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Performance evaluation of a two-dimensional la�ice Boltzmann
solver using CUDA and PGAS UPC based parallelisation
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The Uni�ed Parallel C (UPC) language from the Partitioned Global Address Space (PGAS) family uni�es the
advantages of shared and local memory spaces and o�ers a relatively straight forward code parallelisation with
the Central Processing Unit (CPU). In contrast, the Computer Uni�ed Device Architecture (CUDA) development
kit gives a tool to make use of the Graphics Processing Unit (GPU). We provide a detailed comparison between
these novel techniques through the parallelisation of a two-dimensional lattice Boltzmann method based
�uid �ow solver. Our comparison between the CUDA and UPC parallelisation takes into account the required
conceptual e�ort, the performance gain, and the limitations of the approaches from the application oriented
developers’ point of view. We demonstrated that UPC led to competitive e�ciency with the local memory
implementation. However, the performance of the shared memory code fell behind our expectations, and
we concluded that the investigated UPC compilers could not treat e�ciently the shared memory space. The
CUDA implementation proved to be more complex compared to the UPC approach mainly because of the
complicated memory structure of the graphics card which also makes GPUs suitable for the parallelisation of
the lattice Boltzmann method.
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1 INTRODUCTION
In the world of High Performance Computing (HPC), the e�ective implementation and paralleli-
sation are vital for novel scienti�c software. Computational Fluid Dynamics (CFD) targets �uid
�ow modelling, which is a typical application �eld of HPC. While the Message Passing Interface
(MPI) (Message Passing Interface Forum 2012) has become the dominant technique in parallel
computing, other approaches, like the Partitioned Global Address Space (PGAS) (PGAS 2015) and
the General-Purpose Computing on Graphics Processing Units (GPGPU), reared their heads in the
last decade.

Co-Array Fortran (Numrich and Reid 1998), Chapel (Chamberlain et al. 2007), X-10 (Ebcioglu
et al. 2004), Titanium (Yelick et al. 1998) and Uni�ed Parallel C (UPC) (Chauwvin et al. 2007) are
members of the PGAS model family. These languages attempt to o�er an easier way for parallel
programming on multi-core Central Processing Units (CPU) based systems compared to MPI. This
involves keeping the code (a) portable: optimisation is made by the compiler in terms of architecture;
(b) readable and productive: such languages were shown to be easier to code and easier to read
(Cantonnet et al. 2004); (c) well performing: it was shown that such languages o�er the same or
even better performance than MPI (Johnson 2005; Mallón et al. 2009).

Performance-centred investigations were carried out to compare commercial UPC compilers
(IBM, Cray, HP) with open source UPC compilers (GNU, Michigan, Berkeley). Husbands et al. (2003)
reported that Berkeley UPC (BUPC) is competitive with the commercial HP compiler. The former
achieved high performance in pointer-to-shared arithmetic because of its own compact pointer
representation.

Mallón et al. (2009) compared UPC to MPI. They found that UPC showed poor results in collective
performance against MPI (Taboada et al. 2009) due to high start-up communication latencies. In
other aspects, their UPC code performed better than MPI.

Zhang et al. (2011) implemented the Barnes-Hut algorithm in UPC. They reported that the
problem can be conveniently approached in UPC because the algorithm has dynamically changing
communication patterns that can be handled by the implicit communication management of UPC.
They reported poor performance because of the lack of e�cient data management when their
code relied on shared memory. The problem was resolved with the help of additional language
extensions and optimisations ensuring that the data is cached accordingly from the global memory
prior to it is requested.

Most of the performance evaluations were done via synthetic benchmarks such as FFT calcula-
tions, N-Queens problem, NAS benchmarks from NASA (El-Ghazawi et al. 2006) etc., and only a
limited number of papers focused on the application of UPC for physical problems. One of these is
the work of Markidis and Lapenta (2010), where a particle-in-cell UPC code was implemented to
simulate plasma. They experienced performance degradation for a high number of CPUs, the e�ect
was dedicated to a speci�c part of their solver.

Johnson (2005) used Berkeley UPC compiler for an in-house code on a Cray supercomputer (Cray
Inc. 2012) to run CFD simulations. Their code solved the incompressible Navier-Stokes Equations
(NSE) using the �nite element method. The UPC code showed better performance than the MPI
version. The performance di�erence was bigger for a higher number of CPUs: UPC performed
better than MPI, especially above 64 threads. It was shown that MPI required more time to pass
small sizes of messages than UPC. Above a certain message size, UPC still performed better but the
di�erence was negligible.

Although HPC centres are dominated mainly by multi-core CPUs, researchers discovered the
potential for scienti�c computing on Graphics Processing Units (GPU) in the early 2000s (McClana-
han 2010). The Compute Uni�ed Device Architecture (CUDA) Software Development Kit (SDK)
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was released to popularise GPGPU on nVidia graphical cards (Sanders and Kandrot 2010). The
CUDA libraries can be added to several languages, along with Fortran, Java, Matlab and Python, but
most of the time it is used with C/C++. The essentially parallel nature of the graphical cards proved
to be applicable in several �elds, from pure mathematics (Manavski and Valle 2008; Zhang et al.
2010), through image processing (Stone et al. 2008), to physics (Anderson et al. 2008), including
�uid �ow modelling (Chentanez and Müller 2011; Ren et al. 2014).

