
Black-Box Testing Technique for Information
Visualization. Sequencing Constraints with

Low-Level Interactions
Mart́ın L. Larrea1

1Laboratorio de Investigación y Desarrollo en Visualización y Computación Gráfica, VyGLab, Departamento de
Ciencias e Ingenieŕıa de la Computación, Universidad Nacional del Sur, San Andres 800, Bah́ıa Blanca, Argentina,

mll@cs.uns.edu.ar

Abstract
The software development process has matured
significantly o ver t he p ast d ecade. W e are
currently in a state where the need for the
verification and validation o f the product under
development is unquestionable. Visualizations,
as software products, must go through such
verification a nd v alidation c ontrol. A t the
implementation level, a visualization software
is no different from any other software, its
source code can be verified a nd v alidated by
using any available white-box technique. The
usability studies and controlled experiments are
helpful to understand how the user perceives
and uses the visualization. However, at an
interaction level, a visualization software is not
like any other software. Most interactions on a
traditional software, are based on buttons and text
fields w hile o n a v isualization, t he interactions
are mostly based on zooming, selecting and
filtering visual e lements. The black-box techniques
found in the literature, also known as functional
tests, are not suitable for this context. This
paper describes a black-box technique tailored for
information visualization implementations. The
technique is built on constraints imposed over
the sequences of low-level interactions available in
the visualization and the User Action Notation.
Keywords: V isualization systems and software,
Software/Program Verification.

1 Introduction
Verification and Validation (V&V) is the process
of checking that a software system meets its
specifications and fulfills its intended purpose.
The software engineering community have ac-
knowledged the importance of V&V process to
ensure the quality of its software products. In
its essence, the process consists of selecting
elements from the program, module or function
input domain, executing the program with those
elements as input and comparing the actual
outputs with the expected outputs. Even though

the importance of the V&V process is well
known and documented, it has commanded a
partial attention in the information visualization
community.

A search on IEEE Xplorer, ACM Digital Library
and Google Scholar, with the query “visualization
testing verification validation” returns a list of
papers where the focus is not on the functional
testing of the visualization software. These
papers focus on the problem of evaluating
visualization system for effectiveness on user
experience. Without detracting from usability
testing, functional testing is crucial in any software
development. All visualization software must
be submitted to the V&V process, pointed out
by Kirby and Silva in [1]. On the other hand,
Graphical User Interfaces (GUI) Testing is a more
popular and developed topic. GUI Testing is a
system testing of a software that has a GUI front-
end. There are many research papers on this
topic ([2, 3, 4, 5, 6]). As discussed later, these
works are not well suited to the characteristics
of a visualization. We will focus in one GUI
testing technique in particularly, the User Action
Notation (UAN), as it is one of the basis of our
proposal.

The V&V process, also known as software
testing or just testing, is composed of V&V
techniques. There are many different V&V
techniques which are applicable at different stages
of the development lifecycle. The two main
categories of testing techniques are white-box and
black-box. In the first one, the testing is driven by
the knowledge and information provided by the
implementation or source code. In the second
one the specification of the software, module
or function is used to test the object under
review. Black-box testing is not usability testing;
Usability testing tests the extent to which a user
can learn to operate, prepare inputs for, and
interpret outputs of a system or component. Black-
box testing evaluates high-level design and the
customer requirements specification, to ensure the
system does what it is intended to do.

All black-box testing techniques, design its tests
cases based on the software specification. Some

Recceived 11 October 2017 / Revised 11 December
2017 / Accepted 21 February 2017

JCS&T Vol. 17 No. 1 April 2017

37

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/84249518?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

of these techniques involve the GUI components
of the software and the interactions with them.
Buttons, text fields and drop down list are
common elements among those GUI. Nonetheless,
a visualization constitutes a GUI by itself with
more components than a regular user interface.
Beside buttons and text fields, a visualization may
have glyphs, 3D or 2D visual objects that change
location or shape according to users interactions.
In these cases, the black-box techniques that rely
only on common GUI components are not suitable.

Those techniques which do not involve graphic
components, use decision tables ([7]) or other
forms of tabular representation to test the software.
Among those, there are very informal techniques
which are very difficult to methodize and rely
heavily on the tester goodwill. Others allow
systematizing the testing by using a formal
specification, which is very complicated to achieve
for a visualization ([8]).

A visualization software, at the source code
level, is just another piece of software and as
such, can be tested with any available white-
box technique ([9]). Furthermore, researchers
have investigated whether and how visualization
software features can improve the effectiveness and
user perception of information systems. However,
there are still challenges ahead, in particularly, the
black-box testing of information visualizations is
an uncharted area. If the visualization community
wants to embrace the V&V process as a way
to ensure the quality of their software products,
then we need to adapt existing techniques to this
context or to define new ones. To respond to this
gap, in this work a black-box technique based on
UAN and sequences of low-level interactions is
introduced.

We can identify two levels of interactions on
visualization, high and low-levels. High-level
interactions describe the reasons for the creation
of the visualization, the user goals. Different
authors describe different high-level interactions;
Kovalerchuk and Schwing established ([10]) three
high-level interactions: Illustrate, Reason and
Discover ; while Keller and Keller ([11]) described
nine. Low-level interactions are those provided
by the visualization to achieve the high ones i.e.
the user’s goal. Shneiderman ([12]) identified
seven low-level interactions: Overview, Zoom,
Filter, Detail on demand, Relation, History and
Extraction.

Low-level interactions exist at the implemen-
tation level of the visualization, while high-level
interactions are more abstract. Because we want
to design a testing technique for information
visualization implementation, this article focuses
on low-level interactions.

