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Abstract. The Actuator Line Method exists for more than a decade and has become a
well established choice for simulating wind rotors in computational fluid dynamics. Numerous
implementations exist and are used in the wind energy research community. These codes were
verified by experimental data such as the MEXICO experiment. Often the verification against
other codes were made on a very broad scale. Therefore this study attempts first a validation by
comparing two different implementations, namely an adapted version of SOWFA /OpenFOAM
and EllipSys3D and also a verification by comparing against experimental results from the
MEXICO and NEW MEXICO experiments.

1. Introduction

In order to circumvent the modeling of the boundary layers attached to the wind rotor blades by
representing their full geometry numerically, the Actuator Line Method[1l] (ALM) has become
a well established alternative for more than a decade. Numerous implementations exist and are
used in the wind energy research community. Often those codes were compared to experimental
results such as the MEXICO experiment, which is a wind tunnel experiment with a three-bladed
rotor (with a radius of R = 4.5m) conducted at the German-Dutch wind tunnels (DNW). By
placing pressure sensors on the blades and using particle image velocimetry (PIV) pertinent
information about the near-wake could be obtained. After some amelioration of the setup a
second round of the experiment was conducted, called NEW MEXICO. For more technical
details see [2] and [3].

This work picks two of the most widely used implementatons, namely EllipSys3D[4] and the
SOWFA! project[5] in OpenFOAM. Despite the fact that some adaptions have been made to
the original SOWFA code by the authors, it will be referenced as SOWFA througout the article.
This work tries to presents the ability to well reproduce near wake phenomena without modeling
the boundary layer on the blades and at the same time show the models limitations due to its
underlying assumptions.

First there will be brief comparison of similarities and differences between the two frameworks
in section 2 alongside with a description of the numerical setup. Then there will be a discussion
of the results by comparing the two numerical methods against each other and against the
experimental data from the MEXICO and NEW MEXICO experiment in section 3. The

! This implementation is part of SOWFA (Simulator fOr Wind Farm Applications) by National Renewable Energy
Laboratory.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOIL.
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examined cases include the cases for the reference velocities Uy, = {10,15,24} m/s and for
the comparison with the experiment the PIV sheets and force measurements are used. Finally
some concluding remarks will be given in section 4.

2. Numerical method

2.1. Numerical framework

Both implementations have been done within a CFD framework based on the control volume
method with variables located at cell center and a Rhie-Chow|[6] like correction. For a more
in-depth description of the underlying CFD methods see [7] and [8].

In both cases the rotor is modeled by a force inserted as a momentum sink in the Navier-
Stokes equations and distributed by a Gaussian distribution in order to avoid non-physical spikes
in the velocity field around the affected cells. While SOWFA specifies a cut-off length for the
3D Gaussian curve in order to recover approximately 99.9% when integrated, the cut-off length
of EllipSys3D is significantly larger to contain an even higher percentage. These two different
cut-off lengths do not seem to have a significant impact on the simulation results.

Velocities are sampled in a very similar manner. While EllipSys3D uses explicitly trilinear
interpolation to obtain the sampled velocity at the actuator point, SOWFA relies on correcting
the cell center value by the velocity gradient. In the present case this gradient is obtained by
linear interpolation and hence both sampling methods behave the same way.

While there are efforts to modify the orignal 2D airfoil coefficient data such as[9], the present
work wants to use the ALM as an a priori tool. Hence the ALM is relying on the original
airfoil data obtained from wind tunnel experiments of an infinite wing. As the centrifugal
forces of the rotating blades keep the boundary layer attached longer than on a non-rotating
wing [10], the angle of attack (AOA) for the maximum ¢y, is expected to be shifted towards higher
values. Therefore it is expected that this ALM will lead to discrepancies between simulation
and experiment for AOAs beyond the angle where stalling occurs in the airfoil data.

A tip correction is applied on the calculated forces. Without the tip correction, the forces
where much higher than predicted by experiment. This is most probably due to the under-
resolved tip vortex resulting in a weaker down-wash than in the experiment. By conducting the
same simulation at different resolutions around the rotor, a higher induction in the tip region
can be noticed. In order to compensate for this effect a Glauert tip correction is applied. This
resulted also in a better agreement with the experimental data.

