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1 INTRODUCTION

ABSTRACT

Dust formation and the resulting mass loss around asymptotic giant branch (AGB) stars with
initial metallicity in the range 0 < Zj; < 10~* and initial mass 2 < My /M@ <5 are explored
by hydrodynamical calculations of the dust-driven wind (DDW) along the AGB evolutionary
tracks. We employ the MEsA code to simulate the evolution of stars, assuming an empirical
mass-loss rate in the post-main-sequence phase and considering three types of low-temperature
opacity (scaled-solar, CO-enhanced and CNO-enhanced opacity) to elucidate the effect on
stellar evolution and the DDW. We find that the treatment of low-temperature opacity strongly
affects dust formation and the resulting DDW; in the carbon-rich AGB phase, the maximum M
of Mini > 3 Mg stars with the CO-enhanced opacity is at least one order of magnitude smaller
than that with the CNO-enhanced opacity. A wide range of stellar parameters being covered,
the necessary condition for driving efficient DDW with M > 107° Mg yr~! is expressed
as effective temperature Ty < 3850 K and log(8cL/kr M) 2 10.43 log Toe — 32.33, with the
carbon excess 8¢ defined as ec — €(, the Rosseland mean opacity «g in units of cm? g~! in
the surface layer and the stellar mass (luminosity) M(L) in solar units. The fitting formulae
derived for gas and dust mass-loss rates in terms of input stellar parameters could be useful for
investigating the dust yield from AGB stars in the early Universe being consistent with stellar
evolution calculations.

Key words: stars: abundances —stars: AGB and post-AGB — ISM: abundances — dust, extinc-
tion.

richment even at redshifts z < 810, based on the dust yield of AGB
stars with initial metallicity Z;; = 1073 calculated by Zhukovska,

While the major source of interstellar dust in the early Universe
at redshift z 2 5 is believed to be core-collapsed supernovae (e.g.
Todini & Ferrara 2001; Nozawa et al. 2003), the possibility that
asymptotic giant branch (AGB) stars are an important source
of dust has been suggested and investigated. Dwek, Galliano &
Jones (2007) claimed that core-collapse supernovae (CCSNe) can-
not reproduce the dust mass of about 4 x 10% M in the high-
redshift (z = 6.4) quasar J11484-5251, unless the dust mass pro-
duced is much greater than that evaluated from the observations of
CCSNe in nearby galaxies or the dust destruction efficiency is much
lower than that inferred from theoretical calculations. Valiante et al.
(2009, 2011) have shown that AGB stars can contribute to dust en-
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Gail & Trieloff (2008).

So far, investigations of dust formation around AGB stars have
suggested that AGB stars with initial metallicity Z;,; < 10~ cannot
be assigned as the source of Si-bearing dust such as silicate, since the
abundance of silicon, scaled by the initial metallicity, is so small
as to prevent the formation of Si-bearing dust in the winds (Di
Criscienzo et al. 2013). Thus, only carbon dust is expected to form
around AGB stars with initial metallicity Z,; < 1073, owing to the
progressive enrichment of carbon in the surface regions, favoured
by repeated third dredge-up (TDU) events.

The upper limit on the initial mass of the star required to have
production of carbon dust during the AGB phases decreases with
decreasing Zj,;. This is because the core mass of the star is higher
when the metallicity is lower and when the core mass is above a
given threshold (~0.8 M) the stars experience hot bottom burning
(HBB: Renzini & Voli 1981), with the destruction of surface car-
bon. Di Criscienzo et al. (2013) have inferred that only low-mass

Published by Oxford University Press on behalf of the Royal Astronomical Society


mailto:e163053c@yokohama-cu.ac.jp
mailto:kozasa@sci.hokudai.ac.jp

1710  S. Tashibu, Y. Yasuda and T. Kozasa

stars of initial mass My < 1 Mg with Zy; < 107 can produce
carbon dust significantly and that AGB stars cannot be considered
as important dust manufacturers at Z,; < 10~*: this conclusion was
based on their calculation for Z;,; = 3.0 x 10~* and on stellar evo-
lution calculations with Z;;; < 2 x 1073 by Campbell & Lattanzio
(2008). On the other hand, Constantino et al. (2014) confirmed
that the mass threshold for HBB is different between models with
and without composition-dependent low-temperature opacity. Also,
even if stars experience HBB, these stars could become carbon-rich
after the cease of HBB, depending on not only the treatment of
low-temperature opacity but also the initial mass, as well as the
mass-loss rate during evolution (e.g. Ventura & Marigo 2010; Nanni
et al. 2013). Thus, the pros and cons of formation of carbon dust in
AGB stars with Z;; < 10 have yet to be explored by investigat-
ing how the treatment of low-temperature opacity affects the stellar
evolution and dust formation.

The formation of dust and the resulting mass loss around AGB
stars not only are determined by the abundances of dust-forming
elements in the surface layer, but also depend sensitively on the
effective temperature (see Gail & Sedlmayr 2013 and references
therein). In this context, the most relevant input for stellar evolu-
tion and dust formation is the low-temperature opacity. During this
last decade, it has been emphasized that the low-temperature opac-
ity varying with the change of surface elemental composition due
to TDU and HBB during the thermally pulsing AGB (TP-AGB)
phase strongly affects the evolution of stars with Z,; > 10~* (e.g.
Marigo 2002; Cristallo et al. 2007; Ventura & Marigo 2010; Con-
stantino et al. 2014; Fishlock, Karakas & Stancliffe 2014). In partic-
ular, these authors have demonstrated that a composition-dependent
low-temperature opacity makes the effective temperature decrease
drastically in carbon-rich (C-rich) stars, in comparison with the
scaled-solar opacity. Thus, it can be expected that the treatment of
low-temperature opacity directly influences the formation of dust
and the resulting dust-driven wind (DDW).

Dust formation around AGB stars is a complicated process, as-
sociated with the dynamical as well as the thermal behaviour of gas
above the photosphere; dust condenses in the high-density gas in-
duced by the shock originating from stellar pulsation, then mass loss
is driven by the radiation pressure force acting on the newly formed
dust (so-called pulsation-enhanced DDW: e.g. Fleischer, Gauger &
Sedlmayr 1992; Winters et al. 2000). Thus, dust formation has to
be treated self-consistently with the consequent gas outflow from
AGB stars, considering the periodic change of stellar properties
and the corresponding wind structure simultaneously. However,
most previous studies on the dust yields of low-metallicity AGB
stars (e.g. Ventura et al. 2012a, b, 2014; Di Criscienzo et al. 2013;
Nanni et al. 2013) have followed the scheme developed by Fer-
rarotti & Gail (2006), without solving the formation processes of
dust grains and the resulting density structure of outflowing gas self-
consistently; the dust yield has been evaluated from calculations of
dust growth in a stationary wind, given the number density of dust
seed particles and the mass-loss rate. Thus, the derived properties
of newly formed dust, such as the amount and the size, may suffer
ambiguities inherent in the treatment. Although self-consistent hy-
drodynamical calculation of the DDW for C-rich AGB stars with
subsolar metallicities has been carried out (Wachter et al. 2008), to
our knowledge so far no attempt has been made for AGB stars with
Zini < 107* in the early Universe.

In order to explore whether AGB stars can produce and supply
carbon dust in the early Universe, first we simulate the evolution of
stars with initial mass ranging from 2-5 M) with initial metallic-
ity Zini < 10~*. In the simulations, three types of low-temperature
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opacity (scaled-solar, CO-enhanced and CNO-enhanced opacity)
are considered, to clarify how the treatment of low-temperature
opacity influences the stellar parameters related to dust formation
during the AGB phase. Then, applying the calculated stellar parame-
ters along the evolutionary track of TP-AGB to the hydrodynamical
model of pulsation-enhanced DDW, we investigate the dependence
of the properties of dust and the DDW produced in the TP-AGB
phase on the treatment of low-temperature (surface) opacity, as
well as on the initial mass and metallicity. In addition, we evaluate
a necessary condition for realizing the DDW and derive the fitting
formulae for gas and dust mass-loss rates caused by the DDW in
terms of the input stellar parameters.

This article is organized as follows. In Section 2, we address the
stellar evolution model briefly, focusing on the tools implemented
in the Modules for Experiments in Stellar Astrophysics (MEsA) code
(Paxton et al. 2011, Paxton et al. 2013), and introduce the hydro-
dynamical model of pulsation-enhanced DDW used in this study.
Section 3 provides the results of stellar evolution calculations and
shows how the stellar parameters (e.g. effective temperature and
elemental composition in the surface layer) controlling the dust for-
mation and mass loss during the TP-AGB phase are affected by
the treatment of low-temperature opacity. Then, the dependence of
the dust formation and resulting mass loss during the C-rich AGB
phase on the low-temperature opacity, as well as on the initial mass
and metallicity, is presented in Section 4. In Section 5, a neces-
sary condition for producing an efficient DDW with mass-loss rate
M > 1076 Mg yr~! and formulae for the gas and dust mass-loss
rates are derived, and the implication on the evolution of AGB
stars and dust formation in the early Universe is discussed. A sum-
mary is presented in Section 6. The input stellar parameters of the
hydrodynamical calculations, as well as the derived properties of
the DDW with M > 1077 Mg yr~!, are tabulated for models with
CO-enhanced and CNO-enhanced opacities in Appendix A.

