differed only slightly for the period 

between planting and 10 days post planting when most nodulation events occur 

(George et al., 1992). However, despite having similar bulk soil populations the strains 

resulted in significantly different nodule occupancies (Table 5.3 & Appendix 5). 

Furthermore, the least competitive soil-borne strain in this experiment, NAK 120C, did 

not have the lowest cell density in the bulk soil (Figure 5.3 & Appendix 5). In both 

experiments, NAK 210C had the lowest rhizospheric numbers. But in both 

experiments, NAK 210C occupied a greater proportion of nodules against CIAT 899-

GE than NAK 120C, indicating that nodule occupancy was not an entirely numerical 

phenomenon.  

Is the observation that NAK 120C consistently occupied less nodules than NAK 210C 

(despite NAK 120C being more rhizosphere competent) evidence for preferential 

nodulation? Preferential nodulation, where a legume host nodulates with a strain 

selected from a pool of compatible strains, in disregard of population proportions, has 

previously been reported in Vicia faba (Laguerre et al., 2003), P. vulgaris (Montealegre & 

Graham, 1996; Montealegre et al., 1995) and Trifolium spp. (Yates et al., 2008) 

symbioses. In the study by Montealegre et al. (1995), P. vulgaris cv. RAB39 preferentially 

nodulated with R. tropici CIAT 899 in the presence of seven R. etli strains. While the 
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study by  Montealegre et al. (1995) and others above described strains overcoming  

numerical disadvantages, the authors did not perform rhizobial counts following 

inoculation. It is, therefore, arguable that the population ratios may have altered 

substantially following co-inoculation, leading to results that relate to rhizosphere 

supremacy and not preferential nodulation.  However, in the current study, NAK 120C 

consistently formed fewer nodules than would be predicted by its numerical proportion 

in the rhizosphere, assessed at the critical nodule forming periods. A logical explanation 

to this observation would be that the host was preferentially nodulating with CIAT 899-

GE over NAK 120C.  

While the basis for preferential nodulation is unknown, preferential nodulation is likely 

to result from incompatibilities at any of the many stages of a legume-rhizobia 

interaction (Section 1.2). It is highly plausible that a suboptimal interaction during the 

early stages of nodulation, between P. vulgaris and (for example) NAK 120C, led to 

nodule occupancies in favour of CIAT 899-GE.  For example, greater attachment to 

root infection sites, mediated by EPS, can confer a competitive advantage to a strain 

(Janczarek et al., 2015b; Williams et al., 2008).  Additionally, rhizobia are known to use 

EPS and effector proteins to evade host defences. Rhizobia that lack secretion systems 

for movement of effector proteins are still able to nodulate legumes (Deakin & 

Broughton, 2009) but the infection efficiency of these strains may be lower. Future 

studies should explore some of these possible bases of preferential nodulation using 

strains identified here.   

5.4.3 Concluding remarks 

The success of inoculating P. vulgaris in the field has often varied between sites (Graham 

& Ranalli, 1997). While population sizes of compatible rhizobia have in the past been 

linked to the variability of inoculation outcomes (Thies et al., 1991a), this study found 

that the population densities were not necessarily the most important factor. The 

rhizobial genotype in the soil was found to have the greatest effect on the outcomes of 

inoculating P. vulgaris. Using four genotypes, a continuum was observed in regards to 

ability to inhibit or allow nodulation by an inoculant strain. Many other genotypes of 

similar competitiveness to the ones used in this chapter were identified from Kenyan 

soils (Figure 4.21) and future analyses of the large pool of strains, using controlled 

experiments with greater complexity and genomic tools, is anticipated to continue to 

shed light on the seemingly random outcomes of inoculating P. vulgaris.  



 

149 
 

 

 

 

CHAPTER 6 
General discussion 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Chapter 6 

150 
 

6.0 Recap of aims  

The studies presented in this thesis addressed four key objectives. The first of these was 

to identify and characterise rhizobia that nodulate P. vulgaris in Kenya. This had 

previously not been completed to such detail despite numerous studies showing large 

populations of P. vulgaris-rhizobia in Kenyan soils (Anyango et al., 1995; Kawaka et al., 

2014; Muthini et al., 2014). The second objective was to assess the indigenous rhizobia 

for their ability to fix N2 with a view to identifying potential inoculant strains pre-

adapted to Kenyan soils. These strains would serve as alternatives to the currently used 

strains especially in areas where current inoculant strains such as CIAT 899 have been 

shown to be poorly adapted to edaphic conditions (Anyango et al., 1998). Whereas the 

finding of effective strains capable of nodulating P. vulgaris was important, it was 

considered equally important to understand factors linked to outcomes of applying 

these strains as inoculants.  Rhizobial competition has previously been linked to poor 

inoculation outcomes in P. vulgaris (Thies et al., 1991a). To facilitate rhizobial 

competition studies, the third objective was to develop a marker gene approach for use 

in competition studies involving diverse and numerous rhizobial strains, a protocol for 

which was unavailable. The fourth objective was to identify key determinants of 

successful inoculation of P. vulgaris from among four factors viz; rhizobial genotype, soil 

population density, inoculation rate and soil N.  

6.1 Diversity of rhizobia from Kenyan soils  

Analyses of 197 strains from diverse ecological zones in central, western and coastal 

Kenya (Table 2.3) by RP01-PCR, PCR-RFLP, and by comparisons of 16S rRNA and 

recA sequences revealed the strains were genetically diverse. These strains belong to at 

least five species of Rhizobium viz., R. sophoriradicis, R. phaseoli, R. leucaenae, R. paranaense 

and R. etli.  In addition to these five species the representatives of the dominant PCR-

RFLP group 1, to which 65% of the strains belonged (Table 2.4), were not identified at 

the species level. These strains had recA sequences with less than 96.6% identity to 

corresponding sequences of current type strains in the genus Rhizobium. This divergence 

was deemed sufficient to designate the strains as putative new species in the genus 

Rhizobium (see Section 2.4.1). As the purpose of the current study was not to describe 

species, the relative phylogeny of the study strains was considered sufficiently assessed 

without the need for analyses of more genes.  
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The findings on the diversity, phylogeny and taxonomy of rhizobia that nodulate P. 

vulgaris in Kenya were especially revealing of the distribution, survival and evolution of 

P. vulgaris symbionts in an area of recent introduction (400-500 years ago) (Greenway, 

1944). Anyango et al. (1995), broadly hypothesized that the rhizobia that nodulate P. 

vulgari in Kenyan soils were either indigenous to Kenyan soils or were introduced with 

the crop. This hypothesis can be subdivided and refined into five hypotheses that 

predict the genetic nature of the strains as follows: 

i. The strains were introduced with the crop e.g. inadvertently on P. vulgaris seed 

and therefore belong to species that nodulate P. vulgaris in its centers of diversity 

(Mesoamerica and the Andes) or in other P. vulgaris-growing regions of the 

world that export significant quantities of P. vulgaris to Kenya.  

ii. The strains were introduced after the crop as inoculants and therefore belong to 

R. tropici or R. etli, the species to which the two main strains used to inoculate P. 

vulgaris in Kenya belong. 

iii. The strains are indigenous to Kenyan soils and belong to described rhizobial 

species that do not traditionally nodulate P. vulgaris but that harbor symbiotic 

genes corresponding to symbiovars known to nodulate P. vulgaris. 

iv. The strains are indigenous to Kenyan soils and belong to undescribed rhizobial 

species that harbor symbiotic genes corresponding to symbiovars known to 

nodulate P. vulgaris. 

v. The strains are indigenous to Kenyan soils and belong to undescribed rhizobial 

species and carry unique symbiotic genes that nevertheless allow successful 

nodulation of P. vulgaris. 

