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Abstract

Operational Research and Optimization are fundamental disciplines which, for decades,

provided the real-world with tools for solving practical problems. Many such problems

arise in container ports. Container terminals are important assets in modern economies.

They constitute an important means of distributing goods made overseas to domestic

markets in most countries. They are expensive to build and difficult to operate. We

describe here some of the main operations which are faced daily by decision makers at

those facilities. Decision makers often use Operational Research and Optimization tools to

run these operations effectively. In this thesis, we focus on seaside operations which can

be divided into three main problems:

• the Berth Allocation Problem (BAP),

• the Quay Crane Assignment Problem (QCAP),

• the Quay Crane Scheduling Problem (QCSP).

Each one of the above is a complex optimization problem in its own right. However, solving

them individually without the consideration of the others may lead to overall suboptimal

solutions. For this reason we will investigate the pairwise combinations of these problems

vi



vii

and their total integration In addition, several important factors that affected on the final

solution. The main contributions of this study are modelling and solving of the:

• Robust berth allocation problem (RBAP): a new efficient mathematical model is for-

mulated and a hybrid algorithm based on Branch-and-Cut and the Genetic Algorithm

is used to find optimal or near optimal solutions for large scale instances in reasonable

time.

• Quay crane assignment and quay crane scheduling problem (QCASP): a new math-

ematical model is built to simultaneously solve QCASP and a heuristic based on the

Genetic Algorithm is developed to find solutions to realistic instances in reasonable

time.

• Berth allocation, quay crane assignment and quay crane scheduling problem (BA-

CASP): an aggregate model for all three seaside operations is proposed and to solve

realistic instances of the problem, an adapted variant of the Genetic Algorithm is

implemented.

Keywords: berth allocation; quay crane assignment; quay crane scheduling; terminal

operations; genetic algorithm
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Chapter 1

Introduction

1.1 Containerization and Trends in Maritime Logistics: Re-

search Background

The transportation of general cargo underwent a huge change towards the end of the

1950s with the appearance of the first ocean container ships. Prior to this, the handling

and transportation of general cargo was a very slow and labour-intensive procedure. The

majority of cargo was moved using building pallets and cranes, which hoisted them into

the ships holds. This meant that the cargo being transported was susceptible to damage.

The introduction of containers meant that cargo could be handled in a quick and simple

manner. Containers also helped to facilitate the international transport of goods. The cargo

was loaded at the dispatch site and only unpacked when it reached its collection point.

Containers come in the form of metal boxes and have uniform measurements.

2
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The five typical lengths include 20ft, 40ft, 45ft, 48ft and 53ft. The latter two sizes are not

used for global shipping but are generally used in domestic rail freight transport. Twenty-

foot Equivalent Units (TEU) are the standard units that are used to describe container

capacity and throughput measurements. One TEU is equivalent to one standard 20ft

long, 8ft wide container, although TEUs are rough measures. Different types of goods

require specialised containers. For example, frozen goods require temperature-controlled

containers, these are referred to as reefers, which is a shortened term for refrigerated

containers. Organic product may be shipped in ventilated containers, bulk minerals may

be transported in open-top bulktainers and tank containers may be used for bulk liquids

or gases.

During the 1990s there was major growth in the area of global container transportation.

As a result, container terminal operators and ocean carriers experienced certain changes

in the way their businesses were run. In order to meet ever-increasing shipping demands,

carriers reacted by introducing new routes and more regular services. As a result, ocean

carriers and freight service companies ploughed money into new equipment and state-of-

the-art Decision Support Systems (DSS). Container vessels also increased in size to meet

this demand, with so-called mega-ships of up to 18,000 TEUs being built [1].

More than 80% of global commodities are transported via the sea, resulting in the

extensive and significant growth of international seaborne trade. Figure 1.1 illustrates the

developing relationship between the growth in world GDP and seaborne trade between

1975 and 2014, as highlighted in the 2015 report of the United Nations Conference on Trade

and Development (UNCTAD) [85].
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Figure 1.1: The OECD Industrial Production Index and indices for world GDP, merchandise trade and
seaborne shipments (1975 - 2014) (base year 1990 = 100)

In recent times, the receptivity of trade to GDP growth may have diminished. Nonethe-

less, the need for ocean carriers and the volumes of international seaborne trade are dictated

by worldwide economic expansion and trading requirements. According to initial figures,

it has been estimated that the volume of world seaborne shipments in 2014 grew at the same

rate as in 2013 namely by 3.4%. Extensions to volumes surpassed 300 million tons, bringing

the total to 9.84 billion. According to UNCTAD 2015, this represents approximately four

fifths of total world merchandise trade (UNCTAD,2015) [85].

Before the world financial crisis of 2008, global seaborne trade was experiencing a

boom. Indeed, by 2007 world seaborne trade amounted to approximately 8.02 billion tons

of cargo. It was a different story in 2009, however, when the world GDP decreased by 1.9%

and the biggest reduction in global yield was reported since the 1930s. Subsequently, world

seaborne trade experienced a major decline in 2009 with a drop in volume of 4.5% [27].
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As part of the infrastructure of worldwide containerised shipping, port container ter-

minals act as important links between land transportation and seaborne shipping. There

has been significant growth in the area of port container handling as a result of container

trade growth. Due to major increases in the transshipment of goods at container termi-

nals, steps have been made to try to expand the throughput of ports. Reportedly, global

containerised trade grew by approximately 5.3% in 2014, stretching to 171 million TEUs

(UNCTAD,2015) [85]. See Figure 1.2.

Figure 1.2: Global containerized trade, 1996-2015 (million TEUs and percentage annual change)

A two-year study into the future of the maritime industry predicted that by the year 2030

global seaborne trade will stand at between 19 and 24 billion tons a year. At present this

figure stands at 9 billion tons with approximately 90% of world trade by volume being

transported by sea [12].
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1.2 An Overview of the Container Terminal and Quayside

Operations

There are two scarce resources that need to be utilized with care along the quay of port

container terminals, berths and quay cranes. The berth is a platform (a linear stretch) where

arriving vessels will be moored. Quay cranes are industry-standard equipment for loading

and discharging containers to/from vessels. A quay crane is a special type of gantry crane

having a large steel frame, which is positioned along the wharf (or quay) alongside a berthed

vessel. Quay cranes are very expensive (around 6 million British pound per individual

machine) and quay cranes along the berth are mounted on the same track, which forbids

them from crossing each other at any instant. Traditionally, there are three key problems

needed to be addressed for quayside operations: the Berth Allocation Problem (BAP),

the Quay Crane Assignment Problem (QCAP) and the Quay Crane Scheduling Problem

(QCSP).

Figure 1.3: Schematic representation of a container terminal (Steenken et al., 2004)
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Once a vessel arrives at the container terminal (port), a number of containers must

be unloaded/loaded from/onto the vessel to the storage yard and vice versa. The yard is

storage space at the port where containers are stored temporarily until they are transferred

to their destinations. How far the berthing position is from the yard storage space impacts

on the time required to move a container and therefore the efficiency of processing a vessel.

As a result, a “best berthing position” is nominated for every single incoming vessel, which

is the closest berth position to the allocated yard storage space. If the best berthing position

cannot be guaranteed, a “movement cost” for the additional time and effort for moving the

container would have to be paid. To complete the seaside operations, there is a number of

quay cranes which will be used to unload/load these containers from the deck of vessels

and vice versa.

The problem of BAP determines the berthing times and position for a set of vessels

within the planning horizon. This is done by taking into consideration some factors such

as the length, the expected arrival/departure time and the processing time of each vessel.

The vessel has to be moored for unloading/loading the containers when it arrives at a

seaport. For this purpose, a number of berths are constructed at container terminals. No

doubt, the utilization of berths has its immediate impact on the overall utilization of the

terminal. Accordingly, on the operational level, the decision of allocating berth space for

vessels is crucial.

The QCAP, also referred to as the crane split problem [27], is the decision to allocate

quay cranes to container vessels with respect to the constraints of quay crane availability

and accessibility. There are two reasons preventing the decision makers from assigning

too many quay cranes to a vessel. The first reason is the cost of building quay cranes
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which is very expensive and the second one is the quay crane constraints. However, if the

number of quay cranes assigned to a vessel was too low, the vessel will spend more time on

handling. Accordingly, the tardiness of the vessel will affect the operators of this vessel and

at the same time, the container terminal plan since other vessels will have to wait until this

vessel handling finishes. The opposite case is when the number of quay cranes which are

assigned to a vessel is more than the number that it is needed, this leads to a high handling

cost for this vessel following the high working cost of these quay cranes. Consequently,

vessels that need to be handled after this vessel, will moor and wait until the quay cranes

become available.

The QCSP, given the fixed number of quay cranes deployed to a certain vessel, the

target is to schedule each quay crane of the vessel to a task (bay) so as to perform the tasks

in an optimal sequence. With the optimal sequence, the processing time of the vessel can

be minimized.

Figure 1.4: A container terminal at the Port of Felixstowe
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1.3 Research Objectives, Scope and Organization

Growth in globalization has significantly increased the demand for containerized maritime

transport services. As a result, the competition among port container terminals has become

acute, which drives the managers in port container terminals to pursue seamless flows of

containers through terminals to keep the operational costs as low as possible. To this

end, operational research and optimization methods have become very important in the

operations management in port container terminals. From the angle of operations research

and management science, this thesis aims to design models and devise the corresponding

solving methods for the quayside operations in port container terminals. This enables

port managers to come up with viable and cost-effective scheduling plans for quayside

operation problems in a rapid manner.

As mentioned before, berths and quay cranes are the most crucial resources at a container

terminal. They are not only the most expensive equipment, but also the initiates of container

flow within the terminal. Efficient and effective utilization of berths and quay cranes is

therefore essential for overall port throughput. Many researchers have concentrated on

berth and quay crane planning; however, recent trends and changes in maritime logistics,

like the introduction of integrating the seaside operations problems of flexible continuous

berth structures, have created gaps in the current literature. In this thesis, we hope to fill

many of these gaps.

The seaside operations are currently solved individually. Decision makers at the con-

tainer terminals, however, prefer to solve these operations problem in an aggregate way

in order to manage the port near optimality. This thesis presents a comprehensive study



1.3. Research Objectives, Scope and Organization 10

on how to formulate an aggregate of quayside operations in container ports models and to

develop suitable algorithms to solve them. The dissertation is in six chapters:

Chapter 1 is an introduction which provides the general background of containerization,

a brief introduction to quayside operations, the objectives and the scope of the thesis.

Chapter 2 addresses the mathematical background necessary for solving these problems

and reviews the previous studies. The literature review is divided into five parts each

review on one of BAP, QCSP, BACAP, QCASP and BACASP operations problem.

In Chapter 3, we present a mixed integer programming (MIP) formulation for the

robust berth allocation problem (RBAP) which is defined for a container terminal with a

continuous berth. Arriving vessels can be assigned to any position of the berth, but we need

to add a time buffer between vessels in order to mitigate the uncertainty of real situations.

A new weight to estimate this time buffer is proposed, unlike in the previous models that

depended on the shipping line’s reputation of punctuality or simply added a constant time

buffer for each vessel. By implementing the new time buffer we could overcome the delay

of a vessel if it was during its traveling to the port or during its handling at the container

terminal. The Branch-and-Cut (B&C) method as implemented in CPLEX, is used to find the

exact solution for experimental instances and a hybridisation algorithm based on B&C and

GA as a solution approach has been developed to solve large scale instances of the RBAP.

Computational experiments show that the algorithm is capable to provide high quality

solutions in relatively short computation times.

In Chapter 4, we focus on the quay crane assignment and quay crane scheduling op-

erations as QCASP, which is the problem of assigning a variable number of quay cranes
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to each vessel moored at a container terminal and simultaneously finding the optimal se-

quence in which to process the vessel. An efficient mixed integer programming model with

non-interference among quay cranes constraints has been introduced. A Branch-and-Cut

method is used to find the optimal solution for instances of small scale as implemented

in CPLEX. In this method, the number of constraints and decision variables increase ex-

ponentially with the number of vessels, tasks and quay cranes. Being an exact method

B&C cannot achieve an optimal solution in reasonable times. A meta-heuristic algorithm

based on GA is proposed to solve large problem instances and to find the optimal or near

optimal solution in reasonable amounts of time. Numerical experiments show that the pro-

posed GA is capable of solving QCASP and finding the optimal or near optimal solution

efficiently.

In Chapter 5, we introduce the simultaneous berth allocation, quay crane assignment

and quay crane scheduling problem (BACASP) formulation which is considered as the

most important problem in container terminals. Each one of its individual operations is

usually approached sequentially by terminal operators. A new aggregate mathematical

model is proposed which combines these quayside operations and solves the resulting

problem to optimality when on a small scale. A meta-heuristic based on GA is developed

to solve large scale BACASP problems. The experimental results show that the proposed

GA is capable of solving BACASP and finding the optimal or near optimal solution in

reasonable time. Exact methods like the Combinatorial Benders’ Cuts (CBC) algorithm

were tested and found that they cannot solve this type of problem.

In Chapter 6, we draw concluding remarks and present future research suggestions and

directions related to this research topic. In summary, the research presented in this thesis
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provides new insights on how to model the seaside operations at container terminals and

introduces a set of potent tools to handle the challenging issues arising in this field. To cope

with uncertainty, several concerns and suggestions are highlighted as well in this chapter.



Chapter 2

Literature Review

There are many studies dealing with the various operations that arise in container terminals.

In this chapter, we review literature that addressed the seaside operations. Comprehensive

overviews of the three problems (seaside operations) considered here can be found in the

papers of Steenken et al. [82], Bierwirth et al. [4] and Bierwirth et al. [5]

2.1 The Berth Allocation Problem (BAP)

BAP is the problem of allocating a berthing time and a berthing position to each vessel

that arrives at a container terminal. The main objective is to minimize the total vessels

turnaround time, which is the sum of the waiting and handling times of each vessel. Han-

dling time is the time it takes to unload/load the containers from/onto a vessel, depending

on the distance between the berthing position and the desired berthing position of the

vessel. The desired berthing position is that which has the minimum distance from the

pre-allocated yard storage in the port, where the containers will be stored until they are

13
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transferred to intermediary or final destinations. The decision makers in the container ter-

minal should consider the best berthing time as well as the best berthing position together,

so as to minimize the turnover time and the movement cost of the vessel simultaneously.

The BAP with continuous wharf is the normal setting in most modern container ports

as it offers more flexibility. Our study also assumes a continuous wharf setting. Under

similar problem settings, Li et al. [49] formulated the problem in a “multiple-job-on-one-

processor” model, where multiple jobs refer to several vessels and one processor refers

to a single berth. A small vessel moored at a berth may share the berth with other

vessels if their total length does not exceed the length of the wharf. Lim et al. [51, 52]

formulated a BAP and showed it is NP-complete. The authors used a graph theoretic

representation to capture the problem succinctly and proposed a heuristic for its solution.

Moon [63] proposed a mixed integer linear programming model whose objective is to

minimize the tardiness of vessels. A heuristic procedure is suggested for searching a

near optimal solution. Goh et al. [24] discussed the methods of modelling BAP and

proposed several approaches to solve it such as the Randomized Local Search (RLS), (GA)

and Tabu Search (TS). Kim et al. [37] formulated BAP as a mixed integer program and

applied a simulated annealing algorithm to find near optimal solutions. Guan et al. [25]

developed two inter-related BAP mathematical models the objective functions of which

are to minimize the total weighted finishing time of vessels. A tree search procedure

was used to solve the first model. This provides a good lower bound which then speeds

up the tree search procedure applied to the second one. Imai et al. [31] addressed BAP

in a multi-user container terminal and introduced a nonlinear programming model to

represent it. The authors presented a heuristic for BAP in a continuous wharf setting. In
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this paper, they addressed their preference of the flexible berth layout which has become

very important especially in busy hub ports where ships of various sizes dock. Wang

et al. [89] transformed BAP into a multiple stage decision making problem and a new

multiple stage search method, namely the stochastic beam search algorithm, was used

to solve it. Lee [46] proposed a neighborhood-search based heuristic to determine the

berthing time and berthing position for each incoming vessel to the continuous berth

stretch. In their method, the First-Come-First-Served rule, clearance distance between

vessels and the possibility of vessel shifting, were considered. Lee et al. [42] studied

the continuous and dynamic BAP in order to minimize the total weighted flow time.

The authors follow the mathematical model of Guan et al. [25]. Two versions of the

Greedy Randomized Adaptive Search Procedures (GRASP) heuristic [71] were developed

to find near optimal solutions. Ganji et al. [21] proposed a GA for large scale BAPs to

find optimal or near optimal solutions. Note that their model is restricted to find the

optimal berthing time. Berthing position is not considered. Also, here, uncertainty is

not addressed. Cheong et al. [10] solved BAP by using multi-objective optimization in

order to minimize concurrently the three objectives of makespan, waiting time and degree

of deviation from a predetermined priority schedule. These three objectives represent

the interests of both port and ship operators. Unlike most existing approaches in single-

objective optimization, multi-objective evolutionary algorithm (MOEA) incorporates the

concept of Pareto optimality which is used when solving the multi-objective optimization

problem. de Oliveira et al. [17] proposed a heuristic to solve a continuous case of BAP. This

heuristic is based on the application of the clustering search method with the simulated

annealing metaheuristic.
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In addition to what has been mentioned above, there are few more recent studies which

dealt with BAP under uncertainty. Moorthy et al. [64] studied how to design a robust

berth template for the special requirements of transshipment hubs. Zhen et al. [93] stud-

ied the berth allocation problem under uncertain arrival time or operation time of vessels

and proposed a two-stage stochastic programming model. A meta-heuristic approach is

proposed for solving the above problem in large-scale realistic environments. Xu et al. [90]

studied a robust berth allocation problem. Time buffers are inserted between the vessels

occupying the same berthing location to give room to handle uncertain delays. Using

total departure delay of vessels as the service measure and the length of time buffer as the

robustness measure, the authors formulated robust BAP or RBAP to balance the service

level and plan robustness. Based on the properties of the optimal solution, the researchers

developed a robust berth scheduling algorithm that integrates simulated annealing and

Branch-and-Bound algorithms. This work considers tardiness only in its objective rather

than the preferred berthing location which weakens the connections with the yard manage-

ment problem. It also uses a constant time buffer which is independent of the reputation of

the shipping line and the expected processing time. Zhen et al. [92] proposed a proactive

strategy for making robust baseline schedules of BAP. A bi-objective nonlinear optimiza-

tion model for minimizing cost and maximizing robustness is introduced. However, the

model is not complete as some constraints used in the model depended on its solution.

As a result the author did not even attempt to solve the optimization model. In order to

solve large scale instances the authors employed the Squeaky Wheel Optimization (SWO)

method [32] to change the vessel inserting sequences. To evaluate their solution approach

to large scale instances, they used extensive simulations and justified their findings against
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some practical criteria.