In the remaining parts of this article, we first

review the concepts of V&V in the software
development process as well as in the context
of visualizations. The following section provides
background V&V in general and applied to
GUI and visualizations. Then, we describe the
proposed technique, a black-box testing method
suitable for information visualizations. We
introduce 2 examples of the use of such technique
on existing visualizations. We conclude with a
brief discussion on limitations and advantages of
our approach and the proposed future work.

2 Background Review

2.1 Background on Verification & Val-
idation

Software testing is involved in each stage of
software life cycle, but how we test and what
we test on each stage of software development
is different, the nature and the goals of what is
being tested are different. Based on [13], there
are 8 types of testing in the life cycle: Unit
testing is a code based testing which is performed
by developers, this testing is mainly done to
test each and individual units separately. The
Unit testing can be done for small units of code,
generally no larger than a class. Integration
testing validates that two or more units work
together properly, and inclines to focus on the
interfaces specified in low-level design. System
testing reveals that the system works end-to-
end in a production-like location to provide
the business functions specified in the high-level
design. Acceptance testing is conducted by
business owners; the purpose of acceptance testing
is to test whether the system does, in fact,
meet their business requirements. Regression
Testing is the testing of software after changes
have been made to ensure that those changes
did not introduce any new errors into the
system. Alpha Testing is usually applied at the
developer’s site, with the presence of the developer.
Beta Testing is done at the customer’s site with
no developer in site. Functional Testing is done
for a finished application, its goal is to verify that
the system provides all the required behavior.

In the context of V&V, black-box testing is often
used for validation (i.e. are we building the right
software?) and white-box testing is often used
for verification (i.e. are we building the software
right?). In black-box testing, the test cases are
based on the information from the specification.
The software testers do not consider the internal
source code of the test object. The focus of these
tests is solely on the outputs generated in response
to selected inputs and execution conditions. The
software tester sees the software as a black box,
where information is input to the box, and the box

JCS&T Vol. 17 No. 1 April 2017

38

sends something back out. This can be done purely
based on the requirement specification knowledge;
the tester knows what to expect from the black
box to send out and tests to make sure that the
box sends out what it’s suppose to send out.

Oppositely, white-box testing, also called
structural testing, designs test cases based on the
information derived from the source code. White-
box testing is concern with the internal mechanism
of a system, it mainly focuses on the control flow
or data flow of the program. White-box and
black-box testing are considered to complement
each other. In order to test software correctly,
it is essential to generate test cases from the
specification and source code. This means that
we must use white-box and black-box techniques
on the software under development.

Each test technique, both white-box and black-
box, must describe a test model and, at least, one
coverage criteria. Test models describe how to
generate test cases, it can be a graph, a table or a
set of numbers. Coverage criteria are used to steer
and stop the test generation process ([14]), they
are usually boolean conditions. They have widely
accepted means of assessing the quality of a test
([15]). Both concepts will be revisited later, where
we will discuss a particular testing technique.

2.2 Background on Verification & Val-
idation in Visualization

In 2008, Kirby and Silva ([1]) stated the need to
incorporate the V&V process into the visualization
process. They said: To gauge the extent to which
verification already exists in the visualization
community, we reviewed papers from the past five
years (2003 to 2007) of the IEEE Visualization
conference (http://vis.computer.org). To establish
the extent to which the nomenclature is already
used, we searched the texts of these papers for
occurrences of “verify”, “validate” and other
forms of these words. Fewer than half of the
papers ever used any of these words, let alone
in the context of validation or verification. To
check whether these concepts exist, we reviewed
a subset of the papers in greater detail. While
many include sections presenting a logical and
mathematically sound derivation of their technique
and evaluation of their algorithms’ performance,
only a handful discussed concepts related to either
validation or verification. Those that did tend
not to adhere to any standard organization or
systematic methodology.

We extended the search Kirby and Silva did
and included ACM Digital Library, IEEE Xplorer
and Google Scholar up to 2015. We found
equivalent results; Xiaojun et. al ([16]) test
how users perceive visualizations, Koshman ([17])
talks about testing user interactions but he

actually does a test on user’s cognitive preattentive
processing. Aerts et. al ([18]) test the effectiveness
of two visualization techniques. These are some
of the works with titles that mention “testing”,
“verification” or “validation” and when reading
them, they were actually some sort of usability
evaluation. There were many more than explicitly
mention usability testing in their title.

Etiene’s work ([19, 20, 21]) on verifiable
visualization checks the mathematical calculations
involved in the visualization process. He stated
that visualization, scientific volume rendering
specifically, has not fallen under the same rigorous
scrutiny as other components of the pipeline like
mathematical modeling and numerical simulation.
These works are more related to a white-box
testing technique approach.

There is a significant effort into usability
and user experience testing in the context
of information visualization but no equivalent
endeavor into black-box techniques. If a
software is only tested by white-box and usability
techniques then this means that we are not doing
our best to ensure the quality of the final product.

2.3 Background on Verification & Val-
idation in GUI

Banerjee et al. ([2]) define the term GUI testing
to mean that a GUI based application, i.e., one
that has a GUI front-end, is tested solely by
performing sequences of events (e.g., “click on
button”, “enter text”, “open menu”) on GUI
widgets (e.g., “button”, “text-field”, “pull-down
menu”). From the user’s point of view, GUIs offer
many degrees of usage freedom, i.e., users may
choose to perform a given task by inputting GUI
events in many different ways in terms of their
type, number and execution order.

Banerjee et al. also provided a study of
the existing body of knowledge ([2]) on GUI
testing since 1991. Hellman et al. ([22])
presented a review of test driven development
of GUI and Memon and Nguyen ([23]) presented
a classification based on model-based GUI test
techniques.

