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High blood glucose and insulin concentrations, even if within the normal range, are associated with an increased
risk to develop type 2 diabetes and cardiovascular diseases. Dietary carbohydrates are the main determinants of
blood glucose levels in the postprandial period; therefore, the effects of dietary carbohydrates on human health
are strongly related to their rate of digestion in the small intestine. This has raised much interest on food prop-
erties able to retard carbohydrate digestion and absorption. This review is focused to examine food properties
which influence carbohydrate digestion in order to predict their potential influence on health markers. Among
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Blood glucose teins. In this respect particularly relevant is the type of starch present in the food, since amylose is slowly digested
Fiber by intestinal a-amylases while the digestion of amylopectin is faster. However, the food component that has the
Glycemic index strongest impact on digestion and absorption of dietary carbohydrates is dietary fiber that modulates the post-
Glycemic load prandial glucose rise by multiple mechanisms. In fact, dietary fibers may increase ingesta viscosity, thus delaying
the gastric emptying time and slowing both carbohydrate digestion and the rate of glucose transport to
enterocytes. In addition, they can influence the composition of the gut microbiota and induce the production
of short-chain fatty acids that beneficially affect glucose and lipid metabolism. In short, the knowledge of food
characteristics able to retard carbohydrate digestion and absorption in the intestine can help modify food prop-

erties with the aim of improving their functionality.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Dietary carbohydrates are the main source of energy in the human
diet; in addition, they are the main determinant of postprandial blood
glucose levels. In the last decades, the potential effects of carbohydrate-
rich diets on human health have been debated, due to some possible un-
toward effects on glycemic control and plasma lipid concentrations. In
particular, a high intake of refined carbohydrate foods has been associat-
ed to increased plasma glucose and insulin levels in the postprandial
period, an elevation of fasting and postprandial plasma triglycerides
and a reduction of HDL-cholesterol levels (Katan, Grundy, & Willett,
1997; Rivellese, Giacco, Genovese, et al., 1990; Riccardi & Rivellese,
1991; Sacks & Katan, 2002). A large body of evidence indicates that
blood glucose concentrations are an important and independent risk
factor for cardiovascular diseases (CVD) not only in diabetic patients
but also in individuals with normal fasting glucose values. The results
of a meta-analysis of prospective observational studies show that
both fasting and post-challenge glucose levels are associated with the
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cardiovascular disease (CVD) risk (Kodama, Saito, Tanaka, et al., 2012).
In particular, plasma glucose levels after an oral glucose load are a better
predictor of CVD risk than the fasting glucose values. In fact, in the fasting
condition plasma glucose concentrations are rather steady while in the
postprandial period glucose fluctuations occur and last a few hours, par-
ticularly in subjects with abnormalities of glucose metabolism, even if
asymptomatic. A higher postprandial glucose response, although within
the normal range, is associated with increased plasma insulin and lipid
levels that contribute to the development of endothelial dysfunction;
this, in turn, represents an early step of the vascular damage preceding
the formation of atherosclerotic plaques (Fig. 1) (Nitenberg, Cosson, &
Pham, 2006; Mah & Bruno, 2012). Since human beings consume at
least three meals per day, they spend a significant length of time in the
absorptive state. Therefore, in order to reduce the risk of CVD it seems
reasonable to try to limit blood glucose fluctuations in the postprandial
period.

Results of several studies, both in vitro and in vivo (animals and
humans), have provided important insights into the mechanisms by
which increased blood glucose levels may contribute to accelerate the
atherosclerotic process and increase CVD. Indeed, post-prandial incre-
ments of blood glucose levels, even in the normal range, can influence
not only plasma lipoprotein concentrations, but also their composition
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Fig. 1. Metabolic and vascular effects induced by increased postprandial blood glucose
levels. The dash line indicates normal fasting and postprandial blood glucose levels, the
solid line a disproportionally high blood glucose response to the meal. High postprandial
glucose and insulin levels induce an endothelial dysfunction that can eventually lead to
the disruption of the anatomical integrity of the arterial wall (atherosclerosis).

and metabolism; in addition, they increase the oxidative stress and the
production of advanced glycation end-products (AGE-proteins), all
involved in atherogenesis. Modified lipoproteins and glycation end-
products may be up taken by monocytes within the arterial wall trigger-
ing the atherosclerotic process (Fig. 2). High blood glucose levels can
also impair insulin secretion and sensitivity, thus contributing to a
further deterioration of plasma glucose levels and to the development
of type 2 diabetes. Moreover, they can induce subclinical inflammation
that contributes to insulin resistance and worsens the vessel wall injury
(Mazzone, Chait, & Plutzky, 2008).