The lattice Boltzmann method has become quite popular on parallel architectures because of
the local nature of the operations which is discussed in Section 2. The �rst parallel solvers were
relying on CPUs, and were reported in the 1990s (Amati et al. 1997; Kandhai et al. 1998). Later on,
GPU architectures were proven to be a good basis to parallelise the LBM. Two-dimensional CUDA
implementation was published by Tölke (2010), where a speedup of ≈20 was reported. Several
descriptions of three-dimensional solvers can be found, such as Ryoo et al. (2008), where a speedup
of 12.5 was measured. Rinaldi et al. (2012) reached a speedup of 131 using advanced strategies with
CUDA. The LBM solver was proved to be highly e�cient in multi-GPU environment as well (Xian
and Takayuki 2011). As far as the authors know, only Valero-Lara and Jansson (2015) considered
using UPC for the LBM.

The advantages of the LBM are its good scalability, explicit time step formulation, applicability
for multiphase �ows (Succi 2001) and applicability for �ows with relatively high Knudsen number
(Mohamed 2011). The latter one is one of the main limitations of the NSE. The LBM has been
developed for incompressible subsonic �ows, it has second order of accuracy, and relatively high
memory requirements due to the discretisation of particle directions.

In this paper, we present and compare the performance gain achieved after the CUDA and UPC
parallelisation of an in-house LBM code. The solver handles two-dimensional �uid �ow problems
using the LBM. The comparison of the two currently applied architectures is not widely discussed
from the performance point of view. Since HPC is often used by mathematicians, physicists, and
engineers with limited computer science knowledge, we also aim to inspect how user-friendly
CUDA and UPC are. We investigated the e�ect of the following factors:

a memory structure of UPC: shared and local variables;
b spatial resolution;
c hardware;
d collision models;
e data representation: single and double precision;
f required programming e�ort for the di�erent codes.

The UPC implementation was evaluated on two di�erent clusters, and the results were compared
to the CUDA parallelisation on two di�erent architectures. To quantify the performance the speedup
was de�ned as SU = tserial/tparallel, where tserial is the execution time of the serial code and tparallel is
the execution time of the parallel code.

2 THE IMPLEMENTATION OF THE LATTICE BOLTZMANNMETHOD
The Boltzmann equation was derived to describe the motion of a large number of particles on a
statistical basis. The idea behind the LBM is to discretise the Boltzmann equation so that particle
propagation is allowed only in certain discrete directions. The governing equation is written as
Eq. (1), where f = f (®x , ®p, t) is the distribution function, which represents the probability of “�nding
a molecule around position ®x at time t with momentum ®p ” (Succi 2001). ®c is the microscopic particle
velocity, and Ω = Ω(f ) is the collision operator. The Chapman-Enskog procedure forms a clear
bridge between the LBM equation (1) and the NSE (in the arti�cial compressibility form proposed

ACM Transactions on Mathematical Software, Vol. 99, No. 44, Article 39. Publication date: May 2017.



39:4 M. Szőke et al.

by Chorin (1967)), thus the method can be used to describe incompressible �uid �ows (He and Luo
1997).

∂ f

∂t
+ (®c · ∇)f = Ω (1)

We applied the D2Q9 model, which means that the resolved �ow �eld was two-dimensional,
and particle propagation was allowed in nine discrete directions (Fig. 1). The time marching was
divided into four steps from the implementation point of view:

I. Collision The collision modelling treats the right hand side of Eq. (1). Two collision models
were analysed:
a In the BGKW model, the collision is described by Eq. (2) which was derived by Bhat-

nagar et al. (1954) and by Welander (1954). Here τ is the relaxation factor, calculated
from the lattice viscosity of the �uid, and f eq is the so called local equilibrium distri-
bution function described by the Maxwell-Boltzmann distribution (Maxwell 1860). It
is important to note that the collision term can be computed independently for every
direction after the discretisation as

Ω =
1
τ
(f eq − f ). (2)

b The Multi Relaxation Time (MRT) model was presented and reviewed by d’Humières
(1992) and d’Humières et al. (2002). In this case, instead of using a single constant (τ−1)
to describe the collision, the model applies a matrix which depends on the resolved
directions (D2Q9). In our case, this matrix has a dimension of 9×9. This approach
yields a matrix multiplication for each lattice. Despite the fact that this model is
computationally more expensive than the BGKW, it is widely applied since the �ow
�eld can be more accurately resolved.

II. Streaming The streaming process occurs when the directional distribution functions
“travel” to the neighbouring cells: second term on the left hand side of Eq. (1). This process
is presented in Fig. 1(b).

III. Boundary treatment These steps are followed by the handling of the boundaries. In the
current paper, the boundary description suggested by Zou and He (1997) was used for the
moving wall, and the so called bounce-back boundary condition (Succi 2001) was used to
handle the no-slip condition at the stationary walls.

IV. Update macroscopic Once the distribution functions were known at the end of the time
step, the macroscopic variables (density, x- and y-directional velocity components) had to
be computed from the distribution functions to recover the �ow �eld.

The sum of the listed items is referred from now on as the main loop. The grid generations and the
initialisation of the microscopic and macroscopic variables took place before the main loop.

In terms of the computational grid, the method is based on a uniform Cartesian lattice, which is
represented in Fig. 1(a), where the nine directions of the streaming are displayed as well. In order
to examine the e�ect of the spatial resolution on the performance gain, four di�erent grids were
investigated. In the following, the lattices are referred to based on the names given in Table 1.

The simulated �uid �ow was the well known lid-driven cavity, which is a common validation
case for CFD solvers (Ghia et al. 1982). The aspect ratio of the domain was unity. The lid on the
top moved with a de�ned positive x-directional velocity, while all the other boundaries were
stationary walls (see Fig. 1(a)). From these conditions, the Reynolds number in the domain was
de�ned based on the lattice quantities as Re = nxulid/νl , where nx = n is the number of lattices
along the x-direction, ulid is the lid velocity, and νl is the lattice viscosity, which was set to be 0.1.
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Fig. 1. Structure of the computational domain

Table 1. Applied mesh sizes

Name Size Lattices
nx × ny

Coarse 128 × 128 16,384
Medium 256 × 256 66,536
Fine 512 × 512 262,144
Ultra Fine 1024 × 1024 1,038,576

The Reynolds number of the simulations was 1000. At the end of the computations, the coordinates
and the macroscopic variables were saved. A qualitative validation of the �ow �eld can be found in
Appendix B. For a more comprehensive validation and veri�cation, we refer to the work of Józsa
et al. (2016).

