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Summary 

• A conserved genetic toolkit underlies the development of diverse floral forms

among angiosperms. However, the degree of conservation vs divergence in the

configuration of these gene regulatory networks is less clear.

• We addressed this question in a parallel genetic study between the closely

related species Arabidopsis thaliana and Cardamine hirsuta.

• We identified leafy (lfy) and apetala1 (ap1) alleles in a mutant screen for

floral regulators in C. hirsuta. Cardamine hirsuta lfy mutants showed a

complete homeotic conversion of flowers to leafy shoots, mimicking lfy ap1

double mutants in A. thaliana. Through genetic and molecular experiments,

we showed that AP1 activation is fully dependent on LFY in C. hirsuta, in

contrast to A. thaliana. Additionally, we found that LFY influences

heteroblasty in C. hirsuta, such that loss or gain of LFY function affects its
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progression. Overexpression of UNUSUAL FLORAL ORGANS also alters C. 

hirsuta leaf shape in a LFY-dependent manner.  

• We found that LFY and AP1 are conserved floral regulators that act 

nonredundantly in C. hirsuta, such that LFY has more obvious roles in floral 

and leaf development in C. hirsuta than A. thaliana.  

 

Key words: APETALA1, Cardamine hirsuta, comparative development, leaf shape, 

LEAFY. 

 

Introduction 

Evo-devo studies seek to explain the developmental and genetic changes that shaped 

diversity. In plants, the astonishing diversity of angiosperm flowers provides an ideal 

system to address this question. Our current knowledge of the genetic control of 

flower development is based on initial work in two distantly related species: 

Arabidopsis thaliana and Antirrhinum majus (Coen & Meyerowitz, 1991). This 

comparison showed that conserved regulators specify the fate of floral meristems and 

floral organs in both species, despite their evolutionary distance and divergent flower 

morphology. Since then, there has been considerable interest in understanding how a 

common set of genes are reconfigured in species-specific regulatory networks to 

produce diverse floral forms. 

 Flower formation relies on the acquisition of floral meristem identity, 

conferred by the genes LEAFY (LFY) and APETALA1 (AP1) in A. thaliana and the 

orthologous genes FLORICAULA (FLO) and SQUAMOSA (SQUA) in A. majus (Coen 

et al., 1990; Irish & Sussex, 1990; Schwarz-Sommer et al., 1990; Schultz & Haughn, 

1991; Huala & Sussex, 1992; Mandel et al., 1992; Weigel et al., 1992; Shannon & 

Meeks-Wagner, 1993; Weigel & Meyerowitz, 1993). In flo mutants, flowers are 

homeotically converted to shoots because these meristems fail to acquire floral 

identity. The other three mutants, lfy and ap1 in A. thaliana and squa in A. majus, 

have a similar phenotype although they show only a partial homeotic conversion. 

Specifically, the first flowers to initiate in a lfy mutant are converted into leafy shoots, 

but later flowers acquire partial floral identity (Schultz & Haughn, 1991; Weigel et 

al., 1992). LFY is a transcription factor that directly activates the expression of 

various floral-organ identity genes, including the MADS-box gene AP1 (Parcy et al., 

1998; Wagner et al., 1999). Overexpression of LFY converts the inflorescence shoot 



 

into a single terminal flower (Weigel & Nilsson, 1995). Therefore, LFY is sufficient 

and partially necessary for the acquisition of floral meristem identity in A. thaliana.  

The development of flower-like structures in lfy mutants is caused by LFY-

independent activation of AP1 expression, since these flowers disappear when both 

LFY and AP1 are mutated (Huala & Sussex, 1992; Weigel et al., 1992; Weigel & 

Meyerowitz, 1993; Wagner et al., 1999). In lfy ap1 double mutants, flowers are 

homeotically converted to shoots, similar to flo single mutant flowers in A. majus 

(Coen et al., 1990; Huala & Sussex, 1992; Weigel et al., 1992). Therefore, AP1 

expression in A. thaliana is activated both in a LFY-dependent and -independent 

manner. For example, AP1 expression is known to be directly induced by members of 

the SQUAMOSA BINDING PROTEIN-LIKE family, BLADE-ON-PETIOLE1 in 

concert with TGA transcription factors, the FLOWERING LOCUS D (FD) 

transcription factor together with FLOWERING LOCUS T (FT), the MADS-box 

proteins SHORT VEGETATIVE PHASE (SVP), AGAMOUS-LIKE24 (AGL24) and 

SEPALLATA3, and the transcription factor LATE MERISTEM IDENTITY2 (Wigge 

et al., 2005; Kaufmann et al., 2009; Yamaguchi et al., 2009; Xu et al., 2010; Pastore 

et al., 2011; Grandi et al., 2012). This raises the possibility that LFY-independent 

activation of AP1 in A. thaliana may contribute to the milder consequences of LFY 

loss-of-function, in comparison to the homeotic phenotype of flo mutants in A. majus.  

LFY interacts with the F-box protein UNUSUAL FLORAL ORGANS (UFO) 

in A. thaliana and this interaction is conserved among orthologs of these proteins in 

different flowering plants (Lee et al., 1997; Chae et al., 2008; Souer et al., 2008). 

However, divergence in the spatiotemporal expression of these two genes played a 

major role in determining the various inflorescence architectures found in different 

species (Hake, 2008; McKim & Hay, 2010; Moyroud et al., 2010; Park et al., 2014; 

Kusters et al., 2015). For example, A. thaliana and A. majus have a raceme 

architecture with lateral flowers, and LFY/FLO expression is the limiting factor for 

acquisition of floral fate in these flowers (Coen et al., 1990; Blázquez et al., 1997). 

UFO is expressed in both vegetative and reproductive tissues, and neither UFO or its 

A. majus ortholog FIMBRIATA are sufficient to specify floral meristem identity 

(Simon et al., 1994; Lee et al., 1997). In contrast to this, Solanaceae species such as 

petunia and tomato have a cyme architecture with terminal flowers, and rather than 

LFY, it is the UFO orthologs DOUBLE TOP and ANANTHA that are specifically 

expressed in these floral meristems and are necessary and sufficient to specify floral 



 

identity (Souer et al., 1998; Lippman et al., 2008). Another example is Gerbera 

hybrida, where orthologs of UFO rather than LFY determine floral meristem identity 

in its capitulum inflorescence (Zhao et al., 2016). Therefore, distinct inflorescence 

architectures were produced by variation in the gene expression patterns of conserved 

floral regulators. 

