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Abstract 
 
Characterising maintenance costs has always been challenging due to a lack of accurate prior 
cost data and the uncertainties around equipment usage and reliability. Since preventive 
maintenance does not completely prevent corrective repairs in demanding environments, 
any unscheduled maintenance can have a large impact on the overall maintenance costs. 
This introduces the requirement to set up support contracts with minimum baseline 
solutions that warrant the target demand within certain costs and risks. This article 
investigates a process that has been developed to estimate performance based support 
contract costs attributed to corrective maintenance. These can play a dominant role in the 
through-life support of high values assets. The case context for the paper is the UK Ministry 
of Defence. The developed approach allows benchmarking support contract solutions, 
enabling efficient planning decisions. Emphasis is placed on learning from feedback, testing 
and validating current methodologies for estimating corrective maintenance costs and 
availability at the Equipment Type level. These are interacting sub-equipment’s that have 
unique availability requirements and hence have a much larger impact on the capital 
maintenance expenditure. The presented case studies demonstrate the applicability of the 
approach towards adequate savings and improved availability estimates  
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1 Introduction 

The evolution of business services are strongly dependent on the correct functioning of 
modern technical systems. These systems warrant operational performance and efficiency 
which dictates the amount of maintenance required; a consequence of the design and 
failure modes encountered during operation (Ahn and Kim, 2011).  Maintenance (both 
preventive and corrective) therefore has an impact on both cost and operational availability.  
 
Two aligned fields that deserve mention at this point are Product Service Systems (PSS) and 
Health Management. PSS (Qu et al, 2016), which is also linked to servitization (Baines et al, 
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2009), stemmed from some OEMs transforming their business model from selling a product 
to selling a service. In the product scenario, income is determined from the original sale and 
future income is dependent on the sale of spare parts. In the service scenario, a 
maintenance contract is sold at the same time as the asset and hence a steady monthly 
income is derived, in return for effective maintenance; the OEM has become the maintainer 
and captured more of the value chain. Though, with the large number of equipment to 
maintain, OEMs and the customer need to find effective ways to handle the sheer amount of 
data that is available. For strategic maintenance analysis, this promotes the need to move 
away from component level focus to the Equipment Type (ET). ET is any set of sub-
equipment, which operate together that have a unique demand profile. It can belong to 
various platforms, e.g. tanks or aircraft, or even role equipment that is not permanently 
fitted, e.g. missiles. ETs are interacting sub-equipment’s, which have unique availability 
requirements and hence have a much larger impact on the capital maintenance expenditure. 
On the other hand, health monitoring arose to better inform the OEMs of the behaviour of 
their assets in service (Baines and Lightfoot, 2014). It provides data from sensors on the 
asset and processes it, via diagnostic or prognostic algorithms, into actionable information. 
Figure 1 shows a generic operating environment that can be found across the engineering 
sectors. Within the figure, the OEM (Original Equipment Manufacturer) supplies an asset to 
an operator who is going to use it as part of a business to make a profit. The operator needs 
the equipment to be regularly maintained and the maintainer will have access to the OEM’s 
supply chain for spare parts. This is all done with respect to certain standards, certification 
and policies. It demonstrates some of the interactive complexities that can arise during a 
service, which must be investigated to manage system availability and reduce surplus costs 
(Erkoyuncu et al, 2015). Accordingly, the figure also demonstrates that the ET level involves 
e.g. a radar, engine, and sonar; as compared to the aircraft level, system level or component 
level. This means that an ET could be present in multiple equipment’s and may vary over 
time based on the customer demand profile.  

 

 
Figure 1. The operating environment 
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Within the overall operating environment, the effectiveness of each constituent system 
becomes important. System effectiveness is the ability for a system to achieve its required 
operational capability, from either a cost or availability viewpoint. This is in order to 
embrace the constituent parts of availability – namely reliability, maintainability and logistics 
support (Khan et al 2015).  The primary aim over here is to define, deliver and evaluate how 
an optimal system performance (e.g. availability) can be achieved at affordable through-life 
costs. Having an integrated (and iterative) setup can help develop a comprehensive support 
strategy to optimize functional support, leverage existing resources, and quantify life cycle 
costs (demand for logistics). Such an integrated logistics support is widely used in 
commercial services organisations (Keeffe and Ormsby, 2015). This is used as a business case 
for judging an optimum balance between the time invested in performing certain actions – 
such as Preventive Maintenance (PM) and Corrective Maintenance (CM).  In this context, the 
UK Ministry of Defence (MoD) is developing several approaches to manage its high value 
equipment/assets; this is indicative of a growing awareness of the problem – rooted in the 
need to: 

 Improve the availability of equipment and vehicles (Erkoyuncu et al, 2014), 

 Reduce the turn-around times for aircraft (Ayeni et al, 2016), 

 Provide an efficient and cost effective maintenance service (Baines and Lightfoot, 

2014), 

 Mitigate against the cost impact of warranty claims (Khan et al, 2014a). 

There are three driving forces at work here. The first relates to the collapse of the world 
economy since 2008.  For example, in aerospace the economic downturn has led to rising 
fuel costs and increasing taxes. Cost savings have therefore had to be found and tackling 
wasteful and inefficient maintenance has become a prime target for cost reduction.  
Likewise, government spending cuts, particularly evident within the UK, have significantly 
downsized both armed forces personnel and the purchasing of spare parts. This forces 
maintenance activities to modernize and become smarter. The second driving force is the 
increase in contracting for availability.  Here maintenance and repair is the responsibility of a 
3rd party who guarantees the customer that they will have a specific availability for their 
equipment or vehicle.  Maintenance plays an important role in contracting for availability, as 
the commercial contracts needs to define who is responsible for these costs: re-test, re-
certification, etc.  The final driving factor is down to the increased complexity of engineering 
systems coupled with a reduction in the skill-set of the relevant maintenance personnel.  
 
So the availability of equipment is an essential driver. Within the defence sector, availability 
is influenced by several factors which include logistics, equipment, personnel, information 
and facilities (Hastings, 2015). The authors of this paper are studying these issues by 
focusing on selected subsystems – that are referred to, within the UK MoD and in this paper, 
as Equipment Type (ET). 
 
Each ET produces available days (Equipment Available Days or EADs) during a certain 
planning period. The process is managed by the Equipment Support Continuous 
Improvement Team (ESCIT) of the UK MoD who estimate the resources required for 
maintenance to meet an availability target for an equipment type at affordable levels. 
Therefore, MoD ESCIT’s requirements are: 

 To develop an analytical model that is simpler and faster to run, 

 To establish a budgetary baseline, generally for short term planning (e.g. one year) 
and with the possibility of ongoing inputs updates and recalculation, 



 To obtain a benchmarking criterion even when data maturity is not enough to run 
more complicated models: modelling at equipment type level requires simplified 
high level inputs. 

 

1.1 Contributions and importance of this work 
 

 
The aim of this article is threefold: (1) to develop a methodology to estimate the cost of 
maintenance resources required to achieve a certain availability level, (2) to assess the 
maturity level and confidence levels on the prediction availability, and (3) to validate the 
analysis and result.   
 
Keeping within the research scope, careful thought was placed on selecting the title of the 
article; which suggests that the paper presents “perspectives”. The aim is to indicate that 
the authors have adopted a pragmatic approach to the problem rather than providing a 
comprehensive review. Fortunately, there are other much detailed literature publications 
that have carried out rigorous reviews on related topic (e.g., see Gao et al (2015), 
Schwabacher and Goebel (2007), Travé-Massuyès (2014) and Zalewski and Wojcik (2014)), 
however, to the best of the authors’ knowledge, there is only limited published work that 
discusses performance support contracts at the equipment type level. None-the-less, this 
article should still be of general interest to commercial personnel and researchers who are 
working in the areas of maintenance design and performance management. The paper also 
presents some challenges with current MoD procedures, and hence the efforts are mainly 
focused upon the military environment; however, other disciplines should be able to find 
the contents of this paper appropriate. Finally, the contributions in the paper can be 
summarised as follows:  

 This is the first paper to define a process to trade-off cost and availability from CM 
actions, 

 This is the first paper to identify the list of resources required at the Equipment Type 
level to deliver maintenance, 

 Development of a methodology which can be used as a decision support to estimate 
CM costs, 

 
The proposed study has its merits. It addresses a critical need by presenting a cost 
estimation technique for availability contracts. The solution can also emulate the costs at 
different levels of granularity i.e. across organisation. But more importantly, the paper has 
managerial implications at the ET level: 

 For system manufacturers, it offers an opportunity to develop contracts to the 
system integrators that take in to account the CM costs and availability, 

 For system integrators, it provides an approach to estimate the support costs  and 
availability so that bid proposals with higher confidence can be put forward to the 
system operators, 

 For system operators, a systematic process is offered to estimate costs and 
availability across the supply chain. 