However, it has to be underlined that carbohydrates are a heteroge-
neous class of nutrients and their metabolic effects are often different in
relation to their digestion and absorption. Therefore, the aim of this
review is to examine food properties which influence carbohydrate
digestion in order to predict their potential influence on health markers.
Moreover, knowledge of factors able to retard carbohydrate digestion
and absorption in the intestine can help modify food properties with
the aim of improving their functionality.

2. Nutritional classification of dietary carbohydrates

Carbohydrates are traditionally classified as mono-, oligo-, and poly-
saccharides on the basis of their chemical structure. However, a classifi-
cation based purely on chemistry is not adequate to predict their
different effects on health. Hence, a classification based on their ability
to be digested and absorbed in the small intestine, thus contributing
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Fig. 2. Potential mechanisms linking postprandial metabolic abnormalities to atherosclerosis.

directly or indirectly to the body carbohydrate pool (glycemic carbohy-
drates) is more appropriate. In this classification, carbohydrates that
are not digested and absorbed in the small intestine, namely dietary
fiber, are kept separate from glycemic carbohydrates (Englyst, Liu, &
Englyst, 2007).

Furthermore, glycemic carbohydrate intake is associated with an in-
crease of post-prandial blood glucose levels in a dose-response manner.
However, the majority of foods contain a mixture of glycemic and non
glycemic carbohydrates in different proportion; therefore, the size of
their hyperglycemic effect can be different according to the carbohy-
drate composition (both quantity and quality) of each specific food. In
fact, Jenkins et al., in 1981 showed that the consumption of three differ-
ent carbohydrate-rich foods - glucose, white bread and lentils - con-
taining the same amount of available carbohydrates, induced different
postprandial blood glucose responses in healthy volunteers, with the
lowest response for lentils, the highest for glucose and intermediate
for bread (Jenkins, Wolever, Taylor, et al., 1981). Based on the available
evidence, carbohydrate-rich foods have been classified based on their
effects on postprandial glycemia, as indicated by their glycemic index
(GI). This is calculated by dividing the incremental area under the
curve of blood glucose concentrations measured after the ingestion of
a 50 g carbohydrate portion of the test food by the incremental blood
glucose area achieved with a portion of a reference food (glucose or
white bread) containing the same amount (50 g) of carbohydrate; GI
is expressed as percentage (Jenkins et al., 1981).

Generally, fiber-rich foods have a low GI, even though not all foods
with a low GI necessarily have a high fiber content (Atkinson, Foster-
Powell, & Brand-Miller, 2008). The postprandial blood glucose response
is influenced not only by the GI of the food but also by the amount of
ingested carbohydrates. So the concept of glycemic load (GL = the GI
of a specific food multiplied by the amount of carbohydrate contained
in an average portion of the food consumed) has been developed to
better represent both the quantity and the quality of carbohydrate in-
take (Venn & Green, 2007). Each unit of dietary GL represents the equiv-
alent glycemic effect of 1 g carbohydrate from white bread that is used
as the reference food (Willett, Manson, & Liu, 2002).

3. Food characteristics and postprandial glucose rise

Delayed dietary carbohydrate digestion and absorption may have
significant beneficial implications for prevention and treatment of
metabolic disorders. Many factors may influence the digestion of carbo-
hydrates in the small intestine, including viscosity, the physical form of
the food, cooking methods and processing, the type of starch (amylose
or amylopectin), the presence of anti-nutrients and the amount of
fiber, fat, and proteins (Table 1).

Table 1
Food characteristics which may influence carbohydrate digestion and postprandial glucose
response.