In addition to flower development, LFY orthologs also regulate leaf 

development in some species. Particularly in legume species, such as Pisum sativum 

or Medicago truncatula, expression of the LFY orthologs UNIFOLIATA and SINGLE 

LEAFLET1 is transiently activated in young leaves, and is required to produce a 

dissected leaf shape (Hofer et al., 1997; Wang et al., 2008; Chen et al., 2010). 

However, this function for LFY is mostly restricted to a subclade of the Fabaceae 

(Champagne et al., 2007). Throughout vascular plants, dissected leaf shape more 

commonly requires the co-option of genes active in the shoot apical meristem, such as 

class I Knotted1-like homeobox and CUP-SHAPED COTYLEDON genes, which 

pattern auxin maxima along the dissected leaf margin (Bharathan et al., 2002; Hay & 

Tsiantis, 2006, 2010; Barkoulas et al., 2008; Blein et al., 2008; Koenig et al., 2009). 

In the simple leaves of A. thaliana, overexpression of UFO changes the leaf margin 

from smooth to ruffled, and this requires LFY activity since these phenotypes 

disappear in a lfy background (Lee et al., 1997; Chae et al., 2008). Moreover, ectopic 

meristems form on leaves when UFO is fused with a VP16 transactivation domain in 

these experiments (Risseeuw et al., 2013). These findings show that conserved floral 

regulators have evolved distinct functions in leaf development in some lineages. 

In summary, current evidence suggests that functionally conserved orthologs 

of LFY, AP1 and UFO contribute to floral initiation; and it is how these genes are 

wired in species-specific regulatory networks that is key to understanding floral 

diversity (Rosin & Kramer, 2009). In particular, it is important to understand whether 

LFY-independent activation of AP1 involves relatively recent evolutionary events that 

are specific to the Arabidopsis lineage, rather than conserved features of angiosperm 

flower development. For example, the functions of AP1 in sepal and petal 

development in A. thaliana may involve LFY-independent activation of AP1 that is 

specific to this lineage (Ye et al., 2016). Moreover, because LFY activity is required 

to produce a dissected leaf shape in some legume species (Hofer et al., 1997; Wang et 

al., 2008; Chen et al., 2010), and also contributes to the development of dissected 

tomato leaves (Molinero-Rosales et al., 1999), it is important to understand the 



 

prevalence of this function of LFY. One approach to address these questions is to use 

parallel genetic studies in A. thaliana and its close relative Cardamine hirsuta. Both 

species belong to the Brassicaceae family, diverged c. 32 million yr ago (Mya) 

[Author, please confirm inserted text ‘million yr ago’ is correct], and are 

reproductively isolated (Hay et al., 2014). Comparative genetic analyses in these 

species have successfully identified molecular changes that underlie phenotypic 

differences that are of evolutionary significance, such as leaf shape and seed dispersal 

(Hay & Tsiantis, 2006; Barkoulas et al., 2008; Vlad et al., 2014; Hofhuis et al., 2016; 

Vuolo et al., 2016). 

To determine the degree of conservation vs divergence in gene networks that 

control floral initiation in A. thaliana and C. hirsuta, we performed a genetic screen to 

identify C. hirsuta mutants with defects in floral meristem identity. Following this 

unbiased approach, we isolated alleles of lfy and ap1 as important floral regulators in 

C. hirsuta. The ap1 mutant phenotype was very similar between C. hirsuta and A. 

thaliana, however C. hirsuta lfy mutants showed a homeotic conversion of flowers to 

leafy shoots. We showed that this phenotype is explained by AP1 expression being 

fully dependent on LFY activity in C. hirsuta. Moreover, we found that LFY was 

necessary for correct heteroblastic progression of leaf shape, and sufficient to alter 

this progression, in the dissected leaves of C. hirsuta. Finally, we showed that 

overexpression of UFO did not affect floral initiation, but increased the complexity of 

C. hirsuta leaves; and this required LFY activity. Our findings provide evidence of 

conserved and divergent functions of floral meristem identity genes between A. 

thaliana and C. hirsuta, and shed light on the evolution of AP1 regulation. 

 

Materials and Methods 

Plant material and growth conditions 

Cardamine hirsuta reference Oxford (Ox) accession, herbarium specimen voucher 

Hay 1 (OXF) (Hay & Tsiantis, 2006). The following C. hirsuta cDNA sequences have 

been deposited in GenBank: ChLFY (KX772396) and ChAP1 (KX772395), and can 

also be found by these gene identifiers in the C. hirsuta genome assembly: ChLFY 

(CARHR275620) and ChAP1 (CARHR062020) (Gan et al., 2016). ABRC accession 

numbers for A. thaliana mutants used in this study are as follows: lfy-6 (CS8552), lfy-

10 (CS6279), ap1-12 (CS6232) and ap1-1 (CS28). All plants were grown in long day 

conditions in the glasshouse: 16 h 22°C : 8 h 20°C, light : dark. For quantitative PCR 



 

on seedling tissue, seeds were surface sterilized, stratified for 1 wk at 4°C and grown 

on 0.5 Murashige-Skoog medium for 8 d under long day conditions in a growth 

chamber. A C. hirsuta lfy-2; ap1-119 double mutant was constructed by pollinating 

phenotypically wild-type individuals from a segregating lfy-2 family with ap1-119 

pollen, selfing four ap1-119 individuals in the F2 generation, and identifying lfy-2; 

ap1-119 double mutants segregating in the progeny of ap1-119; lfy-2/+ parents.  

 

Ethyl methyl sulfonate mutagenesis, mutant screening and cloning 

Seeds (1500) of C. hirsuta Ox were washed with 0.1% Triton-X 100, agitated with 17 

mM ethyl methyl sulfonate (EMS) for 10 h, washed 12 times with deionised H2O, 

suspended in 0.1% agarose and sown on 1 : 1 soil : vermiculite mix. M2 progeny were 

harvested as pools of five M1 plants and 100 seeds each of 300 pools were sown and 

screened for defects in normal flower development.  

