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� Wind speed spatial resolution highly influences calculated wind power peaks and ramps.
� Reduction of wind power generation uncertainties using statistical downscaling.
� Publicly available dataset of wind power generation hourly time series at NUTS2.
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a b s t r a c t

The growing share of electricity production from solar and mainly wind resources constantly increases
the stochastic nature of the power system. Modelling the high share of renewable energy sources –
and in particular wind power – crucially depends on the adequate representation of the intermittency
and characteristics of the wind resource which is related to the accuracy of the approach in converting
wind speed data into power values. One of the main factors contributing to the uncertainty in these con-
version methods is the selection of the spatial resolution. Although numerical weather prediction models
can simulate wind speeds at higher spatial resolution (up to 1 � 1 km) than a reanalysis (generally, rang-
ing from about 25 km to 70 km), they require high computational resources and massive storage sys-
tems: therefore, the most common alternative is to use the reanalysis data. However, local wind
features could not be captured by the use of a reanalysis technique and could be translated into misin-
terpretations of the wind power peaks, ramping capacities, the behaviour of power prices, as well as bid-
ding strategies for the electricity market. This study contributes to the understanding what is captured by
different wind speeds spatial resolution datasets, the importance of using high resolution data for the
conversion into power and the implications in power system analyses. It is proposed a methodology to
increase the spatial resolution from a reanalysis. This study presents an open access renewable genera-
tion time series dataset for the EU-28 and neighbouring countries at hourly intervals and at different geo-
graphical aggregation levels (country, bidding zone and administrative territorial unit), for a 30 year
period taking into account the wind generating fleet at the end of 2015.
� 2017 The Authors. Published by Elsevier Ltd. This is anopenaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The European power sector is currently experiencing a struc-
tural transition. The goal of the European Union for Renewable
Energy Sources for electricity (RES-E) to provide for at least 27%
of the total energy consumption by 2030 could translate into 50%
of total electricity production from renewables. The Energy Union

strategy includes the aim of the European Union to become ‘‘the
number one in renewables” continuing the significant growth of
RES-E experienced during the last decade [1]. However, the grow-
ing share of generation from solar and mainly, wind resources con-
stantly increases the stochastic nature of the power system,
potentially jeopardizing the security of supply. As a consequence,
planning and scheduling tools for the power sector have been
improved to simulate the high share of RES-E. Particular care has
been given to the adequate representation of the wind intermit-
tency to better catch wind power generation peaks and ramping
capacities, which are key aspects for understanding power system
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flexibility needs, as well as the behaviour of market participants in
defining their bidding strategies in the different electricity
markets.

However, before analysing or modelling the impact of the wind
on the power system, it is this important to understand the wind
resource characteristics, in particular the nature of their variability.
The effects of the surface heterogeneities vary depending on the
local area but also on larger scales (such as meso and continental
scales). At wind farm level, the wind flows are influenced by the
co-occurrence of meteorological variations and turbine wake
effects and their nonlinear interactions, particularly over strongly
heterogeneous surfaces like coastal areas or mountainous regions
[2,3]. Considering that wind farms are often built over such hetero-
geneous surfaces, it is important to know the significance of the
spatial variability as they influence power production at larger
scales (countries, bidding zones and administrative territorial unit
levels).

Thus, in order to analyse the European power system, the wind
speed and direction data should keep a compromise between the
geographical coverage accounting for European climate zones;
the time intervals and a period long enough to capture the climate
variability [4]. The wind speed data should reproduce the diversity
of the local effects due to the orography and wind features at hub
height. Attention should also be given to technical data parameters
of wind turbines (e.g. hub height and power curves), the losses of
performance due to the age of the turbines and the interpolation
method of the wind speed data at the hub height. All these factors
crucially depend on the accuracy of the approach to convert the
wind speed data into power and how the uncertainties are treated
(Fig. 1). It also depends on the aggregation level of the study and
the smoothness of those factors. For example, at wind farm level
wake effects are the main drivers for modelling power generation
and then, a wind power fluctuation parameterization is required to
include in the conversion such as in [5–7]. When aggregating to a
regional, bidding area or country level those effects are, to some
degree, smoothed and existing studies are focused on the accuracy
of wind speed data and derived wind generation by developing

simplified models ([8,9]); by correcting the wind output biases
with factors derived from the transmission system operators data
[10]; by estimating the factors affecting the cascade of uncertain-
ties [11–14].

