A House Efficiency Investigation Using A Full Life Cycle Analysis and Measured Operational Data Through the '10 House Living Labs' Project

ENG470 Engineering Honours Thesis

Luke Murphy

Bachelor of Environmental Engineering Honours School of Engineering and Information Technology

2016

<u>Project Supervisor</u>: Christine Eon, PhD Candidate Curtin University <u>Thesis Supervisor</u>: Martin Anda, Academic Chair Environmental Engineering

Declaration

This thesis is submitted to the School of Engineering and Information Technology, Murdoch University, as partial fulfilment of the requirements of ENG470 Engineering Honours Thesis, 2016

I, Luke Murphy, declare that the work presented herein is my own work, unless states otherwise and excluding references and appendices. The results contribute to the PhD research project '10 House Living Labs' undertaken by Christine Eon.

Signed _____

Luke Murphy

Submitted 18th November 2016

Word Count: 15 560

Acknowledgements

I would like to express my gratitude to my thesis supervisors Martin Anda and Christine Moura Eon for their guidance and support throughout completing this research project. I would especially like to acknowledge Christine for giving me the opportunity to assist her in conducting her research and giving me the opportunity to work on a PhD level research project for my final year thesis.

I am also thankful for the industry partners Josh Byrne and Associates, eTool, Living Key, Curtin University and CRC Low Carbon Living for their involvement as this project would not have been possible without them.

In addition I would also like to acknowledge and thank the occupants for their cooperation throughout the entire research project as again the project would not have been possible without it.

Finally I would like to thank Murdoch University for providing the support and quality of education that I have received throughout my entire degree.

Abstract

The building industry currently accounts for approximately one fifth of the total greenhouse gas emissions in Australia. With the expected rise in population as well as the combination of smaller family sizes and the demand for larger more comfortable houses the impact of the building industry will continue to increase. Many different mandatory and voluntary rating tools have been developed around the world to ensure buildings move to become more sustainable, however studies have shown that these sustainable homes often underperform as they consume more energy than expected. Under the Nationwide House Energy Rating Scheme (NatHERS), Australia has targeted the operational energy reduction for heating and cooling. It has been found that there is a gap between the rating and the actual operational output of the houses as poor build quality, inaccuracy of the assessment tools and the occupants lack the knowledge on how to operate and maintain their homes efficiently all contributing to higher than expected operational energy. A broader outlook on sustainability outside of the operational energy demand of a house, Life cycle assessment tools are becoming increasingly more common. A life cycle assessment tool provides a complete evaluation of the carbon footprint in terms of the greenhouse gas emissions for the entire embodied and operational energy of a house which can be used in combination with the existing NatHERS to increase the understanding of sustainability in the Australian building industry. A life cycle assessment also has the potential to be used as a decision making tool to identify and influence the products or processes that would optimise the sustainability of the building.

This study includes monitoring the energy and water used in each home in addition to the photovoltaic solar production observed during the first year of the two year monitoring period for ten existing houses. The houses consist of both new six star rated homes as well as older retrofitted homes with different occupancies. The houses were all assessed with life cycle assessment software called eTool which measured the full lifecycle global warming impact of the existing houses. The operational data was then compared with the eTool prediction to investigate the house efficiency comparing the two ratings to identify specific areas of operational reduction improvements. Further analysis of the houses operational monitored data occurred via the process of an audit to further investigate how the occupant's behaviours and house inefficiencies influence the performance of the house in terms of energy and water efficiency and whether there were any common trends identified among the houses.

The results of the study found that the eTool life cycle assessment provides an accurate representation of the actual energy and water usage based of the ten houses when compared with the 2015 measured values. The variations that did occur through the eTool assessment were identified further via the audits and were found to be associated with behaviour choices of the

iv

occupants, inefficiency with build quality, design or problems with technologies employed. Some technology problems encountered during the audit was that solar hot water systems were underperforming for some houses due to shading occurring during winter. An insight into the house inefficiencies was achieved by investigating the thermal performance of the building during the audit. The tool used was a thermal imaging camera. This identified that the major areas of heat gain were through missing insulation and unshaded east and west facing windows. From the life cycle assessment inefficiencies with solar photovoltaic production were detected at three of the houses due to the systems being shaded, dusty and located on a southern facing roof. The Life cycle assessment report also helps identify that the older houses which consist of lightweight construction have a lower embodied energy than the newer double brick houses. Interestingly the embodied energy of a retrofitted house with the old section being double brick and the new section being lightweight bulk insulated cladding has its highest impacting materials being brick and concrete. Another finding was that most of the houses had a higher portion of the solar production exported to the grid rather than utilised by the house which indicates that perhaps the PV systems are not being used to their full potential.

Glossary

LCA	Life Cycle Assessment
NatHERS	Nationwide House Energy Rating Scheme
HERS	House Energy Rating Scheme
NZeb	Nearly Zero Energy Building
BASIX	Building Sustainability Index
PV	Photovoltaic solar panels
HVAC	heating ventilation and air conditioning
BREEAM	Building Research Establishment Environmental Assessment Method
LEED	Leadership in Energy and Environmental Design
CSIRO	Commonwealth Scientific and Industrial Research Organisation, Australia
kWh	Kilowatt Hours
LED	Light Emitting Diode
CFL	Compact Fluorescent Light
kL	Kilolitres
EPBD	Energy Performance of Buildings Directive
USA	United States of America
UK	United Kingdom
GBI	Green Building Initiative
CASBEE	Comprehensive Assessment System for Built Environment Efficiency

Table of Contents

Declaration	ii
Acknowledgements	iii
Abstract	iv
Glossary	vi
Table of Contents	vii
List of Figures	ix
List of Tables	xii
1.0 Introduction	1
1.1 Background	1
1.2 Aim and Objectives	2
1.3 Limitations of the study	3
2.0 Literature Review	4
2.1 Sustainable Housing	4
2.2 Mandatory Rating Tools	5
2.3 Voluntary Rating Tools	6
2.4 Behaviour Impacting Energy use	8
2.5 Photovoltaic performance modelling	9
2.6 Retrofitted homes	9
2.7 Local Sustainable Housing Examples Using LCA Studies	
2.7.1 Josh's house	
2.7.2 The Siding	11
3.0 Methodology	
3.1 '10 House Living Labs' Selection Process	
3.2 Monitoring Equipment and data Collection	14
3.3 Site Audit & Behavioural Influence Consultations	
3.4 Summer Audit	
3.5 Winter Audit	19
3.6 Goal Setting	20
3.7 Monitoring Website	20
3.8 eTool Training	21
3.9 3D modelling	21

3.10 eTool Reports and Results	21
4.0 Life Cycle Analysis	24
4.1 Introduction into carbon life cycle analysis (eTool)	24
4.2 Results	25
4.2.1 Embodied Energy	25
4.2.2 Operational Energy	
5.0 Thermal Performance Efficiency and Behavioural Change	45
5.1 Introduction	45
5.2 Results and Discussion	45
5.2.1 Inefficiencies from building design	45
5.2.2 Energy Efficiency improvements	53
5.2.3 Water Efficiency	54
5.2.4 Josh Byrne Garden Audit	58
5.2.5 Renewable Energy	60
5.2.6 Summary of efficiency improvements applicable to multiple dwellings	64
6.0 Conclusion	66
7.0 References	68
8.0 Appendices	72
Appendix A: Google Sketch up models	72
Appendix B: Material offtake and eTool Specifications for each house	77
Appendix C: Audit Interviews (summer)	106
Appendix D: Audit interviews (winter)	111
Appendix E: Top 30 Materials By Total Impact	113
Appendix F: Energy, Water and Gas raw data for the eTool Predicted per Dwelling, N Dwelling and measured per occupant data	Лeasured per 133
Appendix G: Life Cycle Assessment per occupant	135
Appendix H: Life Cycle assessment result breakdown for the eTool prediction of each	h house136
Appendix I: Gantt chart	137

List of Figures

Figure 1: House H Energy consumption throughout the year (Source: Christine Eon 2015 audit report
*Note: data collection began in November 201415
Figure 2: House H PV generation for year 1 (Source: Christine Eon 2015 audit report)
Figure 3: House O Gas usage in correlation with mains water use. (Source: Christine Eon 2015 audit
report)
Figure 4 Monitoring website accessed by occupants during the second year of the study20
Figure 5: Embodied energy for each house (produced by Luke Murphy) Note: eTool pred is measured
as if the average person is living in the house, Act Meas is representing the embodied energy of the
house with the appliances the occupants use
Figure 6: Embodied energy per year of each house per square meter (produced by Luke Murphy)27
Figure 7 House H embodied energy breakdown of the highest contributors (produced by Luke
Murphy) Note: Other represents the sum of the lower individual contributors to the embodied
breakdown
Figure 8 House L embodied energy breakdown of the highest contributors (produced by Luke
Murphy) Note: Other represents the sum of the lower individual contributors to the embodied
hreakdown
Figure 9 House C embodied energy breakdown of the highest contributors (produced by Luke
Murphy) Note: Other represents the sum of the lower individual contributors to the embodied
hreakdown
Figure 10 House P embodied energy breakdown of the highest contributors (produced by Luke
Murphy) Note: Other represents the sum of the lower individual contributors to the embodied
breakdown
Figure 11 House F embodied energy breakdown of the highest contributors (produced by Luke
Murphy) Note: Other represents the sum of the lower individual contributors to the embodied
breakdown
Figure 12: Total Operational Energy of Each house (produced by Luke Murphy)
Figure 13: Operational Energy per square meter for each house with photovoltaic not taken into
consideration (produced by Luke Murphy)
Figure 14: Operational Energy per square meter for each house with photovoltaic taken into
consideration (produced by Luke Murphy)
Figure 15 House B highest operational energy contributors (produced by Luke Murphy) Note: Other
represents the sum of the lower individual contributors to the operational breakdown
Figure 16 House C highest operational energy contributors (produced by Luke Murphy) Note: Other
represents the sum of the lower individual contributors to the operational breakdown 34
Figure 17 House F highest operational energy contributors (produced by Luke Murphy) Note: Other
represents the sum of the lower individual contributors to the operational breakdown
Figure 18 House E highest operational energy contributors (produced by Luke Murphy) Note: Other
represents the sum of the lower individual contributors to the operational breakdown
Figure 19 House G highest operational energy contributors (produced by Luke Murphy) Note: Other
represents the sum of the lower individual contributors to the operational breakdown
Figure 20 House H highest operational energy contributors (produced by Luke Murphy) Note: Other
represents the sum of the lower individual contributors to the operational breakdown
Figure 21 House highest operational energy contributors (produced by Luke Murphy) Note: Other
represents the sum of the lower individual contributors to the operational breakdown
represents the sum of the lower multitudal contributors to the operational breakdown

Figure 22 House M highest operational energy contributors (produced by Luke Murphy) Note: Oth	ier
represents the sum of the lower individual contributors to the operational breakdown	.37
Figure 23 House O highest operational energy contributors (produced by Luke Murphy) Note: Other	er
represents the sum of the lower individual contributors to the operational breakdown	. 38
Figure 24 House P highest operational energy contributors (produced by Luke Murphy) Note: Othe	er
represents the sum of the lower individual contributors to the operational breakdown	. 38
Figure 25: Electricity use comparison between the eTool prediction and measured operational	
measurement (produced by Luke Murphy)	. 39
Figure 26: Gas use comparison between the eTool prediction and measured operational	
measurement (produced by Luke Murphy)	.40
Figure 27: Total electricity demand of all the dwellings insluding the solar energy used in the house	е
(produced by Luke Murphy)	.41
Figure 28: The embodied and operational global warming impact of each house showing the offset	ts
from renewable energy (produced by Luke Murphy)	.42
Figure 29: Photovoltaic comparison with solar production broke down into solar utilised and	
exported compared to expected production (produced by Luke Murphy).	.43
Figure 30: Actual breakdown of measured solar energy utilised and exported for each house	
(produced by Luke Murphy)	44
Figure 31 Movement of air through the front door of house O which isn't possible due to the	
impermeable front door (produced by Luke Murphy)	46
Figure 32: Thermal image of corner of the ceiling showing insulation missing (Source: Christine For	n 10
2015 audit report)	47
Figure 33: Insulation missing around the edges of house C (Source: Christine Fon 2015 audit report	+)
	47
Figure 34: Missing insulation around downlight at house O (Source: Christine Fon 2015 audit repor	rt)
	48
Figure 35: Temperature of a deck in shade compared to when it is in direct sunlight at house C	0
(Source: Christine Fon 2015 audit report)	48
Figure 36: West facing window in the afternoon at house H (Source: Christine Fon 2015 audit repo	ort)
	50
Figure 37: Before and after solution for shading the front room at house M (Source: Luke Murphy	
Google Sketchun)	51
Figure 38: West Facing Windows for house P (Source: Luke Murphy Google Sketchup)	52
Figure 39: Wood fire wall vent in the old section of house F (Source: Christine Fon 2015 audit reno	nrt)
	52
Figure 40: House L ducted (Source: Christine Fon 2015 audit report)	52
Figure 41: DV production curve against energy usage house H (Source: Christine Fon 2015 audit	
report)	51
Figure 12: Wet feed rainwater tank design (Source: Luke Murnhy)	56
Figure 42: Wet reed failwater tank design (Source: Luke Marphy)	.50
Figure 43. House E mains energy consumption in correlation with main water use (Source). Christian	
Figure 44. House E mains energy consumption in correlation with main water use (Source: Christin	гс 50
Eigure 45: House H DV from the 11^{th} November to the 10^{th} of November (Source) Christian For 200	. JO 1 E
rigure 45. House H PV from the 11 November to the 18 of November (Source: Christine EON 20.	12
auuit report)	. 60

Figure 46: House H monitoring website showing PV system performance in October 2016.
(Screenshot taken from http://pmecurtin.homeftp.net/web/ on the 17/10/2016)F61
Figure 47: House C electricity consumption breakdown (Source: Christine Eon 2015 house audit
report)
Figure 48: House M gas use for 2015 (Source: Christine Eon 2015 audit report)
Figure 49: House M with solar collectors positioned so shaded by the tree to the east (source:
Google Earth, 6/11/2016)63
Figure 50: house M gas use in correlation with water use (Source: Christine Eon 2015 audit report) 63
Figure 51: House G gas use for 2015 (Source: Christine Eon 2015 audit report)
Figure 52: Gas correlation with water use (Source: Christine Eon 2015 audit report)64
Figure 53: House B google sketch up model with layers used (Google Sketch up models by Luke
Murphy)
Figure 54: House C Google sketch up model with Layers used (Google Sketch up models by Luke
Murphy)
Figure 55: House E google Sketch up models with layers used (Google Sketch up models by Luke
Murphy)
Figure 56: House F google sketch up model with layers used (Google Sketch up models by Luke
Murphy)
Figure 57: House G google sketch up model with the layers used (Google Sketch up models by Luke
Murphy)74
Figure 58: House H google sketch up model with layers used (Google Sketch up models by Luke
Murphy)
Figure 59: House L Google Sketch up model with layers used (Google Sketch up models by Luke
Murphy)
Figure 60: House M Google Sketch up model with layers used (Google Sketch up models by Luke
Figure 60: House M Google Sketch up model with layers used (Google Sketch up models by Luke Murphy)
Figure 60: House M Google Sketch up model with layers used (Google Sketch up models by Luke Murphy)
Figure 60: House M Google Sketch up model with layers used (Google Sketch up models by Luke Murphy)
Figure 60: House M Google Sketch up model with layers used (Google Sketch up models by Luke Murphy)

List of Tables

Table 1: Voluntary sustainability assessment tools and the aspects they cover, Table from	Charoenkit
and Kumar 2014)	6
Table 2: House Typology (Source: Christine Eon et al. 2016 unpublished paper.)	13
Table 3 Data that was monitored for each house	14
Table 4: Monitoring equipment used for each house (Source: Christine Eon et al. 2016 unp	oublished
paper.)	15
Table 5: Examples of audit efficiency tests equipment (images taken by Luke Murphy)	17
Table 6: Summary of eTool benchmarks (produced by Luke Murphy)	22
Table 7 East façade of house E	49
Table 8 East Facing Window at house G (Google Sketch up models by Luke Murphy)	50
Table 9: House B, 8.5 stars, NatHERS thermal rating 15 MJ/m^2	77
Table 10: House C, Assume 6 Star Equivalence NatHERS thermal rating 39MJ/m^2	80
Table 11 House E, assume 6 star equivalent NatHERS thermal rating 39 MJ/m^2	82
Table 12: House F, assume 6 star equivalent NatHERS thermal rating 39 MJ/m^2	85
Table 13: House G, assume 7 star NatHERS thermal rating 29MJ/m^2	87
Table 14: House H, 8 star NatHERS thermal rating20 MJ/m^2	90
Table 15 House L, 6 stars NatHERS thermal rating 39 MJ/m^2	94
Table 16: House M: Assume 6 Star Equivalence NatHERS thermal rating 39MJ/m^2	97
Table 17: House O, 6 stars NatHERS thermal rating 39 MJ/m^2	99
Table 18: House P, assume 6 star equivalent NatHERS thermal rating 39 MJ/m^2	102
Table 19: House B Top 30 Materials By Total Impact	113
Table 20: House C Top 30 Materials By Total Impact	115
Table 21: House E Top 30 Materials By Total Impact	117
Table 22: House F Top 30 Materials By Total Impact	119
Table 23 House G Top 30 Materials By Total Impact	121
Table 24: House H Top 30 Materials By Total Impact	123
Table 25: House L Top 30 Materials By Total Impact	125
Table 26: House M Top 30 Materials By Total Impact	127
Table 27: House O Top 30 Materials By Total Impact	129
Table 28: House P Top 30 Materials By Total Impact	131

1.0 Introduction

1.1 Background

In Australia the building sector accounts for approximately 20% of the energy and 23% of the total Australian greenhouse gas emissions (Lawania and Sarker 2015). While the building sector is one of the main contributors to climate change, buildings are considered as a "goldmine" for greenhouse gas mitigation due to the cost effective opportunities that can take place within the sector (Ürge-Vorsatz and Novikova 2008). It is anticipated that the projected population growth, the trend to smaller family sizes, and the desire for a more comfortable indoor environment and larger houses will increase the energy demands, and subsequent GHG emissions from the residential building sector (Wang, Chen and Ren 2011).

In the residential sector alone approximately 40% of the energy used in a typical home is for space heating and cooling throughout the year (Dong, Soebarto and Griffith 2015). Consequently residential building energy performance has been one of the major target areas of emission reduction schemes and regulations (Wang, Chen and Ren 2011). House energy rating schemes (HERS) around the world have been developed in an attempt to mitigate the amount of energy consumed in the building sector during the operation phase of the building (Daniel, Soebarto and Williamson 2015). In addition, governments around the world have introduced mandatory energy performance requirements to reduce levels of energy consumption and lower household carbon emissions (O'Leary et al. 2015), (Fesanghary, Asadi and Geem 2012).

These mandatory energy requirements have typically included the operational energy within a house. More specifically Australia's Nationwide House Energy Rating Scheme is limited as it is restricted in rating a house based on the theoretical external heating and cooling requirements. Research has found that actual building energy performance varies greatly when compared to the theoretical models (O'Leary et al. 2016). A study done by the CSRIO (Ambrose and Syme 2015) investigates whether the built product meets the minimum specification of the NatHERS design rating of a house. They found the air tightness varied within the houses while 59% of the insulation was rated average or poor in quality. Mays and Castle (2014) explain that apart from the initial design phase, there is no assessment to ensure the build quality meets the energy rating which means there is no accountability for builders to deliver the 6 star rating. Similarly it can be shown that occupant behaviour can also be an important factor in the performance of a dwelling (O'Leary et al. 2016) (Ridley et al. 2014).

Operational energy is only a portion of the overall carbon footprint of a household. In Europe the Energy Performance of Buildings Directive (EPBD) target for all new buildings in the EU is to be 'Nearly Zero-Energy Buildings' from 2020 (Schimschar et al. 2011). The UK's target for all new homes to meet the requirements for a home to qualify as zero carbon is that it must: 1, reduce its energy demand through building material efficiency; 2, comply with any external emissions remaining after fabric performance is considered; and 3, reduce the remaining CO₂ emissions to zero by further reduction to process 1 and 2 or by investing in offsite carbon reduction projects or renewable energy (Zero Carbon Policy 2016).

As countries progress towards high energy performance homes that require low operational energy, the contribution of embodied energy in materials will become more important in relative terms, especially if an overall goal is to reduce the building's life cycle energy use (Thiel et al. 2013), (Himpe et al.2013). The life cycle analysis of a building can show quantitatively various types of environmental impacts, including energy consumption and CO₂ emissions of a building during its whole life cycle (Hong et al. 2014). An advantage of using LCA software is that it can provide a standardised method for comparing the relative sustainability of similar products or processes. It can also identify points in a product or process cycle where environmental impacts are relatively high and changes could be made to improve the sustainability of the overall system (Thiel et al. 2013).

1.2 Aim and Objectives

This study was conducted as a work package contributing to the PhD research project, '10 House Living Labs' conducted by Christine Moura Eon through the Curtin University's Sustainability Policy Institute and to be presented as part of ENG470 'Engineering Honours Thesis'. Christine's PhD research project is an investigation into the efficiency of 10 single detached homes in the Fremantle area through data monitoring across two years.

This present study for ENG470 thesis has the objectives to:

- Conduct a full life cycle analysis of each house to further assess the sustainability of the building and to determine how a life cycle analysis tool can benefit the design by considering alternative products to reduce the operational and embodied carbon footprint of the home.
- Investigate how occupant's behaviour influences the performance of the homes and identify energy efficient behaviours that will reduce the operational energy of the house.

- III. identify any house inefficiencies due to the design of the house or build quality that may contribute to excess energy use or an uncomfortable home and provide some advice on how to further improve the performance of the home
- IV. Recommend what is required to improve the sustainability of the housing market in Australia.

1.3 Limitations of the study

The ten houses used were self-selected samples that may not represent the entire Australian population.

Some of the houses in the study are retrofitted homes which haven't received any NatHERS thermal energy rating or have received a deemed to satisfy rating. This makes it difficult to compare the rated houses with the unrated houses as assumptions are required to be made on the heating and cooling requirements. To enhance the accuracy of the eTool operational assessment a NatHERS star rating can be carried out for the unrated houses.

The monitoring website used during the second year of the study is relatively slow to access, making it inconvenient for the occupants. In addition it would be beneficial to test alternative monitoring websites and equipment to further identify what is required for occupants to utilise this equipment to its best possible capabilities.

House B experienced a change in occupants for the second year of data monitoring which meant only nine behavioural change audits were able to be carried out instead of ten. The research will now however be able to compare the two types of occupants to further analyse the effects of the occupant's behaviour on the house performance.

To investigate the behaviour change further and to avoid the educated assumptions for high use behaviours, the study would benefit having more monitoring devices measuring the hot water system, air conditioners and gas heaters independently to obtain a more accurate breakdown of the energy used throughout the homes.

2.0 Literature Review

2.1 Sustainable Housing

The definition of sustainability remains broad when it comes to the housing industry. For example, sustainability was labelled with different terms such as "low carbon," "zero energy," "high performance" and most commonly "green" (Yang and Yang 2014). Housing sustainability should not, only cover the aspect of energy efficiency, but include resource usage, natural and socio-cultural systems, growth and economic demands and the lifestyle of current generations (Yang and Yang 2014). After the adoption of the 17 sustainable development goals in 2015 and in particular goal 11 on sustainable cities and communities, further focus will be placed on how it will impact mainstream housing policy to ensure safe and affordable housing, upgrading slum settlements and improving urban planning and management (Smets and Lindert 2016) ("Goal 11: Sustainable Cities And Communities" 2016). "Sustainable development cannot be achieved without significantly transforming the way we build and manage our urban spaces" ("Goal 11: Sustainable Cities and Communities" 2016). This statement emphasises the importance of improving the current standard of building and operating houses as the world population continues to grow and resources become scarce.

An article by Griggs et al. (2014) identifies that a set goal and target for each sustainable development goal is required for it to be achieved. The '10 house living labs' study provides solid data into the performance of ten residential dwellings, including information on the embodied energy of each dwelling. The comparison between the houses from the life cycle analysis can help identify unsustainable methods and materials and whether it has any impact on the performance of the houses, as well as some insight into potential residential targets that could be realistically achieved.

Despite the potential benefits and technological viability, voluntary uptake of sustainable housing is still in its infancy in Australia and is mostly driven by motives of experimentation, showcasing and marketing (Yang and Yang 2014), To get the most bang for the buck, cash outlays in green building should target low-hanging fruits such as consideration into orientation, shading, sealing the home and insulation (Schmidt 2008). An additional aspect of a sustainable home is ensuring that the occupant behaviours are continuously trying to reduce the operational energy of a home. The occupant behaviour choices are important to reduce the likelihood of the rebound energy effect where savings in one area may lead to a demand for a more comfortable lifestyle in another area, which in turn offsets the original efficiency improvement (Lin and Liu 2015).

2.2 Mandatory Rating Tools

House energy rating schemes around the world have been developed in an attempt to mitigate the amount of energy consumed in the building sector during the operation phase of the building (Daniel, Soebarto and Williamson 2015). An overall objective of energy policy in buildings is to save energy consumption without compromising comfort, health and productivity levels so that a dwelling consumes less energy while providing equal or improved building services (Pérez-Lombard et al. 2009.) An investigation into these mandatory tools employed by government policy focus heavily on the demand for space heating and cooling rating prior to 2010 (Schimschar et al. 2011).

House Energy Rating Schemes have been developed with consideration given to regional conditions and climates (Hurst 2012). Australia's Nationwide Household Energy Rating Scheme simulates the thermal performance of the building envelope and, based on predicted heating and cooling loads to maintain the prescribed 'comfort range', producing a star rating from 0 to 10 (Daniel, Soebarto and Williamson 2015). A star rating of 10 means it requires little heating and cooling and a star rating of 0 means it requires a large amount of heating and cooling.