 Five alleles of lfy and three alleles of ap1 were isolated. All mutants were 

backcrossed to Ox before further analysis. Molecular lesions and proof of cloning by 

transgenic complementation are described for alleles used in this study. The lfy-2 

sequence bares a G to A single nucleotide change at position 994 of the genomic 

sequence (starting from the ATG), predicted to convert a Try residue to a stop codon 

and produce a truncated 178 AA protein. The lfy-3 sequence bears a C to T single 

nucleotide change at position 112 of the CDS [Author, please insert expansion for 

‘CDS’], predicted to convert a Gln residue to a stop codon and produce a truncated 37 

AA protein. The lfy-4 sequence bears a C to T single nucleotide change at position 

451 of the CDS, predicted to convert a Gln residue to a stop codon and produce a 

truncated 150 AA protein. The lfy-3 mutant phenotype was complemented by 

expressing a pAtLFY::AtLFY transgene, described in the text, and other alleles were 

confirmed by allelism tests with lfy-3. The ap1-119 sequence bears a G to A single 

nucleotide change at position 1855 of the genomic sequence (starting from the ATG), 

which modifies the splicing donor site of the second intron. The ap1-797 sequence 

bears a G to A single nucleotide change at position 2592 of the genomic sequence, 

which modifies the splicing acceptor site of the fifth intron. Expressing a 

gChAP1:GFP translational fusion complemented the ap1-119 mutant phenotype and 

other alleles were confirmed by allelism tests with ap1-119. 

 

Transgenic plant construction  



 

All binary vectors were transformed into C. hirsuta by Agrobacterium tumefaciens 

(strain GV3101) mediated floral dip. 

 35S::AtLFY was constructed in the destination vector pB2GW7 by 

recombination with the AtLFY cDNA in pENTR221 (DQ447103, ABRC). Forty 

independent lines were generated in both segregating C. hirsuta lfy-3 and A. thaliana 

lfy-6 backgrounds. T3 lines homozygous for the transgene were identified in 

homozygous mutant and wild-type backgrounds. Plants were genotyped for the lfy-3 

mutation using the primer pair lfy3_RsaI-1F (5’- CCTGAAGGTTTCACGAGTGGC) 

and lfy3_int1-R (5’- TGACAAGTGTTGTTGGGAAG), producing a 614-bp amplicon 

digested by AccI into 108-bp and 506-bp fragments in the mutant allele. Plants were 

genotyped for the lfy-6 mutation using the primer pair lfy-6_Mae3-F (5’-

TATGGATCCTGAAGGTTTCACG) and lfy-6_Mae3-R (5’-

CGGGCATAGAAATGTTG) (www.weigelworld.org).  

 Forty independent lines of pAtLFY::AtLFY (pETH29) (Chahtane et al., 2013) 

were generated in a segregating C. hirsuta lfy-3 background and a T3 line 

homozygous for both the transgene and the C. hirsuta lfy-3 allele was used for further 

analysis. This line was confirmed by seed fluorescence (Bensmihen et al., 2004) and 

by genotyping with the primer pair lfy3_RsaI-1F and lfy3_int1-R.  

 For 35S::AtAP1 and 35S::ChAP1 constructs, the AtAP1 cDNA was subcloned 

from pUNI51 (U20604, ABRC) into pBluescript SK and the ChAP1 cDNA was 

amplified from C. hirsuta cDNA synthesized from RNA extracted from floral apices 

and cloned in pCRBlunt. AtAP1 and ChAP1 cDNAs were subcloned behind the 

CaMV 35S promoter of the pART7 vector and the 35S::AtAP1 and 35S::ChAP1 

cassettes were transferred to the binary vector pMLBART. Forty independent lines 

were generated for each construct in A. thaliana ap1-1 and ap1-12 and a subset were 

analysed in the T2 generation.  

 gChAP1:GFP was constructed in the destination vector pMDC107 by 

recombination of a 6.6 kb genomic C. hirsuta AP1 fragment in pCR8, which was 

generated by PCR amplification from a BAC containing the C. hirsuta AP1 locus 

(SIU_BAC 20-M1) with the primers ChAP1pro-F (5’- 

CGTGGTGGTTAGAAGATAGCGTCAAC) and ChAP1cterm-R (5’- 

TGCGGCGAAGCAGCCAAGGTT). Ten independent lines of gChAP1:GFP were 

generated in C. hirsuta ap1-119.  

http://www.weigelworld.org/


 

 The 35S:UFOi plasmid (pJP61a) was a gift from P. Laufs (Laufs et al., 2003) 

and independent insertion lines were generated in C. hirsuta wild type plants. Ethanol 

induction was performed as previously described (Deveaux et al., 2003). 

 

Quantitative RT-PCR analysis 

Rosette leaves and whole inflorescences from C. hirsuta wild-type adult plants were 

used to measure LFY expression levels. Whole 8-d-old seedlings of C. hirsuta wild-

type and 35S::AtLFY plants were used to measure LFY and AP1 expression levels. 

These 35S::AtLFY plants were segregating for the lfy-3 allele. Total RNA was 

extracted from three biological replicates of each tissue using the Spectrum Plant 

Total RNA Kit (Sigma-Aldrich). RNA was converted into cDNA using SuperScript 

III Reverse Transcriptase (Thermo Fisher Scientific) and an oligo-dT primer. 

Quantitative PCR was performed in triplicate using Power SYBR Green Master Mix 

(Thermo Fisher Scientific) and the ViiA 7 Real-Time PCR System (Thermo Fisher 

Scientific). Primer efficiency and expression level were determined as previously 

described (Pfaffl, 2001). Expression levels of LFY (5’-

CCAAGAAGGCTTATCAGAGGAGCCG-3’ and 5’-CCGTCTTTGCTGTTGCTTC 

TTCATCT-3’) and AP1 (5’-TGGGTGGTCTGTATCAAGAAGAAG-3’ and 5’-

TATATGGAAATGCTTCATGCGGC-3’) were normalized to the reference gene 

CLATHRIN/AP2M (5’-TCGATTGCTTGGTTTGGAAGATAAGA-3’ and 5’-

TTCTCTCCCATTGTTGAGATCAACTC-3’). 