 
 
 



1.2 Organisation of the paper 
 

The paper is structured as follows: Section 2 discusses the literature review. The 
methodology, adopted by the authors to carry out this research work is detailed in Section 3. 
This is followed by the development of a cost estimation methodology in Section 4. Section 5 
presents the implementation of the concept, and discusses its implications to estimate the 
CM. This is supported by a validation of the methodology from the MoD team. Finally, 
Section 6 highlights the conclusions and the future work from the research. 
 

2 Literature review 

2.1 Maintenance Practice 
 

Maintenance programs for key systems such as avionics, engines and landing gear, are made 
up of several types of maintenance policies such as preventive, corrective, and on-condition 
maintenance.  Preventive maintenance is the process of performing specific inspections, 
tests, measurements, adjustments or part replacements, specifically aimed at preventing 
failures.  These preventive actions are taken at pre-determined intervals based upon a time 
interval such as hours or days, or the number of operations, such as the number of landings 
in the case of landing gear. Corrective maintenance follows the principle of “run to failure” 
where the effect is not necessarily serious or disruptive to the mission. The CM action will 
consist of replacing a failed system, subsystem or component to ensure that full, fault-free, 
operating condition is restored. Of course, CM also covers those unexpected failures which 
can be serious or disrupt the mission. On-condition maintenance can support PM where 
components are replaced based upon observation and test results.  Each of these activities is 
further supported by CM which will only be conducted in response to discrepancies or 
failures during operation. All these strategies provide for redesign if necessary to solve fleet–
wide issues and will result from a growing amount of evidence based upon the actual usage 
of the system. The process should ensure that engineering modifications are made in order 
to address safety or reliability issues which were not anticipated in the original design. 
Ideally, information from maintenance activity, performed by all users of the system, should 
feed back into any redesign activity; however, this often does not happen. 

 

Therefore, optimizing maintenance becomes an essential part of any change in maintenance 
strategy for operators and the service solutions that MRO suppliers can provide. This helps 
in reducing the levels of CM and PM and hence optimizes maintenance effectiveness on 
aircraft fleets. The changing face of the aviation industry requires that maintenance 
management becomes increasingly tailored towards individual customers’ needs with cost-
effective solutions being found, offering compromises between customer involvement and 
the level of commitment required from the providers. Figure 2 shows a matrix with different 
maintenance solutions and the level of commitment and partnerships required by the 
operators and MRO providers for a variety of maintenance contract types. It illustrates the 
relationship between the level of MRO Support that is needed against the involvement from 
aircraft operators. Traditional maintenance evolution is depicted along the diagonal from 
bottom right to top left. Time and materials, equating to “fix when broke”, involves low 
(reactive) participation from both Operator and MRO. Predictive maintenance significantly 
improves this state by being more proactive, and gets both parties more involved. CBM (top 
left) represents, for a number of companies, a highly desirable business model for proactive 
maintenance, but demands high commitment from both sides. Other possibilities are also 
shown in the figure, including Through Life Support. This is where an MRO contracts to 



maintain an asset through its life, taking total commitment from the MRO and low to 
medium involvement from the Operator.  

 

Figure 2. MRO Support vs Operator involvement for maintenance contract types 

2.1.1 Availability 
 
Availability is the key requirement of any complex engineering related service and support 
provider. The delivery of a capability or an output and the relevant equipment must be 
available when needed. No matter how capable an asset is, and how much potential it has, if 
it does not work when needed, it is virtually useless.  According to NATO ARMP-4 (2001), 
“availability is the probability that the system or equipment used under stated conditions 
will be in an operable and committable state at any given time”.  
 
The definition highlights at “any given time” but this has to be tied in with the phrase 
“committable” indicating the period of standby before the required mission starts. The 
equipment is assumed to be in full working order and ready for the mission and thus is 
available for use at a constant level going forward.  However, once in use, the availability 
level will fluctuate. Consequently availability metrics are usually measured as functions of 
time and in their simplest form are measured as a ratio of available time to total time.  The 
available time is the “uptime” and the remaining time is therefore “downtime” or the time 
the equipment is unavailable, as illustrated in Equation 1.  This equation does not separate 
the time spent on PM or CM, as it considers the total time. Uptime can be viewed as 
reliability and downtime – as time to repair.  If downtime is considered as the time to repair, 
and the uptime as the time it is working between failures, it is possible to convert uptime 
and downtime to MTBF and MTTR (Khan et al, 2015). Consequently:   
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In an ideal situation, there is no consideration of standby periods or of logistic and 
administrative delays. Thus, issues that can cause delays – including time to complete 
paperwork, time waiting for manpower, tools, test equipment and of course time waiting for 
spares – must be considered. Whilst the operator is really interested in operational 
availability, it must be noted that reliability, maintainability, supportability and the other 
constituent parts of availability are crucial and must be established and optimized for the 
economic and environmental success of systems. When there is no proper PM routine 
established, CM accounts for majority of the total maintenance costs (Erkoyuncu et al 2015).  

In many businesses, the availability of a system is typically only measured as a factor of its 
uptime and downtime without really assessing or understanding its actual reliability, but it is 
clear that once the design is final, improving either reliability or maintainability is very 
difficult (Khan et al, 2014a). But often problems do not get identified until the whole system 
is built and users who are involved in trials and tests under representative conditions; have 
provided their feedback (Bano and Zowghi, 2015). At this stage, however, it is too late to 
make design changes purely for availability improvements, hence the problem of estimating 
the cost trade-off represented in preventive and corrective actions does not manifest itself 
until the equipment enters operational service. Consequently, the influence of CM (or 
downtime) does not become clear until it happens, perhaps well into the life cycle of the 
system with all the attendant frustration and loss of availability. It is important to note as 
well that administrative delays and costs are largely ignored at the design stage; yet it is 
mainly administrative delay that drive the level of operational availability and which has a 
greater effect usually than CM or PM (Khan 2014a, Khan 2014b). 

2.1.2 Maintenance cost estimation 
 
Datta and Roy (2010) have reviewed the main cost modelling techniques for availability 
contracts: bottom-up, top-down and hybrid costing; what-if scenario analysis, end-to-end 
estimates, analogy estimates and joint cost models. Thus, the overall problem consists in 
estimating how the expense on a certain level of resources is going to impact availability. 
Below, the main two approaches to address this problem are covered: the so called mean 
based or analytical solution and the use of simulation techniques, such as discrete event 
simulation (DES). There exist some attempts to analytically model the problem of availability 
and cost estimates (Rahman and Chattopadhyay, 2008). However, this approach is purely 
theoretical and relies on many variables very difficult to know in reality.  On the other hand, 
as mentioned before, there exists a significant amount of simulation research aimed to 
model maintenance in the defence sector. Some representative examples are outlined 
below. 
 
Bender et al. (2009b) assessed a queue server maintenance model through DES at system 
level. They studied how microscopic scale uncertainties in the inputs (e.g. arrival times) 
amplify the effects on the long term fleet availability. In addition, they determined the 
causes for those magnification effects (Bender et al., 2009a), being the main one the decay 
phenomena (.i.e. the failure rate grows during equipment life due to aging). Moreover, they 
added the evaluation of how the spares inventory management strategies affect the result 
(Sherman et al., 2011). Hagmark and Virtanen (2007) performed a comprehensive simulation 



approach that integrates the result at the top identity through multiple states of the 
subcomponents and their interrelation using logic gates.  Madu et al. (1995) modelled a 
maintenance float system and provided a decision support tool to assess how availability can 
be improved or resources diminished (e.g. the effects of improving reliability or maintainers 
skills). Similarly, Peito et al. (2013) built a highly flexible DES maintenance float system 
model to study the effect of the main factors on performance indicators (cost and 
availability) in a production environment.  
 
