

Thesis Overview:

Write management mechanisms for systems with non-volatile memory
technologies

Roberto Alonso Rodríguez Rodríguez
Computer Science Faculty, Complutense University of Madrid, Spain

PhD Thesis in Computer Science1
Advisors: Fernando Castro and Daniel Chaver

{rrodriguezr,fcastror,dani02}@ucm.es

Since the beginning of computer systems, the memory subsystem has always been one of their essential
components. However, the different pace of change between microprocessor and memory has become one of the
greatest challenges that current designers have to address in order to develop more powerful computer systems.
This problem, called memory gap, is further compounded by the limited scalability and the high energy
consumption of conventional memory technologies (DRAM and SRAM), which has leaded to consider new non-
volatile memory (NVM) technologies as potential candidates to replace them. Among NVMs, PCM and STT-
RAM [1] are currently postulated as the best alternatives.

Although PCM and STT-RAM have significant advantages over DRAM and SRAM, they also suffer from some
drawbacks that need to be mitigated before they can both be employed as memory technologies for the next
computers generation. Notably, the slow and energy-hungry write operations on both technologies, and the
limited endurance of PCM cells, which become unchangeable after performing a relatively reduced amount of
writes on them, are the main constraints of PCM and STT-RAM technologies. This thesis presents two proposals
aimed to efficiently manage the write operations on this kind of memories.

The first proposal, conceived for a system with a PCM-based main memory, is intended to reduce the number of
writes to the main memory by operating at the cache controller level through the replacement policy used in the
immediate-lower memory hierarchy level (the last-level cache, LLC). For this purpose, and as the starting point,
the conventional LLC replacement policies (oriented to improve the system performance) have been evaluated in
terms of the amount of writes generated to main memory. Notably, in this work we explored the behavior of
LRU [2], peLIFO [3], SHIP [4], SRRIP and DRRIP [5] policies. Once the algorithm reporting the lowest amount
of writes to main memory has been identified (DRRIP), several changes are proposed aimed to find a
replacement policy satisfying the twofold goal of minimizing the number of writes to PCM main memory (and
hence reducing the corresponding energy consumption and extending the PCM lifetime) and not penalizing the
system performance. More specifically, the proposed algorithms modify the insertion, promotion and also the
victimization sub-policies of DRRIP in order to maintain dirty blocks in the LLC. The proposed algorithms have
been encoded and integrated in the gem5 architectural simulator, so that the desired environment, where the main
memory is modeled according to PCM memory features and the last-level cache operates with the explored
replacement policies, is simulated. The behavior of these proposed algorithms when running different kinds of
applications, both sequential and parallel programs as well as multiprogrammed workloads, is evaluated.
Experimental results show [6,7] that, on average, compared with a conventional LRU algorithm, some of our
proposals manage to extend the memory lifetime up to 20–45%, also reducing the energy consumption in the
memory hierarchy by up to 9% and hardly degrading performance.

In the second proposal, conceived for a system with an STT-RAM last-level cache, a mechanism aimed to
predict unnecessary writes to this last-level cache is presented, so that those writes identified as useless are
filtered in the LLC and performed directly in the main memory. For this purpose, it was first explored the reuse
locality [8] that the stream of references arriving at the LLC exhibits, unlike the temporal locality that exhibits
the stream of references arriving to the cache levels closer to the processor. Once verified and evaluated this
feature, it was exploited by using an element which is able to detect those blocks exhibiting reuse. This reuse
detector [9] is in charge of managing the LLC contents, so that the blocks predicted to be non-dead blocks are
inserted in the LLC while those predicted to be dead (i.e. non-reused blocks) bypass the LLC, hence reducing the
amount of writes to this level and also the corresponding energy consumption. For the evaluation of this
approach, the reuse detector, as well as the required modifications in order to adapt the coherence mechanism,
were encoded using the gem5 architectural simulator, where also the LLC was modeled according to STT-RAM
memory features. Then the proposal was evaluated using sequential applications and multiprogrammed

1 Full text available at: http://repositorio.conicit.go.cr:8080/xmlui/handle/123456789/207

JCS&T Vol. 17 No. 1 April 2017

85

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/84249531?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repositorio.conicit.go.cr:8080/xmlui/handle/123456789/207

workloads in a multiprocessor environment. Experimental results reveal that this content management technique,
applied to an STT-RAM LLC and compared to an STT-RAM LLC baseline where no reuse detector is
employed, reports energy reductions in the shared LLC of a multiprocessor system of around 40%, an additional
energy reduction of more than 6% in the main memory, and improves performance by 3-7% depending on the
specific features of the different multiprocessor systems evaluated. Also and more importantly, our scheme is
able to outperform DASCA, the state-of-the-art STT-RAM LLC management scheme [10], reporting LLC
energy savings of 5-10% more than DASCA and higher performance improvements (in the range 2-9%)
depending on the scenario evaluated.