 

Sequence analysis 

Amino acid sequences for ChAP1 and ChLFY were derived from in silico translation 

of cDNA sequences amplified from C. hirsuta cDNA synthesized from RNA 

extracted from floral apices. The ChAP1 and ChLFY protein sequences were aligned 

to AtAP1 and AtLFY, respectively, using the MUSCLE (MUltiple Sequence 

Comparison by Log- Expectation) tool available online 

(http://www.ebi.ac.uk/Tools/mafft/index.html) using the BLOSUM62 matrix and 

percent identity calculated by pairwise alignment in Jalview. The alignment residues 

were colour-coded based on identity and conservation using AMAS server 

(http://www.compbio.dundee.ac.uk/www-amas). LFY binding sites were predicted in 

A. thaliana and C. hirsuta AP1 regulatory regions as previously described (Moyroud 

http://www.ebi.ac.uk/Tools/mafft/index.html
http://www.compbio.dundee.ac.uk/www-amas


 

et al., 2011). A score is computed on a 19-bp fragment and is negatively proportional 

to the in vitro affinity of LFY for the fragment (Moyroud et al., 2011). 

 

In situ hybridisation 

Shoot apices were induced to flower by a shift from short to long day conditions. For 

in situ hybridisation, apices were fixed in 4% paraformaldehyde, processed through to 

paraffin using a Tissue-Tek® processor (Sakura Finetek USA, Inc.) and 8 μm sections 

were hybridised with C. hirsuta LFY and AP1 RNA probes as previously described 

(Hay & Tsiantis, 2006). Probes were amplified from C. hirsuta cDNA synthesised 

from RNA extracted from floral apices to give the following fragments: ChLFY, 

1263-bp; ChAP1, 1400-bp. 

 

Scanning electron microscopy 

Shoot apices were induced to flower by a shift from short to long day conditions and 

fixed in FAA [Author, please insert expansion for ‘FAA’ (if appropriate)], post-

fixed in osmium tetraoxide, dehydrated, critical point dried and dissected before 

coating with gold/palladium for viewing in a JSM-5510 microscope (JEOL). 

 

Leaf shape analysis 

Shape variation in the terminal leaflets of C. hirsuta genotypes was quantified using 

Extended Eigenshape analysis as previously described (MacLeod, 1999; Cartolano et 

al., 2015). Leaves of A. thaliana genotypes were adhered to white paper using spray 

adhesive and digitally scanned. Images were converted into binary images, and leaf 

area and perimeter were automatically computed using the ImageJ plugin IJBlob 

(Wagner & Lipinski, 2013). The leaf dissection index was calculated as perimeter 

squared / 4Π × area (Bai et al., 2010).  

 

Results 

Cardamine hirsuta lfy mutants show homeotic conversion of flowers to leafy shoots 

To identify floral regulators in C. hirsuta, we screened an EMS-mutagenised C. 

hirsuta population for floral meristem identity defects and isolated five lfy mutants 

(Fig. 1a–h). Sequencing of three alleles, lfy-2, lfy-3 and lfy-4, revealed single 

nucleotide polymorphisms (SNPs) in the C. hirsuta LFY CDS, generating premature 

stop codons predicted to produce truncated 177 AA, 37 AA and 150 AA proteins, 



 

respectively (Fig. 1h). We complemented the lfy-3 mutant phenotype with an A. 

thaliana LFY transgene (pAtLFY::AtLFY; Fig. 2f–l). We confirmed that all other 

alleles belonged to a single complementation group by allelism tests with lfy-3. 

We exploited this allelic series of lfy mutants in C. hirsuta to assess the degree 

of conservation in LFY gene function by comparison with lfy alleles in A. thaliana. 

We detected a striking difference in lfy phenotypes between species: all lfy alleles in 

C. hirsuta lacked floral meristem identity and instead formed a continuous 

phyllotactic spiral of leaves in the axils of bracts, which are cryptic in wild-type 

flowers (Fig. 1c–g). This indicates a complete homeotic flower-to-inflorescence 

conversion in these mutants. By contrast, even the null lfy-6 allele in A. thaliana 

showed only partial homeotic conversion, producing flowers subtended by a bract that 

retain multiple floral features including whorled phyllotaxy, sepals and central carpels 

that are fused or unfused (Fig. 1i–l) (Schultz & Haughn, 1991; Weigel et al., 1992). 

Complete conversion of flowers to leafy shoots is only observed in A. thaliana when 

both LFY and AP1 function is lost (Fig. 1m–p) (Huala & Sussex, 1992; Weigel et al., 

1992; Weigel & Meyerowitz, 1993; Wagner et al., 1999). Therefore, lfy single 

mutants in C. hirsuta phenocopy lfy ap1 double mutants in A. thaliana. 

 The bracts subtending leafy shoots in C. hirsuta lfy mutants have a dissected 

shape, similar to cauline leaves of wild-type C. hirsuta, while bracts in A. thaliana lfy 

resemble the simple cauline leaf shape found in wild-type A. thaliana (Fig. 1c,k). 

Cauline leaves were continuously produced along the stem of all C. hirsuta lfy alleles, 

compared with the production of only three to four cauline leaves in wild type (Fig. 

1g). The small leaves produced in the leafy shoots of C. hirsuta lfy are also dissected, 

unlike wild-type sepals, which are simple (Fig. 1b,d). Therefore, the shape of lateral 

organs produced by the inflorescence of lfy mutants in C. hirsuta vs A. thaliana 

differs for two reasons: first, because of a difference in leaf bauplan between species 

and second, because sepals are produced in the flower-like structures in A. thaliana 

but not C. hirsuta lfy mutants. 

 

LFY function is conserved between A. thaliana and C. hirsuta 

We hypothesised that the divergence in lfy phenotypes between C. hirsuta and A. 

thaliana reflected species-specific differences in either LFY or AP1 function and 

sought to discriminate between these two possibilities. To start with, we examined 

whether LFY gene expression or function differed between A. thaliana and C. hirsuta 



 

and found several lines of evidence to suggest conservation rather than divergence. 