In addition, Upadhya and Srinivasan (2003) studied aircraft availability estimation. As 
novelties, the model included the consideration of multiple failures (opposite to the binary 
“failed” or “working condition”) for each component to integrate the result for the 
equipment as a whole; and failures were separately modelled as due to battle damage and 
unreliability. The outcome showed the effect of logistic delays on the availability during 
battles (short term planning). They also analysed the results when considering different 
missions types and extended it to peace situations (Upadhya and Srinivasan, 2005; Upadhya 
and Srinivasan, 2012). Orsagh et al. (2003) undertook a very similar approach, considering 
battle damage and unreliability failures to simulate mission conditions, combined with the 
analysis at component level. The model is represented in Figure 3. 
 

 

Figure 3. Block diagram of mission-based support cost modelling system. Source: (Orsagh et 
al., 2003) 

Regarding other simulation methods, Monnin et al. (2007) used simulation based on 
Stochastic Activity Networks (which are a type of Petri Nets) to analyse how regeneration 
(i.e. on-line maintenance) contributes to availability. They modelled battle damage and 
unreliability failures as well, but the problem was not analysed from a costing perspective. 
Moreover, Simeu-Abazi et al. (2014) simulated a maintenance workshop following a queuing 
network-based methodology to evaluate the required service points and spares required. 
Focusing on the spares management, the impact of stock levels on availability has not been 
extensively studied (Ghodrati et al., 2010), and they mean an important part of the 
maintenance costs and can significantly affect availability. Some specific research has been 
carried out (Ghodrati, 2005; Sheikh et al., 2000), but the latest example is the study 



developed by Ghodrati et al. (2010), which incorporates the influence of usage conditions to 
failure prediction and the influence of stock levels on availability.   
 
All of the presented simulation models provide a lot of flexibility when characterising the 
maintenance system and its working conditions. Moreover, all these models are really useful 
to study and assess the influence of the inputs on the result or the system behaviour for a 
given set of conditions.  Even though mean based solutions lack the heuristic characteristic 
of maintenance processes (due to all the uncertainties present), ESCIT approach 
compensates this by associating a level of risk to the solution. 

2.2 Research Gaps 
From the above review, a few research gaps have been identified:  

 There is a need to establish a budgetary baseline, generally for short term planning 
and with the possibility of ongoing inputs regarding updates and recalculation. This 
is because there are unseen maintenance related tasks which are not accounted for 
during the design stage. 

 Currently, majority of the models focus on component level analysis, which requires 
detailed failure records as well as complex and time-intensive calculation 
procedures. There are no approaches that account for incorporating Equipment 
Type level analysis. 

 Maintenance is a complex term, comprising a variety of actions on any kind of 
technical systems, which deteriorate differently and follow random behaviours. 
There is no unique universal model that covers all maintenance aspects. In spite of 
the multitude of models published in papers so far, the majority can be applied only 
to specific problems rather than taking a holistic perspective. 

 Most of the research conducted in maintenance optimisation processes mainly 
considers the procession environment, which is often different from the military 
context. 

 Trade-off between effort to apply the maintenance procedure and savings gained is 
very often highlighted as a challenge. It happens that the potential benefits of a 
better decision making process are hardly compared to the time and effort invested 
in methodology development and data gathering.  

 Not many validated methodologies have appeared in scientific literature. 
   
This paper primarily addresses the first two listed gaps. The developed process allows to 
trade-off cost and availability within ET context.  
 

3 Research Methodology and Identifying the Current Practice 

This study has actively been involved with maintenance engineers from defence 
backgrounds.  The paper adopts a similar research methodology used in Erkoyuncu et al 
(2016) i.e. the Soft Systems Methodology (SSM) proposed by Checkland (1981). It is used to 
capture the current practice and challenges in planning maintenance activities and to build a 
new framework to be able conduct the trade-off for resources required for CM to 
understand the impact on cost and availability at the ET level. The SSM was adopted due to 
its flexible approach to elicit information from the real world industrial context of 
maintenance planning and to improve practices with optimising cost and availability for 
complex engineering products.  The research participants initially involved three engineers 
that illustrated the significance of the maintenance challenge with respect to cost and 
equipment availability and how the maintenance planning was conducted. These pre-
interviews were used to develop a survey/questionnaire to collect relevant information 



about CM plans. This approach was adopted to be relevant for two reasons: 1) it tackles soft 
problems where there is a lack of definition of the investigated concept, 2) it offers to 
present a view of what could exist in the real world. For these reasons, the SSM approach 
was adopted against other methods, such as structured systems analysis, business process 
modelling and value stream.  

  
In the process of conducting research, the authors have utilised a multi-method design 
involving the use of: document analysis, workshops and semi-structured interviews. These 
methods (a workshop and 5 sets of semi-structured interviews lasting on average two hours) 
were used to gather and analyse data from 6 key participants from the UK MoD1 ESCIT team 
with industrial experiences ranging from 8- 35 years, as described in Table 1. The type of 
data elicitation technique was influenced by the industrial context and nature of the study. 
The key informants were selected based on their extensive knowledge and willingness to 
share their knowledge and skills for this research. These individuals were considered to have 
in-depth knowledge in maintenance planning. The process that was adopted for the 
methodology is covered in Figure 4. 

 
Table 1. List of participants 

# Position of 
attendee 

Background Experience Contributions 

Participant 
1* 

ESCIT Team 
Leader 

Reliability 
engineering 

34 years Problem Overview, 
Requirements Definition, 
Scope Clarification and 
Process Validation 

Participant 
2* 

Programme 
Leader 

Service and 
support 

28 years Process Development 
phase, Constant, Process 
Updates,  each 
development stage 
approval, and Process 
Validation 

Participant 
3* 

Support 
Solution 
Specialist 

Reliability 
engineering 

22 years Process Development 
phase, Process Updates 
and Process Validation 

Participant 4 Project 
Manager 

Operational 
performance 
engineer 

12 years Process Development 
phase 

Participant 5 ILS Manager   Maintenance 
engineering 

8 years Process validation 

Participant 6 Maintenance 
Technician 
Lead 

Maintenance 
engineer 

15 years Process validation 

* participants took part in the pre-data collection process and validation process 
 

 
During Phase 1 (stages 1 and 2) of the research project, an initial list of cost and availability 
drivers were developed. In Phase 2 (stages 3, 4, 5 and 6), the developed list was further 
refined, additionally the process for CM trade-off was developed; leading to the finalised 

                                                           
1 For confidentiality purposes and at the request of participating individuals, anonymised 
descriptions of informants are provided to avoid making the individuals easily identifiable at 
least to those familiar with the defence or naval industry.  



process and list of cost and availability drivers from CM activities. Phase 3 (stage 7) focused 
on developing an optimisation approach to estimate the cost and availability for CM plans to 
define the exact amount and proportion of CM activities at the equipment type level.  
 

Figure 4. The adopted research methodology for data collection and model development 
 

3.1 Familiarisation of corrective maintenance plans (Soft Systems 
Methodology stages 1 and 2) 
 
This involved a comprehensive review of related literature in order to understand the impact 
of the CM activities on the overall maintenance plans in terms of cost and availability impact 
and the state-of-the-art in academic related research. This consisted of topics such as the 
current maintenance approaches, key factors driving CM, cost of CM, link between 
equipment availability and maintenance, processes and methodologies which are used in 
practice or have been proposed for the optimisation of cost and availability outcomes from 
CM activities. Subsequent to the literature review, a series of industrial interviews (3 semi 
structured interviews with Participant 1-3, each lasting 2 hours) were carried out with the 
UK MoD ESCIT team. In alignment with the targets set out for this research, the focal point 
of the industrial data collation was in line with the first three stages of the Soft Systems 
Methodology (Checkland, 1989).  
 
The goal of the industrial engagement was to address: 

 How are maintenance plans developed? 

 What are the challenges of trading off cost and availability for CM activities? 

 How can the cost of CM be estimated? 



 How can the equipment availability be estimated in light of CM activities? 

 
The literature review helped understand the state of maintenance research around CM 
processes at ET levels. 
 