2 THE MODELS

The formation of carbon dust and the resulting mass loss around
AGB stars with Z,; < 10~ after the C-rich star stage is reached
are investigated through two separate steps: first, given the initial
mass and metallicity, the stellar evolution is simulated from the pre-
main-sequence to the end of the AGB phase. Secondly, the stellar
parameters roughly every 0.05 M, along the evolutionary track on
TP-AGB are applied to the hydrodynamical model of a pulsation-
enhanced DDW to evaluate the formation of carbon dust and the
resulting DDW in the C-rich AGB phase. Here, we describe briefly
the models used in these two steps.

2.1 Stellar evolution

We employ the MEsa code for the calculation of stellar evolution
models, evolved from the pre-main-sequence up to the end of the
AGB phase of stars with initial masses M, =2, 3,4 and 5 M, and
metallicities Z,; =0,1077,107%, 107> and 10~*. In addition to the
treatment of convection, we describe the low-temperature opacities
and the mass-loss formula implemented in the MESA code for the
purpose of the present study in the following subsections.

2.1.1 Convection

In the calculations, the standard mixing-length theory (MLT:
Cox & Giuli 1968) is applied to treat convection as a diffu-
sive process within convective regions, defined according to the



Schwarzschild criterion, V.4 < V.4, Wwhere V.4 and V.4 are the
adiabatic and radiative temperature gradient, respectively. In the
convective region involving nuclear burning, MESA solves the cou-
pled structure, burning and mixing equations, as detailed in Paxton
etal. (2011, Paxton et al. 2013). The mixing-length parameter oy 1
is set to be 2.0 as a standard value to reproduce the evolution of
the Sun. Overshooting expresses the physical concept of an expo-
nentially decaying velocity field beyond the convective boundary
and overshoot mixing is treated as a time-dependent, diffusive pro-
cess, with the overshoot-mixing diffusion coefficient defined as
Doy = DconvoeXxp (—2z/fHp), where Doy o is the MLT diffusion
coefficient at the boundary, z is the distance from the boundary, f
is a free parameter called the overshooting parameter and Hp is the
pressure scaleheight (Herwig 2000). For overshooting parameters,
we adopt f = 0.014 at all convective boundaries, except for the
bottom of the He-shell flash region, at which f is set to be 0.008
throughout the evolution after the first thermal pulse (TP), refer-
ring to Paxton et al. (2011); note that we adpot f = 0.014 at the
bottom of the convective envelope, instead of f = 0.126, since we
consider that the formation of a '3C pocket is not relevant to the
purpose of this article. We note that the MLT scheme leads to less
efficient HBB than the full spectrum of turbulence (FST) scheme
(Canuto & Mazzitelli 1991), as discussed by Ventura & D’ Antona
(2005). Thus, if the FST scheme were applied, less carbon dust
would be formed, since carbon burning by HBB would be much
stronger.

2.1.2 Low-temperature opacity

In order to clarify the role played by low-temperature opacities,
not only regarding stellar evolution but also in the formation of
carbon dust and resulting mass loss during the AGB phase, in the
MESA code we implement three types of low-temperature opacity:
(1) the scaled-solar opacity, with the elemental composition of met-
als scaled by the solar composition (Grevesse & Noels 1993) ac-
cording to the initial metallicity; (2) the CO-enhanced opacity, in
which the opacity is calculated according to the enhancement of C
and O abundances with respect to the scaled-solar values; (3) the
CNO-enhanced opacity, which also includes the variation of N with
respect to the scaled-solar value, besides the variation of C and O
abundances. Since the CN molecule dominates the Rosseland mean
opacity at low temperature, log 7 < 3.6 (Marigo & Aringer 2009),
the CNO-enhanced opacity is, among the three possibilities, the
most suitable one to describe the evolution of AGB stars.

The opacity tables are constructed using the &sopus tool
(Marigo & Aringer 2009) and are incorporated into the MESA code;
the tables consist of five grids of metallicity (Z = 107'2, 1077,
107, 10~ and 10~*), three grids of the mass fraction of hydrogen
(Xg = 0.50, 0.65 and 0.80) and 16 grids of the increment of the
mass fraction (0 < dX; < 9.72 x 107?) for element i (i = C, N and
0O). The grids of temperature 7 (in units of K) and the parameter
R = p/(T/10°)3, with gas density p in c.g.s. units, cover the ranges
320 < logT < 4.50 and —8.0 < logR < 1.0, respectively. Note
that we adopt the opacity tables for Z = 10~!? as representative of
Z = 0. For the high-temperature opacity (log T > 4.0), we adopt the
Opacity Project at Livermore (OPAL) type 2 opacities (Iglesias &
Rogers 1993, 1996) implemented in the MEsA code, accounting for
the enhancement of carbon and oxygen during the evolution. The
opacity in the range 3.8 < log T' < 4.0 is calculated by interpolating
linearly between the low- and high-temperature opacity tables at
a fixed log R.
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2.1.3 Mass loss

Mass loss during the evolution of low- and intermediate-mass stars
plays a decisive role in determining the efficiency of TDU and
HBB (e.g. Weiss & Ferguson 2009). In previous studies, empir-
ical and/or theoretical mass-loss formulae have been applied: for
example, Weiss & Ferguson (2009) applied the Reimers formula
(Reimers 1975) on the red giant branch (RGB) and the AGB with
pulsation periods P < 400 d and then the formulae proposed by van
Loon et al. (2005) for oxygen-rich (O-rich) AGB and Wachter et al.
(2002) for C-rich AGB; the formulae by Vassiliadis & Wood (1993)
and Blocker (1995) were adopted for the whole AGB phase in Fer-
rarotti & Gail (2006) and Ventura et al. (2012a,b), respectively.
Although the DDW mechanism has been believed to be plausible
for C-rich AGB stars in galaxies with solar and subsolar metal-
licities at the present time, we have no convincing knowledge of
whether intermediate-mass stars in the early Universe, with Z;,; <
10~*, can form carbon dust efficiently enough to drive mass loss on
the AGB.

The aim of this article is to reveal whether and in what conditions
the formation of carbon dust and the consequent DDW onset on
the AGB, as the first step to exploring the role of AGB stars as the
source of dust in the early Universe. Thus, we apply an empirical
mass-loss formula in the post-main-sequence phase for simplicity.
In this article, we adopt the formula by Schroder & Cuntz (2005,
hereinafter SCO5), since the formula reproduces the mass-loss rate
on the RGB reasonably; although the recent population synthesis
model of AGB stars in metal-poor galaxies prefers a modified SC05
as the mass-loss formula on the AGB before the onset of DDW, its
application on the RGB is questionable (Rosenfield et al. 2014).
The formula of SCOS is given by

S _ LR (T 33 - 1 0
s¢os =17 \ 4000K 43004 ) °

where the mass-loss rate is in units of M yr—!, the effective tem-
perature T is in units of K and the stellar mass M, luminosity
L and surface gravity g are in solar units. In the calculations, we
adopt the fitting parameter 7 = 8 x 107'4; the value of 7 is ad-
justed by fitting to the observed mass-loss rates of red giant stars in
globular clusters with different metallicities (SCO5), with which the
formula reproduces the observed mass-loss rates of Galactic giants
and supergiants well (Schroder & Cuntz 2007).

2.2 Dust-driven wind

Here, we describe the hydrodynamical model of a pulsation-
enhanced DDW by Yasuda & Kozasa (2012) employed in this ar-
ticle. The hydrodynamical model treats the nucleation and growth
processes of carbon dust in the gas lifted up by the pulsation shock
and the consequent DDW self-consistently. The model adopts the
scheme for the formation of carbon grains proposed by Gauger,
Gail & Sedlmayr (1990) and includes the decay process of dust by
heating due to backward radiation. Given the stellar parameters at
the photosphere (see below) at a given epoch during the AGB phase,
the model allows evaluation of the physical quantities related to dust
formation: the time evolution of the mass-loss rate, gas velocity and
condensation efficiency of carbon dust (defined as the ratio of car-
bon locked into dust to carbon available for dust formation), as well
as the amount and size distribution of dust particles in the wind,
together with their time-averaged values at the outer boundary of
the hydrodynamical model.

MNRAS 466, 1709-1732 (2017)
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The stellar parameters necessary for hydrodynamical model cal-
culations are the current stellar mass M, luminosity L, effective tem-
perature T, abundances of H, He, C, N and O, Rosseland mean
opacity kg in the photosphere, period Py and velocity amplitude
Auy, of pulsation. The temporal evolution of the stellar parameters,
except for the period and amplitude of pulsation, can be obtained
from the stellar evolution calculation. For the pulsation period, we
apply the formula for the fundamental radial mode of pulsation by
Ostlie & Cox (1986), which is given by

log Py = —1.92 — 0.73log M + 1.86log R, )

where Py is in units of days and the stellar mass M and stellar radius
R are in solar units. As for the velocity amplitude of pulsation,
little is known, as mentioned in Gail & Sedlmayr (2013), though
Wood (1986) have estimated it to be a few km s~!, by adjusting the
variable pressure at the inner boundary to a certain photospheric
density deduced from observations. Thus, in this article, Au, is
set to be 2 km s~! as a reference value. We address the reader to
Yasuda & Kozasa (2012) for details of the numerical schemes for
the formation process of carbon grains and the dust-driven wind.