Food characteristics Mechanisms

Viscosity (viscous fiber)
Physical form of the food

Delayed gastric transit time
Reduced accessibility of starch
to digestive enzymes

Amylose is digested lower than
amylopectin

Accessibility of starch

Amylose/amylopectin ratio

Cooking processes (drying/boiled
cooking, time and temperature)

Antinutrients (amylase and sucrose Inhibition of digestive enzymes
inhibitors)

Fiber Microbiota modification and

SCFAs* production

Stimulation of insulin release

Delayed gastric transit time/amylolysis

reduction

Protein content
Fat content

*SCFAs = Short Chain Fatty Acids.
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Viscosity plays a very important role in reducing postprandial
plasma glucose concentrations. Soluble fibers - when hydrated
(i.e., gel-forming) - increase the viscosity of digesta, thus reducing the
postprandial glycemic response (Dikeman & Fahey, 2006; Jenkins,
Kacinik, Lyon, & Wolever, 2010). The reduction in postprandial blood
glucose correlates with the viscosity of the meal and the gastric transit
time (Juvonen, Purhonen, Salmenkallio-Marttila, et al., 2009; Yu, Ke,
Li, Zhang, & Fang, 2014). In fact, beta-glucan from two sources of oat
concentrates affects postprandial glycemia in relation to its viscosity
(Panahi, Ezatagha, Temelli, Vasanthan, & Vuksan, 2007): the higher
is its viscosity, the greater is the magnitude of the effect. Moreover,
a high viscosity of oat bran-enriched beverages stimulates postprandial
satiety in healthy humans by increasing postprandial levels of glucagon-
like peptide 1 (GLP-1) and peptide YY (PYY) (two gastrointestinal
hormones related with satiety), decreasing postprandial ghrelin levels
(the hormone that stimulates hunger) and by delaying the gastric emp-
tying rate (Juvonen et al., 2009). In short, the beneficial effects of viscous
fibers on postprandial glucose levels are related to their ability to delay
both digestion and absorption of carbohydrates in the small intestine.

The importance of the physical form of the food in modulating
carbohydrate digestibility has been investigated in several studies. The
mastication of foods represents the first step in the process of carbohy-
drate digestion; in fact, chewing enhances salivation and mixes food
particles with salivary enzymes, thus initiating the hydrolysis of carbo-
hydrates in the mouth. Moreover, reduction of the particle size in-
creases the delivery of food from the stomach to the small intestine
and the rate of digestion: the larger surface area of masticated food
facilitates the access of carbohydrates to pancreatic enzymes. This
mechanism underlines the importance of the physical form in which
the food is delivered to the small intestine in modulating the glycemic
response (Read, Welch, Austen, et al., 1986). In fact, Golay et al.
(1986) evaluated the effect of processed beans consumption (contain-
ing 50 g of carbohydrate) on glucose response in type 2 diabetic sub-
jects. Beans were processed by two different cooking methods: one
maintained the integrity of the starch granules while the other one
disrupted their structure. The results showed that blood glucose and in-
sulin responses were significantly lower after the ingestion of beans
with the intact granular structure than those with ruptured starch
cells. This study suggests that the benefits of fiber-rich foods on post-
prandial glucose response depend not only on their viscosity but also
on their ability to reduce the accessibility of starch to digestive enzymes.
In fact, in natural fiber-rich foods starch granules are often surrounded by
fiber and this reduces their interaction with alfa-amylases, thus slowing
carbohydrate digestion. However, fibers, although important, are not
essential in relation to the modulation of starch accessibility. We have in-
vestigated this aspect in a study in which we evaluated the postprandial
glucose response of four starchy foods based on wheat: white bread,
toasted bread, pizza and potato dumplings, consumed in portion contain-
ing the same amount of available carbohydrates and similar for their
nutrient composition (Giacco, Brighenti, Parillo, et al., 2001). Plasma glu-
cose response was 30% lower after potato dumplings than after white
bread and other leavened products. Scanning electron microscopy of
potato dumplings showed a compact structure with starch granules
surrounded by a matrix of heat-denatured wheat protein and dispersed
starch, resembling that of pasta, another wheat food with a low GI; this
structure is compatible with impaired accessibility of starch to digestive
enzymes. In comparison, the structures of leavened products (white
bread, hard toasted bread and pizza) were much less compact, presenting
high porosity and smaller and more dispersed starch granules.

