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Abstract  
This paper presents the general architecture of a multi-sensor GIS platform, i.e., fireGIS, which serves as a guideline 

for effective use of sensor data and geographic information in systems for fire incident management. The proposed 

platform allows the generation of real-time heatmaps that show the space-time distribution of fire risk levels across 

an area of concern based on multi-modal sensing. Such levels are to assist the decision makers in taking actions and 

aims at facilitating quick fire emergency response. Results of real fire experiments in a large-scale road tunnel show 

the feasibility of our approach. 
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Introduction 
Geo-data is stored and used almost daily in many 

organizations, i.e., Geo-ICT is in growing expansion 

and changing in nature. In the context of disaster 

management, location identification and GEO-ICT is 

becoming increasingly effective, having a major role in 

the decision making process [1]. However, the real 

utilization of geo-information, such as road/building 

maps and real-time traffic data, and its combination 

with geotagged fire incident data is still limited in the 

analysis of fire emergency situations [2]. Geographic 

reasoning about fire events from heterogeneous multi-

modal observations, i.e. the research topic of this paper, 

will help the fire crew in their decision-making process 

by fast on-site collaborative data collection and dynamic 

incident map creation on which space-time visual 

analysis can be performed [3]. 

The proposed fireGIS platform builds further on the 

multi-modal/multi-sensor fire detection work that has 

been performed at Ghent University during the past 

years [4, 5, 6] and extends it with the spatio-temporal 

mapping of the sensor data into real-time heatmaps that 

show the space-time distribution of fire risk levels. 

There are three major steps involved in the fireGIS 

process: (1) collection of low-cost multi-sensor data for 

the fire risk assessment, (2) fire maps creation and (3) 

spatio-temporal fire risk analysis. Within this paper, we 

will discuss each of these steps in more detail and 

illustrate their application by means of large-scale road 

tunnel fire experiments performed in Antwerp, Belgium 

by the end of 2014 (Figure 1). Real pool fires are ignited 

to analyze the propagation of the smoke and to show the 

smoke space-time spreading using the fireGIS platform. 

In these experiments, different types of cameras were 

used to monitor visibility-based smoke features.   

Before going into detail concerning the architecture 

of the fireGIS platform, we discuss the importance of 

smoke reading, which is facilitated by the platform.   

 
 

Figure 1 – fireGIS experiments at Craeybeckxtunnel 

in Antwerp, Belgium (November 2014).  
 

Smoke reading 

The location, the size, and the thickness of smoke 

can change the action plan for how to fight the fire. 

Furthermore, smoke is an important factor for 

evacuation of people. As such, reading smoke is 

essential for early warning and prediction of the fire 

behavior [7, 8]. By observing the spreading 

characteristics of smoke, firefighters can have a better 

understanding of the conditions that they will face. The 

speed of the smoke, for example, will give an indication 

about the pressure built up inside the building and the 

movement of the smoke will indicate if there is a large 

pressure inside. Combined with the turbulence this will 

give an impression of the possibility of a flash-over or 

ignition of the fire. However, not only the speed and 

movement but also the thickness of the smoke will give 

a lot of information about the fire. The smoke density or 

the thickness indicates if further burning is possible and 

with thick, black smoke, i.e., a very bad visibility, 

victims' chances of survival decrease rapidly. A low-

visibility will also make the work of a fire crew very 

hard to find the victims. A fast evacuation of these 

regions will be necessary to increase the chance to 

survive.  In this paper, the fireGIS platform will be used 

to automatically measure this visibility and visualize it 

on a spatio-temporal map of the environment.  
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General fireGIS architecture 
The general architecture of the fireGIS platform is 

shown in Figure 2. In order to start the fireGIS analysis, 

the platform needs to get metadata input about the 

sensors and the environment which needs to be 

monitored. For each of the available sensors, a link to 

the sensor data stream and the location information, i.e., 

position, orientation and field of view (FOV), needs to 

be registered in the fireGIS platform. In our tunnel 

experiments, this information was provided by the 

Agency for Roads and Traffic (AWV) and the Flemish 

Tunnel and Control Center (VTC). In Figure 3, an 

overview is given about the data which was provided by 

both agencies. It is important to remark that, in its 

current form, the data is difficult to import in the 

fireGIS architecture directly and some pre-processing is 

needed. In the future, better guidelines should be 

developed describing how to deliver this kind of data in 

an efficient way. Finally, the user also needs to choose 

on which mapping service, e.g., Google Maps and  

OpenStreetMap (OSM), the spatio-temporal fireGIS 

detection results need to be shown. 

Next, when all input is provided, the low-cost 

detection algorithms will start analyzing the data 

streams. In this paper, we only discuss the use of video 

data, but the generic character of the framework also 

allows other sensor types to be included. Subsequently, 

the single sensor detection results are projected to a 2D 

or 3D map of the environment using the location 

information of the sensors (Figure 3). In order to give an 

indication of the fire risk, different color codes ranging 

from green to red are used, corresponding to the 

detected smoke/visibility at each monitored 

point/region. For the tunnel experiments, mapping is 

done to a 2D representation of the environment, 

however, 3D mappings are also possible and have been 

investigated in previous work [9]. Finally, by analyzing 

the generated fire risk maps over time, a spatio-temporal 

analysis can be performed on the spreading of the fire. 