In the calculations, we use the optical constants of astronomi-
cal graphite (Draine 1985) for carbon dust. The physical quantities
characterizing the dust formation and resulting DDW presented in
the following sections are specified by the values averaged over the
final 60 pulsation cycles at the outer boundary placed at 25 times
the initial stellar radius of the hydrodynamical model. Note that we
avoid calculations at the current stellar mass in the short time inter-
vals of TPs during the evolution, since convergence problems often
occur just after the onset of TP in the stellar evolution calculations,
as presented in the following subsection.

2.3 Convergence problem

During the stellar evolution calculation, we often come across con-
vergence problems just after the onset of TP, when the effective
temperature decreases down to ~3200 K. The failed convergency is
not caused by the dominance of radiation pressure in the convective
envelope, i.e. the small ratio of gas pressure to total pressure, 3,
but may be associated with the opacity, as argued by Karakas &
Lattanzio (2007). While investigation of the precise cause of the
convergence problems is postponed to a future work, in the present
calculations we avoid convergence difficulties as follows: we set
a minimum temperature (Tmin,0p) from just before the onset of TP
to the beginning of TDU and the low-temperature opacity is re-
placed with that calculated using Ty op in a region where the local
temperature is lower than Tiyin op-

This method might affect the TDU efficiency parameter X, de-
fined as the ratio between the mass dredged up after a thermal
pulse, AMpyp, and the increment of core mass during the preceding
interpulse phase, AM. (e.g. Herwig 2005); in the calculations of
model stars with CNO-enhanced opacity, for example, the largest
difference of A between successive TDUs with and without the con-
vergence problem is 0.24 for M, = 5 M@, with Z; = 10~*. Such a
degree of difference can be seen between successive TDUs with no
convergence problem. By setting the different values of log Trin,op
for the successive TDUs at M = 1.69 M, and 1.60 M, during the
evolution of Mj, = 3 M with Zi,; = 1077, the largest difference
of A reaches 0.404. However, only two models (M;,; = 3 M with
Zwi = 1077 and My, = 4 M with Zy; = 0) suffer such a large
increment at a TDU among the last few TDUs before the evolu-
tion calculation finally stops. In addition, the effective temperature
quickly changes in a short time interval of TP. Thus, we consider that
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the prescription for dealing with the convergence problem cannot
cause a serious issue against the aim of this article.

3 EVOLUTION OF LOW-METALLICITY AGB
STARS

Table 1 summarizes the stellar models and the calculated quantities
characterizing their TP-AGB phase: initial metallicity Z,;; type of
low-temperature opacity; final stellar (core) mass My ¢ (M. s); to-
tal number of TPs; total number of TDUs; threshold stellar mass
Mc)o - 1, defined as the mass of the star at the time after which
the C/O ratio in the surface layers keeps exceeding unity; maxi-
mum temperature at the bottom of the convective envelope during
the TP-AGB phase Tyce max; minimum effective temperature during
the interpulse phases Tesmin; final carbon excess (defined as §¢ =
€c — €o With €c (€¢) the abundance of C (O) by number relative to
H); and also the final mass fractions of C, N and O in the surface
layer. Note that ‘final’ does not always mean the end of the AGB
phase. The models that fail to evolve to the end of the TP-AGB
phase due to convergence problems are denoted by the superscript
f. Also, models undergoing HBB (weak HBB) during evolution are
specified by the superscript H (WH) attached to the value of Tice max-

How the difference in the treatment of low-temperature opac-
ity affects the evolution and structure of low-metallicity stars has
been analysed in the work by Constantino et al. (2014), aimed at
clarifying whether use of composition-dependent low-temperature
opacities is necessary for modelling the evolution of metal-poor
AGB stars. Here, we briefly address the effects of the treatment of
low-temperature opacity on the evolution of AGB stars in relation
to dust formation, primarily referring to the result of calculations
for Zy,; = 1077, In the C-rich envelope, the contribution of C,
and CN molecules to the opacity is enhanced around 7 = 3500 K
(see fig. 13 in Marigo & Aringer 2009). Thus, for a given set of
gas density and temperature, the value of low-temperature opac-
ity increases in the order scaled-solar, CO-enhanced and finally
CNO-enhanced. In what follows, a model star with scaled-solar
(CO-enhanced, CNO-enhanced) opacity is referred to as the scaled-
solar (CO-enhanced, CNO-enhanced) model.

3.1 CNO abundances and carbon excess ¢ in the surface layer

Fig. 1 shows the effects of the treatment of low-temperature opacity
on the evolution of the mass fractions of C, N and O (left panel) and
the carbon excess 6¢ and the C/O ratio (right panel) in the surface
regions of stars with Mj,; = 2 (top), 3 (middle) and 4 M, (bottom)
with Z;,; = 1077,

The star with M;y; = 2 M and Zy; = 1077 becomes C-rich
after the first TDU and the final carbon excess 8¢ exceeds 0.001,
regardless of the treatment of low-temperature opacity. This holds
for all the 2-M ) models with Zi; < 10~* (see Table 1). ¢ and the
surface mass fractions of C and O increase with time and become
larger in decreasing order of the values of the low-temperature
opacities. On the other hand, without HBB the surface mass fraction
of N during the TP-AGB phase is not affected by the treatment of
low-temperature opacities. Also, the C/O ratio declines quickly after
first TDU and then converges to a constant, larger than 10, almost
independent of the type of low-temperature opacity.

The 4-M models with Z;,; = 1077, regardless of the treatment
of low-temperature opacity, undergo HBB after several TDU events
(see the bottom left panel of Fig. 1). While 8¢ increases with time
during the initial AGB phases following the first TDU, the mass frac-
tion of N (C) in the surface regions increases (decreases) quickly
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Table 1. Models and characteristic quantities during AGB phase: initial metallicity Ziyi, type of low-temperature opacity (ksolar» Kco and xcno denote
scaled-solar, CO-enhanced and CNO-enhanced opacities, respectively), final stellar mass Mo in solar units, final core mass M.y in solar units with the
superscript ‘f* for those models that fail to evolve to the end of AGB phase, total number of TPs Ntp, total number of TDUs Ntpy, stellar mass below which
C/O > 1 Mcjo - 1 in solar units, maximum temperature at the bottom of convective envelope during interpulse phases Tpce max in units of 10° K with the
superscript H (WH) for the models that experience HBB (weak HBB), minimum effective temperature during interpulse phases Teffmin in units of K, final
carbon excess §¢r X 10* and the mass fractions of C, N and O in the surface layer X¢(C), Xf(N) and Xr(O), respectively. Note that the models of Mjn; =5 Mo
with Zipi = 0 and 1077 are excluded, since the star does not form carbon dust without undergoing TDU on TP-AGB.

Zini K Mtot,f Mc,f NTP NTDU MC/O>1 Tbce,max Teff,min 5c,f X 104 Xf(C) Xf(N) Xf(o)
Mini = 2.0M;

107 Ksolar 0.695  0.695 20 19 1.88 10.0 3927 49.4 420 x 1072 1.68 x 107%  4.74 x 1073
10~* Kco 0.692  0.692 17 16 1.88 7.24 3254 22.0 202x 1072 522x 1070 229x 1073
10°*  keno  0.6907  0.690 17 16 1.88 6.92 3136 255 232x 1072 597 x 1075 263 x 1073
1070 Kolar 0.698  0.698 17 16 1.84 10.0 3974 35.8 312 %x 1072 347 x107* 328 x 1073
1073 KCo 0.695  0.695 15 14 1.84 7.60 3439 24.1 216 x 1002 3.15x 107* 221 x 1073
1075 keno  0.6897  0.689 13 12 1.84 6.04 2939 22.0 200x 1072 294 x107*  2.09 x 1073
107 Kgolar 0.707  0.707 17 17 1.83 10.0 3980 25.7 225%x 1072 3359x107* 227x 1073
107 Kco 0.703  0.703 16 16 1.83 8.07 3575 20.2 179 x 1072 396 x 107*  3.02 x 1073
10 keno  0.699  0.699 14 14 1.83 6.17 3059 14.5 131 x 1072 326 x107% 133 x 1073
1077 Ksolar 0712  0.712 20 18 1.81 10.4 3984 23.5 204 %1072 2.08x107* 2.11x1073
1077 KCo 0.711 0.711 17 16 1.81 8.45 3627 18.8 1.65x 1072 211 x107% 172 x 1073
107 keno 0707 0.707 17 14 1.81 6.79 3153 15.0 134x 1072 198 x107* 142x 1073
0 K solar 0.727  0.727 26 16 1.76 10.7 3990 214 179 x 1072 270 x 1074 1.72 x 1073
0 Kco 0726 0726 25 14 1.76 9.02 3695 14.5 124x 1072 223 x107* 118 x 1073
0 keno 0723 0.723 23 13 1.76 7.43 3272 12.6 1.08 x 1072 221 x107%  1.03 x 1073
Mini = 3.0M®