In the studies described in this thesis, I presented evidence that supports the tenability 

of hypotheses one, two, three and four but found no evidence in support of hypothesis 

five. In support of hypothesis one, some study strains are R. etli, R. phaseoli or R. 

paranaense. These species nodulate P. vulgaris in the centers of bean diversity (e.g. Mexico 

and Argentina) and major bean-producing countries such as Brazil, Colombia, Ethiopia 

and U.S.A (Aguilar et al., 2004; Aserse et al., 2012; Dall’Agnol et al., 2014; Lopez-

Guerrero et al., 2012; Martinez-Romero, 2003). It is conceivable that the three species 

were carried from these regions into Kenyan soils on bean seed (Mora et al., 2014; 

Pe  rez-Ramirez et al., 1998) as Kenya has had significant bean market ties to some of 

these countries over the years (Greenway, 1944; Katungi et al., 2009).  
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R. tropici CIAT 899 is the primary P. vulgaris inoculant strain in Kenya but R. etli USDA 

2667 is also occasionally used (Bala et al., 2011; Koinange, 2015). None of the isolates 

belonged to R. tropici, but strains belonging to R. etli were recovered. The R. etli strains 

recovered were not compared to USDA 2667 and therefore, they may or may not be 

evidence for hypothesis two. Nodule sampling was from farms with no known history 

of rhizobial inoculation, and the absence of CIAT 899 or USDA 2667 from among the 

strains recovered would not be surprising.  

The recovery of strains of R. leucaenae and R. sophoriradicis from P. vulgaris nodules 

supports the third hypothesis. The two species are not considered specialist P. vulgaris 

nodulators. R. leucaenae strains can nodulate P. vulgaris (Ribeiro et al., 2012) while R. 

sophoriradicis (Jiao et al., 2015) was (before the current study)  not known to nodulate P. 

vulgaris outside of laboratory conditions. However, R. leucaenae and R. sophoriradicis, as 

was observed in isolates from this thesis (Figure 2.5), carry broad host range symbiotic 

genes (sv. tropici) and narrow host range symbiotic genes (sv. phaseoli) respectively 

(Jiao et al., 2015; Ormen  o-Orrillo et al., 2012; Ribeiro et al., 2012) that enable them to 

nodulate P. vulgaris as well as Leucaena spp. and Sophora spp. Species in the latter two 

genera are present in Kenya (Franzel et al., 2014; Leonard et al., 2015) and it may 

therefore be speculated that these R. leucaenae and R. sophoriradicis  strains recovered also 

nodulate the alternative legumes. 

In support of hypothesis four, 65% of the strains recovered belonged to putative new 

species. The strains harbored nodC sequences that placed them in symbiovar phaseoli, 

with 100% identities to, for example, nodC sequences of R. vallis (Figure 2.5). The 

identical nodC sequences with strains in symbiovar phaseoli may be indicative of genetic 

exchange with symbiovar phaseoli strains of other rhizobial species. Phylogenetic 

evidence exists for the transfer of symbiotic genes among members of the genus 

Rhizobium (Kumar et al., 2015) while in vitro self-transmissibility has been demonstrated 

(Brom et al., 2000; Rao et al., 1994). The strains in the potentially new species may also 

have arisen from chromosomal speciation accompanied by the inheritance of conserved 

symbiotic genes.  

There was no evidence in support of hypothesis five. All isolates tested had nodC 

sequences 100% identical to corresponding genes of known strains in described 

rhizobial species. The exception was R. paranaense NAK 120 which was found to carry 
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nodC sequences divergent from those in symbiovar tropici. However, the strain was 

isolated from Albizia sp. and it is unknown whether the strain nodulates P. vulgaris in situ.  

The above finding that a limited range of conserved symbiotic genes are carried by the 

numerous species that nodulate P. vulgaris was intriguing.  Although the same has been 

reported by other researchers (Aserse et al., 2012; Faghire et al., 2012; Jiao et al., 2015; 

Rogel et al., 2011; Rouhrazi et al., 2016), it warrants further comment here as it may be 

of greater relevance to the P. vulgaris symbiosis than has been considered before.   

What drives the phenomenon of highly conserved symbiotic genes in diverse 

chromosomal backgrounds? One of the theories of speciation that may account for the  

observation is the recurrent niche invasion model (Wiedenbeck & Cohan, 2011). In this 

speciation model, a lineage diversifies over time, but with recurrent loss and acquisition 

of niche-determining genes. In Rhizobium, the symbiotic genes are niche-determining as 

they confer nodulation abilities. The loss and acquisition of symbiotic genes, over time, 

would result in diverse genetic backgrounds with conserved symbiotic genes as was seen 

in the current study and others. Exchange of symbiotic genes among strains in the 

genus Rhizobium has been demonstrated by phylogenetic evidence and in vitro 

experiments (Kumar et al., 2015; Rao et al., 1994).  It may therefore be hypothesized 

that the broad-host-range of P. vulgaris, is only limited by the transmissibility of 

symbiotic genes among rhizobia.  

Of what consequence is the phenomenon? Evolution of P. vulgaris symbionts through 

acquisition of symbiotic genes by strains with diverse chromosomal backgrounds may 

be of considerable consequence to the effectiveness of the P. vulgaris symbiosis. This is 

because the transfer of symbiotic genes into new genomic backgrounds can lead to 

strains of partial effectiveness (Martínez et al., 1987; Nandasena et al., 2007). From the 

effectiveness experiments in Chapter 3, strains belonging to the putative new species 

(mostly harbouring nodC type γ-a) were less effective at N2 fixation (Figure 3.8). 

Whether this reduced effectiveness is related to a recent acquisition of the symbiotic 

genes needs further investigation. The second consequence is that the new symbionts 

(of likely suboptimal fixation) also exacerbate the challenge of rhizobial competition that 

already compromises attempts to inoculate P. vulgaris.  
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6.2 Candidate inoculant strains for Kenya 

Using data on genetic diversity and origin of the 197 study strains, 52 were selected and 

evaluated for N2 fixation on Kenyan cultivars of P. vulgaris in glasshouse experiments. 

Strains were found to be variably effective on P. vulgaris (Figure 3.2) and eleven strains 

were as effective at N2 fixation as CIAT 899, a leading inoculant strain for P. vulgaris. 

These 11 strains (NAK 407, NAK 458, NAK 354, NAK 327, NAK 227, NAK 214, 

NAK 104, NAK 288, NAK 239, NAK 157 and NAK 299) are now candidate inoculant 

strains and may represent well adapted and highly effective inoculants for P. vulgaris in 

Kenya. The candidate strains were isolated from ecologically diverse sites differing in 

soil types, rainfall, and temperatures (Table 2.2) and are therefore expected to be 

adapted to the environmental stresses present in those areas. These strains could be 

used as alternatives to CIAT 899 to inoculate P. vulgaris in ecological zones where the 

failure of inoculation with  R. tropici CIAT 899 is believed to be due to poor adaptability 

or low saprophytic competence (Anyango et al., 1998; Gicharu et al., 2013). However, 

the high level of symbiotic performance by the strains observed under controlled 

conditions will need to be demonstrated in field evaluations. Furthermore, the strains 

will need to be assessed for genetic stability as, previously, some strains have been 

shown to lose their ability to nodulate over periods of use (Bullard et al., 2005).  