The nature of starch also influences its digestibility and the postpran-
dial glucose response. Starches high in amylopectin have been shown to
be digested more quickly than those high in amylose (Behall, Scholfield,
Yuhaniak, & Canary, 1989; Bjorck, Granfeldt, Liljeberg, Tovar, & Asp,
1994), likely because amylopectin has many more non-reducing
chain ends than amylose where digestive enzymes can grab hold of it
(BeMiller & Whistler, 2009).

Studies in vitro and in vivo have shown that cooking processes may
also influence starch digestibility (Wang & Copeland, 2013). Jenkins
et al. found that drying cooked red lentils in a warm oven for 12 h result-
ed in a significantly enhanced glycemic response and rate of in vitro
starch digestion compared with lentils boiled for 20 min and consumed
without any further processing (Jenkins, Thorne, Camelon, et al., 1982).
Therefore, the type and time of cooking may influence the in vivo and
in vitro digestibility of carbohydrate foods. In the cereal kernel starch
molecules are aggregated in semi-crystalline granules; starch becomes
soluble in water when heated. The granules swell and burst, the semi-
crystalline structure is lost and molecules start leaching out of the gran-
ule, forming a network that holds water and increases the mixture's vis-
cosity. This process is called starch gelatinization and makes the starch
more easily digestible. During cooking, the starch becomes a paste and
increases further its viscosity. During cooling of gelatinized starch,
starch molecules recrystallize, or retrograde. Retrograded amylose is
poorly digested by human amylases and concurs to the formation
of the so-called “resistant starch” (RS). Consumption of RS enriched
foods is associated with lower postprandial glycemic and insulinemic
responses (Li et al., 2010). Low processing temperature, low moisture
content, or inclusion of other ingredients in the intact product can
block the hydration of food starch, thus promoting RS formation. In ad-
dition, amylose is also prone to react with other food components
(Hoover, 2010): its coupling with lipids has been shown to reduce the
rate of amylolysis, both in vitro and in vivo (Buddrick, Jones, Hughes,
Kong, & Small, 2015) (Larsen, Rasmussen, Rasmussen, et al., 2000). In
fact lipids mechanically cover part of the starch granules, thus reducing
the ability of carbohydrate molecules to absorb water. This inhibits the
swelling of starch granules and their subsequent collapse or rupture,
and hence facilitates the formation of RS (recrystallization of the amy-
lose fraction) which appears to take place within hours of the gelatiniza-
tion of starch.

The application of new biotechnologies for manufacturing foods can
help retarding the digestibility of starch. This is the case of sourdough
fermentation with selected lactobacilli for production of bread. This
type of bread contains higher concentrations of resistant starch than
bread leavened with baker's yeasts alone; therefore its consumption
could contribute to reduce postprandial glucose levels (De Angelis,
Rizzello, Alfonsi, et al., 2007).

Another food component that may affect starch digestibility and
glycemic response is represented by anti-nutrients. It is well known
that amylase inhibitors decrease glucose absorption in rats and humans.
Indeed, amylase and sucrose inhibitors (o-glucosidase inhibitor and
a-glucosidase-hydrolase inhibitor) have shown to reduce the rate of
carbohydrate digestion and absorption and therefore they have been
used for the treatment of diabetes (Lee, Kaneko, Jutabha, et al., 2015).
Antinutrients are naturally present in vegetable foods and their concen-
tration may contribute to modulate the postprandial glucose rise.