107%  Kolar 0.823  0.823 29 27 1.64 74.8H 3912 16.1 156 x 1072 1.84 x 1072 4.05x 1073
1074 Kco 0.828  0.827 29 27 1.67 74.3H 3521 13.7 135x 1072 1.75x 1072 3.50 x 1073
10°*  keno 112V 0.828 28 26 2.75 56.9WH 2693 21.6 1.95x 1072 149x 1073  220x 1073
1070 Kolar 0.820  0.819 28 26 1.56 73.6H 3960 19.9 1.87 x 1072 190 x 1072 4.44 x 1073
1073 Kco 0.868" 0818 29 26 1.58 73.20 3660 13.1 131 x 1072 1.82x 1072 3.65x 1073
1075 keno 11220 0822 26 24 2.68 56.0WH 2698 22.0 197 x 1072 9.89 x 107*  2.09 x 1073
107  Kgolar 0.815  0.815 28 26 1.66 72.2H 3969 19.3 178 x 1072 187 x 1072 4.15x 1073
107 Kco 0.817 0817 28 26 1.70 7174 3685 17.5 1.62x 1072 177 x 1072 3.61 x 1073
10  keno 15100 0.820 24 22 2.60 53.9WH 2873 18.2 1.61 x 1072 562 x 107% 147 x 1073
1077 Kksolw 0816 0816 28 27 1.66 71.51 3980 224 193 x 1072 190 x 1072 3.86 x 1073
1077 Kco 0.820  0.819 28 27 1.79 71.14 3726 18.4 1.61 x 1072 180 x 1072 321 x 1073
107 keno 10727 0.828 27 26 2.57 47.8WH 2883 223 1.88x 1072 355x107% 1.77 x 1073
0 K solar 0.805  0.805 40 37 2.55 61.0WH 4011 16.2 130 x 1072 149 x 1072 235x 1073
0 Kco 0.807  0.807 40 37 2.55 50.3WH 3543 27.0 204 %1072 772x107* 188 x 1073
0 keno 11957 0.798 32 31 2.55 31.9 2997 212 1.62x 1072 375x107% 155 x 1073
Mini = 4.0M®

107%  keolr 09147 0.880 36 34 1.50 87.7H 3928 13.5 1.17x 1072 171 x 1072 273 x 1073
1074 Kco 0.968  0.882 36 34 1.57 87.74 3659 10.4 931 x 1073  1.67x1072 238x 1073
10°*  keno 1237 0.882 36 35 1.90 87.0H 2868 7.62 704 x 1073 141 x1072 183 x 1073
1075 Kolar 0.878  0.878 36 33 1.56 87.0H 3968 15.4 130 x 1072 1.68 x 1072 2.66 x 1073
1073 Kco 0918 0.878 36 33 1.64 86.9H 3768 11.9 1.04 x 1072 1.65x 1072 231 x 1073
105 keno 12700 0.878 35 33 1.92 86.2H 2915 6.75 631 %1073 142x1072 170 x 1073
107 Keolar 0.862  0.861 36 33 1.59 84.3H 3975 16.4 137 x 1072 177 x 1072 268 x 1073
10-° Kco 0.862  0.862 36 33 1.62 84.2H 3774 15.0 126 x 1072 1.72x 1072 246 x 1073
107 keno 12360 0.859 35 33 1.94 83.3H 2882 7.42 6.89 x 1073 153 x1072 181 x 1073
1077 Kolar 0.858  0.857 37 32 1.57 83.5H 3982 16.4 1351072 1.80x 1072 268 x 1073
1077 Kco 0.893  0.857 37 32 1.62 83.4H 3785 13.0 1.09 x 1072 173 x 1072 224 x 1073
1007 keno 1196 0.855 35 33 1.98 82.5H 2860 8.50 764 %1073 152x1072  1.92x 1073
0 K solar 0.832  0.832 44 41 1.64 79.4H 4019 9.16 777 x 1073 226 x 1072 252 x 1073
0 Kco 0.833  0.833 45 41 1.64 79.2H 3834 8.79 746 x 1073 223 x 1072 240 x 1073
0 keno 11937 0.835 44 41 2.12 77.9H 2867 8.43 704 x 1073 1.80x 1072 1.96 x 1073
Mii = 5.0Mg

107*  keolr 11337 0.969 44 41 1.53 101H 3984 6.59 6.55x 1073 159 x 1072 258 x 1073
104 Kco 1.066/ 0971 45 36 1.59 100" 3777 7.88 748 x 1073 153 x 1072 2.64 x 1073
10°*  keno 13297 0.968 44 41 1.73 100H 3096 4.49 496 x 1073 143 x 1072 235x 1073
1070 kol 10547 0.947 42 37 1.51 98.2H 3985 9.15 831 x 1073  1.63x1072 264 x 1073
1073 Kco 1.019°  0.947 42 38 1.56 97.9H 3837 10.0 897 x 1073 1.62x 1072 276 x 1073
107 keno 12427 0945 42 38 1.77 97.5H 3073 5.65 577 %1073 150 x 1072 240 x 1073
107 ke 1.0400  0.941 44 35 1.51 98.2H 3985 9.60 863 x 1073  1.62x 1072 260 x 1073
10-° Kco 0.994"  0.942 45 36 1.56 98.3H 3849 11.0 961 x 1073 159 %1072 267 x 1073
107 keno 1317 0.941 44 35 1.77 98.0H 3076 4.97 525x 1073 148 x 1072 222x 1073
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Figure 1. The effect of low-temperature opacity on the temporal evolution of mass fractions of C, N and O (left panel) and carbon excess §c and C/O ratio
(right panel) in the surface layer for M;y; = 2 (top), 3 (middle) and 4 Mo (bottom) stars with Ziy; = 10~7. The scaled-solar, CO-enhanced and CNO-enhanced
models are coloured in black, blue, and red, respectively. The mass fraction of C (N, O) is denoted by the solid (dashed, dotted) line in the left panel and 8¢

(C/O ratio) by the solid (dotted) line in the right panel.

after the onset of HBB. Thus, the combination of TDU and HBB
makes the elemental composition in the surface regions C-rich and
O-rich alternately. However, HBB ceases after the stellar mass re-
duces to 1.57, 1.62 and 1.98 M, for the scaled-solar, CO-enhanced
and CNO-enhanced models, respectively. Consequently, the subse-
quent TDUs cause the stars to be C-rich again and §¢ as well as the
C/O ratio to increase monotonically with time. The carbon excess
8¢ in the surface region is more enhanced in the CNO-enhanced
model with the largest threshold mass Mc/o - | than in other opac-
ity models at the same current stellar mass. Although the details
depend on the initial metallicity, this behaviour holds for all the
4-M@ models with Zi;; < 10~* and the 5-M@ models with Z;;

> 107%; TDU is not experienced during the TP-AGB phase in the

MNRAS 466, 1709-1732 (2017)

models with Mi,; = 5 M with Z;;; = 0 and 1077, thus both models
are excluded from Table 1 and the following discussion.

The evolution of the 3-M model with Z;; = 1077 is sensitive
to the treatment of low-temperature opacity. The CNO-enhanced
model is always C-rich in the TP-AGB phase, with very weak
HBB in the early phase. On the other hand, the scaled-solar and
CO-enhanced models experience stronger HBB until the stellar
masses are reduced to 1.66 and 1.77 M, respectively, and then
turn out to be C-rich. These behaviours are common to all the
My = 3 M models with Z;,; > 1077; the My =3 M@ models
with Z;,; = 0 are always C-rich in their TP-AGB phases, since the
scaled-solar, CO-enhanced and CNO-enhanced models experience
weak, very weak and no HBB, respectively, as shown in Fig. 2.
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Figure 3. The effect of the low-temperature opacity on the time evolution
of effective temperature for the same models with Zj,; = 1077 in Fig. 1;
Mini = 2 (left), 3 (middle), and 4 M@ (right) models with scaled-solar (black
line), CO-enhanced (blue line) and CNO-enhanced (red line) opacities.

We note that, in the case of M,y = 3 M, the value of Mc/o - 1
is significantly larger in the CNO-enhanced model than in the other
two models. Thus, it can be expected that the model of M;,; =3 Mg
with the CNO-enhanced opacity could start to form carbon dust at a
significantly larger stellar mass. In addition, it should be emphasized
that the carbon excess ¢ and the C/O ratio in C-rich AGB stars of
My = 2 and 3 My with Zy; < 107 are much larger than the
values considered in the dust-driven wind models for C-rich AGB
stars with solar and subsolar metallicities (e.g. Winters et al. 2000;
Wachter et al. 2002, 2008; Mattsson, Wahlin & Hofner 2010).

3.2 Effective temperature

Fig. 3 shows the time evolution of effective temperature for the
same models as presented in Fig. 1; note that the huge spikes of
effective temperature during the TPs in the CNO-enhanced models
with smaller current stellar mass are artificial, being associated with
convergence problems. Owing to the very short duration of TPs, in
which the effective temperature changes quickly, we will focus on
the behaviour of effective temperature in the interpulse phases in
what follows.

