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Abstract 
  
In this research a multi-sensor and data fusion approach was developed to create variable depth tillage 

zones. Data collected with an electromagnetic sensor was fused with measurements taken with a 

hydraulic penetrometer and conventionally acquired soil bulk density (BD) and moisture content 

(MC) measurements. Packing density values were then calculated for eight soil layers to determine 

the need to cultivate or not. From the results 62% of the site required the deepest tillage at 38 cm, 

16% required tillage at 33 cm and 22% required no tillage at all. The resultant maps of packing 

density were shown to be a useful approach to map layered soil compaction and guide VDT 

operations.  
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Introduction 
 

Traditional tillage practices use a whole field approach in which the tillage effect is applied uniformly 

across the whole field. Management decisions on which tillage machinery to use and how deep to 

operate it at are usually decided on historical management or occasionally based on information 

derived from a soil profile inspection. This universal approach is attractive to growers because it 

requires little specialist knowledge of the soil, therefore often relying on cultivator design to achieve a 

satisfactory result. 

 

There are several disadvantages to this approach. Firstly from an economic perspective, disturbing the 

soil unnecessarily in areas where the soil structure and condition is not required is wasteful of time 

and fuel (Keskin et al., 2011). Secondly, incorrect tillage depth can cause damage to the soil structure 

by smearing wet plastic soil (Gill and Vandenberg 1965). This problem can lead to the formation of 

an impervious layer, restricting the development of plants roots, negatively impacting on yield. 

Finally inappropriate tillage may lead the soil to be susceptible to erosion where nutrients are not 

retained in the soil but are lost to the environment through leaching and runoff (Halcro 2013). An 

alternative approach to traditional tillage is variable depth tillage (VDT) (Fulton et al., 1996). 

 

VDT requires the state of the soil to be measured through the profile, in advance of tillage or on-the-

go, to determine the optimum tillage depth spatially (Adamchuk et al., 2004). Utilising VDT has both 

physical benefits to the soil, in terms of preventing tillage damage to the soil profile (Gill and 

Vandenberg 1965) and economic benefits to the grower by optimising fuel consumption (Keskin et 

al., 2011). The objective of this research was to develop a new soil compaction measurement system 

which utilised a multisensory data fusion approach to determine the extent of VDT treatment zones 

spatially and with depth.   
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Materials and Methods 

A 2.43 ha agricultural field, situated in Lincolnshire, UK was selected as the research site. The 

organic clay site is part of a cereal and root crop rotation, which is typical of the area. At the time of 

the study the field was fallow and had not been cultivated. To conduct the experiment an area 90 x 

270 m area was divided into 243, 10 x 10 m grid squares. At the centre of each grid square a hydraulic 

penetrometer was used to measure the soil resistance, every 20 mm, down to 450 mm. Two depth ECa 

data was collected using both HCP & PRP arrays from a DUALEM 1S instrument (Dualem, Inc., 

Milton, ON, Canada) along 10 m transects which intersected each penetrometer point. 

It was not economically feasible to take soil samples from each of the 243 penetrometer sample 

points. Therefore the number of samples and their location was determined from homogeneous zones 

derived from the ECa. Using a GPS device (NOMAD, Trimble, USA), pre-loaded with the 

interpolated ECa plan, four sample sites were identified to collect bulk density (BD) and soil moisture 

(MC). A further three sites were selected to collect samples for particle size distribution analysis, 

thereby determining clay content (CC) of each homogeneous zone. 

Bulk density and soil moisture samples by depth were collected using the Kopecky ring method. At 

each sample location a 5 cm deep ring was hammered into the ground collecting 100 cc of soil per 

sample. In total 8 undisturbed soil samples were taken sequentially every 5 cm down the profile. For 

the clay content three soil pits (50 cm x 50 cm x 50 cm) were manually excavated. From the side of 

each of pits, 4 x 10 cm samples of soil were carefully removed. Soil moisture content of the soil was 

determined by drying the soil samples in an oven at 105℃ for a minimum of 24 hours (BS 7755, 

1994). The moisture content measurement was deduced by calculating the difference between the 

mass of the wet samples and the samples after drying. Bulk density was determined by subtracting the 

dry weight values from the moisture content analysis and dividing them by the volume (100 cm3) of 

the soil core. Percentage clay content was determined using a sieve and sedimentation method 

according to BS 7755 section 5.4 (BSI, 1998). 