Hellman et al. stated that GUI testing is very
difficult in part due to the degree of freedom GUIs
allow users. GUIs can enter a large number of
possible states in response to user input, and it is
often difficult to determine the validity of a given
state in an automated fashion. This becomes
more complex when we consider an information
visualization. Among the techniques reviewed by
Hellman et al. we can found Capture Replay Tools
(CRT), Invariant Based Testing and Model Based
Testing.

CRT techniques are based on recording the
mouse and keyboard activities as scripts in order

JCS&T Vol. 17 No. 1 April 2017

39

to replay them later. These techniques are not
suitable for information visualization because
visual elements are not always in the same place.
The same visualization technique on two different
data set will produce different representations. A
record from one representation will not work on
the other.

In Invariant Based Testing rules which define
expected or prohibited system behavior are
created. After each interaction with the GUI
elements, the invariants are checked. This
approach is based on knowledge of how the GUI
is implemented, so this is a white-box technique,
not the subject of our study.

Finally, Model-based testing requires the
generation of an intermediate version of the GUI,
either by reverse-engineering a working GUI or
generating one based on specifications. The main
disadvantage of this type of techniques is that a
model must be created and maintained. If the
model describes the GUI widgets, which vary a
lot during the development of an interface, then
the maintenance of the model will require a lot of
effort.

Memon and Nguyen ([23]) acknowledged
that quality assurance is becoming increasingly
important for GUIs as their functional correctness
may affect the quality of the entire system in which
the GUI operates. They presented 16 model based
testing techniques. These techniques require the
creation of a model, like a table, a graph or a tree
and an algorithm to create test cases based on
the model. As we said earlier, all models that
are based on GUI widget must be updated every
time there is a modification in the interface. The
advantage of model based testing is that, having
a model with a formal representation allows for
the use of an algorithm to create the test cases.
In many cases, this algorithm can be automated.

Banerjee et al. ([2]) developed a classification
scheme for 136 articles about GUI testing.
They concluded that there is a large focus
on model based testing in the literature, but
none of the commercially available tools are
model based. Most commercial tools are based
on CRT techniques. They saw this as a
signal of disconnection between researchers and
practitioners.

3 Our Proposal

Our goal in this work is to define a testing
technique suitable for information visualization,
focusing on a black-box approach. We want to
provide an easy to use methodology, with an
easy to read and understand representation of
the visualization’s interactions. More particularly,
we want a method that the developer or even

the user of the visualization can use, without
the need of a testing specialist. We want to
reduce the disconnection between commercial
tools and literature proposal, between researchers
and practitioners, mentioned by Banerjee et al
([2]).

Our proposal is based on two previous work,
User Action Notation and Sequencing Constraints.
Both concept are introduce in the following
subsections and then our technique for black-box
testing on Information Visualization is describe.

3.1 User Action Notation
User Action Notation (UAN) is a task and user-
oriented notation for behavioral representation
of asynchronous, direct manipulation interface
designs ([4, 6]). At the lower level, user actions are
associated with feedback and system state changes.
The notation makes use of visually onomatopoeic
symbols. UAN was created as a tool-supported
technique capable of specifying the behavioral
aspects of interaction systems, the tasks and the
actions a user performs to accomplish those tasks.

The example of UAN presented by Hartson et
al. ([4]) can be used here to clarify how it is used.
Consider the task moving a file icon, which can
be described in prose as:

1. Move the cursor to the file icon. Depress and
hold down the mouse button. Depressing the
mouse button selects the file, indicated by
the highlighting of its icon.

2. With the button held down, move the cursor.
An outline of the icon follows the cursor as
you move it around.

3. Release the mouse button. The display of the
icon is now moved to where you released the
button.

These actions are described in UAN as:

1. ∼ [file icon]M∨

2. ∼ [x, y]∗ ∼ [xÍ, yÍ]

3. M∧

The ∼ denotes moving the cursor, in this case
into the context of the file icon. M∨ represents
depressing the mouse button. In the second part
∼ [x, y] indicates movement of the cursor to an
arbitrary point x, y on the screen. The ∗ means
to perform, zero or more times, the task to which
it is attached. Thus, ∼ [x, y]∗ ∼ [xÍ, yÍ] means to
move the cursor to a succession of zero or more
arbitrary points about the screen, ending at the
point xÍ, yÍ. Finally, in the third, part the mouse
button is released.

JCS&T Vol. 17 No. 1 April 2017

40

UAN primary goal is the representation of the
behavior of the interactions and the system state,
in the interface development process. It was
not intended to use as a testing tool. It has a
rich symbolic alphabet and even allows for the
representation of the system state and its changes.
Its power of expression means that some simple
actions described in UAN can be difficult to read
and interpret.

3.2 Sequencing Constraints

In 1994, Kirani and Tsai ([24]) presented a
technique called Message Sequence Specification
that, in the context of an object oriented program,
describes the correct order in which the methods
of a class should be invoked by its clients. The
method sequence specification associated with an
object specifies all sequences of messages that the
object can receive while still providing correct
behavior.

Their strategy uses regular expressions to
model the constraints over the correct order of
the invocation of the methods i.e. the regular
expression is the test model. Method names
were used as the alphabet of a grammar which
was then used to statically verify the program’s
implementation for improper method sequences.
A runtime verification system identifies incorrect
method invocations by checking for sequence
consistency with respect to the sequencing
constraints.