However, the cascade of the uncertainties in the whole conver-
sion process starts in the selection of the characteristics of the pri-
mary wind speed and direction data. Generally, the trend is to use
weather derived data from Numerical Weather Prediction (NWP)
models or from reanalyses. The use of NWP models could perform
higher spatial resolution wind speed data (generally, ranging from
1 � 1 km to 5 � 5 km) than the reanalysis (so far, ranging from 25
to 70 km) but requires high computational resources and massive
storage systems and therefore, most of studies use the reanalyses
[15]. A good comparison between the methods using NWP models
can be found in [16]; the assessment of what a reanalysis can pro-
vide for wind power and the bias associated is published in [17]
and a summary of publicly available reanalysis can be found in
([18,15]). One of the most used reanalysis for power system anal-
ysis comes from the NASA atmospheric reanalysis dataset which
was generated within the Modern Era Retrospective-Analysis for
Research and Applications (MERRA) project [19]: in [18] the
description of the local wind climate in terrain with low complex-
ity has shown good correlation with wind measurements at rele-
vant heights with Pearson’s correlation coefficients values around
0.85 on an hourly basis and 0.94 on a monthly basis for Nordic
countries and Baltic states; in [20,21] the wind power production
modelling has been studied for Sweden and Great Britain, respec-
tively; in [22] a wind energy index for site assessment, turbine
selection and local feed-in tariffs has been developed for Germany;
in [23] the results of offshore wind energy resource simulations
forced by different reanalysis have been compared for the Iberian
Peninsula; flexibility options for systems with high renewables
penetration have been studied for Ireland [24] and Europe
([25,26]); a techno-economic analysis of the effects of North Afri-
can electricity import on the European power system was carried
out in [27]; the cost-potentials for large onshore wind turbines in
Europe has been analysed in [28] while the validation of Danish

Fig. 1. General approach for the conversion of wind speed data into power and the main factors contributing to the cascade of uncertainties.
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wind time series from a global renewable atlas for energy system
analysis is reported in [29].

However, there is not a complete understanding concerning the
adoption of different wind speeds datasets with different spatial
resolutions and the implications of the results in power system
models, analyses and impact assessments. Therefore, basing on
the huge number of studies using reanalysis, the main novelty of
this study is to show the importance of using high resolution wind
speed data, derived from a reanalysis, for the conversion into
power values at different aggregation levels. A methodology is pro-
posed to increase the spatial resolution of the wind speed using
data fromMERRA reanalysis for Europe. Finally, the generated high
resolution hourly time series has been made open-access to use in
the future RES-E integration studies since there is no publicly avail-
able robust European weather derived wind power generation
time series at country, bidding zone and administrative territorial
unit levels (NUTS [30]). The three major publically available RES-
E datasets publish annual and monthly averages of wind and solar
power production (the ’Global Atlas for Renewables’ [31] and the
’Global Wind Atlas’ [32]) or hourly time series but only at country
level (Renewables.ninja [33]).

This new methodology consists of applying a spatial statistical
downscaling technique to the reanalysis wind speed data, a robust
and established approach in climate modelling field [34]. By using
the Global Wind Atlas data – that includes local orography and
roughness features at 250 � 250 m spatial resolution– the
approach has been applied to the hourly wind speed at each wind
farm in Europe in order to capture the effect of fine-scale forcing in
areas characterised by fine spatial variability of features (e.g.
rugged topography, etc.) taking into account the diverse land sur-
face and local climate conditions over the geographical European
domain; therefore, the corrected wind speed has been converted
into wind power generation data. For reliability and validation of
the downscaled wind speed, the results have been compared with
the high resolution (12 km � 12 km) wind speed non-freely avail-
able operational forecast products released by the European Centre
for Medium-Range Weather Forecast (ECMWF) [35]. The 30 years
of corrected hourly wind speed data at each wind farm site in Eur-
ope have been then converted into power values taking into
account the wind generating fleet in Europe at the end of 2015:
then, the wind power time series have been compared with the
wind power generation data provided by the Transmission System
Operators (TSOs) in Europe for the year 2015.

The present study is part of the methodology applied in the
EMHIRES dataset [36]: European Meteorological derived HIgh Res-
olution dataset, an open access RES-E generation time series data-
sets developed by the European Commission, DG JRC. The wind
power time series are calculated combining a highly detailed
reconstructed wind farm database (WFDB) with the high spatial
and temporal resolution wind speed dataset, providing a new
and validated methodology. The development of the EMHIRES
dataset and the overall results of the project are published in
[36]; the reconstruction and sensitivities of the EU WFDB are pre-
sented in [37], while this article aims at assessing the impact of
wind speed spatial resolution on power generation, contributing
to the discussion of the latest tendencies in the fundamental
aspects of meteorological data used for intermittent RES-E integra-
tion studies.

2. Data and tools

2.1. Data used to generate EMHIRES

The wind farms database procured from the ’thewindpower.net’
[38] has been used as the primary source to define the characteris-

tics of each wind farm included in EMHIRES. The original database
includes worldwide information for onshore and offshore wind
farms, containinghowevera significantamountofgaps, inconsisten-
ciesand inaccuracies; thishasbeensolvedbymeansofgapfillingand
data homogenization. To validate the improved database the aggre-
gated installed capacities have been compared with data from
(among others) different European Transmission SystemOperators.