2.2 The Quay Crane Assignment Problem (QCAP)

QCAP is considered after the berth allocation problem is solved, i.e. after the berthing

time and position for each vessel are determined. The number of quay cranes that will

be assigned to every vessel is very important; thus, QCAP is another challenge to deal

with in container terminals. QCAP is to determine the optimum number of quay cranes

for each vessel to unload/load containers from/onto vessels so that the throughput of quay

cranes is maximized and, at the same time, minimizing the idle time of quay cranes. By

choosing a suitable number of quay cranes for each vessel, the handling time of vessels

will be minimized, as a result the quay cranes will finish the processing time of each vessel

in optimal time. The quay cranes are lined up alongside the quay and they are mounted

on the same rail and so cannot cross each other. There are two reasons that prevent the

port from increasing the number of quay cranes. The first is the high cost of building

these quay cranes and the second reason is the interference between these quay cranes

since they move on the same rail and cannot cross each other. Note that solving QCAP

results in one of the key decisions for quayside operations. However, as pointed out by

Bierwirth and Meisel [4], in practice, QCAP is not difficult. If the load on a mooring vessel

is known, which is almost always the case, and the throughput of a quay crane is also

known, we are able to work out how many quay cranes would be needed to deal with

the load in a given time frame. Therefore, the solution of QCAP is, in practice, a matter

of a few arithmetic calculations. It follows that those who deal with QC assignment, with
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a lot of experience, may solve these problems without relying on a systematic approach.

That is why, presumably, the problem has received little attention in academic research.

Due to the impact on vessels’ handling times, however, crane assignment decisions are

involved in some advanced berth planning models. In light of this, in this thesis, there

is no intension to provide in-depth study of QCAP alone. It will only be involved when

integration models for quayside operations are considered. Note that the research work

presented in this thesis involves only deterministic models. If we were to look at it closely,

the objective would be to minimise the time to handle the load subject to using as many

QC’s as necessary, without exceeding the total number of available QC’s.

2.3 The Quay Crane Scheduling Problem (QCSP)

QCSP is solved to find the optimal sequence of arranging tasks (holds) in order to minimize

the finishing time of handling a vessel. Performing the tasks in a good sequence leads to

minimize the time of unloading/loading containers from/onto the holds of the vessels by

the quay cranes. So, there is a chance for quay crane to move to another task in the same

vessel or in the other vessel and so on.

Lim et al. [53,54], proposed two dynamic programming algorithms, proved NP-completeness

of the problem and provided heuristics to solve the crane scheduling problem with spatial

constraints, a probabilistic tabu search, and a squeaky wheel optimization heuristic. Kim

and Park [38] studied QCSP and formulated it as a mixed integer programming. They used

Branch-and-Bound (B&B) in conjunction with GRASP to overcome the difficulties of B&B

on its own. Moccia et al. [61] formulated QCSP as a vehicle routing problem with additional
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constraints like the precedence relationships between tasks. CPLEX was used to solve small

scale instances and a developed Branch-and-Cut (B&C) algorithm that incorporated sev-

eral families of valid inequalities to solve large scale instances. Zhu et al. [94] formulated

QCSP as an integer programming model. They proved that QCSP is NP-complete and

designed a B&B algorithm to solve it to optimality. A simulated annealing meta-heuristic

with effective neighbourhood search is designed to find near optimal solutions for larger

scale instances. Ng et al. [66] proposed a heuristic to solve QCSP. The heuristic first decom-

poses the difficult multi-crane scheduling problem into easier subproblems by partitioning

the vessel into a set of non-overlapping zones. The resulting subproblems for each pos-

sible partition are solved optimally by a simple rule. An effective algorithm for finding

tight lower bounds is developed by modifying and enhancing a lower-bounding proce-

dure proposed in the literature. Sammarra et al. [81] proposed a Tabu Search heuristic

to minimize the completion time for unloading and loading containers. They considered

precedence as well as non-simultaneity between tasks. They observed that QCSP can be

decomposed into a routing problem and a scheduling problem. Lee et al. [44,45] proposed

a mixed integer linear programming model for QCSP. The authors proved that the QCSP

is NP-complete and proposed an approximation algorithm based on GA to obtain a near

optimal solution. Lee et al. [43] provided a mixed integer programming model for QCSP

with considering the priority of every ship bay. A GA is proposed to solve large scale

instances. Bierwirth and Meisel [3] noticed the shortcomings of earlier models of QCSP,

and in particular with respect to the quay crane interference avoiding constraints which

did not do the job properly. They revised one such model due to Sammarra et al. [81] to

take care more appropriately of interference between quay cranes. They also proposed
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a Unidirectional Schedule (UDS) heuristic when the quay cranes do not change moving

direction from their initial position and have identical directions of movement either from

upper to lower bays or vice versa. Meisel [57] provided a mathematical formulation of the

QCSP and a tree-search-based heuristic solution method. Monaco et al. [62] introduced a

mixed integer mathematical model for the QCSP and a heuristic algorithm to get feasible

solutions to the large scale of the problem. Furthermore, the authors took into account

one-way constraints on the crane movements. Kaveshgar et al. [33] introduced an efficient

GA for QCSP. Their algorithm improved the efficiency of GA search by using an initial

solution based on the S-LOAD rule and by reducing the number of genes in the chromo-

somes to reduce search time. Chung and Choy [14] proposed a variant of GA to solve Kim

and Park’s model of QCSP [38]. Their results compared well with those obtained by most

well established algorithms. Nguyen et al. [67] suggested two representations of QCSP

one for GA and the other for Genetic Programming (GP) [40]. GA uses permutation to

decide the priority of tasks, whereas GP relies on a priority function to calculate it. Unsal et

al. [86] proposed a constraint programming approach for solving QCSP. Chung et al. [13]

constructed a GA with a workload balancing heuristic, which is capable of considering the

loading conditions of different quay cranes during the reassignment of task-to-QC. The idea

is modelled as a fuzzy logic controller to guide the mutation rate and mutation mechanism

of the GA. As a result, the proposed algorithm does not require any predefined mutation

rate. Moreover, the GA can more adequately reassign tasks to QCs according to the QCs

loading condition throughout the evolution. Legato et al. [48] proposed a new approach

based on the combination of a specialized (B&B) and heuristic algorithms. A cost-effective

solution technique that incorporates the local branching method within a refined B&B al-
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gorithm is proposed and its effectiveness is assessed by numerical comparisons against

the latest algorithm available in literature. Chen et al. [8] studied a special strategy for the

quay crane scheduling problem that forces quay cranes to move unidirectionally during

the scheduling. In this paper, the researchers proposed a mathematical formulation of

the unidirectionally cluster-based quay crane scheduling problem that can be solved by a

standard optimization solver. A relaxed formulation is devised as well to obtain a tighter

lower bound for the unidirectional cluster-based QCSP. Guo et al. [26] adapted the idea

of generalized extremal optimization (GEO) to solve the QCSP with respect to various

interference constraints. The resulting GEO is termed the modified GEO. A randomized

searching method for neighbouring task-to-QC assignments to an incumbent task-to-QC

assignment is developed in executing the modified GEO. In addition, a unidirectional

search decoding scheme is employed to transform a task-to-QC assignment to an active

quay crane schedule.

2.4 The Berth Allocation and Quay Crane Assignment Prob-

lem (BACAP)

BACAP is the problem of allocating berthing time and berthing position to the vessels which

are waiting in the queue line and simultaneously determinating the number of quay cranes

to assign to each one of these vessels. There is a relationship between these two problems

and for this reason researchers tend to solve them simultaneously, i.e. the researchers

addressed berth allocation problem (BAP) and quay crane assignment problem(QCAP) at

the same time.
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Meisel et al. [58] introduced a new objective function that aims to reduce the idle time

of the quay cranes to solve the integrated problem of BACAP. A heuristic scheduling al-

gorithm based on a priority-rule method is implemented to solve it. Legato et al. [47],

addressed QCAP with a predetermined berth position and time following the solution of

BAP. They assumed that quay cranes could not move between vessels before all tasks are

performed and the processing of the concerned vessels is finished. A mathematical model

was presented to determine the optimum number of quay cranes for each vessel that is

ready for processing. Meisel and Bierwirth [59] combined BAP and QCAP into BACAP.

The proposed problem is formulated taking into account some of the real issues faced by

the decision maker at the port. In addition to the mathematical model, they also suggested

two meta-heuristic approaches for the problem: the Squeaky Wheel Optimization (SWO),

and Tabu Search (TS). Chang et al. [7] studied a dynamic allocation model for berth al-

location and quay crane assignments. The problem was preliminarily developed based

on the rolling-horizon approach. A hybrid parallel GA, which combined parallel genetic

algorithm and heuristic algorithm was employed to solve the propose model. Cheong et

al. [11] considered the multi-objective optimization aspect of BACAP; indeed, it involves

simultaneous optimization of two highly-coupled container terminal operations. Opti-

mization results show that the multi-objective approach offers the port manager flexibility

in selecting a desirable solution for implementation. Liang et al [50] introduced the Quay

Crane Dynamic Assignment (QCDA) in berth allocation planning problem (BAP) and for-

mulated a multi-objective mathematical model considering each berth for a container ship

and the number of quay cranes moves. In order to solve this QCDA in BAP they pro-

posed a multi-objective hybrid GA with a priority-based encoding method. Raa et al. [74]
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presented a mixed integer linear programming for the integrated BAP and QCAP. In their

research, the authors took into account vessel priorities, preferred berthing, and handling

time. Rodriguez et al. [75] proposed a mixed integer programming model with the objec-

tive to minimize the total weighted service time for all vessels. A meta-heuristic based on

GA is developed to solve this problem. Yang et al. [91] suggested to deal with BACAP

by simultaneously solving BAP and QCAP. They formulated a mathematical model which

integrates the BAP constraints of Guan et al. [25] and the QCAP constraints of Legato et

al. [47]. The objective function of this model is the combination of the objective functions of

the BAP and QCAP models. An evolutionary algorithm was developed to find the solution

to this coarse combined problem. Rodriguez et al. [76] considered BAP and QCAP as a

dynamic and uncertain scheduling problem. The robustness was introduced by means

of time buffer that should be maximized to absorb possible incidences or breakdowns.

The problem becomes a multi-objective optimization one with two opposite objectives:

minimizing the total time of handling the vessel and maximizing robustness.

2.5 The Quay Crane Assignment and Scheduling Problem

(QCASP)

The solution of QCASP returns the number of quay cranes to assign to each vessel and

the best sequence in which tasks should be carried out by these quay cranes. Combining

QCAP and QCSP is very natural given the strong relationship between them. The quay

crane scheduling problem requires the number of quay cranes assigned to each vessel in

order to decide the sequence in which tasks should be done.
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Daganzo [16] addressed quay crane scheduling for multiple vessel arrivals. They pro-

posed both an exact and an approximate solution approach with the objective being to

minimise the tardiness of all vessels. Peterkofsky and Daganzo [72] developed a B&B

algorithm to solve QCSP. Interference between quay cranes has not been considered in

both papers. Tavakkoli et al. [83] studied QCASP. They formulated a mixed integer pro-

gramming to determine the optimal number of quay cranes for every vessel that will arrive

at the terminal and at the same time the optimal sequence in which the tasks should be

carried out on the vessel. An evolutionary approach (GA) is suggested to solve large scale

instances of this type of problem. Unsal et al. [86] extended their constraint programming

model for QCSP to deal with the integrated model that QCASP in which QCs are assigned

to vessels and scheduled to work on multiple vessels, based on a berthing plan of vessels.

Diabat et al. [18] and Fu et al. [20] also proposed a combined model for QCASP and imple-

mented a variant of GA to solve large scale instances of the problem. Their model allows

the movement of quay cranes between vessels while the processing of vessels is ongoing.

This is achieved by discretizing the time horizon and using a time index. The interference

avoiding constraint is represented simply by the position of quay cranes at each short time

interval. This increases the number of variables in the model and potentially makes the

problem difficult to solve (curse of dimensionality). Note that time discretization makes

the model less accurate. The omission of quay crane travelling time between bays/vessels

makes the solution of [20] impractical, especially when the frequency of quay crane move-

ment is high. Precedence and simultaneity constraints are also not considered. Note that

the results reported in [20] in Table 3 for instance do not make sense. The General Algebraic
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Modeling System (GAMS), commercial software for solving optimization problems, results

which presumably are exact, cannot possibly be worse that those returned by GA for most

of the problem instances considered.

2.6 The Berth Allocation, Quay Crane Assignment and Quay

Crane Scheduling Problem (BACASP)

Here, all seaside operations are integrated into a single problem. A few researchers tried

to combine BAP, QCAP and QCSP at container terminal in order to find a more realistic

solution. The solution of this type of model tries to find the optimal berthing time and

position (BAP) and at the same time, to determinate the number of quay cranes that will

be assigned (QCAP) and the optimal sequence in which to perform the tasks (QCSP) for

each vessel that arrives at a container terminal.

Park et al. [70] were the first to consider BAP and QCAP together. An integer pro-

gramming model is formulated. The authors suggested a two phase solution to solve the

mathematical model. In the first phase, the berthing time and position are determined

as well as the number of quay cranes for each vessel that arrives in each time segment.

The subgradient optimization technique is applied to obtain a near-optimal solution in the

first phase. In the second phase, a detailed schedule for each Quay crane is constructed

based on the solution found from the first phase. The dynamic programming technique

is applied to solve the problem of the second phase. In [1] Ak et al. present a mixed

integer linear programming (MILP) model for the seaside operations. A two phase Tabu

Search heuristic is implemented to find solutions for large scale instances. The mathe-
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matical model is only suitable for low numbers of vessels between 3 and 4 holds each.

The travelling time of quay cranes is not considered and there is no penalty if a vessel is

moored at an unsuitable position. The simultaneity and precedence constraints are not

includeed in the model. Criteria such as the initial position, the travelling time cost and

ready time of quay cranes are ignored. Liu et al. [55] studied the seaside operations and use

mixed integer linear programming to minimize the maximum relative tardiness of vessel

departures. A good idea presented by Liu was that instead of assuming a relationship

function to exist between the processing time of a vessel and the number of quay cranes

assigned to it, one should introduce a series of parameters pvj each of which refers to the

handling time of vessel j when v quay cranes are assigned to it. However, the integration

model proposed needs further improvement since in the Berth-Level Model, the berthing

times are revised whereas the berthing positions are taken from the tentative berth plan.

Meisel et al. [60] proposed a three-phase integration framework using preprocessing and

feedback mechanisms. Phase I estimates productivity rates of quay cranes from the vessel

stowage plan. In the Phase II, by using Meisel’s model [59] the berth allocation problem

and the quay crane assignment problem are solved depending on the productivity rates

of quay cranes. Phase III schedules the tasks of each vessel. To adjust the solution for

BAP, QCAP, and QCSP combined, a feedback loop is needed. In Rodriguez et al. [77],

the focus is on BAP and QCAP problems. However, given that the overall problem is a

transshipment one, they also have to deal with loadind/unloading. It is therefore of the

combined type as discussed in this section. The QC scheduling aspect is handled through a

management of vessel holds. They dealt with the overall problem by applying the Greedy

Randomized Adaptive Search Procedure (GRASP) which solves the integrated problem



2.6. The Berth Allocation, Quay Crane Assignment and Quay Crane Scheduling
Problem (BACASP) 27

in reasonable times. Their aim is to minimize the total elapsed waiting time to serve all

these vessels. Turkogullari et al. [84] integrated the seaside operations into a single MILP

model and proposed a decomposition algorithm for it. The authors achieved the model

and its solution on the back of a list of 8 assumptions amongst which, discretizing the

time horizon and making use of a time index in the mathematical model, are perhaps the

most important. The anti-interference constraint is represented simply by the position of

quay cranes at every small time interval. This increases the number of variables including

the integer ones, which potentially, therefore, increases the solution difficulty of the model.

Also they assumed that all the quay cranes are available when assigned to the vessels. They

computed the processing times of vessels by dividing the number of containers upon each

vessel over all the assigned quay cranes to this vessel. The starting quay cranes point is

ignored in their model. The precedence and simultaneity constraints were also not consid-

ered. They assumed that all tasks (containers) are located in the same bay, therefore, λ the

interference parameter between quay cranes and the travelling time of quay cranes are also

ignored. In their solution, some vessels have large deviations from their desired berthing

positions. Moreover, the advocated solution approach requires many parameters some of

which are not easy to estimate and may affect the solution if good values are not used.

Examples of such parameters are the minimum and maximum number of quay cranes.
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2.7 Methodology

The real word is varied and complex. Its study often requires a representation or model

of it. Models are in three broad categories: Iconic, analogue and symbolic. Iconic models

are scaled down or up representations of the real thing. For instance, paper planes are

used to study the aerodynamics of real planes; planetariums are simplified representations

of solar systems etc... Analogue models try to capture the properties of the real object or

phenomenon. For instance, traffic networks can be represented as a network of pipes with

water standing for the traffic and the linked up pipes as the road network. Symbolic models

use symbols (variables, constants) and relationships between them such as equations and

inequalities to represent reality. These are the sort of models we are concerned with here.

They are commonly known as Mathematical Models. They are in two overlapping types:

descriptive and explanatory. Explanatory models are what we generally want to build

although it may not be always possible; they may require starting with a descriptive model

phase first. Optimization or mathematical programming models are explanatory models.

They typically consist of one or more objective functions and a set of constraints linking

a number of variables and constants. When no constraints are involved, the models are

known as unconstrained optimisation problems.

Depending on the type of variables and functions involved, optimisation problems

can be, continuous, discrete or both (mixed), linear, or nonlinear. For instance, a linear

programming problem (LP) involves continuous variables, a linear objective function, and

linear constraints. An integer linear programming problem (ILP) is the same as the LP

with the added constraints that the variables can only take integer parts. The models we
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are concerned with here are of the Mixed Integer Linear Programming (MILP) type.

max cTx + dT y (2.1)

s.t Ax + Gy ≤ b (2.2)

x ≥ 0, y ≥ 0 and integer (2.3)

where x is a vector of continuous variables, y is a vector of integer variables.

2.8 Solution approaches

After building a mathematical model, it must be solved to benefit from what it can offer

in terms of variable values and insights into their relationship to support decision making.

There are a number of approaches or algorithms to solve optimisation problems: exact

and approximate or heuristic. Exact approaches return optimum solutions to within the

computer accuracy. Approximate approaches do not guarantee optimality. However, they

are often preferred because exact methods are often not expected to work for general cases

in acceptable computational times depending on the context. For this, and other reasons,

heuristics are often the preferred solution approaches.

2.8.1 Exact approaches

The cutting plane algorithm The cutting plane algorithm has been proposed by Ralph

Gomory in the 1950s as a method for solving integer programming and mixed-integer pro-

gramming problems. The algorithm relies on adding constraints (cuts) to the formulation
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and seeking to get as close as possible to the convex hull of the solution set of the original

problem. To generate a cut, we can choose the row with a non-integer RHS. Selecting the

row (variable) that has the largest fraction coefficient (solution) may reduce the number

of iterations and the overall solution time. Assume that the selected row is the row with

index i, yBi the basic variable, and bxc is the integer number which is just below x ∈ R, then:

yBi +
∑

ai jy j = bi

yBi +
∑

(bai jc + fi j)y j = bbic + fi

yBi +
∑
bai jcy j +

∑
fi jy j = bbic + fi∑

fi jy j ≥ fi∑
fi jy j − δ = fi

−
∑

fi jy j + δ = − fi

Where:

fi j = ai j − bai jc represents the fraction part of ai j and 0 < fi j < 1.

fi = bi − bbic represents the fraction part of bi and 0 < fi < 1.

δ is slack variable.