The literature review aimed to provide insights for industrial practitioners and academic 
researchers on the major trends, significant works, and future directions on maintenance 
optimisation.  Along these lines a detailed literature review was conducted. The literature 
search was limited to the timeframe between 1990 and 2016. An extensive review of 
literature and scientific papers on maintenance optimisation models were performed using 
keyword search (maintenance, trade-off, CM, PM, cost and availability) in the major 
databases. In this process a range of journal and conference articles around maintenance 
optimisation was reviewed.  A variety of electronic databases contributed to the findings 
including: Scopus, Emerald insight, Science Direct, IEEE Xplorer, and IET Digital Library. One 
of the key findings of the literature review was the lack of breakdown of cost and availability 
drivers in maintenance optimisation, also there was a lack of information provide at the 
equipment type level, where there was a breadth of content at the component level. For the 
semi-structured interviews (three in total with Participants 1, 2 and 3), experts commented 
on why it is growing in importance to measure the impact of CM activities on cost and 
availability. The interviews also put an emphasis on what are the cost and availability drivers 
and how these s can be modelled to minimise the effort required for CM.   
 
The results from the interviews and literature review lead to the development of a further 
detailed questionnaire for Phase 2 of the research methodology. The questions aimed to 
validate the findings across a broader set of participants and in a more detailed sense. 
Further details on the survey are provided in Section 5.  
 

3.2 Development of an initial list of cost and availability drivers (Soft 
Systems Methodology stages 3 and 4) 
 
An essential part of the research effort has been applied to gain cost and availability 
knowledge for CM practices. The second phase of the research methodology focused on 
reviewing the current practice through documents obtained from ESCIT and six face-to-face 
interviews  each lasting two hours (with Participant 1, 2, 5 and 6) and one workshop 
(including Participant 3, 4 and 6), which also lasted two hours. In this process, the industrial 
engagement was managed iteratively to elicit a list of potential cost and availability drivers 
based on three challenging projects that the participants delivered within their context. The 
interviews also explored the current processes for managing maintenance and estimating 
the costs and availability of CM activities. Subsequently the workshop aimed to validate the 
list of cost and availability drivers and processes for maintenance planning. This approach 
has led to the basic understanding of how cost and availability is considered for CM 
activities.  
 
The support planning framework comprises a series of processes to calculate maintenance 
costs: 

 Levers: they are a set of tools aimed at calculating the cost of CM requirements (e.g. 
maintainers and spares) to deliver the required availability at a certain risk and cost. 

 Combi-lever: is a tool that aggregates the results given by the individual levers, 
providing an overall figure for cost at a certain risk level for an ET. 



 Trade-off analysis between PM and CM maintenance): study of the effect of 
scheduled maintenance on failure rate and total maintenance cost. 

 
Through the document analysis it was necessary to understand the basis for current cost and 
availability determination in delivering maintenance. From the document analysis, it was 
elicited that at present, the ESCIT team utilises parameters called “levers” for the CM. There 
are five levers and three sub-categories for each one, as shown in Table 2. The levers 
include:  

 People: refers to the different type of people (e.g. skills) required to be able deliver 

the service and support.  

 Spares: refers to the ET level demand for spares.   

 Information: refers to the range of information that is required to be able to 

complete the service and support requirements.  

 Test equipment: refers to the test equipment that is required to be able to diagnose 

the condition of ET. 

 Facilities: refers to the facilities required (e.g. hangers) to be able to conduct the 

maintenance. 

 
These levers represent the resources required in order to deliver CM. Each lever also has 
subcategories, which are level (e.g. the different sets of skills of maintainers), scale (e.g. the 
number or quantity) and location (e.g. the physical localisation). The levers define the cost 
and time that will be invested in CM; and they can be modified to influence the availability 
and cost in different ways. For example, adjusting the values of the levers is equivalent to 
establishing safety stock levels. CM activities typically cannot be planned and in order to 
cope with them, investment in safety stock (in terms of spares, maintainers, etc.) is 
compulsory. PM activities are scheduled so the cost and time are known, in an approximate 
way, in advance. 
 

Table 2: Levers used for CM in UK MoD ESCIT 
 

Lever Lever Type Lever Variable 

 People  
1.1 People (maintainers) Level 
1.2 People (maintainers) Scale 
1.3 People (maintainers) Location 

 Spares  
2.1 Spares Level 
2.2 Spares Scale 
2.3 Spares Location 

 Information (Tech Docs)  
3.1 Information (Tech Docs) Level 
3.2 Information (Tech Docs) Scale 
3.3 Information (Tech Docs) Location 

 Test Equipment  
4.1 Test Equipment Level 
4.2 Test Equipment Scale 



4.3 Test Equipment Location 
 Facilities  

5.1 Facilities Level 
5.2 Facilities Scale 
5.3 Facilities Location 
6.0 Preventive Maintenance  

 Modifications  
7.1 Modifications Reliability 
7.2 Modifications Maintainability 
7.3 Modifications Redundancy 

 
Finally, the combi-lever aggregates the results of each lever as a linear combination to 
reflect the overall CM requirements. In other words, the effects of each lever are considered 
independently (i.e. parallel approach) and then aggregated. The document analysis also 
revealed that the ESCIT team refers to availability and time as the Equipment Available Days 
(EADs). This captures how many days the equipment will be available for use. The EADs 
agreed and the maintenance planning must be evaluated in order to accomplish these target 
days. In MoD, the term “EADs at risk” is used to define the risk of not obtaining the 
predetermined EADs. The more money is spent on maintenance, the more chance that the 
EADs will be achieved or the lower the risk of not obtaining the required EADs. However, an 
optimum balance between money invested and EADs is needed according to the usage 
requirements of each type of equipment. Accordingly, as the investment increases, the EADS 
at risk level decreases as the likelihood of achieving the performance target is more 
achievable. It was also identified that the ESCIT team has developed a methodology to 
calculate the relationship between availability at risk and cost, through profiles for each 
lever for a given set of conditions (e.g. EADs required and failure rate). It is also necessary to 
calculate the aggregate cost and risk for each lever. 

 
This phase of the methodology also involved process development, which was driven by the 
results from the stages 1-4. In this phase an iterative procedure was followed, which 
consisted of three semi-structured interviews each lasting two hours with Participant (1, 2, 5 
and 6). The key questions that were asked in the interviews included:  

 Do you have a failure distribution for each type of equipment recorded?  

 Is it possible to represent failures not only with MTBF but also with failure 
distribution (Weibull/Normal) with data available in MoD? 

 Can the impact of alternative resources allocated for CM be measured in terms of 
cost and availability?  

 
As an outcome of this phase, an optimisation process was built and embedded into a MS 
Excel file, which is presented in Section 4. In this phase the feedback from the interviews 
helped with understanding that there is no established link between any CM action that has 
been undertaken and improvement in availability and cost and MTBF. For example, for an 
individual ET, there is a need to track how often a vehicle breaks down and from there the 
failure behaviour is reflected. This relies on information from the faults reporting systems. 
However, the maturity of the data varies for different equipment types and there is rarely 
100% of accuracy and comprehensiveness in the data. It was stated that as a result there is 
typically further reliance on expert opinion. This factor was realised to be important when 
considering how to represent failures through probability distributions. Participant 1 and 3 
highlighted that “if data is not available we have to guess how this data set would look like 
and there can be massive holes in data sets”. There is an intention to ensure that the data 
associated to critical parts is mature. The complexity of the data challenge is also associated 



to the changes in the failure rates over time. This in turn creates further challenges with 
trading between cost and availability/time of CM interventions. In parallel, it was highlighted 
that the trade-off between how long you need for maintenance and how much time you 
save because of the maintenance is also of importance and currently there is a lack of 
processes to assist with this analysis. 
 
This paper focuses on how the CM activities can be planned. In the process of delivering CM, 
it was also revealed that there are two main types of scale levers. First, the spares lever 
works in conjunction with an inventory planner and inventory analyser. Secondly, the 
queuing levers (people, information, test equipment and facilities) are based on queuing 
theory models. In the following section, these two main types of levers are explained. 