The primary source of meteorological data used in EMHIRES
comes from the NASA atmospheric reanalysis MERRA dataset
[19]. MERRA datasets are the output of the Goddard Earth Observ-
ing System Model v.5 (GEOS-5) and its Atmospheric Data Assimila-
tion System (ADAS), version 5.2.0. The data streams assimilated by
the GEOS-5 DAS come from radiosondes, pilot balloon winds, wind
profiles, radar winds, aircraft reports, dropsondes, spectroradiome-
ter (MODIS water vapour winds), surface land observations, sur-
face ship and buoy observations. The native horizontal resolution
is 0.66-degree longitude by 0.5-degree latitude (60 � 56 km in
the south and 25 � 56 km in the north approximately in the area
covered by EMHIRES: West �11� North 73� South 35� and East
40�) and it is available at 72 levels. Surface data, near surface mete-
orology, selected upper-air levels and vertically integrated fluxes
and budgets are produced at one-hour intervals. The 30 year-
period selected ranges from the 1st of January 1986 to the 31st
of December 2015 from 00:30 to 23:30 Universal Time Coordinates
(UTC) at hourly frequency. The variables extracted are the east-
ward and northward wind at 2, 10 and 50 m above displacement
height (ms�1).

The Global Wind Atlas [32] provides the corrections on wind
speeds taking part in application of the downscaling technique of
EMHIRES dataset. The GWA data-set is the only publicly available
data-set that provides worldwide wind conditions that include
micro-scale information. It uses the generalisation methodology
[39] to include micro-scale processes (i.e. orography and roughness
induced flow accelerations) to the large scale data. The use of the
GWA and the downscaling could be also useful when developing
scenarios of future wind power deployment if reanalysis is applied
directly for this purpose, being inappropriate considering the
coarse resolution.

The ECMWF dataset is used for validation of the downscaled
wind speed comes from the operational forecast wind speeds at
12 � 12 km spatial resolution and at 100 m height, from 2012 to
2015 [40]. The new dataset represents a valuable improvement
with respect to coarse reanalysis data and to the direct extrapola-
tion of ECMWF 10-m wind, which was shown to produce a consid-
erable degradation of energy power production with respect to
observed values [40]. The new variable of ECMWF meets the need
of calculating the wind speed at turbine height level, and is the
result of the vertical linear interpolation from the two nearest
ECMWF model levels, which are, respectively at approximately
70 and 110 m. In order to obtain hourly data, horizontal wind fields
are taken from ECMWF analyses at 00:00 and 12:00 UTC, and, in
the other hours, from the short-term forecasts in the range +1 to
+11 h. At such a very short range, the forecasts <12 h are the anal-
yses, since it is a combination between a short-range forecast data
with observations to produce the best fit of both, so that they can
be used as realistic proxies. Data cover a wide region extending
from 30�N to 75�N and from 25�W to 45�E, considering both
onshore and offshore grid points almost all over Europe, including
Iceland. However, as the ECMWF dataset is only available for
4 years, it was not used as a primary source for generating the
EMHIRES time series.

2.2. Actual wind power generation time series and statistics

The calculated wind power time series in EMHIRES are vali-
dated against the actual wind power generation outputs provided
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by the TSOs for the year 2015 at country level and by bidding zone.
The main source for TSOs time series is the Transparency Platform
provided by the European Network of Transmission System Oper-
ators for Electricity (ENTSO-E) [41] in agreement with Regulation
543/2013 [42]. This database has been consulted last time in
February 2017: in case data were not available on the ENTSO-E
transparency platform (e.g. Croatia or Italian bidding zones) or
contained significant amount of missing values (e.g. United King-
dom, Republic of Ireland, Cyprus), data from the corresponding
TSO was preferred as a source. Regardless this, for Bulgaria, Luxem-
burg, Slovenia and Slovakia data were not available (Table 1). To
crosscheck the level of accuracy of the ENTSO-E and national
hourly time series, the sum over all hours in 2015 is compared
with the annual generation reported by the same source in a differ-
ent section of its web data repository. It is observed that there are
mismatches for most of the countries between the total annual
production reported and the sum of the hourly reported values.
The ENTSO-E time-series include hours that are not registered
while the total annual generation could have been metered and
reported separately e.g. for support scheme payments. Moreover,
according to Regulation 543/2013, all the information shall be pro-
vided for all bidding zones only in Member States with more than
1% feed-in of wind or solar power generation per year or for bid-
ding zones with more than 5% feed-in of wind or solar power gen-
eration per year. The reasons behind possible mismatches could be
different: that national borders do not always coincide with bid-
ding zones (e.g. Denmark, United Kingdom), renewable energy pro-
duced might be outside of the interconnected system (not
interconnected islands like in Greece) or generation by auto-
producers might not be included in TSOs statistics. For the valida-
tion at NUTS 1 and NUTS 2 level, regional statistics have been
searched but, for most of the countries, neither time series nor
monthly or annual statistics yet available for 2015. Some EU Mem-
ber States (e.g. the UK) will publish annual statistics are on a regio-
nal level at the time of release of this paper. In the case of Spain
[43], there are monthly statistics of wind generation by region,
and in the case of France [44] and Finland, the statistics available
show the total annual production by regions.