The European standard requires an Energy Performance Certificate to determine the expected primary energy consumption of buildings. The second stage is for a second Energy Performance Certificate to be produced to determine the actual performance of the house (Pérez-Lombard et al. 2009). Each country within Europe can have its own performance certificate if it is recognised by the member state. Sweden, Netherlands, Austria, Ireland and Germany use their respective schemes BBR18, Bouwbesluit, IOB- Richtlinie, Part L and EnEV to determine their energy rating towards the thermal envelope requirements as well as energy use within the house with some states in America such as California having its own operational energy rating schemes CALGreen Code (GBPN 2013).

Within Australia, the NSW government adopted the Building Sustainability Index (BASIX), being the first state in Australia to develop its own mandatory sustainability index. BASIX covers the thermal performance of the building as well as water and energy consumption reductions compared to the state averages (GBPN 2013). A Basix certificate is required for any new home or alterations in excess of 50 000 dollars to an existing home (Department of Planning. 2011)

The minimised energy demand and air tightness of a passive house and the low energy buildings have provided in the past a step forward to the energy efficiency goal and the nearly zero energy building (Connolly and Prothero, 2008). However, some scholars criticised that the energy

efficiency rating systems merely focus on operational carbon, but not on the emissions generated throughout the buildings life cycle (Wong et al. 2015)

The Energy Performance of Buildings Directive (EPBD) recast 2010/31/EU and the regulation 244/2012 initiated an effort in reducing the energy consumption and increasing the share of renewable energy sources in the building sector. Towards the goal of 2020, all European Union (EU) member states strive to meet the obligation of the complete definition and requirements of the nearly zero energy buildings (nZEB) on a national level Chastas, Theodosiou and Bikas (2016). In a literature review by (Chastas, Theodosiou and Bikas 2016), significant gaps are identified in the definition of an NzEB and its methodological framework. With the reduction of operational energy in nearly zero energy buildings contributing to an increased proportion in embodied energy throughout the entire lifecycle of the building.

With the International movement in legislation being towards reducing operational energy in buildings, steps need to be taken to ensure the embodied energy used throughout the lifecycle of a building doesn't replace the reduction in operational energy. By employing a life cycle assessment tool in association with the Australian mandatory HERS rating, the '10 House Living Labs' study can investigate the portion of operational and embodied energy of the houses to ensure a continuous energy reduction for varying housing typologies.

2.3 Voluntary Rating Tools

There are mandatory rating tools that governments employ to reduce the operational energy required by the houses and there are also voluntary rating tools used by planners, architects and builders to help achieve an increased sustainability certification and reduce greenhouse gases (El shenawy and Zmeureanu 2013). Some of the tools widely applied to assess the sustainability of urban projects include BREEAM-Community, LEED-ND, CASBEE-UD, SBTool2012 and GBI for Township (Charoenkit and Kumar 2014). These tools are primarily used to achieve a higher certification and level of sustainability. As can be seen in table 1; the criteria these certifications are assessed against are a much wider range than the mandatory certification which is based on operational energy reductions.

 Table 1: Voluntary sustainability assessment tools and the aspects they cover, Table from Charoenkit and Kumar

 2014)

	Criteria	Rating
BREEAM	Community	Outstanding (≥85%)
	Transportation	Excellent (≥70%)
	Land use	Very good (≥55%)
	Social and economics	Good (≥40%)
	Innovation	Pass (≥25%)

	Governance	Unclassified (<25%)
	Resources and energy	
LEED	Smart growth	Platinum (80–100)
	Neighbourhood design	Gold (60–79)
	Green building	Silver (50–59)
	Innovation	Certified (40–49)
	Regional priority	
CASBEE	Global warming effect	Excellent (<0.5)
	Natural environment	Very good (0.5–1.0)
	Serviced Functions	Good (1.0–1.5)
	Contribution to community	Fairly poor (1.5–3.0)
	Environmental impact	Poor (≥3)
	Social infrastructure	
	Management of Environment	
SBTool2012	Location	Best practice (5)
	Redevelopment	Good practice (3)
	Energy and resource	Minimum (0)
	consumption	Negative (–1)
	Environmental loading	
	Indoor quality	
	Service Quality	
	Social and Cultural aspects	
	Cost	
GBI	Climate Energy and Water	Platinum (≥86)
	Environment	Gold (76–85)
	Community	Silver (66–75)
	Transportation	Certified (50–65)
	Building and Resources	
	Innovation	

Life cycle assessment (LCA) tools have been utilised widely to assess the life cycle GHG emissions and embodied energy consumption of the infrastructure industries (Lawania and Sarker 2015). LCA has been employed to complement the mandatory energy ratings in sustainable housing projects and have begun to be integrated into other voluntary assessments such as LEED and BREEAM, where extra credits can be obtained from using this assessment. ("Whole Building Life Cycle Assessment | U.S. Green Building Council" 2016) ("Scoring LCA Green Building Credits In BREEAM, LEED and CEEQUAL" 2016). Some LCA software currently existing in the market to assess the sustainability of buildings includes BEES, ATHENA, GaBi Build-it, and SimaPro. They take into consideration the full life cycle of the materials including the manufacture, transportation, production, operation, maintenance and demolition of the project and can identify and make recommendations on how to reduce the carbon footprint of the building. Zabalza, Ignacio, and Sabina Scarpellini (2009) found there are some gaps in LCA's regarding environmental indicators, the presentation of the results to users and adapting LCA to various purposes such as early design phases. There is also difficulty in defining boundaries as many buildings undergo various changes throughout its life.

Even though there are various LCA assessment tools available, eTool was chosen as it incorporates all the life cycle impacting factors mentioned above, is specific to the chosen building types and is developed by a local company here in Perth, Western Australia.

Anda and Ploumis (2015) analyse and compare some techno-economic assessment tools that can be used to identify and select alternative infrastructure options for water cycle systems, energy efficiency and generation at both the city and individual dwelling level. The investigation found that among the tools investigated Austodesk Revit and Ecotect were the only tools that could incorporate electricity, thermal, water supply and wastewater management together. In addition the tools are mainly used for design purposes, not for recommended solutions. Given the scope of the '10 House Living Labs Project, the information available is not sufficient to warrant using individual specialised tools for assessing the 10 houses.

2.4 Behaviour Impacting Energy use

Occupant Behaviour has been identified as the principal cause of monitored energy use variation between identical homes, as well as between the expected energy model and the actual use (O'Leary et al. 2016). Hargreaves (2011) revealed that conventional accounts of behaviour change, with their focus on individuals' cognitive states and contextual 'barriers', are too narrow to capture the full range of what is involved in behaviour change interventions and may need to be abandoned, instead greater research and policy attention should be paid to generate more sustainable practices. This study uses the concept of a Living Lab where the occupants are placed in a social space to allow for effective impact evaluation to change their existing behaviours and to become creative innovators for new emerging ideas (Rosado et al. 2014).

A study done by O'Leary et al. (2015) reviews and evaluates using household metered energy data for rating building thermal efficiency for either very high or very low star rated buildings. The study found that behaviour and other energy demands in the house were a dominant factor in determining the overall energy demand of the house, not just space heating and cooling. The two data sets being collected 12 years apart and the distinct difference of having a 7 star house and an estimated 3 star rated house could affect the study as technology advances and societal attitudes may have contributed to occupant behaviours changing significantly over the 12 years.

The second study by (O'Leary et al. 2016) compares the measured energy consumption for heating and cooling against the NatHERS modelling. The results show that while a higher star

rating house typically uses less energy than the lower rated house, there is a significant difference in energy demand across each data set due to occupancy factors. This will be further investigated in the '10 House Living Labs' study as these studies all have similar components to the '10 House Living Labs Study' with the house NatHERS model rating comparison with the measured data. The living labs study however measures not only the energy of the house, but water use, solar production and the solar energy exported back to the grid. The addition of a full lifecycle analysis of each house helps to gain an additional understanding of the embodied and operational energy of each house.

Both the studies O'Leary et al. (2015) and O'Leary et al. (2016) focus primarily on behaviour change associated with operational energy. This study investigates the possibilities of using a life cycle analysis tool to impact the behaviours by providing the capability of choosing more environmentally friendly options in the design phase that can lead to less embodied energy being spent during construction as well as in the operational phase of the building. This tool can help visualise the impacts certain materials or decisions have on the performance of the building through its lifecycle, this in turn can lead to improved behaviour decisions.

2.5 Photovoltaic performance modelling

There are 1.2 million Photovoltaic (PV) systems in Australia and less than 1% of these have any effective form of monitoring or ability to determine the actual performance of the system. The rapid growth of distributed small scale PV systems has increased the need for tools that can undertake reliable real time monitoring of system performance with the capability to detect and diagnose underperformance at the earliest possible stage (Department of Industry and Science). Solar analytics which is a PV monitoring tool offered by Suntech is an algorithm to improve and test the performance of a PV system whether it be residential or commercial.

Given the need to effectively monitor photovoltaic system performance this study can use the operational production obtained from the monitoring equipment and compare the data with the eTool prediction for solar production. The details provided for the photovoltaic system sizes and the average daily radiation can be entered into eTool to calculate the expected output of the system. By comparing the eTool prediction against the measured data, two things can be investigated; whether the eTool assumption for solar energy production is accurate and if it is accurate then it can help investigate the status of the system's performance.

2.6 Retrofitted homes

The mandatory requirement for new homes to meet the minimum NatHERS rating in Australia has no impact on already existing homes which are not required to meet any requirements,

unless a renovation that includes an extension is being completed. Even then the extension is the only section of the house that is required to meet the minimum rating. Cecily and Horne (2011) states that significant improvements to existing stock and changes to how it is inhabited are required to improve the environmental performance of residential dwellings. It is also suggested that future policy and programs need to look beyond attitudes and behaviour and focus more on the social practices in daily life.

The 'Ten House Living Labs' study includes retrofitted homes; however the retrofits in the older homes are done by environmental conscious homeowners to reduce the carbon footprint of the homes by investing in 'green technology' as well as increasing the thermal performance of the home by improving the insulation and air tightness. For some homeowners 'green technology' isn't adopted due to it having no economic benefit for them. Cecily and Horne (2011) recommend further consideration in research, policy and programs needs to be given to fundamental conventions and practices embedded in daily routines to encourage 'practice' change rather than 'behaviour' change.

International initiatives, such as the Clinton Climate Initiative's Energy Efficiency Building Retrofit Program in the USA, the 'Great British Refurb' campaign in the UK, the Canadian ecoEnergy Efficiency Incentive for Buildings and the Green Loans program launched in Australia, demonstrate the growing policy interest in the retrofitting of housing (Cecily and Horne 2011).

This study includes an existing housing stock which consists of recently built houses in addition to older retrofitted homes. Even though there is no mandatory requirement to meet a minimum thermal performance rating for existing houses, this paper will investigate efficiency methods and technologies employed by the occupants to reduce the operational energy requirements of an existing house.

2.7 Local Sustainable Housing Examples Using LCA Studies

Two local residential housing projects in the Perth metropolitan area have demonstrated a high level of sustainable practice. In addition to the building Code of Australia's mandatory NatHERS thermal performance rating, the buildings have gone to the next level by employing eTool to assess their environmental impact and overall sustainability.

2.7.1 Josh's house

Josh's House Project is a project showcasing the benefits of sustainable housing to the community as part of a research program "high performance housing" undertaken by Curtin University's Sustainability Policy Institute through the Cooperative Research Centre (CRC) for low

carbon Living. The project set out to prove that a sustainable home can be built at a comparable cost and timeframe to regular houses ("Josh's House" 2016).

The project resulted in two houses being built on a subdivided block with both houses achieving a 10 star NatHERS certificate. By understanding that heating and cooling typically accounts for 40% of the total operational energy of a house, other measures including the embodied energy and water efficiency aren't accounted for by NatHERS. eTool was identified as an assessment tool which would take these factors into consideration. The house achieved a saving of 23% in the embodied carbon reduction and a 111% operational carbon reduction compared with the residential benchmark.

2.7.2 The Siding

For The Siding the goal was to create affordable medium density housing in an inner city area with a primary focus on sustainability ("Energy | The Green Swing" 2016). The housing includes two residential town houses; four, three bedrooms apartments; and one, three bedroom apartment in a complex with a shared communal space and garden.

The energy rating that was achieved for the apartments ranged between nine and ten stars with the results showcasing much higher ratings than the minimum NatHERS standard of six stars. As described above an eTool assessment was also carried out to rate the dwellings in terms of the embodied and operational energy of the development. The LCA result was an overall saving of 80% compared to the benchmark which consisted of savings of 60% and 91% for the embodied and operational carbon respectively. This result indicates that the homes will need little to no heating and cooling as well as have a relatively low embodied energy compared to the average dwelling and have low additional operational energy requirements for other appliances within the dwellings.

These high standard sustainability projects have used both NatHERS and eTool to assess their environmental impact. With the adoption of eTool it can be seen that savings can be made to both the operational and embodied energy by choosing sustainable materials as well as good design. The '10 House Living Labs' project uses the monitored energy and water data to determine the houses' actual performance. By completing an LCA for each of the ten houses the predicted operational energy can be compared with the actual usage to determine the accuracy of the rating tool and whether the house is operated as it has been intended.

3.0 Methodology

3.1 '10 House Living Labs' Selection Process

An advertisement went out to the City of Fremantle asking for participants willing to be part of a two year monitoring study where their energy, water and gas usage would be monitored for a two year period with behaviour intervention techniques being implemented after the first year of data is collected. The participants received monitoring equipment for their houses that monitored their energy and water usage. This ensured the ten houses that were selected for the project were all from the City of Fremantle, in Western Australia. Noting that the sample was selected based on households that were engaged in reducing their energy and water consumption as the benefit of participating in the study was to receive monitoring equipment to measure the energy and water consumption.

The chosen houses comprised of single detached dwellings of low density with varying housing typologies and occupation profiles (Table 2). Each dwelling is either at or above the mandatory housing energy rating scheme requirement or possesses technologies or design components making them more 'sustainable' than the average Australian home. These features are summarised in Table 2. Three houses (L, M and O) have been built to meet the Australian building code requirements in that all homes built from 2012 must achieve a minimum six star NatHERS rating. House P has the retrofit addition section of the house meeting this minimum rating of six stars. House F is classified as deemed-to-satisfy, which means it is not rated by the accurate software, however it follows prescribed design aspects and materials given by the national construction code (NCC). Two houses (C and E) are homes which have been retrofitted with insulation, photovoltaic systems (PV) and solar hot water systems. Three houses are considered as high performance homes as their NatHERS rating is above seven stars. Nine of the ten houses selected have a photovoltaic system, eight have a solar hot water system and seven have rainwater tanks.

Table 2: House Typology (Source: Christine Eon et al. 2016 unpublished paper.)

House	Year built	Occupancy	Habitable area (m ²)	Design	Energy/Water systems	NatHERS code/description
В	2009	4 young adults	185	Double brick walls with reflective insulation; Concrete slab; R3 ceiling insulation; R1.5 roof insulation; North facing living room.	1kW PV system; Solar hot water system with gas booster	8.5 Stars
с	1950 - renovations in 2011	2 adults and 2 children	106	Timber frame walls with R2 insulation; Ceiling R4 insulation; Suspended timber floor with R1.5 insulation; Low-e glazing to North and West; North facing living room.	Timber frame walls with R2 nsulation; Ceiling R4 insulation; uspended timber floor with R1.5 Isulation; Low-e glazing to North d West; North facing living room.	
E	1899 renovations in 2001	2 adults	120	Limestone and double brick; Suspended timber floor and concrete slab; Ceiling R3.5 insulation; Roof R1.5 insulation; East facing living room.	1.5kW PV system; Solar hot water with electric booster	Retrofitted
F	1920 renovations in 2014	2 adults and 2 children	183	Double brick, timber frame walls with R3.5 insulation; Concrete and suspended timber floor; Ceiling R3 insulation; Roof R1.5 insulation; Low-e glazing; North facing living room	1.5kW PV system; Solar hot water with gas booster	Deemed-to- Satisfy
G	2011	2 adults and 1 young adult	195	Rammed earth, insulated panel walls R2.5 insulation; Concrete slab; Ceiling R3 insulation; Roof R2.5 insulation; Low-e glazing; North orientation	2kW PV system; Instantaneous gas water; heater	7 Stars
Н	2011	2 adults and 2 children	238	Rammed earth, double brick with R2.5 insulation Concrete slab; Ceiling R3 insulation; Roof R2.5 insulation; Low-e to East and West; North facing living room	2.28 kW PV system; Solar hot water with electric booster	8 Stars
L	2013	2 retired and 1 young adult	218	Double brick walls; Concrete slab; Ceiling R4 insulation; West facing living room	Solar hot water; with electric booster	6 Stars
М	2013	1 adult and 3 teenagers	147	Double brick walls; Concrete slab; Ceiling R3 insulation; North facing living room	2.5kW PV system; Solar hot water with gas booster	6 Stars
0	2013	2 adults	154	Double brick walls; Concrete slab; Ceiling R4 insulation; North facing living room	2kW PV system; Solar hot water with gas booster	6 Stars
Р	1901 renovations in 2014	2 adults and 3 children	162	Timber frame walls with R2 insulation; Concrete and suspended timber floor; Roof R4.5 insulation; Low-e glazing to West and double glazing to South; South orientation with North facing clerestory	4kW PV system; Instantaneous gas water heater	6 Stars

3.2 Monitoring Equipment and data Collection

Monitoring equipment was installed in each of the participant's houses in order to measure the grid electricity and gas consumption, mains water consumption as well as the internal temperature of the living rooms in each of the houses. The photovoltaic energy generation was measured in the nine houses that possess a solar PV system. Rainwater was also recorded for the houses that owned a rainwater tank. Table 3 shows a more detailed description of what was monitored for each house.

The monitoring equipment used (Table 4) consists of multiple sensors that are coupled to the existing meters and transmit electric pulses to a data logger which then collects the data at 15 minute intervals. The data is transferred via csv files to the researchers remotely through a 2G wireless connection. The exception to this is house G where the gas meter is located well away from the house, so a connection between the driveway and the data logger was not feasible. In house G the data collection for gas consumption was recorded on a local data logger Onset Hobo UX90 512K and downloaded manually once per month on site.

As mentioned above, the total photovoltaic energy generation is measured via a data logger. To obtain the breakdown of solar energy utilised and exported, electricity bills were requested for the nine houses with solar PV installed at the end of each year which separates the solar energy utilised to what is exported back to the grid. In addition the external temperature was collected from a Vaisala WXT520 weather station belonging to a separate research house monitoring project located in Fremantle. This information was applied to all the houses.

House	PV	RW	Gas	Water	Temperature
В	Х	Х	Х	Х	Х
С	Х			Х	Х
E	Х	Х	Х	Х	Х
F	Х	Х	Х	Х	Х
G	Х	Х	Х	Х	Х
Н	Х	Х	Х	Х	Х
L			Х	Х	Х
М	Х	Х	Х	Х	Х
0	Х	Х	Х	Х	Х
Р	Х		Х	Х	Х

Table 3 Data that was monitored for each house

Parameters monitored	Meters & Sensors	Data logger
Gas	Ampy 750 & pulse kit for 750 meter	
Grid electricity	Schneider Electric iEM3110	
Photovoltaic generation	Latronics kWh	Schneider Electric COM'X 200
Internal temperature	Kimo TM110	
Mains water	20mm Elster V100 & MEB7454 'T' probe/ Actaris TD8 & Cyble sensor 2W K=1	2000
Rainwater	20mm Elster V100 & MEB7454 'T' probe	

Table 4: Monitoring equipment used for each house (Source: Christine Eon et al. 2016 unpublished paper.)

3.3 Site Audit & Behavioural Influence Consultations

Part of the '10 House Living Labs' study includes the behavioural change component where it is understood that the behaviour of the occupants have a major influence on the energy consumption of houses being of a similar thermal performance rating. To comprehend this concept the first year of monitoring was used as the data gathering phase where the occupants knew the data was being gathered for their electricity, gas and mains water usage; however they had no access to this information other than their usual utility energy and water bills. There were no recommendations for reducing energy, gas or water in the first year of monitoring for this study. At the end of the first year there was a behaviour change audit where the results were gathered and analysed to produce a set of graphs to investigate any trends that lead to any particular behaviour causing electricity, gas or water to be used. Examples of some of the graphs presented to the occupants are seen in Figure 1, 2 and 3.

Figure 1: House H Energy consumption throughout the year (Source: Christine Eon 2015 audit report *Note: data collection began in November 2014

Figure 1 shows that house H has relatively low mains energy consumption in summer, but the electricity consumption in winter is higher. This is typical of a house with Photovoltaic solar production as you can see in Figure 2 the solar production is much less in winter.

Figure 2: House H PV generation for year 1 (Source: Christine Eon 2015 audit report)

Figure 3: House O Gas usage in correlation with mains water use. (Source: Christine Eon 2015 audit report)

Figure 3 was shown to house O to explain the relationship between gas usage and the length of showers, this graph would inform the occupant that by reducing the shower time, they would not only save water but save on gas costs.

3.4 Summer Audit

To avoid unnecessary disruptions to the occupants daily lives the first site audit and summer behavioural consultation was carried out in one visit. A walk-through audit was undertaken during this visit to initially; collect detailed information of materials and appliances (seen in appendix B) used in the house that can contribute to completing the life cycle assessment component of the study; secondly, to investigate and discuss with the occupants any potential areas to improve the thermal performance of the house, for instance shading windows that receive direct sunlight and fixing any areas that allow heat gain or loss including missing insulation detected through the use of a thermal imaging camera, (Testo 870)shown in figure F in table 5. The final purpose of the walk-through audit was to identify and assess the energy usage and the efficiency of appliances in both the active and stand-by mode to investigate if there is any energy savings that can be made by switching the appliance off at the wall when not in use or replacing inefficient appliances. To measure the stand-by power the ARLEC energy cost meter PC222 was used which is shown as figure C and D in table 5.

Table 5: Examples of audit efficiency tests equipment (images taken by Luke Murphy)

An interview was conducted with each household during the first audit to get some background information of the households' views on sustainability and reducing their carbon footprint from reduced energy and water usage. The questions were:

- Who Lives in this House?
- Why did you decide to participate in this project?
- How important is it for you to reduce your greenhouse gas emissions?
- How important is it for you to reduce your energy consumption?
- How important is it for you to reduce your water consumption?
- How important is it for you to live in a comfortable home?
- How do you think people view reducing their greenhouse gas emissions?
- Is that how it is in your local community

- Do you think more people think it is important to reduce their greenhouse gas emissions now compared to one year ago?
- Is there support to reduce greenhouse gas emissions in your community?
- Is there support to reduce your greenhouse gas emissions in your household?
- Have you tried reducing your greenhouse gas emissions in the past?
- Did you encounter any barriers with this?
- What facilitated making changes?

The interview answers from the first summer audit for each house can be found in appendix C.

The last section of the first house visit was a garden consultation by Western Australia's ABC Gardening Australia TV presenter Josh Byrne where Josh offered his knowledge on caring for the existing plants in the garden, water savvy irrigation advice and appropriate native species that would thrive in certain areas.

Following the visit a recommendation summary report was completed for each household reiterating the areas for improving energy, water and gas usage that would lead to the biggest savings some key findings are outlined in section 5.2 of this report..

3.5 Winter Audit

A separate audit was carried out for each house in July 2016 to gauge the houses progress during the second year of monitoring and if any of the recommendations put forward had been carried out. Graphs were compiled focussing on high winter usage and tips to maintain the energy and water saving while staying warm in winter.

Comparable to the summer audit, an interview was carried out, this time focussing more on how the occupants have utilised the resources available to them and to find out if their views on energy and water conservation has changed in any way. The questions asked to each household were:

- Since the last visit, have you made any changes to your routine?
- Why did you make these specific changes/ Why not?
- Are you finding anything particularly difficult? Why
- Has anything helped you make these changes?
- Are your kids/ rest of the family participating?
- How often are you logging into the website?
- How useful are you finding the reports?
- Last time we talked about your views on energy and water conservation and on whether you found it important. Do you still think of it the same way after the last 6 months?
- Are you more conscious of your energy and water usage on a daily basis? Why do you think that is?

The results of the winter audit can be seen in appendix D.

After the interview similar to the summer audit, a walkthrough of the house occurred identifying any areas where heat transfer could be detected via the thermal imaging camera. The hot water systems were also looked at if accessible to ensure the temperature settings were correct and areas that would benefit insulation were discussed with the homeowners.

3.6 Goal Setting

At the end of the first audit, each house was provided with a chance to reflect upon their performance over the first twelve months. Specific areas and behaviours were discussed for where they could improve and based on these the occupants of the house were encouraged to set a target reduction goal they would aim to achieve to reduce their energy, water and gas usage over the coming twelve months.

3.7 Monitoring Website

After the first 12 months of the study the occupants have access to a monitoring website that presents the electricity, water and gas usage in a graph during the second year of monitoring so that they can get more frequent feedback. Figure 4 is a screenshot of the monitoring website showing the functionality. Each house can be individually viewed so that high energy use can be picked up immediately which could influence a change in behaviour. The website also allows a comparison between houses of similar ratings to allow the occupants a chance to see how they compare with each other.

Figure 4 Monitoring website accessed by occupants during the second year of the study

3.8 eTool Training

eTool training was required prior to beginning the Lifecycle assessment to understand the program's capabilities and the processes involved to be able to carry out the life cycle analysis of each residential dwelling. The training was completed at the Perth eTool office over two days with the co-founder of eTool Richard Haynes. During the training, sample projects are created to understand the software and help guide the student through to certification level. The training includes setting up a process to obtain the quantities of each material from the project and entering that data into the eTool software through existing templates or creating a new template. During the training the functions are explained which allow recommendations to be made to reduce both the embodied and operational carbon footprint of the building in the design phase to identify useful and cost effective changes. Upon the completion of the training, an exam is carried out where a certificate of attendance is awarded if the exam is passed.

3.9 3D modelling

To get an accurate take-off for the materials for each individual dwelling almost any 3D modelling software can be used, for this project Google Sketch-up was chosen as it was recommended by personnel from eTool and it was found to be relatively quick and easy to learn.