If a class C has a method M1, this is noted
as CM1 . Sequence relationships between two
methods were classified into three categories,
sequential, optional and repeated. If the method
M1 of C should be invoked before the method
M2 of the same class, then this relationship is
sequential and is represented as

CM1•CM2

If one, and only one of the methods M1 and M2
can be invoked then this relationship is optional
and is represented as

CM1 |CM2

Finally, if the method M1 can be invoked many
times in a row then this is a repeated relationship
and is represented as

(CM1)∗

For example, if a class X has three methods
create, process and close, a possible sequencing
constraint based on Message Sequence Specifica-
tion could look like

Xcreate•(Xprocess)∗•Xclose

If class X is part of a larger system S, then
we could statically check the source code of S to
see if all calls to X’s methods follow the defined
grammar. If a static analysis is not enough, we
could implement a runtime verification system
that tracks all calls to X’s methods and checks

dynamically the sequence of calls against the
grammar.

This technique can also be used to test the
robustness of a system. Continuing with the
class X as an example, we can use the defined
grammar to create method sequences that are
not a derivation from the grammar, i.e. incorrect
sequences methods. These new sequences can be
used to test how the class handles a misuse. For
example, how does the class X respond to the
following sequence of calls:

Xcreate•Xclose•Xprocess

Testing with the sequences generated by the
grammar and with those that were not, are the two
techniques presented in [26] a work that extended
the research done in [24].

3.3 Testing Information Visualization
using Sequencing Constraints with
Low-Level Interactions

UAN is a suitable representation of the interac-
tions in a GUI and, in our case of interest, in a
visualization. But it has a complex alphabet and
its output is not easy to read. Kirani and Tsai
([24]) share multiple similarities with UAN, where
instead of working with GUI interactions they
used class methods. Their work does not hold the
same expressivity that UAN but it is clearer and
easy to interpret.

In this work, we propose a merge of them in
order to design a black-box testing technique for
Information Visualization. Ji Soo et al. ([25])
described a visualization system as a two-part
system, representation and interaction. They said:
“The representation component, whose roots lie
in the field of computer graphics, concerns the
mapping from data to representation and how that
representation is rendered on the display. The
interaction component involves the dialog between
the user and the system as the user explores the
data set to uncover insights.”

The user uses the interactions to express orders
to the visualization, the interactions work as a
language and as such they may have restrictions
or rules on how is used. Kirani and Tsai ([24])
idea of identifying the restrictions for the correct
order in which the methods of a class could be
invoked can be applied here. Our proposal is to
use the basis of what was originally design as a
white-box testing technique for object oriented
programs in order to develop a black-box testing
technique for visualization implementations.

3.4 Our Contribution

Instead of writing a sequence constraint on the
methods of a class, we will write a Sequence
Constraint on the Interactions (SCI). Each SCI

JCS&T Vol. 17 No. 1 April 2017

41

involves a set of binary or unary operators and
a set of symbols. For simplicity, for now on
the symbols will represent the actual interactions
available in the visualization. Following the work
by Kirani and Tsai ([24]), the operators will be:
Sequential: If an interaction I2 must always go
after the interaction I1 then there is a sequential
relationship among them, denoted as I1•I2.
Optional: If the user can choose between two
interactions, said I2 and I1, then there is an
optional relationship among them, denoted as
I1|I2. Note that in this case, the notation I2|I1 is
equivalent.
Repetition: If the user can use the interaction
I1 multiple times in a row, then it is a repetition.
Unlike the work done at [24] and [26], we introduce
two types of repetition, one that implies that at
least one time the user must use I1 and the other
that allows for zero appearance of I1. The symbol
∗ will be used to represent cardinality 0 or more,
and the symbol + will be used for 1 or more. If
I1 can be used zero or more times, then this is
represented as I1

∗; if I1 must be used at least one
time, it is expressed as I1

+. I1
+ is equivalent to

I1•I1
∗.

These elements can be combined to form
more complex expressions. If the user can use
one of three interactions multiple times, this
can be expressed as (I1|I2|I3)+. In this case
by using the symbol + we are saying that
at least one of the interactions must be used
once. Repetition operators have precedence over
Sequential and Optional operators. The Optional
operator takes precedence over the Sequential
one. Parentheses can be used to define the
interpretation of a SCI. Suppose we have three
interactions I1, I2 and I3, then the following SCI

I1
+•I2|I3

expresses that first we must consider the
Sequential operator, use I1 one or more
times and then we must choose between
using I2 or I3. By using parentheses we
can change the interpretation of the SCI

(I1
+•I2)|I3

In this case, we first consider the Optional
operator, we must choose between using I3 or
the expression between the parentheses.

We can use the symbols in the SCI to represent
more than the available interactions, we can also
use them to modularize expressions. Let us
imagine a visualization VX with six interactions,
Open, Pan, Zoom, Selection, Detail and Close.
Open represents the creation of the visualization,
from opening the source data to setting the
visualization process; when Open concludes the
user has the actual visualization on screen. Detail
represents detail on demand and can only be used
if the user selected something using Selection.

Pan and Zoom allow the user to explore the
visualization. The following grammar represents
the constraints over the sequencing of interaction
in VX , considering O for Open, P for Pan, Z for
Zoom, S for Selection, D for Detail and finally, C
for Close.

SCI for VX : O•(O|Z|P |(S+•D∗))∗•C
We can define two new symbols Selection&Detail
and MainInteraction, and redefine the SCI for VX :

Selection&Detail = S+•D∗

MainInteraction = O|Z|P |Selection&Detail
SCIforVX : O •MainInteraction •C

This grammar means that the first valid
interaction with VX is Open, then the user
can Open again or Zoom or Pan or Selection.
Note that if the user want Detail, first the
user must do at least one Selection. The
interaction with VX ends when the user ends
the visualization with the Close interaction. The
symbols Selection&Detail and MainInteraction
allow a clearer expression for such behavior.