In order to keep the consistency with yearly statistics the
EMHIRES wind power time series have been normalised to the
ENTSO-E annual production statistics reported (last column in
Table 1), although the bias with the hourly time series will be
implicitly in the analysis.

3. Description of the methodology

3.1. Statistical downscaling of wind speed hourly variations

MERRA hourly eastward and northward wind components at
three different heights 2, 10 and 50 m are interpolated at each
wind farm location to calculate the wind speed and direction, using
the arctangent functions to convert angles into radians and then
downscaled using a robust and established technique. This tech-
nique is based on a probabilistic approach and aimed at predicting
the changes in the probability density function (pdf) of local scale
wind speed conditioned to large-scale hourly wind speed predic-
tors [45,46]. The analytical expression summarizing the methodol-
ogy was developed in [47]. In this study it was applied a downscale
daily wind speed time series from a meso-scale meteorological
model to the wind farm level. EMHIRES is based upon the same
algorithms used in [47] but the large scale time series are available
at hourly level while the microscale hourly wind speed distribution
is provided by the Global Wind Atlas (GWA). The downscaling
technique is not applied to the offshore wind farms because they
are not affected by orography and roughness. Hence the offshore

wind power generation time series are directly produced with
MERRA primary data.

For each wind farm location, a proper Weibull distribution func-
tion best fitting the MERRA interpolated hourly data series is com-
puted and parameters Arean and krean determined for both the 10 m
and 50 m heights. In the same locations and for the same heights,
Amicro and kmicro given by Global Wind Atlas are also collected. For
both probability distribution functions, the related cumulative dis-
tribution functions Fmicro and Frean are computed by the Weibull
distribution properties as

FxðXÞ ¼ 1� e�
X
Að ÞK ð1Þ

Each value of xrean arising from the EMHIRES hourly time series
(1) is then associated to the value of xmicro leading to equal values
of Frean and Fmicro, as described in Eqs. (2) and (3)

FmicroðXmicroÞ ¼ FreanðXreanÞ ð2Þ

1� e
� Xmicro

Amicro

� �kmicro

¼ 1� e�
Xrean
Areanð Þkrean ð3Þ

This leads to the following direct relation between xmicro and
xrean that has been implemented in the downscaling software

xmicro ¼ Amicro
Xrean

Arean

� � krean
kmicro ð4Þ

To calculate the wind power generation time series, the
EMHIRES wind speed time series are then vertically interpolated
to the hub height of each wind farm using a logarithmic profile

WSh2=WSh1 ¼ ðh2=h1Þa ! ln
WSh2

WSh1

� �
¼ a � Ln h2

h1

� �
ð5Þ

where WSh represent wind speed at height h. Once a is identified,
the same profile is used to estimate the WS at the given hub height
of each wind farm (WSHH). The value of a is calculated using the
MERRA-derived wind speed time series at 10 and 50 m height

WSh2 ¼ WSh1
ln h2

z0

� �
ln h1

z0

� � ! a ¼
ln WSh2

WSh1

� �
ln h2

h1

� � ð6Þ

WSHH ¼ WS1
HH
h1

� �a

ð7Þ

However, although a finer spatial resolution account for addi-
tional processes, in complex atmospheric conditions it adds an
extra factor to the cascade of uncertainties. Therefore, to assess
the degree of improvement of the downscaling technique the
MERRA and EMHIRES wind speed datasets are compared with
ECMWF high resolution wind speeds. This comparison allows ana-
lysing the variability and correlation of wind speeds at different
spatial resolutions (i.e. MERRA at 60 km � 56 km in the South
and 25 � 56 km in the North; EMHIRES site level correction and
aggregated at different levels and ECMWF at 12 km � 12 km).