Macronutrient composition of foods may also influence postprandial
glucose levels. Protein and fat reduce the glycemic response in a linear,
dose-dependent manner, with proteins having about 3-times the effect
of fat (Moghaddam, Vogt, & Wolever, 2006). This effect is likely due to
the ability of protein to stimulate insulin release, conversely, fat delays
the gastric emptying (Frid, Nilsson, Holst, & Bjoérck, 2005; Gentilcore,
Chaikomin, Jones, et al., 2006; Lodefalk, Aman, & Bang, 2008). These
mechanisms are mediated by gut hormones such as gastric inhibitory
polypeptide (GIP) and GLP-1 that stimulate insulin secretion; in this
respect an important role is also played by fatty acids and amino acids
that can influence insulin secretion directly or through the stimulation
of hormones of the entero-insulin axis (Moghaddam et al., 2006).

Finally, blood glucose response after a meal is modulated by
the amount and type of dietary fiber. As reported above, many studies
have shown that dietary fiber, particularly of the soluble type, signifi-
cantly reduces postprandial glucose levels and the average daily blood
glucose profile (Chandalia et al., 2000; Giacco, Parillo, Rivellese, et al.,
2000; Tosh, 2013). Moreover, they have beneficial effects also on fasting
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glucose metabolism; these effects are mediated by their fermentation
by gut microbiota and by their ability to influence the gut microbiota
composition.

4. Impact of dietary fiber on gut microbiota

Scientific evidence in animals and humans support the concept
that modification of the intestinal microbiota and changes in intestinal
permeability are potential triggers of inflammation in obesity and rep-
resent a risk factor for the development of type 2 diabetes (Hartstra,
Bouter, Backhed, & Nieuwdorp, 2015).

In genetically obese ob/ob mice caecal microbiota contain more
Firmicutes and fewer Bacteroidetes than lean wild-type strains, even
when mice are fed the same low-fat, polysaccharide-rich diet. Similar
changes have also been observed in humans comparing fecal microbiota
of obese and lean subjects (Ley, Turnbaugh, Klein, & Gordon, 2006).
Bacteroidetes levels increase when body weight is reduced, indepen-
dently from the diet composition, suggesting that Bacteroidetes may
be responsive to the energy intake. A similar effect has also been
observed in people who loose weight after bariatric surgery. In these
patients, levels of Bacteroides and Prevotella were inversely correlated
with energy intake and adiposity. However these results have not
been confirmed in all studies (Schwiertz et al., 2010).

Several cross-sectional studies in different populations suggest that
diet significantly impacts on the composition of the intestinal microbio-
ta. The landmark study by De Filippo, Cavalieri, Di Paola, et al. (2010)
demonstrated that children living in Burkina Faso, who consumed
high amounts of plant polysaccharides, had low levels of Firmicutes
and increased levels of Bacteroidetes — mainly Prevotella and
Xylanibacter — in their fecal microbiota compared with age matched
Italian children consuming a Western diet. Prevotella and Xylanibacter
degrade cellulose and xylans and are associated with increased fecal
short chain fatty acids (SCFAs) that have been linked with a beneficial
impact on glucose and lipid metabolism in many studies. High colonic
SCFA levels could also inhibit the growth of potentially pathogenic
Enterobacteriaceae, such as Shigella spp. and Escherichia spp., that
were significantly under-represented in fecal samples of the Burkina
Faso children. Other studies comparing people from rural societies
with individuals living in Western countries have confirmed a different
microbiota patterns and higher fecal levels of SCFAs in populations on
vegetarian diets as compared to people eating a western type of diet
(Wu, Chen, Hoffmann, et al,, 2011). In addition, intervention studies in
humans have clearly shown that supplementation of diet with oligosac-
charides, inulin and oligofructose confer benefits to the host intestinal
health by selectively stimulating growth of indigenous bacteria, partic-
ularly Bifidobacterium and/or Lactobacillus spp., reducing clostridia
and by increasing the concentrations of total SCFAs, (Roberfroid,
Gibson, Hoyles, et al.,, 2010; Whelan et al,, 2005).