The models use the dimensions from the house plans which were obtained from the homeowners at the beginning of the project to get the most accurate model and material take-off. Each specific structure was set to have its own layer that was able to be selected to display the area of each structure individually. This was an effective way to determine the areas of structures with multiple sections, for example the walls, floors, windows and doors of the buildings. Having layers also allow changes in thickness of walls and floor covering materials to easily distinguish between.

Appendix A shows a view of each 3D model and examples of some of the layers used to get the material quantities off-take that was collected and inputted into an Excel spreadsheet that includes all of the templates and inputs for the eTool program that can be found in appendix B.

3.10 eTool Reports and Results

From the notes and house plans obtained from each homeowner, the material gathered from the audit and the data collected from the 3D model, there was enough information to complete the life cycle analysis (LCA) through the eTool software. Each quantity of material entered in Excel from the material take-off was used to find or make a new template in eTool to build the complete dwelling LCA. Using the building materials and the Perth average appliance, energy

and water usage the software is able to predict the embodied and operational energy of the building over its lifetime.

Three scenarios were created for each dwelling so that a comparison was made for the '10 House Living Labs' study. Scenario one predicted the carbon footprint of the operational usage for each house based on the average water, electricity and gas usage for the average occupancy of a dwelling with that particular number of bedrooms. Scenario two used the embodied energy from the actual appliances used in that particular house, the average number of occupants and the real-time data to determine the measured carbon footprint of the house. The third scenario was created to conduct a comparison on the embodied and operational carbon footprint and energy usage to be made per occupant. The electricity, water, and gas usage was standardised to be for the number of occupants eTool predicted for the dwelling. The embodied and operational energy were divided by the occupants and then multiplied by the eTool predicted occupants to get the standardised value. There was one value that wasn't standardised which was the solar production because the amount of solar generated isn't dependant on occupancy. This standardised scenario was later discarded due to the embodied energy, solar production, refrigeration and air conditioning being independent of occupancy however the results can still found in appendix F.

The eTool predicted scenario for each house was certified by a member of eTool to validate and ensure the LCA was carried out accurately and was an appropriate representation of each house. The Material offtakes for each house has been included in appendix B to provide transparency for the results.

Each house was compared with an eTool pre designed benchmark for an average Australian Standard and International Standard detached dwelling where eTool has created an average of 10 dwellings as if each has 3 bedrooms.

	International Residential Benchmark Weighted (x10	AU Res Ave 2013 Code Compl CZ 5 (10 dwellings)
	Dwellings)	
Total Dwellings	10	10
Total Bedrooms	30	30
Total Occupants	25.2	23.7
Total heating and	210	195
cooling area		
Energy Use	International Operational	Res average (AUS) op & Em
	Benchmark	
Water Usage	169L/person/day (excl gardens)	160 L/p/day (excl gardens)

Table 6: Summary of eTool benchmarks (produced by Luke Murphy)

Water Treatment	169L/p/d	160 L/p/day
Energy	0	0
Production		

The results from the eTool reports were used to generate a series of graphs to compare the dwellings with one another in terms of their operational and embodied carbon requirements to determine the sustainability of each home. In addition the electricity and gas were compared to identify any houses that could target any areas to reduce the overall operational energy of the house.

4.0 Life Cycle Analysis

4.1 Introduction into carbon life cycle analysis (eTool)

The results from the life cycle analysis provide a measurement of the operational energy efficiency and the embodied energy consumed in building and maintaining each house. This gives a better understanding of the overall sustainability through the entire life of the dwelling, if the average Perth occupant lived in the dwelling.

The typical use of eTool is in the design phase of a development so that different options can be measured and explored to reduce the embodied or operational energy by using different technologies, materials or appliances. The life cycle analysis completed for this project was for already built new houses as well as retrofitted older homes. A benefit of this project is that the real life operating data can be compared with the expected data from eTool so a comparison can be made between the expected and actual operational energy used. Studies assuming a 40 to 50 year life span found that the use phase, or operational energy, contributes anywhere from 52% to 82% of the total life cycle energy consumption of a building (Thiel et al. 2013). The results from the eTool LCA of the 10 houses and the international and Australian benchmarks show the operational energy component contributes to an average of 48% of the total lifecycle of the building. 9 of the houses do have solar photovoltaics which offsets the operational energy where the average household may not.

From the results we can also compare the effect of technologies such as Solar Panels and rainwater tanks with expected values and make assumptions as to why they may not be performing as well as expected or alternatively are performing better than expected.

This section goes through understanding the materials and appliances leading to the greatest embodied and operational energy for each dwelling. It also discusses the effect solar PV has on offsetting the carbon used by the home. The measured operational data for solar production is able to be compared against the eTool predicted value to explore the performance of the installed systems. A full breakdown of where the lifecycle impacts of each house occur can be found in appendix E.

It is important to incorporate the NatHERS Star rating to assist eTool in calculating the expected heating and cooling requirements of each house in addition to the other aspects of the operational energy.
4.2 Results

Note: it is important to consider the life expectancy assumed for each of the houses is 40 years. House G is the exception where 80 years was assumed given the housing type being a unit in a structure consisting of four homeowners. The LCA software assumed that having four separate owners makes it more difficult to redevelop given everyone would have to agree for it to occur.

4.2.1 Embodied Energy

The embodied energy of each dwelling varies due to the type and amount of materials used within the building. From Figure 5 it is clear that each dwelling has a different embodied energy. Varying from house H being above 4000 kg CO₂-eq/dwelling/year to house P having an embodied energy less than 2000 kg CO₂-eq/dwelling/year. The other housing including the benchmark houses range between these values. Further investigation into the eTool reports can show what the materials are for each house that contributes most to their embodied energy. The 10 houses have their embodied energy per year calculated based on a 40 year lifespan based on the location and being an individual dwelling. The exception to this is house G which has been determined based on the lifespan of 80 years due to the house being part of a complex with multiple owners and conjoining walls with other units.

Figure 5: Embodied energy for each house (produced by Luke Murphy)

Note: eTool pred is measured as if the average person is living in the house, Act Meas is representing the embodied energy of the house with the appliances the occupants use

Figure 6: Embodied energy per year of each house per square meter (produced by Luke Murphy)

Figure 6 shows the breakdown of the embodied energy for each house per square meter of floor space. House E comes out as the highest embodied energy as this is a very old house consisting of thick limestone and brick walls in addition with the concrete pavers surrounding the house contributing to the high embodied energy per square meter. House P has a relatively low embodied energy as the retrofitted house is cladded lightweight construction with raised timber flooring. The new extension however does have a concrete floor to increase the thermal mass in the solar passive living room.

Figure 7 to 11 is a breakdown of the materials for the two houses with the overall highest embodied energy and two houses with the lowest embodied energy. The components can be seen in the graph with 'other' representing other materials included in the house that are not among the highest contributors where the top 30 for each house can be seen in appendix E.

The two highest being house H and L show that the brick construction and concrete pad are the two highest carbon dioxide contributors within the model. Houses C and P in figures 9 and 10 respectively are classified as lightweight construction with raised timber floors and fibre cement cladding. These two figures show that the highest single impact materials include the steel, refrigerants and the solar photovoltaic systems

Figure 7 House H embodied energy breakdown of the highest contributors (produced by Luke Murphy) Note: Other represents the sum of the lower individual contributors to the embodied breakdown

Figure 8 House L embodied energy breakdown of the highest contributors (produced by Luke Murphy) Note: Other represents the sum of the lower individual contributors to the embodied breakdown

Figure 9 House C embodied energy breakdown of the highest contributors (produced by Luke Murphy) Note: Other represents the sum of the lower individual contributors to the embodied breakdown

Figure 10 House P embodied energy breakdown of the highest contributors (produced by Luke Murphy) Note: Other represents the sum of the lower individual contributors to the embodied breakdown

Figure 11 House F embodied energy breakdown of the highest contributors (produced by Luke Murphy) Note: Other represents the sum of the lower individual contributors to the embodied breakdown

These comparisons are House F is a retrofitted house with the old section being traditional brick construction and the new section being lightweight bulk insulation frame with cladding. Figure 11 shows the highest impact being the concrete pad, followed by the roof and then the bricks from the old section of the house. This along with Figure 7 and 8 shows that double brick construction contributes to a high embodied energy within a house as does traditional concrete floors. The eTool software allows changes to be simulated such as floors using waste products such as fly ash instead of sand cement or different wall construction types such as using brick veneer or timber stud with bulk insulation to investigate the embodied energy reduction impact which can be useful during the design of a new house.

4.2.2 Operational Energy

The two ways operational energy is interpreted in this study is the global warming impact of operating the house and the unit measurements of kWh for energy and kL for water which is how the house is charged for the electricity and gas use and how occupant's best understand consumption of energy. The global warming impact is measured in kg CO₂-eq and represents the carbon emitted in the atmosphere.

Global Warming Impact

Figure 12 shows half of the houses have a measured lower operational energy than the predicted model with the other half having a worse operational energy than expected.

The two benchmarks allow a comparison for how the houses operational energy compares to the eTool international average as well as the Australian average. A major factor in the benchmarks and house L having a much higher operational energy is that they do not have a photovoltaic system to offset the energy being used. This graph represents the carbon footprint of the grid electricity, gas and water usage and water disposal.

Similar to the embodied energy another graph was produced for the operational energy per square metre to determine a rating in correspondence with the NatHERS star rating. Figure 13 and 14 show the operational energy without and with photovoltaic production respectively. This shows the impact solar energy has on the overall operational energy as with it not taken into consideration house M and P have the highest operational energy per square meter. However with the solar offset included, they are much lower with the benchmarks and house L having the highest operational energy per square meter.

Figure 13: Operational Energy per square meter for each house with photovoltaic not taken into consideration (produced by Luke Murphy)

Figure 14: Operational Energy per square meter for each house with photovoltaic taken into consideration (produced by Luke Murphy)

eTool can show the top impacts report for the highest operational energy appliances. From Figures 15 to 24 show the factors that most influence the operational impact for each house. From this report, the areas with the highest impact can be targeted so that strategies to reduce the impact can be taken into consideration. An example of an efficiency improvement which can reduce the operational energy is house M, where by changing the halogen downlights to LEDs shows a change from 8831MJ/year to 1089MJ/year which is a reduction of 1700kg CO₂-eq/year. From the models the refrigeration operational energy is quite high which includes the operational running costs and re-gassing every ten years. Purchasing refrigerators with high efficiency and good build quality can increase the lifespan and reduce the energy use of the refrigerators to reduce the operational carbon footprint of the appliance. The 'other' category is a breakdown of the smaller single operational energy uses which are most likely to have less of an impact to the global warming potential.

In addition the eTool model predicts the hot water demand for a solar hot water system with gas booster is 1000 MJ, where the electric boosted solar hot water prediction is that it requires 1644MJ of electricity to run, the instant gas requires 7545MJ per annum to run however gas has a much lower carbon footprint than electricity. This gives a good prediction of possible savings

33

by installing a solar hot water system. However it is important that they are installed in the correct place where it will receive minimal shading, otherwise it is possible that it will perform worse expected and can end up being less efficient than a single instant gas system.

Figure 15 House B highest operational energy contributors (produced by Luke Murphy) Note: Other represents the sum of the lower individual contributors to the operational breakdown

Figure 16 House C highest operational energy contributors (produced by Luke Murphy) Note: Other represents the sum of the lower individual contributors to the operational breakdown

Figure 17 House E highest operational energy contributors (produced by Luke Murphy) Note: Other represents the sum of the lower individual contributors to the operational breakdown

Figure 18 House F highest operational energy contributors (produced by Luke Murphy) Note: Other represents the sum of the lower individual contributors to the operational breakdown

Figure 19 House G highest operational energy contributors (produced by Luke Murphy) Note: Other represents the sum of the lower individual contributors to the operational breakdown

Figure 20 House H highest operational energy contributors (produced by Luke Murphy) Note: Other represents the sum of the lower individual contributors to the operational breakdown

Figure 21 House L highest operational energy contributors (produced by Luke Murphy) Note: Other represents the sum of the lower individual contributors to the operational breakdown

Figure 22 House M highest operational energy contributors (produced by Luke Murphy) Note: Other represents the sum of the lower individual contributors to the operational breakdown

Figure 23 House O highest operational energy contributors (produced by Luke Murphy) Note: Other represents the sum of the lower individual contributors to the operational breakdown

Figure 24 House P highest operational energy contributors (produced by Luke Murphy) Note: Other represents the sum of the lower individual contributors to the operational breakdown

kWh

Along with the global warming potential for the operational energy, the eTool report specifies the operational energy in kWh for electricity, gas and solar energy produced. The importance of this is that owners and developers are able to compare products in a monetary term which includes the savings they will make by reducing the operational energy and some pay back periods can be calculated to help make certain decisions or technologies.

Figure 25 shows the total grid electricity used in the eTool predicted and the measured operational data for each dwelling. House H has an inefficient electric boosted solar hot water

system due to it being shaded in summer as well as electric bar heaters which could contribute to the higher operational electricity being measured than expected. House F has a much lower operational energy than predicted; this could be due to a wood fire being used in winter for heating as well as the highly insulated extension and efficient energy practises ensuring the electricity use is kept low.

Figure 25: Electricity use comparison between the eTool prediction and measured operational measurement (produced by Luke Murphy)

Figure 26: Gas use comparison between the eTool prediction and measured operational measurement (produced by Luke Murphy)

Figure 26 shows the total gas used in the eTool predicted and the measured operational data for each dwelling. There is no gas used for house C as the owners identified that gas is not a renewable resource where electricity can be produced by solar and wind technologies. House E has relatively low gas use due to only the gas cook top using gas, which uses slightly less energy than predicted. House H uses gas for cooking and a solar hot water heater booster, the measured value is much lower which is due to a highly efficient Apricus evacuated tube solar hot water system. In addition house M has the same gas requirements as house H, but in reality the house uses much more gas than predicted. This could be due to the inefficient hot water system being shaded for long periods and not working efficiently.

Figure 27: Total electricity demand of all the dwellings insluding the solar energy used in the house (produced by Luke Murphy)

Figure 27 shows the amount of energy that would be used if there was no solar PV to offset the energy use. This graph is particularly useful to compare house L with the other houses showing that houses M, O and P actually have a similar energy demand, the only difference is house L hasn't got any green energy offsetting the energy bill other than the solar hot water system, which isn't measured independently.

As discussed, the eTool software can be used to firstly roughly estimate the energy use, the operational energy from one year can be compared with the prediction to see if there are certain behaviours or technology inefficiencies leading to an unexpected increase in performance.

Carbon Offsets

The solar energy production was added to the operational energy to get an understanding of the performance in comparison with each other before the offsets take place. Figure 28 shows that even if none of the houses had solar panels, house L would still have the greatest total global warming potential apart from the international benchmarks. This house is rated at six stars yet it is has a higher global warming potential than the old retrofitted houses P, C and F

Figure 28 is an intuitive graph which represents the data that is required for an Australian residential dwelling to reach the European Union's standard of zero energy or carbon neutral. Ideally a LCA would be initially used to identify changes to the materials used within the dwelling

41

to reduce the embodied energy while maintaining or increasing the thermal performance. Options can then be identified to reduce the total operational energy by choosing energy efficient appliances, efficient water heaters and using ceiling fans as the preferred cooling option. Once the embodied and operational energy is reduced, renewable carbon offsets such as solar photovoltaic systems can be sized to offset the remaining expected operational and embodied energy to become net zero or possibly even produce surplus energy to benefit other households.

Photovoltaic Predicted Vs Actual Measured

The results in figure 29 show that there is a slight variation between the measured photovoltaic production and the eTool prediction. Six of the nine houses show a better performance than the eTool template expects, this could be due to a number of factors which could include correct orientation, a higher efficiency system than expected or a larger sized system. House C and F's lower than expected performance can be contributed from large trees shading the system which confirms the importance of positioning the photovoltaic panels in the correct place so they receive the maximum possible sunlight. Another important note is that house C washed the collector plates during the second year of the study so it would be interesting to see if the production increased at all after this. House P has a large system, however this system is

positioned on a south facing roof and it can be seen in the graph the effect on the production this has in comparison with the predicted measurement. An unexpected value is house H system performing better than predicted given the knowledge that the system was off for a period of time during the year. This shows the performance of the system is good, but would be even better if it wasn't prone to tripping in wet weather events.

The photovoltaic comparisons provide an insight into the modelled and actual production of a range of photovoltaic systems. The graph shows that it is very useful to 'ground truth' how the system is performing so any deficiencies can be identified and possibly improved to further increase the carbon offsets of the system.

Figure 29: Photovoltaic comparison with solar production broke down into solar utilised and exported compared to expected production (produced by Luke Murphy)

Photovoltaic Utilised Vs Exported

The eTool template for solar energy assumes that there is an equal distribution between solar energy utilised and exported for each house when in reality this depends on the occupants of the homes behaviours and activities. Figure 30 shows that house B, C, E and F have a relatively equal distribution between solar energy utilised and exported. Houses G, H, M, O and P have a much higher exported component which can indicate that they have larger systems or can utilise the solar production by running appliances during the day.

Figure 30: Actual breakdown of measured solar energy utilised and exported for each house (produced by Luke Murphy)

5.0 Thermal Performance Efficiency and Behavioural Change

5.1 Introduction

The advertisement for houses to participate in the study appealed to environmentally conscious occupants who had previously retrofitted their home to be more efficient or had built new homes that were compliant with the most recent NatHERS 6 star rating. Although these occupants are already environmentally conscious it was evident that the results showed there were some areas of efficiency improvement that had not yet been identified from living in the houses. The first year of data was a great insight into where many of the efficiency improvements could be made without visiting or speaking to the occupants living in the homes.

To confirm these assumptions an interview and audit was conducted with the homeowners for nine of the ten households. The interviews were designed to find out how each house was operated and to consult with the homeowners to improve appliances or behaviours that were degrading to the homes performance in addition the interviews helped to confirm any assumptions made from the graphs prepared prior to the audit. A major component of the audit was to look for building inefficiencies caused by poor design, poor installation or other factors which would improve the performance of the house and save on utility expenses while enhancing the comfort of each house.

The results determined there were some common efficiency improvements which could be applied to more than one house, including common energy usage behaviours and trends.

5.2 Results and Discussion

House B had a change of occupancy prior to the second year of monitoring which meant that the data gathered for the first year was not necessarily relevant to the new tenants as it would show the previous tenants' behaviours. No audits were completed as the results were not relevant to influence behavioural change for this house. A separate investigation once both years of results are finalised will provide a better comparison in behaviours influencing the performance of this house. As a result there will be no findings for house B presented in this section of the paper.

5.2.1 Inefficiencies from building design

Inability to heat purge in summer

Figure 31 shows inefficiency due to behaviour and house design. During the audits it was noted that some of the newly built houses had a front wooden door at the entry of the house without any security flyscreen material resulting in the occupants not feeling secure enough to leave their door open and allow air to pass through while the house remained locked. Buildings in

Perth, Western Australia are typically built with a high thermal mass which work extremely well to keep the house cool during summer and warm in winter. This practice is known as heat purging and works in summer by allowing the cool air at night to cool the internal walls to be stored throughout the next day. Not having a security screen on each window discourages people and makes them unwilling to leave these doors open to let a cool breeze into the house. An example of this can be seen in figure 31, when the front door is not opened there is very little movement of air through the house but with the doors and windows open the arrows show the likely air movement with the typical southerly breeze.

Figure 31 Movement of air through the front door of house O which isn't possible due to the impermeable front door (produced by Luke Murphy)

Heat gained and lost from missing insulation

Figure 32 shows a thermal image of a double brick wall at house M which allows us to see how much the heat can increase in summer. Figure 32 shows what happens when there are gaps in insulation typically around the edges of a room. The thermal imaging camera shows the temperature M1 as 29.2 and the rest of the room M2 at 26. This image shows the importance of

extending the insulation to the top of the ceiling so there are no gaps for heat to be gained in summer or lost in winter.

Figure 32: Thermal image of corner of the ceiling showing insulation missing (Source: Christine Eon 2015 audit report)

House C; is a retrofitted 1940's style home in Hilton. The homeowners have insulated the cladded timber stud walls and the roof to increase the thermal performance of the house. Figure 33 shows the roof and walls being insulated thoroughly, except where the roof insulation is supposed to connects to the wall insulation. It becomes very difficult to rectify this problem once the house is built so careful placement of insulation during the building phase can maximise the effect of the insulation.

M1: 36°C, M2: 35.2°C, M3: 27.3°C

Figure 33: Insulation missing around the edges of house C (Source: Christine Eon 2015 audit report)

House O; it was found that there is missing insulation around the downlights in the roof. This is common when the downlights are installed that the insulation is pulled clear and not put back. It can be seen in figure 34 that the section around the downlight is 3 degrees warmer than the rest of the roof meaning heat will be gained and lost through the missing insulation. It is important to identify which light types can allow insulation to cover them and which need to be left clear as this can reduce the thermal performance of a house if a gap in the insulation is required.

Figure 34: Missing insulation around downlight at house O (Source: Christine Eon 2015 audit report)

Heat gained and lost from windows

An important consideration when designing houses is shading external windows including the groundcover beneath the windows.

Figure 35 shows the importance of shading outside patio areas including windows. House C has bricks that are exposed to full sun and record a reading of 70°C in the middle of the day and the dark timber is at 80°C. The shaded timber is half the temperature at 40°C as shown in figure 35. This supports the consideration needed at design stage to reduce the heat radiation being emitted from the hot surfaces surrounding the house which can enter the house through a window.

Figure 35: Temperature of a deck in shade compared to when it is in direct sunlight at house C (Source: Christine Eon 2015 audit report)

House E contains east facing windows which can be seen in figure A and B in table 7. The west side of the house is protected from solar gain as the boundary is against another house; however the east has windows are unshaded from the morning sun throughout the year. The occupants already demonstrate a good practice which includes shading the insides and outsides

of windows with fabric to reduce the amount of heat entering the window in the morning. Even when this is done the internal temperature of the window is 13 degrees warmer than the nearby wall which can be seen in image C of Table 7. To further improve the efficiency it would be beneficial to shade the outside of these windows during summer to keep the surrounding concrete cooler. A semi-permanent shade-sail is the most cost effective way of achieving this due to the ground cover being concrete which heats up throughout the day, radiating heat through the night keeping the house warm. Part B of table 7 shows the proposed design to increase the thermal efficiency of the house to shade from the morning sun.

Table 7 East façade of house E

House H experiences heat gain through the west facing windows. The thermal image of a west facing window in figure 36 shows a massive 13 degree difference between the blind and the wall. An external blind or awning would be an efficient way to shade this window from the afternoon sun and prevent heat entering the house during summer.

Figure 36: West facing window in the afternoon at house H (Source: Christine Eon 2015 audit report)

House G is a solar passive designed house that has good thermal performance. One issue is the window on the second floor in front of the study is facing east. So the morning sun hits the window causing the area to heat up very quickly. It stays warm until late evening making the space unbearable unless external cooling is used. Given the window is on the second storey an external roller blind that is able to be controlled from inside would be a better long term solution than a shade sail which would require climbing up on the roof to remove in winter and installing it again in summer. This roller shutter will keep the sun and heat out during the day while allowing it to be wound up and window opened to cool upstairs during the evening. Figure C in table 8 shows the position of the window sill and desk being 16 degrees warmer than the wall out of the direct sunlight.

Table 8 East Facing Window at house G (Google Sketch up models by Luke Murphy)

(Source: Christine Eon 2015 audit report)

House M's study has West facing windows. The exterior of this facade is unshaded concrete. In the afternoon these west windows are in direct sunlight, which allows heat to enter through the front windows, making it extremely uncomfortable for the occupants. The long term recommendation or solution to provide shade to the exposed concrete is to plant a local deciduous tree such as Fremantle Mallee (Eucalyptus Foecunda), Rottnest Island Tea Tree or a Eucalyptus Platypus which will provide shade to the windows and provide a shady place to sit. Due to it taking a number of years for these local trees to reach a height that would be able to provide sufficient shade a short term solution would be to install a shade sail over the west facing windows to protect them from the sun and fasten the bottom 300-400mm from the base of the window to allow air movement to occur at night to cool the window and allow sufficient light into the room. An example of the design can be seen in figure 37.

Figure 37: Before and after solution for shading the front room at house M (Source: Luke Murphy Google Sketchup) Figure 38 shows west facing windows for house P. To decrease the afternoon sun entering through these windows a shade sail should be installed to protect these windows from afternoon sun. These rooms will remain at a lower temperature and the light will still be accessible during winter as a result of removing the shade sail.

Figure 38: West Facing Windows for house P (Source: Luke Murphy Google Sketchup)

Heat gain through old vents

House F contains an old wood fireplace in the pre-existing section of the house, which is not used often due to the new extension now being used as the living room for the house. Figure 39 shows a vent that goes from the old living room straight to the outside of the house. There is almost 10°C difference in this section of the wall compared to the rest of the internal wall. The recommendation would be to seal the inside of the vent with insulation to prevent air movement between the inside and outside of the building while still allowing moisture to leave the cavity.

Figure 39: Wood fire wall vent in the old section of house F (Source: Christine Eon 2015 audit report)

Heat gain through ventilation ducts

An Australian summer can see a ceiling cavity reach temperatures of around 80 °C. If the ducting is not well insulated the air conditioning could be circulating warm air inside. Figure 40 shows the thermal imaging camera visualising heat gain through the vent as the fan was turned on. M1 temperature is 29 °C while M2 is 26 °C, a difference of 3 °C. Ceiling fans are a more efficient method of circulating air within the house, compared with ducted fans.

Similarly this can work in an opposite manner in winter as warm air can rise and escape through these vents, and cool air can enter the house from the cooler roofspace, sealing them when not in use is an important method to avoid unwanted heat loss.

Figure 40: House L ducted (Source: Christine Eon 2015 audit report)

Heat gain through exhaust fans

Bathroom and cooking exhaust extraction fans can enable a large amount of heat to be both gained and lost in winter and summer. A practice to reduce the effect of this is to use a vent cover that opens when the fan is turned on but closes when the fan is switched off. Another way to reduce the air flow into the ceiling is to keep the doors going into the laundry and bathrooms closed when they are not being used so that the air flow through the vents is reduced.