Cuts are added to the current LP relaxation of the MILP. The dual simplex algorithm

is then applied to the current LP relaxation, since the current optimum is made primal

infeasible by the cut. A new solution is found and the process is repeated until an op-

timal integer solution is found. Cutting plane algorithms are often impractical because

cuts become thinner and thinner as the fractional parts are smaller and smaller meaning

that progress is often limited and the convergence is hardly achieved even after a large

number of iterations. The ever smaller fractional parts are what often causes convergence

difficulties.
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Branch-and-Bound The method was first proposed by Land [41] and has become the

most commonly used tool for solving integer optimization problems. Branch-and-Bound

(B&B) is a partial enumeration method which tries to avoid visiting all possible solutions

thorugh a tree search. Like the cutting plane method, it starts by solving the LP relaxation

of the given problem using the simplex algorithm for instance. If all the basic variables are

integers then the optimal solution is found and the algorithm stops. Else, if at least one

of the basic variables is fractional, a branching on this variable is implemented leading to

two problems. Assuming that the choosing variable from solving the linear programming

is the variable yi and its integer part is equal to yBi, which can be written as follows:

yi = byBic + fi

Where 0 < fi < 1. we know that the value of the variable yi should be integer, then the new

two constraints resulting the branching are:

yi ≤ yBi

yi ≥ yBi + 1

Each one of these problems contains the same original problem plus one of the new

constraints due to branching.

LP1 LP2

max cTx + dT y max cTx + dT y (2.4)

s.t Ax + Gy ≤ b s.t Ax + Gy ≤ b (2.5)

yi ≤ yBi yi ≥ yBi + 1 (2.6)

x ≥ 0, y ≥ 0 and integer x ≥ 0, y ≥ 0 and integer (2.7)
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In the worst case, all nodes in the search tree will have to be visited before the solution

is found. However, often only a handful are visited as the tree is trimmed through the

bounding step. Bounding here means that no improvement of the current objective value

is possible. It occurs in three situations.

1. optimality: the solution at the node is integer;

2. infeasibility: the problem at the node is infeasible because of a branching constraint;

3. Value dominance: No subsequent solutions from a node can be better than an already

known solution.

These rules keep the growth of the search tree in check making B&B a reliable partial

enumeration search approach; hence its popularity.

Benders decomposition Benders decomposition [2] is a technique in mathematical pro-

gramming that allows the solution of mixed integer linear programming problems. The

technique is named after Jacques F. Benders. The strategy behind Benders decomposition

can be summarized as divide and conquer. That is, in Benders decomposition, the variables

of the original problem are divided into two subsets so that a first-stage master problem is

solved over the first set of variables, and the values for the second set of variables are de-

termined in a second-stage subproblem for a given first-stage solution. If the subproblem

determines that the fixed first-stage decisions are in fact infeasible, then so-called Benders

cuts are generated and added to the master problem, which is then re-solved until no cuts

can be generated. Benders decomposition adds new constraints as it progresses towards a

solution.
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max cTx + dT y (2.8)

s.t Ax + Gy ≤ b (2.9)

x ≥ 0, y ≥ 0 and integer (2.10)

Here the aim is to fix integer variables y and exploit the continuous component of the

problem as an ordinary LP.

Suppose that y have been fixed and thereby been treated as a parameter, the resulting LP

is as follows:

max cTx (2.11)

s.t Ax ≤ b − Gy (2.12)

x ≥ 0 (2.13)

The dual for this problem is then given by:

min (b − Gy)Tw (2.14)

s.t ATw ≥ c (2.15)

w ≥ 0 (2.16)

Observe that the feasible region of dual problem remains the same whatever value y takes.

Therefore by observing the shape of the polyhedron, the optimal solution to the dual with
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different y values will be directly available at one of its extreme points (if bounded) or

along one of the extreme rays (if unbounded). So that we can write MILP as:

max z (2.17)

s.t z ≤ dT y + (b − Gy)Tu ∀u ∈ U (2.18)

v(b − Gy)T
≥ 0 ∀v ∈ V (2.19)

z ∈ R, y ≥ 0 and integer (2.20)

where:

U = extreme points of the set of u.

V = extreme directions of the set of u.

The drawback of Benders’ decomposition is, potentially, the need for all extreme points

and extreme rays of the polyhedron of the original problem, containing its solutions. Poly-

hedra in high dimensions often have an exponential number of vertices and extreme rays,

depending on the number of constraints defining them. This means Benders formulation

of the problem will, potentially, have a very large number of constraints since each vertex

and extreme ray generate a constraint [65, 69].

Branch-and-Cut The Branch-and-Cut (B&C) algorithm [68] combines B&B and the cut-

ting plane algorithm, hence the name. It manages a search tree each node of which

represents a linear programming subproblem to be processed, i.e. solved and checked for

integrality, and perhaps to be analyzed further.
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B&C involves running the B&B algorithm and using cutting planes to tighten the linear

programming relaxations. Note that if cuts are only used to tighten the initial LP relaxation,

the algorithm is called cut and branch. A branch is the creation of two new nodes from a

parent node. Typically, a branch occurs when the bounds on a single variable are modified,

with the new bounds remaining in effect for that new node and for any of its descendants.

A cut is a constraint added to the model. The purpose of adding any cut is to limit the size

of the solution domain for the continuous LP problems represented at the nodes, while not

eliminating legal integer solutions. The outcome is thus the reduction of the number of

branches required to solve the MIP.

The B&C tree is initialized to contain the root node as the only active node. The

root node of the tree represents the entire problem, ignoring all of the explicit integrality

requirements. Potential cuts are generated for the root node but, in the interest of keeping

the problem size reasonable, not all such cuts are applied to the model immediately. If

possible, an incumbent solution (that is, the best known solution that satisfies all the

integrality requirements) is established at this point for later use in the algorithm.

Combinatorial Benders’ Cuts (CBC) CBC is used to find exact optimal solutions. It

was proposed by Hooker in [29], where he derives the so called Benders’ cuts from a

minimal set of inconsistencies. Codato and Fischetti [15] extended Hooker’s method to

solve mixed integer programming with special structure. The approach generates a set

of cuts which removes the drawback of the big-M method. CBC is closely related to the

Benders’ Decomposition [2].
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2.8.2 Meta-heuristics

Meta-heuristics are higher level heuristics, i.e. they may rely on other heuristics to solve

problems. A heuristic is an algorithm based on rules that work but with no guarantee.

Their strength lies in not making assumptions on the problems. For instance, they do

not rely on gradient information to optimise functions. They are popular because they

work on real world problems which are often difficult, i.e. they require an unreasonable

computational time for their solution; they are known in the complexity jargon as NP-hard

problems 1 For this reason, approximate solution approaches or meta-heuristics are often

preferred. Note that the problems we are concerned with throughout this thesis, are of the

NP-Hard type. It is therefore relevant that we present here the most popular meta-heuristic

approaches for solving them.

Simulated Annealing (SA) Simulated annealing is a well established technique for com-

binatorial optimization problems. The idea is to achieve a goal state without reaching it

too fast. In metallurgy, for example, the process of hardening steel requires specially timed

heating and cooling to make the iron and carbon atoms settle just right. In mathematical

search algorithms, we want to focus on promising solutions without ignoring better solu-

tions we might find later. In other words, we want to reduce error to the global minima

without getting stuck in less successful local minima. The algorithm was first introduced

by Armen G. Khachaturyan et al. [35,36] and then developed by Scott Kirkpatrick et al. [39].

1A problem belongs to the class NP if a solution to it can be verified quickly, i.e. in polynomial time. A
problem is NP-hard if the entire class of NP problems polynomially reduce to it [73]. A problem A reduce
to B if it can be constructed for any instance of A an equivalent instance of B. it is believed that NP-hard
problems are intractable, i.e. that there is no efficient algorithm to solve them. To prove this is the most
important challenge in computational theory. See [22] for an introduction to complexity theory.
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SA is a probabilistic technique for approximating the global optimum of a given function.

Specifically, it is a meta-heuristic to approximate global optimization in a large search

space. It is often used when the search space is discrete (e.g., all tours that visit a given set

of cities). For problems where finding an approximate global optimum is more important

than finding a precise local optimum in a fixed amount of time, simulated annealing may

be preferable to alternatives such as gradient descent.

Tabu Search Tabu Search (TS), created by Fred W. Glover [23] is a meta-heuristic search

method employing local search methods used in mathematical optimization. Local (neigh-

borhood) searches take a potential solution to a problem and check its immediate neighbors

(that is, solutions that are similar except for one or two minor details) in the hope of finding

an improved solution. Local search methods have a tendency to become stuck in subop-

timal regions or on plateaux where many solutions are equally fit. Tabu search enhances

the performance of local search by relaxing its basic rule. First, at each step worsening

moves can be accepted if no improving move is available (like when the search is stuck

at a strict local minimum). In addition, prohibitions (henceforth the term tabu) are in-

troduced to discourage the search from coming back to previously-visited solutions. The

implementation of tabu search uses memory structures that describe the visited solutions

or user-provided sets of rules. If a potential solution has been previously visited within

a certain short-term period or if it has violated a rule, it is marked as ”tabu” (forbidden)

so that the algorithm does not consider that possibility repeatedly. Briefly, the method

explores solution spaces by moving at each iteration to the best non-tabu neighbor of the

current solution. In order to avoid cycling, solutions that were recently visited are made
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tabu for a number of iterations [1].

Particle Swarm Optimization (PSO) PSO is originally attributed to Kennedy and Shi

[34, 78] and was first intended for simulating social behaviour as a stylized representation

of the movement of organisms in a bird flock or fish school. The algorithm was simplified

and it was observed to be performing optimization. PSO is a meta-heuristic as it makes few

or no assumptions about the problem being optimized and can search very large spaces

of candidate solutions. More specifically, PSO does not use the gradient of the problem

being optimized, which means PSO does not require that the optimization problem be

differentiable as is required by classic optimization methods such as gradient descent

and quasi-newton methods. PSO is a computational method that optimizes a problem by

iteratively trying to improve a candidate solution with regard to a given measure of quality.

It solves a problem by having a population of candidate solutions, here dubbed particles,

and moving these particles around in the search-space according to simple mathematical

formulae over the particle’s position and velocity. Each particle’s movement is influenced

by its local best known position, but is also guided toward the best known positions in the

search-space, which are updated as better positions are found by other particles. This is

expected to move the swarm toward the best solutions.

Plant Propagation Algorithm The above listed approaches are very well established and

have shown their worth over decades of use on a variety of applications. They are, however,

not the only ones. An exhaustive listing of all heuristics and meta-heuristics is beyond the

scope of this thesis. However, it will perhaps benefit the potential reader to be aware at

least of the type of Nature-Inspired heuristics that are being introduced to handle ever
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increasing in size and complexity problems. One such heuristic is the Plant Propagation

Algorithm or PPA introduced by Salhi and Fraga [79]. It emulates the way plants and in

particular the strawberry plant propagate. It starts with a population of plants uniformly

randomly planted in the search space. These plants are then ranked according to the values

that their positions give to the objective function of the given optimisation problem. The

intensity of their propagation is determined by their scores on the objective function. If

they score well, this is interpreted as being in a good spot of the land (search space); if on the

other hand they score low, then they are considered as being in a bad or poor spot. Those

in good spots propagate by generating many short runners leading to new plants; those in

bad spots generate few but long runners. Note that the notion of long runner implements

the idea of running away from the poor areas or exploring further the search space, while

short runners exploit the good spots and refine the search to find local optima. Exploitation

and exploration are the two key ingredients in any successful global optimisation.

2.9 Genetic Algorithm

In computer science and operations research, the Genetic Algorithm (GA) is a meta-

heuristic inspired by the process of natural selection that belongs to the larger class of

evolutionary algorithms (EA). It was proposed by Holland [28]. Genetic algorithms are

commonly used to generate high-quality solutions to optimization and search problems by

relying on bio-inspired operators. It searches for the optimum by maintaining a population

of solutions that are then updated from generation to generation using a number of pos-

sible genetic operators such as Crossover, Mutation, and Reproduction. Over successive
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generations the population evolves towards an optimal solution. GA is a well established

meta-heuristic which has been shown to be very effective on combinatorial optimisation

problems. GA is particularly effective on difficult problems referred to as being NP-Hard.

QCASP has been shown to be NP-hard [22, 45, 83].

In order to solve large scale problems in acceptable time and to overcome the difficulty

of the Branch-and-Cut (B&C) method, a GA is used to find optimal or near optimal so-

lutions. The choice of GA here as the approximate solution approach is dictated by its

being well established and reliable. Potential users may adopt it readily. It is an adaptive

heuristic method based on natural evolution ideas. It repeatedly modifies a population

of solutions, selecting individuals from the current population to be parents which then

produce children which form the individuals of the next generation. Over successive gen-

erations the population evolves towards an optimal solution. The processes involved in

GA are outlined below [33].

1. Generate an initial population: individual solutions (chromosomes) are created ran-

domly to form an initial population.

2. Evaluate the fitness of each individual: choice of parents of new individuals for the new

generations is biased toward individuals with good fitness values.

3. Create children: generate new individuals using genetic operators such as crossover,

mutation and reproduction.

4. Generate new population: replace the worst individuals in the population with better

new ones.

5. Stopping: The process is repeated until stopping criteria are met; these may include the
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specified maximum number of generations or time limit, high enough fitness etc...

2.9.1 Solution representation: chromosome

The initial and most important step of the GA implementation is the solution representa-

tion or chromosome design. GA starts with a randomly generated population of solutions.

Each solution is called a chromosome and consists of a sequence of genes.

2.9.2 Fitness function

A fitness function is a particular type of objective function that is used to summarise, as a

single figure of merit, how close a given design solution is to achieving the set aims. To

validate solutions, if anyone of the problem’s conditions is violated or any combination

are violated, the generated chromosomes are discarded by adding a high penalty to their

fitness values.

2.9.3 Generating next populations

From the initial randomly generated population, subsequent generations of children, i.e.

new populations, must be created. This is achieved by using genetic operators such as

crossover, mutation and reproduction (copying of individuals unmodified into subsequent

populations).
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Selection process The selection process picks chromosomes from the current population

to be parents to new individuals (children/solutions) of the new population created using

one of many genetic operators as listed above. To give priority to the best chromosomes

to pass their genes into the next generation, the fitness proportionate selection approach

is implemented using a roulette wheel. High fitness individuals/chromosomes/solutions

have high probability to be selected to contribute to the next population. In other words

they are likely to pass their genes into the next generation.

Crossover operator Also called the recombination operator, it is one of the operators

of GA used to generate the next population from the present one. It is applied to the

chromosomes of a randomly selected couple of individuals (parents). The recombining of

their genes results in a couple of new chromosomes (children).

Mutation operator Mutation is another operator of GA which contributes to the genera-

tion of the next population. To prevent the population getting trapped in a local solution,

the mutation operator is used to enable the GA to escape and explore the search space

globally by changing one or more genes.

Reproduction The reproduction operator consists in copying current individuals as they

are into the new population.

2.9.4 Stopping criteria

Two stopping criteria are used in the GA: the maximum number of generations, and the the

number of generations without any improvement in the best solution found so far; these
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numbers are pre-set. It is well know that determining good values for a given problem type

is difficult. The common practice is to use experimentation to find good default values.

We have adopted the same approach. There is a trade-off between increasing the number

of generation and the computational time. More generations generally mean a longer

computational time.

2.10 Summary

In this chapter, we have reviewed the literature concerned with the quayside operations in-

dividually or simultaneously dealt with. There are many commercial optimization solvers

that can handle these models, such as CPLEX, GUROBI, MINOS, XPRESS - MP, GNU-

Solver, NAG Library and LINGO among others. CPLEX and GUROBI are considered the

industry standards for optimisation nowadays [56] . However, we used CPLEX as a solver

to find exact solution. CPLEX uses Branch-and-Cut search when solving mixed integer

programming (MIP) models. CPLEX Optimizer is accessible through independent model-

ing systems such as AIMMS, AMPL, GAMS, OptimJ and TOMLAB. Also in this chapter,

we reviewed some exact as well as meta-heuristics that are used in practice such as GA,

TS, SA and PSO. GA has been successfully adopted to find the optimal or near optimal

solution for seaside problems compared with other meta-heuristics. GA is widely used to

solve these problems.



Chapter 3

Robust berth allocation problem

3.1 Introduction

Container transportation is at the heart of the import and export of goods. The efficiency

with which containers are unloaded/loaded from/onto vessels and are handled/processed,

is affected by the time and place at which the vessel is moored along a berth. Minimizing

the processing cost of handling a set of vessels by finding the best berthing time and

berthing position is the well known Berth Allocation Problem (BAP). A vessel is moored

at a good time in order to minimize the total vessel turnaround (or service) time, which

is the sum of total handling and waiting times of vessels. If the vessel is not moored at

its preferred position, the distance to transfer containers from it to the storage area is not

minimal. Therefore, a penalty may have to be incurred by the port as well as the vessel’s

operator, for failing to handle the ship in time, and causing delay which may have a knock

on effect on succeeding operations in this port and/or elsewhere.

44
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The deterministic form of BAP is the one often solved in practice. However, a number

of uncertain factors and unexpected events such as the deviation in arrival time and in the

operations time of the initial baseline schedule affect BAP. If these uncertainties are ignored

when drawing berth allocation plans, last minute scrambling and changes of plans, may

ensue. Port managers, therefore, try to protect the initial baseline schedule from the adverse

effects of possible disruptions. Hence, there is a need for robust schedules which are not

perturbed by variance in key parameters. This is the aim of this study.

There are three types of the berth allocation problem according to Imai [31]:

1-Discrete layout: the quay is divided into a number of segments, called berths. Each one

of these segments can only handle one vessel at a time.

2-Continuous layout: the quay in this type is a long segment, there is no partition. Each

vessel that arrives to this quay can moor at any position within the boundaries of the quay.

3-Hybrid layout: like the discrete berth, the quay is divided into partitions (berths) but

large size vessels can be moored at more than one berth and two or more small vessels can

be moored at one berth.

According to Imai [30] there are two distinct cases for the arrival time of vessels:

1- Static arrival: all vessels are waiting at the port and there is no arrival time.

2- Dynamic arrival: the arrival time for each vessel is given. In this case, the vessel cannot

be moored before the expected arrival time.

This chapter describes a mixed integer programming model for the continuous berth

allocation problem under uncertain conditions, depending on the reputation in punctuality

of the operator and the length of processing time of each vessel to find a robust berth

allocation plan. In this chapter we formulate an optimization model the objective of which
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consists of the operations cost related to where the vessel is to be moored and a penalty

cost to pay for the potential waiting time. A robust model is achieved by inserting a time

buffer between the exact processing time of vessels, to add more flexibility to the final berth

allocation plan. Unlike in previous studies where people mainly make the time buffers

depend on the shipping line’s reputation of punctuality, here we also consider the expected

processing time of a vessel when inserting time buffers between vessels. Although a good

reputation in punctuality helps the decision maker at the port to estimate the delay in

arrival time, the potential delay in processing of vessels depends on how many tasks have

to be tackled on the vessel. For example, if there are two vessels that are owned by the same

shipping line with one carrying 50 containers to unload and the other 500, then obviously

the one with fewer containers (smaller workload; shorter expected processing time) has

much lower chances to depart late from the port compared with the one with higher

workload. For this reason, a new weight for each vessel is added which represents the

product of the proportion of the processing time of a vessel over the sum of the processing

time of all vessels under consideration and the number of vessels. In practice, this weight

can be seen as a measure of the possibility of having adverse events (faulty machinery such

as quay cranes, trucks, yard cranes etc. breaking down) occurring during the processing

time of the vessel.

The model suggested here is suitable for robust berth allocation in realistic situations.

The contribution of this chapter is two fold:

1. formulation of an efficient mathematical model with more advanced weight param-

eters for robustness;
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2. design and application of a hybrid meta-heuristic based on B&C and GA to improve

performance on realistic instances of the problem.