 

Data Fusion 

Each measured soil property was interpolated using inverse distance weighting (IDW) and then 

transformed into a common 10 m raster using Manifold GIS (Manifold Software Ltd, Wanchai, HK). 

The raster squares of the soil property layer were then converted into a grid of common points by 

spatially joining the mid-point of each raster square. The output from this process was a 10m grid of 

point values. To determine the spatial extent of VDT zones within the field, two depth ECa, 

penetration resistance, bulk density and soil moisture measurements of each 5 cm depth layer were 

clustered into three groups using the k-means algorithm within STATISTICA 12 (Statsoft. Inc. OK, 

USA). 

Packing Density  

Bulk density measurements are sensitive to changes in soil texture making it unsuitable as a measure 

of compaction for VDT where soil texture is expected to change significantly in a short distance 

across the field and through the soil profile. Overcoming this limitation is therefore important and can 

be achieved by adopting the packing density of the soil instead of the bulk density. By extrapolating 

the appropriate clay content (CC) values, according to ECa, across all 243 grid nodes then 

transforming the bulk density value into a clay independent indicator by adding a correction term 

given as the product of clay content with the slope of the regression lines, the packing density was 

derived for each 5 cm depth layer (Kaufmann 2008) using the following equation.  



 

 

Packing density = BD + (0.009 x CC)  

      where - PD is packing density, bulk density is bulk density (g/cm
3
) and 0.009 CC is the correction 

term given as a product of clay content clay content with the slope of the regression lines (Renger 

1970). 

Determining the need for tillage and more specifically the depth of tillage was decided based on the 

effect of packing density values on crop growth. As can be observed in the table 1 below, the need for 

tillage can start from any packing density values in the upper optimum range (1.55-1.70 t/m
3
), but will 

be definitely needed for any packing density value larger than 1.70 t/m
3
. This was the guideline 

adopted in this work to calculate the need for variable depth tillage. 

 

Table 1 Packing density classifications for crop growth (Kaufmann 2008) 

PD value (t/m
3
) Crop growth condition 

< 1.40 Below optimum range 

1.40-1.55 Lower optimum range 

1.55-1.70 Upper optimum range 

1.70-1.82 Lower limiting range 

> 1.82 Upper limiting range 

 

VDT plan. 

A three zone VDT plan was developed by filtering each cluster with the packing density 

classifications (Figure 1), where values of packing density ≤ 1.7 t/m
2
 were ignored (no tillage 

required) and those values ≥ 1.7 t/m
2
 (tillage required) were recorded by layer. This was repeated for 

each 5 cm layer until a 3D VDT was realised (Figure 1). 

 

 

 

Figure 1 Scheme illustrating VDT plan layer logic 



 

 

Results 

Analysis of site parameters. 

Analysis of the soil texture and organic matter (OM) were taken at three locations across the site and 

revealed a predominately clay texture to the west of the site with an increasing sand fraction to the 

east (Table 2). As is typical for the area, there was a high OM range of 10.9 % to 14.2% in the top 35 

cm of the soil profile. A noticeable reduction of OM was observed at 40 cm where the subsoil layer 

began.  

 

Table 2 Particle size distribution analysis results by sample location and depth interval 

Sample 
location 

Sample depth 
(cm) 

Sand %  Silt %  Clay %  Organic 
Matter 
(LOI) %  

West 10 20 38 42 13.5 
 20 20 44 36 11.7 
 30 19 42 39 11.4 
 40 19 43 38 8.5 

Central 10 22 38 40 14.2 
 20 21 40 39 14 
 30 22 37 41 13.9 
 40 20 46 34 8.1 

East 10 28 36 36 12.2 
 20 29 36 35 11.7 
 30 31 32 37 10.9 
 40 39 37 24 3.6 

 

 

Apparent ECa  

The measures ECa values corresponded with the soil texture analysis with the higher EC values being 

observed in the west of the site and the lowest values in the east here the sand content increased 

between 10 - 20% (Figure 2, 3). 

