-
=
L

i
L

.
e

o




THIMIEHIRRIY] - oot o seve xo- 262

0057 8577 September, 1965

THE COLLEGE OF AERCNAUTICS, CRANFIELD

SLENDER SHAPES OFFERING MINIMUM DRAG IN FREE-HOLECULAR FLOW
with an Appendix on

Similarity Lew for Longitudinal Contours
of Optimum Bodies in Free-hHolecular Flow

by
E. Angus Boyd, H.A.

Summary

Analytical expressions are obtained for the optimum
shapes which minimise the drag of a slender axisymmetric
body in free-molecular flow, provided the drag expression is
simplified using the slenderness assumption. The problem is
formulated as one of Mayer type in the calculus of variations
and solved by using the Buler-Lagrange equations together with
the transversality condition. The shapes derived are optimum
subject to constraints on thickness, length, wetted area and
volume. In the particular cases solved any two of these four
quantities are fixed while the remaining two are free. The
expression for the shape of the body when thickness is free

is obtained in closed form.

Presented at the VII Symposium on Advanced Problems and
Metheds in Fluid Dynamics at Jurata, Poland, 1~7 September,
1965, and to be published in the Fluid Dynamic Transactions,
vol.3.
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Notation
2j» P32 o
B(a, b)

Ca cl: CZ:
Cp = 4D/md%q
d

£

F

i

I,(a, b)

3

Ky, K, K3

coefficients in generalised drag integral (2.6)
Beta function
constants

drag coefficient based on frontal area at x = £
maximum diameter of body

drag

subscript referring to final point
augmented function

subscript referring either to initial point or free
stream conditions

incomplete Beta function, defined in section 5.2.2.

parameter taking value O in hypersonic extreme and
value 1 in low subsonic extreme

defined in (3.4)

value of x when y = 2d

free stream dynamic pressure

dynamic pressﬁre based on U,

speed ratio

wetted surface area

temperature of molecules in free stream
temperature of reemitted molecules

free stream velocity
o

most probable velocity of random molecular motion at
temperature Tj

body volume

axial and radial coordinate of body

integrals defined in section 3
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afs,an,Bf,yf integrals defined in section 4

I'(n) Camma function

€5 coefficient defined in (4.1)

n = Y/3

0 = dn/dg

8 slope of surface element to free stream
A Lagrange multiplier

V5 ' coefficient defined in (4,1)

€ = ¥/4

g =s sin ©

v = d/g

¢ differential constraint
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Introduction

Tan(l) has determined the body of revolution offering minimum
drag in a free-molecular flow for a given length and a given diameter.
In this paper the analysis is extended to include constraints on the
wetted surface area and volume as well as on the length and diameter.
The reflection process is assumed to be totally diffuse with a complete
energy exchange. By employing the assumption that the body is slender
it is possible to obtain the shape of the optimum body in closed

analytical form.

(5)

This topic has already formed the subject of a thesis
written by the author's student Lt. G.B. Hall, U.S.N., and the author
is grateful to him for the Figures included in this paper. While
this paper was being prepared Professor liele sent the author a copy
of Part VI of his coming bookcs) in which part of the work described
here, section 5.1, is to be the subject of Chapter 28 written by HMiele

and Pritchard.

Formulation of the problem

Consider a slender axisymmetric body in a free-mclecular
flow whose macroscopic mean velocity is U and equilibtium temperature
is Tj;. The mean free path of the molecules is so much larger than
a characteristic body dimension that collisions with the body dominate
over intermolecular collisions between the incoming flow and that
reflected from the body, and the latter may be ignored. The resulting
flow field may be treated as if it were composed of two independent
flow fields. In particular the drag experienced by the slender body
is obtained as the sum of the impact drag of the incoming molecules

and the reactive drag of the reflected molecules.

The speed ratioc s between the free stream velocity U and
the most prcbable velocity of the random melecular motion Uy at

temperature Tj; is defined by
s = U = U/aRT;

where R 1is the specific gas constant.