The rest of the chapter is organised as follows. Section 3.2 presents the proposed math-

ematical model. A numerical example to illustrate the mathematical model is presented

in Section 3.3. In Section 3.4, a variant of the genetic algorithm is described for Robust

BAP or RBAP; this variant is then combined with B&C to provide a more effective solution

approach. Section 3.5 records the comparison results between B&C as implemented in

CPLEX, and the hybrid meta-heuristic. Finally, Section 3.6 gives a summary of findings.

3.2 Mathematical formulation

The novelty of the model described here is that, unlike previous berth allocation/planning

models, as mentioned earlier, its solutions provide robust berth plans. By this, we mean

that the solutions mitigate the uncertainty that is often experienced at the level of earlier

parts. Note that the solution to the model is in terms of optimum berthing time, berthing

position and, the optimum time buffer between the berthing times of vessels. Moreover,

we can use this model to solve the traditional BAP by making the value of λ, the robustness

parameter, equal to zero. In the following a number of aspects of this model are given.

3.2.1 Assumptions

Although several assumptions have to be satisfied in order to apply the model, they are

all realistic. Given a set V of vessels referred to as v, vi or v j for any vessel, the ith or the jth

vessels respectively, we assume that:
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1- Every segment of the continuous wharf can handle only one vessel at a time;

2- There is a safety distance between each pair of adjacent vessels;

3- Once the processing of a vessel starts the vessel will only leave after its processing has

finished;

4- A vessel can be handled at any place of the wharf. The berthing position depends on its

arrival time and the availability of wharf space.

3.2.2 Parameters

W Length of the wharf.

Av Estimated arrival time for vessel v.

hv Estimated operation/processing time to handle vessel v.

Lv Length of vessel v.

bv Desired berthing position of vessel v; it is determined by the position of yard

storage areas allocated to vessel v.

C1v Tardiness cost of vessel v.

C2v Distance cost of vessel v for mooring away from bv.

INv Discrepancy in arrival time of vessel v.

PPv Product of the proportion of the processing time for vessel v over the processing

time of all vessels and the number of vessels.

Rv Value of (INv + PPv) of vessel v, rounded to the nearest integer.

M Arbitrary large positive number.
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3.2.3 Binary decision variables

δviv j =


1 if the processing of vessel v j starts later than the finishing time of vessel vi.

0 otherwise

σviv j =


1 if vessel vi is located nearer one end of the wharf than vessel v j.

0 otherwise.

ξviv j =


1 if vessel v j occupies part of the berthing position of vessel vi.

0 otherwise.

ζviv j =



1 if vessel v j occupies part of the berthing position of vessel vi and starts

later than vi.

0 otherwise.

3.2.4 Continuous decision variables

• Tv Berthing time of vessel v.

• Pv Berthing position of vessel v.

• Dv Dummy berthing time of vessel v. This is a modelling device that allows a

smooth solution process.
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3.2.5 The mathematical model

The explicit model we built for berth allocation is as follows.

min Z =

V∑
v=1

C1v(Tv + hv − Av) +

V∑
v=1

C2v|Pv − bv| (3.1)

s.t

Dvi + hvi ≤ Dv j + M(1 − δviv j) ∀vi, v j; vi , v j (3.2)

Pvi + Lvi ≤ Pv j + M(1 − σviv j) ∀vi, v j; vi , v j (3.3)

σviv j + σv jvi + δviv j + δv jvi ≥ 1 ∀vi, v j; vi , v j (3.4)

Tv ≥ Av ∀v (3.5)

0 ≤ Pv + Lv ≤W ∀v (3.6)

Dv ≥ Tv ∀v (3.7)

ξviv j = 1 − (σviv j + σv jvi) ∀vi, v j; vi , v j (3.8)

ζviv j ≥ δviv j + ξv jvi − 1 ∀vi, v j; vi , v j (3.9)

Tvi + hvi + λRviζviv j ≤ Tv j + M(1 − ζviv j) ∀vi, v j; vi , v j (3.10)

δviv j , σviv j , ζviv j , ξviv j ∈ {0, 1} ∀vi, v j (3.11)

Pvi ,Tvi ,Dvi ≥ 0 ∀vi (3.12)

Note that the objective function to minimise is made up of the cost of tardiness which

is represented by the term
∑V

v=1 C1v(Tv + hv −Av) and the cost of the vessel being moored at

an undesired berthing position represented by the term
∑V

v=1 C2v|pv − bv|.

In constraints (3.2), δviv j is defined as follows. δviv j = 1 if the finishing time of vessel i is
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less than or equal to the dummy berthing time of vessel j; 0 if the finishing time of vessel i

is greater than the dummy berthing time of vessel j. Figures 3.1 and 3.2 illustrate how δviv j

is computed:

Figure 3.1: Illustration of no overlap in time
between vessels i and j

Figure 3.2: Illustration of overlap in time be-
tween vessels i and j

δviv j in Figure 3.1 equals 1 because Fvi ≤ Tv j . Whereas, δv jvi in the same figure equal 0

because Fv j > Tvi . δviv j in Figure 3.2 equals 0 because Fvi > Tv j and δv jvi in the same figure

also equals 0 because Fv j > Tvi . This means there is an overlap in the time between these

two vessels.

In constraints (3.3), σviv j is defined as follows. σviv j = 1 if the berthing position of vessel

i plus the length of vessel i is less than or equal to the berthing position of vessel j; 0 if the

berthing position of vessel i plus the length of vessel i greater than the berthing position

of vessel j. Figures 3.3 and 3.4 illustrate how σviv j is computed: σviv j in Figure 3.3 equals 1

because Pvi + Lvi ≤ Pv j . Whereas, σv jvi in the same figure equals 0 because Pv j + Lv j ≥ Pvi . σviv j

in Figure 3.4 equals 0 because Pvi + Lvi > Pv j and σv jvi in the same figure equals 0 because

Pv j + Lv j ≥ Pvi . That means there is an overlap in the location between the two vessels.

Constraints (3.4) ensure that overlaps amongst vessels do not occur in both dimensions
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Figure 3.3: Illustration of no overlap in location
between vessels i and j

Figure 3.4: Illustration of overlap in location
between vessels i and j

(time and location) depending on δviv j and σviv j . Constraints (3.5) guarantee that the vessels

cannot moor before their arrivals. Constraints (3.6) imply that the berthing position plus the

length of the vessel cannot exceed the range of the wharf. Constraints (3.7) guarantee that

the dummy berthing times of vessels cannot be less than their berthing times. Constraints

(3.8) make variable ξviv j take value 1 if the vessel v j occupies part of the berthing position of

vessel vi. Constraints (3.9) make variable ζviv j take value 1 if vessel v j occupies part of the

berthing position of vessel vi and starts later than vessel vi. Constraints (3.10) determine

the berthing time for each vessel after adding the time buffer between vessels depending

on the value of ζviv j . Rv is the time buffer between the finishing time of vessel i and the

berthing time of vessel j. The decision maker at the port will select the value of λ according

to his preferred aspect of the final plan, cost-effective or robust. A small λ means a cost-

effective berth plan, while a large λ means a robust plan. The length of the time buffer

between the vessel and its immediately preceding vessels can be computed by multiplying

the associated value of the robustness parameter, λRviζviv j . The constraints set (3.10) work

in such a way that, if the value of the integer decision variable ζviv j is equal to zero, then we
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do not need to add any time buffer. Otherwise we need to increase the gap between these

two vessels vi and v j; the value of the time buffer is the value of λ times Rvi .

The rough size of the above model is as follows:

The number of binary variables is equal to 4V2
− 4V.

The number of integer variables is equal to 3V.

The number of constraints is equal to 6V2
− 3V.

3.3 Numerical example

Here, we apply B&C as implemented in CPLEX to a small instance of the above model

involving six vessels. The rest of the data is given in Table 3.1.

Table 3.1: Input data of example 3.1

Arrival time 0 3 13 23 25 30
Estimated processing time 15 20 8 5 10 12
Length of vessel 5 3 4 6 4 5
Preferred position 5 1 4 3 6 0
Tardiness cost 1 1 1 1 1 1
Distance cost 1 1 1 1 1 1
Instability in arrival 0.4 1.7 0.7 0.4 0.9 1.0
proportion of the processing time 1.3 1.7 0.7 0.4 0.9 1.0

The solution returned by CPLEX consists of the berthing time and position of each vessel

with appropriate time buffer between them to give robustness to the plan represented in

Figures 3.5 , 3.6 and 3.7. Clearly, the decision maker can use different values of λ to affect

the property of the final solution sought.
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Figure 3.5: Berthing plan when λ=0; Obj.Fun = 75 (0 3 15 23 28 30 5 1 4 3 6 0)
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Figure 3.6: Berthing plan when λ=1; Obj.Fun =
83 ( 0 3 17 26 26 32 5 1 4 0 6 0)
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Figure 3.7: Berthing plan when λ=2; Obj.Fun =
95 (0 3 19 29 29 36 5 1 4 0 6 0)

3.4 B&C and GA hybrid algorithm for BAP

3.4.1 Solution representation: chromosome

A solution or chromosome is a strand of genes made of two parts of equal lengths. The first

part represents berthing times Tv of vessels while the second represents berthing positions

Pv. The chromosomes are character rather than binary strings. See Figure 3.8 for the

chromosome representation of a 3-ship problem. The example shows a solution with ships
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1, 2, and 3 being processed in that order at times 42, 37, and 65 along the time axis, and

moored at positions 213, 185, and 370 along the quay axis.

Chromosome 42 37 65 213 185 370
Ti&Pi T1 T2 T3 P1 P2 P3

Figure 3.8: RBAP chromosome representation

3.4.2 Initial population

The populations are sequences of integers drawn from a discrete uniform distribution on

IMIN: IMAX, but within the feasible solution set defined by the constraints (3.5), (3.6) and

(3.12). Note that IMIN and IMAX are chosen by the user. For each solution (Tv,Pv), one

can compute Cv which represents the handling times plus the time buffer that we need to

add depending on the value of ζviv j , and then compute the completion times Fv given the

input parameters hvi ,Rvi , λvi and the decision variable ζviv j as follows.

Handling or processing time: Cv = hv + λRvi .

Completion or finishing time: Fv = Tv + Cv.

3.4.3 Fitness function with a penalty term

Each generated random solution is checked against constraints (3.2), (3.3) and (3.4) to see

that there is no overlapping of ships in time and place dimensions. A solution that satisfies

these constraints is accepted. Otherwise, it is accepted after adding a penalty term to its

objective function value Z. The penalty term in the fitness function gradually removes

infeasible solutions from the next generations. This term is computed as γi j = Ai j × Bi j
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based on the area of overlap in time and space between vessels i and j where

Ai j := Max(
Li + L j

2
− |

Pi + (Pi + Li)
2

−
P j + (P j + L j)

2
|, 0), and

Bi j := Max(
Ci + C j

2
−

∣∣∣∣∣Ti + Fi

2
−

T j + F j

2

∣∣∣∣∣ , 0).

Note that Pi + (Pi + Li) and P j + (P j + L j) refer to the start of berthing position and their

ends.

Ai j and Bi j are the length and overlapping intervals of ships i and j, respectively, and γi j

is the extent of those two ships overlapping penalty that is obtained from the multiplication

of two recent overlapped quantities in Cartesian time and place space. Maximum feasible

error of a solution is accrued when two ships overlap, is

γmax
ij = A

′

i j × B
′

i j,

where

A
′

i j :=
Li + L j

2
, and B

′

i j :=
Ci + C j

2
,

are respectively the maximum length and overlapped interval of ships i and j, andγmax
ij is the

maximum overlapping penalty of these ships. The value of penalty γi j can be normalized

by dividing the sum of γi j by the sum of γmax
ij in the interval [0,1].

The objective of RBAP is to minimize the total vessel turnaround (or service) time,

which is the sum of total handling and waiting times of all vessels, i.e., the cost of the

tardiness of each vessel can be computed by summing up the berthing time of each vessel,
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its processing time and its time buffer less the arrival time (first term) plus how much a

vessel has deviated from its preferred berth (second term). The objective function used in

the GA is the same objective function as that of the mathematical model. Thus, the value

of Z can be computed as:

Z =

V∑
v=1

C1v(Tv + Cv − Av) +

V∑
v=1

C2v|Pv − bv|

It is clear that the variation in Z occurs in the interval [0,+∞). By using the exponential

function characteristic that 0 < 1/exp(Z) ≤ 1 for each Z ≥ 0 , the objective function Z can

also be normalized in the interval (0,1] as 1/exp(Z) . So, the proposed fitness function for

this problem can be defined as follows:

Fitness =
(
exp

(
(Z −

V∑
i=1

Cv)/
V∑

i=1

Cv

))−1

−

( V∑
i, j,i

γi j/
V∑

i, j,i

γmax
ij

)0.3

.

The above fitness function for each solution consists of two parts; the first part corre-

sponds to the objective function value and the second part corresponds to the impossibility

of that response to be penalised. The first part of the fitness function causes the fitness to

increase by reducing the objective function value, and the second part causes it to increase

by increasing the deviations from the restrictions of non-overlapping in time and place.

The power of 0.3 in the second part of the fitness function is the result of experiments to

gauge the performance of the model. The two parts are normalized respectively in the

intervals (0,1] and [0,1], and the changes in the fitness function fall within the interval

(−1, 1].



3.4. B&C and GA hybrid algorithm for BAP 58

3.4.4 Generating next populations

After generating an initial population and evaluating the fitness of individuals we will

use the genetic operators of crossover, mutation, and reproduction to generate a new

population. Before making these operators, we first select suitable parents using a selection

process see 2.9.

Crossover operator The way the recombination is implemented is as follows. Two

random integer numbers are chosen from interval [0, 2|V|], where 2|V| is the length of a

chromosome, using pseudo-random numbers from a uniform distribution, as implemented

in Matlab. These two integers indicate two shear points in a chromosome, one low and

one high. The genes to the left of the low shear point and those to the right of the high

shear point of the first parent are copied into the chromosome of the first child. In the same

way, using the same shear points, the chromosome of the second parent contributes to the

chromosome of the second child. The genes between the shear points are generated using

a random number λ ∈[0,1] as follows,

Ch1 = bλ × Par1 + (1 − λ) × Par2c,

Ch2 = bλ × Par2 + (1 − λ) × Par1c,

where Par1 and Par2 are the sections that located between the two integers shear points

of the first parent and the second parent, respectively, and Ch1 and Ch2 are the correspond-

ing middle sections of the first and second child, respectively. It is clear that if Par1 and

Par2 belong to a convex set related to constraints (3.5), (3.6), and (3.12), Ch1 and Ch2 will be
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in this set too. This is because if x is the convex combination of two integer numbers y and

z, with z ≥ y, then y ≤ |x| ≤ z. Constraints (3.5), (3.6), and (3.12) are then checked for fea-

sibility to confirm the new chromosomes are feasible solutions. For illustration purposes,

please see Figures 3.9 and 3.10.

Parent1 7 12 25 50 33 70 20 95
Offspring1 7 12 25 49 38 72 28 95

Parent2 9 15 22 48 62 80 60 84

Figure 3.9: RBAP offspring1

Parent1 7 12 25 50 33 70 20 95
Offspring2 9 15 22 48 56 78 52 84

Parent2 9 15 22 48 62 80 60 84

Figure 3.10: RBAP offspring2

Mutation operator The mutation presented in this chapter is as follows. If the selected

gene is related to the berthing position, Pv, (defined in section 3.4), a random integer

number is selected in the interval [0,W − Li], to replace the gene. If it is related to the

berthing time, Tv, (also defined above), a random integer number is selected in the interval

[Ai,LN], where LN is a large number, to replace it. The new generated chromosome will

satisfy conditions (3.5), (3.6) and (3.12). Figure 3.11 illustrates the mutation operator.

7 12 25 50 33 70 20 95
7 12 25 50 33 70 50 95

Figure 3.11: RBAP mutation operator
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3.5 Computational experiments

Ten instances of the mathematical model of RBAP with different numbers of vessels have

been solved using B&C and a hybrid meta-heuristic which combines both B&C and GA.

All instances have randomly generated arrival times, expected processing times, lengths

of vessels and preferred berth places.

B&C can only solve exactly small scale instances of RBAP and requires prohibitive

time for large scale instances. GA, on the other hand, provides solutions for all instances,

although for some instances, the quality of the approximate solutions may not be good

enough. This is because of the nature of the search algorithm and the size of the search

spaces of the problems. The statement is based on our limited experimentation and also

what is in the literature. It was not warranted to carry out extensive experimentation with

GA. However, hybridising it with B&C, i.e. developing a hybrid meta-heuristic which

combines both B&C and GA is worthwhile. We have, therefore, implemented such a

hybrid. The hybridisation scheme is coarse; it calls first B&C as implemented in CPLEX

for short periods of time; one minute of CPU time is allocated to B&C, to be precise, before

GA is invoked with the final solution provided by CPLEX. This seems to act as a a pointer

to where good solutions lie. In Table 3.2, the execution time of the hybrid is the aggregated

execution times of B&C and GA.

The B&C and GA together, coded in Matlab, managed to solve all 10 instances. The

GA parameters for population size, probability of crossover, probability of mutation and

the maximum number of generations are 200, 0.85, 0.05 and 1000, respectively. These

parameters have been set by experimentation and other experiences that can be found
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in the literature. Moreover, 20 trials were conducted to solve each instance using GA to

mitigate the randomness of the algorithm.

The hybrid has been run on a PC with Intel Core i5 and 3.20 GHz CPU with 8 GB RAM

running Windows 7 Operating System. Note that CPLEX runs have been aborted after

one hour of execution time. All computational results are recorded in the self explanatory

Table 3.2.

In the instances considered, the number of constraints, the number of decision variables

and the B&C computational time grow exponentially with the increase in the number of

vessels. However, the CPU time required by B&C+GA does not grow fast with the increase

in the problem size. The average objective function values and the standard deviations of

B&C+GA are recorded in Table 3.2.

B&C managed to solve only few instances in reasonable times as shown in Table 3.2

column 6. We terminate CPLEX as there is no improvement after one hour of run time.

Columns 7 and 8 of Table 3.2 represent the obtained objective function and CPU time using

CPLEX if we run the model the same time that hybrid consumed. The hybrid algorithm,

however, found solutions for all instances in short CPU times (see column 10 of Table 3.2).

The gap between B&C and the hybrid meta-heuristic solutions increases with the in-

crease in the size of the problem (number of vessels) which translates into a large search

space. Note that the gap is with CPLEX after 1 hour. In other words, as the problem

size increases, the hybrid algorithm finds less and less accurate solutions unless the time

increases substantially. CPLEX, on the other hand, may not even return a solution good

or bad in acceptable times for large scale instances. There is therefore a tradeoff between

the performances of both approaches which is captured by the gaps between the solutions



3.6. Summary 62

returned by the two algorithms. Hybridisation reduces this gap.

Table 3.2: Computational results for RBAP

No. Problem Size
λ

CPLEX CPLEX2 B&C+GA Gap(%)Constraints Variables Obj.Val CPU(hh:mm:ss) Obj.Val CPU(s) 60 seconds Best Obj.Val Mean St.Dev Ave.CPU(s)

20 2360 1640 1 270* 00:00:16 270 16 270 270 270 0.00 131 0.00
2 281* 00:00:55 281 55 281 281 281 0.00 0.00

25 3700 2550 1 389* 00:07:40 390 136 395 392 392 0.00 136 0.77
2 408 01:00:00 412 136 421 394 395.5 2.20 -3.43

30 5340 3660 1 467 01:00:00 470 142 470 470 470 0.00 142 0.64
2 486 01:00:00 527 142 562 504 522.8 7.98 3.70

35 7280 4970 1 584 01:00:00 633 149 672 624 632.3 3.89 149 6.85
2 624 01:00:00 768 149 771 742 765.6 10.01 18.91

40 9520 6480 1 831 01:00:00 1143 164 1191 1041 1059 9.89 164 25.27
2 1046 01:00:00 1228 164 1299 1153 1212 28.67 10.23

* Optimal solution.