3.5 Coverage Criteria

In V&V the term Coverage Criteria is a measure
or indicator of the amount of test to perform. In
other words, it answers the question “how much
test should we do?”. Each testing technique, black
or white-box, have its own indicator of Coverage
Criteria. A single technique may have many
Coverage Criteria and among them there is a
quality/complexity relationship. On one hand, we
find very simple criteria which will generate simple
test cases with a not too extensive coverage; while
on the other end, there will be complex criteria
that will generate very complex test cases. The
former detects fewer problems than the later.

With our proposal of Sequencing Constraints
with Low-Level Interactions there are two types
of test cases that we can generate, valid test cases
based on valid interaction sequences and invalid
test cases based on interaction sequences that
cannot be derived from the defined grammar.

Let I be the set of interactions available on the
visualization VX , and G, the SCI for VX using the
elements of I. Consider T to be the set of test cases
where each case is a sequence of the interactions
in I. With these elements, we can now introduce
the Coverage Criteria for Sequencing Constraints
with Low-Level Interactions. These criteria are
divided into two categories, as in [26], coverage
criteria for valid sequences and for invalid ones.
The criteria on each category were created for our
technique.

JCS&T Vol. 17 No. 1 April 2017

42

3.6 Coverage Criteria for Valid Se-
quences

Base Coverage: Let i is the minimum length of
valid sequences derived from G, then T satisfies
the Base Coverage Criteria if and only if T
contains all the possible sequences derived from
G of length i. If i equals 0 then T is an empty set
and satisfies the Base Coverage Criteria.

Base+1 Coverage: Let i be the minimum
length of valid sequences derived from G, then T
satisfies the Base+1 Coverage Criteria if and only
if T contains all the possible sequences derived
from G of length i + 1.

Base+n Coverage: This is a generalization
of the previous coverage. Let i be the minimum
length of valid sequences derived from G, then T
satisfies the Base Coverage Criteria if and only if
T contains all the possible sequences derived from
G of length i + n, where n >= 2. It is important
to note that G may impose limits on how large n
can be.

3.7 Coverage Criteria for Invalid Se-
quences

Invalid Coverage: T satisfies the Invalid
Coverage Criteria if and only if T contains all
the possible sequences of length 1 that are not
derived from G.

Invalid-2 Coverage: T satisfies the Invalid-2
Coverage Criteria if and only if T contains all the
possible sequences obtained from the combination
of 2 interactions of I but are not derived from G.

Invalid-n Coverage: T satisfies the Invalid-n
Coverage Criteria if and only if T contains all the
possible sequences obtained from the combination
of n interactions on I, where n >= 2, but are not
derived from G.

3.8 Examples of Coverage Criteria

Continuing with the SCI G defined for VX ,
G = O•(O|Z |P |(S+•D∗))∗•C ,

we can now generate test cases based
on the different criteria. Let T1
be a set of test cases as follows:

T1 = {O•C}
T1 does satisfy the Base Coverage Criteria

because G does not allow an empty sequence or a
sequence of length 1, and Open must always be
present at the beginning and Close always ends
the sequences. Because the middle of the SCI is
enclosed in ∗ we can consider it empty. So, the
smallest length for valid sequences from G is 2.
Then can expand T1 and create T2 as:
T2 = {O•C, O•O•C, O•Z•C, O•P•C, O•S•C}
T2 satisfies the Base+1 Coverage Criteria

because it contains all the possible sequences

Figure 1: Theme river visualization for the
migration of people within the United States

derive from G of length 3, which is +1 on the
smallest length possible. T2 also contains all
the possible sequences from G of length 2, so
it also satisfies Base Coverage Criteria. If we now
consider T3:
T3 = {O•C, O•Z•C, O•P•C, O•S•C, O•S•S•D}

T3 satisfies Base Coverage Criteria but does
not satisfy Base+1 Coverage Criteria because it
does not contain the (O•O•C) sequence, it neither
satisfies Base+2 Coverage Criteria as it only has
the sequence (O•S•S•D) of length 4.

These Criteria are based on the length of the
sequences of interactions. Some SCI will impose
an upper limit on that value but others may not.
When there is no limit on how long these sequences
can be, is up to the person using this testing
technique to decide how far to go.

4 Test Cases using Sequencing
Constraints with Low-Level In-
teractions

In this section we will use our technique to
generate test cases on two visualizations. The
chosen visualizations were part of the Best
Visualization Projects of 2014 by the Flowingdata
website1.

4.1 Where We Came From and Where
We Went

This visualization2 shows how people in the United
States have moved between states since 1900. As
Fig. 1 shows, the authors of the visualization
used a theme river technique ([27]) for the visual
representation of information. The site offers 51
visualizations, one for each state. The jump from
one visualization to another is achieved through a
selector on the top of the web page. The low-level
interactions are:

• Select Origin State: This is done by the
selector on the top. After choosing a state,

1http://flowingdata.com
2http://www.nytimes.com/interactive/2014/08/13/upshot/where-

people-in-each-state-were-born.html

JCS&T Vol. 17 No. 1 April 2017

43

the visualization will show in percentage
format, where the people born in that state
have move to.

• Switch to Out of State: This interaction
changes the visualization to show where those
who live in the selected state are from. It is
done by clicking a button.

• Detail: When the user moves the mouse over
the different rivers in the visualization, a pop
up box appears showing the exact percent
value at a specific time for a specific location.
This interaction is possible in the Origin State
and in the Out of State visualizations.