3.2.1 Spares Lever 
 
The quantity of spares needed is given by the lever “Scale of Spares”. Its output is a ROI 
profile relating the cost of spares to meet the required availability at a given risk for an ET. 
This lever works in two steps: 

 First, the relation between the safety stock level or First Demand Availability (FDA) 
and the correspondent availability and availability at risk is calculated. The profile 
relating FDA with %EADs at risk is obtained. 

 Second, the cost of each safety stock level is calculated, using the inventory planner 
and inventory analyser. The profile relating to FDA with cost is obtained. 

 
After that, both profiles merge into the final output, %EADs at risk vs CM cost, which is 
consistent across all the levers, and allows obtaining the aggregated result through the 
combi-lever.  The impact of having a certain safety stock level on availability is estimated 
using two main measures: the demand for a particular spare (i.e. equivalent to its failure 
rate) and the delay that it produces when it is out of stock or DPT (Demand Processing 
Time). The stock level is common for all the spares for an ET, and the delay is computed as a 
weighted average for all the parts. Figure 5 shows a histogram recording the delays for 
spares, used to work out the mean delay for out of stock parts; whereas the formal 
calculation of EADs lost is given by Equation 2. 

𝐸𝐴𝐷𝑠 𝑙𝑜𝑠𝑡 = ∑(𝐷𝑒𝑚𝑎𝑛𝑑 𝑓𝑜𝑟 𝑝𝑎𝑟𝑡 𝑖) · (1 − 𝐹𝐷𝐴) · 𝐷𝑃𝑇̅̅ ̅̅ ̅̅

𝑛

𝑖

  

 
[Equation 2] 

 
Where the term (1 − 𝐹𝐷𝐴) represents the probability of spares being out of stock. 



 

Figure 5. Demand Processing Times (DPTs) for out of stock Demands. Source: ESCIT internal 
documentation 

3.2.2 Queuing Levers 
 
As said before, the levers for people, information, test equipment and facilities are based on 
queuing theory. That means, the availability estimations are drawn from the study of how ET 
arrives at the maintenance system and waits in the queue for a given number of service 
points. The queuing model used is the Markovian, single channel, multiple server and infinite 
source population, or in queuing notation: M/M/c model. The basic assumptions are that 
the fix time and failure rate follow exponential distributions (i.e. inter-arrival times follow a 
Poisson process). The source population is infinite, where there is a single queue and the 
number of servers is the variable that determines the maintenance performance. 
 
However, the inputs available for this model are three point estimates. In fact, the triangular 
distributions are used to calculate the result at different confidence levels (ten points from 
50% to 99% confidence level from existing internal project documents), as demonstrated in 
Error! Reference source not found.6. The idea behind this approach is that at 50% 
confidence level (CL), half of the incidences will be covered by the solution of the model; 
whereas at a higher CL the solution will potentially cope with more failures or longer times 
to fix. Thus, each CL has a set of inputs artificially/virtually increased to diminish the risk of 
the solution by subjecting the system to tougher conditions. 

 
Figure 6. Three point estimate for the Fix Time 



The model outputs the quantity of each resource to meet target availability at each CL, 
translated in the same form as the spares lever involving: cost versus %EADs at risk.  

3.2.3 Review of current practices 
 

Once the current practices, or “As-Is” analysis was performed, the next step consisted of a 
deductive approach through hypothesis testing (both qualitatively and quantitatively). This is 
to review and validate all the assumptions within the support planning process. 
The review of the Spares levers followed an eminently qualitative analysis based on 
discussion of the assumptions and suggestions for improvement with the ESCIT Team. 
 
The “Queuing levers” were studied in a similar manner: assessing the accuracy of the model 
hypothesis. As explained before, the Scale of People, Information, Test Equipment and 
Facilities are based on an infinite source queuing model. In particular, they are based on the 
so called multiple server, single channel and infinite population source. The main issues with 
this model are: 

 Maintenance systems normally work with a finite population source. An infinite 
source could model the maintenance in a garage, which has potentially an infinite 
source of customers, or how customers queue in the supermarket tills. 

 Queue instability: if arrival times outweigh the throughput of the system, the queue 
would grow to infinite, and this model does not provide a solution. 

 
Therefore, a more suitable model is studied: a multiple server, single channel and finite 
population source. The main differences and advantages of the finite model are: 

 The probability of new ET failure is reduced when the active population is reduced. 

 The queues are always stable. 
 
Theoretically, the finite model is only affected by the average failure rate, but not its 
distribution (Gross and Harris, 1985). However, it still assumes the fix time follows an 
exponential distribution.  As explained in Section 3.2.2, the ESCIT team works mostly with 
three point estimates for these inputs. The concern was to what extent the fix time 
distribution affected the results and if the failure rate distribution did not actually change 
the system performance. Both issues were tested using Discrete Event Simulation by 
modelling a simple maintenance system. DES was used to study the effects of having 
different input distributions because that would have been impossible to do analytically.  
Apart from that, a more mature fix time data set (in air environment, where failure and fix 
records are kept more precisely) was studied to assess its fit to either a triangular or an 
exponential distribution. Finally, the definition of EADs at risk was reviewed and a new more 
robust risk definition was proposed, as explained in Section 4.  
 

3.3 Further refinement (Soft Systems Methodology stages 5 and 6) 
 
The process of validating the collated cost and availability drivers and maintenance 
processes included two workshops (attended by Participants 5-6 in the two instances). The 
refinement was conducted around defining the key drivers of cost and availability for CM 
activities.    
 
Once the proposed finite queuing theory model was approved and the previously described 
issues were tested, the next step consisted of implementing the model across all the Scale 



and Location levers. The task was a reprogramming of the lever tools embedded in 
spreadsheets. As the finite model was implemented, it was tested at two stages against its 
infinite counterpart, using a real Land vehicle case study data set, including: 

 Test for Scale of People lever for comparison against the infinite model. 

 Test at combi-lever stage: test of the combined result of the levers for comparison 
against the infinite model.  

3.4 Development of software tool for CM resource trade-off analysis 
for cost and availability (Soft Systems Methodology stage 7) 
 
An optimisation model was developed using MS Excel. It focuses on aiding engineering 
teams involved in delivering maintenance and guides with CM activities. The platform of 
Excel was selected based on industrial requirements due to its vast availability and due to 
the flexibility it offers. This final stage involved two workshops that were attended by 6 
participants (Participants 1– 6). These workshops focused on using real life data to test 
(whereby two cases from the land and aircraft domain) the optimisation process that has 
been developed. The finalised model was presented and validated by the informants of the 
study based on completeness of model to estimate cost and availability of CM actions.  
 

4 Proposed approach for Corrective Maintenance 

Optimisation  

In Section 3, the current practice for estimating the impact that spares has on availability 
was introduced, as shown in Equation 3: 

𝐸𝐴𝐷𝑠 = ∑(𝐷𝑒𝑚𝑎𝑛𝑑 𝑓𝑜𝑟 𝑝𝑎𝑟𝑡 𝑖) · (1 − 𝐹𝐷𝐴) · 𝐷𝑃𝑇̅̅ ̅̅ ̅̅

𝑛

𝑖

  

 
[Equation 3] 

This approach presents two main sources of inaccuracy:  

 The use of a mean DPT: there are significant differences among DPT of parts 

 The use of a single value of FDA (safety stock) for the whole ET: not all parts would 
need the same level of safety stock 

 
In order to improve on these challenges, the model has been adapted as Equation 
4]:  

𝐸𝐴𝐷𝑠 = ∑(𝐷𝑒𝑚𝑎𝑛𝑑 𝑓𝑜𝑟 𝑝𝑎𝑟𝑡 𝑖) · (1 − 𝐹𝐷𝐴𝑖) · 𝐷𝑃𝑇𝑖

𝑛

𝑖

 

 

 
[Equation 4] 

 Use of a mean DPT for each part (or group of parts) offers improved  availability 
prediction 

 Use a safety stock level (FDA) for each part (or group of parts) offers improved  cost 
estimation and potential cost savings 

Hence, the logic behind the proposal is to carry out a Pareto-type analysis to group parts, 
then establish a rational range for the safety stock of each group and use the lever adjusting 
that safety stock within the calculated range (i.e. plus or minus a percentage for all the parts 
at the same time). Despite the proposals previously presented were found logical and 



agreed by the ESCIT team, the suggestions were discussed with the Team Leader and the 
following constraints were found: 

 Grouping: the criteria to group spares can be dynamic depending on needs, faults, 
costs, equipment usage, etc. The groups could easily be revised and updated 
(Inventory Management) whereas its practical application would be very difficult 
(Inventory Control). 