6.3 Limitation of N2 fixation in P. vulgaris 

Although effective strains were identified, N2 fixation in P. vulgaris was observed to be 

restricted in two ways. The first was through regulation of shoot N to within a range of 

3.7%-4.1% N, outside of which plant biomass was greatly diminished (Figure 3.3). It is 

speculated here that this range allows the symbiotic P. vulgaris plant the optimal control 

of growth rate, which tends be co-limited by N and C (Andrews et al., 2007). However, 

this range of shoot N concentration resulted in approximately 60% less biomass than 

produced by plants grown with mineral N supplied at the maximum rate, meaning this 

regulation in P. vulgaris may limit the ability of N2 fixation to stimulate growth 

comparable to that achieved under mineral N. Future studies exploring this finding 

would benefit from a greater number of rhizobial strains, P. vulgaris cultivars, and 

experimental set ups such as pot volumes. Inclusion of other legumes would also clarify 

whether similar shoot N-biomass relationships exist more widely in legumes.  
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Secondly, N2-fixing P. vulgaris plants were observed to have a low N utilization efficiency 

in comparison to N-fed plants, whereby for a given tissue % N, they had considerably 

lower biomass (Figure 3.11) (see Section 3.4.5). These data suggest that N2 fixation in P. 

vulgaris occurs at considerable energy costs to the host plant. Indeed, any N2 fixation is 

energy intensive with the reduction of each mole of N2 requiring eight moles of protons, 

eight moles of electrons, and 16 moles of ATP (Lodwig & Poole, 2010). Additionally, 

nitrate uptake, assimilation, protein synthesis and nodule organogenesis are processes 

that require energy. However, plants differ in their general efficiencies in N2 fixation 

with estimates of  3.1 mg of C used per N fixed in cowpea and 6.6 mg of C per N fixed 

in lupin (Layzell et al., 1979). Calculations from data on Figure 3.11 indicate a loss of 

shoot C of 8.4 mg C per mg N fixed, which is slightly greater than the lupin value of 6.6 

mg C per mg N fixed. This suggests that perhaps N-fixing P. vulgaris burns off C at a 

greater rate than other legumes. Differences in efficiencies of N2 fixation occur from 

factors such as differences in nodulation patterns and carbon requirements of 

nitrogenase (Witty et al., 1983).  

It is important to note that N2 fixation experiments in this study measured vegetative 

yield and not grain yield. Grain yield was not measured because glasshouse experiments 

would not be expected to give meaningful grain yield due to the limited soil volume 

available to plants grown in pots. Vegetative yield is not perfectly correlated with grain 

yield (Masclaux-Daubresse et al., 2010)  and therefore, future studies in this area should 

include field experiments that measure grain yield in order to obtain a clearer picture on 

the limitation of P. vulgaris symbiosis. 

6.4 Broad-host-range plasmid for rhizobial competition assays 

Inoculant strains for P. vulgaris often have to compete with strains resident in soils for 

nodule formation. Therefore, in addition to inoculant strains being effective, they also 

need to be competitive for nodulation. To aid in the study of rhizobial competition, 

work in this thesis leveraged on existing marker gene technology to develop a broad 

host range plasmid (pGM01) that expressed celB. This plasmid was stable in 80% of the 

strains tested and proved to be an effective method to rapidly mark diverse rhizobial 

strains for competition studies.  

The broad-host-range pGM01 (Figure 4.12) carried celB, a robust gene marker 

previously used in rhizobial competition studies via mini-transposons (Sanchez-
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Canizares & Palacios, 2013; Sessitsch et al., 1996) Tests confirmed that the pGM01 

could be maintained stably, in the absence of antibiotic selection, both in vitro and in 

planta, in diverse rhizobial chromosomal backgrounds. Additionally, pGM01 was shown 

to have no measurable effects, in diverse rhizobial strains, on the growth rates of the 

transconjugants (Figure 4.16), indicating an insignificant metabolic burden on the host 

cells under the conditions tested.   

In this study, the plasmid-borne marker was successfully paired with gusA on a mini-

transposon to facilitate a rapid identification of nodule occupants in competition assays, 

and it is anticipated that pGM01 will, in the future, continue to be a useful tool in 

rhizobial competition assays under controlled laboratory conditions. The need for 

confinement of genetically modified organisms in most countries means that marked 

strains cannot be used in field experiments. This reduces the utility of the marker but 

fairly complex and informative experiments can still be conducted in confinement using 

strains marked with pGM01.    

6.5 Determinants of nodule occupancy by the inoculant in P. vulgaris 

Strains marked with gusA and celB were used to evaluate the effects of four factors on 

the nodule occupancy by CIAT 889 in P. vulgaris. Results revealed that the competing 

rhizobial genotype was the key determinant of nodule occupancy by an inoculant strain. 

The other two factors found to be marginally important to nodule occupancy by the 

inoculant (soil rhizobial density and inoculation density) had interactions with the 

rhizobial genotype (Table 5.4) further highlighting the importance of the soil rhizobial 

genotype to the nodule occupancy outcomes of inoculating P. vulgaris.  

It is important to note that in experiments conducted, nodule occupancies were 

evaluated, and not response to inoculation per se. The latter is measured through 

assessment of plant growth and yield (Yates et al., 2016b). However, predictions can be 

made from previous reports that have correlated nodule occupancy with response to 

inoculation. Thies et al. (1991a) estimated that in the presence of ineffective strains, at 

least 66% nodule occupancy is required by the inoculant strain to elicit a response, 

although compensatory mechanisms such as the development of large nodules may 

allow a response with fewer effective nodules (Singleton & Stockinger, 1983), which 

explains inoculation responses in Brazil with inoculants occupying less than 50% of the 

nodules (Hungria et al., 2003). Substantial nodule occupancies (65%-91%) by the seed-
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applied inoculant strain were achieved when the poorly effective NAK 120C was in the 

soil, and a response to inoculation under these circumstances was likely.  A nodule 

occupancy of up to 15% was achieved by CIAT 899-GE in soils containing the 

ineffective NAK 210C but a response to inoculation would have been unlikely 

considering the high energy cost associated with the formation of such a high 

proportion of ineffective nodules. NAK 287C is an effective strain and no response 

would be expected to inoculation, with the slightly more effective CIAT 899-GE 

occupying ≤2% of the total nodules.  

The inoculation response predictions indicate that in some instances, depending on the 

genotype combinations (e.g. with NAK 120 vs. CIAT 899), it might be possible to get 

an inoculation response in P. vulgaris in soils with high rhizobial densities. For these 

combinations, rhizosphere competence and preferential nodulation dictate nodule 

occupancy (Section 5.4.2). The prevalence of genotypes in nature that would interact 

similarly with the inoculant and the host is unknown but reports of inoculation response 

in soils with high rhizobial densities (Hungria et al., 2000; Vlassak et al., 1996) may 

occur from such interactions.   

Interestingly, it was found that in the absence of preferential nodulation, even the 

uncompetitive strain NAK 210 hindered the competitive seed-applied CIAT 899 from 

occupying an appreciable proportion of nodules. When evaluated using liquid cultures, 

NAK 210C was highly uncompetitive, forming only 5% of the nodules (Table 5.2) but 

occupied 85%-98% of nodules when pre-established in the soil (Table 5.3) due to the 

positional advantage. Previous studies with soybean also highlighted the huge positional 

disadvantage suffered by seed-applied inoculants (López-García et al., 2002) and here 

this disadvantage was shown to be substantial even with uncompetitive strains.  