Finally, in this work we have also developed a methodology for building the Miss-Rate Curve (MRC) of an
application [11]. The MRC reports an application’s cache occupancy on a given cache level (usually the shared
LLC in a multi-core scenario) vs. a certain metric related with performance, such as the number of Misses Per
Kilo Instructions (MPKI). Overall, our technique works as follows: By using PMCTrack [11] (an OS-oriented
PMC tool for the Linux kernel) we periodically gather the MPKI and, by making use of Intel’s CMT [12], we
collect the LLC occupancy of the co-running applications, thus obtaining different discrete MRC points. Note,
however, that when several applications share a cache, they may reach an equilibrium state in the distribution of
the cache. In that case, in order to obtain points in the whole range of cache sizes, we slow down co-runner
applications by applying duty-cycle modulation techniques to the cores where they run. This allows other
applications to increase their occupancy, which in turn, makes it possible for us to explore different MPKI values
for the whole cache size range. Then, when enough points have been collected, we apply regression analysis to
obtain the whole MRCs for the applications.

 In conclusion, we must highlight that it is possible to design architectural solutions that mitigate the
shortcomings of NVMs and facilitate their route to become the natural replacement of the exhausted
conventional technologies. By addressing this issue at different levels, it has been shown that PCM and STT-
RAM may be efficient alternatives to the usage of DRAM and SRAM as technologies of the main memory and
the last-level cache, respectively.

References
[1] M. K. Qureshi, S. Gurumurthi, and B. Rajendran, “Phase change memory: from devices to systems”,
Synthesis Lectures on Computer Architecture, vol. 6, no. 4, pp. 1–134, 2011.

[2] JL Hennessy and DA Patterson, Computer architecture: a quantitative approach. Morgan K. Pub, 2011.

[3] M. Chaudhuri, “Pseudo-LIFO: the foundation of a new family of replacement policies for last-level caches”,
in IEEE/ACM International Symposium on Microarchitecture (MICRO), 2009, pp. 401–412.

[4] C.J. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S. C. Steely, and J. S. Emer, “SHiP: signature-based hit
predictor for high performance caching”, in Int. Symposium on Microarchitecture, MICRO 2011, pp. 430–441.

 [5] A. Jaleel, K. B. Theobald, S. C. Steely, and J. S. Emer, “High performance cache replacement using re-
reference interval prediction (RRIP)”, in Int. Symposium on Computer Architecture (ISCA), 2010, pp. 60–71.

[6] R. Rodríguez-Rodríguez, F. Castro, D. Chaver, L. Piñuel, and F. Tirado, “Reducing writes in phase-change
memory environments by using efficient cache replacement policies”, in Design, Automation and Test in Europe
(DATE), 2013, pp. 93–96.

[7] R. Rodríguez-Rodríguez, F. Castro, D. Chaver, R. Gonzalez-Alberquilla, L. Piñuel, and F. Tirado, “Write-
aware replacement policies for PCM-based systems”, The Computer Journal, 58 (9), pp. 2000–2025, 2015.

[8] J. Albericio, P. Ibáñez, V. Viñals, and J. M. Llabería, “Exploiting Reuse Locality on Inclusive Shared Last-
level Caches”, ACM Trans. Archit. Code Optim., vol. 9, no. 4, 38:1–38:19, Jan. 2013.

[9] J. Díaz, T. Monreal, V. Viñals, P. Ibáñez, and J. M. Llabería, “Selección de contenidos basada en reuso para
caches compartidas en exclusión”, in Proceedings of the XXVI Jornadas de Paralelismo, ser, 2015, pp. 433–442.

[10] J. Ahn, S. Yoo, and K. Choi, “DASCA: Dead Write Prediction Assisted STT-RAM Cache Architecture”, in
International Symposium on High Performance Computer Architecture (HPCA), 2014, pp. 25–36.

[11] J.C. Saez, A. Pousa, R. Rodríguez-Rodríguez, F. Castro, M. Prieto-Matías: “PMCTrack: Delivering
Performance Monitoring Counter Support to the OS Scheduler”. Comput. J. 60(1): 60-85 (2017).

[12] K. Nguyen, Intel’s Cache Monitoring Technology Software-Visible Interfaces,
https://software.intel.com/en-us/blogs/2014/12/11/intels-cache- monitoring- technology- software\- visible-
interfaces, 2014.

JCS&T Vol. 17 No. 1 April 2017

86