5.2.2 Energy Efficiency improvements

Utilising solar production during the day

With smart technology, common appliances including but not limited to dishwashers, fridges, washing machines and air conditioners are able to be programed to turn on when required. This is an efficient way to utilise solar electricity produced from photovoltaics during the day when occupants are out of the house. All of the energy being used during the day is produced by the sun which means less is required from the grid in the evening. This benefits household's on the 7 cents per kWh buy back electricity tariff. Figure 41 shows the photovoltaic production during the day and the mains electricity usage. If a portion of the green curve was moved to a time when the PV is at the peak production rate, it will lead to savings on the occupant's energy bill.

Figure 41: PV production curve against energy usage house H (Source: Christine Eon 2015 audit report) Another example of behaviours that could influence this change and lead to savings is if the air conditioner is pre-set to turn on at 2pm when it will be powered by the solar panels to pre-cool the house on summer days. This also applies to pool pumps, washing machines and dishwashers all turning on throughout the morning ready for when the occupants return home.

5.2.3 Water Efficiency

House E rainwater tank

The purpose for house E's rainwater tank is for irrigating the gardens and filling their pond. There is an issue with the design where the overflow pipe has a smaller diameter than the inflow pipe. This results in the potential for the gutters to overflow if the outflow tap is not opened prior to heavy rainfall. Meaning that the water tank isn't reaching full potential as rainwater is drained to avoid overflow. The rainwater use measured consists of water leaving as stormwater which doesn't represent main water savings.

To receive the greatest yeild of rainwater per annum with the minimum treatment effort the tank should be plumbed into non-potable sources such as the washing machine or for the use of toilet flushing. House E could enhance this situation by hiring a plumber specialising in roofing to appropriately fit and size the overflow devices for the roofspace. A first flush device should also be installed to capture the dirty water from the roof during the first rain fall event to increase the quality of water captured in the tank.

House G rainwater tank

No Rainwater usage had been recorded for house G for 2 months prior to the first audit. The cause was that the pump had previously burnt out, after being replaced the power switch was left off without being detected by the occupants or the pump installer. No rainwater was being pumped to the toilets or the washing machine even though the tank was full. Before the pump was turned back on the filter was inspected and found to have a film of algae preventing water from flowing through. The occupants weren't aware of any maintenance plan to clean the filter to ensure it is free from blockages. It is assumed that the original pump burnt out due to the increased pressure and workload trying to pump water through a partially blocked filter. If the monitoring software hadn't been available to show the rainwater real time data then it is quite possible the problem wouldn't have been rectified. This incident indicates that the monitoring the problem almost immediately.

House F rainwater Tank

The rainwater tank is filled by a wet feed system. A wet feed system means that the water can be collected from both sides of the roof as seen in figure 42 and the pipes remain full to the level of the outlet pipe. When it rains the water is pushed into the tank. The original system installed didn't have a release valve flush device which resulted in the water sitting in the pipes all summer and then the first winter rain caused dirty water to be flushed into the tank. The water was being used for non-potable use so dirty water flowed into the toilets. By not having an appropriate management plan for the rainwater harvesting system the dirty water entered the household and the whole rainwater tank needed to be emptied and cleaned before it could be filled up again. Now at the end of every winter the release valve is opened and acts as a first flush device to remove the dirt from the roof during the first rains.

55

Figure 42: Wet feed rainwater tank design (Source: Luke Murphy)

House H water recycling

House H has a number of innovative water recycling technologies to reduce the mains water demand for both potable and non-potable uses. The occupants have installed two 3 kL rainwater tanks with plans to install a third 3 kL tank to supply potable water to the house to relieve the demand for scheme water. This water is used for showers, hand basins as well as the washing machine. The water from these potable sources are then collected and treated via a Novagrey greywater system which treats greywater produced from the household and reuses this to flush the toilets, feed the washing machine and irrigate the gardens to further reduce the scheme water demand. The Novagrey also recycles nutrients by providing the nutrients to the plants through irrigation. This system allows collection of rainwater to be first utilised in the potable water supply, then reused by a non-potable supply such as a washing machine, and then reused for toilet flushing or irrigation. The business as usual approach is one supply into and out of a dwelling where this house demonstrates recycling water up to three times before it leaves the property.

Even with the water reuse strategy there is not enough greywater produced to fully irrigate the garden so the occupants feel like they aren't as worried about taking long showers because the greywater is being reused on the garden so poor behaviours may be encouraged because the owners may become complacent in using more water than usual.

56

House E water efficiency

Figure 43 shows that House E has relatively low mains water use, however there is still room for efficiency improvements which can be seen in figure 44. There is a strong correlation between mains water and energy use. This graph indicates that the electric booster is turning on in winter once a large amount of water is used. The possible causes of the high water use could be the shower or washing machine using hot water. Washing in cold water whenever possible and taking shorter showers would not only save energy but also save water. The alternative option would be to replace the inefficient high flow shower heads and taps with low flow efficient options which can also contribute to less energy being used to heat water.

Figure 43: House E Water use (Source: Christine Eon 2015 audit report)

Figure 44: House E mains energy consumption in correlation with main water use (Source: Christine Eon 2015 audit report)

It is found that the occupants are completing a small load of washing every day. Although the washing machine is an efficient front loader that uses 60L of water per wash, it would be more efficient to wash a larger load every few days where possible. In this instance reducing the number of washes from 7 loads down to 4 per week can save 10 kL of water per annum, decreasing down to 3 loads per week can save an extra 3 kL per annum.

5.2.4 Josh Byrne Garden Audit

House B

No garden audit was carried out as there was no behaviour change audit carried out.

House C

The water efficiency for house C is relatively good; however majority of the water use has been used to establish a tree in the front yard. Water use in the garden was further reduced when the vegetable garden was removed.

House E

House E has a good range of water wise plants and the occupants hand water the garden which increases the efficiency of watering. The only notable tip is for when the

House F

House F has a very well thought out garden which is hand watered. The lawn was replaced with recycled carpet to further reduce the water demand and maintenance requirements.

House G

The garden at house G is extremely water wise with a small amount of lawn and native coastal plants. The only tip to note is to check the irrigation periodically.

House H Garden Maintenance

Given there is a large amount of lawn at the back of this house, summer water use can be reduced by replacing the front lawn with coastal native shrub species which would require no water once established. In addition heavy traffic areas on the back lawn can be repaired by aeration and top dressing with a nutrient rich soil to reduce the water requirement.

House L

The occupants have a great practice of hand watering instead of reticulation their garden which consists of a wide variety of plants. The only notable change would be to apply mulch to the gardens to reduce the water requirements of the garden.

House M

House M consists of a large portion of concrete pavers with small gardens around the house. The plants water demand would be decreased by applying a layer of mulch.

House O Garden Water Efficiency

House O currently has surface sprayers installed for its irrigation requirements. It was noted that a more efficient method of irrigation would be Beta Film driplines which are subsurface drippers that provide water directly to the roots of plants to reduce loss from evaporation and wind drift. Another recommendation was to install a hunter X-core weather controller to detect the weather conditions and adjust to any rainfall that might occur automatically. This will save water from being wasted when the plants have enough water already available.

Appropriate plant choices in the right area can assist the efficiency and liveability of the home. Choosing plants that are native in the area means they are likely to be able to thrive with very little excess water as well as providing shading to the surrounding ground or house making the climate cooler and more attractive without using great amounts of water. Some water wise plants for the driveway includes Dianella Seascape, Grevillea Seaspray (foam Foliage and Lomandra Longifolia Tamakas and to cool the side of the house Chinese Star Jasmin can be used as a creeper. The previous plant choices have struggled with the lack of nutrients and heat from the driveway.

House P

House P's garden water requirement was increased with the installation of lawn in the backyard which is used for a play area. The sprinklers are a water efficient model, however to reduce the wear in certain patches top dressing the lawn would be beneficial to keep the water requirements to a minimum.

59

5.2.5 Renewable Energy

Photovoltaic System

An interesting part of the study was receiving feedback that the occupants for house C utilised the monitoring equipment to see how much of an effect washing the photovoltaic solar panels has on increasing energy production. The occupants could see an increase in production on the monitoring website and felt that cleaning the solar panels was a proven benefit to them.

House H had a period where there was no solar production from the 2kW Photovoltaic system. Once it was analysed on the monitoring equipment the occupants were notified and further investigation took place which found that the systems power had tripped. The monitoring equipment registered it had tripped around midday on the 14th of November with heavy rain being the assumed cause. The observation is shown in figure 45 where the solar PV registers zero while electricity continues to be used.

Figure 45: House H PV from the 11th November to the 18th of November (Source: Christine Eon 2015 audit report) Figure 46 reiterates that another fault occurred that was picked up with the comparison showing when working the system is producing more electricity than the other houses. It appears the system was switched back on around the 8th of October and tripped again on the 14th of October. Every time the PV system trips the occupants loose free energy and have to draw more from the grid reducing the efficiency of the system. It would be beneficial to identify and fix the problem so no more potential savings are lost.

Figure 46: House H monitoring website showing PV system performance in October 2016. (Screenshot taken from http://pmecurtin.homeftp.net/web/ on the 17/10/2016)F

Solar Hot Water Systems

Figure 47: House C electricity consumption breakdown (Source: Christine Eon 2015 house audit report)

For house C, electricity data was collected for the major appliances including the lighting, air conditioner, two separate power circuits, the hot plate and the Hot water system electric booster. Figure 47 shows that in winter the hot water system booster electricity consumption increases massively with a small increase in the power 2 circuit. Upon further investigation the

main cause for this increase in electricity is the hot water system is shaded in winter due to trees blocking the sun, as well as bar heaters located in the kid's bedrooms during winter.

Behaviour efficiency for Gas boosted solar hot water system House M uses gas for cooking as well as a booster for the solar hot water system. From Figure 49 it can be seen that the gas usage is much greater in winter than summer. The solar collector plates are on an east facing roof which is seen in figure 50 where a tree shades the panels from the morning sun. It is assumed that not enough sun is able to heat the panels in winter. Figure 51 shows the correlation between water and gas. From this graph the green bar indicates rainwater being used at the same time as the gas peaks. This indicates hot water could be used when doing laundry as well as for showers. There is inefficiency caused by poor placement of the hot water collectors. However behaviours including washing with cold water and having shorter showers would decrease the amount of gas required to maintain hot water.

Figure 48: House M gas use for 2015 (Source: Christine Eon 2015 audit report)

<u>і</u> N

Figure 49: House M with solar collectors positioned so shaded by the tree to the east (source: Google Earth, 6/11/2016)

Figure 50: house M gas use in correlation with water use (Source: Christine Eon 2015 audit report)

House G chose to install an instant gas hot water system instead of solar hot water system. Figure 52 shows the gas use is spread across the year with it being slightly higher in winter which is assumed to be due to longer showers as well as more energy being used to overcome greater temperature differences. The gas use for house G is slightly higher in summer than at house M, but it remains lower than house M in winter, which reiterates the inefficiency of house M's system due to poor placement. Figure 53 shows the correlation between water and gas use which reiterates that reducing shower time will result in a reduction in gas use.

Figure 51: House G gas use for 2015 (Source: Christine Eon 2015 audit report)

Figure 52: Gas correlation with water use (Source: Christine Eon 2015 audit report)

5.2.6 Summary of efficiency improvements applicable to multiple dwellings

- 1. Shading east and west facing façades during summer, especially windows
- 2. Replace energy inefficient globes with efficient LED globes
- 3. Turn appliances off at the wall to reduce standby power usage when able
- 4. Utilise thermal mass to store night time coolth for during the day
- 5. Ensure insulation covers the entire ceiling to prevent unwanted heat transfer
- 6. Turn air conditioning to above 24 degrees Celsius and heating below 24 degrees Celsius
- 7. Using ceiling fans as an efficient, alternative form of cooling than an air conditioner

- 8. Reducing shower times and replacing inefficient shower heads with a higher star rating will save both mains water and energy
- 9. Washing clothes in cold water instead of hot water will save on water heating requirements of the house
- 10. Mulch gardens to reduce evaporation from the soil

6.0 Conclusion

In relation to objective I, the full lifecycle assessment for the 10 houses was successful in providing an assessment of the sustainability and carbon footprint associated with each house. By comparing the carbon footprint of the materials for each house it was identified that the embodied energy could be reduced by using timber frame cladded walls or reverse brick veneer instead of the traditional double brick construction. Operational energy reduction methods can include using LED lighting instead of CFL or Halogen lighting types or utilising ceiling fans over air conditioning wherever possible.

It was also found that in relation to objective II, certain behaviours cause an increase in the operational energy of the house such as taking longer showers, washing clothes with hot water and not utilising appliances during solar production hours. However there are certainly some housing efficiency improvements which relate to objective III that were identified in this study which could apply to houses specifically in Perth. Practices such as shading external east and west facing windows with external blinds or by trees, ensuring walls and ceilings are insulated correctly, replacing high flow fixtures with more efficient low flow models and maintaining solar panels and rainwater tanks are some of the ways a house can be made more efficient to reduce the operational energy of the house and encourage energy efficient behaviours.

Monitoring equipment that displays the real-time data directly to the occupants can be a great way to help influence efficient behaviour or identify any inefficiencies caused by faults, leaks or inefficiencies around the house which in turn can lead to savings for the house. With smart technology this option can be implemented to both new and old houses.

In relation to objective IV, to improve the sustainability of the housing market in Australia a life cycle assessment way of thinking will contribute to a reduction in the carbon footprint of houses. By employing a LCA tool alongside the existing NatHERS star rating, houses will obtain a measurement of all aspects of the life cycle carbon impacts of a building which includes the embodied and operational impacts such as heating and cooling, lighting, hot water heating, refrigeration and entertainment requirements.

For existing housing an analysis is required between the actual measured data and the predicted data to help identify areas of improvement for both behaviour change and house efficiency changes. This information can form part of an energy performance certificate for the owners to rectify the identified areas which will ultimately save energy, water and gas and reduce operational costs for the occupants.

66

Future work that could be considered which is outside the scope of this thesis is to consider the recommendations and use eTool to design a lower carbon footprint house while also taking into consideration the cost and liveability compared to the usual building construction methods.

7.0 References

- Ambrose MD and Syme M (2015). House Energy Efficiency Inspections Project Final Report. CSIRO, Australia.
- Anda, Martin, and Max Ploumis. 2015. An alternative infrastructure optioneering methodology: Techno-economic assessment tools for urban development projects. GSTF Journal of Engineering Technology (JET) 3 (3): 64.
- Cecily J. Maller & Ralph E. Horne (2011) Living Lightly: How does Climate Change Feature in Residential Home Improvements and What are the Implications for Policy?, Urban Policy and Research, 29:1, 59-72, DOI: 10.1080/08111146.2011.539514
- Charoenkit, Sasima and S. Kumar. 2014. "Environmental Sustainability Assessment Tools For Low Carbon and Climate Resilient Low Income Housing Settlements". Renewable And Sustainable Energy Reviews 38: 509-525. doi:10.1016/j.rser.2014.06.012.
- Chastas, Panagiotis, Theodoros Theodosiou, and Dimitrios Bikas. 2016. "Embodied Energy In Residential Buildings-Towards The Nearly Zero Energy Building: A Literature Review". Building And Environment 105: 267-282. doi:10.1016/j.buildenv.2016.05.040.
- Connolly, J. and Prothero, A. 2008. Green consumption: life-politics, risk and contradictions. Journal of Consumer Culture, 8(1): 117–145.
- Daniel, Lyrian, Veronica Soebarto, and Terence Williamson. 2015. "House Energy Rating Schemes and Low Energy Dwellings: The Impact Of Occupant Behaviours In Australia". Energy and Buildings 88: 34-44. doi:10.1016/j.enbuild.2014.11.060.
- Department of Planning. 2011. BASIX: the building sustainability index. Sustainability Unit, Department of Planning, Sydney. Accessed 18/10/2016 <u>www.basix.nsw.gov.au</u>,
- Dong, Xiang, Veronica Soebarto, and Michael Griffith. 2015. "Design Optimization Of Insulated Cavity Rammed Earth Walls For Houses In Australia". Energy And Buildings 86: 852-863. doi:10.1016/j.enbuild.2014.11.014.
- El shenawy, Ahmed and Radu Zmeureanu. 2013. "Exergy-Based Index For Assessing The Building Sustainability". Building And Environment 60: 202-210. doi:10.1016/j.buildenv.2012.10.019.
- "Energy | The Green Swing". 2016. Thegreenswing.Net. Accessed 2/10/2016 http://thegreenswing.net/thesiding/energy-efficiency
- Fesanghary, M., S. Asadi, and Zong Woo Geem. 2012. "Design Of Low-Emission And Energy-Efficient Residential Buildings Using A Multi-Objective Optimization Algorithm". Building And Environment 49: 245-250. doi:10.1016/j.buildenv.2011.09.030.
- GBPN. 2013. Global Buildings Performance Network. Accessed 10/10/2016 http://www.gbpn.org/databases-tools/bc-detail-pages/california#Energy Covered.

- UNDP. 2016. "Goal 11: Sustainable Cities and Communities". Accessed 10/10/2016 <u>http://www.undp.org/content/undp/en/home/sustainable-development-goals/goal-11-</u> <u>sustainable-cities-and-communities.html</u>.
- Hargreaves, T. 2011. "Practice-Ing Behaviour Change: Applying Social Practice Theory To Pro-Environmental Behaviour Change". Journal Of Consumer Culture 11 (1): 79-99. doi:10.1177/1469540510390500.
- Himpe, Eline, Leen Trappers, Wim Debacker, Marc Delghust, Jelle Laverge, Arnold Janssens, Jan Moens, and Marlies Van Holm. 2013. "Life Cycle Energy Analysis Of A Zero-Energy House".
 Building Research & Information 41 (4): 435-449. doi:10.1080/09613218.2013.777329.
- Hong, Taehoon, ChangYoon Ji, MinHo Jang, and HyoSeon Park. 2014. "Assessment Model For Energy Consumption And Greenhouse Gas Emissions During Building Construction". Journal Of Management In Engineering 30 (2): 226-235. doi:10.1061/(asce)me.1943-5479.0000199.
- Hurst, Neville. 2012. "Energy Efficiency Rating Systems For Housing: An Australian Perspective".
 International Journal Of Housing Markets And Analysis 5 (4): 361-376.
 doi:10.1108/17538271211268501.
- Josh's House. 2016. Joshshouse.Com.Au. Accessed 20/8/2016 http://joshshouse.com.au/.
- Lawania, Krishna and Prabir Sarker. 2015. "Global Warming Implications Of The Use Of By-Products And Recycled Materials In Western Australia'S Housing Sector". Materials 8 (10): 6909-6925. doi:10.3390/ma8105347.
- Lin, Boqiang, and Hongxun Liu. 2015. A study on the energy rebound effect of china's residential building energy efficiency. Energy & Buildings 86 : 608-18.
- Low Carbon Living CRC. Reframing housing regulation: delivering performance improvement together with affordability. Accessed 25/10/2016 <u>http://www.lowcarbonlivingcrc.com.au/sites/all/files/publications_file_attachments/rp10</u> <u>21_conference_paper_reframing_housing_regulation.pdf</u>
- Low Carbon Living CRC. Intelligent automated monitoring of commercial photovoltaic (PV) systems. Accessed 25/10/2016. http://www.lowcarbonlivingcrc.com.au/resources/crc-publications/crclcl-project-reports/rp1007-intelligent-automated-monitoring-commercial
- Mays, Brendan and Jemma Castle. 2014. Energy-Efficient Homes. Ebook. 1st ed. Choice. https://www.choice.com.au/home-improvement/energy-saving/reducing-your-carbonfootprint/articles/house-energy-ratings.
- O'Leary, Timothy, M. Belusko, D. Whaley, and F. Bruno. 2015. "Review And Evaluation Of Using Household Metered Energy Data For Rating Of Building Thermal Efficiency Of Existing Buildings". Energy And Buildings 108: 433-440. doi:10.1016/j.enbuild.2015.09.018.
- O'Leary, Timothy, M. Belusko, D. Whaley, and F. Bruno. 2016. Comparing the energy performance of Australian houses using NatHERS modelling against measured household

energy consumption for heating and cooling. Energy & Buildings 119 : 173-82.doi:10.1016/j.enbuild.2016.03.025

- Pérez-Lombard, Luis, José Ortiz, Rocío González, and Ismael R. Maestre. 2009. "A Review Of Benchmarking, Rating And Labelling Concepts Within The Framework Of Building Energy Certification Schemes". Energy And Buildings 41 (3): 272-278. doi:10.1016/j.enbuild.2008.10.004.
- Ridley, Ian, Justin Bere, Alan Clarke, Yair Schwartz, and Andrew Farr. 2014. "The Side By Side In Use Monitored Performance Of Two Passive And Low Carbon Welsh Houses". Energy And Buildings 82: 13-26. doi:10.1016/j.enbuild.2014.06.038.
- Rosado, Leonardo, S. Hagy, Y. Kalmykova, G. Morrison, Y. Ostermeyer. 2014. "A living lab cocreation environment exemplifying Factor 10 improvements in a city district." Journal of Urban Regeneration and Renewal 8(2): 171-185.
- Schmidt, Charles W. 2008. "Bringing Green Homes Within Reach: Healthier Housing For More People". Environmental Health Perspectives 116 (1): A24-A31. doi:10.1289/ehp.116-a24.
- Circular Ecology. 2016. "Scoring LCA Green Building Credits In BREEAM, LEED And CEEQUAL". Accessed 25/10/2016 http://www.circularecology.com/green-building-lca-credits-inbreeam-leed-ceequal.html.
- Smets, Peer and Paul van Lindert. 2016. "Sustainable Housing And The Urban Poor". International Journal Of Urban Sustainable Development 8 (1): 1-9. doi:10.1080/19463138.2016.1168825.
- Thiel, Cassandra, Nicole Campion, Amy Landis, Alex Jones, Laura Schaefer, and Melissa Bilec.
 2013. "A Materials Life Cycle Assessment Of A Net-Zero Energy Building". Energies 6 (2):
 1125-1141. doi:10.3390/en6021125.
- Ürge-Vorsatz, Diana and Aleksandra Novikova. 2008. "Potentials And Costs Of Carbon Dioxide Mitigation In The World's Buildings". Energy Policy 36 (2): 642-661. doi:10.1016/j.enpol.2007.10.009.
- Wang, Xiaoming, Dong Chen, and Zhengen Ren. 2011. "Global Warming And Its Implication To Emission Reduction Strategies For Residential Buildings". Building And Environment 46 (4): 871-883. doi:10.1016/j.buildenv.2010.10.016.
- USGBC. 2016. "Whole Building Life Cycle Assessment | U.S. Green Building Council". Usgbc.Org. accessed 11/10/2016 http://www.usgbc.org/credits/new-construction-core-and-shellschools-new-construction-retail-new-construction-healthcar-9.
- Wong, Peter S.P., Aiden Lindsay, Lachlan Crameri, and Sarah Holdsworth. 2015. "Can Energy Efficiency Rating And Carbon Accounting Foster Greener Building Design Decision? An Empirical Study". Building And Environment 87: 255-264. doi:10.1016/j.buildenv.2015.02.006.

- Yang, Jay and Zhengyu Yang. 2014. "Critical Factors Affecting The Implementation Of Sustainable Housing In Australia". Journal Of Housing And The Built Environment 30 (2): 275-292. doi:10.1007/s10901-014-9406-5.
- Zabalza Bribián, Ignacio, Alfonso Aranda Usón, and Sabina Scarpellini. 2009. Life cycle assessment in buildings: State-of-the-art and simplified LCA methodology as a complement for building certification. Building and Environment 44 (12): 2510-20.
- Zero Carbon Policy. 2016. Zerocarbonhub.Org. accessed 21/7/2016 http://www.zerocarbonhub.org/zero-carbon-policy/zero-carbon-policy.