The effective temperature does not decrease below 3900 K in the
scaled-solar models, regardless of the initial mass and metallicity

Dust formation in AGB stars with Ziy; < 10~ 1715

(see Table 1); conversely, in the CO-enhanced and CNO-enhanced
models, the time evolution of the effective temperature depends
strongly on the initial mass, which determines the change in el-
emental composition in the surface regions during the TP-AGB
phase. The effective temperature of the Mi,; = 2 M, star decreases
with time more rapidly in the CNO-enhanced model than in the
CO-enhanced model; the minimum values reached are
Tefimin = 3627 and 3153 K in the CO-enhanced and CNO-enhanced
models with Z;,; = 1077, respectively. Generally speaking, the min-
imum effective temperature reached by a model of given mass is
larger for smaller metallicity. The only exception to this trend is the
Zni = 10~* CNO-enhanced model. It should be remarked here that,
even if the abundance of N in the surface layer is not enhanced with-
out HBB, the CN molecule dominates the low-temperature opacity
and decreases the effective temperature efficiently, since the first
TDU and carbon ingestion (see Siess, Livio & Lattanzio 2002; Lau,
Stancliffe & Tout 2009) increase the surface abundance of N in the
AGB stars evolved from extremely metal-poor stars considered in
this article. We note that the higher Tt min Of the Ziyi = 10~* model
comes from the fact that the model does not experience carbon
ingestion.

In the CO-enhanced models with M;,; = 3 M), we can see from
Fig. 3 that the effective temperature decreases with time in the
initial C-rich phase, but increases after the onset of HBB. In the
O-rich phase, when stronger HBB operates together with TDU,
the effective temperature in the CO-enhanced models with M, =3
and 4 Mg, is almost the same as that in the scaled-solar models
at the same current stellar mass. After HBB ceases, the effective
temperature decreases with time in the C-rich phase, until the min-
imum value is reached. On the other hand, in the CNO-enhanced
model, the effective temperature decreases with time efficiently
even if HBB makes the surface layer O-rich, as can be seen from
the time evolution of effective temperature for M;,; = 4 M with
CNO-enhanced opacity. This is because, even in O-rich environ-
ments, the enhancement of N increases the opacity through the CN
molecule as demonstrated by Lederer & Aringer (2009) and thus
the stellar radius.

Thus, even in the extremely metal-poor stars considered in this ar-
ticle, the employment of the low-temperature opacity, appropriately
taking into account the change of elemental composition, such as
the CNO-enhanced opacity, is inevitable to investigate the evolution
of a star during the TP-AGB phase. Furthermore, as demonstrated
in the next section, the treatment of the low-temperature opacity
definitely influences the formation of carbon dust and the resulting
gas outflow around AGB stars with Z;,; < 1074,

4 FORMATION OF CARBON DUST AND
RESULTING MASS LOSS

As presented in the previous section, all the models other than
M, =5 Mg with Z;;; = 0 and 1077 satisfy the minimum require-
ment for formation of carbon dust on the AGB after the stellar mass
decreases below Mc,o - 1. However, not only §c but also the ef-
fective temperature during the TP-AGB phase strongly influences
the formation of carbon dust and the consequent DDW (see Gail &
Sedlmayr 2013). In addition, Winters et al. (2000), based on hydro-
dynamical calculations of the DDW, showed that C-rich stars with
stable gas outflows dominated by the effects of radiation pressure on
dust with time-averaged radiative acceleration («) > 1 experience
mass-loss rates M >3 x 1077 Mo yrl.

The present results, based on hydrodynamical calculations, show
that CO-enhanced and CNO-enhanced models with T, < 4000K

MNRAS 466, 1709-1732 (2017)
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Figure 4. The effect of low-temperature opacity on dust formation and dust-driven wind and its dependence on the initial mass as a function of current stellar
mass: from top to bottom, (a) mass-loss rate M, (b) condensation efficiency of carbon f, (c) dust-to-gas mass ratio pq/pg, (d) terminal wind velocity veo,
(e) mass-averaged radius of dust (@) during the C-rich TP-AGB phase calculated by the hydrodynamical model of DDW and (f) effective temperature Tegr for
the CO-enhanced (open circle — thin solid line) and CNO-enhanced (filled circle — thick solid line) models of Mini = 2 (red), 3 (blue) and 4 M) (green) with

Zini = 1077,

develop a DDW with M > 1077 Mg yr ! and (@) > 1 (here-
inafter the stable DDW), except for the CO-enhanced models of
My = 4 M with Ziy; = 0 and 5 M with Zi,; = 1075, On the
other hand, the mass-loss rate of almost all scaled-solar models with
Ter > 4000 K, excluding a few model stars, is limited to less than
107" Mg yr~' though () > 1. The scaled-solar opacity, not reflect-
ing the change of elemental composition in the surface regions dur-
ing the TP-AGB phase, could be inadequate in the low-temperature
regime. Thus, in this section, focusing on the CO-enhanced and
CNO-enhanced models with M > 1077 Mg yr~! (stable DDW),
we shall show the dependence of the formation of carbon dust and
the consequent DDW around AGB stars on the treatment of low-
temperature opacity as well as on the initial mass and metallicity.
The input parameters used in the hydrodynamical calculations and
the derived properties of DDW for the CO-enhanced and CNO-
enhanced models are summarized in Appendix A: Table Al for
Zni = 1077 and Table A2 for the other initial metallicities.

4.1 Effect of the low-temperature opacity and its dependence
on the initial mass

Fig. 4 displays the time-averaged physical quantities characteriz-
ing dust formation and the consequent DDW, together with the
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effective temperature as a function of the current stellar mass for
CO-enhanced and CNO-enhanced models of M;,; =2,3 and 4 M,
with Z;,; = 1077.

First, it should be pointed out that the formation of carbon dust
and the resulting mass outflow do not operate in the C-rich phases
alternating with O-rich phases associated with HBB, since the car-
bon excess 8¢ < 107 is insufficient and the effective temperature
is too high to form carbon dust in a dense gas region close to the
photosphere; formation of carbon dust occurs in regions where the
temperature is below ~1500 K (e.g. Yasuda & Kozasa 2012). Also,
in the case of M 2 2 M, the larger gravitational force could pre-
vent the star from driving gas outflow stably through the radiation
pressure force acting on dust. Thus, the effective formation of car-
bon dust to drive the mass loss is activated only after the stellar mass
is significantly reduced from the threshold stellar mass Mco - 1, as
described below.

The general trend shown in Fig. 4 is that as the mass of the
star decreases the mass-loss rate becomes larger, while the effective
temperature decreases. This behaviour continues for a while even
after the minimum effective temperature is reached. During the very
final evolutionary phases, when the effective temperature increases
rapidly, owing to peeling of the external layers, the mass-loss rate
and dust condensation efficiency decline.
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Figure 5. The dependence of the mass-loss rate (left panel) and the time-averaged mass-weighted radius of carbon dust (right) on the initial metallicity for
the CNO-enhanced model with Mini = 3 M. The symbol and colour denote the metallicity: filled red square, blue square, green circle, red circle and blue

triangle for Z,; = 1074, 107, 107, 107 and 0, respectively.

This trend of mass-loss rate holds irrespective of the treatment of
low-temperature opacity. However, the value of the mass-loss rate,
as well as the current stellar mass at which the stable DDW onsets,
is heavily influenced by the treatment of low-temperature opacity,
depending on the initial mass.

In the case of M;,; = 3 M, the current stellar mass at the onset
of a stable DDW and the maximum value of mass-loss rate are re-
markably different between the CNO-enhanced and CO-enhanced
models (see Fig. 4a); as shown in Section 3.2, the large value of sur-
face opacity causes the photosphere to expand and suppresses the
increase in temperature in the innermost layers of the convective en-
velope. Although HBB occurs in both models, the CNO-enhanced
model undergoes much weaker HBB than the CO-enhanced model
and HBB ceases at ~2.0 M in the CNO-enhanced model and
at ~ 1.4 M, in the CO-enhanced model. Then, the CNO-enhanced
model evolving at smaller effective temperatures and reaching
higher values of 8¢ activates the formation of carbon dust in denser
regions, to drive the stable gas outflow at M = 1.8 M; in the
CO-enhanced model, dust formation begins only after the mass of
the stars decreases to M ~ 1.2 M. The mass-loss rate at the maxi-
mum is almost one order of magnitude smaller in the CO-enhanced
model than in the CNO-enhanced model. On the other hand, the av-
erage radius of carbon dust is slightly smaller for the CNO-enhanced
model, since more seed nuclei are produced in the outflowing gas,
which accelerated efficiently owing to larger values of p4/p,.