U T
It is assumed that all of the gas molecules are absorbed by the body
surface prior to reemission, that the temperature Ty of the reemitted
molecules is identical with the surface temperature; and that the
velocity distributions of the incident and reflected flows ave
(1)

Haxwellian.  Then, as has been shown by Tan ~’, the drag may be

expressed. as

el ef‘Twﬁ 2
.1 0= 1 sz I sin I x o
(2.1} =P 1 i YT T @
(o ]_._ )
; ineg | 7T B
¥ sind i} o2 ¥ SQS \jm.g {i + er } zdS

where the surface element dS is at an angle © +to the free siream,

g = s sin® , and

Two useful approximations to this dragz vesult are possibl

At hyperscnic speed ratics, s >> 1 and o2 »>> 1, (2.1) reduces to
e
42 f[ sing [TTp | .
(2.2) D = pU< / §l o s 1";"—'! sin® ds
28 N T
Ji ' |

to

sind
Sz

r £ 2 ‘;r
X - gouz[[ 1|1, sinfe |72
\2.3) D QDJ LS = 2 ’\?T + )
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’:*
L.,«M..._,J
=
+
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&,
b
[
o,
v

Let the axial coord dinate of the aw*sywme+r‘c body'bé x and its
radius y, then dS = 2wy V1 + y dx, and sin6 = y/vV1l + y » where
y = 4¥/dx. If now the slender body approximation, ?2 << 1, is
used these may be simplified to dS = 27y dz and sinl = §. Hence

the drag of a slender axisymmetric body,between the stations 0 and x,

may be expressed, in the hypersonic extreme, by

.le 2 3 5’7& 02‘
(2.4) D(x) = 2mpUp | y |8 ¥ toaTo ¥ dx
u’o ‘
and, in the low-subsonic extreme, by
[
ey = a2 / - TR e
(2.5 ot = wup | ,;gﬂ_/l L)y g ] e
U/ T2\ ATy 2 ATy

it is clear from (2.4) and (2.5) that, as the drag expressions are



(2.6)

(2.7)

(2.8)
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essentially of the same form, the analysis may be made more concise

by considering simply

(2

B X
D{x) —3)“qu. ylas + byy + c3§?) dx
5fs 3

which includes both {(2.4) and (2.5) as snecial cases,

2(1 j\ / =
/8 . f s |Tip
where a« = — De = 1+ Cr = s | e
:] ]K /ﬂ""‘} 2 Nl K :} 2,\} Mi 3’

and j = 0 in the hypersonic extremne, 02 >> 1,

while j = 1 in the low subsonic extrene, 62 << 1,

The problem to be considered is to minimise the drag integral,
as expressed in {(2.6), subject to comnstraints on the wetted surface area

S and volume VY. For a slender body

rx
s = on v dx
Jo
[=
vV = wf y2 dx .
Jo
In taking the problem in this general form the optimum shapes.

appropriate for both hypersonic and low-subsonic free wolecular fiows

will be determined

It is to be noted that in the drag expressions used in this
section no allowance has been included for base drag. The base
region of anyoptimum shape which has a blunt base must therefore be
assumed to be Filled by a cylinder whose axis lies in the stream

direction.

3, General analysis of hypersonic and low subsonic problems
Jefine %
olx) = D{x) = y(ai + by + csy2) dx B
X ( ) = Y a5 3 337 3
9n 7
S () f R
(3.1)  8(x) = === = jo yéx - >

[

p:4
yix) = Wzl =f y? dx
O
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Then differentiating with respect to the independent variable yields

the following differential constraints for the problen

¢;1‘£&-y(ai+b—,v+cv2) ‘1
$p =8 -y =20 _“J
$3 Y-y =0

The appropriate boundary conditions are

X, Ty Toy < Bi = vi < G at the initial point and at the

final point (subscript £) some but not all of the coordinates will Dbe
given.
The problem to be solved may be stated as the Following liayer problem(z).
In the class of functicns y{x), a{x), B8(x), v(x) which are consistent
with the differential constraints and the prescribed end conditions,
find the set which minimise the difference Aa = ag ~ 0.
Standard methods of the calculus of variations 2) way be

< - =

applied, following the introduction of Lagrange multipliers A(x) and

- [ . .