3.6 Summary

Berth allocation is one of the most important operations in container terminals. Deter-

mining the optimal berthing time and the best berthing position for vessels arriving at

container terminals is essential for the efficient running of the these terminals. Here, a

new mathematical model of the mixed integer programming type that addresses robust

berth allocation is proposed. Its solutions help mitigate the uncertainty in arrival times and

handling times of vessels. Instances of this model have been solved with an exact method

namely Branch-and-Cut as implemented in CPLEX, an approximate approach namely GA

and a hybrid of both which benefits from the exact nature of the former and the robustness

of the latter. The numerical results show that the hybrid meta-heuristic B&C+GA is supe-

rior to both B&C and GA in that it finds solutions to all problems in acceptable times and

accuracy. B&C+GA is characterised by its coarse hybridisation nature.



Chapter 4

Quay crane assignment and quay crane

scheduling problem

4.1 Introduction

After the berth allocation problem is solved, assigning quay cranes to vessels becomes

the next challenge at container terminals. This is the quay cranes assignment problem or

QCAP. Once the quay cranes are assigned to each vessel, it is essential to find the optimal

sequence in which to perform tasks. This is the scheduling problem known as the quay

crane scheduling problem or QCSP. Choosing the best sequence to perform all the tasks on

each vessel is a very important operation to minimize the handling time of every vessel.

These two operations have been solved either individually or integrated [16, 20, 83].

Solving them individually makes them more tractable in size, but the results obtained

might be suboptimal as input parameters, which are outputs of the other problem, have

to be approximated based on experience. Suboptimal solutions will translate into loss of

63
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revenue.

In Meisel [59] it has been suggested that “..., the QC-to-Vessel assignment is made up

by single QC-hours. This assignment is allowed to change during the handling process.

Time variable crane assignments are very common in practice but did not receive attention

by research until then.” And “In practice, the QC-to-Vessel assignment can change during

the handling process of a vessel”.

In this chapter, a new optimization model to represent QCAP and QCSP as QCASP is

introduced. Planning simultaneously, a significant improvement of this model is that we

do not force the number of quay cranes allocated to a vessel to be fixed during the whole

processing period of the vessel. If necessary, a quay crane may move from one vessel to

another before the processing of this vessel has finished. In addition, quay cranes do not

always start their work at the same time and from the same point (initial location of quay

cranes). For this reason, the initial position for each quay crane is taken into account in

order to compute the exact time of quay crane travelling from their initial position to the

assigned task also between any two tasks located on the same vessel or on different vessels.

Also the available time (ready time) for each quay crane is considered.

There are some conditions that should be considered to solve these two problems

simultaneously. After finding the berthing time and the berthing position of each vessel

arriving at a container terminal by solving the BAP, they are used as inputs to the quay

crane assignment problem to determine the best number of quay cranes to allocate to each

vessel. The starting time of a quay crane on a vessel should be greater than or equal to its

berthing time. It should also be greater than or equal to the ready crane time which means

the earliest available time of the quay crane. Moreover, the starting time of quay crane
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should be greater than or equal to the completion time of the quay crane before it moves

to other vessels. For this reason the quay crane assignment depends on the output of quay

crane scheduling and berth allocation for a set of vessels. In general, after determining the

number of quay cranes for each vessel, the quay crane scheduling problem arises to choose

the best sequence of the tasks that will be performed by these quay cranes. In the proposed

model, we do not determine the number of quay cranes for each vessel, the number of

quay cranes will change depending on the what is the optimal solution. The contribution

of this chapter is two fold:

1. to formulate a mathematical model that combines QCAP and QCSP in a one aggre-

gated model (QCASP) allowing quay cranes to move between vessels while they are

still being processed. In other words, it allows the number of quay cranes allocated

to any vessel to change during the handling of the vessel;

2. to solve realistic instances of the problem using an adapted variant of the Genetic

Algorithm (GA).

The proposed mathematical model is given in Section 4.2 and two particular instances

of the problem are presented to illustrate the proposed model. Section 4.3 provides an

illustration of the proposed mathematical model. An implementation of GA to find solu-

tions to QCASP is given in section 4.4. Numerical comparisons between CPLEX and GA

are given in section 4.5. Section 4.6 summarises the chapter.



4.2. Mathematical formulation 66

4.2 Mathematical formulation

The formulation assumes a container terminal with a continuous berth. The solutions

are the optimum number of quay cranes to be assigned to each docked vessel and their

schedules to carry out all necessary moves in an optimum way. Note that the number

of quay cranes assigned to a vessel at the beginning of the operation may not be the

same as at the end because our model allows quay cranes to move between vessels. This

modification reflects a more realistic situation in practical operations and allows the best

usage of all quay cranes, and thus should result in a more efficient operations plan for the

port. Also, the interference between quay cranes that move on the same rail at container

terminal are avoided. Comparing with the traditional way where these two problems were

considered individually, the combined model as proposed does not require us to estimate

the processing time when allocating quay cranes to vessels. Therefore in general it allows

a more accurate solution.

In this mathematical model, the factors which are faced by the decision makers in the

real world such as the travelling time of a quay crane between two holds on the same

vessel and between two holds on the different vessels have been taken into account in

the modelling. Also, interferences between quay cranes are avoided by introducing non-

interference constraints which consider both the potential interference between cranes of

doing tasks on the same vessel and those doing works on different vessels. Note that we

do not force the number of quay cranes allocated to a vessel to be fixed during the whole

processing period of the vessel. If necessary, a quay crane may move from one vessel to

another before the processing of this vessel has finished. This is more flexible than using a
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fixed number of quay cranes to handle a vessel; it has the potential to give better working

plans and to some extent, to mitigate uncertainty linked to the performance of quay cranes.

In addition, quay cranes do not always start their work from the same point and at the

same time . For this reason, the initial position for each quay crane is taken into account in

order to compute the exact travelling time of a quay crane and the available time for each

quay crane. Precedence and simultaneity constraints are taken into account as well.

4.2.1 Assumptions

Consider a continuous berth container terminal with fixed length and berth allocation

already decided. Now assume that:

1- The berthing position and berthing time of vessels are given as inputs;

2- Each vessel is divided longitudinally into bays; all bays have the same length. Thus, the

length of a vessel is given in terms of the number of its bays;

3- The safety distance between each pair of adjacent quay cranes depends on the width of

a bay;

4- Once a quay crane starts processing a task, it can leave only after it has finished it;

5- Quay cranes are on the same rail and thus cannot cross over each other;

6- Some tasks must be performed before others and there are some tasks which cannot be

performed simultaneously.

4.2.2 Indices

V Number of vessels v(i, j = 1, 2, ...,V).

B Number of tasks on the vessels b(i, j = 1, 2, ...,B).
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Q Number of quay cranes q(i, j = 1, 2, ...,Q).

4.2.3 Parameters

pv
b Time required to perform task b on vessel v.

lv
b Location of task b on vessel v expressed by the ship bay number on vessel v.

rq Earliest available time of the qth quay crane.

Iq
0 Initial location of quay crane q which is relative to the ship-bay number.

tqv
bib j

Travel time of the qth quay crane from the location lv
bi

of task bi to the location lv
b j

of

task b j. tqv
b0b j

represents the travel time from the initial position Iq
0 of the qth quay

crane to the location lv
b j

of the task b j on vessel v. Note that the value of t represents

the travelling time between two adjacent bays.

Tv Berthing time of vessel v.

Pv Berthing position of vessel v.

dv Requested departure time for vessel v.

Wv Tardiness cost of vessel v per time unit.

Rv Earliness income of vessel v per time unit .

Ψ Set of pairs of tasks that cannot be performed simultaneously. When tasks bi and

b j cannot be performed simultaneously, then (bi, b j) ∈ Ψ.

Φ Set of ordered pairs of tasks for which there is a precedence relationship. When

task bi must precede task b j, then we have (bi, b j) ∈ Φ.

M Arbitrary large positive number.
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4.2.4 Binary decision variables

Xqv
bib j

=



1 if the qth quay crane performs task b j immediately after performing task bi on

vessel v.

0 otherwise

Tasks b0 and bBv+1 are considered as the dummy initial and final states of each quay crane,

respectively. Thus, when task b j is the first task of the qth quay crane on vessel v then

Xqv
b0b j

= 1. Similarly, when task b j is the last task of the qth quay crane on vessel v then

Xqv
b jbBv+1

= 1.

Zv
bib j

=


1 if task b j starts later than the finish time of task bi on vessel v.

0 otherwise.

Yq
viv j

=



1 if the qth quay crane is assigned to vessel v j immediately after finishing its task

on vessel vi.

0 otherwise.

β
viv j

bib j
=


1 if the task b j on vessel v j starts later than the finish time D of task bi on vessel vi

0 otherwise.

α
viv j

bib j
=


1 if the task bi on vessel vi is located below the task b j on vessel v j.

0 otherwise.
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4.2.5 Continuous decision variables

Ev Earliness of vessel v.

Av Tardiness of vessel v.

Sqv Starting time of qth quay crane on vessel v.

Dv
bi

Completion time of task bi on vessel v.

Cqv Completion time of qth quay crane on vessel v.

Fv Finishing (departure) time of vessel v.

4.2.6 The mathematical model

min Z =

V∑
v=1

WvAv −

V∑
v=1

RvEv (4.1)

s.t

dv − Fv = Ev − Av ∀v (4.2)

V∑
v j=1

Yq
v0v j

= 1 ∀q (4.3)

V∑
vi=1

Yq
vi(V+1) = 1 ∀q (4.4)

V+1∑
v j=1

Yq
vv j
−

V∑
v j=0

Yq
v jv = 0 ∀v, q (4.5)

V∑
vi=0

Q∑
q=1

Yq
viv j
≥ 1 ∀v j (4.6)

Sqv ≥ rq −M(1 − Yq
v0v) ∀v, q (4.7)

Sqv ≥ Tv −M(1 −
V+1∑
v j=1

Yq
vv j

) ∀v, q (4.8)
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Sqv j ≥ Cqvi −M(1 − Yq
viv j

) ∀vi, v j, q (4.9)

Bv∑
b j=1

Xqv
b0b j

=

V∑
vi=0

Yq
viv ∀v, q (4.10)

Bv∑
b j=1

Xqv
b jbBv+1

=

V∑
vi=0

Yq
viv ∀v, q (4.11)

Bv+1∑
b j=1

Xqv
bb j
−

Bv∑
b j=0

Xqv
b jb

= 0 ∀b, v, q (4.12)

Q∑
q=1

Bv∑
bi=0

Xqv
bib j

= 1 ∀b j, v (4.13)

Bv∑
bi=0

Bv+1∑
b j=1

Xqv
bib j
≤M

V∑
vi=0

Yq
viv ∀v, q (4.14)

Dv
bi

+ pv
bi

+ tqv
bib j
−Dv

b j
≤M(1 − Xqv

bib j
) ∀bi, b j, v, q (4.15)

Sqv + pv
b j

+ tqv
b0b j
−Dv

b j
≤M(1 − Xqv

b0b j
) ∀b j, v, q (4.16)

Dv
b j
− Cqv ≤M(1 − Xqv

b jbBv+1
) ∀b j, v, q (4.17)

Cqv − Fv ≤M(1 −
V+1∑
v j=1

Yq
vv j

) ∀v, q (4.18)

Dv
bi

+ pv
b j
≤ Dv

b j
∀(bi, b j) ∈ Φv, v (4.19)

Dv
bi
−Dv

b j
+ pv

b j
≤M(1 − Zv

bib j
) ∀bi, b j, v (4.20)

Zv
bib j

+ Zv
b jbi

= 1 ∀(bi, b j) ∈ Ψv, v (4.21)

Q∑
θ=0

Bv∑
κ=0

Xθv
κb j
−

Q∑
θ=0

Bv∑
κ=0

Xθv
κbi
≤M(Zv

bib j
+ Zv

b jbi
) ∀bi, b j, v, q; lbi < lb j (4.22)

Dvi
bi
−Dv j

b j
+ pv j

b j
≤M(1 − βviv j

bib j
) ∀bi, b j, vi, v j (4.23)

Pvi + lv
bi
≤ Pv j + lv

b j
+ M(1 − αviv j

bib j
) ∀bi, b j, vi, v j (4.24)

β
viv j

bib j
+ β

v jvi

b jbi
+ α

v jvi

b jbi
≥

Bv∑
κ=0

Xqivi

κbi
+

Bv∑
κ=0

Xq jv j

κb j
− 1 ∀bi, b j, vi, v j, qi, q j; v j , vi; qi < q j (4.25)
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Xqv
bib j
,Zv

bib j
,Yq

viv j
, α

viv j

bib j
, β

viv j

bib j
∈ {0, 1} ∀bi, b j, vi, v j, v, q (4.26)

Cqv,Fv,Dv
b j
,Pv,Tv ≥ 0 ∀b j, v, q (4.27)

In the objective function (4.1), the first term
∑V

v=1 WvAv represents the tardiness cost if

the departure time of a vessel is greater than its due time. The second term
∑V

v=1 RvEv

represents the earliness income if the finishing time of a vessel is less than its due time.

Note that in practice this reward for earliness may be zero. Constraints (4.2) calculate the

earliness or tardiness of a vessel depending on the difference between its due time and its

finishing time.

The constraints (4.3)-(4.6) represent the main conditions for QCAP. However, constraints

(4.3) and (4.4) respectively select the first and the last ships for each quay crane. Constraints

(4.5) guarantee that ships are processed in a well-defined sequence. Constraints (4.6)

guarantee that each vessel be handled by at least one quay crane. This set of constraints is

not really necessary since one can imagine that a large number of quay cranes is available

while only a few vessels are to be handled. However, this situation is unlikely and in general

only a few quay cranes are available to handle a large number of vessels. Therefore, we do

not want any of the quay cranes to be idle. Hence the need for these constraints.

The constraints (4.7)-(4.9) determine the starting time of quay cranes. Constraints (4.7)

force the starting time of the earliest vessel that is to be done by the qth quay crane to be

after the ready time of the qth quay crane. Note that vessel v0 is a dummy vessel from which

the working sequence starts. Constraints (4.8) say that the starting time of the qth quay

crane on the vessel v is no earlier than the berthing time of vessel v if the qth quay crane is

assigned to serve this vessel. Constraints (4.9) ensure that the starting time of the qth quay
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crane on vessel v j is no earlier than the finishing time of its predecessor vessel vi.

Constraints (4.10) ensure that if a quay crane is assigned to a vessel, then it will start

its processing from one of the tasks on that vessel. Constraints (4.11) ensure that if a

quay crane is assigned to a vessel, then it will finish its processing with one of the tasks

on that vessel. Constraints (4.12) show a flow balance ensuring that tasks are performed

in a well-defined sequence on every vessel. Constraints (4.13) ensure that every task on

each vessel must be handled by exactly one quay crane. Constraints (4.14) ensure that

tasks on a vessel are handled by a quay crane only if this quay crane is allocated to that

vessel. Constraints (4.15) simultaneously determine the completion time for each task and

eliminate sub-tours; sub-tours here are the looping on tasks which have already been done.

To illustrate, let Task 1, Task 2, and Task 3, be carried out in this order. A sub-tour would

be to do Task 1, Task 2, Task 3, and Task 2 again, for instance. Constraints (4.15) remove

this possibility. Constraints (4.16) determine the quay crane starting time on vessel v and

the completion time of the same quay crane is computed by constraints (4.17). Constraints

(4.18) determine the finishing time of each vessel.

When required, constraints (4.19) force task bi to be completed before the starting of

task b j for all the task pairs (bi, b j) ∈ Φ. Constraints (4.20) define Zv
bib j

such that Zv
bib j

= 1

when the operation of task b j on vessel v starts after the completion of task bi on the same

vessel. Constraints (4.21) ensure that the pair of tasks that are members of the set Ψ will

not be handled simultaneously.

By constraints (4.22), interference between quay cranes is avoided. Suppose that tasks

bi and b j are performed simultaneously and li < l j, this means that Zv
bib j

+ Zv
b jbi

= 0. Note

that both quay cranes and tasks are ordered in an increasing order of their relative location



4.2. Mathematical formulation 74

in the direction of increasing ship-bay number. Suppose that, for q1 < q2, quay crane q1

performs task b j and quay crane q2 performs task bi. Then, interference between quay

cranes q1 and q2 results in
∑q1

θ=1

∑Bv
κ=0 Xθv

κb j
−

∑q1

θ=1

∑Bv
κ=0 Xθv

κbi
= 1, where κ refers to the set of all

tasks. This violates constraints (4.22), since we have Zv
bib j

+ Zv
b jbi

= 0 as mentioned earlier.

Constraints (4.23)-(4.25), which are introduced in this study for the first time, avoid

interference amongst different tasks on different vessels, and enable quay cranes to move

freely amongst vessels. In constraints (4.23), βviv j

bib j
is defined as follows. β

viv j

bib j
= 1 if the

finishing time D of task bi on vessel vi plus the processing time of task b j on vessel v j is less

than or equal to the finishing time of task b j on vessel v j; 0 if the finishing time of task bi on

vessel vi plus the processing time of task b j on vessel v j is greater than the finishing time D

of task b j on vessel v j. Figures 4.1 and 4.2 illustrate how the value of βviv j

bib j
is computed.

Figure 4.1: No time overlap between task bi on
vessel vi and task b j on vessel v j

Figure 4.2: Time overlap between task bi on ves-
sel vi and task b j on vessel v j

The value of βviv j

bib j
in Figure 4.1 can be 1 because Dvi

bi
+ pv j

b j
≤ Dv j

b j
, whereas the value of

β
v jvi

b jbi
in the same figure equals 0 because Dv j

b j
+ pvi

bi
> Dvi

bi
. The value of βviv j

bib j
in Figure 4.2

equals 0 because Dvi
bi

+ pv j

b j
> Dv j

b j
and the value of βv jvi

b jbi
in the same figure equals 0 because

Dv j

b j
+ pvi

bi
> Dvi

bi
. This means there is overlap in the time between these two tasks on these
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two vessels.

In constraints (4.24), αviv j

bib j
is defined as follows. αviv j

bib j
= 1 if the berthing position P of

vessel vi plus the location l of task bi on that vessel is less than or equal to the berthing

position P of vessel v j plus the location l of task b j on that vessel; 0 if the berthing position

of vessel vi plus the location of task bi on that vessel is greater than the berthing position of

vessel v j plus the location of task b j on that vessel. Figures 4.3 and 4.4 illustrate how the

value of αviv j

bib j
is computed.

Figure 4.3: No location overlap between task bi
on vessel vi and task b j on vessel v j

Figure 4.4: Location overlap between task bi on
vessel vi and task b j on vessel v j

The value of αviv j

bib j
in Figure 4.3 can be 1 because Pvi + lv

bi
≤ Pv j + lv

b j
. The value of αviv j

bib j
in

Figure 4.4 equals 0, because Pvi + lv
bi
> Pv j + lv

b j
. This means there is overlap in the position

between these two tasks on these two vessels.