2.2. Numerical setup
The computational domain is cubic with an edge length of 20R with R as the rotor radius and
the rotor positioned at the domain center. In both cases the cells in the vicinity of the rotor are
cubic with the size Az = R/32 and are stretched towards the domain boundaries in the case of
EllipSys3D. Within SOWFA several refinement zones are applied each time halfing the cell edge
length. Therefore the mesh of EllipSys3D consists of 7.1e6 cells while the mesh of the SOWFA
case consists of 1.9¢e6 cells.

For both cases the velocity boundary condition are given by a uniform inflow velocity of
U = (U, 0, 0) and a zero gradient at the outlet. The lateral boundaries are set as symmetric.

As both simulations are Large Eddy Simulations, the subgrid-scale models are the dynamic
Lagrangian method based on[11] for the SOWFA case and a DES model using a limiter to switch
between k — w SST and LES[12] for the EllipSys3D case. But as there is no inflow turbulence
and the helical vortex structure does not break up within the examined region, not a lot of
turbulence modeling has to be done. When comparing to a very coarse DNS by deactivating
the sub-grid scale model, no significant difference is found.

The SOWFA case uses a discretisation scheme for the convection term that blends 75%
of second order central differencing with 25% linear upwind differencing, which is a second
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order upwinding scheme, where the face value is corrected by the gradient in the upwind cell.
EllipSys3D applies QUICK in RANS regions and central differencing of fourth order in LES
regions using the same limiter as for DES model.

For parametrisation of the ALM the Gaussian distribution parameter is set at ¢ = 2Ax and
40 actuator points are used to represent one blade.

3. Results

The first interesting observation is the similarity in sampled velocities and AOAs as shown
in figure 1 and figure 2. The directions in figure 2 are based on a local coordinate system on
the blade. Despite the existence of steep velocity gradients due to the bound vorticity both
frameworks obtain very similar values. This even holds for the relative small value of the

1.0
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0.8
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Figure 1. Angle of attack a for each
-0.10

actuator point along the blade. The grey 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
zones represent transition between different /R

airfoil types and the red line (—) the AOA
for which the inbound airfoil data indicates
stalling.

Figure 2. Normalized normal velocity and
tangential velocity component U, /Us and
U;/Us for each actuator point along the
blade. The grey zones represent transition
between different airfoil types. (see legend
in figure 1)

tangential velocity component.

When looking at the AOAs in figure 1 it can be seen that for the radial position /R < 0.3 at
Uso = 24m/s it exceeds the angle after which stalling occurs according to the 2D airfoil data.
For the other cases and airfoil sections the AOA always remains below the critical angle. Hence
the ALM with the unaltered airfoil data breaks for the aforementioned case and the calculated
forces will not match the ones obtained experimentally. In figure 3 the body forces associated
with rotating blades can be seen. Again the directions are based on a local coordinate system
on the blade. For Uy, = 10m/s and 15m/s exists a very good agreement, while the forces are
not correctly evaluated for the high velocity case. A sudden drop in both forces can be seen.
This is stemming from the fact that beyond a certain AOA no experimental data is available
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Figure 3. Comparion between the evaluated normal and tangential blade forces F;, and F}; by
SOWFA and EllipSys3D against the experimental results of MEXICO and NEW MEXICO over
the radial position.

and the void was filled by using the flat plate assumption. Therefore the airfoil data has a sharp
drop in the lift coefficient at this point. Another interesting observation is that the forces for
the MEXICO experiment are lower than for the NEW MEXICO experiment. This is probably
due to the fact that the experiments were conducted with a slightly lower inlet velocity. Again
the SOWFA and the EllipSys3D case are very similar even in the case where the models break
down.

Due to the slight difference in the blade forces both frameworks produce a relatively similar
flow field as shown in figure 4. In the following visualisations the flow field data is based on
the domain coordinate system with x in flow direction, r parallel to the rotor plane and lying
in the PIV sheet and ¢ as the tangential direction normal to the PIV sheet. The blade position
is expressed by the angle ¥ whereas ¥ = 0 means that the first blade is pointing upwards.
It can be seen that neither SOWFA nor EllipSys3D can simulate distinct vortices shed in the
case of turbulent wake state (Usx, = 10m/s), but instead a continuous vortex is shed from the
rotor. This is due to the rather coarse resolution of R/32. With higher inlet velocities a vortical
structure can be noticed.