First, we found that C. hirsuta LFY (ChLFY) expression was significantly upregulated 

in inflorescence vs leaf tissue, and strongly expressed in floral meristems initiating at 

the flanks of the inflorescence meristem, a similar pattern to that observed in A. 

thaliana (Fig. 2a,b) (Weigel et al., 1992). Second, we showed that overexpressing the 

A. thaliana LFY cDNA from the CaMV 35S promoter in either A. thaliana or C. 

hirsuta led to a comparable acceleration of flowering and conversion of axillary 

shoots to terminal flowers (Fig. 2c,d), suggesting that A. thaliana LFY is sufficient to 

cause flowering and ectopic flower formation in either species (Weigel & Nilsson, 

1995). We also found that AP1 expression was significantly upregulated in 8-d-old C. 

hirsuta 35S::AtLFY seedlings (Fig. 2e), suggesting that LFY activates AP1 expression 

in C. hirsuta similarly to A. thaliana (Parcy et al., 1998; Wagner et al., 1999). 

Consistent with this result, we showed that the best LFY binding site in the A. 

thaliana AP1 promoter is likely conserved in the AP1 promoter of C. hirsuta, and is 

predicted to have a high affinity for LFY in both species (see later Supporting 

Information Fig. S6) (Benlloch et al., 2011; Moyroud et al., 2011; Winter et al., 

2011). Finally, we tested whether expression of A. thaliana LFY from its own 

promoter (pAtLFY::AtLFY) complemented the lfy phenotype in C. hirsuta. We found 

that transformants recovered wild-type flower and floral organ production in C. 

hirsuta lfy-3, in the same manner as in A. thaliana lfy (Fig. 2f–l) (Blázquez et al., 

1997). Therefore, LFY gene expression and function seem to be conserved between 

species, and LFY proteins from each species share 94% amino acid sequence identity 

(Fig. S1), suggesting that this is not the cause of the divergent lfy phenotype between 

C. hirsuta and A. thaliana. 

 

Species-specific differences in AP1 regulation 

Next, we examined whether differences in AP1 gene expression or function might 

explain the homeotic lfy phenotype in C. hirsuta. Cardamine hirsuta AP1 (ChAP1) is 

expressed in floral meristems initiating at the flanks of the inflorescence meristem in a 

similar domain to ChLFY (Fig. 3a). Arabidopsis thaliana AP1 (AtAP1) shares this 

wild-type expression pattern and is also expressed in lfy mutants due to activation by 

additional floral regulators, although the onset of expression is slightly delayed as 

compared with wild type plants (Liljegren et al., 1999; Wagner et al., 1999). 

Surprisingly, we did not detect any ChAP1 expression in C. hirsuta lfy-3 by in situ 



 

hybridisation (Fig. 3b). To maximise our chances of detecting AP1 expression we 

performed these experiments with samples collected >2 wk after floral induction by 

which time AP1 expression was easily detected in multiple A. thaliana lfy alleles 

(Liljegren et al., 1999; Wagner et al., 1999). Thus, AP1 expression in C. hirsuta 

appears entirely dependent upon LFY activity, in striking contrast to AP1 expression 

in A. thaliana.  

To investigate ChAP1 function, we isolated two ap1 alleles from an EMS-

mutagenised C. hirsuta population, ap1-119 and ap1-797, which showed a 

characteristic phenotype of branched flowers and petal loss (Figs 3c–j, S2a,b). 

Sequencing these ap1 alleles revealed a SNP that mutates the splice donor site of the 

second intron in ap1-119, and the splice acceptor site of the fifth intron in ap1-797 

(Fig. 3d). We complemented the ap1-119 mutant phenotype with a C. hirsuta 

AP1:GFP translational fusion (gChAP1:GFP, Fig. S2c) and crossed the ap1-797 

allele with ap1-119 to confirm allelism. The branched flowers found in C. hirsuta 

ap1-119 are due to ectopic floral meristems formed in the axils of first-whorl floral 

organs that reflect a partial transformation of sepals into leaves with associated 

axillary meristems (Fig. 3f,g). Floral organ development is also altered, particularly in 

the first two whorls. For example, sepals are flanked by stipules, which normally form 

at the base of leaves, and lateral sepals initiate lower on the receptacle and often abort 

(Fig. 3h). Comparable defects are found in A. thaliana ap1 mutants, indicating a 

conserved function for AP1 in regulating floral meristem identity and sepal and petal 

development in these species (Irish & Sussex, 1990; Bowman et al., 1993). To further 

compare the function of A. thaliana AP1 and C. hirsuta AP1, we used the CaMV 35S 

promoter to overexpress the CDS of each gene in A. thaliana ap1 mutants. 

Transformants expressing either construct showed equivalent acceleration of 

flowering, conversion of axillary shoots to terminal flowers and rescue of branching 

and petal loss in flowers (Fig. S2d–i; Table S1) (Mandel & Yanofsky, 1995). These 

results, together with 97% amino acid identity shared between C. hirsuta and A. 

thaliana AP1 (Fig. S3), support the conclusion that AP1 function is conserved 

between species. 

We used genetics to explore the functional significance of our observation that 

the inflorescence of C. hirsuta lfy mutants lacked AP1 expression. If AP1 activation is 

completely dependent on LFY in C. hirsuta, then we predicted that lfy mutants would 

show complete epistasis to ap1. We tested this prediction by constructing lfy ap1 



 

double mutants and found that these double mutants were indistinguishable from 

single lfy mutants in C. hirsuta (Fig. 3i–l). Therefore, the genetic interaction between 

LFY and AP1 differs between species. The additive interaction in A. thaliana (Fig. 1i–

p) reflects both LFY-dependent and LFY-independent activation of AP1, while the 

epistatic interaction in C. hirsuta (Fig. 3i–l) is likely to reflect only LFY-dependent 

activation of AP1. 

To directly test whether this species-specific difference in AP1 regulation was 

responsible for phenotypic differences between lfy mutants in A. thaliana vs C. 

hirsuta, we overexpressed AP1 in the C. hirsuta lfy mutant. We predicted that the lfy 

mutant would no longer have a homeotic phenotype in C. hirsuta if AP1 was 

expressed. We found that the 35S::AtAP1 transgene was sufficient to recover floral 

organ identity in C. hirsuta lfy-2, such that flowers comprised sepals and central 

unfused carpels (Fig. 3m–p); essentially converting C. hirsuta lfy to an A. thaliana lfy 

phenotype. Taken together, our findings show that species-specific differences in AP1 

expression underlie the difference in lfy phenotypes between A. thaliana and C. 

hirsuta.  