F o= ) 6 = yla + bsy + jyz)J + Ap (o-y) + Az(y=y2).
The Following Euler-Lagrange equations must be satisfied by the extremal
curve

¢! . . .
*é"" [ﬂ}\.ly(l}j QCj 7)“} = 'Kl(aj + bj” + ijz) - 1\2 - '2/;337 .

X

The last of these equations show that the Lagrange multipliers are

constants.
AMo=Cp, Az =Cy, A3 =Cz.

Because F is formally independent of x the remaining Euler-Lagrange

equation has the Ffirst integral
(3.2) Ciylay - o j2) * Coy + Cay2 = C
where C 1is a constant.

The transversality condition, which must be satis
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systems of differentials consistent with the prescribed end conditions,

takes the form
£

(3.3) {kc1+l)da - Cdx + CodB + Cady - Cyy(b. + 2Cj§}dy] = 0.
N i
Since ay is free it follows that C; = -1,

The Legendre-Clebsch condition, which provides a necessary
condition for a minimum for all weak variations consistent with the
constraints, is in this case

-2Cy ey ¥y (8532 2 ©
As this is satisfied by y 2 0 it follows that all the extremal arcs
which satisfy the conditions of this section provide minimum drag
configurations.,

The shape of the extremal arc follows from integrating
equation (3.2), which gives an expression for the slope of the curve,

with C; = -1. On a forward-facing surface the slope is positive so

that

hofe2

- ¥
® = /‘ (ij / [C - (Cy-aydy - C3y?]) dy .

Introduce now the dimensionless variables
E=%/2y m=Y¥/14,
where the maximum ordinate y = 3d occurs at the station =x = 2.
The thickness ratio of the body is 1 = 4/4. In terms of these
variables the shape of the extremal on the forward-facing surface is
described by
n 1 1 1

¢ 5 P" 5
(3.4) &= ] (n/Ky=Kon-K3n?)® dn/[  (n/K;-Kan-K3nd)?® dn
!

19 ‘o

in the range 0 ¢ £ € 1, where K; = C(2d) ~, Ky = Co-ay, and

K3 = C3(%d).

It will be shown that some of the optimum curves have also
a rearward-facing surface following the position of maximum thickness.

On such a rearward-facing surface the slope is negative and it is
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easy to see that the appropriate form for the extremal arvc there is

,.
5=1-{

in the range 1 < &< &f.

rn X / I:" 1 j} \;
| (n/K1=Kpn-K3n?) dn/ | (n/K1=Kpn=Kgn?)* an
J 3 J

R o}

ol

This may be expressed more conveniently in the form
[n Jé ;or l ;‘
(3.5) g =2 —[ | (n/K1-Kan-K3n?) c’m// (n/K3~Kon-K3n?)~ dn\$
J g /g J
1 €& < &g,
Particular cases of equations (3.4) and (3.5) will be

considered in section 5.

L, Chavacteristics of the optimum shapes

From equation (2.6) the total drag of an optimum profile for

either hypersonic or low-subsonic extremes may be written

which in terms of the dimensionless variables becomes

A(1=3)

rgf
D=2 3 TG, ds / n(aj + %Tbjﬁ + %tZCjﬁz) dg

Thus the drag coefficient based on the maximum frontal area and the

stream velocity is given by

(l-—j)~. ~ . N
__b _2 23 2 M 4 e -
(4.1) CD * TmaZg " v {qf e Geyt €47 ufej
1 82(1-3) ’?; i
wiaere bj = -—Egum. 1 +A\§E
o qaj i 2(j+2) 8(25-1)
I by v’%’l+f§l)3
A.Ii“