3 PARALLELISATION
The serial code was written in C, and the code was built up as it was presented in Section 2. The
serial implementation was based on one-dimensional Array of Structures (AoS), similarly to the
UPC version. The Cells structure included the macroscopic variables (velocity components as U and
V, density as Rho, etc.) as scalars, while the distribution function F was stored as a nine-dimensional
array within the Cells structure. Thus (Cells+i)->F[k] referred to the ith lattice in the domain
and the corresponding distribution function in the kth discrete direction. The parallelisation process
can be followed in Appendix A. The serial simulations were performed on Archer, the United
Kingdom National Supercomputing Service.
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Table 2. Properties of the used CPU clusters

Properties Astral (Intel) Archer (Cray)
Compiler BUPC Cray C
Intel processor number E5-2660 E5-2697
Processor clock rate [GHz] 2.2 2.7
Processors per node 2 2
Threads per processor 8 12
Threads per node (used) 16 (16) 24 (16)
Memory per node [GB] 64 64
Cache per processor [MB] 20 30
Interconnect type In�niband Cray Aries
Recommended customer pricea $1445 $2890

aPrices as of 12/2016.

First, we parallelised the solver with UPC and ran the codes on Archer and Astral. The latter is the
HPC cluster of Cran�eld University. The hyper-threading technology (Intel 2015) was switched o�
on both architectures. The properties of the two clusters are listed in Table 2. A higher performance
can be expected on Archer since it holds several optimisation properties such as hardware supported
shared memory addressing. Note that the interconnection between the nodes are di�erent in the
two investigated clusters. On Archer the commercial Cray C compiler was available, while the
open source BUPC compiler was installed on Astral.

Second, the CUDA parallelisation was tested. The performance gain was evaluated on two
di�erent nVidia GPUs. The relevant properties of the graphical cards are listed in Table 3. While
the GeForce cards are cheaper devices, as they are primarily designed for computer games, the
Tesla cards are more expensive, directly designed for scienti�c computing. The code development
was carried out on a desktop using the GTX 550Ti card, while the Tesla GPU of the University of
Edinburgh‘s Indy cluster was used for further investigations.

Table 3. Properties of the used GPUs

Properties GeForce GTX 550Ti Tesla K20
CUDA release v7.5 v6.0
Number of CUDA cores 192 2496
Global memory type GDDR5 GDDR5
Global memory bandwidth [GB/s] 98.5 208
Global memory size [GB] 1 5
Single precision performance [GFLOPs] 691 3524
Double precision performance [GFLOPs] unknown 1175
Recommended customer pricea $230 $2300

aPrices as of 12/2016.

3.1 Unified Parallel C Approach
UPC is an extension of the standard C language but it requires its own compiler. The novelty of
UPC relies on its memory structure, where the user has the opportunity to lay down variables in
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the shared address space and in the local memory at the same time. A schematic draw of the local
and the shared memory spaces is showed in Fig. 2. Implementing UPC based codes therefore o�ers
the opportunity to combine the advantages of the conventional parallelisation methods, such as
OpenMP and MPI, whose restrict the programmer to rely purely on either shared or local memory
only. The UPC compiler is designed to manage and handle the data layout between the threads
and nodes. This keeps the architecture based problems hidden from the user, i.e. optimisation is
expected to be performed by the compiler.

Fig. 2. Memory model of the local and shared memory spaces (Chauwvin et al. 2007)

The syntax of the local memory declarations is the same as in the standard C language. Data
exchange between the threads is performed via the upc_memput, upc_memget and upc_memcpy
functions. The �rst function copies local data to the shared space, and the second copies data from
the shared to the local memory. The last function performs data copy from shared to shared address
space. Note that the �rst and second functions are similar to the MPI_Send and MPI_Recv functions.

The shared memory based data needs to be declared according to the UPC standards. In this
case, the programmer must declare a compile time constant block size, which de�nes how many
elements of a vector belongs to each thread. The data is laid down between the threads with a
round-robin fashion using the corresponding block size. We can see that the compile time constant
restriction is the biggest drawback of the investigated language. If the programmer wishes to lay
down the whole mesh, for example here in the shared memory, then the mesh size needs to be
known in advance of the compilation. In other words, di�erent executable �les are needed for
di�erent mesh sizes.

To perform shared memory based operations, UPC o�ers the usage of upc_forall, which is an
extension of the standard C for loop. Each shared variable within a vector has an a�nity term that
describes which thread the given element belongs to. Based on this information, the upc_forall
distributes the computational load between the threads. UPC also o�ers the usage of barriers, locks,
shared pointers, collectives etc. For further description we refer to Chauwvin et al. (2007).

In our case, two UPC codes were implemented: (a) one with shared memory implementation,
and (b) another code relying on the local memory. The streaming step of these codes are given
as an example in Appendix A. In the former code, the data is laid down in the shared memory,
and in the latter one, the data is stored in the local memory. The shared memory based code
exploits the novelty of UPC, i.e. this code relies on the upc_forall function and shared pointer
declarations. This leads to a more easily readable code. The second approach, which exploits data
locality and follows the logic of MPI implementations, o�ers better speed and lower latency time.
As a disadvantage, the upc_memput, upc_memget memory operations were required; therefore this
code is more complex and consists of more lines. The computational load was distributed equally
between the threads in both implementations, since the mesh size was divisible by the number of
threads during the simulations.