Constraints (4.25) prevent the interference between quay cranes handling two different

vessels depending on the values of βviv j

bib j
and αviv j

bib j
, respectively.

The size of the above model is as follows:

The number of binary variables is equal to VB(2VB − B − 1) + VQ(B2 + 2B + V + 2).

The number of integer variables is equal to 3V + VB + 2VQ.
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The number of constraints is equal to

VBQ(VBQ − BQ − VB + 3B + 1) + VB(B + 2V − 2) + VQ(V + 6) + 2B2
− 2B + 2V + 2Q.

4.3 Numerical examples

To illustrate the case of better plans, consider the situation in which two quay cranes are

available to handle two vessels with data as given in Table 4.1, and each vessel has two

tasks to process.

Table 4.1: Input data of Example 4.1

Ready (crane) 0 2
Initial location (crane) 11 16
Berthing time 0 0
Processing time of tasks ,vessel 1 85 29
Processing time of tasks ,vessel 2 18 33
Location task, vessel 1 1 2
Location task, vessel 2 1 2
Expected departure time of vessel 85 33
Berthing position 10 15
Tardiness cost (per unit time) 5 1
Earliness income (per unit time) 1 1

In the previous models where a fixed number of quay cranes is allocated to every vessel

during the whole processing period, the optimal working plan is described in Figure 4.5

with the objective value being equal to 171 (150 units of tardiness belong to the first vessel

and 21 units of tardiness belong to the second vessel). Even though quay crane 2 finished

its work on vessel 2 at 54 (2+18+1+33), it is not allowed to move to vessel 1 according

to the constraints in the previous mathematical models. This wastes the working time of

this quay crane which will result into a sub-optimal solution. In contrast, in our model,

a variable number of quay cranes is used during the processing period, which allows the

second quay crane to move to vessel 1 to perform other tasks as showing in Figure 4.6. As
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a result, vessel 1’s finishing time is completed at 87 time units earlier than in the previous

plan with an objective value equals to 31 (10 units of tardiness belong to the first vessel and

21 units of tardiness belong to the second vessel), due to making the best use of both quay

cranes. Note that we only allow the quay crane to move after it has finished its allocated

work on vessel 2.

Figure 4.5: Model solution for fixed number of
QC’s of example 4.1

Figure 4.6: Suggested model solution of example
4.1

Our model also allows quay cranes to share tasks on the same vessels to which they are

allocated. Consider the input data for two vessels arriving at a container terminal as given

in Table 4.2.

Table 4.2: Input data of Example 4.2

Ready (crane) 0 0
Initial location (crane) 22 24
Berthing time 0 0
Processing time of tasks,vessel 1 28 22
Processing time of tasks,vessel 2 39 34
Location task, vessel 1 1 2
Location task, vessel 2 1 2
Expected departure time of vessel 28 39
Berthing position 20 25
Tardiness cost (per unit time) 1 1
Earliness income (per unit time) 1 1

In Example 4.2, the objective value returned by previous models is 60 time units (23 units

of tardiness belong to the first vessel and 37 units of tardiness belong to the second vessel),
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(see Figure 4.7). Since we allow quay cranes to move between vessels if no interference

constraints are violated, the solution of our model returns an objective value of only 35

time units (1 unit of tardiness belong to the first vessel and 34 units of tardiness belong to

the second vessel), as can be seen in Figure 4.8.

Figure 4.7: Model solution for fixed number of
QC’s of example 4.2

Figure 4.8: Suggested model solution of example
4.2

4.4 Application of GA to QCASP

4.4.1 Solution representation: chromosome

GA starts with a randomly generated population of solutions. Here, representing a se-

quence of holds (tasks) for all docked vessels. The value of a gene is randomly picked from

the index set of all holds; it cannot, therefore, be duplicated, i.e. each gene is unique. Each

chromosome consists of v × b genes, where v represents the number of vessels and b the

number of tasks on each vessel. A simple chromosome for the case of two vessels, each

with three tasks, is illustrated in Figure 4.9. Here, genes (1,2,3) represent the tasks on the

first vessel and genes (4,5,6) represent those on the second vessel.
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1 4 3 6 5 2

Figure 4.9: QCASP chromosome representation

Based on the sequence of tasks for all vessels represented by the chromosome, a quay crane

schedule can be constructed using the following steps that are the extension of the proce-

dure proposed by Lee et al. [45] and used for each vessel separately. Here, however, we

assume that the berth allocation plan (berthing time and berthing position of each vessel

arriving at the container terminal) as well the initial position and ready time of each quay

crane at the beginning of scheduling are known.

Quay crane scheduling procedure [45]:

Begin

Step 1: Based on the current position of each quay crane, determine which quay

cranes can handle the first unassigned task in the chromosome without interference

with other quay cranes. If only one quay crane is available, this task is assigned to it

and it is deleted from the chromosome; the position and the completion time of the

assigned quay crane are updated. The completion time of task is also computed. If

two quay cranes are available, go to Step 2.

Step 2: Compare the completion times of the two available quay cranes, and assign

this task to the quay crane with earlier completion time. This task is then deleted from

the chromosome, and both the position and the completion time of the assigned quay

crane are updated. Also the completion time of task is computed. If their completion
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times are equal, go to Step 3.

Step 3: Compare the distance between this task and these two available quay cranes,

and assign the task to the quay crane with the shorter distance. Then, this task is

deleted from the chromosome, and both the position and the completion time of the

assigned quay crane are updated. The completion time of task is also computed. If

their distances are equal, go to Step 4.

Step 4: Assign this task to the quay crane with the smaller number. Then, this

task is deleted from the chromosome, and both the position and the completion time

of the assigned quay crane are updated. Also the completion time of task is computed.

Step 5: Steps 1–4 are repeated until all the tasks in the chromosome are assigned.

Stop

4.4.2 Solution validation

To validate chromosomes/solutions, three important situations must be considered. The

first one is the precedence relationship between tasks. For instance, some of the bays of a

given vessel need to be unloaded and loaded. The discharging of containers from a bay

must precede the loading of this bay. For this reason the generated chromosome should be

checked to see if it satisfies this condition, i.e. constraints (4.19). The second situation is the

non-simultaneity of some tasks, i.e. constraints (4.21) must also be satisfied. Finally, the
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interference between quay cranes is avoided by introducing non-interference constraints

which consider both the potential interference of tasks on the same vessel constraints (4.22)

and those on different vessels constraints (4.25). If any one of constraints (4.19), (4.21),

(4.22), (4.25) is violated or any combination are violated, the generated chromosomes are

discarded by putting a high penalty to their fitness values.

4.4.3 Evaluation of fitness

The objective of QCASP is to minimise the tardiness and to maximise the earliness of

vessels. The completion time of each quay crane can be computed by summing up the

processing times of all the tasks that have been performed by this quay crane plus the

travel time it takes to move from one hold to another. The tardiness of each vessel can be

computed by subtracting the finishing time from the expected departure time. The finishing

time represents the maximum processing time of the vessel required by the quay cranes

assigned to it. The objective function used by the GA in MATLAB is the same objective

function as that of the mathematical model. Thus, the fitness value of a chromosome is

calculated by Equation (4.28).

Fitness(chromosome) =
1∑V

v=1 WvAv −
∑V

v=1 RvEv
(4.28)

Note that there is no difference between the two formulae of the fitness function, i.e.∑V
v=1 WvAv −

∑V
v=1 RvEv and 1∑V

v=1 WvAv−
∑V

v=1 RvEv
. For a minimisation problem, which is our

case, in the first formula we sort the solutions/chromosomes in ascending order resulting
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in the best solutions being at the top; in the second formula, the solutions are sorted in a

descending order putting again the best solutions at the top.

4.4.4 Generating next populations

From the initial randomly generated population, subsequent generations of children, i.e.

new populations, must be created. This is achieved by using genetic operators such as

crossover, mutation and reproduction (copying of individuals unmodified into subsequent

populations).

Crossover operator To produce a new chromosome (offspring) the ‘Order Crossover’ of

Cheng and Gen [9] is used. Order crossover is a permutation-based crossover. It works

as follows. A subsequence of consecutive alleles from parent 1 is selected and used to

partially make the offspring; the remaining alleles to complete the creation of the offspring

are chosen from parent 2 avoiding any repetitions. The same procedure is then applied

starting from parent 2 to make the second offspring. The crossover operator always creates

two offspring. Figures 4.10 and 4.11 illustrate the order crossover.

Parent1 7 12 5 3 6 1 10 8 11 2 4 9
Offspring1 7 12 5 3 8 2 6 4 11 9 10 1

Parent2 8 2 5 6 7 4 11 9 12 3 10 1

Figure 4.10: QCASP offspring 1

Parent1 7 12 5 3 6 1 10 8 11 2 4 9
Offspring2 8 2 5 6 7 12 3 1 10 11 4 9

Parent2 8 2 5 6 7 4 11 9 12 3 10 1

Figure 4.11: QCASP offspring 2
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Mutation operator In this algorithm, two genes from the chromosome are randomly

selected and then swapped with each other. Figure 4.12 illustrates the mutation operator.

8 4 3 6 5 2 7 9 1
8 4 9 6 5 2 7 3 1

Figure 4.12: QCASP mutation operator

4.5 Computational experiments

Twenty instances of the above mathematical model of QCASP with different numbers of

vessels, tasks, and quay cranes have been solved using CPLEX and GA. They are recorded

in Tables 4.3 and 4.4. All instances have randomly generated processing time of tasks for

each hold from the uniform distribution U(10,50).

CPLEX solved problems 1 to 10. These are relatively small in size. They were solved

in acceptable times, although 28, 68, 33 and 46 hours were required for problems 6, 7, 8

and 9, respectively. These times are hardly acceptable in the context of container terminal

operations. The rest of the problems, 11 to 20, which are the realistic instances, could not

be solved with CPLEX in acceptable times (≥ 100 hours of CPU time). In some cases they

could not be solved at all due to the limitations of the computing platform used. Note

that the B&C implemented in CPLEX does not take any problem specific cuts. At least,

we are not aware that the package such a facility. We have submitted out problems as a

non-expert wood, i.e with no preprocessing or choice of parameters to make the execution

faster or slower.

GA, coded in Matlab, managed to solve all 20 instances. For the small size problems of

Table 4.3, the GA parameters of population size, rate of crossover, rate of mutation and the
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maximum number of generations are set as 150, 0.2, 0.1 and 500, respectively. In the case

of the large size instances of Table 4.4, population size, crossover and mutation rates and

the maximum number of generations are set as 300, 0.25, 0.2 and 1000, respectively. These

parameters have been set by experimentation and other experiences that can be found

in the literature. Moreover, 20 trials were conducted to solve each instance using GA to

mitigate the randomness of the algorithm.

All experiments have been performed on a PC with Intel Core i5 and 3.20 GHz CPU

with 8 GB RAM running Windows 7 Operating System. The 20 problems and their corre-

sponding results are presented in Tables 4.3 and 4.4, containing small problems 1 through

10 and longer ones consisting problems 11 through to 20, respectively.

4.5.1 Test results

On the small size problems of Table 4.3, the number of constraints, the number of decision

variables and CPLEX computational time grow exponentially with the instance number of

vessels, tasks and quay cranes. Note, however, that in column 13 of Table 4.3 showing the

CPU time required by GA to solve these problems, this time does not change much with

the increase in the problem size. It is also important to note that in most cases, GA obtains

the optimal or near optimal solution within 500 generations. The average gap between

CPLEX and GA returned objective values is about 0.4%.
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Table 4.3: Computational results for small scale instances of QCASP

No. Problem Information Problem Size CPLEX GA Gap(%)Vessels Tasks Q.Cranes Constraints Dec.Vars Int.Vars Obj.Val CPU(hh:mm:ss) Best Obj.Val Mean St.Dev Ave.CPU(s)
1 2 3 5 538 270 243 70 00:00:05 70 70 0.0 15 0.0
2 4 2 5 1030 444 389 242 00:06:11 244 244 0.0 14 0.8
3 3 3 5 1141 474 431 405 00:40:54 405 412.5 8.3 13 0.0
4 2 5 5 1244 566 535 105 04:41:12 105 105 0.0 18 0.0
5 4 2 8 2152 636 560 156 00:34:34 156 156 0.0 14 0.0
6 4 3 4 1412 632 580 865 28:59:44 884 904.6 28.7 17 2.1
7 3 4 6 2472 807 756 1264 68:06:22 1268 1268 0.0 14 0.3
8 3 5 5 2776 1014 965 1035 33:56:21 1035 1038.5 20.9 15 0.0
9 3 5 8 6013 1392 1328 770 46:09:14 780 780 0.0 15 1.2
10 2 8 8 5972 1766 1720 320 06:05:31 320 320 0.0 18 0.0

Gap =
GAObj.Fun.−CPLEXObj.Fun.

CPLEXObj.Fun. ∗ 100

CPLEX did not solve some of the larger size instances due to the limitation of the computing

platform used, shown in Table 4.4, and marked with a star in column 8 due to the limitation

of the computing platform used. GA, however, finds the optimal or near optimal solutions

for all the instances in reasonable CPU times (see column 13 of Table 4.4). Note that CPLEX

runs have been terminated after three hours of execution time.

Table 4.4: Computational results for large scale instances of QCASP

No. Problem Information Problem Size CPLEX GA
Vessels Tasks Q.Cranes Constraints Dec.Vars Int.Vars Obj.Val CPU(hh:mm:ss) Best Obj.Val Mean St.Dev Ave.CPU(s)

11 5 10 8 67966 9675 9538 2275 03:00:00 667 670 2.5 93
12 5 8 12 94942 8235 8072 975 03:00:00 542 549.5 6.6 82
13 4 16 10 92060 11084 10954 1777 03:00:00 1030 1073.5 25.9 115
14 6 8 10 98336 9642 9466 3731 03:00:00 651 669.8 11.4 95
15 5 12 8 97426 13575 13428 2878 03:00:00 884 912.2 13.1 111
16 4 16 8 107096 16652 16520 4302 03:00:00 1112 1130.8 8.9 113
17 4 12 12 130400 12492 12348 2440 03:00:00 690 710.8 17.6 89
18 4 16 12 230784 21388 21228 * 03:00:00 1026 1071.1 34.4 115
19 5 16 10 263700 26385 26200 * 03:00:00 1379 1417.8 20.1 137
20 6 12 12 313236 22338 22116 * 03:00:00 1045 1080.6 22.4 124

* No output is generated

4.6 Summary

This chapter describes QCASP, a mathematical formulation of the combined problem of

Quay Crane Assignment and Quay Crane Scheduling. It is a mixed integer programming

model which allows quay cranes to move between two holds of the same ship and between
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two holds on different vessels. The time it takes for these cranes to move between holds is

taken into account in the optimisation process. Interference between quay cranes is avoided

by introducing non-interference constraints which take into account both the potential

interference of tasks on the same vessel and those on different vessels. The Branch-and-

Cut algorithm as implemented in CPLEX 12.6 has been used to find the optimal solutions

of relatively small instances of QCSAP. It cannot cope with larger instances of the problem

which are of practical size. GA, however, coped well with all problems. It required almost

the same CPU time for all problems of small size and CPU times of the same magnitude

for the larger instances. Moreover, on most of the 17 instances that CPLEX managed to

solve, GA also found the optimum. Overall the average discrepancy between the objective

function values of the solutions found by GA is 0.4. This shows that GA, while substantially

more efficient than B&C, it is also quite robust on most instances considered as this average

discrepancy shows. The combined model presented here is obviously the way forward

as it is more likely to provide better solutions than those found by solving QCAP or

QCSP operations problems individually. It is also a substantial improvement on combined

variants which do not allow for quay cranes movement between vessels, as found in the

literature.



Chapter 5

Berth allocation, quay crane assignment

and quay crane scheduling problem

5.1 Introduction

This chapter is an attempt to integrate all three seaside operations problems into a single

model and solve it as such. BAP, QCAP and QCSP have to be considered almost always

explicitly in the model container port. As what we have already mentioned in the previous

chapters, they have been solved individually. However, given their tight relationship with

each other, see Figure 5.1, it is obvious that finding solutions to the individual problems

is unlikely to result in an overall optimal solution. Hence the need to solve them in one

single integrated model.

In Figure 5.1, the outputs of the berth allocation are the berthing time Tv and the

berthing position Pv. These outputs of the berthing plan will be used as inputs to the quay

cranes assignment problem to determine the number of quay cranes for each vessel. The

87
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Berth Allocation Problem

Quay Crane Assignment

Quay Crane Scheduling Problem

Sqv ≥ rq Fvi

No. of QCs

Tv,PvSqv ≥ Tv

Sqv j ≥ Cqvi

.

Figure 5.1: Illustration of the relationship among the quayside operations

starting time of the a quay crane on a vessel Sqv should be greater than or equal to its

berthing time Tv. It should also be greater than or equal to the ready crane time rq which

means the earliest available time of quay crane. After determining the number of quay

cranes for each vessel, the solution of the quay crane scheduling problem will return to

choose the best sequence in which tasks will be performed by the quay cranes which are

assigned to it. Note that the starting time of handling the vessel Sqv j should be greater than

or equal to the finishing time Fvi if vessel v j is moored at the same berthing position as that

of vessel vi. The berthing position which will be allocated to the new arrival vessel should

be emptied before the new vessel starts processing. As a result, the berth plan depends on

the output of the quay crane scheduling problem. The aims of this chapter are:

1. to formulate a mathematical model that combines BAP, QCAP and QCSP in one

aggregate formulation (BACASP). In this model, features which are very important

to compute an exact solution are considered;

2. to solve realistic instances of the problem using an adapted variant of GA.
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The chapter is organized as follows: The proposed mathematical model is given in

Section 5.2. Section 5.3 provides an illustration of the proposed mathematical model . In

Section 5.4, a solution approach, namely a meta-heuristic based on GA is presented. Section

5.5 describes the computational experience of CPLEX and GA. The summary is given in

Section 5.6.

5.2 Mathematical formulation

This section describes a mixed integer programming model which combines the three

seaside port operations namely berth allocation, quay cranes assignment, and quay crane

scheduling which, traditionally, are considered piecemeal. This combined model is then

solved to find the best location and the optimal time for berthing for each vessel that arrives

at the container terminal. When the vessel is moored at its preferred position, the distance

to transfer the containers from the vessel to the storage area is minimized, thus saving on

the overall processing time of the vessel. An important characteristic of this model is that

the number of QC’s assigned to any vessel is not fixed since these QC’s are allowed to

move between vessels. This, allows a full usage of every quay crane. The solution also

includes the optimal sequence in which to perform every task on the vessel; this is the so

called quay crane scheduling problem or QCSP.

The model itself has features which are not commonly represented in existing models.

Travelling times of a quay crane between two holds on the same ship and between two

holds on different vessels have also been considered. Quay crane interference avoidance

is explicitly represented when the quay cranes operate on the same vessel and when quay
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cranes are on different vessels. Another advantage of this model is that it allows a quay

crane that has become idle (finished its work) to move from its current vessel to another

even if overall the current vessel to which it has been allocated is still being processed. In

practice, the quay cranes do not always start their works from the same point and at the

same time. For this reason a quay crane ready time has been considered in the mathematical

model. The initial position for each quay crane is taken into account in order to compute

the exact time of quay crane travelling. The precedence and simultaneity constraints are

taken in to consideration as well.