(4.2)

[
Cry T ndg
Jo
. ’ﬂ’TI’
s ,(3-1) ((25-1) Nhﬁf‘
e T EE
3 - ip
(1 + »\;L;_‘)
133
3 | e

o

[N
™

]
.

and J = 0 in the hypersonic extreme
3 = 1 in the low-subsonic extreme.
The wetted area of the optimum body is obtained
from
S = md & Bg

23
where Bg = /Q ndg
o)

and its volume from

(4.3) V=g nd? 2 yg
faf
where YE = | n2dg .
Jo
5. Particular results Ffor the hypersonic case
5.1 Thickness fixed
Considzr now particular cases of the extremal arc, which has
been derived in section 3, in the hypersonic extreme, Thus j = O,
T [T
ag = 0, by = 52, cp =2 |&=5, vp = 0, g9 = 2= =, and
0 s D¢ s CO 2'\!Ti’ ¢ > =0 28’\Ti’
2 )
(5.1)

|
Cp=2(n-+tegT afsi‘
L J

Of the four constraints, length &, thickness d, wetted surface area

S, and volume V, two are fixed in each case while the remaining two

are free.
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Vhen the body thickness, d, and one other from &, S, and V,

are fixed the resulting optimum shape is given by a simple power law.

5,1.1 Given diameter and length

Because the wetted area and volume ave free it follows from
the transversality conditicn (8.3) that Cp; = C3 = O =o that
Ko = =gg = C = K3. The equation (3.4) for the extremal arc may lLe

integrated immediately to yield
(5.2) n=£

which is shown in Fig. 1. The optimum body of revolution is a
2/3-power law body, for which ng = 1, oz, = ¥/9, so that from (5.1)

its drag coefficient is given by

£

{(5.3) Ch=2 +-§ €0T-

The variation of Cp with s for a 2/3-power law body of thickness
ratio 1 = +/3 is illustrated in Fig.3 for various values of the

m
temperature ratio ‘P/Tj.

5.1.2 Given diameter and wetted area

As the length and volume are free it follows from (3.3) that
C = C3 =0 so that Kj; = X3 = 0. It is easy to show that the optimum
shape is a cone (Fig.l}.
(5.4) n-&.
Hote that this result also applies in the low subsonic extreme. The
by

3

drag coefficient of the cone is giver

(5.5) CD = 2 + €T

5.1.3 Given diameter and volume

As the length and wetted area are free, C = Cp = 0, and

Ky = =ag = 0 = Ky. The optimum body is here a parabola
(5.6) n = £2.

It will be noticed in Fig.l that this profile is concave to the flow.

low the drag formula used, (2.1), is Lased on the assumption that the
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5,2
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body is convex to the flow. At first sight it would seem necessary
to correct the analysis by including in (2.1) a contribution to the
momentum transfer due to those molecules reflected from the surface
which hit the surface again. However it has already been showéu)that
for bodies of simple shape and large concavity the effect of these
interreflections on the drag is small., TFor this reason this effect
will be neglected here. It is to be expected that the parabolic

shape will offer a good approxzimation to the exact result.
T g T
The associated drag coefficient is given by

Cp =2 + § EQT.

In conclusion it is noted that the slenderness assumption is
valid if n <€ 2. This condition is violated only by the 2/3—power
law body, and then only in a small region close to the nose defined by
0 < § < 0-037. 1In fact this shape is a close approximation to that

(1

obtained by Tan who did not employ the slenderness assumption.

Thickness free

5,2.1 Given wetted area and volums

(5.8)

(5.9)

Since the length and thickness are free it follows from (3.3)
that C = 0 so that Kj; = 0, and yf(bj + 2cj§f) = 0. The last

condition requires that either ng =0 or fg¢ = ~l/1€j.