 

LFY regulates heteroblastic leaf shape in C. hirsuta 

A role for LFY orthologs in determining leaf shape has been shown in a number of 

species with dissected leaves, particularly legumes in a subclade of the Fabaceae 

(Hofer et al., 1997; Champagne et al., 2007; Wang et al., 2008; Chen et al., 2010). 

We took advantage of C. hirsuta lfy mutants to assess the contribution of LFY to 

dissected leaf shape in a species in the Brassicaceae family. The shape of successive 

leaves differs in many plants, including C. hirsuta, in an age-dependent process called 

heteroblasty, tracking progressive phases of plant life from juvenile to adult, and 

vegetative to reproductive (Telfer et al., 1997; Cartolano et al., 2015). In C. hirsuta, 

leaf shape changes during aging by increasing leaflet number and altering leaflet 

shape from kidney- to wedge-shape, which is particularly pronounced in terminal 

leaflets (Fig. 4a) (Cartolano et al., 2015). We found that this heteroblastic progression 

was delayed in lfy-3 mutants such that leaves had significantly fewer leaflets than 

wild type from leaf 3 onwards, and failed to produce the maximum number of leaflets 

found in wild-type adult leaves (Fig. 4a,b). This heteroblastic delay was not 

associated with a significant delay in lfy-3 flowering time, as both mutant and wild 

type produced a similar number of rosette leaves before flowering (Figs 4c, S4a).  



 

We quantified terminal leaflet shape by Extended Eigenshape analysis, a 

multivariate approach based on outline analysis (MacLeod, 1999; Cartolano et al., 

2015). We found that the first principal component eigenvalue (ES1) accounts for 

10.3% of the total shape variation found between the terminal leaflets of all 

genotypes, and quantifies the transition in shape from a juvenile kidney-shape to an 

adult wedge-shape (Figs 4d, S4b). Again, we found that heteroblastic progression was 

delayed in lfy-3 mutants such that terminal leaflets had significantly lower ES1 

eigenscore values than wild type from leaf 8 onwards, and failed to acquire the 

maximum ES1 value found in wild-type adult leaves (Fig. 4d). In contrast to this, we 

found significantly higher ES1 values in terminal leaflets of 35S::AtLFY transgenic 

lines in C. hirsuta than wild type, from leaf 5 onwards, and precocious acquisition of 

the maximum ES1 value found in wild type (Fig. 4d). Flowering was also accelerated 

in 35S::AtLFY, such that fewer rosette leaves were formed, and the maximum number 

of leaflets found in wild-type adult leaves was never reached on 35S::AtLFY leaves 

before flowering (Fig. 4b,c). Our findings indicate that LFY provides a key input into 

the heteroblastic progression of C. hirsuta leaf shape and that altering its activity is 

both necessary and sufficient to alter this progression. Loss of LFY function reduces 

the rate of shape change in terminal leaflets, such that adult shape is never reached, 

while LFY overexpression accelerates this change, such that adult shape is reached 

precociously. Given that leaflet number is reduced in 35S::AtLFY, compared with 

wild type, LFY overexpression may also disrupt other aspects of leaf development in 

addition to heteroblasty. However, the heteroblastic effect of LFY is obvious when 

simply comparing the terminal leaflet shape of the last rosette leaf before flowering 

between these C. hirsuta genotypes (indicated in Fig. 4a). In contrast to this, we 

detected no difference in the shape of the last rosette leaf between wild type and lfy 

mutants in A. thaliana (Figs 4e, S4c). Therefore, the contribution of LFY activity to 

heteroblastic leaf shape variation is more pronounced in C. hirsuta than A. thaliana. 

 

LFY is required for UFO function in C. hirsuta 

Since UFO overexpression alters leaf shape in a LFY-dependent manner in A. 

thaliana (Lee et al., 1997; Chae et al., 2008; Risseeuw et al., 2013), we tested 

whether this function was conserved in C. hirsuta. We found that, similar to A. 

thaliana, expressing an ethanol-inducible version of UFO (UFOi) broadly under the 

35S promoter (Laufs et al., 2003) alters the dissected leaf shape of C. hirsuta by 



 

increasing its complexity (Figs 5a–d, S5a–c). This phenotype was dependent on LFY 

activity since the supernumerary leaflets and lobes disappeared in 35S::UFOi lfy-2 

plants (Fig. 5e,f). Moreover, overexpression of UFO did not accelerate flowering in 

C. hirsuta (Figs 5g, S5d), suggesting that LFY is the limiting factor for floral 

initiation in both C. hirsuta and A. thaliana. These results suggest that LFY and UFO 

functions are potentially conserved between C. hirsuta and A. thaliana, although 

future work will help to determine the precise role of UFO in C. hirsuta development. 

 

Discussion 

Floral initiation is a critical point in a plant’s life. In C. hirsuta, we found this 

irreversible switch to floral development is specified by the concerted action of LFY 

and AP1, similar to A. thaliana. However, in contrast to A. thaliana, the activation of 

AP1 expression is entirely dependent on LFY in C. hirsuta. As a consequence, 

flowers are homeotically converted to shoots with cauline leaves in C. hirsuta lfy 

mutants, because these meristems fail to acquire floral identity. This is in stark 

contrast to A. thaliana, where LFY-independent activation of AP1 maintains the 

development of flower-like structures in lfy mutants. We uncovered an additional 

function for LFY as necessary and sufficient for the heteroblastic progression of 

dissected leaf shape in C. hirsuta. Leaf shape is also modified by UFO 

overexpression, which markedly increased the complexity of C. hirsuta leaves; and 

like A. thaliana, it requires LFY activity for this function. Our findings show that 

LFY, AP1, and most likely UFO, are functionally conserved floral regulators in C. 

hirsuta. However, LFY has more obvious roles in the floral and leaf development of 

C. hirsuta than A. thaliana. This difference arises from differential AP1 regulation 

during floral development, and divergent gene regulatory networks operating in 

simple vs dissected leaf development. 

 

Divergent AP1 regulation between A. thaliana and C. hirsuta 

In A. thaliana, LFY and AP1 act in a partially redundant manner to determine the 

identity of the floral meristem. This is not the case in C. hirsuta. Three independent 

lfy alleles show complete loss of floral meristem identity in C. hirsuta. The position 

and nonsense nature of the mutations, and the fact that all three alleles showed an 

identical phenotype, suggests that these are null alleles. Our results show that LFY 

acts nonredundantly to specify floral identity in C. hirsuta because AP1 activation is 



 

completely dependent on LFY. This suggests that components responsible for LFY-

independent induction of AP1 may have diverged between A. thaliana and C. hirsuta. 