SCFAs may induce beneficial metabolic effects through the enhance-
ment of mitochondrial activity, prevention of metabolic endotoxemia,
and modulation of liver gluconeogenesis and lipogenesis via different
routes of gene expression and hormone regulation (den Besten,
Havinga, Bleeker, et al., 2014; Cani, Amar, Iglesias, et al., 2007; Davie,
2003; Moreira, Texeira, & Ferreira, 2012). SCFAs, particularly acetate
and propionate, can modulate lipid and glucose metabolism and reduce
the appetite by hypothalamic satiety signals (De Vadder, Kovatcheva-
Datchary, Goncalves, et al., 2014). Most of the absorbed acetate and pro-
pionate reaches the liver (where it is largely oxidized) via the portal
vein, (Tremaroli & Backhed, 2012). Liver metabolic clearance of SCFA
is very high and so concentrations in the blood are about 100-fold
lower than those in colonic digest and feces (Topping & Clifton, 2001).
Looking at possible dietary approaches able to stimulate SCFA produc-
tion, we evaluated whether a 12-week consumption of a diet rich in
whole-grain products (mainly based on wheat) may influence the
production of SCFAs in subjects with the metabolic syndrome. In addi-
tion, we hypothesized a potential role of SCFAs in the modulation of

postprandial glucose and lipid metabolism. Our results show that after
12-week fasting propionate was increased in people who consumed
the diet rich in whole-grain as compared with the control group with
a clear significant correlation between cereal fiber intake and plasma
propionate levels. When the study population was stratified according
to the median value of fasting plasma propionate values, a reduction
of postprandial insulin levels was observed in subjects with high propi-
onate (values above the median value) as compared to subjects below
the median. These results suggest that cereal fiber may induce a rela-
tively fast modification of colonic microbiota that, in turn, increases
fiber fermentation and SCFA production (data unpublished). SCFA and,
in particular, propionate may contribute to the reduction of insulin con-
centrations (indicative of an improved insulin sensitivity) observed
when the whole-grain diet is consumed (Giacco, Costabile, Della Pepa,
etal, 2014).

In summary, the influence of dietary carbohydrate on glucose
and lipid metabolism is modulated by multiple dietary features
(macro/micronutrient composition, amount and properties of fiber
and food structure) that act at different levels of the gastrointestinal
tract: at the stomach level, delaying gastric emptying, in the small intes-
tine, slowing starch digestion and nutrient absorption, and in the colon
by changing the bacterial flora in favor of bacteria able to ferment fibers
and produce SCFAs. These in turn reach the liver via the portal vein
where they modulate glucose and lipid metabolism.

5. Clinical relevance of carbohydrate digestion in relation to glucose
and lipid metabolism

Epidemiological studies have shown that a diet based on
carbohydrate-rich foods with a high fiber content, particularly whole
grain products, and with low GI/GL may contribute to prevent the met-
abolic syndrome, type 2 diabetes and CVD (Rizkalla, 2014; Ye, Chacko,
Chou, Kugizaki, & Liu, 2012.). The Nurses' Health Study during a
follow-up of 6 years, reported an increased incidence of type 2 diabetes
by 2.5 in women who consumed a diet with a higher GL and a lower
cereal fiber content (Salmerén, Ascherio, Rimm, et al., 1997a). These
results were confirmed in a cohort of men of the Professional’ Follow-
up Study (Salmerdn et al., 1997b). However, up to now no intervention
studies have evaluated the potential of low-GlI, high-fiber diets to
reduce the risk of diabetes, although in studies aimed at diabetes pre-
vention by lifestyle modifications, an increase in fiber consumption
was often part of the intervention.

In relation to prevention of CVD, intervention studies evaluating the
effects of a low-GI diet on clinical events are not available; moreover,
the results of the few available intervention studies evaluating the
effects of GI on the cardiovascular risk factor profile are not always
concordant. However, a meta-analysis of clinical trials including healthy
participants and individuals with CVD, provides consistent evidence
that low GI diets reduce total and LDL-cholesterol levels (Goff,
Cowland, Hooper, & Frost, 2013). Furthermore, lipid improvements
appear greatest and most reliable when the low GI intervention is
paralleled by an increase in dietary fiber.

The best evidence of the clinical usefulness of GI is available in
diabetic patients in whom low-GI foods, particularly those rich in fibers,
have consistently shown beneficial effects on blood glucose control in
both the short and the long-term (Riccardi, Rivellese, & Giacco, 2008;
Rivellese, Giacco, & Costabile, 2012).