8.0 Appendices

Appendix A: Google Sketch up models

Figure 53: House B google sketch up model with layers used (Google Sketch up models by Luke Murphy)

Figure 54: House C Google sketch up model with Layers used (Google Sketch up models by Luke Murphy)

Figure 55: House E google Sketch up models with layers used (Google Sketch up models by Luke Murphy)

Figure 56: House F google sketch up model with layers used (Google Sketch up models by Luke Murphy)

Figure 57: House G google sketch up model with the layers used (Google Sketch up models by Luke Murphy)

Figure 58: House H google sketch up model with layers used (Google Sketch up models by Luke Murphy)

Figure 60: House M Google Sketch up model with layers used (Google Sketch up models by Luke Murphy)

Figure 62: House P google Sketch up model with the layers used (Google Sketch up models by Luke Murphy)

Appendix B: Material offtake and eTool Specifications for each house

	m^2	Comments	
Overall	273	Taken from google sketchup drawing (block Size)	
Area			
Internal	104	Taken from sketchup (different levels of ground	
Floor		floor)	
area_Grou			
nd			
Internal	51	upper level	
Floor			
area_First			
total	162.6	Heating & cooling load	
internal			
Concrete	122	100mm slab on compacted fill	
Pad ground			
Concrete	63	upper level	
Pad Raised			
Roof Area	145.75	tin area	
Ceiling	136.5	under roof	
Area_First			
Floor			
Ceiling	51.35	Taken from sketchup	
Area_Grou			
nd Floor			
Wall_	156	Calculated from sketchup model (internal walls not	
Internal		attached to outside)	
area			
Wall_	259	(external walls including double layer)	
External			
Area	25	Windows and close doors all single closed	
Windows-	25	(aluminium Frame)	
Areas		(aluminum Frame)	
Door-	21	Δ	
Glazed	21	т Г	
Door	3.7	2	
External		-	
Door	13	8	
Internal			
Stairs_entr	2.6		
y			
Stairs_mai	5		
n			
Floor- Total	162.6	from plans	
Floor Carp	43	sketchup (bedrooms)	
et .			
Floor-Tiles	14.45	Bathroom/ toilet/ Laundry	
Floor-	21.65	stairs and front room	
Timber	21.05		
Floorboard			
s			
Floor-	43	living room	
Polished		-	
Concrete			
Floor-	32.67	garage	
Painted			

Table 9: House B, 8.5 stars, NatHERS thermal rating 15 MJ/m^2

Concrete				
timber front deck	15.75			
timber back deck	53.5			
timber balcony	3			
Internal Paint	312	selection including all internal walls from sketch up		
External	126.01			
Lighting				
Mechanical Ventilation	0			
Thermal Demand	15MJ/m^2			
Lighting Run time	730hrs/y	1.4hrs per day		
Lux	150	min building code		
PV	1 kW	used template (Solar PV System - zone 3 (Perth)		
Smoke Detector	2	fire service smoke detector		
Exhaust Fan	3	Exhaust extraction fan, steel		
ceiling fan	4	HVAC Residential Ceiling Fans		
HWS	1	Solar with gas booster		
RW tank	4000L	with pump		
Etool Material Inputs & assumptio				
Element	Structure	Etool Assumption (template)	Measureme	units
Roof	Timber Truss ()	Roof - TimberTruss/SteelSheeting/10°Pitch/RakingCeiling/I nsulation	145.75	m^2 (pitch accounted for)
Ceiling first floor	Plaster	Ceiling - Plasterboard+paint	51.35	m^2
External Walls	Brick 230mm	Double Brick Cavity Wall (90-50-90) render ext plaster int	259	m^2
Wall insulation	reflective foil insulation to east and west facing walls	Insulation - Foil Sisalation (wall)	73	m^2
Internal Walls	90 brickwork (single Brick)	Single Brick Wall (90mm) - plaster & paint interior	156	m^2
Floor- Concrete Pad (living Boom)	100mm slab, 40MPa. 3.8%reo	Concrete Floor, 100mm slab, 40MPa. 3.8%reo	122	m^2
noonij				
Elevated concrete slab	1% reinforcement, 30 MPa.	Floor, 200mm elevated slab	63	m^2
Elevated concrete slab Floor_Carp et	1% reinforcement, 30 MPa. Carpet over concrete slab	Floor, 200mm elevated slab Floor Covering - Carpet (glue down/Nylon)	63 43	m^2 m^2
Elevated concrete slab Floor_Carp et Floor-Tiles	1% reinforcement, 30 MPa. Carpet over concrete slab Tiles	Floor, 200mm elevated slab Floor Covering - Carpet (glue down/Nylon) Floor Covering - Tiles (ceramic/5mm)	63 43 14.45	m^2 m^2 m^2

Timber				
Floor-	polished/	Floor Finish - Grind+PU Coated Polished Concrete	43	m^2
Polished	coating	(PU coating adjusted)		
Concrete	-			
Floor-	coating	Floor Finish - Coloured Epoxy Concrete Floor	32.67	m^2
Painted		Coating		
Concrete				
Floors-	Timber decking	Floor, wooden decking, elevated on steel anchors	53.5	m^2
back deck				
Floors-	Timber decking	Floor, wooden decking, elevated on steel anchors	15.75	m^2
front deck				
PV	Panel/ inverter/	Solar PV System - Zone 3 (Perth)	1 kW	
	installation			
Doors-	limber	Door, Solid Core and Steel Jam (Entry)	3.7	2
External	I		12	<u> </u>
Doors-	Timber	Door, Hollow Core and Steel Jam	13	8
Internal	aloss sliding	Deer commercial cliding class with hardware	21	4
D001-	gidss sliuling	Door, commercial sliding glass with hardware	21	4
Mindows		Windows Residential Aluminium Single Glaze fly	25	m^2
windows	Frame	screen	25	m^z
Stairs-	concrete base	Staircase Concrete (40Mna, 2% reg) + timber stens	0 5m rise	
garage	concrete base	Stancase, concrete (4000pa, 2% red) + timber steps	0.5111150	
Stairs-	concrete base	Staircase Concrete (40Mna, 2% rea) + timber stens	1m rise	
Entry	concrete base		IIIIISe	
Stairs-	concrete base	Staircase Concrete (40Mna, 2% reo) + timber stens	3m rise	
Main			Shirise	
Kitchen	laminated	kitchen cabinetry Medium	1	
cabinet	board for	Refer cabinetry mediani	-	
cabillet	cupboards.			
	shelves,			
	drawers			
Laundry	Steel basin/	Standard Laundry sink (Steel) + Services	1	
	linen cupboard			
Main	Bath/ Vanity/	Standard Large Bathroom - WC/Bath-	1	
Bathroom	shower/ toilet	Shower/Basin*2/WallTiles		
Powder	toilet/ basin	PDR	1	
room				
Lighting-	50% of building	Lighting Residential CFL High Natural Light		
CFL				
Lighting-	25% of building	Lighting Residential LED High Natural Light		
LED			-	
Lighting-	25% of building	Lighting Res 12V Halogen High Natural		
Halogen				
Electrical		Site Power and Electrical Connection - Residential		
Connection				
Water		Plumbing, Water and Sewerage Connection,		
Connection		Residential		
gas		Gas connection (single dwelling)		
connection			1	
HWS	HWS - solar W	HWS - Solar Thermal + Gas Boost (240L) + Low Flow		
2	stool	Shower fields Painwater tank steel (ombedied)	2	
Z Rainwator	51661	Ramwaler lank - Sleer (embouleu)	2	
tank				
electric		Electric Pump	0.8414/	
nump for			0.01.00	
RW tank				
electric			1	
pump				
· Pe			1	
1	1		1	1

As-Built			
Water use		Average Water Use and Treatment, AUS, WA	
Appliances	Entertainment, Laundry, Dishwasher	Appliances, Residential Average (AUS) Op&Em	
Refrigerati on	Fridge/ freezer	Refrigeration, Residential Detailed (AUS) Op&Em	
Cooking		Cooking, Res Gas Stove Electric Oven Op&Em	
With actual			
Appliances			
Additional	Energy/Water/	Etool Assumption (template)	
appliances	Gas		
	Hotplate	Cooking, Res Gas Stove Electric Oven Op&Em	
	oven	Cooking, Res Gas Stove Electric Oven Op&Em	
	Fridge	Refrigeration, Residential Detailed (AUS) Em	
	Dishwasher	Dishwasher Em	
	Washing machine	Clothes washer Em	
	Water Supply	Average Water Use & Treatment WA/AUS (no pool)	

 Table 10: House C, Assume 6 Star Equivalence NatHERS thermal rating 39MJ/m^2

	m^2	Comments	
Overall Area	510	total area from google earth (Excluding	
		Granny Flat)	
Internal Floor area	96	heating and cooling	
Fully Enclosed Covered	96		
Area			
Roof- Front Deck	12.45	See Through Perspex	
Roof- Back Patio	20.96	corrugated iron	
unenclosed covered area	33.41		
Total Usable Area	129.41	eTool input	
Roof Area	161.52	Sketchup pitched area	
Ceiling Area	119	including Eaves (horizontal area)	
Internal Wall Area Total	223	timber stud wall	
External Wall Area Total	111.5	mixed materials	
Wall- External Cladding	63.84	outside wall	
Wall- Single Brick	24.92	under house	
Wall- Corrugated Iron	30.55	back outside wall	
Wall- Internal Stud	111.5	divided by 2	
Glazed Window	15.6	low e glazing	
Glazed- Sliding Door	6	patio	
Total Door Internal Area	7.9	5x	
Total Door External Area	3.3	2x	
Floor- Total	96	Elevated Floor	
Floor- Timber Floorboards	96	Elevated timber floorboards	
Floor- Front Deck	50.74	Timber	
Floor- Back patio	22.4	Concrete pavers	

Internal Paint	223		
Lighting	69.83		
Mechanical Ventilation	0		
Thermal Demand	39MJ/m^2	assumption of a 6 star home given all the retrofit upgrades	
Lighting Run time	730hrs/y	2hrs per day	
Lux	150	min building code	
PV	1.5 kW	Solar PV system - zone 3 Perth	
Etool Masterial Inputs & assumptions			
	Structure	Etool Assumption (template)	Measurement
Roof	Timber Truss (30° pitch)	Roof - TimberTruss/Clay tile/25°Pitch	119 m ² Horizontal 161.5 m ² rake
Roof- Front Patio	Timber Posts	covering- clear PolyCaarb Sheeting (Corrugated) Posts/ beams	12.45 m^2
Roof - Back Patio	Steel Posts	Covering- Steel Sheeting 0.42mm corrugated	20.96 m^2
Ceiling	Plasterboard (12mm)	Roof - TimberTruss/Clay tile/25°Pitch	119 m^2
External Walls_Cladding	Timber Stud	timber stud Ext Wall- FC/WB Clad & PB	63.84 m^2
External Walls_Corrugated Iron	Timber Stud	timber stud Ext Wall- FC/WB Clad &PB (FC/WB removed) +Wall Cladding- Includes Internal Baint finich	30.55 m^2
External Walls_Brick	Single brick	Insulation/ Rigid Foam/ Polyethylene	24.92 m^2
Internal Walls	timber Stud	12mm Plasterboard Timber stud frame (600mm to centre) Paint (industry standard) Rockwool Bulk insulation	111 m^2
Floor- Front Deck	Timber	Floor, Wooden Decking, Elevated on steel anchors	50.74 m^2
Floors- Back Patio	Concrete	Concrete Floor - 100mm slab on ground/ 30MPa/1% Reo/ no fd	22.4 m^2
Floors- Internal	Timber	Floor - Elevated Timber Frame	96 m^2
Kitchen	Timber cabinets	Kitchen Cabinetry Medium	1
Bathroom	Timber Cabinets, Concrete floor	Standard 1st Bathroom - WC/ Shower/ Sink/ Wall tiles	1
Laundry	concrete floor, steel cabinet	Standard laundry Sink)Steel) + Services	1
Doors	Timber	Door, Solid core and steel jam	7 Doors
Windows	Aluminium Frame	Windows single glazed aluminium frame individual components	15.6 m^2
Sliding doors	Aluminium Frame	Door, Commercial sliding glass with hardware	6 m^2
Lights - LED	50%	Lighting Residential LED Med Natural light	10
Lights -CFL	40%	Lighting Residential CFL Med Natural light	10
Lights - Halogen	10%	Lighting Res 12V Halogen Med Natural	
Ceiling fans	4 standard ceiling fans	HVAC Residential Ceiling Fans	4
Air Conditioner		HVAC - Air Source Heat Pump (single split, high efficiency: COP/EER 4.4)	1
Main Toilet	Residential Toilet, Industry Standard Bathroom Services	Toilet	1

	Discoursel		
	Ріремогк		
HWS	Solar w electric boost 240L	HWS- Solar Thermal + Electric Boost	1
Electrical Connection		Site Power and Electrical Connection - Residential	
Water Connection		Plumbing, Water and Sewerage Connection, Residential	
As-built			
Water use	Average household water use	Average Water Use and Treatment, AUS, WA	
Appliances	Entertainment, Laundry, Dishwasher	Appliances, Residential Average (AUS) Op&Em	
Refrigeration	Fridge/Freezer	Refrigeration, Residential Detailed (AUS) Op&Em	
Cooking	induction stove, electric oven	Cooking, Res Electric Oven Induction Stove Op&Em	
Actual Appliances			
Additional appliances	Energy/Water/Gas	Etool Assumption (template)	
Stove	Electric Induction	Cooking, Residential Electric oven Induction Stove Op&Em	
Oven	Electric	Cooking, Residential Electric oven Induction Stove Op&Em	
Fridge	Vestfrost	Refrigeration, Residential Detailed (AUS) Em Refrigeration Vestfrost 387kWh/y	
Washing Machine	Samsung	Clothes Washer Embodied Appliances/ Laundry Appliances Samsung WFO754W7V	
Dishwasher	Asko	Dishwasher embodied Appliances/ Dishwashers Asko 154kWh/y	
Water usage (1000L/day)	Average Water Use & Treatment WA/AUS (no pool)	Average Water Use & Treatment WA/AUS (no pool)	

Table 11 House E, assume 6 star equivalent NatHERS thermal rating 39 MJ/m^2

	m^2	Comments	
Overall Area	462	Taken from google sketchup drawing (block	
		Size)	
Internal Floor	104	Taken from sketchup (different levels of	
area		ground floor)	
total internal		heating&cooling load	
including Garage			
unenclosed	62.4		
covered area			
Elevated Timber	78		
floor			
Concrete Pad	42	100mm slab on compacted fill	
ground			
Roof Area_new	74.6	tin area	
section&garage			
Roof Area_old	95.2	old section of house	
section			
Roof	9.16	old section of house	
Area_verandah,			
red zincalume			

Ceiling Area_old	76.2	under roof		
section				
Wall_limestone	201	Calculated from sketchup model (internal		
(external)		walls not attached to outside)		
Wall_Brick	64	(external walls including double layer)		
Windows-	9.78	Windows all single glazed (timber frame)		
Glazed Areas	5.78			
Door- Glazed	9.6	2		
(swinging double				
doors)				
Doors	10	6		
Floor-Tiles	37.7	Bathroom/ kitchen/ Laundry		
Floor- Timber	63.7	bedrooms, hallway & living room		
Floorboards				
front veranda	16.4			
concrete				
concrete back	46			
pavers				
Brick Driveway	72.9	and another in the shadow of the second state of the foreign		
Gravei	15	selection including all internal walls from		
Limostono		sketchup		
garden retaining				
wall				
External Paint				
Lighting				
Mechanical	0			
Ventilation				
Thermal	70MJ/m^2			
Demand				
Lighting Run	730hrs/y	1.4hrs per day		
time				
Lux	150	min building code		
PV	1.5 kW	used template (Solar PV System - zone 3		
Curreles Datastan	2	(Perth)		
Smoke Detector	2	fire service smoke detector		
Exhaust Fan	3 F	Colling Fons Embedied		
	5	Celling Fails Embodied		
RW/tank	25001	with nump		
	23001			
Etool Material				
Inputs &				
assumptions				
Element	Structure	eTool Assumption	Measureme	units
Deef Area now	Time herr Truces ()	Deef	nt	
Roof Area_new	Timber Truss ()	ROOT -	74.6	m^2
degrees		iling		accounte
ucgrees		1111B		d for)
Roof Area old	Timber Truss ()	Roof - TimberTruss/SteelSheeting/25°Pitch	76.4	
section 25deg				
Roof	Timber Truss ()	Roof - TimberTruss/Steel/10°Pitch/noCeiling	9.16	
Area_veranda,				
red				
Wall_Internal	300mm limestone	Limestone Wall, 250mm thick, with concrete	201	
old section		mortar		
Wall_Brick	Brick 230mm	Double Brick Cavity Wall (90-50-90) render	64	m^2
External			1	1
		ext plaster int		
Floor- Concrete	100mm slab,	ext plaster int Concrete Floor, 100mm slab, 40MPa.	42	m^2

Floor-Tiles	Tiles	Floor Covering - Tiles (Slate)	37.7	m^2
Floors- Old	concrete base	Concrete Floor, 100mm slab. 40MPa. 3.8%	63.7	m^2
Section		Reo - (old Section)		
Floors- Timber	25mm timber	Polished Timber floor - Glue Down	63.7	m^2
Floorboards				
Floors- front	concrete	Concrete Floor, 100mm slab. 40MPa. 3.8%	16.4	m^2
veranda		Reo- front veranda		
PV	Panel/ inverter/	Solar PV System - Zone 3 (Perth)	1.5 kW	
	installation			
Doors- External	Timber	Door, Solid Core and Wooden Jam (Entry)	10	
Door- glass	glass sliding timber	Door, Solid timber frame glazing and Steel	9.6	6
	frame	Jam (Entry)		
Windows	timber frame sash	Windows, Residential Timber frame, Single	9.78	m^2
	windows	Glaze, fly screen		
Kitchen cabinet	laminated board for	kitchen cabinetry Medium	1	
	cupboards, shelves,			
	drawers			
Laundry	Steel basin	Standard Laundary sink (Steel) + Services	1	
Main Bathroom	Bath/ Vanity/	Standard Large Bathroom - WC/Bath-	1	
	shower/toilet	Shower/Basin*2/WallTiles		
Lighting- CFL	100% of the building	Lighting Residential LED High Natural Light	511	
Electrical		Site Power and Electrical Connection -		
Connection		Residential		
Water		Plumbing, Water and Sewerage Connection,		
Connection				
gas connection		Gas Connection (single dwelling)		
HWS	HWS - solar w electric booster	HWS - Solar Thermal + Electric Boost (240L)	1	
Rainwater tank	2500L	2,500L Rainwater tank and Pump for	2500L	
		Residence (Above Ground)		
outdoor Pavers	Concrete Pavers	Paving, concrete pavers (floors)	54	
Outdoor	Brick Driveway	Landscaping - Paving (brick)	73	
Driveway				
Garage Door	Steel	garage door by area	9.5	m^2
Garage Door	Steel	garage door by area	6.6	m^2
Limestone	limestone 250mm	Limestone Wall, 250mm thick,	11	m^2
Garden Wall				
Demolition		Standard residential demolition		
As-Built				
Water use		Average Water Use and Treatment, AUS, WA(no Pool)		
Appliances	Entertainment,	Appliances, Residential Average (AUS)		
	Laundry,	Op&Em		
	Dishwasher			
Refrigeration	Fridge/ freezer	Refrigeration, Residential Detailed (AUS)		
Cooking		Opacing Bos Cas Stave Electric Oven On&Em		
COOKINg		Cooking, hes das slove Electric Oven Op&Elli		
Additional	Energy/Water/Gas	Ftool Assumption (template)	Assumptions	
appliances			Assumptions	
	Gas Stove	Cooking, Res Gas Stove Electric Oven On&Em	1	
	Electric Oven	Cooking, Res Gas Stove Electric Oven Op&Em	1	
	Fridge	Refrigeration, Residential Detailed (AUS) Fm		
	Dishwasher	Dishwasher Em		
	Washing machine	Clothes washer Em		

Table 12: House F,	assume 6 star e	quivalent NatHERS	thermal rating	39 MJ/m^2

	m^2	Comments		
Overall Area	519	Taken from google sketchup drawing (block		
		Size)		
Internal Floor	165.9	Taken from sketchup (different levels of		
area		ground floor)		
total internal		heating&cooling load		
unenclosed	38.9			
covered area				
Concrete Pad	184.5	100mm slab on compacted fill		
ground				
Roof Area_new	137	tin area		
custom orb				
Roof Area_red	76.4	old section of house		
zincalume				
Root	17.7	old section of house		
Area_verandah,				
red zincalume				
Ceiling Area	188	under roof		
Wall_Internal	91.5	Calculated from sketchup model (internal		
timber stud	74	walls not attached to outside)		
Wall_Internal	/4			
Wall_Brick	84.3	(external walls including double layer)		
External	107			
Wall_Cladding	107	with bulk insulation		
External	25			
Windows-	25	Windows and glass doors all single glazed		
Glazed Areas	12.0	(aluminium Frame)		
Door- Glazed	12.8	2		
Door External	3.4	2		
Door Internal	17.2			
Floor-Tiles	19.12	Bathroom/ toilet/ Laundry		
Floor- Timber	146.8	stairs and front room		
Floorboards	47.5			
timber front	17.5			
veranda	24.4			
timber back deck	21.4	not built yet		
Internal Paint		selection including all internal walls from		
Futernal Daint		sketchup		
External Paint				
Lighting	0			
Mechanical	0			
Thormal	20141/m42			
Domond	391017111-2			
Demand Lighting Rup	720brc/4	1 Abre por day		
	730Hrs/y	1.4ms per day		
	150	min huilding codo		
		Hill building code		
PV	1.5 KVV	(Perth)		
Smoke Detector	2	fire service smoke detector		
Exhaust Fan	3	Exhaust extraction fan, steel		
ceiling fan	5	HVAC Residential Ceiling Fans	1	
HWS	1	Solar with gas booster		
RW tank	2500L	with pump	1	
Fireplace		HVAC Residential Wood Heater. Slow	1	
		Combustion		
			1	
Etool Material Inputs &				

assumptions				
Element	Structure	eTool Assumptions	Measureme nt	units
Roof Area_new	Timber Truss	Roof -	137	m^2 (pitch
custom orb		TimberTruss/SteelSheeting/5°Pitch/RakingCei		accounted
		ling		for)
Roof Area_red	Timber Truss	Roof - TimberTruss/SteelSheeting/25°Pitch	76.4	
zincalume 25deg				
Roof	Timber Truss	Roof - TimberTruss/Steel/10°Pitch/noCeiling	17.7	
Area_verandah,				
red zincalume				
Ceiling	Plaster	Ceiling - Plasterboard+paint	188	m^2
Wall_Cladding	timber stud 140	140mm Timber stud Wall with FC Exterior,	107	
External		and PB and paint interior		
Wall_Internal	timber stud 90	Timber Stud Internal Wall -	91.5	
timber stud		Plasterboard/Paint both sides (Rockwool bulk		
		ins)		
Wall_Brick	Brick 230mm	Double Brick Cavity Wall (90-50-90) render	84.3	m^2
External		ext plaster int		
Wall_Internal	90 brickwork	Single Brick Wall (90mm) - plaster & paint	74	m^2
brick	(single Brick)	interior		
Floor- Concrete	100mm slab,	Concrete Floor, 100mm slab, 40MPa. 3.8%reo	184.5	m^2
Pad	40MPa. 3.8%reo			
Floor-Tiles	Tiles	Floor Covering - Tiles (ceramic/5mm)	19.12	m^2
Floors- Timber	Timber 25mm	Polished Timber floor - Glue Down	146.8	m^2
Floors- front	Timber decking	Floor, wooden decking, elevated on steel	17.5	m^2
deck		anchors		
PV	Panel/ inverter/	Solar PV System - Zone 3 (Perth)	1.5 kW	
	installation			
Doors- External	Timber	Door, Solid Core and Wooden Jam (Entry)	3.4	2
Doors- Internal	Timber	Door, Solid Core and Wooden Jam (Entry)	17.2	10
Door- sliding	glass sliding	Door, Residential Timber Alu Hybrid frame,	12.8	2
147	timber frame	Single Glaze, with hardware	25	
windows	timber frame	Class fly server	25	m^2
Kitchon ophingt	lominated board	kitchon cobinetry Medium	1	
KILCHEIT CADIFIEL	for supports	Ritchen cabinetry Medium	T	
	shelves drawers			
Laundry	Steel hasin/linen	Standard Laundry sink (Steel) + Services	1	
Launary	cupboard	Standard Edunary Sink (Steel) + Services	-	
Ensuit	shower, toilet.	Standard 1st Bathroom - WC/Shower-		
	vanity basin	bath/Basin/WallTiles		
Main Bathroom	Bath/Vanity/	Standard Large Bathroom - WC/Bath-	1	
	shower/ toilet	Shower/Basin*2/WallTiles		
Lighting- LED	90% of building	Lighting Residential LED High Natural Light	511	
Lighting-	10% of building	Lighting Res 12V Halogen High Natural	511	
Halogen				
Electrical		Site Power and Electrical Connection -		
Connection		Residential		
Water		Plumbing, Water and Sewerage Connection,		
Connection		Residential		
gas connection		Gas Connection (single dwelling)		
HWS	HWS - solar w	HWS - Solar Thermal + Gas Boost (240L) +	1	
	electric booster	Low Flow Showerheads	05001	
Rainwater tank	2500L	Rainwater Lank (Polyethylene)	2500L	
electric pump	віапсо Pumps	Electric Pump	U.8KW	
HVAC	split system air	HVAC - Air Source Heat Pump (single split	hardly used	
	cond	high efficiency: COP/EER 4.4)		
		<u> </u>		
As-Built				

Table 13: House G, assume 7 star NatHERS thermal rating 29MJ/m^2

	m^2	Comments	
Overall Area	385.8	Taken from google sketchup drawing (block Size)	
Internal Floor area_ground floor	130.3	Taken from sketchup (different levels of ground floor)	
Internal Floor area_second floor	39.9		
total internal floor area	170.2	heating&cooling load	
Unenclosed covered area total	63		
Balcony	8.4		
Veranda	19		
Concrete Pad ground floor100 mm	152.4	100mm slab on compacted fill	
Concrete Pad ground floor 200mm	28		
second storey floor	48.3		
Roof Area_total	206.5	tin area	
Roof area_Horizontal	200		
Ceiling Area_ground floor	175.36	under roof	
Ceiling Area_ second floor	57.8		
Wall_ Internal 50mm	69.6	Calculated from sketchup model (internal walls not attached to outside)	
Wall_Internal 90mm	64.3		
Wall_ double V	24.6		
Wall_ metal cladding_90mm (foil sissalation)	76.9	(external walls including double layer)	
Wall_metal cladding_140mm	124.2	with bulk insulation	

Wall_rammed Earth	186			
Driveway section	82.9	concrete		
walkway section	24.6			
Glazing_Windows	16.64	Windows and glass doors all single glazed (aluminium Frame)		
Glazing_Sliding Doors	39			
Door internal	12.8	6		
 Door External	11.5	1		
Door sliding	8.6	4		
Floor- Concrete	146.8	stairs and front room		
Back deck	44			
Washed Concrete	19			
Concrete Stairs		height = 2.7m		
Internal Paint		selection including all internal walls from sketchup		
External Paint				
Lighting		LED		
Mechanical Ventilation	0	N/A		
Thermal Demand	39MJ/m^2			
Lighting Run time	730hrs/y	1.4hrs per day		
Lux	150	min building code		
PV	2 kW	used template (Solar PV System - zone 3 (Perth)		
Smoke Detector	2	fire service smoke detector		
Exhaust Fan	3	Exhaust extraction fan, steel		
HWS	1	instant gas		
RW tank	3500L	with pump		
Etool Material Inputs & assumptions				
Element	Structure	Etool Assumption (template)	Measurement	units
Roof Area_new custom orb	Timber Truss ()	Roof - TimberTruss/Steel/5°Pitc h/noCeiling	200	m^2 (pitch accou nted for)
Ceiling _Roof section	Plaster	Ceiling Lining - Plasterboard (12mm)	175.36	m^2
Insulation_roof	Rockwool R-2.5	Bulk Insulation - 100mm Rockwool (R2.8)	175.36	
Ceiling _under second story	Plaster	Ceiling Lining - Plasterboard (12mm)	57.8	
Wall_Internal 50mm	50mm compressed fibre cement	CFC Panel cementitious core 50mm	69.6	
Wall_ Internal 90mm	timber stud 90 plasterboard	Timber Stud Internal Wall - Plasterboard/Paint both sides (Rockwool bulk ins)	64.3	
Wall_ double V	2x 50 mm compressed fibre cement	CFC Panel cementitious core 50mm x 2	24.6	