To do Sequencing Constraints with Low-Level
Interactions we will replace each interaction with
a simplified representation, Select Origin State
will be SO, Switch to Out of State will be LO
and Detail will be De. The visualization, as it
is presented in the website, start automatically
with where people born in California have move
to. There is no need to explicitly load the first
data set. There is no restriction in the order on
which of the three low-level interactions can be
used, this mean that the SCI for this visualization
is

(SO|LO|De)∗

4.1.1 Coverage Criteria for Valid Se-
quences

Because no interaction in this example is
obligatory, the minimum sequence of interaction
valid for this visualization is the empty sequence.
Because of this, the Base Coverage is achieved by
just running the visualization, i.e. without any
interaction. We access the website, and thus the
visualization appears with California as default
state. So the visualization behave correctly.

In order to achieve Base 1 Coverage we need
to provide a set of test T such as T contains all
the possible sequences of length 1 derived from
(SO|LO|De)∗. T1 satisfies this condition.

T1 = {SO, LO, De}
T1 means that we must execute the visualization

three times. The first time we change the origin
state and only do that, for example we chose
to change from California to Texas. On the
second run, we switch to Out of State. Because
the default state is California, we change the
visualization from “Where the people born in
California have move to”, to “Where are from
those who live in California”. On the final run
for T1 we use the interaction Detail. On the
visualization for California we position the mouse
on the vertical line corresponding to the year 1950,
in the Stayed in California river. In all three cases

the visualization behaves as expected, so we can
conclude that T1 was passed.

The following test set, T2 accomplish Base 2
Coverage and was also passed by the visualization
successfully.
T2 = {SO•SO, SO•LO, SO•De, LO•S, LO•LO,
LO•De, De•SO, De •LO, De•De}

4.1.2 Coverage Criteria for Invalid Se-
quences

Because the sequence constraints for this visu-
alization is (SO|LO|De)∗ there are no invalid
sequences. Hence, it is not possible to satisfy
any Invalid Coverage.

4.2 How the Recession Reshaped the
Economy

This visualization3 shows how during the ten years
following the great recession experienced in the
United States, 9 million lost jobs were recovered.

For the visual representation of information,
the authors chose a line graph, where each line
represents a different industry. The X-axis is used
for the level of wages, from lower to higher; and
the Y-axis is used from the number of jobs gain
or lost since the recession. Each line shows a time
period from 2004 to 2014.

This visualization is far more complex than the
previous one, in its content and interaction model.
We can divide the visualization into three parts,
where the set of available low-level interaction
on each part is different: the initial visualization
(Figure 2), the main one (Figure 3) and finally the
detailed representation (Figure 5).

The initial visualization (Figure 2) is the one
that appears when the user opens the visualization
web page. This a compact representation of the
main visualization. The Y-Axis is compressed in
order to gain space for the title and description.
Like the previous example, the data set is loaded
automatically when the user enters the website.
We can detect four low-level interaction in this
stage.

• Hover over line: This interaction works as
DetailOnDemand. When the user places
the mouse on any line in the visualization,
a small visualization appears showing more
detail about the industry in display. We will
use the symbol Hline for this.

• Go through the detail: When the user moves
the mouse over the small visualization created
by Hline, the information in it is updated
based on the position of the mouse within.
We will use the symbol D for this. Because

3http://www.nytimes.com/interactive/2014/06/05/upshot/how-
the-recession-reshaped-the-economy-in-255-charts.html

JCS&T Vol. 17 No. 1 April 2017

44

Figure 2: Visualization presented to the user
when he/she enters the website. It is a compact
representation of the main visualization.

Figure 3: The main visualization of how jobs were
created or lost during a ten year period on different
industries.

D must always go after Hline we will create
a new symbol Z = Hline•D∗. Z indicates
that the user can go through details after
placing the mouse over a line, and he/she can
go through details many times.

• Click Scroll & Mouse Scroll: These are two
interaction that allow the user to move to
the next part of the visualization. On the
bottom of the initial visualization there is a
label titled “Scroll” that when the user clicks
on it, changes to the main visualization. The
same effect is achieved by using the mouse
scroll. We will use Cscroll and Mscroll for
these ones.

The SCI for the initial visualization, called
Vinitial is

Vinitial = Z∗•(Sscroll|Mscroll)
This means that, once the user enters the website,
he/she can do as many semantic zooms as
wanted and then moves to the next part of the
visualization by clicking the scroll label or by
mouse.

The main visualization (Figure 3) expands the
Y-Axis of the previous one allowing a more clear
view of the different lines. It adds eight filters in
the form of circles on the top right corner of the
visualization, a description on how to read the
information which appears on the bottom right
corner and a description of the information on
screen, in the top left corner. The Click Scroll

interaction is no longer available but Mouse Scroll
is possible. Hover over line and Go through the
detail are available. The new low-level interactions
are:

• How to Read: When the user places the
mouse over the text in the bottom right corner
of the visualization a brief explanation of how
the visualization works appears. We will use
the symbol R for this. It is important to
notice that this interaction is only available
when the first filter is selected. The remaining
filters remove the legend.

• Hover Labels: Each filter is accompanied by
a description of the data on screen. On each
description, except for the first filter and
fourth filters, there are labels that open the
small visualization described earlier. This
action happens when the user places the
mouse over the labels. This interaction will
be represented by Hlabels.

• Click Next: Each description that appears
on each filter contains a “Next” label. When
the user clicks on it, the visualization moves
to the next filter. We will use the symbol
Cnext for this. We will add a new symbol
N = (Cnext|Mscroll).