Rhizobial genotypes such as NAK 120 that can easily be overcome through seed 

inoculation may not always be present in soils (or at least not as homogeneous 

populations) and, therefore, recommendations to increase inoculation response in P. 

vulgaris include the following.  The first is that alternative approaches, such as the 

application of granular inoculant formulations at tillage, be tested with P. vulgaris to 

reduce the positional disadvantage faced by inoculants applied on seeds. Secondly, as 

population densities were also found to affect nodule occupancy, the lowering of 

rhizobial densities in the soil prior to cultivation of P. vulgaris might be a useful 

intervention. Rhizobial numbers in the soil are closely linked to the cropping history of 
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the legume (Hungria et al., 2003; Vlassak et al., 1996) and it is logically expected that not 

growing the crop for several seasons would reduce densities of compatible rhizobia to 

levels where inoculation may lead to responses. Future studies can use approaches 

developed in this thesis to further test lower population levels, of various genotypes, for 

inoculation responses.  

In conclusion, the work done in this thesis contributed to the understanding of the P. 

vulgaris symbiosis in several ways. In addition to identifying the rhizobia that nodulate P. 

vulgaris in Kenyan soils, the study findings on the putative new species potentially add to 

the rhizobial species known to support symbiosis with P. vulgaris. P. vulgaris in Kenya was 

observed to symbiotically associate with different species of rhizobia that carry 

conserved nodulation genes, giving insights into the evolution of P. vulgaris symbionts in 

an area where the crop has only been recently introduced. Strains effective at N2 fixation 

on Kenyan cultivars of P. vulgaris were identified from among the strains recovered and 

these may represent well-adapted inoculant strains for P. vulgaris in Kenya. The study 

revealed rhizobial genotypes are the key determinants of inoculation responses in P. 

vulgaris, which was contrary to previous studies that had overemphasized the role of soil 

rhizobial densities. It is anticipated that future studies will build on findings in this study, 

as well as use the gene marker tools and approaches developed in this study to generate 

knowledge that will substantially reduce the current uncertainty surrounding the 

inoculation of P. vulgaris. 
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Appendices 

Appendix 1: Estimates of evolutionary divergence between 16S rRNA gene sequences of study strains and of closely related described species. The 
number of base substitutions per site from between sequences is shown. Analyses were conducted using the Tamura 3-parameter model. The rate 
variation among sites was modelled with a gamma distribution (shape parameter = 1). The analysis involved 45 nucleotide sequences. All positions 
with less than 95% site coverage were eliminated. That is, fewer than 5% alignment gaps, missing data, and ambiguous bases were allowed at any 
position. There were a total of 1291 positions in the final dataset. Evolutionary analyses were conducted in MEGA6 (Tamura et al., 2013). 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

1 NAK 103

2 NAK 120 0.022

3 NAK 157 0.002 0.022

4 NAK 210 0.006 0.018 0.008

5 NAK 239 0.000 0.022 0.002 0.006

6 NAK 245 0.002 0.022 0.002 0.008 0.002

7 NAK 266 0.006 0.018 0.008 0.000 0.006 0.008

8 NAK 287 0.005 0.023 0.006 0.007 0.005 0.006 0.007

9 NAK 294 0.023 0.006 0.024 0.020 0.023 0.023 0.020 0.024

10 NAK 312 0.006 0.018 0.008 0.000 0.006 0.008 0.000 0.007 0.020

11 NAK 334 0.006 0.018 0.008 0.000 0.006 0.008 0.000 0.007 0.020 0.000

12 NAK 349 0.022 0.000 0.022 0.018 0.022 0.022 0.018 0.023 0.006 0.018 0.018

13 NAK 351 0.004 0.022 0.003 0.010 0.004 0.002 0.010 0.009 0.024 0.010 0.010 0.022

14 NAK 358 0.006 0.018 0.008 0.000 0.006 0.008 0.000 0.007 0.020 0.000 0.000 0.018 0.010

15 NAK 382 0.007 0.017 0.008 0.001 0.007 0.009 0.001 0.008 0.019 0.001 0.001 0.017 0.009 0.001

16 NAK 384 0.063 0.062 0.064 0.068 0.063 0.063 0.068 0.066 0.060 0.068 0.068 0.062 0.063 0.068 0.067

17 NAK 387 0.002 0.021 0.003 0.009 0.002 0.002 0.009 0.007 0.022 0.009 0.009 0.021 0.002 0.009 0.008 0.061

18 NAK 458 0.002 0.022 0.002 0.008 0.002 0.003 0.008 0.006 0.023 0.008 0.008 0.022 0.002 0.008 0.007 0.063 0.002

19 R. acidisoli FH13(T) (KJ921033) 0.006 0.018 0.008 0.000 0.006 0.008 0.000 0.007 0.020 0.000 0.000 0.018 0.010 0.000 0.001 0.068 0.009 0.008

20 R. anhuiense CCBAU 23252(T) (KF111868) 0.006 0.018 0.008 0.000 0.006 0.008 0.000 0.007 0.020 0.000 0.000 0.018 0.010 0.000 0.001 0.068 0.009 0.008 0.000

21 R. azibense 23C2(T) (JN624691) 0.024 0.032 0.026 0.031 0.024 0.025 0.031 0.029 0.032 0.031 0.031 0.032 0.027 0.031 0.031 0.061 0.026 0.026 0.031 0.031

22 R. calliandrae CCGE524(T) (JX855162) 0.021 0.004 0.022 0.017 0.021 0.021 0.017 0.022 0.003 0.017 0.017 0.004 0.022 0.017 0.017 0.061 0.020 0.021 0.017 0.017 0.030

23 R. etli CFN 42(T) (CP000133) 0.004 0.022 0.003 0.010 0.004 0.002 0.010 0.009 0.024 0.010 0.010 0.022 0.000 0.010 0.009 0.063 0.002 0.002 0.010 0.010 0.027 0.022

24 R. fabae CCBAU 33202(T) (DQ835306) 0.001 0.022 0.002 0.007 0.001 0.002 0.007 0.005 0.024 0.007 0.007 0.022 0.004 0.007 0.008 0.064 0.003 0.002 0.007 0.007 0.025 0.022 0.004

25 R. freirei PRF 81(T) (EU488742) 0.025 0.008 0.026 0.022 0.025 0.025 0.022 0.026 0.005 0.022 0.022 0.008 0.026 0.022 0.021 0.063 0.024 0.025 0.022 0.022 0.032 0.004 0.026 0.026

26 R. gallicum R602sp(T) (AF008130) 0.006 0.018 0.008 0.000 0.006 0.008 0.000 0.007 0.020 0.000 0.000 0.018 0.010 0.000 0.001 0.068 0.009 0.008 0.000 0.000 0.031 0.017 0.010 0.007 0.022

27 R. hainanense I66(T) (U71078) 0.027 0.008 0.027 0.023 0.027 0.027 0.023 0.027 0.006 0.023 0.023 0.008 0.027 0.023 0.022 0.064 0.026 0.027 0.023 0.023 0.034 0.005 0.027 0.027 0.002 0.023

28 R. jaguaris CCGE525(T) (JX855169) 0.023 0.002 0.024 0.020 0.023 0.023 0.020 0.024 0.005 0.020 0.020 0.002 0.024 0.020 0.019 0.061 0.022 0.023 0.020 0.020 0.034 0.005 0.024 0.024 0.008 0.020 0.008

29 R. laguerreae FB206(T) (JN558651) 0.006 0.018 0.008 0.000 0.006 0.008 0.000 0.007 0.020 0.000 0.000 0.018 0.010 0.000 0.001 0.068 0.009 0.008 0.000 0.000 0.031 0.017 0.010 0.007 0.022 0.000 0.023 0.020

30 R. leguminosarum USDA 2370(T) (U29386) 0.009 0.021 0.010 0.002 0.009 0.010 0.002 0.009 0.022 0.002 0.002 0.021 0.013 0.002 0.003 0.071 0.011 0.010 0.002 0.002 0.033 0.020 0.013 0.009 0.024 0.002 0.026 0.022 0.002