LFY-independent activation of AP1 is thought to be achieved by the FT–FD complex, 

since double mutants between lfy ft and lfy fd mimic the homeotic phenotype of lfy 

ap1 double mutants (Wigge et al., 2005). However, the exact cis-element that FT–FD 

binds in the AP1 promoter is still unknown (Benlloch et al., 2011). A recently evolved 

MADS-box transcription factor binding site (CArG box) was identified in the AP1 

promoter of A. thaliana, via which CAULIFLOWER and AP1 itself could induce AP1 

expression (Ye et al., 2016). SVP and AGL24 are additional MADS-box proteins that 

could activate AP1 via this CArG box, independent of LFY, since double mutants 

between lfy svp and lfy agl24 also mimic the phenotype of lfy ap1 double mutants 

(Grandi et al., 2012). In comparison to the A. thaliana CArG box sequence, there are 

two mutations and one deletion in the C. hirsuta sequence, suggesting it is 

nonfunctional, and a possible candidate to explain why regulation of AP1 in C. 

hirsuta is completely dependent on LFY (Fig. S6). Despite this difference, our 

analysis of C. hirsuta ap1 mutants shows that AP1 is required for sepal and petal 

development in both C. hirsuta and A. thaliana and that this is not a derived function 

of AP1 in A. thaliana (Ye et al., 2016). Future work will help to identify the precise 

regulatory changes that underlie the difference in AP1 regulation between A. thaliana 

and C. hirsuta. 

 Previous studies have reported both partial and full homeotic conversions of 

flowers to shoots in orthologous lfy mutants in various flowering plants (Coen et al., 

1990; Weigel et al., 1992; Hofer et al., 1997; Molinero-Rosales et al., 1999; Bomblies 

et al., 2003; Dong et al., 2005; Souer et al., 2008; Wang et al., 2008; Ikeda-

Kawakatsu et al., 2012; Zhao et al., 2016). This suggests that the relative role of LFY 

vs other regulators of floral meristem identity is evolutionary labile. It will be 

interesting to understand whether differences in AP1 regulation underlie not only the 

difference between A. thaliana and C. hirsuta lfy phenotypes, but have evolved 

repeatedly, and contribute to the variable floral phenotypes of lfy mutants across 

angiosperms. Generating additional mutants in LFY orthologs in other species, 

particularly in A. thaliana relatives, should help resolve this question.   

 

LFY influences the heteroblastic progression of leaf shape in C. hirsuta 



 

Previous work showed that regulatory divergence in FLOWERING LOCUS C (FLC) 

underlies much of the natural variation in C. hirsuta leaf shape (Cartolano et al., 

2015). Low-expressing FLC alleles accelerate both flowering time and heteroblastic 

progression of leaf shape, resulting in a faster progression to adult leaf shape. This 

work showed that FLC coordinates leaf development with reproductive timing, and 

that this coordination influences seed yield (Cartolano et al., 2015). Here we found 

that LFY also influences the heteroblastic progression of C. hirsuta leaf shape, such 

that LFY is required to produce an adult leaf shape. However, we observed no 

flowering time delay in the C. hirsuta lfy mutant. This finding suggests that the role of 

LFY in heteroblasty may be independent of the floral transition. There are at least two 

possible explanations for this: first, the low level of LFY expression in leaves (Fig. 2b) 

may promote adult traits or second, LFY-dependent signals that are produced after 

bolting may feedback to influence leaf development. This latter possibility is 

consistent with the work on FLC (Cartolano et al., 2015), which suggests that the 

transition to flowering is accompanied by developmental changes in leaves that 

prepare the plant for impending reproduction.  
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Fig. 1 Cardamine hirsuta lfy mutants resemble lfy ap1 double mutants of Arabidopsis 

thaliana. (a, b) Cardamine hirsuta wild-type (a) inflorescence and (b) flower with 

floral organs arranged in whorls. (c, d) Cardamine hirsuta lfy-3 inflorescence shows 

(c) complete floral to shoot conversion with (d) flowers consisting of leaves in a spiral 

arrangement. (e, f) Cardamine hirsute (e) lfy-2 and (f) lfy-4 inflorescences look 

identical to lfy-3. (g) Average number of cauline leaves/bracts on the main stem of C. 

hirsuta wild type and lfy mutant alleles (up to a maximum of 15 leaves were scored). 

Data reported as means ± SE. (h) Cardamine hirsuta LFY gene model showing the 

lfy-2, lfy-3 and lfy-4 mutations. Lines represent introns and rectangles represent exons; 

regions encoding the DNA-binding domain (dark grey) and the conserved N-terminal 

domain (light grey) are indicated (Hames et al., 2008; Sayou et al., 2016). (i–p) 

Arabidopsis thaliana inflorescences and flowers of the following genotypes: (i, j) wild 

type; lfy-6 showing (k) an incomplete floral to shoot transformation with flowers 

consisting of sepals and (l) a central carpel [Author, please confirm adjusted 

placement of ‘(k)’ and ‘(l)’ refer to correct text]; (m, n) ap1-1; (o, p) lfy-6 ap1-1 

showing a complete floral to shoot conversion. Bars: (a, c, e, f, i, k, m, o) 2 mm;(b, d, 

j, l, n, p) 1 mm. 

 

Fig. 2 LFY function is conserved between Arabidopsis thaliana and Cardamine 

hirsuta. (a) In situ hybridization on a longitudinal section through a wild-type C. 

hirsuta inflorescence probed with C. hirsuta LFY. (b) Cardamine hirsuta LFY 

expression in inflorescence compared with leaf tissue of C. hirsuta, determined by 

quantitative real time polymerase chain reaction (RT-PCR) [Author, please confirm 

inserted text ‘real time polymerase chain reaction’ is correct] and expressed as 

fold change (Student’s t-test: P = 0.006). Data reported as means of three biological 

replicates ± SE. (c, d) 35S::AtLFY promotes early flowering and converts each 

axillary shoot to a solitary flower (arrows) in (c) C. hirsuta lfy-3 and(d) A. thaliana 

lfy-6. (e) Cardamine hirsuta LFY and AP1 expression in 8-d-old C. hirsuta seedlings 

of 35S::AtLFY compared with 8-d-old wild-type (WT) seedlings, determined by 

quantitative RT-PCR and expressed as fold change (Student’s t-test: P = 0.0008 for 



 

LFY, P = 0.029 for AP1). Data reported as means of three biological replicates ± SE. 