3.2. Conversion into wind power generation

The 30 years of corrected wind speed at hub height are con-
verted into power using the reconstructed wind farm database,
taking into account the wind fleet in Europe at the end of 2015.
The wind farms selected are in production phase (status = produc-
tion) and commissioned before end 2015 (commissioning year
<2016 or absent). The database completeness, gap filling and sta-
tistical approximations are based on the criteria followed by [37].
They take into account technological aspects such as the installed
capacity of each wind farm, number of turbines, the turbine types,
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manufacturer, hub height, swept area, power, minimum, maxi-
mum and nominal power, the geographical location, onshore/off-
shore and distance to the shore, commissioning year and status.
In the EMHIRES dataset, one power curve is assigned for each wind
farm considering its characteristics: design of the turbine andman-
ufacturer, the swept area of the turbines, the installed power and
the minimum, nominal and maximum wind power. Firstly, the
power curves are built using as primary data the turbine database
from [38]. Additional databases including information of power
curves given by manufacturer are also used for completeness
[48]. After the completeness, the missing records without power
curves information are 28% and a power curve parameterization
has been applied following the methodology applied in [37].

After the reconstruction, the database includes 1061 power
curves from the 160 manufacturers registered in Europe at the pre-
cise hub height of the turbines; there are 16,171 wind farms
located in European countries, 80 wind farms registered of which
are offshore. The database produces a result that matches 95% of
ENTSO-E statistical factsheet of installed capacity, while the origi-
nal database matched 89%.

4. Results and discussions

4.1. Comparison of wind speed from different datasets

This section presents the statistical comparison of hourly wind
speed time series at 100 m for 2012–2015 between MERRA,
EMHIRES and ECMWF datasets.

The internal consistency of the three datasets is assessed by the
Pearson’s correlation coefficient (R) and to gauge their statistical
significance, the Student’s t-test is applied. For each wind farm in
Europe, MERRA EMHIRES and ECMWF wind speed time series have
been found to be highly correlated between each other with
Rmean = 0.88–0.89, Rmin = 0.48–0.42 and Rmax = 1.0–1.0 once the
results are aggregated at country and NUTS-2 level, respectively.
In all cases, EMHIRES dataset shows a high consistency with the
original data (MERRA) with a correlation greater than 0.95. Accord-
ing to these general results, it can be stated that the three datasets
capture similar features of wind patterns on the European conti-
nental scale.

Nevertheless, a deeper analysis shows how the details of this
broad picture differ when prediction skills are closely compared.
Averaging the correlation by country it is observed that in all cases
the RMERRA-ECMWF is very similar with the REMHIRES-ECMWF with a dif-
ference of R = 0.02 (with a level of significance p < 0.05). This sim-
ilarity can suggest that at this level of aggregation, the local effects
due to the orography that both ECMWF and EMHIRES could intro-
duce are smoothed. On the contrary, by disaggregating from coun-
try to NUTS-2, there are regions where the REMHIRES-ECMWF is visibly
higher than RMERRA-ECMWF; that means EMHIRES and ECMWF both
capture more variability than MERRA. These results occur in the
20% of the NUTS 2 regions, with the highest correlation of 0.943
and with a difference of REMHIRES-ECMWF � RMERRA-ECMWF = 0.20.
The NUTS 2 with such differences in the correlations are coastal
areas in Spain, Germany, Greece, Romania, Portugal, Norway and
United Kingdom.

Wind farm sites are extremely heterogeneous across Europe
and this could indicate that EMHIRES indeed introduces more vari-
ability in the dataset although its actual added value in properly
assessing the local wind effects could differ site by site. For this
reason, site level data have been deeper analysed by crosschecking
the variability, the dispersion and spread of the datasets. While low
standard deviation indicates a dataset is closer to the mean and has
lower variability, high standard deviation shows that data points
are spread out over a wider range of values so the dataset is more

dispersed. This behaviour can be observed indeed in the scatter
density plots of Fig. 2 and the boxplots of Fig. 3. A visual compar-
ison of the scatter density plots indicates the variability is higher
and more spread in the case of EMHIRES (wind speed corrected
at site level) and in the ECMWF (wind speed extracted at
12 km � 12 km resolution) with respect to MERRA datasets
(60 km � 56 km in the South and 25 � 56 in the North, approxi-
mately). The scatter density plot between MERRA-EMHIRES (1)
shows that the standard deviation of EMHIRES is more spread
out and the range is higher than in MERRA, the cloud is shifted
upwards to x = y axis and distributed over the first quadrant. In
the case of MERRA-ECMWF (2) the pattern is similar to MERRA-
EMHIRES but lower. On the contrary, the comparison between
EMHIRES and ECMWF (3) indicates that EMHIRES has slightly more
spread than ECMWF but less than with MERRA. In this case, the
cloud is closer to the x = y axis.

The boxplots represent the average absolute deviation of the
dataset, that is, the average of the absolute deviations from a cen-
tral point. In this case, the central point is the median of the inter-
quantile range. The boxplots show the difference of the mean
between mean (EMHIRES-ECMWF) and mean (MERRA-ECMWF):
the negative values indicate that the difference between the mean
of EMHIRES and ECMWF is lower than the mean between MERRA
and ECMWF showing that EMHIRES and ECMWF contribute with
more variability than MERRA. It is also possible to highlight that
EMHIRES simulates higher wind speed values than MERRA (nega-
tive values for most of the countries) since wind farms are typically
built on sites with higher wind resources that are better captured
thanks to the statistical downscaling procedure.