When looking at the radial profiles of the axial, normal and tangential velocity components
U, U, and U, in figure 5 and figure 6, it can be seen that in general both frameworks are
underestimating the velocity deficit in the ultimate rotor vicinity (z/R = £0.13) compared to
the experimental results but the overall trend is very well maintained. An exception is the high
velocity case (Usx, = 24m/s) where the models deficit becomes appearant. The high gradient
of the radial velocity component in the tip region seems to be smeared out by the numerical
simulation as can be seen in figure 6. This is most probably due to the numerical schemes and
the mesh discretisation, which is expected to ameliorate when using a finer resolved mesh around
the rotor. This would not only lead to a better resolution of the vortical structures, but due to
the fixed force distribution parameter ¢ = 2Ax also to a more realistic distribution of the force
in the tip region. The same applies to the tangential velocity component in the root region.

The axial profiles of the velocity components can be seen figure 7 and figure 8 and again
both codes reproduce very similar results in the near wake further away from the rotor. While
for the inbound position only data from NEW MEXICO experiments for Uy, = 15m/s are
available, we can look at a bigger picture for the outbound position shown in figure 8. Again
simulation results are very close to experimental data from the NEW MEXICO experiment,
while overestimating with respect to MEXICO results due to reasons already mentioned. For
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Figure 4. Planes of normalized axial velocity component U, /U, for all three cases for SOWFA
and EllipSys3D. The rotor is situated at /R = 0 and the velocity field is phase averaged for
the rotor position ¥ = (0°.

the high velocity case (Us, = 24m/s) the vortex sheets shed from the blades become visible by
the oscillations in the axial velocity component U,.

When looking at the vortex properties as examined in [13] in figure 9 and figure 10. it can be
seen that there is a good general agreement despite the coarse resolution of the grid around the
rotor (Az = R/32). In figure 9 the vortex locations were calculated based on a rotor position
of ¥ = (° while the experimental was taken for ¥ = 30°, which is the moment when the blade
crosses the PIV sheet. Despite the fact that the origins of the vortices might not coincide as
stated in [13] and the wake deficit was lower than in the experiments, the simulations appear
to represent well the vortex propagation. This can also be seen by looking at figure 9 and
comparing the axial locations of the vortices compared to the experimental results. Differences
between the two simulations as seen in figure 9 stem from discrete representation of the vortices.
In a more refined mesh both curves are expected to be closer.

In order to evaluate the vortex strength the circulation for each vortex is calculated. For
obtaining the circulation of the vortices the vorticity magnitude w in the plane at ¥ = 0° is
integrated over a square with the edge length Rg weighted by the area. When looking at the
evolution of vortex circulations in figure 10 it can be seen that the circulation remains almost
constant througout the examined region, despite the fact that a constant integration radius Rg
was used in order to evaluate the total circulation I'. In figure 10 the total circulation can be
seen in dependence of the square edge size Rg. At around Rg/R = 0.113 the saddle point can be
perceived. Upto this point the integration only includes vorticity due to the examined vortex.
Beyond that Rg also the vorticity of the neighbouring vortices is taken into account hence the
steeper increase in circulation.
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Figure 5. Radial profile of phase averaged (¥ = 0°) velocity components for different flow cases
at upstream (z/R = —0.13) position.
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Figure 6. Radial profile of phase averaged (¥ = 0°) velocity components for different flow cases
at downstream (/R = 0.13) position.
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Figure 7. Axial profile of phase averaged (¥ = 0°) velocity components for different flow cases
at inbound (r/R = 0.22) blade position.
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Figure 8. Axial profile of phase averaged (¥ = 0°) velocity components for different flow cases
at outbound (r/R = 0.67) blade position.
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Figure 10. Circulation of vortices (a) and integration radius Rg/R (b) for Uy, = 15m/s.

4. Conclusion

The two examined frameworks, EllipSys3D and SOWFA, compare very well in the near wake
of the rotor used in the MEXICO and NEW MEXICO experiment. When comparing them
against experimental data it can be seen that they predict well the experimental results from
the NEW MEXICO experiment while there is an overprediction compared to MEXICO results
due to the inlet velocity mismatch in this experiment. Even vortex properties matched among
the simulations and predicted the same trend as in the MEXICO experiment, although the
resolution in the rotor vicinity might be too coarse for well resolving the helicoidal vortex
structure.

Both frameworks obtain very similar velocites and AOAs, and fail at the moment where 3D
effects start to dominate. As this occurs only for a very high velocity at the inbound region, it
is very encouraging for using only non-altered airfoil data in the presented case.

Future work could be to conduct simulations with a finer resolved region around the rotor
and also to find a suitable method for including 3D effects in order to reproduce well the results
for the high velocity case. Furthermore the influence of a turbulent inflow could be examined
as well.
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