Note that the lfy-3 allele is segregating in 35S::AtLFY plants. (f) Average number of 

cauline leaves/bracts on the main stem of C. hirsuta wild type, lfy-3 and lfy-3; 

pAtLFY::AtLFY genotypes (up to a maximum of 20 leaves were scored). Data 

reported as means ± SE. (g–i) Whole plant and (j– l) inflorescences of the C. hirsuta 

genotypes: (g, j) wild type, (h, k) lfy-3 and (i, l) lfy-3; pAtLFY::AtLFY. Note that the 

rosette is omitted from the plant in (h), and older flowers are dissected off the 

inflorescence in (l). Significance levels: ***, P < 0.001; **, P < 0.01; *, P < 0.05. 

Bars: (a) 50 μm; (c, d, g–i) 1 cm; (j–l) 0.5 cm.  

 

Fig. 3 Regulatory divergence of AP1. (a, b) In situ hybridizations on longitudinal 

sections through Cardamine hirsuta inflorescences of the following genotypes: (a) 

wild type and (b) lfy-3 probed with C. hirsuta AP1. In C. hirsuta wild type, the 

expression of AP1 marks cells at the periphery of the shoot apical meristem that have 

acquired floral meristem fate and mRNA for this gene accumulates throughout early 

floral meristems (a). No AP1 expression is observed in C. hirsuta lfy (b). (c) Number 

of floral organs in wild type and ap1-119 C. hirsuta plants showing fewer petals and 

the presence of ectopic flowers in ap1-119. Data reported as means ± SE. (d) 

Cardamine hirsuta AP1 gene model showing the positions of ap1-119 and ap1-797 

mutations. Lines represent introns and rectangles represent exons. (e–h) Scanning 

electron micrographs (SEM) of (e) wild-type and (f) ap1-119 inflorescences, and (g, 

h) ap1-119 flowers; arrows indicate ectopic flower in the axil of (g) a medial sepal 

and (h) stipules flanking an aborted lateral sepal [Author, please confirm amended 

placement of ‘(g)’ and ‘(h)’ refer to correct text]. (i–m) Inflorescences of C. hirsuta 

(i) wild type, (j) ap1-119, (k) lfy-2, (l) lfy-2;ap1-119 and (m) lfy-2;35S::AtAP1. (n, o) 

Cardamine hirsuta lfy-2;35S::AtAP1 flowers consisting of sepals and a central carpel, 

arrow indicates sepal identity of epidermal cells and arrowhead indicates carpel with 

stigmatic papillae and ovules (o). (p) lfy-3 flower consisting of leaves that lack floral 

organ identity. Bars: (a, b, e–g, o, p) 100 μm; (h) 20 μm; (i–m) 0.5 cm; (n) 0.5 mm.  

 

Fig. 4 LFY regulates heteroblastic progression of leaf shape in Cardamine hirsuta. (a) 

Heteroblastic leaf series of C. hirsuta wild-type, lfy-3 and 35S::LFY genotypes. First 

to last rosette leaves shown from left to right, rectangles indicate the last rosette leaf; 

cauline leaves are underlined. (b) Leaflet number is significantly lower in lfy-3 and 



 

35S::LFY leaves compared with wild type from leaf 3 onwards and the maximum 

number of leaflets produced in lfy-3 leaves is significantly lower than wild type. n = 

11 (wild-type), 13 (lfy-3), 7 (35S::LFY). (c) Flowering time does not differ 

significantly between lfy-3 and wild type (WT) but 35S::LFY plants flower early, 

indicated by the number of rosette leaves produced; significant differences between 

means are shown by different letters (P < 0.01 Tukey’s test), n = 10 (WT), 13 (lfy-3), 

7 (35S::LFY). (d) The y-axis shows the shape model for the first Eigenshape axis 

(ES1). ES1 describes the heteroblastic change in terminal leaflet morphology from 

kidney-shaped (low ES1) to wedge-shaped (high ES1) and accounts for 10.3% of 

shape variation between all genotypes. The terminal leaflet of lfy-3 leaves has lower 

ES1 values that differ significantly from other genotypes from leaf 8 onwards, 

indicating a delay in heteroblastic development and a failure to acquire final adult 

shape. The terminal leaflet of 35S::LFY leaves has higher ES1 values that differ 

significantly from other genotypes at leaf 1 and from leaf 5 onwards, indicating a 

precocious acquisition of adult shape. n = 6 (WT and lfy-3), 5 (35S::LFY). (e) 

Arabidopsis thaliana leaf shape (as measured by the leaf dissection index) of the last 

rosette leaf before flowering does not differ significantly between Col-0 and lfy-10 (P 

= 0.5 Student’s t-test), n = 5 (Col-0), 14 (lfy-10). Bars: (a) 1 cm; (e) 0.5 cm. Statistical 

tests used in (b–d) were ANOVA with post hoc Tukey tests. Data reported as means ± 

SE. 

 

Fig. 5 LFY is required for UFO function in Cardamine hirsuta. Plants and 

representative leaves of (a–d) 35S::UFOi and (e, f) 35S::UFOi lfy-2 after ethanol 

induction. Ethanol induction of UFO expression, driven by the CaMV 35S promoter, 

produces more complex leaves. For example, leaflets dissected to deep lobes (asterisk, 

b), leaflets initiated in the axils between leaflet and rachis (arrow, c), intercalary 

leaflets borne on the rachis (arrow, d) and individual leaflets borne on the petiolule 

(asterisk, d). Leaf shape is unaffected by ethanol induction of UFO expression in a lfy 

background (e, f). (g) Number of rosette leaves at flowering time is not significantly 

affected by ethanol induction of UFO expression in 35S::UFOi lines (Wilcoxon test, 

P > 0.05). Data reported as means ± SE. Bars, 1 cm.  