 Coding: the spares grouping would require retagging/reorganising the spares for 
every update, which represents a significant cost through the huge amount of spares 
for all the ETs. 

 The correct or appropriate value for the safety stock of each group can be difficult to 
establish. 

 Inventory analyser and Inventory planners (which are part of the process) have aging 
software constraints, and they are different for the different divisions (Air, Land, and 
Sea).  

 
Therefore, the “Scale of Spares” lever could be improved in accuracy in the way explained 
previously, but the above constraints make it rather challenging. 

4.1 Queuing Levers 
 
As introduced in the research methodology the assumptions for the queuing levers were 
reviewed taking in to account: the queuing model itself, its inputs and the availability at risk 
definition, which is critical when analysing the maintenance delivery.  

4.1.1 Finite Source Queuing Model 
 

As explained in Section 3.2, the current approach for maintenance planning is the use of an 
infinite population queuing model (shown in Figure 7A, where 𝜆 is the failure rate and 𝜇 is 
the service time). The levers have an embedded protection against queue instability (when 
arrivals are faster than service) and maximum queue length (as the fleet is finite). This 
restricts the solutions and the accuracy of the result is compromised. Because of that, a 
finite source queuing model was explored (as shown in Figure 7B).  
 

 

Figure 7A) Infinite population source queuing model. 7B) Finite population source queuing 
model.  

The premises for the finite queuing model are (Gross and Harris, 1985): 



 Failure Rate is exponential and follows (note that this assumption has been 
corrected2): 
 

𝜆(𝑛) = {
𝑀 − 𝑛

𝑀
𝜆,   0 ≤ 𝑛 < 𝑀

0,   𝑛 ≥ 𝑐
  

 
 

[Equation 5] 
where: M is the size of the fleet, n is the number of ET in the maintenance system 
and 𝜆 is the characteristic failure rate of the ET. This means that the failure rate 
reduces when more ET are in the maintenance system 

 And Fix Time follows: 

𝜇(𝑛) = {
𝑛𝜇,   0 ≤ 𝑛 < 𝑐
𝑐𝜇,   𝑛 ≥ 𝑐

  

 
[Equation 6] 

where: 𝜇 is the maintenance rate and c is the number of maintenance crews. The 
system gives maximum throughput when all serves are busy. 

 
The main advantages of the finite model compared to the infinite approach are: 

 It always works: there is no queue instability for any value of failure rate, fix time or 
number of crews. 

 Its accuracy is better: the infinite model underestimates performance as it assumes 
a possible infinite number of arrivals; whereas the maintenance system is indeed 
servicing a finite fleet. 

 Failure distribution does not affect result: literature states that only the mean failure 
rate defines the result, but not its distribution. 

 
The main disadvantage of the finite model is the increase in complexity, but it is still 
straightforward to embed in a spreadsheet.  A first study of the queuing model was 
performed before proceeding to its implementation. In Table 3 the characteristic 
performance measures in queuing theory are presented for both models under the same 
conditions. This illustrates the main differences and advantages previously presented. 

Table 3: Performance measures for infinite and finite models under the same conditions 

Breakdown Rate  0.042 

Fix Time (h) 48 

Fleet size (number)  3 3 100 

No of crews (number)  2 3 3 

  Infinite Finite Infinite Finite Infinite Finite 

Avg. no. of ET in system ∞ 1.26 2.89 1.20 2.89 2.64 

Avg. no. of ET in queue ∞ 0.09 0.89 0.00 0.89 0.69 

Waiting time in system (h) ∞ 51.8 69.3 48.0 69.3 65.1 

                                                           
2
 Correction of finite model assumption: the definition in literature does not consider the term 

dividing by the fleet size (M), which leads to non-convergence of the sums and therefore to incorrect 
results.  



Waiting time in queue (h) ∞ 3.8 21.3 0.0 21.3 17.1 

 
The first test proved the theoretical advantages of the finite model. It can be seen that the 
waiting times and queue lengths are lower for the finite model. Moreover, when the 
population is fairly big the results differ slightly, whereas for small populations the 
differences are very significant. The finite model was implemented across the queuing 
levers. The results that compare both models are presented in the following sub-sections. 

4.1.2 Input distributions 
 

The ESCIT team works with three point estimates for all the maintenance related inputs. 
However, the analytical resolution for both the infinite and finite model is based on an 
exponential failure rate and time to fix. In other words, the three point estimate is used to 
calculate an average (and the value for the inputs at each confidence level) but after that, 
the service time is assumed to be exponential. A simple DES representation of the finite 
source model was built to test how changing the arrival and service behaviours would affect 
the performance of the system. The elements of the model are described in Table 4 and 
illustrated in Figure 8 
 

Table 4: Discrete event simulation model components 

Item Type Description Characteristics 

ET Part Each part represents 
an ET 

All the fleet of ET enters the 
system at the beginning  

Fleet Buffer Represents the fleet Capacity is bigger than fleet size 

Failure Single 
machine 

Represents the failure 
that moves an ET from 
the active fleet to the 
maintenance system 

The machine cycle time 
represents the mean time 
between failure (it can follow 
several distributions) 

Queue Buffer Represents the queue 
of ET waiting for 
maintenance  

Capacity is bigger than fleet size 

Maintenance Single 
machine 

Each machine 
represents a service 
point or maintenance 
crew 

The machine cycle time 
represents the time to fix (it can 
follow several distributions) 



Figure 8 provide discrete event model representation of the finite source model that was 
built to test how changing the arrival and service behaviours would affect the performance 
of the system. The failure rate was tested for exponential and Gaussian distributions; while 
the time to fix was studied for exponential and triangular distributions. 
 

 

Figure 8. Discrete event simulation model (Witness® 13.0 software) 

The failure rate was tested for exponential and Gaussian distributions; while the time to fix 
was studied for exponential and triangular distributions. The results shown in Table 5 are for 
the finite model performance under the same average conditions for a given case study 
provided by ESCIT, whilst just changing the probabilistic shape of the arrivals and the queue 
for service times. 

Table 5. Average time waiting in queue for different service and inter-arrival times 

 
Average time waiting in queue (h) 

Trial 
Exponential 
failure rate 

Gaussian failure 
rate 

Exponential 
service 

Triangular 
service 

1 15.6 15.5 16.3 2.8 

2 19.1 14.4 13.6 2.8 

3 16.0 12.9 12.4 2.8 

4 16.8 14.9 12.8 2.6 

5 16.6 12.3 17.5 2.6 

6 11.9 16.9 15.2 2.5 

7 14.8 18.3 18.4 2.5 

8 17.5 12.6 14.1 2.9 

9 13.6 14.5 11.1 3.0 

10 16.6 13.6 12.5 2.5 

Moving average 15.5 14.7 14.4 2.7 

 
From Table 5, it can be seen that the performance is independent of the failure distribution, 
as stated by literature. So, the level of maturity of the failure records will not affect accuracy 
as much, as long as the average failure rate is representative of reality. On the other hand, 
fix time distribution does affect the performance significantly. Even though literature says 
that exponential service time is a reasonable assumption when treating maintenance 
problems (Gross and Harris, 1985), as jobs are variable, independent and memoryless, this 



has to be tested.  The main problem is that these are not accurate (nor well-structured) fix 
time records for many ET.  So, the test of this assumption was limited to some examples 
where data records were kept more precisely. Results for an air fix time record from ESCIT 
can be seen in Figure 9. At first sight it can be seen that the data approximates more to an 
exponential than to a triangular distribution.  
 

 

Figure 9. Aircraft time to fix histogram. Source: ESCIT internal records. 

Even though the R-squared value indicates a fairly poor fit to an exponential, it is still a 
reasonable approximation when considering that it enables having an analytical solution 
(which simplifies the decision process). 