This can be very useful real-time information for fire 

incident management, but can also be used for post fire 

analysis and the validation/comparison with fire models.   

 

 
 

Figure 2 – Generic fireGIS architecture for spatio-

temporal fire risk analysis.  

 
 

 
 

Figure 3 – Sensor and environment input provided 

by the Agency for Roads and Traffic (AWV) and the 

Flemish Tunnel and Control Center (VTC). a) road 

map with sensor locations and b) links to sensor data 

streams and additional positioning/orientation 

information. 

 

Tunnel fire experiments 

Before going more into detail on the video fire 

detection (which was used to demonstrate the fireGIS 

platform), this section provides some additional 

information on the tunnel fire experiments.   

The Craeybeckxtunnel is a tunnel between Brussel 

and Antwerp (N 51.1005, E 4.2406) in Belgium. To 

investigate the impact of the ventilation system on the 

propagation of the smoke, real pool fire tests were 

performed by the end of 2014. Besides the monitoring 

of the visibility metrics and the fire spread in case of a 

car fire, the recorded video images can also be used for 

validation of CFD simulations, which were performed 

prior to the tests (as shown in Figure 4). It is also 

important to remark that the ventilation system in the 

tunnel is transversal to the drive direction. This is not 

common and gives the opportunity to analyze smoke 

movement in such circumstances.  

a 
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Figure 4 – Comparison of CFD temperature field 

and Craeybeckxtunnel video measurements.  
 

Prior to the tests, decisions were also made related 

to the fire power. On the one hand, the fire power 

needed to be limited to avoid severe damage to the 

tunnel. On the other hand, the power of the fire needs to 

be realistic to get a similar dynamic in the smoke 

movement. In our tests, a 20 minutes fire of 3 MW was 

generated, which was representative for a modern car 

fire between 4 and 6 MW [10].  

Different measurements were performed related to 

temperature, air flow and smoke/visibility. In this paper, 

however, we only focus on the latter one, since only the 

video sensors were able to monitor the whole tunnel for 

space-time fire risk analysis. In the next section, we 

describe the visibility-based algorithm that is used for 

measuring the smoke/fire risk level.     

 

Low-cost video smoke detection 
Video based fire detection with cameras is a hot 

topic that is discussed several times in literature over the 

past years [11]. However, the focus has mainly been on 

detection. The propagation of the smoke, the height of 

the smoke layer and the visibility is not commonly 

investigated with cameras. To further investigate these 

topics and to optimize the evacuation of casualties when 

a fire strikes, we evaluated several video-based visibility 

metrics in our tunnel experiments and developed a 

quantitative measure which can be used in fire incident 

management to adapt the tactics of the fire brigades.  

The most common features to detect the visibility in 

an image are based on analysis and classification of the 

brightness, saturation, and contrast pixel values [12]. In 

order to easily get these values, a conversion of RGB to 

HSV color space can be performed [13]. Additionally, 

the visibility can be measured by looking for the 

number/strength of visible edges in the image. If these 

edges are georeferenced, i.e., labelled with the real 

distance, it is also possible to say how far it is possible 

to see. In [14], for example, they use something similar 

to measure the sharpness of an image. If the number of 

edges in a particular image block is higher than a pre-

defined threshold value, then the block could be seen as 

a good visible part. In our work, the opposite approach 

could be used to detect a decrease in visibility, i.e., 

smoke. Finally, it is also possible to use frequency 

domain analysis techniques to measure the sharpness or 

visibility. Figure 5, for example, shows the Fast Fourier 

Transform (FFT) of two of the Craeybeckxtunnel video 

frames. A large spectrum contains less or no smoke, 

while a small spectrum could indicate smoke. In order 

to use each of these techniques, however, some video-

based training of the environment will be needed [15]. 

 
 

Figure 5 – FFT analysis of  Craeybeckxtunnel video 

frames. Upper images - no smoke; lower images - 

smoke and smaller spectrum.   
 

A flowchart of the proposed low-cost (i.e., 

computationally efficient) algorithm for video smoke 

detection is shown in Figure 6. The algorithm starts by 

converting the video to HSV color space and by 

filtering out the value (V) component. In this way, a 

change in lightning or a change in colors will not 

influence the algorithm [11]. Next, we use a Canny edge 

detector [16] to detect the prominent edges in V.  This 

edge detector uses Gaussian filtering and hysteresis 

tracking, to smooth the image, remove the noise, and to 

suppress the weakly connected edges. Subsequently, we   
 

 
 

Figure 6 - Low-cost video smoke detection algorithm. 



count the remaining bright pixels in the upper part of the 

image. This value gives a quantitative measure for the 

visibility in that region, i.e., an indication of the smoke 

level. We only focus on the upper part of the images, 

because of moving objects (like people and cars) in the 

lower part of the image, which can disturb the 

algorithm. Furthermore, smoke will rise, thus the upper 

part will contain most of the smoke.  Finally, we 

normalize the edge counts (using edge characteristics of 

the video training phase) and we calculate de smoke risk 

level ranging from 1 to 5, i.e., high visibility and no-

visibility respectively. Important to remark is that all 

these operations have a low computational cost, making 

it possible to process the video frames in real-time.  