The statistical results obtained so far are in line with the phys-
ical behaviour of the wind speed variability at different resolutions.
In coarser resolutions (MERRA) the effects of capturing fine-scale
forcing – in particular in areas characterised by fine spatial vari-
ability of features such as rugged topography and very diverse land
surface conditions – are smoothed and the variability of the wind
speed is underestimated with respect to the dataset where the
downscaling is applied. For countries with little orography (such
as Belgium, Denmark, Netherlands and United Kingdom) MERRA
does not account for the local roughness and can slow down the
winds significantly with respect to EMHIRES and ECMWF, over
predicting the wind speed and introducing less variability than
EMHIRES and ECMWF. This behaviour is observed in the wind
speed duration curves for those countries of the Fig. 4. Since the
scope of this study is to improve the quality of the wind power
time series, the improvement of the EMHIRES is analysed by com-
paring with the actual wind power generation time series provided
by the TSOs.

4.2. Wind power generation at different aggregation levels

The simulated wind power time series derived from the
EMHIRES, MERRA and ECMWF wind speed datasets are validated
with the actual wind power generation at different aggregation
levels using time series and statistics provided by TSOs. Although
the time series provided by the TSOs are not complete, they are
used to compare MERRA, EMHIRES and ECMWF datasets.

4.2.1. Statistical indicators
The first comparison is carried out using hourly time series by

country and by bidding zone for 2015. Further, since the bidding
zones are smaller regions than country areas (e.g. Norway, Sweden,
Denmark and Italy) both aggregation levels are compared to assess
the improvement of EMHIRES with respect to the MERRA-derived
wind power. It can be noted that the method applied to convert
wind speed into wind power generation is indeed a source of
uncertainty but this is also related to the TSOs data mismatches
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already mentioned (Table 1). ECMWF wind speed of 2015 has been
also converted into wind power to be compared with the EMHIRES
and MERRA statistical performance.

The overall results of the statistical performance for each coun-
try and bidding zone are summarized in Tables 2 and 3 for MERRA
(a), EMHIRES (b) and ECMWF (c), respectively in the supplemen-

tary material. The fractional bias (FB) measures the mean bias
and indicates only systematic error which leads to an underestima-
tion or overestimation (in the range of ±2.0 ratio) of the TSO values.
There are no significant differences between the FB associated to
ECMWF, MERRA and EMHIRES by country and by bidding zone. A
tendency to underestimate is found in some countries while others
are overestimated, but in the three datasets the systematic error
has a similar level and pattern. The Pearson’s linear correlation
coefficient indicates that the three datasets have good internal con-
sistency; they range between 0.8 and 0.97 when comparing with
the TSO time series, except for Cyprus (0.55), Bulgaria (0.76),
Switzerland (0.56) and Croatia (0.80). Note that for those countries,
the ENTSO-E time series mismatch severely with the total genera-
tion provide by the same source in the annual statistical factsheet
(Table 1 last two columns). Therefore, the lower correlation
between the three simulated datasets and the TSO data also may
be due to inhomogeneities in the latter. Other reason of the lower
correlation could be the extreme complex terrains characterised in
those countries leading to greater bias of the simulations. EMHIRES
shows a better correlation to the TSO time series than MERRA (in
green in Table 2b) in Belgium, Germany, Denmark, Estonia, Finland,
France, Hungary, Lithuania, Latvia, Netherlands and Portugal and
for the bidding zones of Norway (NO4), Sweden (SW1) and Italy
(SUD, SICI). EMHIRES also shows an improvement in the internal
consistency. In addition, the mean error (ME), the difference
between standard deviations (SD) and the root mean square error
and the unbiased root mean square error (RMSE and RMSEub) are
computed to gauge the simulation’s accuracy. Indeed, high values
of RMSEub indicate a high level of non-systematic (i.e., random)
discrepancy between the simulations and the TSO data. In addition,
the ability of a simulation to reproduce the ‘‘real” values is also
assessed following the criteria defined by [49] consisting of: (1)
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the simulated and TSO standard deviations are similar; (2) the
RMSE are lower than the standard deviation and (3) the unbiased
RMSE (RMSEub) which represents the accuracy of the MERRA and
EMHIRES is also lower than the standard deviation.

FB ¼
X

i
Xiobs � Yisimuð Þ

0:5 �
X

i
Xiobs þ Yisimuð Þ ð8Þ

ME ¼
P

Xi � Yi

n
ð9Þ

SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 Xi � X
� �2
n� 1

s
ð10Þ

RMSEub ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ðXi � XÞ � ðYi � YÞ� �2
n

s
ð11Þ

On the bases of these criteria, the overall results indicate that all
datasets, MERRA, EMHIRES and ECMWF, are well characterised by
high internal consistency, they are accurate and have the skill of
the statistics to be good synthetic time series, and that the three
datasets have very similar performance.