4.1.3 Evaluating the availability at risk definition 
 

The queuing theory makes many assumptions about the way risk affects the maintenance 
system. A fleet of ET will produce a certain quantity of EADs during a given period (the so 
called time period of the lever, typically 365 days). Ideally, the maximum days available 
would be the fleet size multiplied with the time period. From these maximum days, some 
will be lost due to CM, while others will be caused by PM. Apart from that, target availability 
will be set, which is the required demand. The days spent in PM will be deterministic while 
the lost days due to CM will be estimated by the average number of ET days in the 
maintenance system (i.e. they depend on the maintenance system performance). For 
instance, if there are ten ET days for maintenance on average, at the end of the year, 3650 
days would be lost due to CM. Those lost days result from the steady state solution of the 
queuing model. However, the real result could differ significantly from the mean based one. 
Therefore, it is useful to quantify what is the risk of the predicted availability not meeting 
the target. 
 
The lost days in CM at each confidence level are calculated assessing how the system would 
perform at 50% confidence level but with the amount of resources of the given confidence 
level. Then, the EADs at risk are the fraction of those lost days that are not covered by the 
confidence level (e.g. a 30% of the lost days in CM are at risk in the 70% confidence level). 
The EADs at risk definition is shown in Equation Error! Reference source not found., and a 
graphical representation is shown in Figure 10: 

𝐸𝐴𝐷𝑠 𝑎𝑡 𝑟𝑖𝑠𝑘 = (1 − 𝐶𝐿) · 𝐸𝐴𝐷𝑠 𝑙𝑜𝑠𝑡 𝑖𝑛 𝐶𝑀  



 
[Equation 7] 

 

Figure 10. Graphical representation of the availability estimates and their interrelations 
based on the existing availability at risk definition. 

 
The underlying assumption is that the confidence level represents what percentage of the 
solution is known; while the value (1-CL) represents the uncertain part of the behaviour.  
This existing approach presented two main problems: first, the definition of EADs at risk 
does not take into account the required availability. In other words, suppose the available 
EADs leave a margin with respect to the target EADs. If that margin was big enough to 
absorb part of the calculated EADs at risk, then the risk should be lowered, as there is a 
degree of “safety stock”. Second, as the lost days in CM are evaluated at the 50% confidence 
level the risk is not as conservative as it could be. 
 
To address this issue, a slightly different definition for risk is proposed. The basic assumption 
remains the same, but now, the difference between target and available EADs is accounted 
for. Also, the lost days in CM are taken from the performance at each confidence level. The 
new definition is shown in Figure 11 and expressed in Equation 8. 
 

 

Figure 11.  Graphical representation of the availability estimates and their inter-relations 
with the new availability at risk definition 

𝐸𝐴𝐷𝑠 𝑎𝑡 𝑟𝑖𝑠𝑘 = (1 − 𝐶𝐿) · 𝐸𝐴𝐷𝑠 𝑙𝑜𝑠𝑡 𝑖𝑛 𝐶𝑀 − [𝐸𝐴𝐷𝑠 − 𝑇𝑎𝑟𝑔𝑒𝑡 𝐸𝐴𝐷𝑠]  

 

[Equation 8] 
 
The enhanced risk definition is like the previous EADs at risk definition but takes in to 
account the margin left between the available and target EADs. This margin could increase 
or decrease the risk depending on its sign. Nonetheless, the main difference arises because 
the lost days in CM result from the performance at each confidence level.  A real example of 



the difference in results from a land based case study between the two definitions is shown 
in Figure 12. In conclusion, the new definition provides a more conservative risk calculation. 
 

  

Figure 12. Comparison of the two risk definitions (Land vehicle case study) 

 

5 Model implementation and validation results 

5.1 Overview of the case study  
 
After implementing the finite queuing model across all the levers, a land vehicle case study 
was used for validation. First, the results are compared to the infinite queuing model; next, 
the results including the availability at risk redefinition are presented; and finally, an 
example of the aggregated result using the combi-lever is shown. The set of inputs for the 
Scale of people is presented in Table 6. 

Table 6: Data set for the “Scale of People” lever for the Land vehicle case study 

INPUT VALUE 

Maintainer Hours (per month) Most likely 107 

Worst Case 95 

Best Case 113 

Fix Time (in Hours) Most likely 3.26 

Worst Case 9 

Best Case 0.5 

Breakdown Rate (Per Hour) Most likely 0.91 

Worst Case 1.25 

Best Case 0.43 

Number of Equipment Type instances operating 40 

Required EAD's (Demand) 5360 

Number of People in a crew (Crew Size) 2 

Capitation rate (£ thousands) 36.71 

Time Period of Lever (in days) 365 

Days Equipment Type is in Scheduled Maintenance 2440 
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5.2 Comparison of the finite and infinite queuing modelling approaches 

 
The land case study results are for the “Scale of People” lever, and therefore they indicate 
the cost of the maintainers necessary to meet demand at the ten confidence levels and its 
correspondent availability at risk. The results for the lever profiles are shown in Figure 13. 
Accordingly, 0% EADS at risk refers to the confidence in achieving the performance targets 
with the set cost of maintainers. The costs between the finite and infinite models vary 
significantly. 
 

 

Figure 13. Lever profiles for both queuing models under the same conditions 

 
Each point in the curve represents a confidence level (from 50% to 99%). It can be seen that 
the lever profile is displaced down and to the right with the finite model. On one hand, this 
means that less resource is needed to meet the same availability. As an example, at % EADS 
at risk level the cost of the maintainers with the infinite model is significantly higher than the 
results attained from the finite model. The significant difference between both models arises 
because the infinite model finds the solution that avoids the queue to become unstable as it 
is assuming that the possible arrivals are infinite. Conversely, the finite model can cope with 
the same situation with less resources because the more failures occur, the less ET are prone 
to fail, thus the queue is always stable and it can never grow more than the fleet size.  
Nevertheless, both models present a steep increase in cost when moving towards the low 
risk figures (or high confidence levels). This occurs because the outputs are modified at each 
confidence level (according to the triangular distribution); so, the higher the confidence 
level, the more demanded is the system and therefore more resources are needed. 
  
The main problem with this is the triangular distribution does not offer a realistic increase in 
the inputs. The queuing models work with exponential distributions, but the inputs are 
worked out as three point estimates. In Figure 14, the cumulative probability functions for 
both distributions show that for the same confidence level, the triangular gives higher values 
for the inputs. As a result, cost is overestimated because the system is subjected to worse 
conditions. 
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Figure 14. Cumulative probability functions for exponential and triangular distributions. 

5.3 Role of risk in queuing models 
 
When the updated availability at risk definition is included, the behaviour of the finite model 
does not change (the same resources are needed at each confidence level) but the risk is 
managed in a more conservative way, as explained in section 4.1.3. The results that compare 
the finite model with the two risk definitions are shown in Figure 15. The corresponding 
points at each confidence level are at the same cost, but the red curve is displaced to higher 
risks. Therefore, the new finite queuing model plus the risk redefinition provide together a 
reduction in the cost estimation and an extra protection against demand not being met. In 
addition, an example, using the same land based case study data of comparing the 
aggregated result given by the combi-lever for the infinite and finite models is shown in 
Figure 16. It can be seen that the behaviour follows the same pattern as in the individual 
lever results: less resources are needed and risk is more conservative.  
 
 

 

Figure 15. Finite source lever profiles comparing the two risk definitions 
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Figure 16. A) Aggregated cost for both models and B) % EADS at risk for both models 

Note that the format of the results in the combi-lever separates both outputs (cost and risk) 
and links them by a percentile value. For instance, the results at the 80% percentile are 
shown in Table 7: 

Table 7: Aggregated cost and availability at risk for both models at the 80th percentile 

 INFINITE FINITE  

COST (thousands £) 11,800 10,300 

%EADs at RISK 13.9% 24.7% 

 

5.4 Results for sensitivity analysis  
 
A sensitivity analysis was performed to study the influence of the CM related inputs on the 
cost and availability results and rank them in order of importance. For this process 
Elementary Effects Method was adopted (Morris, 1991; Campolongo et al., 2007). The basics 
of this method are studying how the elementary effects for each input behave. The 
elementary effect results from changing one input at a time, exploring its possible values, 
and comparing the distortion in the result with the change in the input, both with respect to 
a baseline. For each input, a series of elementary effects is obtained.  Each series of 
elementary effects follows a certain distribution (characterised by its mean and standard 
deviation), which indicates what type of effect has the particular input over the result. This 
method classifies them qualitatively in: a) negligible effect, b) linear effect, c) non-linear 
effect or d) involved in interactions with other inputs. The last two are indiscernible through 
this method.  
 