The behaviour of the 4-M models is different in comparison
with their 3-M() counterparts: both models experience active HBB,
since the core grows massive (~0.85M¢), and HBB ceases at
~1.8 (1.4) Mg for the CNO (CO)-enhanced model. In the fol-
lowing phases in the CNO-enhanced model, the decrease in ef-
fective temperature leads to the onset of stable DDW when the
mass is ~1.6 M) and the mass-loss rate increases sharply above
107> M@ yr~'. On the other hand, in the CO-enhanced model evolv-
ing at higher effective temperatures, the onset of a stable DDW is
delayed to M ~ 1.1 M, and the largest mass-loss rate experienced
is ~5 x 1077 Mg yr~'. It should be noted that the terminal gas
velocity and dust-to-gas mass ratio in the CNO-enhanced model are
considerably smaller in comparison with the CNO-enhanced model
of Min; = 3 My, despite the fact that the mass-loss rate is compara-
ble in both models for M < 1.5 M. This arises from the smaller
value of ¢, due to the delayed onset of effective dredge-up of car-
bon starting at M ~ 1.8 M. Thus, the slower gas outflow velocity

allows dust grains to grow larger and results in a mass-weighted
average radius more than a factor of 2 larger than that in the other
models.

In the M;,; = 2 M models evolving without suffering HBB,
the carbon excess §¢ increases monotonically and gets larger in the
CO-enhanced model than in the CNO-enhanced model as the stellar
mass decreases (see Fig. 1). On the other hand, the effective tem-
perature at the same current stellar mass is significantly lower in the
CNO-enhanced model and the difference increases during the evo-
lution. Thus, the gas density in the region of carbon dust formation
as well as gas acceleration is higher in the CNO-enhanced model
than in the CO-enhanced model. Although the condensation effi-
ciency is a little smaller in the CO-enhanced model, the larger value
of §¢ makes the dust-to-gas mass ratio almost comparable in both
models, as well as the gas terminal velocity being roughly propor-
tional to pq/pg. The higher gas density of the dust-formation region
results in a larger mass-loss rate in the CNO-enhanced model than
in the CO-enhanced model (see Fig. 4a). However, being different
from the cases of M;;; = 3 and 4 My, the difference in mass-loss
rate between the CO-enhanced and CNO-enhanced models remains
less than a factorof 3 at M < 1 M.

4.2 Dependence on the initial metallicity

The properties of the DDW, as well as the newly-formed carbon
dust around AGB stars with Z,; < 107, are expected not to depend
directly on the initial metallicity, since the dredge-up carbon is of
secondary origin and thus independent of Z,. Fig. 5 displays the
dependence of the mass-loss rate (left panel) and mass-weighted
average radius of dust (right panel) on the initial metallicity for
CNO-enhanced models of M;,; = 3Mg with Z,; = 10~* (red
square), 10> (blue square), 1075 (green circle), 10~ (red circle)
and O (blue triangle).

We can see from Fig. 5 that, except for Zi,; = 0, the mass-loss
rates are almost the same at a given current stellar mass and any clear
dependence on the initial metallicity is not recognized, apart from
some fluctuations. This is also true for the mass-weighted radius
of carbon dust; regardless of the initial metallicity, the radii, with a
few exceptions, have almost the same value at a given current stellar
mass and tend to increase slightly with decreasing current stellar
mass. On the other hand, in the Z;,; = 0 case, the mass-loss rate at

MNRAS 466, 1709-1732 (2017)



1718  S. Tashibu, Y. Yasuda and T. Kozasa

M 2 1.2 Mg as well as the radius at M 2 1.4 My is significantly
smaller in comparison with the values for 1077 < Z;; < 10~*. This
difference reflects the fact that the higher effective temperature of a
Z;ni = 0 star without enrichment of N due to HBB (see Tables Al,
A2, Section 3.2.2 and Fig. 2) during the AGB phase prevents carbon
dust from forming in a dense region close to the photosphere. Thus,
although the initial metallicity may subtly influence the properties
of DDW and newly-formed carbon dust through its effects on stellar
evolution, the present results demonstrate that carbon dust formation
and the DDW do not show any significant dependence on the initial
metallicity, as long as 1077 < Z; < 1074,

In summary, the treatment of low-temperature opacity strongly
affects dust formation and the consequent DDW on TP-AGB
through its effect on the surface elemental composition and effec-
tive temperature, depending on the initial stellar mass. The current
stellar mass at the onset of a stable DDW is considerably smaller
(~1 M) in the CO-enhanced model in comparison with that in the
CNO-enhanced model. The largest mass-loss rate in the CO-
enhanced model is at least one order of magnitude smaller than in the
CNO-enhanced model, except for the case of M, = 2 M, which
does not experience HBB. Thus, the adoption of a low-temperature
opacity varying with the change of elemental composition at the
surface during the TP-AGB phase is inevitable to investigate dust
formation and mass loss around AGB stars with extremely low
initial metallicity, as considered in this article.

The mass-weighted radius of carbon dust formed in the outflow-
ing gas is of the order of 0.01 pum, regardless of the treatment of
low-temperature opacity as well as the initial mass and metallicity,
except for the models of Mi,; =4 and 5 M) with the CNO-enhanced
opacity developing slow and denser winds ({a) ~ 0.03 um). The
derived radius of carbon dust is significantly smaller than the typi-
cal radius of carbon dust necessary for reproducing the colours of
obscured C-rich AGB stars observed in the Magellanic Clouds;
based on the stellar evolution calculations and the dust forma-
tion calculations employing the scheme developed by Ferrarotti
& Gail (2006), typical radii of carbon dust are 0.06—0.2 um in the
Magellanic Clouds, assuming the number ratio of seed particles to
hydrogen nuclei n,/ng = 10~'3 (Dell’Agli et al. 2015a, b), and
0.035-0.06 um in the Small Magellanic Cloud (SMC), by varying
ng/ng up to 107! (Nanni et al. 2016). The assumed/considered
values of ng/ny in their models are considerably smaller than the
values calculated in the present DDW models (7 x 10712 < pg /nu
< 1078, depending on the initial mass as well as the input stel-
lar parameters). Accordingly, the derived size of carbon dust is
smaller, being roughly proportional to (n/ns)"/3. Since the aim of
this article is not to construct a self-consistent model with stellar
evolution, comparison with observations is beyond the scope of this
article.

5 DISCUSSION

The hydrodynamical calculations of the DDW in the previous sec-
tion clearly demonstrate that the treatment of low-temperature opac-
ity strongly affects dust formation and the resulting mass loss. Al-
though the CNO-enhanced opacity is the most appropriate one
among the three types of opacity considered, it should be re-
marked that the hydrodynamical model of the DDW employed
in this article derives the properties of the DDW once a set of
stellar parameters is given, as mentioned in Section 2.2 and pre-
sented in Section 3. Thus, irrespective of the mass-loss rate and
the low-temperature opacity assumed in the stellar evolution cal-
culations, the results of hydrodynamical calculation of the DDW
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along the evolutionary track on the AGB enable us to investi-
gate the dependence of the properties of the DDW on the in-
put stellar parameters; the ranges covered by the CNO-enhanced
and CO-enhanced models with M > 1077 Mg yr' are 2693
<Ter/K < 4037, 123 < L/10° Ly < 3.23,0.7 < M/M <2.04,
3.28 < 8¢ x 10* < 27.0 and 1.50 < kg/cm?g~!' x 10* < 90.0.

In this section, based on the results of DDW calculation presented
in the previous section, we shall derive and discuss a condition nec-
essary for an efficient DDW with M > 10~°M@ yr~! and the ana-
Iytic formulae for gas and dust mass-loss rates in terms of the input
stellar parameters. Furthermore, the implication for the evolution
of intermediate-mass stars with Z;,; < 10~ in the early Universe is
discussed in connection with dust formation and mass loss.

5.1 A necessary condition for an efficient dust-driven wind

The thresholds of the stellar parameters for the stable DDW around
C-rich AGB stars with solar metallicity have been investigated by
means of hydrodynamical calculations. Based on the range of stel-
lar parameters inferred from observations of galactic carbon stars,
Winters et al. (2000) found critical values of the various parameters
for producing a stable DDW, depending on a combination of all
the other parameters used in the hydrodynamical model. However,
no attempt has been made to express the dependence explicitly in
terms of the other parameters. Also, the hydrodynamical calcula-
tions by Winter et al. (2000) are confined to a narrower range of
stellar parameters, especially for T and 8¢, compared with the
range covered by the present calculations. Thus, it is instructive to
attempt at constraining of the conditions necessary for driving the
DDW as a combination of stellar parameters, based on the present
results.

First, it should be noted that the assumption of position coupling
(drift velocity of dust is set to be 0) and the setting of velocity
amplitude Aup = 2 km s~! in the hydrodynamical model may
influence the calculated mass-loss rates. Although Winters et al.
(2000) have shown that the dependence of Aup on the mass-loss
rate is weak as long as M > 3 x 107° M yr~!, at the present time
little is known about the value of Aup allowed for C-rich AGB stars
(Gail & Sedlmayr 2013). As for the assumption of position coupling,
the recent two-fluid hydrodynamic model of the DDW considering
dust formation as well as the interaction between gas and dust has
demonstrated that the properties of the DDW are well reproduced by
assuming position coupling for M > 10~ M yr~' (Yasuda et al.,
in preparation ). Thus, the calculated properties of a DDW with M >
10~ M yr~! would not suffer significantly from the uncertainties
arising from the assumption of position coupling underlying the
hydrodynamical model used in the present article. Here, referring
to the DDW with M > 1076 Mg yr~! as the efficient DDW in
the following, we shall constrain the condition for producing the
efficient DDW.