As reported above, the benefits of regular consumption of dietary
fiber, particularly from cereal sources, on type 2 diabetes and CVD risk
are mediated by multiple mechanisms including reduction of athero-
genic lipoproteins, body weight reduction, improved glucose metabo-
lism, blood pressure control, and reduction of chronic inflammation
(Cho, Qi, Fahey, & Klurfeld, 2013; Giacco et al., 2014; Satija & Huy,
2012; Streppel, Arends, van 't Veer, Grobbee, & Geleijnse, 2005;
Vitaglione, Mennella, Ferracane, et al., 2015; Ye et al., 2012). The bene-
ficial effects of diets rich in carbohydrate and fiber and with low GL
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are more evident in persons with diabetes because they have an im-
paired regulation of glucose metabolism, particularly in the postprandi-
al period and, therefore, are more sensitive to dietary carbohydrates. As
a matter of fact, an intervention comparing the effects of a diet rich in
carbohydrate and fiber (carbohydrate 53%, fiber 54 g) versus one rich
in carbohydrate but low in fiber (carbohydrate 53%, fiber 16 g) showed
that the presence of fiber improved blood glucose control (both 2 h
post-prandial glucose and mean daily glucose levels were significantly
reduced) and decreased the concentrations of atherogenic lipoproteins
(total and LDL cholesterol, total and VLDL triglyceride levels) in patients
with type 2 diabetes (Rivellese, Riccardi, Giacco, et al., 1980).

Further benefits of a high-carbohydrate/high-fiber diet have been
observed on postprandial lipid metabolism that is a well known risk
marker for CVD (Nordestgaard, Benn, Schnohr, & Tybjaerg-Hansen,
2007). Patients with type 2 diabetes have more pronounced postprandi-
al dyslipidemia, and this may account, at least in part, for their higher
rate of CVD, not completely explained by hyperglycemia and the classic
risk factors alone (Pastromas, Terzi, Tousoulis, & Koulouris, 2008). A diet
rich in carbohydrate and fiber, mostly based on legumes, vegetables,
fruits, and whole grain cereals, may be particularly useful for the treat-
ment of diabetic patients, because of its multiple effects on different car-
diovascular risk factors, including postprandial lipid abnormalities.
Beneficial effects on glucose metabolism of an increased consumption
of foods naturally rich in fiber with low GI were confirmed also in
type 1 diabetic patients by a long term (6-month) dietary intervention.
In this study the high-carbohydrate/high-fiber diet with low GI
decreased significantly mean daily blood glucose levels, glycated hemo-
globin and the rate of hypoglycemic events compared with a diet similar
for nutrient composition but low in fiber and with a high GI (Giacco
et al., 2000) (Fig. 3).

6. Conclusions

Postprandial glycemic and lipid responses are linked to the risk of
chronic diseases. The rate of digestion of dietary carbohydrates in the in-
testine plays a clinically relevant role in the regulation of post-prandial
metabolism. After a meal, glucose levels are modulated by the rate of
carbohydrate digestion in the small intestine and by fermentation of un-
digested carbohydrates in the colon. In fact, once carbohydrates reach
the colon, they have a beneficial impact on microbiota composition
and on SCFAs production, that contribute to the improvement of glucose
and lipid metabolism. This explains why a diet based on legumes,
vegetables, fruits, and whole grain cereals can induce a significant im-
provement of the cardiovascular risk factor profile, particularly in type
2 diabetic patients, and is able to reduce substantially the overall risk
of cardio-metabolic diseases.
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Fig. 3. Average postprandial glycemic responses in type 1 diabetic patients after two diets
similar for their nutrient composition and differing exclusively for their fiber content and
for their Glycemic Index. (A long-term randomized controlled study: 24 weeks, n = 63
patients) (modified from Giacco et al., 2000).

Knowledge of the mechanisms underlining digestion of carbohydrate-
rich foods is relevant in order to predict their influence on post-prandial
metabolism and, therefore, their impact on health; moreover, it can
help modify food properties with the aim of improving their functionality.
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