The transversality condition (3.3) in this case reduces to

the form

[(ng + Cay?) dX]f = 0

which yieids the condition
(Ko + aj) ng + Kgﬂ; =0 .

On the other hand the first integral reduces to
~y(aj - e55%) + Coy + Cgy2 = O

giving the condition '

.} ne + Kan2 = .- L oest282
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Clearly the end condition which will make (5.8) and (5.9) consistent

is nf = 0.

The maximum ordinate, np, = 1, will obviously occur before
the end point and the slope will vanish there, n, = 0. Thus at the

maximum ordinate the first integral yields the condition
Ko + K3 = as .

Using this relationship together with K; = 0, (3.4) can be integrated

to find the shape of the forward pertion of the extremal arc. In the

hypersonic extreme, j = O and ap = 0, the shape is described by
(5.10) n=1-(1-282, 0<¢< 1.

Similarly (3.5) gives the shape of the rear portion of the extremal

arc as
(5.11) n=1-(5- 12 1<E&¢<2.

This shape is illustrated by the full line in Fig.2.

Evaluating (5.1) with ng = O yields for the drag coefficient

of this optimum body the result

2
(5.12) Cp ='§§ €gT-

5,2.2 Given length and wetted area

The thickness and volume being free requires that K3 = 0O
and that either ng =0 or fg = - l/raj.

The first integral yields the condition

(5.13) Ky + & cy720D) ng = K1,

The transversality condition gives no further information. If ng
is zero then so is K; from (5.18)., With Ky = K3 = 0 (3.3) glves
a cone for the extremal arc, but this clearly contradicts the
requirement nf = 0. Hence the appropriate end-conditions for this
problem are W#f = - l/TEj, ng # 0.

At the maximum ordinate ny = 1 the slope 1 vanishes

and the first integral yields K, = K;. The forward portion of the



(5.14)

(5.15)
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optimum body is described by
«E=-T2?[al"cs‘:'m1/'r'1"—;/ﬁ"("im:mﬁ):&I . 0< £ < 1.
and the rear portion by 4 , ‘
g = %-1} - arcsin v/n + fﬁ?iuzmﬁ)] s LS Es Ee.

This shape is optimum for both the hypersonic and low subsonic extremes.
The coordinates of the end point depend on the thickness ratio T, the
speed ratio s, and the temperature ratio TP/Ti, being determined

by the condition fg = - l/rej. Typical positions of this end point
for the hypersonic case are indicated in Fig.2 on the rear portion of

the optimum body which is shown dotted.

To evaluate the drag coefficient it is appropriate tc take

Oc in the form

e
NE
o, = | ’ Sl d
o]

noting that the integration on n extends over the range C through
1 (the forward portion) and back to ng (the rear portion). For

convenience this may be used in the alternative form

-1 an ¢ NF an
afg=2j ”E‘éd””j ngE dn
fe) o]

where dn/dg is to be evaluated from the pcsitive siope of the forward

portion.

la
vy
i
I
TN
gg
\....JN‘ »
(@]
A
Yy
A
}—J

2 3 3
°fe = 13 %‘Inf (“2'”2')]

where I (a, b) is the incomplete Beta function defined by

X
/' ua“l(l—u)b“l du

By (a,b) ‘o
WD TR R T T a=l,. \b-1
u T(1-u) du
o)

N
b

N
-

and B(a,b) 1is the Beta function, a,b > 0, 0
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Thus the drag coefficient of the optimum body of given length-

and wetted area is given by

o)

2 ~
- 2 r - 3 3
(5.16) CD = 2 {nf "‘"“16 €gT ! J’ﬂf (“2—* . E)]}

-

5.2.3 Given length and volume

The thickness and wetted area are free so that Kp = -aj

a d either ng =0 or fg= l/TEj.