Among the stellar parameters used in the hydrodynamical model,
the effective temperature is the most relevant parameter for the
DDW, as discussed in previous studies (e.g. Winters et al. 2000,
Wachter et al. 2002). The efficiency of gas acceleration due to
radiation pressure on dust grains is roughly proportional to §cL/M.
Also, the Rosseland mean opacity kr at the photosphere, which
controls the density structure of the surface regions, is considered
to have a significant effect on the DDW, in connection with the
density of gas levitated by the pulsation shock.

Fig. 6 shows A = §cL/krM versus Teg for the CNO-enhanced
and CO-enhanced models tabulated in Appendix A. The dotted
lines indicate the boundaries on the log T.4—log A plane for the
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Figure 6. The plot of A = 8§cL/krM versus Tesr, with M and L in solar
units and kg in units of cm? g’l; the red (blue) filled circle is for the CNO
(CO)-enhanced model with M > 107° Mo yr‘I and the red (blue) open
triangle for the CNO (CO)-enhanced model with M < 107° Mo yr~!. The
dotted lines represent the boundaries for the possible formation of a DDW
with M >10"° M@ yr’l.

possible formation of an efficient DDW. From this plot, we can see
that efficient DDW is possible only if 7. < 3850 K and log A 2
10.34 log T.¢ — 32.33, though the boundary seems to reflect the
TP-AGB tracks of the models somewhat. Although the derived
constraint condition is only a necessary condition, the condition
could be useful for judging when the efficient DDW resulting from
the formation of carbon dust onsets in the course of evolution of
C-rich AGB stars, by referring to the stellar parameters along the
evolutionary track derived by the stellar evolution calculation.

5.2 Analytic formulae for gas and dust mass-loss rates

The amount of gas and dust that C-rich AGB stars supply to in-
terstellar space is crucial not only to reveal the origin of dust but
also to investigate the formation and evolution of stars in galax-
ies through chemical evolution models in the early Universe (e.g.
Grieco et al. 2014). Formulae for the mass-loss rate for C-rich AGB
stars with solar and subsolar metallicities have been proposed, based
on hydrodynamical calculations of the DDW (Arndt, Fleischer &
Sedlmayr 1997; Wachter et al. 2002, 2008). Although Weiss &
Ferguson (2009) applied the formula by Wachter et al. (2002) to
investigate the evolution of stars with Zi,; = 5 x 107%-0.04, it is
questionable whether the same formula can be applied to C-rich
AGB stars of metallicity Z;,; < 10~*. Here, we shall derive the ana-
Iytic formulae for gas and dust mass-loss rates in terms of the input
stellar parameters employed in the hydrodynamical calculations for
CNO-enhanced and CO-enhanced models with the efficient DDW.

For simplicity, we derive the formulae under the assumption that
the mass-loss rate is simply approximated by a linear function of
the logarithms of the input parameters (M, L, Tes, kg, 6c and P).
Also, we shall consider the initial metallicity as a parameter, since
the mass-loss rates of the Z;,; = 0 models deviate from the others
(see the left panel of Fig. 5), though the mass-loss rates of stars
with 1077 < Z; < 10™* do not show a clear dependence on the
initial metallicity. Applying the least-squares method to the mass-
loss rates and the dust-to-gas mass ratios tabulated in Appendix A,
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the fitting formula is expressed as

. Ter L
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Note that we adopt Z,; = 10712 as representative of Z;,;; = 0 when
fitting. The numerical coefficients from a to A for the formulae for
gas (dust) mass-loss rate M§, (M) with and without including the
initial metallicity are provided in Table 2, with correlation coeffi-
cient R and maximum deviation D from the calculated values. The
formula for the gas (dust) mass-loss rate not including metallicity
fits the values calculated by the DDW model with correlation co-
efficient 0.87 (0.92) and maximum deviation 38 (50) per cent. The
fittings are only slightly improved by including the metallicity, re-
flecting the fact that the mass-loss rate does not depend sensitively
on the initial metallicity, with coefficient 2 ~ 0.02-0.03.

The power of the effective temperature in the gas mass-loss
formula is huge (e.g. b = —19.13 for the case without Z;,;) in
comparison with that in the formulae by Wachter et al. (2008,
hereafter WO08). The huge power arises from the inclusion of
8¢ and kg in the fitting formula. In fact, the gas mass-loss rate
being fitted by using M, L and T4 in the same manner as
W08, the formula is given by ME[ =7.62 x lO“s(M/M@)“"28
(Tetr /2600 K)~74(L /10* L5))"%¢ with correlation coefficient 0.80
and maximum deviation 42 per cent. Thus, the power of the effec-
tive temperature is reduced to —7.64, comparable with the value in
the formula by W08. Here it should be noted that the inclusion of ¢
and kR is inevitable in the fitting formula, since 8¢ and xr control
the amount of carbon available for dust formation and the density
of gas levitated by the pulsation shock, respectively.

Fig. 7 shows the evolution of the gas mass-loss rate of the CNO-
enhanced models with Zi,; = 1077; M= 2 Mg (left) and 3 Mg
(right). The mass-loss rates calculated by the DDW model and the
fitting formula without including metallicity are denoted by the
filled circles and the solid line, respectively, with dotted and dashed
lines indicating the results obtained by assuming, respectively, the
mass-loss formulae by W08 for the SMC models and SC05. We
can see that the fitting formula equation (3) reproduces the mass-
loss rates derived from the DDW model reasonably, as long as
M 2 107° Mg yr~! in both models.

As shown in Fig. 7, the mass-loss rate assuming the formula
for the SMC models by W08 is more than one order of magnitude
larger than the rate calculated for C-rich AGB stars with Z,; = 107,
Although the difference in the stellar parameters used in the calcu-
lations makes it difficult to compare the results directly, the gap in
the calculated mass-loss rate is caused by differences in the Rosse-
land mean opacity kr at the surface and the amplitude of pulsation
Aup: kg =5 x 1075 cm? g~ and Aup = 5 km s~! for the SMC
models in WO8; kg = ~1072 cm? g~! as a typical value (see Ta-
ble A1) and Aup = 2 km s~! in the CNO-enhanced models with
Zni = 1077. The difference in the value of kg implies that the gas
density in the surface region, being roughly proportional to kg, is a
factor of 20 larger in the SMC models than in the CNO-enhanced
models. Also, the carbon excess ¢ = 8.57 x 107> in the SMC
models, assuming C/O=1.8 and taking the oxygen abundance from
Russell & Dopita (1992), while §¢ ~ 1073 as a typical value in the
CNO-enhanced models investigated here. Although the amount of
carbon in the surface layer is comparable, the higher gas density in
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Table 2. The coefficients of the mass-loss formulae (equation 3) of gas (M‘%t) and dust (Mgl) for cases with and without Z;,; and their correlation coefficient R

and maximum deviation D in per cent from the values calculated by the hydrodynamical model.

a b c d e f g h R D (per cent)
A:/Ifgt without Zjpn; —5.733 —19.13 3.164 —5.254 0.7768 —0.7089 —0.8955 0 0.88 39
Mﬁt with Zipni —5.590 —20.07 3.221 —5.182 0.8836 —0.8476 —0.8138 0.02220 0.90 34
Mgt without Zjp; —8.991 —19.21 2.874 —5.361 1.843 —0.6417 —0.8834 0 0.92 51
Mgt with Zip; —8.822 —19.41 2.696 —5.075 1.977 —0.8163 —0.5075 0.02774 0.94 46
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Figure 7. Time evolution of mass-loss rates for CNO-enhanced models with M, = 2 (left panel) and 3 (right panel) M@, with Zisi = 1077, The mass-loss
rate calculated by the DDW model and the fitting formula (equation 3) are denoted by a red circle and solid line, respectively. The dotted (dashed) line shows
the mass-loss rate calculated by the formula for the SMC models of W08 (SCO05 assumed in the stellar evolution calculation) as a reference.

the surface region as well as the enhanced density of gas levitated
by the pulsation shock with larger Aup leads to a larger mass-loss
rate in the SMC models. Here, it should be addressed that the val-
ues of kg and §¢ used in WO8 seem to be unrealistic in comparison
with the values derived from stellar evolution calculations and the
applicability of their formula for C-rich AGB stars with Z;,; < 107*
should be checked by using the appropriate values. Also, the depen-
dence of the mass-loss rate on the velocity amplitude of pulsation
should be investigated, since the dependence is considered to be
more sensitive for stars with larger §¢ and k.

The mass-loss rate derived from the DDW model is significantly
smaller than the mass-loss rate assumed in stellar evolution calcu-
lations. If we use the derived mass-loss formula after the necessary
condition for the efficient DDW is satisfied on the TP-AGB, the
dredged-up carbon accumulates in the surface regions; accordingly,
the effective temperature decreases and the mass-loss rate could
increase. Although in the present calculations the derived mass-loss
rate is inconsistent with the assumed mass-loss rate, it should be
recalled here again that the hydrodynamical model can derive the
properties of the DDW by specifying a set of input parameters,
being independent of the stellar evolution model. Thus, the derived
formulae, together with a necessary condition for the efficient DDW
presented in Section 5.1, could enable us to evaluate the mass-loss
rate and dust yield during the C-rich AGB phase of stars with
Zini < 10~* in a manner consistent with stellar evolution, including
whether the efficient DDW can operate on the C-rich AGB.