31 R. leucaenae USDA 9039(T) (X67234) 0.023 0.006 0.024 0.020 0.023 0.023 0.020 0.024 0.000 0.020 0.020 0.006 0.024 0.020 0.019 0.060 0.022 0.023 0.020 0.020 0.032 0.003 0.024 0.024 0.005 0.020 0.006 0.005 0.020 0.022

32 R. lusitanum P1-7(T) (AY738130) 0.022 0.004 0.023 0.019 0.022 0.022 0.019 0.023 0.003 0.019 0.019 0.004 0.023 0.019 0.018 0.059 0.022 0.022 0.019 0.019 0.034 0.004 0.023 0.023 0.006 0.019 0.006 0.002 0.019 0.022 0.003

33 R. mayense CCGE526(T) (JX855172) 0.021 0.002 0.022 0.017 0.021 0.021 0.017 0.022 0.005 0.017 0.017 0.002 0.022 0.017 0.017 0.060 0.020 0.021 0.017 0.017 0.032 0.002 0.022 0.022 0.006 0.017 0.006 0.004 0.017 0.020 0.005 0.002

34 R. mongolense ATCC BAA-116(T) (U89817) 0.020 0.037 0.022 0.026 0.020 0.020 0.026 0.025 0.041 0.026 0.026 0.037 0.022 0.026 0.027 0.064 0.020 0.022 0.026 0.026 0.014 0.038 0.022 0.021 0.041 0.026 0.043 0.039 0.026 0.027 0.041 0.040 0.038

35 R. multihospitium CCBAU 83401(T) (EF035074) 0.025 0.008 0.026 0.022 0.025 0.025 0.022 0.026 0.005 0.022 0.022 0.008 0.026 0.022 0.021 0.063 0.024 0.025 0.022 0.022 0.032 0.004 0.026 0.026 0.000 0.022 0.002 0.008 0.022 0.024 0.005 0.006 0.006 0.041

36 R. paranaense PRF 35(T) (EU488753) 0.022 0.000 0.022 0.018 0.022 0.022 0.018 0.023 0.006 0.018 0.018 0.000 0.022 0.018 0.017 0.062 0.021 0.022 0.018 0.018 0.032 0.004 0.022 0.022 0.008 0.018 0.008 0.002 0.018 0.021 0.006 0.004 0.002 0.037 0.008

37 R. phaseoli ATCC 14482(T) (EF141340) 0.001 0.022 0.002 0.007 0.001 0.002 0.007 0.005 0.024 0.007 0.007 0.022 0.005 0.007 0.008 0.064 0.003 0.002 0.007 0.007 0.025 0.022 0.005 0.002 0.026 0.007 0.027 0.024 0.007 0.009 0.024 0.023 0.022 0.021 0.026 0.022

38 R. pisi DSM 30132(T) (AY509899) 0.001 0.022 0.001 0.007 0.001 0.001 0.007 0.005 0.024 0.007 0.007 0.022 0.003 0.007 0.008 0.064 0.003 0.002 0.007 0.007 0.025 0.022 0.003 0.001 0.026 0.007 0.027 0.024 0.007 0.009 0.024 0.023 0.022 0.021 0.026 0.022 0.002

39 R. pusense NRCPB10(T) (FJ969841) 0.062 0.062 0.063 0.067 0.062 0.062 0.067 0.065 0.060 0.067 0.067 0.062 0.062 0.067 0.066 0.001 0.060 0.062 0.067 0.067 0.060 0.062 0.062 0.063 0.064 0.067 0.065 0.062 0.067 0.070 0.060 0.061 0.061 0.064 0.064 0.062 0.063 0.063

40 R. radiobacter ATCC 19358(T) (AJ389904) 0.055 0.055 0.056 0.060 0.055 0.055 0.060 0.058 0.052 0.060 0.060 0.055 0.054 0.060 0.059 0.008 0.052 0.055 0.060 0.060 0.053 0.054 0.054 0.056 0.057 0.060 0.058 0.054 0.060 0.062 0.052 0.052 0.052 0.057 0.057 0.055 0.056 0.056 0.007

41 R. sophorae CCBAU 03386(T) (KJ831229) 0.006 0.018 0.008 0.000 0.006 0.008 0.000 0.007 0.020 0.000 0.000 0.018 0.010 0.000 0.001 0.068 0.009 0.008 0.000 0.000 0.031 0.017 0.010 0.007 0.022 0.000 0.023 0.020 0.000 0.002 0.020 0.019 0.017 0.026 0.022 0.018 0.007 0.007 0.067 0.060

42 R. sophoriradicis CCBAU 03470(T) (KJ831225) 0.002 0.021 0.003 0.009 0.002 0.002 0.009 0.007 0.022 0.009 0.009 0.021 0.002 0.009 0.008 0.061 0.000 0.002 0.009 0.009 0.026 0.020 0.002 0.003 0.024 0.009 0.026 0.022 0.009 0.011 0.022 0.022 0.020 0.020 0.024 0.021 0.003 0.003 0.060 0.052 0.009

43 R. tropici CIAT 899(T) (CPOO4015) 0.024 0.009 0.026 0.021 0.024 0.024 0.021 0.025 0.006 0.021 0.021 0.009 0.027 0.021 0.022 0.064 0.025 0.026 0.021 0.021 0.032 0.005 0.027 0.025 0.001 0.021 0.002 0.009 0.021 0.023 0.006 0.007 0.007 0.040 0.001 0.009 0.025 0.025 0.065 0.058 0.021 0.025

44 R. vallis CCBAU 65647(T) (FJ839677) 0.017 0.005 0.017 0.024 0.017 0.016 0.024 0.022 0.012 0.024 0.024 0.005 0.017 0.024 0.023 0.059 0.017 0.017 0.024 0.024 0.028 0.009 0.017 0.017 0.013 0.024 0.013 0.007 0.024 0.027 0.012 0.009 0.008 0.033 0.013 0.005 0.018 0.017 0.060 0.052 0.024 0.017 0.014

45 B. japonicum USDA 6(T) (AP012206) 0.119 0.134 0.119 0.126 0.119 0.120 0.126 0.124 0.137 0.126 0.126 0.134 0.120 0.126 0.125 0.139 0.119 0.119 0.126 0.126 0.128 0.136 0.120 0.118 0.132 0.126 0.132 0.133 0.126 0.130 0.137 0.133 0.133 0.122 0.132 0.134 0.120 0.119 0.141 0.137 0.126 0.119 0.134 0.127
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Appendix 2: Estimates of evolutionary divergence between recA sequences of study strains and of closely related described species. The number of 

base substitutions per site from between sequences is shown. Analyses were conducted using the Tamura 3-parameter model. The rate variation 

among sites was modelled with a gamma distribution (shape parameter = 1). The analysis involved 45 nucleotide sequences. All positions with less 

than 95% site coverage were eliminated. That is, fewer than 5% alignment gaps, missing data, and ambiguous bases were allowed at any position. 

There were a total of 342 positions in the final dataset. Evolutionary analyses were conducted in MEGA6 (Tamura et al., 2013). 