During the compilation of the UPC codes, similarly to the serial code, the performance a�ecting
�ags were avoided. The compile command of the UPC codes, for example using four threads, was
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upcc -T=4 *.c -lm -o LBMSolver. The execution simpli�ed to upcrun LBMSolver on both HPC
systems.

3.2 nVidia CUDA
The CUDA SDK contains several additional functions to make the programming of nVidia GPUs
possible. The programming of the graphical card, from now referred to as ‘device’, requires some
basic knowledge of its structure. The working units are the so called threads, which form separate
blocks. Theoretically, every thread can work in parallel. Originally the threads could perform
operations only on the data which was stored in the device memory. This meant that the programmer
had to work out the data transfer between the host and device memory. The most recent solution of
nVidia to bridge this problem is the uni�ed memory (available since v6.0), which enables automatic
data migration between the host and the device. Nevertheless, the host memory bandwidth is
evidently the bottle neck of the available performance gain. It is a rule of thumb that the data
transfer between the host and the device should be minimised for high e�ciency.

After the data has been copied to the device, CUDA o�ers an opportunity to manage the multilayer
memory structure of the GPUs. In the current study, only the global and the constant memories
were used. When data is copied to the device, it is stored originally in the global memory (Table 3).
Every thread has access to this data, however this memory has the smallest bandwidth on the
device. To quicken the speed of the calculations, the parameters can be stored in the constant
memory which has a higher bandwidth but a smaller size.

The shared memory capability becomes increasingly important when the communication be-
tween the blocks is high. For instance, in the case of the so called pre�x sum, when every element of
a vector are summed. Originally, the threads within di�erent blocks can communicate only through
the relatively slow global memory. However, the threads have access to the shared memory only
within the blocks, the appropriate management of this memory layer often leads to signi�cant
performance gain because of its high bandwidth and low latency. For further description on the
memory structure of the GPU and on CUDA programming we refer to Nickolls et al. (2008) and
Sanders and Kandrot (2010).

The CUDA parallelisation included the following main steps (presented through the streaming
in Appendix A):

CUDA 1 Several smaller structures were used instead of the Cells structure, for example
Cells_var_9d_d to store the nine-dimensional distribution functions (Appendix A, CUDA
parallelisation step 1). The ine�cient for loops were avoided, so that the streaming was
performed theoretically in parallel for every node in every discrete direction.

CUDA 2 The so called structures of array (SoA) approach was implemented, which proved to
be more e�cient compared to the AoS approach (Ryoo et al. 2008). This means that every
variable (e.g. density and velocity components) was stored in separate one-dimensional
arrays. This SoA version of the code proved to be ≈5 times faster than the AoS version. The
maximum speedup with this implementation, measured with the ultra �ne lattice on the
Tesla K20 card using SP, was ≈20. This is similar to the speedup achieved by Tölke (2010)
on a 2D lattice, but seems in�nitesimal compared to the 131 speedup reported by Rinaldi
et al. (2012) using a 3D domain.

CUDA 3 The SoA approach was kept but the threads were assigned to the lattices and the
discrete directions were taken step by step as it is shown in Appendix A. We note that the
operations related to the 0th discrete direction were ignored during the streaming in the last
version of the CUDA code because they do not have any physical role. This simpli�cation
did not in�uence the performance signi�cantly.
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After the boundary treatment was identi�ed as the bottleneck of the computations (see
Section 4, Fig. 6), the global search, which was performed based on a boolean mask at every
time step to �nd the boundary lattices, was replaced. In the last version the boundary lattices
were selected during the initialisation so that the boundary treatment kernel function “knew”
the location of the boundaries in advance.

In every case, one-dimensional grids and blocks were used; furthermore 256 threads were
initialised within every block (block size). The number of the blocks (grid size) varied automatically
as a function of the mesh size. This set-up proved to be the most e�cient computationally, although
it resulted in a strong limitation in terms of the maximum mesh size. The theoretical maximum
thread number of the devices is 65535×1024 (maximum grid size times maximum block size). In
the �rst two implementations the threads were assigned to every distribution function in every
lattice which led to a maximum cell number 65535×256/9≈1864207. This limitation was overcome
in the third CUDA parallelisation step by assigning the threads to the cells. This way the maximum
number of lattices was nine times higher.

The last version of the CUDA code was compiled with the nvcc -arch=sm_20 -rdc=true
command. Here the �rst �ag de�nes the virtual architecture of the device, while the second one
allows the user to compile the �les separately and link them at the end. (The �rst and the second
version did not need the -rdc=true �ag, since the kernel functions were in one �le.) The authors
note that compiling the code with a more recent virtual architecture for the K20 GPU, for instance
-arch=sm_35, would probably result in an enhanced parallel performance. The -arch=sm_20 �ag
was used because this was the most recent virtual architecture supported by both of the tested
GPUs. The detailed analysis of the code performance can be found in Section 4.

4 RESULTS AND DISCUSSION
In this section, we will discuss the achieved speedup of the main loop. Firstly, the serial results will be
analysed. Secondly, the UPC approaches will be evaluated. Finally, the nVidia CUDA parallelisation
will be examined and compared to the UPC approaches. In addition we will evaluate the applied
parallel approaches from the code developer’s point of view.

4.1 Serial simulations
The measured iteration times of the serial simulations are listed in Table 4. As expected, the
simulation time increased with the grid size. A factor of approximately four can be identi�ed
between the computational cost of the coarse-medium and �ne-ultra �ne grids, which is logical
since the grid size increased exactly by the same factor. This observation is not valid between the
medium and �ne meshes. While the variables for the coarse and the medium mesh can be �tted
into the cache, the memory requirement of the �ne and the ultra �ne meshes exceeds the cache size.
As we expected, the MRT model was computationally more expensive than the BGKW. Compared
to the BGKW model, the MRT execution time was typically 10–50% higher, and as the number of
cells increased the MRT model became relatively cheaper.