Wall metal	skylight walls (plasterboard,	90mm Timber stud Wall	76.9	m^2
cladding 90mm (foil	bulk insulation, timber baton	with 10mm PB interior,		
sissalation)	and metal sheeting+foil	and metal cladding		
,	sissalation	exterior		
Wall metal	90mm timber stud with bulk	140mm Timber stud Wall	124.2	
cladding 140mm	insulation, with metal cladding +	with 50mm FC interior.		
0.000.000	50 mm compressed fibre	and metal cladding		
	coment	exterior		
Wall rammed Earth		200mm Pammod Earth	196	
		Wall (In situ Earth)	100	
Eloor- Concrete Pad	100mm slab 40MPa 3.8%reo	Concrete Floor 100mm	152.4	m^2
		slab 40MPa 3.8%reo	102.1	2
Eleon thickened	225mm dah 40MBa 2%	Concrete Eleor 225mm	20	
concrete	Poinforcomont		20	
concrete	Reinforcement	SIDD. 40IVIPA. 2%		
		Nell Lining Commenced	40.0	
Floor_Second storey slab	Summ compressed fibre cement	Wall Lining - Compressed	48.3	
(fibre cement)	for timber to glue to	Fibre cement board		
		(50mm)		
Floors- Timber	Timber 25mm upstairs	Polished Timber floor -	57.8	m^2
		Glue Down		
Floors- Rubber	wet areas	Vinyl (PVC) "lino" Flooring	14.17	
Floors-deck	Timber decking back deck	Floor, wooden decking,	44	m^2
		elevated on steel anchors		
Concrete walkway	washed concrete	Concrete Floor 100mm	24.6	
concrete waiting,	Washed concrete	slab 25MPa 3.8% Reo	2	
Concrete Driveway	washed concrete	Concrete Floor 100mm	82.9	
concrete briveway	washed concrete	slab 25MPa 3.8% Reo	02.5	
Concroto natio	washed concrete	Concrete Electr 100mm	10	
concrete patio	washed concrete	concrete Floor, toomin	19	
DV/	Papel/invertor/installation	Solar DV System Zono 2	2 1/1/	
FV		(Dorth)	ZKVV	
Deers External	Timbor	(Perui)	1.0	1
Doors- External	Timber	Low (Entry)	1.9	T
Deere laternel	Tinchen	Jaili (Elitry)	11	-
Doors- Internal	Timber	Door, Hollow Core and	11	5
Deers allalian	de en el el terre	Steel Jam	42.0	4
Door- sliding	door sliding	Door, commercial sliding	12.8	4
		with hardware		
Glazing_sliding door	glass sliding timber frame	Door, commercial sliding	39	
		glass with hardware		
Windows _windows	aluminium frame	Windows, Residential	16.64	m^2
		Aluminium Single Glaze,		
		fly screen		
Kitchen cabinet	laminated board for cupboards,	kitchen cabinetry	1	
	shelves, drawers	Medium		
Laundry	Steel basin/ linen cupboard	Standard Laundry sink	1	
		(Steel) + Services		
Ensuite	shower, toilet, vanity basin	Standard 1st Bathroom -	1	
		WC/Shower-		
		bath/Basin/WallTiles		
Main Bathroom	shower, toilet, vanity basin	Standard 1st Bathroom -	1	
		WC/Shower-		
		bath/Basin/WallTiles		
Lighting- LED	80% of building	Lighting Residential LED	511	
	U U U	High Natural Light		
Lighting- Halogen	20% of building	Lighting Res 12V Halogen	511	
		High Natural		
Staircase	timber staircase	Staircase Timber	2.7m high	
			/.ingii	_
Electrical Connection		Site Power and Electrical		
		Connection - Residential		
Water Connection		Plumbing, Water and		
		Sewerage Connection,		

		Residential		
gas connection		Gas Connection (single dwelling)		
HWS	instant gas	HWS - Gas Instantaneous	1	
Rainwater tank&pump	3500L	3,500L Rainwater tank and Pump for Residence (Above Ground)	3500L	
Steel Gate		Painted Galvanised Steel Fence	2.68	
Fence		Painted Galvanised Steel Fence	7	
Gabion Wall		Gabion Wall (150x1000x500)-recycled rubble+concrete capping	2	
garage door		Garage Door (by area)	12.35	
HVAC	split system air cond	HVAC - Air Source Heat Pump (single split, high efficiency: COP/EER 4.4)	3	
As-Built				
Water use		Average Water Use & Treatment WA/AUS (no garden)		
Appliances	Entertainment, Laundry, Dishwasher	Appliances, Residential Average (AUS) Op&Em		
Refrigeration	Fridge/ freezer	Refrigeration, Residential Detailed (AUS) Op&Em		
Cooking		Cooking, Res Gas Stove Electric Oven Op&Em		
Additional appliances	Energy/Water/Gas	Etool Assumption (template)	Assumptions	
	Gas Stove	Cooking, Res Gas Stove Electric Oven Op&Em		
	Electric Oven	Cooking, Res Gas Stove Electric Oven Op&Em		
	Fridge	Refrigeration, Residential Detailed (AUS) Em		
	Dishwasher	Dishwasher Em		
	Washing machine	Clothes washer Em		

Table 14: House H, 8 star NatHERS thermal rating20 MJ/m^2

	m^2	Comments	
Overall	741	Taken from google sketchup drawing	
Area			
Internal	129.5	Taken from google sketchup drawing	
Floor area_			
ground			
Internal	75	Taken from google sketchup drawing	
Floor area_			
floor 1			
outdoor	30		
patio			
Total	234.5		
usable			
Concrete	143	Taken from google sketchup drawing	
Pad area_			

House			
Concrete	60	Taken from google sketchup drawing	
Pad area_			
Shed			
Concrete_	248	Taken from google sketchup drawing	
Back Patio	30	Taken from google sketchun drawing	
Concrete	50		
Roof Area	148.5	102 curved + 46.5 flat sheets	
custom Orb			
Roof Area_	77	Taken from sketchup	
Kliplok			
Roof Area_	30	Taken from sketchup	
Back Patio	06	Takan from skatshun	
floor 1	90		
Area			
Ceiling_	144	Taken from sketchup	
ground			
floor Area			
Eaves	16.35	Taken from sketchup	
Wall_	163	Calculated from sketchup model (internal walls not	
Internal		attached to outside)	
Area (90)	196	(ovtornal walk including double layor)	
External	180	(external wais including double layer)	
Area (230)			
Wall_	44		
External			
Area (140)			
Wall_ Rammed	52.5		
Earth			
Wall_Shed	55		
Roof_ Shed	81.1		
Windows-	40	Windows and glass doors all single glazed (aluminium	
Glazed	-	Frame) with louvres	
Areas			
Door-	18	living	
Glazed	14.2	1	
Dool- siled	14.2	1.	
shed	3.5	2X	
Door	18	6x top, 6x bottom	
Internal			
Door	4	2x	
external	204 5	for a plane	
	204.5		
Floor-	124.5	Laundry, Bathrooms and toilets	
Floor-	80	Bedrooms, 54 upper, 26 lower	
Carpet			
Internal	390	selection including all internal walls from sketchup	
Paint	100		
External Baint	126		
Lighting	18x 9W I FD	I FD lighting	
0	Globes		
Mechanical	0		
Ventilation			

Lighting Bun time	730hrs/y	2hrs per day		
Lux	150	min building code		
PV	2 kW	used template (Solar PV System - zone 3 (Perth)		
Smoke Detector	2	fire service smoke detector		
Exhaust Fan	5	Exhaust extraction fan, steel		
Rainwater Tank	6000L	+ Pump, UV filter,		
Novagrey wastewater system	1	Grey Water System (plastic)		
tanks	2	Rainwater Tank in ground - Concrete		
Ceiling Fans	8	HVAC Residential Ceiling Fans		
Open Fireplace	1	HVAC Residential Wood Heater, Open Fireplace		
Etool Material Inputs & assumption s	Structure	Etcol Accumution (formulate)	Massura	
Liement	Structure	etoor Assumption (template)	nt	units
Roof_ Kliplock	kliplock 1 degree pitch Timber Truss	Roof - TimberTruss/SteelSheeting/5°Pitch/RakingCeiling	77	m^2 (pitch accounte d for)
Curved custom orb Section	Roof	Roof - TimberTruss/SteelSheeting/10°Pitch/RakingCeiling/Ins ulation	47	m^2
Curved custom orb Section (inner)	Timber Frame Wall	Custom Orb interior Wall	28	m^2
Curved custom orb Section (outer)	Steel Frame Wall	Custom orb Exterior Steel wall with insulation	54	m^2
flat Custom Orb Section	Timber truss	Roof - TimberTruss/SteelSheeting/10°Pitch/RakingCeiling/Ins ulation	46.5	m^2
front wall	Timber Stud (600mm centres) 140mm	140mm Timber stud Wall with FC Exterior, and PB and paint interior	13.5	m^2
External Walls	230 cavity rendered brickwork (double brick)	Double Brick Cavity Wall (90-50-90) render ext plaster int	186	m^2
Rammed Earth	Rammed Earth 300mm	300mm Rammed Earth Wall (In situ Earth)	52.5	m^2
Internal Walls_Brick area	90 brickwork (single Brick)	Single Brick Wall (90mm) - plaster & paint interior with 2x plaster	163	m^2
Internal Walls_Plast er		11	326	m^2
Interior wall-Paint (Excl ext	Paint 3 coats	Internal Finish - Paint Standard	326	m^2

wall				
Floor- Concrete Pad	100mm slab, 40MPa. 3.8%reo	Concrete Floor, 100mm slab, 40MPa. 3.8%reo	143	m^2
Floor- Upstairs	concrete	Floor, 170mm elevated slab, insul, steel sheeting formwork	75	m^2
Floors- Laundry, Bathrooms and toilets	polished Concrete	coloured Epoxy Concrete floor Coating	124.5	m^2
Floors- Bedrooms, Office & Theatre	Carpet over Concrete Slab	Floor Covering - Carpet (glue down/Nylon)	80	m^2
Floors- Concrete exposed aggregate driveway	Concrete- Painted	Concrete Floor, 100mm slab. 40MPa. 3.8% Reo	248	m^2
PV	Panel/ inverter/ installation	Solar PV System - Zone 3 (Perth)	2 kW	
Doors- Internal	timber- hollow	Door, Hollow core and Steel Jam	18	6x top, 6x bottom
Doors- External	Timber	Door, Solid Core and Steel Jam (Entry)	4	2x
Door- Glazed	glass sliding	Door, commercial sliding glass with hardware	18	living
Windows	Aluminium Frame	Windows single glazed aluminium frame individual components	40	m^2
Louvres	aluminium	Louvre aluminium screen (by area)	9.5	m^2
Kitchen cabinet	laminated board for cupboards, shelves, drawers	kitchen cabinetry Medium	1	
Laundry	Steel basin/ linen cupboard	Standard Laundry sink (Steel) + Services	1	
Main Bathroom	Bath/ Vanity/ shower, linen Cupboard	Bathroom - Shower/bath/ VB	1	
Ensuite	toilet/ Vanity/ shower	Standard 1st Bathroom - WC/shower/sink/wallTiles	1	
Powder room	toilet/ basin	PDR	2	
Lighting- Hardware	LED	Lighting Residential LED High Natural Light	1	building
Lighting- Operational energy	LED	Lighting Residential LED High Natural Light	1	
HWS	Solar w gas	HWS- Solar Thermal +gas boost (240L)+ Low Flow	1	
	booster	shower heads		
Rainwater tank	3000L tank	Rainwater tank Polyethylene	3000L	2x
Rainwater Pump	motor	Electric Pump	0.8 kWh	services Equipme nt
Stairs	Concrete	Staircase, Concrete (40Mpa, 2% reo)	2.5	m high
Stairs	Timber	Floor Covering - 25mm recycled timber (nail down)	6	m^2
Gas connection		Gas Connection (single dwelling)		

Water		Plumbing, Water and Sewerage Connection,	
&sewer		Residential	
connection			
Electrical		Site Power and Electrical Connection - Residential	
Connection			
As Built			
Water use	Average household water use	Average Water Use and Treatment, AUS, WA	
Appliances	Entertainment, Laundry, Dishwasher	Appliances, Residential Average (AUS) Op&Em	
Refrigeratio n	Fridge/Freezer	Refrigeration, Residential Detailed (AUS) Op&Em	
Cooking	gas stove, electric oven	Cooking, Res Gas Stove Electric Oven Op&Em	
Additional	Energy/Water/G	Etool Assumption (template)	
appliances	as		
	Hotplate	Cooking, Res Gas Stove Electric Oven Op&Em	
	oven	Cooking, Res Gas Stove Electric Oven Op&Em	
	Fridge	Refrigeration, Residential Detailed (AUS) Em	
	Dishwasher	Clothes washer Em	
	Washing machine	Dishwasher Em	

Table 15 House L, 6 stars NatHERS thermal rating 39 MJ/m^2

	m^2	Comments
Overall Area	345	Taken from google sketchup drawing
Internal Floor	263.5	Taken from sketchup (inc top floor)
area		
usable Floor	293.5	
area		
required	223.5	cooling load
cooling		
Base Concrete	147.5	Including garage
Pad area		
Raised	116	top floor
Concrete Pad		
Alfresco (brick	30	Taken from sketchup
Pavers)		
Other Brick	36	Taken from sketchup
Paved Areas		
Roof Area	196	tin area
Horizontal	160	Taken from sketchup
Roof Area		
Top Floor	120	Taken from sketchup
Ceiling Area		
Ground Floor	116	not including garage
Ceiling Area		
Patio	31	
Internal Wall	180	Calculated from sketch up model (internal
Area		walls not attached to outside)
External Wall	158	(external walls including double layer)
Area		

Windows-	43.6	Windows and glass doors all single glazed		
Glazed Areas		(aluminium Frame)		
Door- Glazed	8.6	laundry, patio		
Door- Glazed	1.75	1x		
Door- Garage	16	1x 5m2 + 1 x 11m2		
Door External	1.75	1x		
Door	1.75			
Aluminium				
Door Internal	25	15x		
Floor- Total	263.5	from plans		
Floor-Tiles	31.5	Laundry, Bathrooms and toilets		
Floor- Timber	76	Living Room & Hallways		
Floorboards	70	Deducerne Office & Theetre		
Floor-Carpet	72	Bedrooms, Office & Theatre		
Floor- Paint	39.317	garage		
Stairs				
Internal Paint	390	selection including all internal walls from sketch up		
External Paint	126.01			
Lighting		from plans		
Mechanical Ventilation	0			
Thermal Demand	100MJ/m^2			
Lighting Run time	730hrs/y	2hrs per day		
Lux	150	min building code		
Smoke Detector	2	fire service smoke detector		
Exhaust Fan	5	Exhaust extraction fan, plastic		
Etool Material Inputs & assumptions				
Element	Structure	Etool Assumption (template)	Measuremen t	units
Roof	Timber Truss (25° pitch)	Roof - TimberTruss/SteelSheeting/25°Pitch	160	m^2 (pitch accounte d for)
Ceiling under roofing	Plaster	Roof - TimberTruss/SteelSheeting/25°Pitch	160	m^2
Ceiling on ground floor	Plaster	Ceiling Lining - Plasterboard (12mm)	116	
External Walls	230 cavity rendered brickwork (double brick)	Double Brick Cavity Wall (90-50-90) render ext plaster int	158	m^2
Internal Walls_Brick area	90 brickwork (single Brick)	Single Brick Wall (90mm) - plaster & paint interior	180	m^2
exterior Walls 190	"	masonry Wall	23	m^2
Floor- Concrete Pad	100mm slab, 40MPa. 3.8%reo	Concrete Floor, 100mm slab, 40MPa. 3.8%reo	147.5	m^2

Ground Floor				
Floor- Concrete Pad first floor	250mm elevated slab. 40MPa. 4% Reo	Concrete Floor, 250mm elevated slab. 40MPa. 4% Reo	116	m^2
Floors- Laundry, Bathrooms and toilets	Tiles over Concrete Slab	Floor Covering - Tiles (ceramic/5mm)	31.5	m^2
Floors- Living Room & Hallways	Timber over Concrete Slab	Polished Timber Floor, Glue Down, Acoustic Ins	76	m^2
Floors- Bedrooms, Office & Theatre	Carpet over Concrete Slab	Floor Covering - Carpet (glue down/Nylon)	72	m^2
Floors- Garage	Concrete-Painted	coloured Epoxy Concrete floor Coating	39.317	m^2
Floors- alfresco	concrete Paving	Paving, 50mm brick	30	m^2
Paving_outdoo r	50mm brick	Paving, 50mm brick	36	m^2
Patio	steel roof, timber supports	Pergola (timber) - covered	31	m^2
Doors- Internal	timber- hollow	Door, Hollow core and Steel Jam	25	15x
Doors- External	Timber	Door, Solid Core and Steel Jam (Entry)	1.75	1
Door- Glazed Sliding	glass sliding	Door, commercial sliding glass with hardware	8.6	2x laundry, patio
Door- Glazed swinging	1.75	Door, Solid Core and Steel Jam (Entry)	1.75	front door
Door- Garage (patio)		Garage Door (by area)	5	
Door- Garage	Steel	Garage Door (by Area)	11	
Door _ Glass Aluminium	1.75		1.75	
Windows	Aluminium Frame	Windows single glazed aluminium frame individual components	43.6	m^2
Kitchen cabinet	laminated board for cupboards, shelves, drawers	kitchen cabinetry Medium	1	
Laundry	Steel basin/ linen cupboard	Standard Laundry sink (Steel) + Services	1	
Main Bathroom	Bath/ Vanity/ shower	Bathroom - Shower/bath/ VB	1	
WC	toilet + pipework	WC	1	
Ensuite	Vanity/ shower/ WC	Standard 1st Bathroom - WC/shower/sink/wallTiles	1	
Powder room	toilet/ basin	PDR	1	
Lighting-	12 V 40W halogen	Lighting Res 12V Halogen High Natural Light	1/2 Building	
Halogen	downlights		1/2 6.000	
Lighting- CFL	LED	Lighting Residential CFL High Natural Light	1/2 building	
HWS	Solar w electric Booster	HWS - Solar Thermal + Electric Boost (240L with Internal Switch)	1	
HVAC Evaporative Air Conditioner		HVAC Residential Evaporative Cooler	1	
Electrical Connection		Site Power and Electrical Connection - Residential		
Water Connection		Plumbing, Water and Sewerage Connection, Residential		
Gas		Gas Connection (single dwelling)		
-----------------	----------------------	--	--	
Connection				
gas heater		HVAC Residential Gas Heater, Flue, High		
		Efficiency (75%)		
As-built				
Water use	Average household	Average Water Use and Treatment, AUS,		
	water use	WA		
Appliances	Entertainment,	Appliances, Residential Average (AUS)		
	Laundry, Dishwasher	Op&Em		
Refrigeration	Fridge/Freezer	Refrigeration, Residential Detailed (AUS)		
		Op&Em		
Cooking	induction stove,	Cooking, Res Electric Oven Induction Stove		
	electric oven	Op&Em		
Additional	Energy/Water/Gas	Etool Assumption (template)		
appliances				
Air Conditioner				
	Hotplate	Cooking, Res Gas Stove Electric Oven		
		Op&Em		
	Electric Oven	Cooking, Res Gas Stove Electric Oven		
		Op&Em		
	Fridge	Refrigeration, Residential Detailed (AUS)		
		Em		
	Dishwasher	Dishwasher Em		
	Washing machine	Clothes washer Em		
	Dryer	Clothes Dryer Em		
	Entertainment/TV/Mis			
	С			

Table 16: House M: Assume 6 Star Equivalence NatHERS thermal rating 39MJ/m^2

	m^2	Comments	
Overall Area	345	Taken from Plans	
Usable Internal Floor area	166.8	Taken from Plans	
unenclosed covered area	9.5		
total usable floor area	176.3		
Concrete Pad area	184.6	Including garage	
Alfresco	9.46	Taken from Plans	
Roof Area	233.18	Taken from Plans	
Ceiling Area	211.81	Taken from Plans	
Internal Wall Area	130.23	Calculated from sketchup model (internal walls not attached to outside)	
External Wall Area	134.73	(external walls including double layer)	
Windows- Glazed Areas	36.9	Windows and glass doors all single glazed (aluminium Frame)	
Door- Glazed	3.51	2x	

Door- Garage	10.74	1x	
Door External	6.05	3x	
Door Internal	30	14x	
Floor- Total	166.8	from plans	
Floor-Tiles	19.88	Laundry, Bathrooms and toilets	
Floor- Timber Floorboards	50	Living Room & Hallways	
Floor-Carpet	62	Bedrooms, Office & Theatre	
Floor- Paint	36.5	garage	
Internal Paint	360.5	selection including all internal walls from sketchup	
External Paint	134.73		
Lighting	130	from plans	
Mechanical Ventilation	0		
Thermal Demand	39 MJ/m^2	star band rating	
Lighting Run time	730hrs/y	2hrs per day	
Lux	150	min building code	
PV	2.5 kW	used template (Solar PV System - zone 3 (Perth)	
Etool Material Inputs & assumptions			
Element	Structure	Etool Assumption (template)	Measurement
Roof	Timber Truss (25° pitch)	Roof - TimberTruss/SteelSheeting/25°Pitc h	211.81m^2 (pitch accounted for)
Ceiling	Plaster	Roof - TimberTruss/SteelSheeting/25°Pitc h	211.81m^2
External Walls	230 cavity rendered brickwork (double brick)	Double Brick Cavity Wall (90-50-90) render ext plaster int	134.73 m^2
Internal Walls	90 brickwork (single Brick)	Single Brick Wall (90mm) - plaster & paint interior / Edited No Paint included	128 m^2 Brick Area 256 m^2 plaster &paint Area
Interior wall-Paint	Paint 3 coats	Internal Finish - Paint Standard	256.46 m^2
Floor- Concrete Pad	100mm slab, 40MPa. 3.8%reo	Concrete Floor, 100mm slab, 40MPa. 3.8%reo	184.6 m^2
Floors- Laundry, Bathrooms and toilets	Tiles over Concrete Slab	Floor Covering - Tiles (ceramic/5mm)	19.88 m^2
Floors- Living Room & Hallways	Timber over Concrete Slab	Polished Timber Floor, Glue Down, Acoustic Ins	53 m^2
Floors- Bedrooms, Office & Theatre	Carpet over Concrete Slab	Floor Covering - Carpet (glue down/Nylon)	53 m^2
Floors- Garage	Concrete-Painted	coloured Epoxy Concrete floor Coating	53 m^2
PV	Panel/ inverter/ installation	Solar PV System - Zone 3 (Perth)	2.5kW
Doors- Internal	timber- hollow	Door, Hollow core and Steel Jam	30 m^2
Door- Garage	Steal	Garage Door (by Area)	10.74 m^2
Doors- External	Timber	Door, Solid Core and Steel Jam (Entry)	6 m^2
Door- Patio	Wood/glass	Door, Solid Timber Frame + Glazing and Steel	3.51 m^2

Windows	Aluminium Frame	Windows single glazed aluminium	36.9 m^2
Kitchen cabinet	laminated board for	kitchen cabinetry Medium	1
Laundry	Steel basin/ linen cupboard	Standard Laundry sink (Steel) + Services	1
Main Bathroom	Bath/ Vanity/ shower	Bathroom - Shower/bath/ VB	1
WC	toilet + pipework	WC	1
Ensuite	Bath/ Vanity/ shower	Bathroom - Shower/bath/ VB	1
PDR	toilet/ basin	PDR	1
HWS	Solar w gas booster	HWS- Solar Thermal +gas boost (240L)+ Low Flow shower heads	
Rainwater tank	Steel Corrugated 3700L tank	Rainwater tank Polyethylene	3700L
Air Conditioner	Ducted Reverse Cycle	Ducting , flexible Aluminium, 250mm OD for HVAC	
Electrical Connection		Site Power and Electrical	
		Connection - Residential	
Water Connection		Plumbing, Water and Sewerage Connection, Residential	
Gas Connection		Gas Connection (single dwelling)	
Lighting	Halogen 90%	Lighting Res 12V Halogen High Natural	
Lighting	CFL 10%	Lighting Residential CFL High Natural Light	
As Built			
Water use		Average Water Use and Treatment, AUS, WA	
Appliances	Entertainment, Laundry, Dishwasher	Appliances, Residential Average (AUS) Op&Em	
Refrigeration	Fridge/ freezer	Refrigeration, Residential Detailed (AUS) Op&Em	
Cooking		Cooking, Res Gas Stove Electric Oven Op&Em	
Actual appliances			
Additional appliances	Energy/Water/Gas	Etool Assumption (template)	
	R/hood	Exhaust Extraction Fan, Steel	
	Gas Hotplate	Cooking, Res Gas Stove Electric Oven Op&Em	
	Electric oven	Cooking, Res Gas Stove Electric Oven Op&Em	
	Fridge	Refrigeration, Residential Detailed (AUS) Em	
	Washing Machine	Clothes washer Em	
	Dishwasher	Dishwasher Em	
	Average high efficiency tv and computer Appliances	Appliances, High Efficiency (AUS) - Op&Em	