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

1 NAK 103

2 NAK 120 0.127

3 NAK 157 0.103 0.106

4 NAK 210 0.091 0.115 0.095

5 NAK 239 0.000 0.127 0.103 0.091

6 NAK 245 0.108 0.110 0.034 0.092 0.108

7 NAK 266 0.091 0.115 0.095 0.000 0.091 0.092

8 NAK 287 0.003 0.132 0.107 0.087 0.003 0.103 0.087

9 NAK 294 0.141 0.041 0.132 0.133 0.141 0.133 0.133 0.137

10 NAK 312 0.091 0.115 0.095 0.000 0.091 0.092 0.000 0.087 0.133

11 NAK 334 0.126 0.151 0.114 0.054 0.126 0.111 0.054 0.122 0.170 0.054

12 NAK 349 0.146 0.031 0.128 0.147 0.146 0.137 0.147 0.151 0.041 0.147 0.176

13 NAK 351 0.091 0.115 0.095 0.000 0.091 0.092 0.000 0.087 0.133 0.000 0.054 0.147

14 NAK 358 0.091 0.115 0.095 0.000 0.091 0.092 0.000 0.087 0.133 0.000 0.054 0.147 0.000

15 NAK 382 0.091 0.115 0.095 0.000 0.091 0.092 0.000 0.087 0.133 0.000 0.054 0.147 0.000 0.000

16 NAK 384 0.149 0.129 0.159 0.137 0.149 0.164 0.137 0.153 0.139 0.137 0.189 0.134 0.137 0.137 0.137

17 NAK 387 0.047 0.126 0.107 0.080 0.047 0.103 0.080 0.044 0.130 0.080 0.106 0.135 0.080 0.080 0.080 0.157

18 NAK 458 0.000 0.127 0.103 0.091 0.000 0.108 0.091 0.003 0.141 0.091 0.126 0.146 0.091 0.091 0.091 0.149 0.047

19 R. acidisoli FH13(T) (KJ921098) 0.101 0.135 0.098 0.034 0.101 0.103 0.034 0.097 0.144 0.034 0.064 0.158 0.034 0.034 0.034 0.149 0.082 0.101

20 R. anhuiense CCBAU 23252(T) (KF111980) 0.098 0.145 0.112 0.051 0.098 0.108 0.051 0.094 0.147 0.051 0.090 0.162 0.051 0.051 0.051 0.154 0.084 0.098 0.061

21 R. azibense 23C2(T) (JN624700) 0.146 0.116 0.143 0.134 0.146 0.138 0.134 0.146 0.121 0.134 0.173 0.125 0.134 0.134 0.134 0.144 0.146 0.146 0.151 0.144

22 R. calliandrae CCGE524(T) (JX855189) 0.142 0.082 0.143 0.135 0.142 0.139 0.135 0.138 0.078 0.135 0.184 0.086 0.135 0.135 0.135 0.143 0.150 0.142 0.146 0.135 0.113

23 R. etli CFN 42(T) (CP000133) 0.116 0.123 0.044 0.099 0.116 0.021 0.099 0.111 0.146 0.099 0.122 0.146 0.099 0.099 0.099 0.173 0.103 0.116 0.111 0.100 0.151 0.139

24 R. fabae CCBAU 33202(T) (EF5799941) 0.106 0.126 0.107 0.072 0.106 0.107 0.072 0.102 0.126 0.072 0.110 0.149 0.072 0.072 0.072 0.182 0.102 0.106 0.092 0.072 0.157 0.142 0.115

25 R. freirei PRF 81(T) (EU488827) 0.126 0.086 0.122 0.126 0.126 0.114 0.126 0.121 0.087 0.126 0.160 0.095 0.126 0.126 0.126 0.121 0.133 0.126 0.129 0.134 0.142 0.105 0.130 0.147

26 R. gallicum R602sp(T) (CPOO6877) 0.147 0.125 0.157 0.139 0.147 0.144 0.139 0.142 0.109 0.139 0.169 0.135 0.139 0.139 0.139 0.159 0.152 0.147 0.157 0.141 0.034 0.118 0.157 0.157 0.148

27 R. hainanens _I66(T) (HQ394252) 0.113 0.071 0.130 0.122 0.113 0.131 0.122 0.109 0.071 0.122 0.146 0.079 0.122 0.122 0.122 0.128 0.120 0.113 0.124 0.130 0.137 0.112 0.147 0.134 0.037 0.143

28 R. jaguaris CCGE525(T) (JX855192) 0.168 0.071 0.153 0.152 0.168 0.144 0.152 0.163 0.080 0.152 0.178 0.072 0.152 0.152 0.152 0.166 0.164 0.168 0.159 0.187 0.156 0.083 0.153 0.169 0.127 0.163 0.110

29 R. laguerreae FB206(T) (JN558681) 0.139 0.143 0.118 0.087 0.139 0.132 0.087 0.135 0.131 0.087 0.113 0.131 0.087 0.087 0.087 0.180 0.110 0.139 0.086 0.084 0.150 0.136 0.133 0.090 0.147 0.161 0.134 0.135

30 R. leguminosarum USDA 2370(T) (AJ294376) 0.106 0.122 0.103 0.051 0.106 0.099 0.051 0.102 0.119 0.051 0.082 0.132 0.051 0.051 0.051 0.160 0.087 0.106 0.057 0.063 0.122 0.118 0.104 0.076 0.125 0.132 0.121 0.148 0.037

31 R. leucaenae USDA 9039(T) (AJ294372) 0.137 0.044 0.137 0.120 0.137 0.148 0.120 0.133 0.021 0.120 0.166 0.059 0.120 0.120 0.120 0.129 0.126 0.137 0.140 0.146 0.112 0.093 0.161 0.122 0.091 0.101 0.075 0.099 0.140 0.127

32 R. lusitanum p1-7(T) (DQ431674) 0.144 0.098 0.135 0.137 0.144 0.135 0.137 0.140 0.112 0.137 0.171 0.121 0.137 0.137 0.137 0.151 0.171 0.144 0.157 0.171 0.149 0.118 0.152 0.149 0.094 0.145 0.091 0.107 0.162 0.147 0.111

33 R. mayense CCGE526(T) (JX855195) 0.176 0.082 0.142 0.170 0.176 0.147 0.170 0.171 0.071 0.170 0.198 0.075 0.170 0.170 0.170 0.150 0.177 0.176 0.172 0.180 0.142 0.086 0.161 0.182 0.117 0.148 0.109 0.065 0.147 0.151 0.082 0.122

34 R. mongolense ATCC BAA-116(T) (AY907358) 0.138 0.109 0.139 0.114 0.138 0.127 0.114 0.134 0.101 0.114 0.151 0.118 0.114 0.114 0.114 0.132 0.126 0.138 0.121 0.141 0.031 0.101 0.139 0.139 0.130 0.028 0.125 0.126 0.143 0.115 0.093 0.128 0.126

35 R. multihospitium CCBAU 83401(T) (EF490029) 0.135 0.072 0.122 0.110 0.135 0.114 0.110 0.131 0.072 0.110 0.130 0.087 0.110 0.110 0.110 0.155 0.129 0.135 0.125 0.135 0.130 0.093 0.122 0.125 0.079 0.135 0.061 0.111 0.130 0.125 0.076 0.124 0.110 0.118

36 R. paranaense PRF 35(T) (EU488826) 0.123 0.003 0.102 0.115 0.123 0.111 0.115 0.128 0.037 0.115 0.151 0.028 0.115 0.115 0.115 0.125 0.122 0.123 0.139 0.141 0.116 0.078 0.123 0.122 0.083 0.125 0.068 0.068 0.139 0.122 0.041 0.094 0.078 0.109 0.068

37 R. phaseoli ATCC 14482(T) (EF113136) 0.000 0.128 0.103 0.091 0.000 0.108 0.091 0.003 0.142 0.091 0.127 0.147 0.091 0.091 0.091 0.149 0.047 0.000 0.102 0.099 0.146 0.143 0.116 0.106 0.126 0.147 0.113 0.168 0.140 0.107 0.138 0.145 0.176 0.139 0.136 0.124