4.2 Performance analysis of the UPC codes
The shared and local approaches were compared in terms of the achieved speedup in Fig. 3. The dash-
dotted line shows the theoretical limit, the linear speedup (SU = Nthreads) in all �gures presented in
the current subchapter. Fig. 3(a) presents the shared memory based speedup achieved on Astral
and Archer using the �ne mesh and double precision. We can see that the shared memory based
code led to poor parallel performance. By using any number of threads, the gained performance
was far below the linear speedup. Furthermore, for lower number of threads (4 and 8), the parallel
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Table 4. Wall time per iteration, serial simulations [ms]

Grid
Collision model Precision Coarse Medium Fine Ultra �ne
BGKW Single 1.204 4.974 45.01 177.6
BGKW Double 1.264 9.664 59.77 240.5
MRT Single 1.696 7.092 51.56 204.1
MRT Double 1.956 11.946 65.75 263.1

code was slower than the serial. By crossing nodes, the speedup continued to increase indicating
appropriate communication between the nodes.
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(b) Local memory approach

Fig. 3. speedup of the main loop as a function of the parallelisation approach, fine mesh, double precision
arithmetic

Fig. 3(a) indicates that none of the simulations exploit the maximum performance of the su-
percomputers. Despite the hardware support of the shared memory operations on Archer, the
simulations did not show better speedup results compared to Astral. We hypothesised that the
compilers could not handle the shared pointers and manage the data between the shared and local
memory spaces e�ectively. As a �rst step, performance analysis was conducted on Archer using
CrayPat (Cray 2015), which showed that the data was managed and “fed” to the CPUs properly.

As a next step, we tried to �nd other reasons for the problem. We reckon that the poor performance
might have been caused by one of the following factors, and so we took measures to overcome
them:

a usage of shared pointers. All of them were tested with static variables;
b inappropriate time measurement. We tested di�erent approaches such as the clock(), and

the MPI_Wtime() commands;
c inappropriate usage of the upc_forall command. Di�erent methods were examined to

distribute the computational load, for instance working threads were de�ned based on
a�nity of shared variables (&Cells[i]) or modular division of integers (i % THREADS);
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d usage of Cells structure. The structure was eliminated (see the code samples in Appendix A);
e lack of optimisation �ags. All of the available optimisation �ags (-O1, -O2, -O3) were tested.

None of these modi�cations resulted in better speedup in the case of shared variables, i.e. the
experienced performance of the shared code was the same for each listed factors. Therefore, we
concluded that the compiler cannot handle the data properly without additional modi�cations,
and for this particular application the compiler is still not mature enough. As it was presented by
Zhang et al. (2011), the problem could be resolved by outer libraries and user implemented machine
level data management. Adding these low level modi�cations to the shared code would eliminate
the main advantage of UPC, namely the quick and user-friendly parallelisation environment. To
overcome this problem the data was rather transferred to the local memory and another, MPI-like
code was developed.
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(a) Local memory based speedup, single precision arith-
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Fig. 4. Main loop speedup results on fine mesh

Fig. 3(b) shows the local memory based speedup using the �ne mesh and double precision. This
approach gave signi�cantly better results. Here we can see that crossing a node did not introduce
signi�cant latency either, the compilers were capable of managing the halo swap between the
nodes.

Fig. 4(a) shows the speedup as a function of the collision model. The two models had similar
parallel e�ciency. We can see that the BGKW collision model (solid lines) enabled slightly better
speedup results than the MRT collision model. Fig. 4(b) gives us a basis for an explicit comparison
between the performance of the single and double precision executions. This graph shows the
speedup achieved on the �ne mesh with the MRT collision model. We can see that the single
precision results (continuous lines) are better above 16 threads than the double precision ones
(dashed lines). Between 16 and 32 threads the �rst node was crossed on both architectures. The
di�erence between the single and double precision curves above 16 threads are originated from the
communication costs. The double precision approach requested more data handling resulting in
lower speedup.

We plotted the e�ect of mesh size on the speedup in Fig. 5(a) and 5(b) for Astral and Archer,
respectively. If we consider more than 32 threads, then we may conclude that better speedup were

ACM Transactions on Mathematical Software, Vol. 99, No. 44, Article 39. Publication date: May 2017.



39:12 M. Szőke et al.

achieved with increasing mesh size. Unexpectedly, this �nding was not valid for the ultra �ne
mesh, where performance degradation was experienced on both architectures. To �nd the “leakage”
in the performance we measured the time spent with the data transfer on the �ne and the ultra
�ne meshes using 128 threads. With this set up, the halo included twice as much data on the ultra
�ne mesh than on the �ne mesh, so that the data transfer should take roughly twice as long as
well. In contrast, the data transfer took six times longer on the ultra �ne mesh compared to the
�ne. The performance degradation experienced on the ultra �ne mesh was caused by the increased
communication costs, which seems to be a relatively strong limitation. We note that the ultra �ne
mesh consists of approximately one million cells, so the computational load of the processors is
still reasonably low when 128 threads are allocated.
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(a) Astral based results
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(b) Archer based results

Fig. 5. The e�ect of mesh size on the main loop speedup, double precision number representation

4.3 Performance comparison of the UPC and CUDA codes
In this subsection only the local memory based UPC implementation run on 64 threads will be
analysed and compared to the serial and CUDA simulations. Fig. 6 shows pro�ling results of the
di�erent codes. Based on Figs. 6(a) and 6(b) one can identify the collision and the streaming as the
most expensive operations. We can conclude from these two �gures that the MRT model is slightly
more expensive than the BGKW model. Although the boundary treatment is relevant only for the
nodes on the perimeter of the domain, it still needs approximately as much time as the update
macroscopic operation, because the boundary nodes are treated based on a global search.