The resulting smoke risk levels are stored in a 

comma-separated values (CSV) file, as shown in Figure 

7. For each camera that is used in the tunnel 

experiments, we generate a comma-separated object 

containing the position (latitude/longitude coordinates 

which are stored in the sensor metadata) and the smoke 

risk level at timestamp T. Based on this CSV file, the 

fire maps can be generated.   

  

 
 

Figure 7 – CSV files with detected smoke risk levels. 

For each timestamp T, the coordinates of the 

cameras and corresponding rosk levels are stored in 

comma- separated objects.  

 
Fire map generation 

In order to generate a 2D fire map of the smoke risk 

levels at timestamp T, we developed a dynamic 

JavaScript-based web page. The web page makes use of  

the Leaflet.heat and leaflet.js heatmap plugin, which is a 

tiny, simple and fast solution for heatmap generation, 

available from http://leafletjs.com. This plugin 

constructs a heatmap layer on top of a map given an 

array of latitude/longitude points and a point intensity, 

i.e., the smoke risk level in our tunnel experiments.   

Figure 8 shows two example of fire maps generated 

for the Craeybeckxtunnel tests using the heatmap 

functionality. As can be seen in the first example, only 

small central part of the tunnel has low visibility, while 

the other parts of the tunnel are still smoke-free. In the 

second example, smoke starts spreading towards both 

sided of the tunnel, indicating low visibility over the 

entire tunnel. This information can be very useful for 

fire incident management, such as evacuation planning.  

 
 

Figure 8 – Fire maps showing smoke risk level (i.e., 

low visibility) in Craeybeckxtunnel experiment.  

 

Spatio-temporal fire risk analysis. 

By analyzing the fire maps (shown in Figure 8) 

over time, it is possible to perform a space-time analysis 

of the smoke spreading and to get an idea about the 

direction, speed and thickness of the smoke at each 

point in time over the entire tunnel. This can facilitate 

the smoke reading and decision making, as discussed in 

the introduction of this paper.  

Using the CSV smoke risk data, the fireGIS 

platform can also plot temporal graphs of the smoke risk 

level (~ edge count) for each sensor region. Graph 1 and 

2, for example, illustrate this process, showing the 

temporal evolution of the edge counts for two different 

sensors that were placed in the middle and the end of 

the tunnel respectively. Results are shown for the same 

experiment (i.e., ventilation conditions).   

 

 
Graph 1 – Temporal evolution of edge counts  

(~ smoke risk level) in the middle of the tunnel. 

t= 80s 

t= 90s 



 
 

Graph 2 – Temporal evolution of edge counts  

(~ smoke risk level) in the middle of the tunnel. 

 
In the Craeybeckxtunnel experiments, these 

temporal graphs were also used to investigate the impact 

of the different ventilation configurations on the smoke 

risk level. Graph 3, for example, shows a comparison of 

the temporal smoke risk level between two different 

tests for the same sensor. In this way, the impact of the 

ventilation conditions can be analyzed in straight-

forward way, facilitating future decision making in case 

of a tunnel fire.      

 

 
 

Graph 3 – Comparison of the temporal smoke risk 

level between two different tests for the same sensor. 
 

Similar trends/evolutions as those shown in Graph 1-

3 can be detected by subjectively analyzing the 

combined, i.e., stitched, video images in Figure 9. 

However, objective results, as those shown on the heat- 

maps and temporal smoke risk graphs, are easier and 

much faster to interpret compared to video images in a 

fast decision making process. The video streams can of 

course help in the evaluation of the detection algorithms 

and for post-fire analysis purposes. 

 

Conclusions 
This paper presents the generic architecture of the 

fireGIS framework, which allows the generation of real-

time heatmaps that show the space-time distribution of 

fire risk levels. In order to show the feasibility of the 

proposed platform, real-fire experiments have been 

performed in a large-scale road tunnel. Video sensors 

have been used as input to feed the fireGIS system, and 

the visibility-based video fire detection results are 

mapped to spatio-temporal heatmaps. These maps can 

assist decision makers in taking actions and facilitate 

quick fire emergency response. Future work will focus 

on evaluating the genericity of the fireGIS framework 

with other/mixed types of fire sensors.      

 
 

 
 

 
 

 
 

Figure 9 - Combined video images for subjective 

evaluation of Craeybeckxtunnel experiments.  
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