38 R. pisi DSM 30132(T) (DQ431676) 0.115 0.132 0.116 0.066 0.115 0.112 0.066 0.111 0.119 0.066 0.102 0.133 0.066 0.066 0.066 0.183 0.103 0.115 0.080 0.077 0.163 0.126 0.116 0.027 0.139 0.163 0.126 0.143 0.064 0.058 0.124 0.151 0.170 0.145 0.118 0.128 0.115

39 R. pusense NRCPB10(T) (HQ166059) 0.136 0.125 0.142 0.137 0.136 0.142 0.137 0.132 0.125 0.137 0.162 0.143 0.137 0.137 0.137 0.054 0.140 0.136 0.140 0.149 0.161 0.146 0.154 0.158 0.117 0.171 0.116 0.169 0.178 0.168 0.121 0.169 0.158 0.144 0.128 0.121 0.136 0.159

40 R. radiobacter ATCC 19358(T) (AM182121) 0.183 0.152 0.183 0.151 0.183 0.184 0.151 0.178 0.167 0.151 0.200 0.172 0.151 0.151 0.151 0.069 0.198 0.183 0.167 0.187 0.187 0.176 0.198 0.202 0.140 0.198 0.147 0.208 0.227 0.199 0.153 0.180 0.189 0.169 0.161 0.148 0.184 0.215 0.083

41 R. sophorae CCBAU 03386(T) (KJ831252) 0.109 0.143 0.114 0.068 0.109 0.115 0.068 0.105 0.135 0.068 0.101 0.140 0.068 0.068 0.068 0.159 0.082 0.109 0.071 0.073 0.148 0.125 0.116 0.095 0.133 0.159 0.128 0.142 0.047 0.028 0.144 0.160 0.164 0.141 0.133 0.139 0.110 0.068 0.162 0.202

42 R. sophoriradicis CCBAU 03470(T) (KJ831248) 0.047 0.126 0.107 0.080 0.047 0.103 0.080 0.044 0.130 0.080 0.106 0.135 0.080 0.080 0.080 0.157 0.000 0.047 0.082 0.084 0.146 0.150 0.103 0.102 0.133 0.152 0.120 0.164 0.110 0.087 0.126 0.171 0.177 0.126 0.129 0.122 0.047 0.103 0.140 0.198 0.082

43 R. tropici CIAT 899(T) (CP004015) 0.168 0.093 0.158 0.141 0.168 0.159 0.141 0.163 0.097 0.141 0.167 0.097 0.141 0.141 0.141 0.154 0.157 0.168 0.150 0.158 0.162 0.127 0.167 0.155 0.068 0.177 0.050 0.113 0.153 0.149 0.093 0.134 0.120 0.158 0.078 0.089 0.169 0.146 0.141 0.169 0.148 0.157

44 R. vallis CCBA 65647(T) (GU211770) 0.094 0.109 0.110 0.061 0.094 0.098 0.061 0.090 0.122 0.061 0.090 0.123 0.061 0.061 0.061 0.150 0.082 0.094 0.089 0.099 0.151 0.152 0.101 0.106 0.129 0.157 0.109 0.138 0.119 0.102 0.126 0.123 0.171 0.130 0.122 0.109 0.094 0.103 0.149 0.169 0.114 0.082 0.144

45 B. japonicum DSMZ30131(T) (AY591555) 0.269 0.270 0.255 0.274 0.269 0.266 0.274 0.263 0.291 0.274 0.300 0.292 0.274 0.274 0.274 0.269 0.251 0.269 0.284 0.315 0.277 0.294 0.271 0.322 0.305 0.296 0.291 0.303 0.342 0.290 0.292 0.297 0.313 0.272 0.297 0.275 0.270 0.330 0.280 0.258 0.296 0.251 0.320 0.278
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Appendix 3: Estimates of evolutionary divergence between nodC sequences of study strains and of closely related described species. The number of 
base substitutions per site from between sequences is shown. Analyses were conducted using the Tamura 3-parameter model. The rate variation 
among sites was modelled with a gamma distribution (shape parameter = 1). The analysis involved 35 nucleotide sequences. All positions with less 
than 95% site coverage were eliminated. That is, fewer than 5% alignment gaps, missing data, and ambiguous bases were allowed at any position. 
There were a total of 489 positions in the final dataset. Evolutionary analyses were conducted in MEGA6 (Tamura et al., 2013). 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

1 NAK 103

2 NAK 120 0.383

3 NAK 210 0.035 0.418

4 NAK 239 0.000 0.383 0.035

5 NAK 245 0.039 0.407 0.025 0.039

6 NAK 266 0.039 0.407 0.025 0.039 0.000

7 NAK 287 0.000 0.383 0.035 0.000 0.039 0.039

8 NAK 294 0.363 0.037 0.397 0.363 0.386 0.386 0.363

9 NAK 312 0.039 0.407 0.025 0.039 0.000 0.000 0.039 0.386

10 NAK 334 0.039 0.407 0.025 0.039 0.000 0.000 0.039 0.386 0.000

11 NAK 349 0.363 0.037 0.397 0.363 0.386 0.386 0.363 0.000 0.386 0.386

12 NAK 358 0.039 0.407 0.025 0.039 0.000 0.000 0.039 0.386 0.000 0.000 0.386

13 NAK 382 0.035 0.418 0.000 0.035 0.025 0.025 0.035 0.397 0.025 0.025 0.397 0.025

14 NAK 387 0.035 0.418 0.000 0.035 0.025 0.025 0.035 0.397 0.025 0.025 0.397 0.025 0.000

15 NAK 458 0.000 0.383 0.035 0.000 0.039 0.039 0.000 0.363 0.039 0.039 0.363 0.039 0.035 0.035

16 R. acidisoli FH23(T) (KJ921061) 0.026 0.402 0.012 0.026 0.012 0.012 0.026 0.381 0.012 0.012 0.381 0.012 0.012 0.012 0.026

17 R. anhuiense CCBAU 23252(T) (KF111957) 0.452 0.491 0.469 0.452 0.499 0.499 0.452 0.458 0.499 0.499 0.458 0.499 0.469 0.469 0.452 0.476

18 R. etli CFN 42(T) (U80928) 0.000 0.383 0.035 0.000 0.039 0.039 0.000 0.363 0.039 0.039 0.363 0.039 0.035 0.035 0.000 0.026 0.452

19 R. fabae CCBAU 33202(T) (JN580683) 0.463 0.503 0.480 0.463 0.511 0.511 0.463 0.469 0.511 0.511 0.469 0.511 0.480 0.480 0.463 0.488 0.006 0.463

20 R. gallicum R602sp(T) (AF217266) 0.216 0.292 0.223 0.216 0.229 0.229 0.216 0.286 0.229 0.229 0.286 0.229 0.223 0.223 0.216 0.219 0.361 0.216 0.370

21 R. hainanense CCBAU 57015(T) (DQ010039) 0.477 0.507 0.501 0.477 0.505 0.505 0.477 0.467 0.505 0.505 0.467 0.505 0.501 0.501 0.477 0.495 0.581 0.477 0.595 0.422

22 R. laguerreae FB206(T) (KC608575) 0.454 0.484 0.484 0.454 0.501 0.501 0.454 0.451 0.501 0.501 0.451 0.501 0.484 0.484 0.454 0.479 0.021 0.454 0.015 0.355 0.595

23 R. leguminosarum ATCC 14480 (FJ895269) 0.562 0.492 0.597 0.562 0.619 0.619 0.562 0.525 0.619 0.619 0.525 0.619 0.597 0.597 0.562 0.591 0.441 0.562 0.440 0.450 0.668 0.407