Compared to the serial results, the UPC implementation drew attention to the the ine�cient
boundary treatment which became one of the most expensive operation in the UPC approach
(Figs. 6(c) and 6(g)). Furthermore, the parallelisation highlighted the increased cost of the collision
in the MRT model, which was more expensive compared to the other steps (Fig. 6(g)).

The MRT collision model was found to be computationally more expensive on the GPU as well.
We can see how the collision step became less expensive during the development (Figs. 6(h), 6(i)
and 6(j)), although it still took approximately 40% of the main loop. The MRT model includes
summations along the discrete directions. In the �rst and the second CUDA development steps
these summations required operations between the blocks, while in the �nal version the summation
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Fig. 6. Profiling results based on single precision simulations with fine mesh on the GTX 550Ti graphical card,
and on Archer using 64 threads

happened within the blocks, so that it could be done more e�ciently. While the �rst and the second
CUDA development steps were more favourable for the streaming, the third step was speci�cally
developed to decrease the cost of the collision.

The scalability of the codes as a function of the hardware is displayed in the bar charts in Fig. 7.
As we can see in Figs. 7(a) and 7(b), the speedup of the BGKW and the MRT models were bounded
around 50 on Archer, and around 80 on the Tesla K20 card. In case of the K20 card, the performance
gap between double and single precision execution is clearly visible: while a maximum speedup of
around 80 was measured with single precision arithmetic (Fig. 7(a)), a speedup around 65 could
be achieved with double precision arithmetic in the case of the BGKW model (Fig. 7(c)). A similar
trend can be seen in the case of the MRT model as well, with a slightly wider gap between the single
precision and double precision arithmetic (Figs. 7(b) and 7(d)). Considering that the double precision
processing power of the K20 unit is approximately a third of its single precision processing power
(Table 3), it might seem surprising that the performance gap is only around 20%. If we also consider
that two of the main steps in the LBM, (streaming and boundary treatment) are essentially data
copying, then the relatively small gap makes more sense: the high memory bandwidth of the GPU
compensated for the lack of computing power.
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Fig. 7. Speedup of the main loop as a function of the grid spacing and the hardware

Interestingly, the GTX550Ti device showed better parallel performance with the MRT model
compared to the BGKW model (Fig. 7(a) and 7(b)). While this card gave higher speedup with DP
in the case of the BGKW model, using DP led to a drastic performance drop with the MRT model
(compare Fig. 7(a) with 7(c) and Fig. 7(b) with 7(d)).

Based on the charts, the K20 card performed in almost every case better than the GTX550Ti. In
fact, the K20 card was slightly slower than the GTX550Ti only when the grid size was small. In our
case, the medium grid proved to be big enough to utilise the better potentials of the K20 GPU. As
the grid size increased we could measure an increasing speedup in the case of the K20 device, while
the GTX550Ti card reached its limits at the �ne mesh. These results mirror the GPUs’ evolution,
and correlate well with the hardware parameters (e. g. CUDA cores) given in Table 3.

Ideally, in the case of the CPU parallelisation, when the number of threads is kept constant and
the grid size changes, a nearly constant speedup can be expected. After looking at Fig. 7, it becomes
clear how far away this application is from an ideal situation: increasing the number of lattices up
to a certain point (�ne mesh), resulted in an increasing speedup. This happened because as the
problem size increased, the time spent with the halo swap decreased relative to the time spent with
the computation of the di�erent operations. The speedup on Archer with 64 threads was close to
the ideal when single precision arithmetic was used on the �ne mesh (Figs. 7(a) and 7(b)). However,
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Fig. 8. Speedup of the di�erent operations on the fine grid as a function of the hardware. (Coll–Collision;
Str–Streaming; BT–Boundary treatment ; UM–Update macroscopic)

using double precision arithmetic means an increased computational load for each threads, it
also means increased communication between the threads. Probably this is the reason why the
parallel performance of the double precision execution was lower on Archer compared to the single
precision simulations when the �ne mesh was investigated. (Figs. 7(c) and 7(d)).

In order to gain a better understanding of the results, deeper analyses of the code is required.
The speedup of the main parts of the code are shown in Fig. 8. It is important to recognize that,
theoretically, only the speedup of the collision step should change when we consider di�erent
models. Indeed, the other operations show only a small deviation (compare Figs. 8(a), 8(c) with 8(b),
8(d)). After a �rst look, we can see that the boundary treatment, which was identi�ed as the bottle
neck of the performance (Fig. 6), was signi�cantly improved in the �nal step of the CUDA code.
This high speedup was measured, because the global search of the boundaries was replaced (see
Section 3.2). Furthermore, it is also visible that the other parts of the code had a relatively uniform
speedup in the case of the CUDA implementation: for the K20 card around 50 with single precision
and 40 with double precision. When compared with the K20, the GTX550Ti device showed better
speedup of the boundary treatment but a worse speedup of the other operations. The unexpected
behaviour of the GTX550Ti card when compared to K20 can be caused by its structure which was
designed for gaming, or the di�erent CUDA release (see Table 3).
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The speedup of the operations measured on Archer shows less deviation. However, it was found
that the measured speedup exceeded the theoretical limit (64) several times, especially for the
collision and the update macroscopic parts, while other times the parallel code underperformed. This
behaviour seems to be logical if we take into account that the collision and the update macroscopic
operations do not require any communication between the processes. Furthermore, the data of the
partitioned mesh �t the cache of the nodes, while the same data exceeded the cache size of a single
node in the case of the serial execution.