• Filters: The eight available filters allow
the user to remove some elements from the
visualization in order to highlight others.
There are seven group of industries, each filter
shows one of those groups. The eighth one
shows all the industries (Figure 4). When
the first filter is selected, the user can do the
Z and R interactions; when the fourth filter
is selected the user can only do Z. When
the other filters are selected the user can
Z and Hlabels. The user can change the
visualization by selecting a different filter or
by Cnext or Mscroll. When the user does
Cnext visualizing the last filter on screen, the
visualization changes from the main one to
the detailed one. The symbols for the filters
will be F1, F2, F3, F4, F5, F6, F7 and F8.
In order to simplify the SCI we will use the
symbol f = F2|F3|F5|F6|F7.

The SCI for the main visualization is
Vmain = (F1 •(Z |R)∗ •N |F4 •Z∗ •N |f •(Z
|Hlabels)∗ •N)∗ •F8 •(Z |Hlabels)∗ •N

This means that if the user chooses the first filter
then Z and R are the available interactions, if the
fourth filter is selected then only Z is possible.
Filters 2, 3, 5, 6 and 7 allow the user to Z and
Hlabels. The eighth filter is handled differently
because when the user uses the N interaction, he
moves to the detailed visualization.

JCS&T Vol. 17 No. 1 April 2017

45

The final part of this visualization is the detailed
one (Figure 5). This visualization contains all the
small visualizations accessible in the main part.
There are two interactions available at this point,
Go through the detail and Mouse Scroll. There are
no new interactions possible at this point. The
SCI for the last part is Vdetailed = (D|Mscroll)∗.
This means that the user can scroll detailed
visualizations using the mouse or go through the
details on each small visualization.

The entire visualization is described by the SCI
V = Vinitial•Vmain•Vdetailed. This is
V = Zoom∗ •(Sscroll |Mscroll) •(F1 •(Z |R)∗

•N |F4 •Z∗ •N |f •(Z |Hlabels)∗ •N)∗ •F8 •(Z
|Hlabels)∗ •N •(D |Mscroll)∗

Figure 4: Eight filters are available on the main
visualization. Each one allows the user to visualize
a subset of industries.

Figure 5: All the small visualizations are listed in
the final part of the website. These visualizations
are divided into industrial categories.

4.2.1 Coverage Criteria for Valid Se-
quences

The minimum sequence of interaction valid for this
visualization is 3. A scroll as the first interaction,
then the selection of the last filter on screen and
finally, a click on the label “Next” or a mouse
scroll. The following test set T3 satisfies the Base
Coverage criteria. No errors were found when
executing T3.

T3 = {Cscroll •F8 •Cnext, Mscroll •F8 •Cnext,
Cscroll •F8 •Mnext, Sscroll •F8 •Mnext }

Valid sequences of length 4 are possible and the
following test set T4 contains all of them, satisfying
the Base+1 Coverage criteria. No error were found

when executing T4. There are valid sequences of
length 5 but they are too many to list in this
article.

T4 = {Cscroll •F8 •Cnext •D, Mscroll •F8
•Cnext •D, Cscroll •F8 •Mnext •D, Sscroll •F8
•Mnext •D, Cscroll •F8 •Cnext •Mscroll, Mscroll

•F8 •Cnext •Mscroll, Cscroll •F8 •Mnext Mscroll,
Sscroll •F8 •Mnext •Mscroll, Hline •Cscroll •F8
•Cnext, Hline •Mscroll •F8 •Cnext, Hline •Cscroll

•F8 •Mscroll, Hline •Cscroll •F8 •Mscroll}

4.2.2 Coverage Criteria for Invalid Se-
quences

The following test set Ti1 contains all the invalid
sequences of length 1 for the current visualization.
None of these sequences are possible when trying
to execute them in the website. Notice that Cscroll

and Mscroll are not present in the test set because
they are valid first interactions.

Ti1 = {Hline, D, R, Cnext, Hlabels, F1, F2, F3,
F4, F5, F6, F7, F8 }

A test set containing the invalid sequences of
length 2 will have close to 200 elements. As in
the case of the valid sequences of length 5, it is to
extensive to include in this article.

4.2.3 Test Cases Remarks

The last test cases showed the need for a tool to
assist in the creation of the test sets. For some
SCI the amount of sequences of interaction that
can be derive from it can grow exponentially. It is
our goal to develop a tool to create test sets based
on the SCI and Coverage Criteria.

5 Conclusions and future work

In this paper we have described a black-box
technique for testing information visualization
implementations. The technique is based on the
constraints found in the order in which low-level
interactions must be used in the visualization.
We presented several Coverage Criteria for valid
and invalid sequences. Black-box testing on
visualizations is an unexplored area, one that must
be considered in order to ensure the quality of
any visualization implementation. Our goal is
to start with the development of test methods
for visualizations, adapted for the needs and
requirements of the area. These methods that
can be used to provide a rigorous evaluation of
each visualization.

Future research must include the development
of a framework to test visualizations using the
proposed technique. Such framework should be
able to interact with any implementation for
runtime verification, that is to check the order
in which interaction are used at runtime against

JCS&T Vol. 17 No. 1 April 2017

46

the generated grammar. The framework must
also generate test cases based on the SCI for
the tester to used, valid and invalid sequences
using the Coverage Criteria. We must continue
investigating in order to achieve a framework with
the full support of automated testing.

Finally, the proposed technique should be
extended to include parameterized interactions.
As it was presented in this article, a SCI can
describe that, for example, before a Detail on
demand the user must do a Selection, but nowhere
it is said that the Detail on demand is performed
on the items selected by the Selection interaction.
This relation may seem trivial now, but a
parametrized technique will be more expressive,
and as such more powerful.