5.2.1 Assumptions

Consider a continuous container terminal with fixed length where vessels can moor at a

preferable place when possible. Now assume that:

1- Each vessel is divided longitudinally into bays; each bay has the same length. Thus, the

length of vessels is in number of bays (bay lengths);

2- The safety distance between each pair of adjacent quay cranes depends on the width of

a bay;

3- Each segment of the continuous wharf can handle one vessel at a time;

4- Once a quay crane starts processing a task, it leaves only when it has finished the

workload of this bay;

5- Any vessel can be processed in any space of the wharf depending on their arrival time

and the available terminal;

6- Quay cranes are on the same rail and thus cannot cross over each other;

7- Some tasks must be performed before others and there are some tasks that cannot be
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performed simultaneously.

5.2.2 Indices

V Number of vessels v(i, j = 1, 2, ...,V).

B Number of tasks on the vessels b(i, j = 1, 2, ...,B).

Q Number of quay cranes q(i, j = 1, 2, ...,Q).

5.2.3 Parameters

pv
b Time required to perform task b on vessel v.

lv
b Location of task b on vessel v expressed by the ship bay number on vessel v.

rq Earliest available time of the qth quay crane.

lq
0 Initial location of the qth quay crane which is relative to the ship-bay number.

tqv
bib j

Travel time of the qth quay crane from the location lv
bi

of task bi to the location

lv
b j

of task b j on vessel v. tqv
b0b j

represents the travel time from the initial position

lv
q of the qth quay crane to the location lv

b j
of the task b j on vessel v. Note that the

value of t represents the travelling time between two adjacent bays.

av Estimated arrival time for vessel v.

dv Requested departure time for vessel v.

P̂v Preferred berth position of vessel v. It is determined by the position of yard

storage areas allocated to vessel v. P̂v reflects that the berth position has the

shortest distance to the allocated yard storage area for vessel v.

Uv Distance cost of vessel v. If vessel v moors at P̂v, the transportation cost is the

lowest based on the distance cost due to the vessel being moored at a place
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with distance deviation .

Lv Length of vessel v.

W Length of the wharf.

Wv Tardiness cost of vessel v per unit time.

Rv Earliness income of vessel v per unit time.

Ψ Set of pairs of tasks that cannot be performed simultaneously; when tasks bi and

b j cannot be performed simultaneously ((bi, b j) ∈ Ψ).

Φ Set of ordered pairs of tasks for which there is a precedence relationship;

when task bi must precede task b j ((bi, b j) ∈ Φ).

M Arbitrary large positive number.

5.2.4 Binary decision variables

Xqv
bib j

=



1 if the qth quay crane performing task b j immediately after performing task bi on

vessel v.

0 otherwise.

Tasks b0 and bBv+1 are considered as the dummy initial and final states of each quay crane,

respectively. Thus, when task b j is the first task of the qth quay crane then Xqv
b0b j

= 1. In

addition, when task b j is the last task of the qth quay crane then Xqv
b jbBv+1

= 1.
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Zv
bib j

=


1 if task b j starts later than the finishing of task bi on vessel v.

0 otherwise.

Yq
viv j

=



1 if the qth quay crane is assigned to vessel v j right after finishing its tasks on

vessel vi.

0 otherwise.

δviv j =


1 if the processing of vessel v j starts later than the finishing of vessel vi.

0 otherwise.

σviv j =


1 if vessel vi is located nearer one end of the wharf than vessel v j.

0 otherwise.

β
viv j

bib j
=


1 if task b j on vessel v j starts later than the finish time D of task bi on vessel vi.

0 otherwise.

α
viv j

bib j
=


1 if task bi on vessel vi is located below task b j on vessel v j.

0 otherwise.

5.2.5 Continuous decision variables

Tv Berthing time of vessel v.

Pv Berthing position of vessel v.

Av Tardiness of vessel v.
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Ev Earliness of vessel v.

Cqv Completion time of the qth quay crane on vessel v.

Fv Finishing time of vessel v.

Dv
bi

Completion time of task bi on vessel v.

Sqv Starting time of the qth quay crane on vessel v.

5.2.6 The mathematical model

min Z =

V∑
v=1

WvAv −

V∑
v=1

RvEv +

V∑
v=1

Uv|Pv − P̂v| (5.1)

s.t

dv − Fv = Ev − Av ∀v (5.2)

Fvi ≤ Tv j + M(1 − δviv j) ∀vi, v j (5.3)

Pvi + Lvi ≤ Pv j + M(1 − σviv j) ∀vi, v j (5.4)

σviv j + σv jvi + δviv j + δv jvi ≥ 1 ∀vi, v j (5.5)

av ≤ Tv ∀v (5.6)

Pv + Lv ≤W ∀v (5.7)

V∑
v j=1

Yq
v0v j

= 1 ∀q (5.8)

V∑
vi=1

Yq
vi(V+1) = 1 ∀q (5.9)

V+1∑
v j=1

Yq
vv j
−

V∑
v j=0

Yq
v jv = 0 ∀v, q (5.10)

V∑
vi=0

Q∑
q=1

Yq
viv j
≥ 1 ∀v j (5.11)
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Sqv ≥ rq −M(1 − Yq
v0v) ∀v, q (5.12)

Sqv ≥ Tv −M(1 −
V+1∑
v j=1

Yq
vv j

) ∀v, q (5.13)

Sqv j ≥ Cqvi −M(1 − Yq
viv j

) ∀vi, v j, q (5.14)

Bv∑
b j=1

Xqv
b0b j

=

V∑
vi=0

Yq
viv ∀v, q (5.15)

Bv∑
b j=1

Xqv
b jbBv+1

=

V∑
vi=0

Yq
viv ∀v, q (5.16)

Bv+1∑
b j=1

Xqv
bb j
−

Bv∑
b j=1

Xqv
b jb

= 0 ∀b, v, q (5.17)

Q∑
q=1

Bv∑
bi=0

Xqv
bib j

= 1 ∀b j, v (5.18)

Bv∑
bi=0

Bv+1∑
b j=1

Xqv
bib j
≤M

V∑
vi=0

Yq
viv ∀v, q (5.19)

Dv
bi

+ tqv
bib j

+ pv
bi
−Dv

b j
≤M(1 − Xqv

bib j
) ∀bi, b j, v, q (5.20)

Sqv + Dv
b j

+ tqv
b0b j
− pv

b j
≤M(1 − Xqv

b0b j
) ∀b j, v, q (5.21)

Dv
b j
− Cqv ≤M(1 − Xqv

b jbBv+1
) ∀b j, v, q (5.22)

Cqv − Fv ≤M(1 −
V+1∑
v j=1

Yq
vv j

) ∀v, q (5.23)

Dv
bi

+ pv
b j
≤ Dv

b j
∀(bi, b j) ∈ Φv, v (5.24)

Dv
bi
−Dv

b j
+ pv

b j
≤M(1 − Zv

bib j
) ∀bi, b j, v (5.25)

Zv
bib j

+ Zv
b jbi

= 1 ∀(bi, b j) ∈ Ψv, v (5.26)

Q∑
θ=0

Bv∑
κ=0

Xθv
κb j
−

Q∑
θ=0

Bv∑
κ=0

Xθv
κbi
≤M(Zv

bib j
+ Zv

b jbi
) ∀bi, b j; lbi < lb j ;∀v, q (5.27)

Dvi
bi
−Dv j

b j
+ pv j

b j
≤M(1 − βviv j

bib j
) ∀bi, b j, vi, v j (5.28)
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Pvi + lv
bi
≤ Pv j + lv

b j
+ M(1 − αviv j

bib j
) ∀bi, b j, vi, v j (5.29)

β
viv j

bib j
+ β

v jvi

b jbi
+ α

v jvi

b jbi
≥

Bv∑
κ=0

Xqivi

κbi
+

Bv∑
κ=0

Xq jv j

κb j
− 1 ∀bi, b j, vi, v j, qi, q j; v j , vi; qi < q j (5.30)

Xqv
bib j
,Zv

bib j
,Yq

viv j
, δviv j , σviv j , α

viv j

bib j
, β

viv j

bib j
∈ {0, 1} ∀bi, b j, vi, v j, v, q (5.31)

Cqv,Fv,Dv
b j
,Pv,Tv ≥ 0 ∀b j, v, q (5.32)

In the objective function (5.1), the first term
∑V

v=1 WvAv represents the tardiness cost if

the departure time of the vessel is later than its due time. The second term
∑V

v=1 RvEv

represents the income from earliness if the finishing time of vessel is earlier than its due

time. The last term
∑V

v=1 Uv|Pv − P̂v| represents the cost incurred if the vessel is moored at

an undesired berthing position. Constraints (5.2) determine if the vessel has earliness or

tardiness depending on the difference between the departure (due) time of the vessel and

the finishing time of this vessel.

In constraints (5.3), δviv j is defined as follows. δviv j = 1 if the finishing time of vessel i is

less than or equal to the berthing time of vessel j; 0 if the finishing time of vessel i is greater

than the berthing time of vessel j. See Figures 3.1 and 3.2 for illustration.

In constraints (5.4), σviv j is defined as follows. σviv j = 1 if the berthing position of vessel

i plus the length of vessel i is less than or equal to the berthing position of vessel j; 0 if the

berthing position of vessel i plus the length of vessel i is greater than the berthing position

of vessel j. See Figures 3.3 and 3.4 for illustration.

Constraints (5.5) ensure that the overlaps among vessels do not exist in the two dimen-

sions (time and location) depending on the values of δviv j and σviv j . Constraints (5.6) state

that the vessels cannot moor before their arrivals. Constraint (5.7) implies that the berthing
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position plus the length of vessel cannot exceed the range of the wharf.

Constraints (5.8) and (5.9) respectively select the first and the last ships for each quay

crane. Constraints (5.10) guarantee that ships are processed in a well-defined sequence.

Constraints (5.11) force every quay crane available at the terminal container to handle at

least one ship. This set of constraints is not really necessary since one can imagine that

a large number of quay cranes is available while only a few vessels are to be handled.

However, this situation is unlikely and in general only a few quay cranes are available to

handle a large number of vessels. Therefore, we do not want any of the quay cranes to be

idle. Hence the need for these constraints.

Constraints (5.12) ensure that the starting time of the earliest vessel that is to be done by

the qth quay crane should be after the ready time of the quay crane depending on the value

of Yq
v0v j

. Note that the vessel vo is a fake vessel. Constraints (5.13) ensure that the starting

time of the qth quay crane on the vessel v is greater than or equal to the berthing time if the

qth quay crane is assigned to the vessel. Constraints (5.14) ensure that the starting time of

the qth quay crane on vessel vi should be no earlier than the finishing time of its predecessor

vessel vi.

Constraints (5.15) ensure that if a quay crane is allocated to a vessel, then it will start

its processing from one task on that vessel. Constraints (5.16) ensure that if a quay crane is

allocated to a vessel, then it will finish its processing on one task on that vessel. Constraints

(5.17) show a flow balance ensuring that tasks are performed in a well-defined sequence.

Constraints (5.18) ensure that every task on each vessel must be completed by exactly one

quay crane. Constraints (5.19) ensure that if a quay crane is not assigned to a vessel, the tasks

on this vessel will not be performed by this quay crane. Constraints (5.20) simultaneously
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determine the completion time for each task and eliminates sub-tours; sub-tours here are

the looping on tasks which have already been done. To illustrate, let Task 1, Task 2, and

Task 3, be carried out in this order. A sub-tour would be to do Task 1, Task 2, Task 3, and

Task 2 again, for instance. Constraints (5.21) define the quay crane operation starting time.

The completion time of each quay crane is computed by constraints (5.22). Constraints

(5.23) determine the finishing time of each vessel.

When required, constraints (5.24) force task i to be completed before task j for all

the tasks which are in the set Φ. Constraints (5.25) define Zv
ij such that Zv

ij = 1 when

the operation of task j on vessel v starts after the operation for task i completed; and 0

otherwise. Constraints (5.26) ensure that the pair of tasks that are members of the set Ψ

will not be handled simultaneously.

Constraints (5.27) prevent interference between quay cranes. Suppose that tasks i and

j are performed simultaneously and li < l j. This means that Zv
ij + Zv

ji = 0. Note that both

quay cranes and tasks are ordered in an increasing order of their relative location in the

direction of increasing ship-bay number. Suppose that, for q1 < q2, quay crane q1 performs

tasks j and quay crane q2 performs task i. Then, interference between quay cranes q1 and q2

results. However, in such a case,
∑q1

θ=1

∑Bv
κ=0 Xθv

κb j
−

∑q1

θ=1

∑Bv
κ=0 Xθv

κbi
= 1, it cannot be allowed

because of constraints (5.27), and then we have Zv
ij + Zv

ji = 0.

In constraints (5.28), βviv j

bib j
is defined as follows. βviv j

bib j
= 1 if the finishing time D of task

bi on vessel vi plus the processing time of task b j on vessel v j is less than or equal to the

finishing time D of task b j on vessel v j; 0 if the finishing time of task bi on vessel vi plus the

processing time of task b j on vessel v j is greater than the finishing time of task b j on vessel

v j. See Figures 4.1 and 4.2 for illustration.
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In constraints (5.29), αviv j

bib j
is defined as follows. αviv j

bib j
= 1 if the berthing position P of

vessel vi plus the location l of task bi on that vessel is less than or equal to the berthing

position P of vessel v j plus the location l of task b j on that vessel; 0 if the berthing position

of vessel vi plus the location of task bi on that vessel is greater than the berthing position of

vessel v j plus the location of task b j on that vessel. See Figures 4.3 and 4.4 for illustration.

Constraint (5.30) prevents the interference between the quay cranes handling two dif-

ferent vessels depending on the value of βviv j

bib j
and αviv j

bib j
.

The size of the above model is as follows:

The number of binary variables is equal to VB(2VB−B−1)+VQ(B2 +2B+V +2)+2V(V−1),

The number of integer variables is equal to 5V + VB + 2VQ,

The number of constraints is equal to

VBQ(VBQ − BQ − VB + 3B + 1) + VB(B + 2V − 2) + VQ(V + 6) + 3V2 + 2B2
− 2B + V + 2Q.

5.3 Numerical examples

To illustrate the case of better plans, consider the situation in which two quay cranes are

available to handle two vessels with data as given in Table 5.1, and each vessel has two

tasks to process. Note that without considering the berth plan the vessels can be moored at

any possible place at quayside. In this case the cost of handling these vessels may increase

depending on how far away the vessels are berthing from their preferred berthing position.

When a fixed number of quay cranes is allocated to every vessel during the whole

processing period, the optimal working plan is described in Figure 5.2. Even though quay
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Table 5.1: Input data of Example 5.1

Ready (crane) 0 0
Initial location (crane) 11 14
Processing time of tasks ,vessel 1 85 27
Processing time of tasks ,vessel 2 18 33
Location task, vessel 1 1 3
Location task, vessel 2 1 4
Expected departure time of vessel 85 33
Arrival time 0 0
Preferred berthing position 10 15
Tardiness cost (per unit time) 5 1
Earliness income (per unit time) 1 1

crane 2 finished its work on vessel 2 at (2+18+3+33)=56, it is not allowed to move away

from vessel 2. This wastes the effective working time of this quay crane which will result

into a sub-optimal solution. In contrast, in our model, a variable number of quay cranes

is used during the processing period, which allows quay crane 2 to move from vessel 2

to perform other tasks as shown in Figure 5.3. As a result, the finishing time of vessel 1

will be 89 time units which is earlier than in the previous plan i.e. 114 time units, due to

making the best use of both quay cranes. Note that we only allow the quay crane to move

after it has finished its work on vessel 2.

Figure 5.2: Model solution for fixed number of
QC’s for example 5.1

Figure 5.3: Suggested model solution for exam-
ple 5.1

Our model also allows quay cranes to share tasks on the same vessel to which they are

allocated. Consider the input data for two vessels arriving at a container terminal as given

in Table 5.2.
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Table 5.2: Input data of Example 5.2

Ready (crane) 0 0
Initial location (crane) 22 24
Processing time of tasks,vessel 1 28 22
Processing time of tasks,vessel 2 39 34
Location task, vessel 1 1 2
Location task, vessel 2 1 2
Expected departure time of vessel 28 39
Arrival time 0 0
Preferred berthing position 20 25
Tardiness cost (per unit time) 1 1
Earliness income (per unit time) 1 1

In Example 5.2, the finishing time for vessel 1 is 51 and the finishing time for vessel 2 is

76 (see Figure 5.4). Since we allow quay cranes to move between vessels if no interference

constraints are violated, the solution to our model is the finishing time for vessel 1 which is

equal to 29, and the finishing time for vessel 2 which is equal to 73, as can be seen in Figure

5.5.

Figure 5.4: Model solution for fixed number of
QC’s for example 5.2

Figure 5.5: Suggested model solution for exam-
ple 5.2
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5.4 Application of GA to BACASP

5.4.1 Solution representation: chromosome

Here, a solution or chromosome is a strand of genes made of three parts. The first part

represents berthing times (Tv) of vessels while the second represents berthing positions

(Pv). The populations for berthing time and position are generated randomly but within

the feasible solution set defined by the constraints (5.6), (5.7) and (5.32) for each solution

((Tv), (Pv)). The third part here represents a sequence of holds (tasks) for all docked vessels.

The value of a gene is randomly picked from the index set of all holds; it cannot, therefore,

be duplicated, i.e. each gene is unique. Each chromosome (third part) consists of v × b

genes, where v represents the number of vessels and b the number of tasks on each vessel.

The chromosomes are character rather than binary strings.

A simple chromosome for the case of three vessels, each with two tasks, is illustrated in

Figure 5.6. Here, the genes (1-3) represent the berthing time for the three vessels, the genes

(4-6) represent the berthing position for the three vessels, and the genes (7-12) represent

the sequence of performing the tasks on these three vessels.

Chromosome 42 37 65 213 185 370 1 4 3 6 5 2
Ti&Pi T1 T2 T3 P1 P2 P3 Sequence of tasks

Figure 5.6: BACASP chromosome representation

Based on the sequence of tasks for all vessels represented by the chromosome, a quay

crane schedule can be constructed using the steps that are the extension of the procedure

proposed by Lee et al. [45] used for each vessel separately. See quay crane scheduling

procedure 4.4.1 for illustration purposes.
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5.4.2 Solution validation

In addition to the three conditions that are presented in section 4.4.2, there is another

condition that should be considered when solving this type of problem. Each generated

random solution is checked against constraints (5.3)-(5.5) to see that there is no overlapping

of ships in time and space (berthing position). A solution that satisfies these constraints is

accepted. Otherwise it is accepted after addition of a penalty term to its objective function

value Z. The objective function value and the penalty term when used form the fitness

of that solution. The penalty term in the fitness function gradually removes infeasible

solutions from subsequent generations. If any one of constraints (5.3)-(5.5), (5.24), (5.26),

(5.27), (5.30) is violated or any combination are violated, the generated chromosomes are

discarded by putting a high penalty to their fitness values.

5.4.3 Evaluation of fitness

The objective of the BACASP is to minimise the tardiness of vessels, to maximise the

earliness and to find the optimum berthing time and position for each vessel that arrives

at the container terminal. The completion time of each quay crane can be computed by

summing up the processing time of all the tasks that have been performed by this quay crane

plus the travel time which it takes to move from one hold to another. The tardiness of each

vessel can be computed by subtracting the finishing time from the expected departure time

and the earliness for each vessel can be computed by subtracting the expected departure

time from the finishing time if the vessel finished its handling before its expected departure

time. The finishing time of vessel represents the maximum processing time of the vessel
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required by the quay cranes assigned to it. In addition, there is the berthing cost which

is due to how far the vessel is moored away from its preferring berthing position. The

fitness function used by the GA in MATLAB is the same as the objective function of the

mathematical model. Thus, the fitness value of a chromosome is calculated by Equation

(5.33).