24 R. leguminosarum USDA 2370(T) (FJ596038) 0.444 0.505 0.466 0.444 0.471 0.471 0.444 0.472 0.471 0.471 0.472 0.471 0.466 0.466 0.444 0.461 0.055 0.444 0.058 0.337 0.552 0.051 0.389

25 R. leguminosarum WSM1325 (CP001623) 0.577 0.479 0.615 0.577 0.636 0.636 0.577 0.511 0.636 0.636 0.511 0.636 0.615 0.615 0.577 0.608 0.462 0.577 0.460 0.456 0.675 0.432 0.041 0.408

26 R. leucaenae HBR12 (JN580662) 0.363 0.037 0.397 0.363 0.386 0.386 0.363 0.000 0.386 0.386 0.000 0.386 0.397 0.397 0.363 0.381 0.458 0.363 0.469 0.286 0.467 0.451 0.525 0.472 0.511

27 R. lusitanum P1-7(T) (HM852098) 0.371 0.041 0.406 0.371 0.394 0.394 0.371 0.004 0.394 0.394 0.004 0.394 0.406 0.406 0.371 0.390 0.468 0.371 0.479 0.293 0.477 0.461 0.536 0.482 0.522 0.004

28 R. multihospitium CCBAU 83401(T) (EF050781) 0.477 0.495 0.501 0.477 0.505 0.505 0.477 0.462 0.505 0.505 0.462 0.505 0.501 0.501 0.477 0.495 0.098 0.477 0.101 0.368 0.603 0.102 0.435 0.063 0.443 0.462 0.472

29 R. phaseoli ATCC 14482(T) (HM441255) 0.000 0.383 0.035 0.000 0.039 0.039 0.000 0.363 0.039 0.039 0.363 0.039 0.035 0.035 0.000 0.026 0.452 0.000 0.463 0.216 0.477 0.454 0.562 0.444 0.577 0.363 0.371 0.477

30 R. pisi DSM 30132(T) (JQ795195) 0.443 0.494 0.465 0.443 0.469 0.469 0.443 0.471 0.469 0.469 0.471 0.469 0.465 0.465 0.443 0.460 0.060 0.443 0.062 0.336 0.551 0.055 0.379 0.004 0.398 0.471 0.481 0.063 0.443

31 R. sophorae CCBAU 03386(T) (KJ831243) 0.030 0.402 0.017 0.030 0.017 0.017 0.030 0.381 0.017 0.017 0.381 0.017 0.017 0.017 0.030 0.004 0.477 0.030 0.488 0.219 0.496 0.479 0.600 0.461 0.617 0.381 0.390 0.495 0.030 0.460

32 R. sophoriradicis CCBAU 03470(T) (KJ831245) 0.035 0.418 0.000 0.035 0.025 0.025 0.035 0.397 0.025 0.025 0.397 0.025 0.000 0.000 0.035 0.012 0.469 0.035 0.480 0.223 0.501 0.484 0.597 0.466 0.615 0.397 0.406 0.501 0.035 0.465 0.017

33 R. tropici CIAT 899(T) (JN580681) 0.363 0.037 0.397 0.363 0.386 0.386 0.363 0.000 0.386 0.386 0.000 0.386 0.397 0.397 0.363 0.381 0.458 0.363 0.469 0.286 0.467 0.451 0.525 0.472 0.511 0.000 0.004 0.462 0.363 0.471 0.381 0.397

34 R. vallis CCBAU 65647(T) (GU211769) 0.039 0.407 0.025 0.039 0.000 0.000 0.039 0.386 0.000 0.000 0.386 0.000 0.025 0.025 0.039 0.012 0.499 0.039 0.511 0.229 0.505 0.501 0.619 0.471 0.636 0.386 0.394 0.505 0.039 0.469 0.017 0.025 0.386

35 B. japonicum USDA 6(T) (AP012206) 0.495 0.540 0.490 0.495 0.521 0.521 0.495 0.525 0.521 0.521 0.525 0.521 0.490 0.490 0.495 0.491 0.581 0.495 0.595 0.468 0.568 0.607 0.567 0.612 0.574 0.525 0.536 0.583 0.495 0.611 0.505 0.490 0.525 0.521
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Appendix 4: A 4-point scale for scoring nodulation in Phaseolus vulgaris 

 Score 

  

1. Distribution  

*Crown + full laterals 1 

Crown + partial laterals 0.75 

Full laterals 0.5 

Partial laterals 0.25 

  

2. Nodule Size**  

Mainly large (>75%) 1 

Large + Medium 0.75 

Medium + Small 0.5 

Small 0.25 

  

3. Nodule Number  

>201 1 

101-200 0.75 

21-100 0.5 

1-20 0.25 

  

4. Nodule color***  

Pink 1 

Pink + White/Green 0.75 

Pink+ Green + White 0.5 

Green/white 0.25 

  

* Crown-5cm of tap root and major laterals 
** Sizes: Large ≥4mm, medium 2-4mm, small ≤2 

***Indicative of the main colour
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Appendix 5: Rhizobia population changes in soil inoculated separately with NAK 120C, NAK 210C, NAK 287C and CIAT 899C over the experimental period 

Target 
density at 

inoculation 

Nitrogen Strain Population at 
inoculation 

(rhizobia/g of soil) 

Population at planting 
(rhizobia/g of soil) 

Population size at 10 
DAP (rhizobia/g of 

soil) 

Population size at 30 
DAP (rhizobia/g of 

soil) 

Low (102) 0 NAK 120C nd 6.65×104±1.0×104 a‡ 1.61×105±1.9×103 ab 0.91×106±1.4×104 d 
 0 NAK 210C nd 5.02×104±9.3×103 a 1.05×105±1.0×104 a 1.94×105±5.0×104 b 
 0 NAK 287C nd 4.40×104±4.0×103 a 4.39×105±8.8×104 b 4.79×104±8.4×104 a 
 0 CIAT 899C nd 8.68×104±2.2×103 a 3.78×105±1.1×105 b 2.89×106±8.1×104 c 

  Mean nd 6.19×104±6.8×103 2.71×105±6.0×104 1.01×106±4.3×105 

 1 NAK 120C nd 3.07×104±6.7×103  8.75×104±2.0×104  3.85×105±9.8×104  
 1 NAK 210C nd 2.22×104±1.1×103  5.78×104±1.5×103  4.86×104±7.9×103 * 

High (105) 0 NAK 120C 1.07×105±2.8×103 ab 0.91×106±8.3×104 a 1.15×106±3.7×104 a 1.21×105±7.9×104 a 
 0 NAK 210C 5.60×104±1.3×104 a 0.83×106±2.7×105 a 5.35×106±4.6×105 c 2.75×105±1.9×104 b 
 0 NAK 287C 1.16×105±2.8×103 ab 2.21×106±1.4×105 ab 6.28×106±8.3×104 c 1.57×106±4.9×104 c 
 0 CIAT 899C 2.10×105±3.6×104 b 3.36×106±5.1×105 b 3.66×106±1.5×104 b 5.44×106±5.1×104 d 

  Mean 1.20×105±2.1×104 1.83×106±4.0×105 4.11×106±7.4×105 2.74×106±6.3×105 

 1 NAK 120C 1.08×105±1.2×103  1.13×106±1.2×105 1.81×106±1.7×105 5.96×106±5.8×105* 
 1 NAK 210C 5.73×104±6.9×103  7.18×105±1.5×105 1.34×106±1.2×105* 7.21×105±1.2×105* 

nd: not determined 
‡populations, within a sampling time and within a low or high inoculation, marked with the same letter(s) are not significantly different from each 
other (HSD, p=0.05) 
*Populations are significantly different (ANOVA, P=0.05) from comparable treatment lacking supplementary N 
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