Each of the statistical parameters shows an improvement in
EMHIRES for different combination of countries (green colours in
Table 2b for each of the statistics). For example, the correlation is
higher in EMHIRES for Belgium, Germany, Denmark, Estonia, Fin-
land, France, Hungary, Ireland, Lithuania, Latvia, Netherlands and
Portugal and the standard deviations is closer to the TSO for most
of the countries except from Austria, Cyprus, Finland, Croatia and
Sweden. In the case of the bidding zones, the correlation coeffi-
cients hover around 0.8–0.95, decreasing in regions where terrain
is extremely complex (e.g. Norway North (NO3 and NO5); Sweden
(SW1) and Northern Italy (NORD and CNOR)). Over the 25 coun-
tries and 16 bidding zones analysed, all of them except for Cyprus,
Czech Republic, Spain, Poland, Switzerland, and Italy-NORD bid-
ding zone and Italy-SARD bidding zone have better internal consis-
tency, or they are more accurate when EMHIRES series are
considered with differences in the standard deviations, the ME,
MSE, or RMSEub improving with respect to MERRA. Moreover,
although EMHIRES is more variable and dispersed than MERRA, it
has lower differences with respect with the actual values.

In the cases EMHIRES time series do not improve with respect
to MERRA time series, the results have small differences and in
no case EMHIRES visibly worsen the time series with respect to
the TSO-time series. If the overall performance is considered at
European scale (aggregated statistics) then, it is observed that
EMHIRES improves in Europe except from Spain, Cyprus, Czech
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Republic, Poland and Switzerland and in the bidding zones except
from Nord Italy and Sardinia (green colours in the country code in
Tables 2b and 3b). The Fig. 5 shows the overall performance for all
the countries and bidding zones, taking into account weighted fac-
tors based on the installed capacity for each country and bidding
zone and the total installed capacity in Europe, as reference. Thus,
the size of the wind power system in each of country and zone is
also measured to gauge the accuracy of the overall performance
at European scale.

ECMWF derived wind power time series show a clear improve-
ment in most of the statistical indicators for Austria, Belgium, Bul-
garia, Cyprus, Germany, Denmark, Estonia, Greece, Netherlands
and Poland with respect to EMHIRES. For the rest of the countries,
both datasets (ECMWF and EMHIRES) are very similar in the per-
formance of the statistics and, in all cases EMHIRES is closer to
the ECMWF indicators than MERRA. By assessing the same indica-
tors at bidding zones, the results show that EMHIRES is the dataset
representing better the TSO time series. In most of the cases,
EMHIRES shows an improvement with respect to MERRA while
only in two bidding zones (Norway NO2 and NO3) ECMWF results
have better performances. This may indicate that by increasing the
aggregation levels from country to bidding zone, EMHIRES better
captures the wind power variability than MERRA and ECMWF.

The Fig. 6a shows the quality of agreement between the MERRA,
EMHIRES and ECMWF datasets and the TSO data in the form of
Taylor diagram for Belgium, Germany, Denmark, Spain, France,
Netherlands and United Kingdom. Those diagrams assess compar-
atively the modelled and observed data by the use of the Pearson
correlation coefficient, the root mean square error and the stan-
dard deviation. The normalised standard deviation is higher for
EMHIRES and ECMWF than for MERRA and the indicators repre-
senting highest resolution are closer to each other than to MERRA.
The Fig. 6b shows the same indicators for several bidding zones of
Italy, Norway, Sweden and Denmark. It is observed that EMHIRES
is closed to ECMWF except for the case of Italy-CNOR where the
Italian Alps are located. The very complex terrain may be the rea-
son why the EMHIRES does not capture the real effects of the local
climate.

4.2.2. Duration curves
Wind power duration curves for MERRA, EMHIRES, ECMWF and

TSO data are shown in Figs. 7 and 8. It is observed that for the
countries and bidding zones where the EMHIRES statistics are bet-
ter than MERRA, also the cumulative distributions are closer to the
TSO data, mainly at the highest wind power values. It is observed

that EMHIRES is closer to ECMWF duration curve and both are clo-
ser to TSO data than MERRA.

Assessing the extremes of the curves it is observed that
EMHIRES and ECMWF reproduce higher values than MERRA in
some countries with little orography (Belgium, Denmark, Nether-
lands and United Kingdom, mainly). The flattening of MERRA’s
power duration curve could be related to higher wind speeds in
MERRA than in ECMWF and EMHIRES, since MERRA does not
account for the local roughness that can slow down the winds sig-
nificantly. Because of the higher wind speeds in MERRA rated
power is reached at an earlier stage in the duration curve, as it
was also observed in Fig. 4.