 

 

            
 

 

  

Figure 2 Spatial variation of ECa at 0 – 40 cm Figure 3 Spatial variation of ECa at 0 – 120 cm 



 

Multivariate k-means clustering 

Multivariate k-means clustering was used for the creation of per layer management zones for the eight 

soil layers (Table 4-5). The selected variables were ECa at 40 cm (ECa 40) and 120 cm, (ECa 120), 

penetration resistance (PR), bulk density (BD) and moisture content (MC) with depth. Analysis 

parameters were set to maximise the initial Euclidean distance of the cluster separation whilst the 

cluster number was limited to three in order to minimise the amount of management zones created. 

Management Zone (MZ) maps by cluster analysis 

The newly delineated clusters were plotted for the 8 individual soil layers using a Nearest Neighbour 

interpolation (Figure 3, a-h). The clustering process affords an a priori selection of cluster number 

which was set to three for this experiment. Using only three clusters, the pattern of variation is very 

distinct. Underlying trends of soil type are evident. Cluster 1 on the eastern side of the site, has an 

increased sand fraction when compared to the higher clay content soil on the western side which 

visually compares very well with the ECa results (Figure 1, 2). Cluster 3 demonstrated the most spatial 

variation across all depths. 

 

 

Figure 4 Visualisations of the spatial extent of each tillage zone cluster created using nearest neighbour interpolation. 

 

In the 0-5 cm and 5-10 cm there was a distinct change in cluster location from the small triangular 

area at the eastern extent 0-5 cm manifesting itself in a more general way at 5-10 cm. This was caused 

by the reducing bulk density values between a shallow layer of surface compaction and the looser soil 

just below. Cluster 3 has the most significant change in spatial extent occurring at 20 cm which was a 

result of the close alignment of normalised means of penetration resistance, bulk density and moisture 

content variables. Initially the map looked like a layer of compaction but this was discounted by the 

low bulk density means. A possible reason behind the spatial extent is the wide range of bulk density 

and penetration resistance values indicated a transient layer between the regularly cultivated surface 

and the less frequently cultivated subsoil. Below the 20 cm layer the clusters are spatially more stable, 

adding further evidence that 20 cm is a transient layer. 

  



 

Derivation of packing density 

According to the packing density classes in Table 1, values of packing density ≥ 1.7 t/m
3
 were 

deemed to be yield and root growth limiting and tillage should be carried out. Results shown in table 3 

illustrate the overall packing density range across the soil profile extends from 1.20 to 2.02. However, 

this range can be further sub-divided between values above 25 cm, mean packing density of 1.45 - 

1.53 t/m
3
 , and below 30 cm, mean packing density range of 1.49 – 1.69 t/m

3
. The reason for this 

stepped increase in packing density between the these two observed layers can be attributed to 

historical tillage practices where ploughing for root crops would often extend down to 25 cm, 

regularly disturbing the upper soil and potentially compacting the deeper sub soil with large vertical 

and shear forces. Typically if a grower had identified a compacted layer like this he would look to 

remediate it with homogeneous deep tillage, which is an expensive and time consuming operation 

(Mouazen and Neményi, 1999). However with this approach of packing density cluster analysis it is 

possible to identify areas below 30 cm that do not require deep tillage offering the potential to reduce 

tillage depth saving money and resources. Examining the maximum packing density calculated per 

cluster in Table 3 reveals that values exceeding 1.6 t/m
3 

already appear on the top layer of 5-10 cm 

deep, indicating the presence of surface compaction, and suggesting a gentle surface tillage to be 

considered down to 10 cm in the entire field. After this layer another layer but with critical values on 

crop growth can be observed at 15-20 cm layer in cluster 1 & 3, suggesting tillage of these two 

clusters only, whereas no tillage is needed for cluster 2. Going further down in the profile, one can 

observe the presence of hard pan at cluster 1 and 2 at 30 cm layer, and that expand into cluster 2 at 35 

cm layer, where the highest packing density of 2.02 t/m
3
 is observed. This may suggest the need for 

subsoiling down to 35 cm in cluster 2 in particular. At depth of 40 cm another compacted layer can be 

observed in the entire field with the three clusters. 