Table 17: House O, 6 stars NatHERS thermal rating 39 MJ/m^2

	m^2	Comments	
Overall Area	345	Taken from google sketchup drawing	
Internal Floor	188	Taken from sketchup	

area				
Concrete Pad area	221	Including garage		
Alfresco (timber	17.12	Taken from Plans		
Roof Area	264	tin area		
Ceiling Area	190	Taken from sketchup		
Eaves	16.35	Taken from sketchup		
Internal Wall	154	Calculated from sketchup model		
Area		(internal walls not attached to outside)		
External Wall Area	126.01	(external walls including double layer)		
Windows-	23.53	Windows and glass doors all single		
Glazed Areas	17.24	glazed (aluminium Frame)		
Door- Glazed	17.24	study and laundry (5 total)		
Door- Garage	11.14	1x		
Door External	3.507	2x		
Door Internal	14.2	9x		
Floor- Total	131	from plans		
Floor-Tiles	17.82	Laundry, Bathrooms and toilets		
Floor- Timber Floorboards	67.8	Living Room & Hallways		
Floor-Carpet	48.74	Bedrooms, Office & Theatre		
Floor- Paint	39.317	garage		
timber front deck	10			
Internal Paint	390	selection including all internal walls from sketchup		
External Paint	126.01			
Lighting				
Mechanical Ventilation	0			
Thermal Demand	39MJ/m^2			
Lighting Run time	730hrs/y	2hrs per day		
Lux	150	min building code		
PV	1.5 kW	used template (Solar PV System - zone 3 (Perth)		
Smoke Detector	2	fire service smoke detector		
Exhaust Fan	4	Exhaust extraction fan, steel		
Swimming Pool	8.68	m^3 + Pump		
Rainwater Tank		+ Pump		
Etool Material				
assumptions				
Element	Structure	Etool Assumption (template)	Measurement	units
Roof	Timber Truss (25° pitch)	Roof - TimberTruss/SteelSheeting/25°Pitc	221	m^2 (pitch accounted for)
		h		,
Ceiling	Plaster	Roof - TimberTruss/SteelSheeting/25°Pitc	190	m^2

		h		
External Walls	230 cavity rendered brickwork (double brick)	Double Brick Cavity Wall (90-50-90) render ext plaster int	126.01	m^2
Internal Walls_Brick area	90 brickwork (single Brick)	Single Brick Wall (90mm) - plaster & paint interior / Edited No Paint included	154	m^2
Internal Walls Plaster	11	n	308	m^2
Interior wall- Paint (Excl ext wall	Paint 3 coats	Internal Finish - Paint Standard	308	m^2
Floor- Concrete Pad	100mm slab, 40MPa. 3.8%reo	Concrete Floor, 100mm slab, 40MPa. 3.8%reo	221	m^2
Floors- Laundry, Bathrooms and toilets	Tiles over Concrete Slab	Floor Covering - Tiles (ceramic/5mm)	17.82	m^2
Floors- Living Room & Halways	Timber over Concrete Slab	Polished Timber Floor, Glue Down, Acoustic Ins	67.8	m^2
Floors- Bedrooms, Office & Theatre	Carpet over Concrete Slab	Floor Covering - Carpet (glue down/Nylon)	48.74	m^2
Floors- Garage	Concrete-Painted	coloured Epoxy Concrete floor Coating	39.317	m^2
Floors- alfresco	Timber decking	External Timber deck (alfresco)	17.12	m^2
Floors- front deck	Timber decking	External Timber deck (alfresco)	10	m^2
PV	Panel/ inverter/ installation	Solar PV System - Zone 3 (Perth)	1.5 kW	
Doors- Internal	timber- hollow	Door, Hollow core and Steel Jam	14.2	9x
Door- Garage	Steal	Garage Door (by Area)	11.14	1x
Doors- External	Timber	Door, Solid Core and Steel Jam (Entry)	3.507	2x
Door- Glazed	glass sliding	Door, commercial sliding glass with hardware	17.24	m^2 sliding, alfresco x 2, bedroom, study and laundry (5 total)
Windows	Aluminium Frame	Windows single glazed aluminium frame individual components	23.53	m^2
Kitchen cabinet	laminated board for cupboards, shelves, drawers	kitchen cabinetry Medium	1	
Laundry	Steel basin/ linen cupboard	Standard Laundry sink (Steel) + Services	1	
Main Bathroom	Bath/ Vanity/ shower	Bathroom - Shower/bath/ VB	1	
WC	toilet + pipework	WC	1	
Ensuite	Bath/ Vanity/ shower	Bathroom - Shower/bath/ VB	1	
Powder room	toilet/ basin	PDR	1	
Lighting- Hardware	LED	Lighting Residential LED High Natural Light	1	building
Lighting- Operational energy	LED	LED 720hrs /year consumption	426MJ/y	18 x 9W globes x 720 hrs/y
HWS	Solar w gas booster	HWS- Solar Thermal +gas boost (240L)+ Low Flow shower heads	1	

Rainwater tank	Steel Corrugated 2300L tank	Rainwater tank Polyethylene	2300L	
Rainwater Pump	motor	Electric Pump	0.8 kWh	services Equipment
Pool	fibreglass	fibreglass small Pool	8.68	no heating operational energy cost Per cubic metre
As Built				
Water use	Average household water use	Average Water Use and Treatment, AUS, WA		
Appliances	Entertainment, Laundry, Dishwasher	Appliances, Residential Average (AUS) Op&Em		
Refrigeration	Fridge/Freezer	Refrigeration, Residential Detailed (AUS) Op&Em		
Cooking	gas stove, electric oven	Cooking, Res Gas Stove Electric Oven Op&Em		
Additional	Energy/Water/Gas	Etool Assumption (template)	Assumptions	
Air Conditioner	Daikin Ducted Reverse Cycle	Ducting , flexible Aluminium, 250mm OD for HVAC HVAC Air Source Heat Pump (MEPs Average)		
	Hotplate	Cooking, Res Gas Stove Electric Oven Op&Em		
	oven	Cooking, Res Gas Stove Electric Oven Op&Em		
	Fridge	Refrigeration, Residential Detailed (AUS) Em		
	Dishwasher	Dishwasher Em		
	Washing machine	Clothes washer Em		

Table 18: House P, assume 6 star equivalent NatHERS thermal rating 39 MJ/m^2

	m^2	Comments
Overall Area	350	Taken from google sketchup drawing
Internal Floor area	161	Taken from sketchup
Concrete Pad area	66.5	100mm slab on compacted fill
Raised timber floor	103	
back deck (timber floor)	23.4	
Roof Area	222.5	tin area
Ceiling Area	167.5	Taken from sketchup
Eaves	29	ply board Not actually there*
Wall_ Internal area (old)	78.5	Calculated from sketchup model (internal walls not attached to outside)
Wall_ Internal new (new)	30	
Wall_External Area (old)	75	(external walls including double layer)

Wall_External Area	30			
(new)	61	outside tailet and parapet wall		
(100mm)	01			
Windows- Glazed	27.5	Windows and glass doors all single		
Areas	10	glazed (aluminium Frame)		
Door- Glazed	19			
Door External	1.73	1		
Door Internal	13.7	8		
Floor- Total	131	from plans		
Floor-Tiles	12	Bathroom/ toilet		
Floor- Timber	75	Living Room & Hallways		
timber front deck	8.5			
Louvre	2			
Internal Paint	390	selection including all internal walls		
internalitant	550	from sketch up		
External Paint	126.01			
Lighting		from plans		
Mechanical	0			
Ventilation	70141/0012			
Inermal Demand	70IVIJ/m^2			
Lighting Run time	/30hrs/y	2hrs per day		
Lux	150	min building code		
PV	4 kW	used template (Solar PV System - zone 3 (Perth)		
Smoke Detector	2	fire service smoke detector		
Exhaust Fan	2	Exhaust extraction fan, steel		
ceiling fan	1	HVAC Residential Ceiling fans		
Floor Heater	1	HVAC Residential Ground Source		
		Heat Pump		
Etool Material				
Inputs &				
assumptions				
Element	Structure	Etool Assumption (template)	Measurement	units
Roof	Timber Truss ()	Roof -	222.5	m^2 (pitch
		h		for)
Ceiling	Plaster	Roof -	167.5	m^2
		TimberTruss/SteelSheeting/15°Pitc		
External Walls Old	timber stud (400)	h Timber Stud Ext Wall - EC/WB Clad	75	m^2
		& PB Lining+Insul	/5	111 2
External Walls new	Steel Stud (600mm	Timber stud (600mm centre)-steel	30	m^2
Futernel welle Cinele	centres)	clad+pb+finish	<u></u>	
Brick	Brick)	(90mm)	61	m^2
Internal Walls_new	Steel Stud (600mm centres)	Steel stud, 600mm centre, plbrd pt both sides insul	30	m^2
Internal Walls_old	timber stud (400)	Timber Stud Internal Wall -	75	
		Plasterboard/Paint both sides		
Interior well Deint		(Rockwool bulk ins)	20	m A 2
(Excl ext wall			50	III''Z
Floor- Concrete Pad	100mm slab, 40MPa.	Concrete Floor, 100mm slab,	66.5	m^2

(living Room)	3.8%reo	40MPa. 3.8%reo		
Floors- Hallways, Bedroom &bathroom	Timber raised	Floor, elevated timber frame, nail down timber flooring	103	m^2
Floors- back deck	Timber decking	Deck, Elevated Timber on Steel Anchor	23.4	m^2
Floors- front	Timber decking	Deck, Elevated Timber on Steel Anchor	8.5	m^2
PV	Panel/ inverter/ installation	Solar PV System - Zone 3 (Perth)	4 kW	
Doors- External	Timber	Door, Solid Core and Steel Jam (Entry)	1.73	8
Door- double Glazed	glass sliding timber frame	Door, Residential Timber Alu Hybrid frame, Double Glaze,	19	3
Windows	Aluminium Frame	Windows, Residential Timber Alu Hybrid frame, Single Glaze, fly screen	27.5	m^2
Louvres	Aluminium Frame	Louvre aluminium screen (by area)	2	m^2
Kitchen cabinet	laminated board for cupboards, shelves, drawers	kitchen cabinetry Medium	1	
Laundry	Steel basin/ linen cupboard	Standard Laundry sink (Steel) + Services	1	
Main Bathroom	Bath/ Vanity/ shower	Bathroom - Shower/bath/ VB	1	
WC	toilet + pipework	WC	1	
Outdoor Powder room	toilet/ basin	PDR	1	
Lighting Residential LED High Natural Light	LED	Lighting Residential LED High Natural Light	1	building
Electrical		Site Power and Electrical		
Connection		Connection - Residential		
		Connection, Residential		
gas connection		Gas Connection (single dwelling)		
HWS	HWS - Gas Instantaneous	HWS - Gas Instantaneous	1	
As-built				
Water use		Average Water Use and Treatment,		
Appliances	Entertainment, Laundry, Dishwasher	Appliances, Residential Average (AUS) Op&Em		
Refrigeration	Fridge/ freezer	Refrigeration, Residential Detailed (AUS) Op&Em		
Cooking		Cooking, Res Gas Stove Electric Oven Op&Em		
Additional	Energy/Water/Gas	Etool Assumption (template)	Assumptions	
Air Conditioner	Daikin split system	HVAC Air Source Heat Pump Embodied (single-split)		
	Hotplate	Cooking, Res Gas Stove Electric Oven Op&Em		
	oven	Cooking, Res Gas Stove Electric Oven Op&Em		
	Fridge	Refrigeration, Residential Detailed (AUS) Em	op = 454kWh/y	
	Dishwasher	Dishwasher Em	runs an average	

		of once per day	
Washing machine	Clothes washer Em	runs an average of once per day	
Heat Lamp	lighting Lizard Heat Lamp		

Appendix C: Audit Interviews (summer)

House					
	С	E	F	G	н
Who Lives in this House?	Two Adults, Two Children, one Child and dad away from home during week, one child and Mum at home during week	Two Adults, Working so only home on weekends and night time	4 people, Mum, Dad, young Kids at school, home weekends and night time, Dad home 2 weekdays	two adults, 1 older son, working most of the time, home on weekends	4 people, Dad working away, Mum working from home (young family) so Kids at School
Why did you decide to participate in this project?	Wanted monitoring equipment so signed up for project	Advertisement seen in the Herald and see themselves a sustainably conscious people	Interested in sustainability to reduce energy usage and impacts. Try contribute to the sustainability message	interested in the performance of their 7 star house	House Achieved HIA Green smart award so wanted to see how it performs
How important is it for you to reduce your greenhouse gas emissions?	important to have low GHG emissions	Very important, do travel a bit (flying)	Very important, Climate change on agriculture in particular	don't see it as important because don't believe the effect is as bad as industry	Very Important for next generation
How important is it for you to reduce your energy consumption?	Subset for GHG reduction being more important	Important, as long as it doesn't interfere with lifestyle too much. Think already conscious about it	Pretty important, save money contribute to making efficiency a normal way of living	not so much, don't believe the energy usage is large,	Reduce Energy = reduce GHG
How important is it for you to reduce your water consumption? How important is it for you to live in a comfortable	very important, been trying to establish plants very important which is why doing renovations to	little bit less important as they enjoy their nice garden	Very important	important, chose house due to low water garden very important, solar passive design	Very, spent time focussing on this area during build, greywater production isn't enough to irrigate garden Very, spend a lot of time in the home, wanted a pleasant life

How do you think people view reducing their greenhouse gas emissions?	people are unaware of the GHG concept and how bad GHG is which makes them comfortable	In Freo is good, support is growing in broader community as financial benefits become greater	People worry about it but do not understand properly, if they do understand they don't want to make major changes	people are confused as the message isn't effective, friends aren't as green	They don't have the same view as us, they think it is too hard, expensive
Is that how it is in your local community	Hilton/ Freo are more engaged and friends and community are more involved		Freo are probable a bit more aware	Freo groups are more conscious	Freo have a reputation to be forward thinking about sustainability
Do you think more people think it is important to reduce their greenhouse gas emissions now compared to one year ago?		Yes steadily growing, growing utility prices, Sustainability summit in Paris			-
Is there support to reduce greenhouse gas emissions	Freo used to do this with	Not owere of only	No support	yes if you seek out support	Freo Program with goal setting
Is there support to reduce your greenhouse Gas emissions in your household?	Yes all are on the same page except for water usage	energy usage support	yes, talk about saving resources	financial support incentives as long as no impact on lifestyle	Explaining to kids the importance to save energy and water
Have you tried reducing your greenhouse gas emissions in the past?	Yes, Pre kids were much more proactive	No, do have solar panels, water efficient gardens and rainwater tank	always have tried to keep consumption as low as possible	yes, conscious of savings worthwhile, halogen globes to LED	Yes, making sure the home is retrofitted with new technologies to assist

Did you encounter any barriers with this?	Kids and the life stage that they are at	none	climate being hot, inefficient reticulation, stopped self-monitoring energy use because of the data equipment	Cannot do things that are inconvenient	That houses aren't built to consider future greywater, Blackwater separation options which makes retrofits in the future very difficult
What facilitated making changes?	interested and passionate as well as doing the living smart course	City of Fremantle, self- awareness			Increasing awareness from the community

House	L	Μ	0	Ρ
	Two elderly adults home most			5 ppl, two adults and 3 young
	days and granddaughter	mum and 3 boys, 2 boys		children, Dad work all week,
	working 38 hour week, visitors	home lots, other boy at	Two Adults working full	Mum home with kids all day,
Who Lives in this House?	most weekends	school and mum working	time	craft business from home
			Building a remediation,	
		great idea, helping the	to find out how home	
	sustainability idea, save	environment would be a	works and to try and be	
Why did you decide to	money, do their bit for the	bonus, find out the high use	as sustainable as	Like the idea as outdoor people
participate in this project?	planet	sources	possible	from working class background
How important is it for				
you to reduce your		really important, small scale		
greenhouse gas	moderately, a good lifestyle is	reductions lead to larger	Extremely important	
emissions?	the most important	scale	(global Warming	Pretty important (not top of list)
			Extremely as there are	
How important is it for			only two people, trying	
you to reduce your	quite important as it leads to		to save money, improve	Important from cost perspective
energy consumption?	saving money	very	lifestyle	+ environment
			Important to	
			understand how to	
			manage gardens,	
			rainwater tank was	
How important is it for			mandatory should be	
you to reduce your water	quite important, already try to	very, garden, toilets and	for everyone, having a	
consumption?	implement	laundry use rainwater	pool means that saving	not as focussed on water