5.3 Implication for evolution of C-rich AGB stars and the
dust-driven wind in the early Universe

Investigations on the formation of stars in low-metallicity environ-
ments have revealed that the critical metallicity Z.,; for the transition
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from Population III to Population II stars is as low as ~10~°—
1077, depending on the depletion factor of metal into dust (e.g.
Omukai et al. 2005, Schneider et al. 2006, Chiaki et al. 2015).
Although there is no information available for the initial mass func-
tion at the present time, intermediate-mass AGB stars with Z;,; <
10~ can contribute to the enrichment of dust in the early Uni-
verse if the condition for the efficient DDW derived in the previous
subsection is satisfied during the TP-AGB phase. However, the
possibility of developing dust formation and a resulting DDW on
the AGB is strongly influenced by the mass-loss history during
the evolution, on which the time evolution of effective tempera-
ture as well as the elemental composition and opacity in the sur-
face layer depend strongly through the number of TDU episodes
and/or the occurrence of HBB. At present, we have no knowl-
edge of the mass-loss mechanism and mass-loss rate before the on-
set of the DDW for the extremely low-metallicity stars considered
in this article.

In recent investigations focused on low-metallicity
(—1.6 < [Fe/Hl < —0.5) AGB stars observed in distant
galaxies, Rosenfield et al. (2014, 2016) showed that a mass-loss
rate higher than SCOS5 is required during the AGB phases previous
to the onset of the DDW, to reproduce the observed TP-AGB
luminosity function as well as the number ratio of TP-AGB to red
giant stars. If this is true for the AGB phase of stars with Z;;; <
10~*, the so-called pulsation enhanced DDW would not operate as
the mass-loss mechanism; in stars losing mass efficiently on the
AGB, the number of TDUs is reduced and the inefficient decrease
of effective temperature as well as insufficient carbon excess (§¢)
prohibits the onset of dust formation and the efficient DDW. On the
other hand, when the mass-loss rate in the pre-dust phase on the
AGB is depressed, it is possible for the DDW to dominate the mass
loss after the stellar mass is substantially reduced below Mc/o - 1,



as demonstrated in Section 4. In cases such as M, = 2 Mg not
experiencing any HBB, the increase in carbon excess and decrease
in effective temperature could make the DDW more efficient.
For stars of mass M;,; > 3 Mg that experience HBB, a smaller
mass-loss rate on the AGB results in more active HBB that seems
to decrease the threshold mass Mc,o - 1 and the carbon excess in
the C-rich phase. However, the enrichment of N in the surface
layer associated with HBB can counteract HBB itself, since the
enhanced surface opacity depresses the increase in gas temperature
in the innermost layer of the convective envelope and makes
HBB weaker. Thus, it can be expected that, even in massive stars
experiencing HBB, mass loss by the DDW could operate, although
the details depend on the initial mass and mass-loss rate in the
pre-dust phase. Anyway, the present results of DDW calculations
demonstrate that the formation of carbon dust and the resulting
DDW is possible even in low-metallicity environments with Zi
< 1074, as long as the mass-loss rate in the pre-dust phase on the
AGB is reduced to some extent from the rate given by SCO5.

Finally, it is useful to note the following in connection with the
uncertainties inherent in the present DDW model. In section 4, the
DDW with M > 1077 Mg yr*l is referred to as the stable DDW,
according to Winters et al. (2000), since the time-averaged value
() 2 1.However, in the present calculations, contrary to the results
of Winters et al. (2000), we have not found any sustainable wind with
(a) < 1, since the carbon excess 8¢ of C-rich AGB stars with Z;;; <
10~*is significantly larger than the value inferred from observations
of galactic C-rich AGB stars; 8¢ ~ 6.76 x 10™*, corresponding to
C/O = 2.0 for solar metallicity. Also, recent investigation using
the two-fluid hydrodynamic calculation for the DDW has shown
that the assumption of position coupling will break down around
M ~ several x 1077 M yr~' (Yasudaetal., in preparation ). Thus,
application of the two-fluid hydrodynamic model is inevitable to
explore the constraint conditions for the onset of a stable DDW. In
addition, although the velocity amplitude of pulsation Au, is set to
be 2 km s~!, the large 8¢ and kR in the surface region may make
the dependence of the value of Au;, on the formation of carbon dust
and the resulting DDW more sensitive than the case for Galactic
C-rich stars; the increase of Au, up to 8 km s~! (Winters et al. 2000)
may enhance the mass-loss rate from the DDW substantially. These
aspects should be investigated systematically in future works to
explore the properties of the DDW and the nature of carbon dust
formed around AGB stars in the early Universe, consistent with
stellar evolution calculations.

6 SUMMARY

In order to explore dust formation and the resulting mass loss around
intermediate-mass AGB stars with initial metallicity Z;;; < 1074
in the early Universe, hydrodynamical calculations of the dust-
driven wind (DDW) are carried out for stars with initial mass in
the range 2 < M;,i/M@ < 5. The input stellar parameters nec-
essary for the hydrodynamical calculation are calculated by the
MESA code, assuming the mass-loss rate given by Schroder & Cuntz
(2005) in the post-main-sequence phase as a first step for this study.
In addition, three types of low-temperature opacity (scaled-solar,
CO-enhanced and CNO-enhanced) are considered to elucidate the
effect of the treatment of low-temperature opacity on the time evo-
lution of stellar parameters related to the dust formation and conse-
quent DDW.

We confirm that all model stars, except for M;,; = 5 M with
Zwi = 0 and 1077, finally turn out to be C-rich and satisfy the
minimum condition for the formation of carbon dust, regardless
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of the treatment of low-temperature opacity. However, the effec-
tive temperature, the quantity most sensitive to the dust formation
process, is strongly affected by the treatment of low-temperature
opacity; the minimum effective temperature T iy in the interpulse
phases does not decrease below 3900 K for stars with scaled-solar
opacity, while T, min decreases below 3100 K for stars of My >
3M with CNO-enhanced opacity.

Hydrodynamical calculations of the DDW along the evolution-
ary track of C-rich AGB stars simulated with CO-enhanced and
CNO-enhanced opacities show the following. The stellar mass
at which the stable DDW with M > 1077 Mg yr~' on-
sets is significantly smaller in the CO-enhanced model than
in the CNO-enhanced models and the maximum mass-loss
rate on C-rich AGB is more than one order of magni-
tude smaller in the CO-enhanced models than in the CNO-
enhanced models for Mi,; > 3 Mg. Thus, the employ-
ment of composition-dependent low-temperature opacity, such as
CNO-enhanced opacity, is inevitable to investigate the formation of
dust and resulting mass loss in low-metallicity AGB stars. Also, we
find that, given the initial mass, the time evolution of the mass-loss
rate, as well as the time-averaged mass-weighted radius of carbon
dust, is almost independent of the initial metallicity, as long as 107’
< Zini < 1074

The results of the DDW calculation covering a wide range of
stellar parameters, regardless of the treatment of low-temperature
opacity and the mass-loss rate assumed in the stellar evolution cal-
culations, enable us to derive a necessary condition for driving
the efficient DDW with M > 107 M yr~' as a combination of
stellar parameters and the fitting formulae for gas and dust mass-
loss rates in terms of input stellar parameters; the fitting formula
for the gas mass-loss rate reproduces the mass-loss rate calculated
by DDW model reasonably. The derived necessary condition and
the fitting formulae would enable us to evaluate when the effi-
cient DDW onsets and how much dust is produced in interme-
diate AGB stars with Z;; < 10~*, when coupled with the stellar
evolution calculations.

The present results of calculations employing the mass-loss rate
by SCOS5 in the post main-sequence phase suggest that the efficient
DDW being consistent with the stellar evolution could be possible
if the mass-loss rate during the evolution of a star were some-
what enhanced before entering into the AGB and depressed on the
AGB before the onset of the DDW from the rate given by SCOS.
Also, it should be emphasized here that the assumption of position
coupling is not valid for the case of a low mass-loss rate such as
M ~ several x 1077 M@ yr~!; the assumption of position coupling
results in overestimation of the mass-loss rate of C-rich AGB stars
with larger §¢ considered in this article, since M S¢. Thus, a two-
fluid hydrodynamical model calculation of the DDW is necessary
to clarify when and in what conditions the DDW actually onsets
during the course of evolution of AGB stars. Also, large values of
8¢ and kg may result in a sensitive dependence of mass-loss rate
on the velocity amplitude of pulsation. These subjects are left for
future investigations.
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APPENDIX A: INPUT STELLAR PARAMETERS
FOR HYDRODYNAMICAL CALCULATIONS
AND THE DERIVED PROPERTIES OF
DUST-DRIVEN WINDS

The input stellar parameters of hydrodynamical calculations and
the derived properties of dust-driven winds are tabulated for
CO-enhanced and CNO-enhanced models with mass-loss rate
M >10"7 Mg yr~': Table Al for Z,;; = 1077 and Table A2 for
Zini = 10_4, 10_5, 10~% and 0.
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