Acknowledgment

This work was partially supported by the
following research projects: PGI 24/N037 and
PGI 24/ZN29 from the Secretaŕıa General de
Ciencia y Tecnoloǵıa, Universidad Nacional del
Sur, Argentina.

References

[1] Kirby, Robert M., and Cláudio T. Silva. “The
need for verifiable visualization”. Computer
Graphics and Applications, IEEE 28.5, 78-83,
2008.

[2] Banerjee, Ishan, et al. ”Graphical user
interface (GUI) testing: Systematic mapping
and repository.” Information and Software
Technology 55.10, 1679-1694, 2013.

[3] Chang, Tsung-Hsiang, Tom Yeh, and Robert
C. Miller. ”GUI testing using computer vision.”
Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. ACM,
2010.

[4] Hartson, H. Rex, Antonio C. Siochi, and
Deborah Hix. ”The UAN: A user-oriented rep-
resentation for direct manipulation interface
designs.” ACM Transactions on Information
Systems (TOIS) 8.3, 181-203, 1990.

[5] Appert, Caroline, Michel Beaudouin-Lafon,
and Wendy E. Mackay. ”Context matters:
Evaluating interaction techniques with the CIS
model.” People and Computers XVIIIâĂŤDe-
sign for Life. Springer London, 279-295, 2005.

[6] A. C. Siochi and H. R. Hartson. Task-oriented
representation of asynchronous user interfaces.
In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI
’89), K. Bice and C. Lewis (Eds.). ACM, New
York, NY, USA, 183-188, 1989.

[7] Ferriday, C. “A Review Paper on Decision
Table-Based Testing”. Swansea University,
CS339-2007, 2007.

[8] Seo, K. I., Choi, E. M. “Comparison of five
black-box testing methods for object-oriented
software”. In Software Engineering Research,
Management and Applications, 213-220, 2006.

[9] Khan, Mohd Ehmer. “Different approaches to
white box testing technique for finding errors”.
International Journal of Software Engineering
and Its Applications 5.3, 1-14, 2011.

[10] Kovalerchuk, Boris, and James Schwing.
“Visual and Spatial Analysis”. Advances In
Data Mining, Reasoning, And Problem
Solving, 2005.

[11] Keller, Peter R., and Mary M. Keller. ”Visual
cues: practical data visualization”. Vol. 2. Los
Alamitos, CA: IEEE Computer Society Press,
1993.

[12] Shneiderman, Ben. ”The eyes have it: A
task by data type taxonomy for information
visualizations.” Visual Languages, 1996. Pro-
ceedings., IEEE Symposium on. IEEE, 1996.

[13] Jorgensen, Paul C. Software testing: a
craftsman’s approach. CRC Press, 2013.

[14] Weileder, Stephan. Test models and coverage
criteria for automatic model-based test
generation with UML state machines. Diss.
Humboldt University of Berlin, 2010.

[15] Friske, Mario, Bernd-Holger Schlingloff, and
Stephan WeiÃ§leder. ”Composition of Model-
based Test Coverage Criteria.” MBEES. 2008.

[16] Yuan, Xiaojun, Xiangmin Zhang, and Alex
Trofimovsky. ”Testing visualization on the use
of information systems.” Proceedings of the
third symposium on Information interaction
in context. ACM, 2010.

[17] Koshman, Sherry. ”Testing user interaction
with a prototype visualizationâĂŘbased in-
formation retrieval system.” Journal of the
American Society for Information Science and
Technology 56.8, 824-833, 2005.

[18] Aerts Jeroen , Keith C. Clarke, and Alex
D. Keuper. ”Testing popular visualization
techniques for representing model uncertainty.”
Cartography and Geographic Information
Science 30.3, 249-261, 2003.

[19] Etiene, Tiago, et al. ”Verifiable visualization
for isosurface extraction.” IEEE Transactions
on Visualization and Computer Graphics 15.6,
1227-1234, 2009.

JCS&T Vol. 17 No. 1 April 2017

47

[20] Etiene, Tiago, et al. ”Topology verification
for isosurface extraction.” IEEE Transactions
on Visualization and Computer Graphics 18.6,
952-965, 2012.

[21] Etiene, Tiago, et al. ”Verifying volume
rendering using discretization error analysis.”
IEEE transactions on visualization and
computer graphics 20.1, 140-154, 2014.

[22] Hellmann, Theodore D., Ali Hosseini-Khayat,
and Frank Maurer. ”Agile interaction design
and test-driven development of user inter-
facesâĂŞa literature review.” Agile Software
Development. Springer Berlin Heidelberg, 185-
201, 2010.

[23] Memon, Atif M., and Bao N. Nguyen.
”Advances in automated model-based system
testing of software applications with a GUI
front-end.” Advances in Computers, 121-162,
2010.

[24] Kirani, Shekhar H., and W. T. Tsai. Spec-
ification and verification of object-oriented
programs. Diss. University of Minnesota, 1994.

[25] Yi, Ji Soo, et al. ”Toward a deeper
understanding of the role of interaction in
information visualization.” Visualization and
Computer Graphics, IEEE Transactions on
13.6, 1224-1231, 2007.

[26] Daniels, F. J., and K-C. Tai. ”Measuring the
effectiveness of method test sequences derived
from sequencing constraints.” Technology of
Object-Oriented Languages and Systems, 1999.
TOOLS 30 Proceedings. IEEE, 1999.

[27] Havre, Susan, Beth Hetzler, and Lucy Nowell.
”ThemeRiver: Visualizing theme changes over
time.” Information Visualization, 2000. InfoVis

2000. IEEE Symposium on. IEEE, 2000.

JCS&T Vol. 17 No. 1 April 2017

48