Each input is characterised by the mean (𝜇), the mean of the absolute values (𝜇∗) and the 
standard deviation (𝜎) of its elementary effect distribution. The values for 𝜇∗ indicate how 
much the input affects the output, i.e. a value close to one means that the input influences 
the result in a proportion of 1:1. On the other hand, the values for 𝜎 represent the 
“linearity” of that effect. The higher the standard deviations, the higher is the non-linear 
influence.  In this case, the sensitivity analysis has been performed for both the cost and risk 
at the 50% confidence level, using the Land Case Study for the “Scale of People”. The results 
are presented in Table 8 and further illustrated in Figure 17 and Figure 18. The sign in the 
values for 𝜇 indicate direct or inverse proportionality. 
 



Table 8: Means and standard deviations of the elementary effects distributions for each 
input 

Input 

Cost EADs at Risk 

μ μ* σ Μ μ* σ 

Fix Time 0.96 0.96 0.03 0.14 0.19 0.24 
Breakdown rate 0.96 0.96 0.03 0.14 0.19 0.24 
Maintainer Hours -1.53 1.53 1.36 -0.23 0.27 0.28 
Fleet size -1.61 1.61 1.05 4.88 4.88 0.84 
Crew size 0.98 0.98 0.01 0.05 0.05 0.05 
Required EADs  1.26 1.26 0.61 -6.87 6.87 2.56 

 

Figure 17. Plot of the two sensitivity measures for each input affecting the cost 

 
 

 

Figure 18. Plot of the two sensitivity measures for each input affecting the risk. 
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Note that the crew size, fleet size and required EADs are not inputs in the strict sense. The 
crew size is estimated as the number of people needed in the average maintenance of an ET. 
The fleet size and required EADs are directly related (as explained before, the fleet size 
determines the maximum EADs) and the ratio of required EADs per ET is something that 
could be chosen. 
 
It can be seen that the breakdown rate, fix time and crew size have a linear effect on the 
cost, as the value for 𝜇∗ is significant while the values for 𝜎 are negligible. However, 
maintainer hours, crew size and required EADs have higher values for both sensitivity 
measures; therefore they have a higher effect on cost and present either a non-linear effect 
or interactions with other inputs. On the other hand, breakdown rate, fix time, maintainer 
hours and crew size have a negligible effect on the EADs at risk, as the values for 𝜇∗ and 𝜎 
are low. Conversely, fleet size and required EADs have a huge impact on risk (very high 
values for 𝜇∗), and again they present non-linear/interaction effects. In conclusion, the 
effects of the inputs on the result are summarised in Table 9. 
 

Table 9: Summary of sensitivity analysis results 

Input Effect on result 

Breakdown rate, Fix time and Crew size Linear and significant on cost 

Fleet size and Required EADs Mutual interaction and dominant on 
both cost and risk 

Maintainer hours Non-linear and dominant on cost 

 
Even though the method does not make a distinction, fleet size and EADs at risk have an 
interaction effect as they both change the ratio of required EADs per ET, which ultimately 
determines the performance of the system. When setting the requirements for a mission, 
the choice of the required days per ET will establish a “demanding” strategy (with high cost 
but low risk) or a “redundancy” strategy (with low cost but high risk). For reference, the 
lever profiles for the Land vehicle case study for two different required EADs per ET are 
shown in Figure 19. 



 

Figure 19. Lever profiles for two strategies to meet the same target availability 

 

6 Conclusions and Future work 

6.1 Conclusions 
 
This article presented an approach focusing on building a process for understanding the 
trade-offs within CM activities at the ET level.  The approach integrates existing practices by 
considering the “Spares Lever” review. Typically, whenever sources of inaccuracies are 
identified, the practical implementation of proposed solutions would encounter physical 
limitations (such as coding, tagging or inventory software). Revising the “Queuing Levers” 
had led to the implementation of a different queuing theory model (involving a finite source 
based approach) which is more suitable for maintenance activities (i.e. it represents the 
practical implementation more accurately). The main benefit is a better prediction of the 
maintenance system performance and therefore an enhanced cost and availability 
estimation becomes available. 
 
Similar notions have previously been promoted in past research where finite queuing 
models have led to cost savings. It also influences availability predictions, as it estimates the 
optimum resources required to achieve a target. This could eventually indicate whether the 
required availability is met. Therefore, it was interesting to compare the results of the finite 
model with the availability results obtained in real life to assess its applicability. The revision 
of the queuing models also validates basic assumptions, such as the statistical behaviour of 
the inputs. Combined with the finite source model, it is found that the failure rate 
distribution does not affect the system (i.e. only the mean value has an effect). In addition, 
real data indicates that “fix time” distributions tend to be exponential, as assumed by the 
queuing model. Nevertheless, the data maturity levels of many ETs have prompted to work 
with three point estimates, which still presents a source of inaccuracy. Thus, the tendency 
should be towards working with more reliable data histograms to obtain more precise inputs 
and to avoid overestimating the result at high confidence levels. The main limitation on the 
inputs is imposed by the mean based solution of the queuing model. Having an analytical 
solution in queuing theory limits the assumptions for the inputs. Therefore, the overall 
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approach has been to assess whether the real data could approximate the assumptions, 
rather than building a model applicable to the real data. Arguably, this is to find a balance 
between the modelling effort and the accuracy of its solution. 
 
Finally, the sensitivity analysis has shown that the duplet fleet size and required EADs 
exhibits the most important influence on the “Queuing Levers” result, affecting both cost 
and availability at risk. They both work together as the ratio “required EADs per ET” which 
determines how demanded the maintenance system is going to be for certain conditions 
(e.g. failure rate and fix time). Nonetheless, it has to be taken into account that changing the 
required EADS per ET could indicate that the levels of utilisation of the equipment also 
change. That is to say, the failure rate or even fix time could be altered, which could lead to 
significant changes in the cost and availability predictions. The authors would like to 
highlight that even though the developed methodology has been implemented within the 
military context, it can be adapted across other industries such as commercial airlines or 
railways. The approach is not expected to require any modifications, but it will require 
validation.  
 

6.2  Future Work 

 
Following up from this research work, the authors are investigating the use of combi-levers 
that aggregates individual results of the levers. Hence, the combination of the different 
resources required is done in a parallel way. Since maintenance is a serial process (e.g. 
diagnose, repair and test), current efforts are being focused on investigating interactions in 
between the different resources (e.g. people, facilities). In the current approach, a delay 
caused by a spare part during rectification does not influence the overall system; it is an 
isolated delay. However, the delay due to that spare would affect the queues upstream, and 
the overall impact in availability could be significantly longer. Figure 20 shows the possible 
network based queuing model within the finite population context.  
 

 

Figure 20. Possible network based queuing model with finite population 

 
In addition, each point in the lever profiles represents the cost of meeting the required EADs 
at a certain confidence level; and the corresponding %EADs at risk. Each of these points are 
the result of virtually increasing the inputs (according to the confidence levels set by the 
three point estimates) to build safety stocks of the resource, such as maintainers. In most 
cases, the increase in the inputs produces a steep response in the system, more accentuated 



at the higher confidence levels. That means, achieving the same requirement (EADs) is more 
and more difficult at each confidence level. This approach ensures being on the safe side, 
but it can also indicate a substantial cost overestimate. 
 
Conversely, the study of building safety stocks could be done just at the 50% confidence 
level, which represents the inputs real mean values. However, this approach can 
underestimate the needed resources in case the real conditions are worse than expected 
(e.g. the failures are more frequent or repairs take longer than predicted). An approach that 
could find a less overrated cost estimate and avoid the risk of just using the 50% CL is the 
use of real data histograms. This indicates that the three point estimates have a tendency to 
distort the values for the inputs at the different confidence levels; but using the real 
histogram could provide a more accurate result. This will depend on an increase in the data 
maturity levels. Thus, future work will also concentrate on modelling the safety stock 
requirements for CM. 
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