4.4 UPC and CUDA beyond performance
Because of the complex memory structure of the GPUs, the CUDA parallelisation was more
cumbersome and time consuming. We can see that certain parts of the code (e. g. boundary treatment)
needed signi�cant reformulation in order to reach higher performance. Furthermore, it is important
to note that for a CPU related parallelisation it is reasonably well understood how the e�ciency can
be improved, but for a complex application, like the current study, the CUDA related optimisation
requires more conceptual e�ort and the identi�cation of performance loss is more complex. All
in all, the �nal version of the CUDA code required roughly twice as much working hours than
the UPC parallelisation. The �nal code was achieved via three steps, and there are still several
opportunities to further increase the performance, for instance, using the shared memory of the
cards or multiple graphical cards.

Table 5. Number of lines in the di�erent codes

Code Number of lines in implementation:
name Main loop Overall
Serial 1148 2215
UPC: Archer – Shared 1294 2413
UPC: Archer – Local 1359 2566
UPC: Astral – Shared 1294 2413
UPC: Astral – Local 1337 2629
CUDA: Step 1 1596 2455
CUDA: Step 2 1748 2547
CUDA: Step 3 1676 4684

Although the straightforward shared memory approach of UPC proved to be ine�cient, the
classical MPI-like local parallelisation technique gave acceptable results. Thanks to its simple syntax,
it needed less programming e�ort compared to CUDA. The corresponding number of lines for the
di�erent codes are listed in Table 5. We can see that the most e�cient CUDA implementation took
≈40% more lines, while the longest UPC implementation needed only ≈15% more lines compared
to the serial code. It is arguable whether counting the number of lines is representative of the
programming e�ort but in this case it is well correlated to the required work. The e�cient paralleli-
sation with CUDA required roughly twice as much o�ce hours than the two UPC implementations.
Without a doubt, we can conclude that the highest amount of conceptual e�ort was required by
the CUDA approach followed by the local UPC code and the shared UPC code.

It is important to see what kind of compromises application oriented developers need to make.
The situation can be described with the help of the triangle shown in Fig. 9. The edges of the triangle
contain the good properties of a high performance programming approach: low conceptual e�ort,
high performance and low hardware costs. For the lattice Boltzmann method, the �rst possible
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Fig. 9. Compromise triangle of high performance scientific programmers

scenario includes a low cost hardware (Tesla K20 of $2300) and a reasonably high performance
but we have to pay the price of conceptual e�ort because of the GPU’s programming environment.
Another extreme scenario is when a higher budget is available (Intel E5 processors, each for $2900),
and we can work with a more �exible programming environment, and probably end up with
an e�cient code in a shorter period of time. This situation makes the local memory based UPC
programming environment a suitable candidate. Additionally to these two cases, when the available
budget is limited, one can consider running single core simulations on a cheap hardware. This would
clearly require longer computations because of the low performance. The choice between the three
scenarios is still usually made by the time frame, the available hardware, and skill set. However, the
shared memory approach of UPC aims to provide another low e�ort, high performance scenario,
our investigations highlighted that the compilers need further development to achieve this goal.

5 CONCLUSIONS
We parallelised an in-house, two-dimensional lattice Boltzmann solver using CPU and GPU paral-
lelisation approaches. We presented the UPC implementation of the lattice Boltzmann method and
compared the parallel e�ciency of our CUDA and UPC codes using the two-dimensional physical
problem of the lid-driven cavity. The UPC codes were tested with two di�erent compilers on two
di�erent clusters, while the CUDA codes were run on two di�erent GPUs. A detailed performance
analysis of the di�erent implementations was performed to provide an insight into the parallel
capabilities of UPC and CUDA when it comes to the lattice Boltzmann method.

The parallelisation of the collision proved to be crucial since this is the part in the algorithm
where the majority of the computation happens. Based on our experience the e�ciency of this part
determines the globally experienced e�ciency, and it typically means favourable implementation
for the update macroscopic operation as well. We would like to draw attention to the boundary
treatment as well, since it can easily become the bottle neck of the parallel code, although its
execution time is essentially limited by the memory bandwidth similarly to the streaming.

The UPC code using the shared memory approach showed surprisingly low performance com-
pared to the serial code. We found that the investigated compilers could not automatically manage
the data transfer between the threads e�ciently. The further development of the compilers may
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solve this issue and make the UPC approach more user-friendly and attractive for future scienti�c
programmers. Until then, we can enjoy the simple syntax of UPC for local memory based imple-
mentation, which was proven to be more e�cient and suitable for the parallelisation of the lattice
Boltzmann method.

The CUDA development was presented through three di�erent steps which highlighted that the
used data structures (namely the AoS and the SoA approaches), and the data distribution strategies
have a signi�cant e�ect on the parallel performance. We can con�rm that the nVidia graphics cards,
especially the ones designed for scienti�c computing, are highly suitable for the parallelisation of
the lattice Boltzmann method. Based on our measurements a single GPU might compete with 3-4
supercomputer nodes (around 80 threads) or more, for a signi�cantly lower price. To reach this
high performance developers need more speci�c skills and programming e�ort when it is compared
to the local UPC implementation.