The first integral gives thes condition

(5.17) (Kgng = ay + & o572 #2) ng = Kp.

if ng is zero K; is also zerc. In

ct

he hyperscnic extreme, j = O,
ag = 0, (3.3) shows that thezshape of optimum body, with K; = Ky = 0,
would be the parabola n = § , which clearly does not satisfy the
condition ng = 0. The appropriate end-conditions are thus

fig = - 1/1e9, ng # O.

Applying the first integral at the maximum point gives the
condition Kz = K; for the hypersonic case. Thus the fore part of

i

the extremal arc is described by

(5.18) Inz\(%,

Bl
S

and the rear part by

(5.19‘) 2 - *—, 2(:;; }

[N

This shape is shown in Fig.2 with the rear of the body dotted and

typical end points indicated.
After some reduction the drag coefficient of this body can
be shown to be
?3/2
2, 2 ) [ 3 3 }
+ 2-12(,=

g TG ne @3 )

where T{n) 1is the gamma function.

P

(5.20) Cp = 2

[
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Conclusions

The shape of the slender body of revolution, which minimises
the drag subject to constraints on the length, thickness, wetted area
and volume, has been investigated. The analysis has been presented
in a general form which provides expressions, in both the hypersonic
and low subsonic extremes, for the shape of the extremal arc and its
associated drag coefficient. Detailed results have been presented for
the optimum hypersonic bodies only. By using the slenderness assumption
to simplify the expression for the drag it has been possible to find
closed analytical forms for these optimum shapes. The problem is
solved as one of iayer type in the calculus of variations, two of the
constraints on thickness, length, wetted area and volume being fixed

while the other twc remain free.

When the thickness of the body is one of the quantities fixed
the optimum shapes are expressed by simple power laws.  Thev are
illustrated in Fig.l. Thus for given thickness and length the optimum
contour is.a 2/3wpower law, while for given thickness and wetted area

it is a cone, and for given thickness and velume a parabola.

When the thickness of the bedy is free the maximum diameter
occurs ahead of the base of the body. The optimum contours are
illustrated in Fig.2., For given wetted area and volume the body
closes. For both given length and wetted area and given length and
volume the body has a blunt base. The coordinates of the end points
lepend on the thickness vatic 71, speed ratio s, and temperature
ratio TP/Ti, being determined by the value of the final slope., TFor
values of the temperature ratio likely to be experienced the magnitude

of the blunt base will bs very small,

For thickness fixed bodies the drag ccefficient has a
constant value 2, due to the incident molecules, to which is added a
small contribution due to the reemitted molecules, which depends on
the thickness ratio, speed ratio, and temperature ratio. Typical

values of Cp for the 2/3-power law body are shown in Fig.3.
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APPENDIX

SIMILARITY LAW FOR LONGITUDINAL CONTOURS.
OF OPTINMUM BODIES IN FREE-OLECULAR FLOW

&

The particular longitudinal contours derived in section 5 of
this paper minimise the drag, in free-molecular flow, of a body of
revolution. The author has since been able to show that these solutions
are not restricted to this one case but can be used without further
analysis to find the corresponding longitudinal contours which minimise
the drag of bodies of arbitrary cross section. This is possible
provided the bodies are slender and each cross section is geometrically
similar to the base cross section. For these bodies the following

similarity law exists :

The shape of the optimum longitudinal contour of a body of
arbitrary, but prescribed, cross section is identical with

the optimum longitudinal contour of an axisymmetric body,
provided the drag, wetted area and volume of the axisymmetric
body, and two parameters depending on the speed and temperature
ratios of the flow, are replaced by proportional quantities
appropriate to the body of arbitrary cross section, the factors
of proporticnality depending only on the shape of this

prescribed cross section.

The detailed form and the derivation of this law will be given in the
paper referenced. Clearly this similarity law offers an important

generalisation of the results obtained in the main paper.

Reference

E.A, Boyd., Similarity law for optimum bodies in free~molecular flow.

Astronautica Acta. To be published.
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