			water is even more	
			important	
How important is it for			Extremely important as	
you to live in a		important for the whole	work hard, want to live	Very, Cost efficiency is more
comfortable home?	very important	family	comfortably	important, enjoy being home
			spoken about a lot,	
How do you think people			naturally ignore and	
view reducing their	people want to be involved	People don't know enough	take for granted the	Everyone wants to try and do
greenhouse gas	however adolescent friends	or unaware of the effect	cost of electricity and	their thing, choosing to change
emissions?	don't really care	the changes they make	water	isn't as likely
		C .	Vancouver had a	
Is that how it is in your			different mindset than	
local community			Perth	
Do you think more people				
think it is important to				
reduce their greenhouse				
gas emissions now				
compared to one year			Grown a bit, but not	Yes, could be due to media
ago?			really guickly	awareness
~~~~		not aware if anything		
		besides their house being		
		mandatory to have		
Is there support to reduce	Freo Council subsidies for	rainwater tanks and PV due		
greenhouse gas emissions	verge and mulch compost hins	to being a high density infill		sustainability workshops open
in your community?	and planting trees	house	Unaware of any	houses(losh's House)
Is there support to reduce		nouse	Ves try to act	
your greenhouse Gas	talk about it and try to support	on the way, hard to	sustainably and	
emissions in your	each other encourage correct	convince kids media is	encourage to utilise	Ves saving money is high
household?	behaviours	beloing inform them	solar nower	priority
	Ves Replacing inefficient	ves continually trying		phoney
Have you tried reducing	lighting turning lights off	turning lights off host		
Nour groophouso gas	switching off DoworDoints at	nurging in early morning	Dishwashar nowar	
omissions in the past?	walls	shutting house during day	points off at wall	WOS
	wans	shutting house during day		yes, House inofficiencies boths
Did you ancountar any		hohovioural changes	old babits and	mouse memorencies, paths,
buyou encounter any		benavioural changes,		water pressure, no insulation,
barriers with this?	no, do it as part of the lifestyle	turning lights out	remembering	messing around with floor

			heater
		building the new house,	
What facilitated making		replacement costs vs	
changes?	nothing	cost of new appliances	

## Appendix D: Audit interviews (winter)

House	с	E	F	G
Has there been any changes to your routine	things that don't cost lots of money	No	turning off power at wall, block vents	not really
Are you finding anything particularly difficult	bath time reductions	N/A	nothing	N/A
Has anything helped in making these changes	seeing data and being made aware through audits	N/A	knowing the power usage of appliances	N/A
Are the rest of the family participating?	yes	they are aligned	not really, keep on reminding them	not really
How often are you logging into the website	a few time, takes a long time to log on	once after the first visit	N/A	not often
How useful are you finding the information on the monthly reports?	very	very useful	very	do look at it
Do you still think your view about energy and water conservation remains the same in six months?	reinforcing importance of efficiency	instead of choosing fruit trees natives are chosen for water wise gardens	yes	same
Are you more conscious of your energy and water usage on a daily basis?	yes	no	yes	not more, still been conscious

House	н	L	Μ	0	Р
Has there been any changes to your routine	kids are getting older so they now have separate showers, universal switches purchased, extra rainwater tank being installed	replaced globes with efficient ones, daughter staying on weekends, so extra person in house, shade sail outside laundry	son moved out, reduced showers, younger son is buying into behaviour change, mulched garden, screens on front windows	changed timer on pool and try and utilise solar production	Shorter showers, trying to modify behaviour
Are you finding anything particularly difficult	No	no	continually educating kids	when visitors stay	keeping an eye on the kids use
Has anything helped in making these changes	data, breaking things down into things that can actually be done	tips from summer audit	reminders, hints, updates and the goals	audits, tips	being able to visibly see the usage through the data monitoring system
Are the rest of the family participating?	no, they are understanding the concept a little bit more	yes, interested in the project since last visit	one son is	yes, except when extended family come	they are aware but not fully involved
How often are you logging into the website	once a week	occasionally	not at all	not very often	only a few times
How useful are you finding the information on the monthly reports?	good	useful	great	verv	vervuseful
Do you still think your view about energy and water conservation remains the same in six months?	still the same	more aware, thinking of installing rainwater tank	strengthened	same	views haven't changed, more relaxed as the data was low compared to the average
Are you more conscious of your energy and water usage on a daily basis?	yes definitely	yes, subconsciously aware	yes, more conscious	probably slightly more conscious	Yes, think about it a lot more

## Appendix E: Top 30 Materials By Total Impact

Table 19: House B Top 30 Materials By Total Impact

Matarial	Total
	(kg CO2-eq)
Bricks, Blocks and Pavers   Clay Bricks and Pavers   Unspecified   Industry Average	24,503
Steel   General   Unspecified   Industry Average	9,484
Concrete   Unreinforced   40 MPa   Industry Average	9,258
Concrete   Reinforced   1.0% Reinforcement by mass   30 MPa   Industry Average	6,960
Cements and Limes   Mortars and Renders   1 cement : 4 sand   Industry Average	5,937
Gases   Refrigerants   R134   Industry Average	5,908
Aluminium   General   Industry Average	5,854
Windows   Aluminium Framed   No Thermal Break   Single Glaze   Domestic 50% Opening   Industry	5 187
Average	5,107
Concrete   Unreinforced   Unspecified   Industry Average	3,587
Finished Products   Electrical Goods   Solar PV Panels   Monocrystalline   Unspecified   Industry Average	2,399
Plastics   High Density Polyethylene (HDPE)   Unspecified   Industry Average	2,345
Paints and Finishes   Unspecified   1 Coat   Industry Average	2,163
Insulation   Blankets and Batts   Glass Fibre Batts   R 4.0   Industry Average	2,063
Plaster and Gypsum Derived Products   Plaster Board   12mm Sheets   Industry Average	1,948
Steel   Coated Sheet   Zinc Coated & Coloured Sheet 0.43mm   Industry Average	1,940
Timber   Plywood   Unspecified   Industry Average	1,788
Plaster and Gypsum Derived Products   Plaster   Unspecified   Industry Average	1,680
Finished Products   Electrical Goods   Light Fittings   12V Transformers   Industry Average	1,677
Carpets and Floor Coverings   Carpet   Nylon   Medium Use   Industry Average	1,546
Steel   Stainless   Unspecified   Industry Average	1,465
Resins and Adhesives   Epoxy Resin   Industry Average	1,292
Plastics   Polyurethane   Unspecified   Industry Average	1,205
Plastics   General   Unspecified   Industry Average	1,100
Glass   Flat Glass   Industry Average	876

Material	Total
Finished Products   Electrical Goods   Inverter   Industry Average	839
Carpets and Floor Coverings   Underlay   Nylon   Industry Average	805
Timber   Hardwood   Industry Average	796
Resins and Adhesives   Urea Formaldehyde   Industry Average	771
Ceramics   Ceramic Tiles   Industry Average	764
Plastics   Polypropylene   Injection Moulding   Industry Average	709

Table 20: House C Top 30 Materials By Total Impact

Natarial	Total
Wateria	(kg CO2-eq)
Steel   General   Unspecified   Industry Average	8,913
Gases   Refrigerants   R134   Industry Average	5,908
Aluminium   General   Industry Average	5,771
Plaster and Gypsum Derived Products   Plaster Board   12mm Sheets   Industry Average	5,256
Concrete   Reinforced   1.0% Reinforcement by mass   30 MPa   Industry Average	3,285
Finished Products   Electrical Goods   Solar PV Panels   Monocrystalline   Unspecified   Industry Average	2,999
Gases   Refrigerants   R134 No manufacturing fugitive emissions   Industry Average (No fugitive emissions	2 951
from production)	2,301
Roofing   Tiles   Clay and Terracotta   Unspecified   Industry Average	2,811
Fibre Board   Fibre Cement   Medium Density. 1250 kg/t   Industry Average	2,293
Glass   Flat Glass   Industry Average	2,256
Bricks, Blocks and Pavers   Clay Bricks and Pavers   Unspecified   Industry Average	1,654
Plastics   General   Unspecified   Industry Average	1,589
Steel   Stainless   Unspecified   Industry Average	1,517
Insulation   Blankets and Batts   Mineral Wool   Blanket   Unspecified   Industry Average	1,330
Paints and Finishes   Unspecified   1 Coat   Industry Average	1,291
Concrete   Unreinforced   30 MPa   Industry Average	1,181
Timber   Plywood   Unspecified   Industry Average	1,174
Finished Products   Electrical Goods   Light Fittings   12V Transformers   Industry Average	1,061
Finished Products   Electrical Goods   Inverter   Industry Average	1,044
Insulation   Blankets and Batts   Glass Fibre Batts   R 4.0   Industry Average	852
Plastics   Polypropylene   Injection Moulding   Industry Average	709
Plastics   High Density Polyethylene (HDPE)   Unspecified   Industry Average	668
Timber   Hardwood   Industry Average	641
Insulation   Blankets and Batts   Glass Fibre Batts   R 1.5   Industry Average	501
Plastics   Polystyrene   Expanded Polystyrene   Industry Average	446
Steel   Coated Sheet   Zinc Coated & Coloured Sheet 0.43mm   Industry Average	441
Timber   Glue Laminated   Unspecified   Industry Average	394

Material	Total (kg CO2-eq)
Metals (excluding steel and Aluminium)   Copper   Industry Average	339
Plastics   Polyurethane   Unspecified   Industry Average	332
Insulation   Rigid Foams and Boards   Polyurethane   Industry Average	326

Table 21: House E Top 30 Materials By Total Impact

Material	Total (kg CO2-eq)
Rock and Stone   Stone - Limestone   Industry Average	18,773
Steel   General   Unspecified   Industry Average	8,834
Cements and Limes   Mortars and Renders   1 cement : 4 sand   Industry Average	8,230
Bricks, Blocks and Pavers   Clay Bricks and Pavers   Unspecified   Industry Average	7,652
Concrete   Unreinforced   40 MPa   Industry Average	7,258
Gases   Refrigerants   R134   Industry Average	5,908
Aluminium   General   Industry Average	4,568
Finished Products   Electrical Goods   Solar PV Panels   Monocrystalline   Unspecified   Industry Average	3,359
Bulk Aggregates Sands and Soils   Sand (Compacted)   Unspecified   Industry Average	3,097
Steel   Coated Sheet   Zinc Coated & Coloured Sheet 0.43mm   Industry Average	2,372
Concrete   Unreinforced   Unspecified   Industry Average	2,118
Insulation   Blankets and Batts   Glass Fibre Batts   R 4.0   Industry Average	1,821
Plaster and Gypsum Derived Products   Plaster Board   12mm Sheets   Industry Average	1,696
Plastics   High Density Polyethylene (HDPE)   Unspecified   Industry Average	1,296
Finished Products   Electrical Goods   Inverter   Industry Average	1,168
Plastics   Polyurethane   Unspecified   Industry Average	1,076
Timber   Plywood   Unspecified   Industry Average	1,038
Plastics   General   Unspecified   Industry Average	972
Paints and Finishes   Unspecified   1 Coat   Industry Average	965
Steel   Stainless   Unspecified   Industry Average	890
Timber   Hardwood   Industry Average	879
Plastics   Polypropylene   Injection Moulding   Industry Average	709
Resins and Adhesives   Epoxy Resin   Industry Average	589
Windows   Timber Framed   Single Glaze   Domestic 50% Opening   Industry Average	517

Material	Total (kg CO2-eq)
Steel   Coated Sheet   Zinc Coated & Coloured Sheet 0.56mm   Industry Average	483
Plastics   Polystyrene   Expanded Polystyrene   Industry Average	446
Glass   Flat Glass   Industry Average	416
Fibre Board   Fibre Cement   Medium Density. 1250 kg/t   Industry Average	407
Roofing   Tiles   Slate   Industry Average	396
Ceramics   Ceramic Tiles   Industry Average	377

Table 22: House F Top 30 Materials By Total Impact

Material	Total
	(kg CO2-eq)
Concrete   Unreinforced   40 MPa   Industry Average	10,967
Steel   General   Unspecified   Industry Average	10,095
Bricks, Blocks and Pavers   Clay Bricks and Pavers   Unspecified   Industry Average	8,798
Gases   Refrigerants   R134   Industry Average	5,908
Aluminium   General   Industry Average	4,923
Plaster and Gypsum Derived Products   Plaster Board   12mm Sheets   Industry Average	4,635
Rubber   Synthetic   Industry Average	3,866
Steel   Coated Sheet   Zinc Coated & Coloured Sheet 0.43mm   Industry Average	3,294
Fibre Board   Fibre Cement   Compressed 1750kg/m3   Industry Average	3,062
Gases   Refrigerants   R134 No manufacturing fugitive emissions   Industry Average (No fugitive emissions	2 051
from production)	2,951
Plastics   Polyurethane   Unspecified   Industry Average	2,330
Finished Products   Electrical Goods   Solar PV Panels   Monocrystalline   Unspecified   Industry Average	2,199
Cements and Limes   Mortars and Renders   1 cement : 4 sand   Industry Average	2,132
Timber   Plywood   Unspecified   Industry Average	1,682
Paints and Finishes   Unspecified   1 Coat   Industry Average	1,617
Finished Products   Electrical Goods   Light Fittings   12V Transformers   Industry Average	1,474
Windows   Timber Framed   Single Glaze   Domestic 50% Opening   Industry Average	1,321
Concrete   Unreinforced   Unspecified   Industry Average	1,288
Plastics   High Density Polyethylene (HDPE)   Unspecified   Industry Average	1,244
Timber   Hardwood   Industry Average	1,205
Steel   Stainless   Unspecified   Industry Average	1,135
Ceramics   Ceramic Tiles   Industry Average	1,122
Insulation   Blankets and Batts   Mineral Wool   Blanket   Unspecified   Industry Average	1,091
Plastics   General   Unspecified   Industry Average	888
Windows   Hybrid Framed   Single Glaze Ali and Timber   Domestic 50% Opening   Industry Average	842
Finished Products   Electrical Goods   Inverter   Industry Average	770
Plastics   Polypropylene   Injection Moulding   Industry Average	709

Material	Total (kg CO2-eq)
Plaster and Gypsum Derived Products   Plaster   Unspecified   Industry Average	672
Insulation   Blankets and Batts   Glass Fibre Batts   R 4.0   Industry Average	544
Resins and Adhesives   Epoxy Resin   Industry Average	476

Table 23 House G Top 30 Materials By Total Impact

Material	Total (kg CO2-eq)
Gases   Refrigerants   R134 No manufacturing fugitive emissions   Industry Average (No fugitive	19 238
emissions from production)	10,200
Steel   General   Unspecified   Industry Average	18,764
Concrete   Unreinforced   40 MPa   Industry Average	13,910
Aluminium   General   Industry Average	13,215
Concrete   Reinforced   1.0% Reinforcement by mass   30 MPa   Industry Average	11,459
Plaster and Gypsum Derived Products   Plaster Board   12mm Sheets   Industry Average	10,718
Finished Products   Electrical Goods   Solar PV Panels   Monocrystalline   Unspecified   Industry	8 404
Average	0,101
Timber   Hardwood   Industry Average	7,325
Fibre Board   Fibre Cement   Medium Density. 1250 kg/t   Industry Average	7,087
Concrete   Unreinforced   25 MPa   Industry Average	6,897
Steel   Coated Sheet   Zinc Coated & Coloured Sheet 0.43mm   Industry Average	5,658
Gases   Refrigerants   R134   Industry Average	5,161
Concrete   Light Weight   Autoclaved Aerated (density 700kg/m3)   Industry Average	4,473
Steel   Stainless   Unspecified   Industry Average	3,787
Timber   Softwood   Industry Average	3,754
Rubber   Synthetic   Industry Average	3,655
Finished Products   Electrical Goods   Light Fittings   12V Transformers   Industry Average	3,429
Timber   Plywood   Unspecified   Industry Average	3,305
Paints and Finishes   Unspecified   1 Coat   Industry Average	3,038
Insulation   Blankets and Batts   Mineral Wool   Blanket   Unspecified   Industry Average	2,897
Finished Products   Electrical Goods   Inverter   Industry Average	2,824
Glass   Flat Glass   Industry Average	2,425
Plastics   High Density Polyethylene (HDPE)   Unspecified   Industry Average	1,922

Material	Total (kg CO2-eq)
Plastics   Polyurethane   Unspecified   Industry Average	1,917
Timber   Glue Laminated   Unspecified   Industry Average	1,745
Insulation   Blankets and Batts   Polyester Batts   R 2.5   Industry Average	1,501
Plastics   Polypropylene   Injection Moulding   Industry Average	1,404
Plastics   General   Unspecified   Industry Average	1,259
Plaster and Gypsum Derived Products   Plaster Board   10mm Sheets   Industry Average	1,250
Insulation   Blankets and Batts   Glass Fibre Batts   Unspecified   Industry Average	1,171

Table 24: House H Top 30 Materials By Total Impact

Material	Total (kg CO2-eq)
Concrete   Unreinforced   40 MPa   Industry Average	24,356
Bricks, Blocks and Pavers   Clay Bricks and Pavers   Unspecified   Industry Average	19,508
Steel   General   Unspecified   Industry Average	17,052
Aluminium   General   Industry Average	9,811
Concrete   Reinforced   1.0% Reinforcement by mass   30 MPa   Industry Average	6,455
Gases   Refrigerants   R134   Industry Average	5,908
Cements and Limes   Mortars and Renders   1 cement : 4 sand   Industry Average	5,479
Finished Products   Electrical Goods   Solar PV Panels   Monocrystalline   Unspecified   Industry Average	4,558
Concrete   Unreinforced   Unspecified   Industry Average	3,859
Timber   Plywood   Unspecified   Industry Average	3,482
Steel   Coated Sheet   Zinc Coated & Coloured Sheet 0.43mm   Industry Average	2,933
Carpets and Floor Coverings   Carpet   Nylon   Medium Use   Industry Average	2,877
Plastics   High Density Polyethylene (HDPE)   Unspecified   Industry Average	2,605
Glass   Flat Glass   Industry Average	2,564
Plaster and Gypsum Derived Products   Plaster   Unspecified   Industry Average	1,922
Plaster and Gypsum Derived Products   Plaster Board   12mm Sheets   Industry Average	1,907
Paints and Finishes   Unspecified   1 Coat   Industry Average	1,849
Steel   Stainless   Unspecified   Industry Average	1,723
Finished Products   Electrical Goods   Inverter   Industry Average	1,579
Insulation   Blankets and Batts   Glass Fibre Batts   R 4.0   Industry Average	1,571
Carpets and Floor Coverings   Underlay   Nylon   Industry Average	1,497
Steel   Coated Sheet   Zinc Coated & Coloured Sheet 0.56mm   Industry Average	1,414
Plastics   General   Unspecified   Industry Average	1,396
Insulation   Blankets and Batts   Mineral Wool   Blanket   Unspecified   Industry Average	895

Material	Total (kg CO2-eq)
Timber   Hardwood   Industry Average	817
Plastics   Polypropylene   Injection Moulding   Industry Average	709
Paints and Finishes   Wood Stains and Finishes   General   Industry Average	609
Metals (excluding steel and Aluminium)   Copper   Industry Average	552
Insulation   Blankets and Batts   Glass Fibre Batts   Unspecified   Industry Average	493
Ceramics   Porcelain Sanitary Products   Toilet   Industry Average	485

Table 25: House L Top 30 Materials By Total Impact

Material	Total (kg CO2-eq)
Concrete   Unreinforced   40 MPa   Industry Average	26,005
Bricks, Blocks and Pavers   Clay Bricks and Pavers   Unspecified   Industry Average	20,906
Steel   General   Unspecified   Industry Average	19,260
Gases   Refrigerants   R134   Industry Average	5,908
Cements and Limes   Mortars and Renders   1 cement : 4 sand   Industry Average	4,956
Aluminium   General   Industry Average	4,254
Timber   Plywood   Unspecified   Industry Average	3,718
Plaster and Gypsum Derived Products   Plaster Board   12mm Sheets   Industry Average	3,341
Steel   Coated Sheet   Zinc Coated & Coloured Sheet 0.43mm   Industry Average	3,184
Concrete   Unreinforced   25 MPa   Industry Average	2,757
Concrete   Unreinforced   Unspecified   Industry Average	2,635
Carpets and Floor Coverings   Carpet   Nylon   Medium Use   Industry Average	2,589
Glass   Flat Glass   Industry Average	2,506
Finished Products   Electrical Goods   Light Fittings   12V Transformers   Industry Average	2,109
Rubber   Synthetic   Industry Average	2,062
Plastics   General   Unspecified   Industry Average	1,695
Paints and Finishes   Unspecified   1 Coat   Industry Average	1,649
Insulation   Blankets and Batts   Glass Fibre Batts   R 4.0   Industry Average	1,441
Plaster and Gypsum Derived Products   Plaster   Unspecified   Industry Average	1,433
Bulk Aggregates Sands and Soils   Sand (Compacted)   Unspecified   Industry Average	1,406
Plastics   Polyurethane   Unspecified   Industry Average	1,354
Carpets and Floor Coverings   Underlay   Nylon   Industry Average	1,347
Steel   Stainless   Unspecified   Industry Average	1,131
Bulk Aggregates Sands and Soils   Aggregate (Compacted)   Unspecified   Industry Average	1,061
Ceramics   Ceramic Tiles   Industry Average	1,033

Material	Total (kg CO2-eq)
Timber   Hardwood   Industry Average	978
Resins and Adhesives   Urea Formaldehyde   Industry Average	862
Plastics   Polypropylene   Injection Moulding   Industry Average	709
Concrete   Reinforced   1.0% Reinforcement by mass   30 MPa   Industry Average	689
Resins and Adhesives   Epoxy Resin   Industry Average	582

Table 26: House M Top 30 Materials By Total Impact

Motorial	Total
Waterial	(kg CO2-eq)
Bricks, Blocks and Pavers   Clay Bricks and Pavers   Unspecified   Industry Average	14,450
Concrete   Unreinforced   40 MPa   Industry Average	10,973
Steel   General   Unspecified   Industry Average	10,753
Gases   Refrigerants   R134   Industry Average	5,908
Gases   Refrigerants   R134 No manufacturing fugitive emissions   Industry Average (No fugitive emissions from production)	5,903
Aluminium   General   Industry Average	5 509
Finished Products   Electrical Goods   Solar PV Panels   Monocrystalline   Unspecified   Industry Average	5,318
Cements and Limes   Mortars and Renders   1 cement : 4 sand   Industry Average	3,501
Steel   Coated Sheet   Zinc Coated & Coloured Sheet 0.43mm   Industry Average	3,359
Concrete   Unreinforced   Unspecified   Industry Average	3,173
Plaster and Gypsum Derived Products   Plaster Board   12mm Sheets   Industry Average	2,345
Carpets and Floor Coverings   Carpet   Nylon   Medium Use   Industry Average	2,265
Finished Products   Electrical Goods   Inverter   Industry Average	1,839
Glass   Flat Glass   Industry Average	1,832
Resins and Adhesives   Epoxy Resin   Industry Average	1,625
Paints and Finishes   Unspecified   1 Coat   Industry Average	1,588
Timber   Plywood   Unspecified   Industry Average	1,569
Insulation   Blankets and Batts   Glass Fibre Batts   R 4.0   Industry Average	1,516
Finished Products   Electrical Goods   Light Fittings   12V Transformers   Industry Average	1,450
Rubber   Synthetic   Industry Average	1,448
Plastics   High Density Polyethylene (HDPE)   Unspecified   Industry Average	1,191
Carpets and Floor Coverings   Underlay   Nylon   Industry Average	1,179
Plaster and Gypsum Derived Products   Plaster   Unspecified   Industry Average	1,094

Material	Total (kg CO2-eq)
Plastics   General   Unspecified   Industry Average	1,018
Plastics   Polyurethane   Unspecified   Industry Average	1,004
Timber   Hardwood   Industry Average	998
Steel   Stainless   Unspecified   Industry Average	944
Plastics   Polypropylene   Injection Moulding   Industry Average	709
Insulation   Rigid Foams and Boards   Polyurethane   Industry Average	652
Metals (excluding steel and Aluminium)   Copper   Industry Average	576

Table 27: House O Top 30 Materials By Total Impact

Material	Total (kg CO2-eq)
Bricks, Blocks and Pavers   Clay Bricks and Pavers   Unspecified   Industry Average	14,760
Concrete   Unreinforced   40 MPa   Industry Average	13,136
Steel   General   Unspecified   Industry Average	11,000
Gases   Refrigerants   R134   Industry Average	5,908
Gases   Refrigerants   R134 No manufacturing fugitive emissions   Industry Average (No fugitive emissions from production)	5,903
Aluminium   General   Industry Average	5,251
Finished Products   Electrical Goods   Solar PV Panels   Monocrystalline   Unspecified   Industry Average	3,598
Cements and Limes   Mortars and Renders   1 cement : 4 sand   Industry Average	3,576
Concrete   Unreinforced   Unspecified   Industry Average	3,300
Plaster and Gypsum Derived Products   Plaster Board   12mm Sheets   Industry Average	2,447
Paints and Finishes   Unspecified   1 Coat   Industry Average	2,294
Glass   Flat Glass   Industry Average	2,115
Rubber   Synthetic   Industry Average	1,908
Timber   Plywood   Unspecified   Industry Average	1,878
Plaster and Gypsum Derived Products   Plaster   Unspecified   Industry Average	1,828
Carpets and Floor Coverings   Carpet   Nylon   Medium Use   Industry Average	1,753
Resins and Adhesives   Epoxy Resin   Industry Average	1,637
Insulation   Blankets and Batts   Glass Fibre Batts   R 4.0   Industry Average	1,582
Steel   Stainless   Unspecified   Industry Average	1,477
Timber   Hardwood   Industry Average	1,465
Finished Products   Electrical Goods   Inverter   Industry Average	1,250
Plastics   Polyurethane   Unspecified   Industry Average	1,244
Fibreglass   Unspecified   Industry Average	1,229

Material	Total (kg CO2-eq)
Plastics   General   Unspecified   Industry Average	1,202
Plastics   High Density Polyethylene (HDPE)   Unspecified   Industry Average	1,190
Carpets and Floor Coverings   Underlay   Nylon   Industry Average	912
Plastics   Polypropylene   Injection Moulding   Industry Average	740
Metals (excluding steel and Aluminium)   Copper   Industry Average	529
Ceramics   Ceramic Tiles   Industry Average	478
Plastics   Polystyrene   Expanded Polystyrene   Industry Average	446

Table 28: House P Top 30 Materials By Total Impact

Material	Total (kg CO2-eq)
Finished Products   Electrical Goods   Solar PV Panels   Monocrystalline   Unspecified   Industry	6.007
Average	6,997
Steel   General   Unspecified   Industry Average	6,076
Gases   Refrigerants   R134   Industry Average	5,908
Plaster and Gypsum Derived Products   Plaster Board   12mm Sheets   Industry Average	4,158
Concrete   Unreinforced   40 MPa   Industry Average	3,953
Aluminium   General   Industry Average	3,066
Concrete   Reinforced   1.0% Reinforcement by mass   30 MPa   Industry Average	2,610
Fibre Board   Fibre Cement   Medium Density. 1250 kg/t   Industry Average	2,524
Finished Products   Electrical Goods   Inverter   Industry Average	2,414
Bricks, Blocks and Pavers   Clay Bricks and Pavers   Unspecified   Industry Average	2,218
X Non-Compliant Data   Timber   Particle Board   Unspecified   Industry Average	2,213
Windows   Hybrid Framed   Single Glaze Ali and Timber   Domestic 50% Opening   Industry	1,931
Windows   Hybrid Framed   Double Glaze Ali and Timber   Domestic 50% Opening   Industry Average	1,588
Timber   Plywood   Unspecified   Industry Average	1,256
Paints and Finishes   Unspecified   1 Coat   Industry Average	913
Insulation   Blankets and Batts   Mineral Wool   Blanket   Unspecified   Industry Average	895
Steel   Stainless   Unspecified   Industry Average	831
Plastics   General   Unspecified   Industry Average	780
Plastics   Polypropylene   Injection Moulding   Industry Average	709
Plastics   High Density Polyethylene (HDPE)   Unspecified   Industry Average	610
Insulation   Blankets and Batts   Glass Fibre Batts   R 1.5   Industry Average	589
Cements and Limes   Mortars and Renders   1 cement : 4 sand   Industry Average	516

Material	Total (kg CO2-eq)
Plastics   Polystyrene   Expanded Polystyrene   Industry Average	446
Steel   Galvanised Structural   Industry Average	434
Steel   Coated Sheet   Zinc Coated & Coloured Sheet 0.43mm   Industry Average	388
Metals (excluding steel and Aluminium)   Copper   Industry Average	387
Timber   Glue Laminated   Unspecified   Industry Average	346
Timber   Hardwood   Industry Average	334
Plastics   Polyurethane   Unspecified   Industry Average	332
Ceramics   Porcelain Sanitary Products   Toilet   Industry Average	324
## Appendix F: Energy, Water and Gas raw data for the eTool Predicted per Dwelling, Measured per Dwelling and measured per occupant data

2015 summary											
eTool Predicte	d										
Houses	Actual Occupant	eTool Average	Grid electricity peak (kWh)	Grid electricity (MJ)	Grid Electricity adjusted(kWh)	solar utilised + exported (	Solar production (MJ)	Gas (MJ)	Mains water (kL)	Wastewater	Rainwater (kL)
В	4	3.32	4197.8	15112	3507.8	2484	4968	4791	336	194	5
С	4	1.85	3872.2	13940	2837.2	3726	7452	0	243	106	0
E	2	1.85	3220.3	11593	2185.3	3726	7452	2272	226	106	5
F	4	3.32	4207.8	15148	3172.8	3726	7452	5181	329	194	20
G	3	2.65	3873.3	13944	2493.3	4968	9936	10481	154	174	20
н	4	3.32	4323.6	15565	2744.2	5686	11372	5181	285	60	20
L	3	2.65	5590.0	20124	5590.0	0	0	8598	282	154	0
М	4	3.32	6217.5	22383	4492.5	6210	12420	5181	329	194	10
0	2	2.65	4895.8	17625	3860.8	3726	7452	4295	213	154	20
Р	5	2.65	5200.8	18723	2440.8	9936	19872	10481	213	154	0
Actual											
Houses	Actual Occupant	eTool Average	grid elect (kWh)	grid elect (MJ)	Solar export (kWh)	solar utilised (kWh)	Solar production (kWh)	gas (kWh)	Main Water	Wastewater	Rainwater (kL)
В	4	3.32	4034	14522.4	679	877	1556	2550	218.917	155.7832	24.433
С	4	1.85	3847.3	13850.4	789	564	1353	0	226.301	135.7806	0
E	2	1.85	1868.9	6728.0	1189	1127	2316	253	150.925	90.555	29.205
F	4	3.32	1938.8	6979.8	678	601	1279	1028	117.24	86.414	16.07
G	3	2.65	3807.1	13705.6	1744	1155	2899	2100	124.98	98.063	23.075
Н	4	3.32	4249.1	15296.7	2161	1239	3400	243	245.766	169.9396	22.48
L	3	2.65	5300.4	19081.5	0	0	0	3098	277.815	166.689	0
М	4	3.32	4207.8	15148.1	2536	1581	4117	2635	202.413	133.0578	11.61
0	2	2.65	4524.4	16287.7	1775	1133	2908	1581	146.495	109.957	22.06
Р	5	2.65	2478.0	8920.9	2484	1185	3669	2895	187.173	112.3038	0
Standardised											
Houses	Actual Occupant	eTool Average	grid elect (kWh)	grid elect (MJ)	Solar export (kWh)	solar utilised (kWh)	Solar production (kWh)	gas (kWh)	Adj Main Water	Wastewater	Rainwater (kL)
В	4	3.32	3348.2	12053.6	679	877	1556	2117	182	133	24.433
С	4	1.85	1779.4	6405.8	789	564	1353	0	105	63	0
E	2	1.85	1728.7	6223.4	1189	1127	2316	234	140	84	29.205
F	4	3.32	1609.2	5793.2	678	601	1279	853	97	74	16.07
G	3	2.65	3362.9	12106.6	1744	1155	2899	1855	110	89	23.075
н	4	3.32	3526.7	12696.3	2161	1239	3400	202	204	145	22.48
L	3	2.65	4682.0	16855.4	0	0	0	2737	245	147	0
M	4	3.32	3492.5	12572.9	2536	1581	4117	2187	168	112	11.61
0	2	2.65	5994.8	21581.1	1775	1133	2908	2095	194	139	22.06
Р	5	2.65	1313.4	4728.1	2484	1185	3669	1534	99	60	0

*eTool has a downfall in predicting rainwater yield as the amount is not directly dependant on size of the system but more likely to be dependent on the amount of times the rainwater tank can be filled and emptied throughout the year which is largely determined by the use of the rainwater.

## Appendix G: Life Cycle Assessment per occupant



The life cycle assessment per occupant shows house P has almost a neutral carbon footprint as the entire operational energy per person is offset by solar production and the embodied energy is also almost offset. This is mostly due to the relatively low operational and embodied energy for a house with 5 occupants compared with the average occupants for a house with three bedrooms. The results show the embodied and operational energy per occupant is heavily dependent on the number of occupants in the house. However the number of occupants doesn't influence operational impacts such as refrigeration, heating and cooling, lighting or solar production. The houses impact per occupant will then likely change with a family of five moving out of the house and being replaced by a family of three. To be able to use a LCA as a sustainability rating, a decision would have to be made to rate the house based on the expected number of occupants or the actual number of occupants, alternatively per dwelling or per square meter as expressed in the study would be the preferred method.

## Appendix H: Life Cycle assessment result breakdown for the eTool prediction of each house

eTool Predicted										
Global Warming (kg CO2-										
eq/Dwelling/year)	E	G	F	В	L	Р	н	0	С	М
Products	1,385.30	911.2	1,057.60	1,707	1,913	563.3	2,314	1,198.20	593.5	1,309.80
Transport	316.1	266.6	368	474	539	225.4	564	381.1	323.4	350.8
Construction	61.8	102.7	84.8	111	105	90.5	119	92.9	92.9	78.5
Recurring	513.3	1,183.30	667.7	711	832	593.2	724	775.3	681.4	838.4
Energy	1,878.20	2,726.20	3,534.90	2,480	5,220	2,522.50	2,654	3,337.70	2,404.70	4,004.10
Water	505.4	408.1	699.1	545	655	530.8	762	493.3	545.5	756.6
End of Life	517.7	534.7	658.6	585	644	464.9	610	700.2	517.4	566.2
Energy Export	-979.2	-1,002.20	-550.2	-600	0	-1,419.20	-1,140	-900.3	-750.3	-1,330.40
Product Reuse	-90.3	-75.5	-107.2	-102	-99	-48.2	-168	-72.5	-87	-112.7
Total	4,108.30	5,055.20	6,413.30	5,910	9,810	3,523.30	6,438	6,005.80	4,321.40	6,461.10

## Appendix I: Gantt chart

		20/12 -	20/12	- 01/UC	au/cu -	- 10/01	- 14/08	- 18/09	01/62	11//7 -
	Refine and Develop Project Brief	21								
	Project Plan	18								
	Project Planning and Review			20	0					
	Liturature Review for sustainable Houses		46							
	Project Progress Report			60						
	House B etool Report	30	1							
	House M etool Report	<b>3</b> C								
	House O etool Report		0							
se 1	House L etool Report		30 1							
ha	House C etool Report		30							
	House P etool Report		30							
	House F etool Report		<b>3</b>							
	House E etool Report			30_1						
	House H etool Report			30_1						
	House G etool Report			30						
	Certifications						72			
	3D sketchup drawings		88							
	etool Reports Finalised						84			
Phase 2	Generate Results analysis					25				
	Interpret Results						112			
ase 3	Oral Presentation of Final Report							86		
Ĕ Ü	Final Report						138	3		