CODE AVAILABILITY
The developed codes are available as open source and can be downloaded from GitHub at https:
//github.com/mate-szoke/ParallelLbmCran�eld. The codes are available under the MIT license. The
folders also include all mesh and setup �les used to perform the documented simulations.
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A CODE SECTIONS
The following code sections cover the streaming:

• Serial code
1 for (i=0; i<(*m)*(*n); i++){ //sweep through the domain

2 if ( (Cells+i)->Fluid == 1 ){ //if the lattice is in the fluid domain

3 for(k=0; k<9; k++){ //sweep along the nine discrete directions

4 //if streaming is allowed in the current direction

5 if ( ((Cells+i)->StreamLattice[k]) == 1){

6 //the current distr. fct. travels to the corresponding neighbour

7 (Cells+i)->F[k] = ( Cells+i+c[k] )-> METAF[k];

8 } } } }

• UPC parallelisation relying on local pointer variables
1 for(i = 0; i<( n_sub_x * n_sub_y); i++){ //sweep in the whole sub -domain

2 if (( Cells+i)->Fluid == 1) { //if the lattice is in the fluid domain

3 for(k=0; k<9; k++) { //sweep along the nine discrete directions

4 //if streaming is allowed in the current direction

5 if ( ((Cells+i)->StreamLattice[k])) == 1 ) {

6 //the current distr. fct. travels to the corresponding neighbour

7 (Cells+i)->F[k] = ( Cells+i+c[k] )-> METAF[k];

8 } } } }

• UPC parallelisation relying on shared static variables
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1 upc_forall(i=0; i<((*nx)*(*ny)); i++; &Fluid[i]){ //sweep in the whole

domain

2 if (Fluid[i] == 1) { //if the lattice is in the fluid domain

3 for(k=0; k<9; k++) { //sweep along the nine discrete directions

4 //if streaming is allowed in the current direction

5 if ( StreamLattice[i][k] == 1 ) {

6 //the current distr. fct. travels to the corresponding neighbour

7 F[i][k] = METAF[i+c[k]][k];

8 } } } }

• CUDA parallelisation step 1, streaming kernel function
1 int bidx = blockIdx.x; //index of the current block

2 int tidx = threadIdx.x; //index of the current thread within the block

3 // global index of the threads up to 9*nx*ny

4 int ind = tidx + bidx*blockDim.x;

5 // index for the lattices up to nx*ny

6 int ind_l = ind - ( (*nx_d)*(* ny_d) * (int)(ind/ ( (*nx_d)*(* ny_d) ) ) );

7 // index for the nine layers from 0 to 8

8 int ind_c = (int)(ind/ ( (*nx_d)*(* ny_d) ) );

9 // limit computations to the physical domain

10 if ( ind <( 9*(* nx_d)*(* ny_d) ) ){

11 // limit computations to the fluid domain

12 if (Cells_const_d[ind_l].Fluid == 1){

13 if ( (Cells_const_9d_d[ind]. StreamLattice) == 1 ){

14 //the current distr. fct. travels to the corresponding neighbour

15 //the travelling occurs theoretically in the same time

16 Cells_var_9d_d[ind].F = Cells_var_9d_d[ind+c_d[ind_c ]]. METAF;

17 } } }

• CUDA parallelisation step 2, streaming kernel function
1 int bidx = blockIdx.x; //index of the current block

2 int tidx = threadIdx.x; //index of the current thread within the block

3 // global index of the threads up to 9*nx*ny

4 int ind = tidx + bidx*blockDim.x;

5 // index for the lattices up to nx*ny

6 int ind_l = ind - ( (*nx_d)*(* ny_d) * (int)(ind/ ( (*nx_d)*(* ny_d) ) ) );

7 // index for the nine layers from 0 to 8

8 int ind_c = (int)(ind/ ( (*nx_d)*(* ny_d) ) );

9 // limit computations to the physical domain

10 if ( ind <( 9*(* nx_d)*(* ny_d) ) ){

11 // limit computations to the fluid domain

12 if (Fluid_d[ind_l] == 1){

13 if ( (StreamLattice_d[ind]) == 1 ){

14 //the current distr. fct. travels to the corresponding neighbour

15 //the travelling occurs theoretically in the same time

16 F_d[ind] = METAF_d[ind+c_d[ind_c ]];

17 } } }

• CUDA parallelisation step 3, streaming kernel function
1 // global index of the threads up to nx*ny

2 int ind = blockIdx.x * blockDim.x + threadIdx.x;

3 // number of cells in a layer = nx*ny
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4 int ms = width_d*height_d;

5 FLOAT_TYPE *f, *mf;

6 int n = height_d;

7 // limit computations to the physical fluid domain

8 if (ind < ms && fluid_d[ind] == 1){

9 f_d[ind] = fColl_d[ind];

10 f = f_d + ms;

11 mf = fColl_d + ms;

12 //the current distr. fct. travels to the corresponding neighbour

13 // stream_d[ind] does not allow streaming from the boundaries

14 f[ind] = (stream_d[ind] == 1) ? mf[ind -1] : mf[ind];

15 f[ind+ms] = (stream_d[ind+ms] == 1) ? mf[ind+ms-n] : mf[ind+ms];

16 f[ind +2*ms] = (stream_d[ind+2*ms] == 1) ? mf[ind+2*ms+1] : mf[ind+2*ms

];

17 f[ind +3*ms] = (stream_d[ind+3*ms] == 1) ? mf[ind+3*ms+n] : mf[ind+3*ms

];

18 f[ind +4*ms] = (stream_d[ind+4*ms] == 1) ? mf[ind+4*ms-n-1] : mf[ind+4*ms

];

19 f[ind +5*ms] = (stream_d[ind+5*ms] == 1) ? mf[ind+5*ms-n+1] : mf[ind+5*ms

];

20 f[ind +6*ms] = (stream_d[ind+6*ms] == 1) ? mf[ind+6*ms+n+1] : mf[ind+6*ms

];

21 f[ind +7*ms] = (stream_d[ind+7*ms] == 1 && ind < ms-n+1) ? mf[ind+7*ms+n

-1] : mf[ind+7*ms];

22 }

B QUALITATIVE VALIDATIONS
Qualitative validation of the computed velocity �eld at Re = 1000.
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