 

Table 3 Descriptive statistics of packing density by cluster and by depth. 

Depth Cluster PD Mean PD Min PD Max PD Std D 

5 cm 1 1.43 1.35 1.53 0.05 
 2 1.39 1.24 1.49 0.05 
 3 1.31 1.20 1.39 0.04 

10 cm 1 1.47 1.37 1.63 0.05 
 2 1.46 1.46 1.60 0.03 
 3 1.45 1.36 1.66 0.05 

15 cm 1 1.44 1.39 1.60 0.05 
 2 1.43 1.32 1.52 0.03 
 3 1.40 1.34 1.47 0.03 

20 cm 1 1.42 1.23 1.71 0.07 
 2 1.43 1.30 1.63 0.06 
 3 1.36 1.25 1.81 0.08 

25 cm 1 1.53 1.44 1.66 0.05 
 2 1.50 1.29 1.62 0.06 
 3 1.45 1.31 1.54 0.05 

30 cm 1 1.69 1.56 1.79 0.06 
 2 1.61 1.43 1.81 0.07 
 3 1.49 1.35 1.58 0.05 

35 cm 1 1.49 1.42 1.64 0.03 
 2 1.64 1.41 2.02 0.11 
 3 1.42 1.25 1.65 0.10 

40 cm 1 1.57 1.47 1.73 0.07 
 2 1.58 1.32 1.89 0.08 
 3 1.61 1.43 1.97 0.11 
      

 

Green values indicates packing density values ≥ 1.6 (tillage may be required). 

Red values indicate packing density ≥ 1.7, where tillage required. 

Figures highlighted yellow indicate the final depths of tillage used for the VDT plan. 



 

Variable depth tillage (VDT) plan  

A VDT plan scaled in cm depth was developed using the data found in Table 3. Tillage depth was 

calculated as the depth of the largest maximum packing density value per cluster of each grid node + 

3 cm. (The additional 3 cm was to ensure that the cultivator tine was sufficiently deep as to fully 

remove the compacted layer). The 40 cm depth layer was excluded from the tillage plan because of 

the distinctly different nature of the soil at that depth. Using the new the new depth attributes the data 

was interpolated using a nearest neighbour method to create a VDT plan (Figure 4). 

 

 

  

Figure 5 Variable depth tillage plan illustrating the spatial variation of tillage depth based on the mean packing density values 

 

A visual assessment cluster 1 indicates that deep tillage is required to 33 cm where as cluster 2 

requires deep tillage to 38 cm and cluster 3 requires no deep tillage at all. This is because at 23 cm the 

soil would be cultivated when the field is ploughed as part of the farms normal cultivation practice.   
 
 

Conclusion 

 

From the results of this research the following conclusions were made: 

 

1.The multi-sensor data-fusion approach can be used successfully to provide key information 

sufficient to derive a soils state of compactness as an indicator of whether to cultivate or not to a 

certain depth. 

 

2.As a preliminary assessment of data fusion for the creation of VDT plans it was found that K-means 

multivariate clustering enabled the factors affecting physical soil compaction to be fused together to 

delineate management zones suitable for variable depth tillage.  

 

3.Because packing density is dependent on soil texture (e.g. percent clay), it is a more suitable 

indicator of soil compaction than bulk density in fields with varied soil textures and therefore is 

ideally suited as a variable depth tillage solution. 
 

Acknowledgements 

This project was funded by the UK AgriFood ATP. We would like to thank SOYL for the kind loan 

of the DUALEM ECa sensor and Amity Penetrometer. 

  Cluster  2 – Tillage req. 38 cm 

  Cluster  1 – Tillage req. 33 cm 

 Cluster  3 – No Tillage req. 
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