Fitness(chromosome) =
1∑V

v=1 WvAv −
∑V

v=1 RvEv +
∑V

v=1 Uv|Pv − P̂v|
(5.33)

5.4.4 Generating next populations

From an initial population and the fitness function value of each individual, we will use the

genetic operators of crossover, mutation, and reproduction to generate a new population.

Before applying the genetic operator, we must select suitable parents using a selection

process.

Crossover operator The way the recombination is implemented is as follows. If the

specified genes are related to the variables Ti and Pi, the crossover that is implemented in

RBAP (please see 3.4.4) will be applied . If the specified genes are related to the third part

of a chromosome (sequence tasks), the ‘Order Crossover’ of Cheng and Gen [9], (section

4.4.4), is implemented. For illustration purposes, please see Figures 5.7 and 5.8.

Parent1 7 12 25 50 33 70 20 95 7 12 5 3 6 1 10 8 11 2 4 9
Offspring1 7 12 25 49 38 72 28 95 7 12 5 3 8 2 6 4 11 9 10 1

Parent2 9 15 22 48 62 80 60 84 8 2 5 6 7 4 11 9 12 3 10 1

Figure 5.7: BACASP offspring 1



5.5. Computational experiments 105

Parent1 7 12 25 50 33 70 20 95 7 12 5 3 6 1 10 8 11 2 4 9
Offspring2 9 15 22 48 56 78 52 84 8 2 5 6 7 12 3 1 10 11 4 9

Parent2 9 15 22 48 62 80 60 84 8 2 5 6 7 4 11 9 12 3 10 1

Figure 5.8: BACASP offspring 2

Mutation operator The mutation presented here is that, if the specified gene is related to

the variables Ti, a random integer number in [ai,LN], where LN is a large number, and if it

is related to the variables Pi , a random integer number in interval [0,W−Li], it replaces the

previous value of that gene. In this case, every new chromosome will satisfy the conditions

of (5.6), (5.7) and (5.32). If it is related to the third part of a chromosome, two genes from the

chromosome are randomly selected and then swapped. Figure 5.9 illustrates the mutation

operator.

7 12 25 50 33 70 20 95 8 4 3 6 2 7 9 1
7 15 25 50 33 70 50 95 8 4 9 6 2 7 3 1

Figure 5.9: BACASP mutation operator

5.5 Computational experiments

Twenty instances of the above mathematical model of BACASP with different numbers of

vessels, tasks, and quay cranes have been solved using Branch-and-Cut (B&C) as imple-

mented in CPLEX, and GA. All instances have randomly generated processing times of

tasks for each hold from the uniform distribution U(10,50). All experiments have been per-

formed on a PC with Intel Core i5 and 3.20 GHz CPU with 8 GB RAM running Windows 7

Operating System. The 20 problems and their corresponding results are presented in Table

5.3, containing small problems 1 through 10 and Table 5.4, containing large problems 11
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through 20. Unlike CPLEX, GA is coded in Matlab and solves all 20 instances.

In the instances considered, the number of constraints, the number of decision variables

and the B&C computational time grow exponentially with the increase in the number of

vessels, tasks and quay cranes. However, the CPU time required by GA does not grow

that fast with the increase in the problem size. CPLEX did not solve some of the larger size

instances, shown in Table 5.4. GA, on the other hand, finds the optimal or near optimal

solutions for all the instances in reasonable CPU times (see column 13 of Tables 5.3 and

5.4).

For the small size problems of Table 5.3, the GA parameters of population size, rate of

crossover, rate of mutation and the maximum number of generations are set as 200, 0.5,

0.4 and 500, respectively. These parameters have been set by experimentation and other

experiences that can be found in the literature. Moreover, 20 trials were conducted to

solve each instance using GA to mitigate the randomness of the algorithm. CPLEX solved

problems 1 to 10 which are relatively small in size. Six problems were solved in acceptable

times, but problems 6, 7, 9 and 10 required 24, 22, 24 and 60 hours, respectively. Note that

the solution of instances 6, 9 and 10 stopped automatically because there is not enough

memory. These times are hardly acceptable in the context of container terminal operations.

The average objective function values of the solutions returned by GA and their standard

deviations are recorded in columns 11 and 12 of Table 5.3. B&C managed to solve only few

of the small size instances. The average gap between CPLEX and GA returned objective

values is about 0.3.
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Table 5.3: Computational results for small scale instances of BACASP

No. Problem Information Problem Size CPLEX GA Gap(%)Vessels Tasks Q.Cranes Constraints Dec.Vars Int.Vars Obj.Val CPU(hh:mm:ss) Best Obj.Val Mean St.Dev CPU(s)
1 2 2 2 120 90 66 67* 00:00:01 67 67 0.0 37 0.0
2 2 4 4 616 322 288 58* 00:02:21 58 58 0.0 41 0.0
3 2 4 5 822 374 337 470* 00:03:18 470 478.5 3.6 40 0.0
4 4 2 5 1038 444 373 1250* 00:05:33 1251 1251 0.0 42 0.08
5 3 3 5 1123 453 398 795* 00:41:25 805 805 0.0 41 1.25
6 3 4 4 1325 597 544 275 24:57:28 258 269 8.8 43 –
7 4 3 4 1412 624 556 1615* 22:23:14 1636 1636 0.0 43 1.3
8 4 2 8 2136 612 520 1165* 00:01:12 1166 1171.2 4.3 40 0.08
9 3 6 4 2741 1161 1102 771 24:20:17 755 777 14.1 49 –
10 3 5 8 5920 1296 1220 815 60:12:54 780 819.5 23.4 48 –

* Optimal solution. Gap =
GAObj.Fun.−CPLEXObj.Fun.

CPLEXObj.Fun. ∗ 100

The rest of the problems, 11 to 20, which are real world instances in Table 5.4, could not

be solved with CPLEX in acceptable times (> 100 hours of CPU time). In some cases they

could not be solved at all due to the limitations of the computing platform used see the

cases 15, 17-20. However, we terminated all these instances after 3 hours. In the case of

the large size instances of Table 5.4, population size, crossover and mutation rates, and

the maximum number of generations are set as 500, 0.5, 0.4, and 1000, respectively. These

parameters have been set by experimentation and other experiences that can be found

in the literature. Moreover, 20 trials were conducted to solve each instance using GA to

mitigate the randomness of the algorithm. The average objective function values of the

solutions returned by GA and their standard deviations are recorded in columns 11 and 12

of Table 5.4.

Table 5.4: Computational results for large scale instances of BACASP

No. Problem Information Problem Size CPLEX GA
Vessels Tasks Q.Cranes Constraints Dec.Vars Int.Vars Obj.Val CPU(hh:mm:ss) Best Obj.Val Mean St.Dev CPU(s)

11 4 8 6 16212 3764 3662 476 03:00:00 263 300.6 19.4 280
12 5 5 5 7620 2175 2070 1220 03:00:00 1202 1237.4 40.4 244
13 4 10 8 42072 6628 6504 698 03:00:00 358 453.05 38.60 363
14 4 10 10 63876 7572 7434 1803 03:00:00 157 180 12.2 342
15 5 8 10 66535 7005 6840 * 03:00:00 138 165.4 13.3 337
16 6 6 12 79188 6222 6012 259 03:00:00 26 35.05 7.57 296
17 6 8 10 97964 9246 9046 * 03:00:00 196 226.9 22.87 356
18 4 12 12 129872 11956 11796 * 03:00:00 107 131.3 11.3 382
19 6 10 12 217488 15342 15108 * 03:00:00 340 378.2 18.2 436
20 5 16 12 374689 28455 28232 * 03:00:00 529 572 22.2 535

* No output is generated.
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We have experimented on relatively limited size cases with few vessels, quay cranes and

tasks. The experimental result shows that the proposed mathematical model is capable of

finding the optimal solution for small scale of instances. However, as can be seen, instances

of the model grow to large sizes with hundreds of constraints and integer variables. This

means that exact solution is computationally expensive. For instance, the problems 6,

7, 9 and 10 in Table 5.3, require over 20 hours of CPU time with CPLEX. Truly practical

instances are beyond CPLEX, running on a PC. GA, however, coped well with all problems.

It required almost the same CPU time for all problems of small size and CPU times of the

same magnitude for the larger instances. Overall the average discrepancy between the

objective function values of the solutions found by both algorithms is small. This shows

that GA, while vastly more efficient than B&C, is also quite robust on most instances

considered as this average discrepancy shows.

5.6 Summary

This chapter describes an integrated mathematical model (BACASP) which combines all

seaside operations that arise at container terminals. This model is desirable because solving

the problems individually and even when combined pairwise, may lead to suboptimal

solutions. BACASP is a mixed-integer programming model which is solved using B&C as

implemented in CPLEX 12.6. The main contribution of this work is this single extended

model, which has features which are not commonly represented in existing models. Quay

crane interference avoidance for instance is explicitly represented as constraints (5.27) when

the quay cranes operate on the same vessel and as constraints (5.30) when quay cranes are
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on different vessels. Another advantage of this model is that it allows a quay crane that has

become idle (finished its work) to move from its current vessel to another even if overall

the current vessel to which it has been allocated is still being processed. Travelling times

of a quay crane between two holds on the same ship and between two holds on different

vessels have also been considered. The quay crane starting time is considered. In practice,

quay cranes do not always start their work at the same time. For this reason quay crane

ready times have been considered in the mathematical model. The initial position for each

quay crane is taken into account in order to compute the exact time of quay crane traveling.

The precedence and simultaneity constraints are taken in consideration as well.



Chapter 6

Conclusions and future work

This chapter is in two parts. The first part presents the main conclusions whereas the

second part highlights future work and directions for worthwhile research.

6.1 Main conclusions

Berth allocation (BAP) is one of the most important operations in container terminals.

Determining the optimal berthing time and the best berthing position for vessels arriving

at container terminals is essential for the efficient running of the terminals. Quay cranes

are the most important equipment used at container terminals; they are very expensive to

build, and very difficult to operate. Determining the number of quay cranes for each vessel

(QCAP) is an essential operation at container terminals. Finding the optimum sequence

in which to perform the tasks (QCSP) to unload/load containers for all vessels moored at

the container terminal is the key to forcing the quay cranes to finish their work in optimal

time. Scheduling quay cranes by hand is time consuming and potentially inefficient. This

110
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thesis aims at improving on that. In it, we propose three mathematical models representing

these operations. An effective meta-heuristic for solving these problems is also proposed.

Our work provides an insight into how to improve the performance level of the quayside

operations in a typical container terminal. It also contributes to filling some of the gaps in

the literature that appeared due to recent trends and changes in maritime logistics.

In Chapter 2, a comprehensive literature review of studies of operations at container

terminals (seaside operations) is presented. The literature is divided according to the

problem that it dealt with, i.e. BAP, QCSP, BACAP, QCASP and BACASP.

In Chapter 3, a new mathematical model of the mixed integer programming type that

addresses RBAP is proposed. Its solution helps mitigate the uncertainty in arrival times

and handling times of vessels. In addition to the reputation in punctuality, a new weight is

proposed as another criterion to estimate the deviation of the handling time for each vessel

from the expected finishing time. A time buffer is inserted between two vessels depending

on the value of the reputation in punctuality and the proportion of the processing time of

each vessel. Instances of this model have been solved with an exact method namely B&C

as implemented in CPLEX, and a hybridisation algorithm based on B&C and GA is used

to find optimal or near optimal solutions in reasonable times. The numerical results show

that the hybridisation solution approach is superior to B&C in that it finds solutions to all

problems in acceptable times.

In Chapter 4, a mixed integer programming with non-interference constraints among

quay cranes has been introduced to solve QCASP. The B&C method is used to find the

exact solution for small scale instances using CPLEX. Note that the number of constraints

and decision variables increases exponentially when the number of vessels, tasks, and
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quay cranes increases. B&C cannot cope with larger instances of the problem which are of

practical size. We therefore proposed a modified GA to solve large scale problems and find

optimal or near optimal solutions in a reasonable time. This coped well with all instances.

It required almost the same CPU time for problems of small size and for the larger instances.

In this mathematical model, the factors which are always facing the decision maker in

the real world problems such as the travelling time of a quay crane between two holds on

the same vessel and between two holds on different vessels have been taken into account in

the optimisation process. Also, interference among quay cranes is avoided by introducing

non-interference constraints which consider both the potential interference between tasks

on the same vessel and those on different vessels. Another advantage in this model is to

allow a quay crane that finished its work to move from one vessel to another even if the

vessel handling is not finished. In addition the quay cranes do not always start their work

from the same point and at the same time. For this reason, the initial position for each quay

crane is taken into account in order to compute the exact time of quay crane travelling. The

precedence and simultaneity constraints are taken in consideration as well.

CPLEX managed to solve most of the 10 small instances but it failed to find solutions

to the large instances. GA, however, found the optimum or near optimal solution for

all instances in reasonable time. Overall the average discrepancy between the objective

function values of the solutions found by both algorithms is small. This shows that

GA, while substantially more efficient than B&C, is also quite robust on most instances

considered as this average discrepancy shows.

In Chapter 5, an integrated mathematical model to simultaneously solve the seaside

operations BACASP, that arise at container terminals, is introduced. This approach is
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desirable because solving them individually and even when combined pairwise, may lead

to suboptimal solutions. The problem is formulated as a mixed-integer programming

(MIP) model. The B&C algorithm as implemented in CPLEX 12.6 has been used to find the

exact solutions of relatively small instances of BACASP. It could not achieve optimality in

reasonable times. It fails to solve large instances. We proposed a modified GA to solve large

scale instances of the problem and find the optimal or near optimal solutions in reasonable

times.

The combined model presented here is obviously the way forward as it is more likely

to provide better solutions than those found by solving seaside operations problems indi-

vidually. It is also a substantial improvement on combined variants which do not consider

all available information.

The model itself has features which are not commonly represented in existing models.

Travelling times of a quay crane between two holds on the same ship and between two

holds on different vessels have also been considered. Quay crane interference avoidance is

explicitly represented as constraints (5.27) when the quay cranes operate on the same vessel

and as constraints (5.30) when quay cranes are on different vessels. Another advantage

of this model is that it allows a quay crane that has become idle to move from its current

vessel to another even if overall the current vessel to which it has been allocated is still

being processed. In practice, quay cranes do not always start their works at the same time.

For this reason quay cranes ready times have been considered in the mathematical model.

The initial position for each quay crane is taken into account in order to compute the exact

time of quay crane travelling. The precedence and simultaneity constraints are taken in

consideration as well.
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We have experimented on relatively limited size cases with only few vessels, tasks and

quay cranes. The experimental results show that the proposed mathematical model when

solved is capable of providing the optimal solution for small scale instances. However,

GA coped well with all problems. It required almost the same CPU time for all problems

of small size and these of larger instances. Overall the average discrepancy between the

objective function values of the solutions found by both algorithms is small. This shows

that GA, while vastly more efficient than B&C, it is also quite robust on most instances

considered as this average discrepancy shows.

We have also applied CBC on some instances. The runtime is much longer than direct

solving. The number of iterations is still too high. The master problem is solved faster than

directly solving the complete problem, but the number of iterations needed increases with

the problem size; default solving by CPLEX is faster.

6.2 Suggestions for further work

The size of the models provided in these thesis and elsewhere seems to grow exponentially

in the number of constraints and decision variables with the increase in the number of ves-

sels, tasks, and quay cranes. With this in mind, finding good solutions in acceptable times

will become more and more difficult. Future work, therefore, will be concerned with the

design and implementation of efficient solution approaches. Finer and seamless hybridis-

ation of exact and approximate approach to reduce time overheads and improve solution

quality is a possible area of investigation. Their evaluation through comparisons with

other meta-heuristics as have been introduced recently [6, 19, 34, 79, 80, 87, 88], constitutes
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also a worthwhile endeavour.

Seaside and landside operations are tightly interconnected despite the fact that common

practice is to deal with them individually. We have tried to alleviate this shortcoming by

integrating some operations into single models and deal with them as such. Further

integration to include seaside and landside operations is therefore another worthwhile

area of research.

Here, it is assumed that information available to the decision maker is known determin-

istically. In reality, however, this assumption is unrealistic because of gaps in information

and its unreliability and fluctuation. This is the curse of uncertainty. Moreover, it is

inevitable since the concerned systems are complex and dynamic. This, therefore, calls

upon the use of stochastic programming and new approaches such as robust programming

to cope with the problem of uncertainty in the decision making process at the level of

container ports.
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time-variant quay crane assignment and scheduling with crane setups in container
terminals. European Journal of Operational Research, 254(3):985–1001, 2016.

[85] UNCTAD. Review of maritime transport. New York & Geneva: United Nations, 2015.

[86] O. Unsal and C. Oguz. Constraint programming approach to quay crane scheduling
problem. Transportation Research Part E: Logistics and Transportation Review, 59:108–122,
2013.

[87] J. A. Vazquez-Rodrı́guez and A. Salhi. Hybrid evolutionary methods for the solution
of complex scheduling problems. Advances in Artificial Intelligence, pages 17–28, 2006.

[88] J. A. Vazquez-Rodrı́guez and A. Salhi. A synergy exploiting evolutionary approach
to complex scheduling problems. Computer Aided Methods in Optimal Design and Op-
erations, Series on Computers and Operations Research, World Scientific Publishing Co. Pvt.
Ltd, pages 59–68, 2006.

[89] F. Wang and A. Lim. A stochastic beam search for the berth allocation problem.
Decision Support Systems, 42(4):2186–2196, 2007.

[90] Y. Xu, Q. Chen, and X. Quan. Robust berth scheduling with uncertain vessel delay
and handling time. Annals of Operations Research, 192(1):123–140, 2012.

[91] C. Yang, X. Wang, and Z. Li. An optimization approach for coupling problem of berth
allocation and quay crane assignment in container terminal. Computers & Industrial
Engineering, 63(1):243–253, 2012.

[92] L. Zhen and D.-F. Chang. A bi-objective model for robust berth allocation scheduling.
Computers & Industrial Engineering, 63(1):262–273, 2012.

[93] L. Zhen, L. H. Lee, and E. P. Chew. A decision model for berth allocation under
uncertainty. European Journal of Operational Research, 212(1):54–68, 2011.

[94] Y. Zhu and A. Lim. Crane scheduling with non-crossing constraint. Journal of the
Operational Research Society, 57(12):1464–1471, 2006.



Publications

1- Alsoufi, G., Yang, X., Salhi, A. A combinatorial Benders’ cuts approach to the seaside
operations problem in container ports. Presented in the 11th metahueristics international
conference, Agadir, Morocco, June 7-10, 2015.

2- Alsoufi, G., Yang, X. and Salhi, A. Robust Berth Allocation Using a Hybrid Approach
Combining Branch-and-Cut and the Genetic Algorithm. In International Workshop on
Hybrid Metaheuristics, pp187-201, 2016. Springer International Publishing.

3- Alsoufi, G., Yang, X. and Salhi, A. Combined Quay Crane Assignment and Quay Crane
Scheduling with Crane Inter-Vessel Movement and Non-Interference Constraints. Journal
of the Operational Research Society, 1-12, 2017.

4- Alsoufi, G., Yang, X. and Salhi, A. An Evolutionary Approach to a Combined Mixed
Integer Programming Model of Seaside Operations as Arise in Container Ports. Accepted
in Journal of Annals of Operations Research, 2017.

124