An example of the statistically significance (Student’s t-test)
between MERRA and EMHIRES with TSO is indicated in Table 4.
The significance measured by the p-value indicated the probability
of obtaining the result equal to or more extreme than was actually
observed and is considered statistically significant when p < 0.05.
The table includes for each pair of datasets the t indicator and
the p.value, showing that in all cases the datasets follow a Stu-
dent’s t-distribution under the null hypothesis. In general, there
is overestimation in the three datasets that could be due to the
installed capacity considered for the power conversion, dated at
the end of 2015, while the TSO data span the whole 2015. Differ-
ences may also be due to curtailment episodes, maintenances of
the wind farms or caused by the uncertainty intrinsically associ-
ated with the methodology. On the other side, it has been shown
in Section 2.2 that TSO data are not always consistent.

4.2.3. Time series and ramping rates
The overall statistical performance shows good results in all

datasets, which means that they are able to reproduce the wind
power generation with similar errors. However, EMHIRES incorpo-
rates higher variability improving the wind power time series,
being closer to the ECMWF variability than MERRA.

The direct comparison of modelled and TSO duration curves and
time series can provide further useful information on the suitabil-
ity of EMHIRES in reproducing actual data. For instance, the Fig. 9
shows the wind power generation time series of the four datasets
(ENTSO-E, MERRA, EMHIRES and ECMWF) for Belgium. It is
observed that MERRA is not able to reproduce the wind power gen-
eration peaks as well as EMHIRES and ECMWF. Once again it is very
likely that the difference results from the spatial resolutions of the
wind speed; the coarser resolution is not able to reproduce the
variability and local effects of the wind speed. Those effects are
smoothed and the main consequence is the underestimation of
the wind power peaks. This effect is even more pronounced when
the time series are more spatially disaggregated by bidding zones;
for example in Denmark (DK1), Fig. 10. In those cases the improve-
ment of the EMHIRES is more significant and it is observed that
EMHIRES and ECMWF are able to reproduce the ramps better than
MERRA. Although in some cases EMHIRES overestimates the peaks
of wind power generation, the statistical analysis indicate that the
contribution to the uncertainty is lower than the improvement of
the results.

On the physical basis, the results show that the increased power
simulated by EMHIRES may be the overall effect of wind turbines
being sited in favourable locations with speed up due to orographic
or roughness effects, which are captured by Global Wind Atlas and
then properly transferred to EMHIRES, but missed by MERRA. This
effect can be observed at country and by bidding zone aggregation
levels and the comparison with the wind power derived from the
ECMWF high resolution wind speeds also confirmed those results
at the two levels of aggregation.

In order to assess the quality of EMHIRES in capturing the sud-
den increase or decrease of power characterised by large positive
or negative hour by hour differences, the ramp rate distribution
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is calculated. The following plots (Fig. 11) show the frequency dis-
tribution of the ramping rates, calculated by the difference
between the power production at hour (h) and at (h-1), namely

(WPt–(t-1)) in the countries with significant installed capacity
(Spain, Denmark, United Kingdom and Germany). The histograms
represent the TSO data, divided into 100 intervals in order to take
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Fig. 7. EMHIRES (red), MERRA (blue), ECMWF (green) and ENTSO-E (black) wind power duration curves for 2015 by country. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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into account the minimum and maximum power difference. The
distribution curves correspond to EMHIRES (red) and MERRA
(blue). The range of the plot is ±10,000 MWh in order to compare

the ramping rates peaks of all countries considered. In general,
the distribution of MERRA is steeper in the ‘‘bell” and less pro-
longed in the ‘‘edges” of the distribution than EMHIRES. This

Fig. 8. EMHIRES (red), MERRA (blue), ECMWF (green) and TSO (black) derived wind power duration curves for 2015 selected bidding zones in Norway, Italy and Sweden. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 9. EMHIRES (red), MERRA (blue), ECMWF (green) and TSO (black) wind power hourly time series for Belgium in 2015. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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reflects once again the underestimation of the wind speed due to
smoothing, i.e. not taking into account the local effects at the sites
of the wind farms. It can be seen that the ramping rates of
EMHIRES are better representing the TSO data.

In the case of Denmark, the 95% coverage of measured ramp
rates occur in an interval of a WPt–(t–1) �600 to 600 MWh. Both
cases, MERRA and EMHIRES are able to capture the negative ramp-
ing rates in the 99.5% of the hours. In the case of large sudden pos-
itive increases (the 5% coverage of the most extreme ramp rates),
EMHIRES improves with respect to MERRA. MERRA is not able to
capture differences greater than 600 MWh while EMHIRES is able
to reproduce 4 ramps that occurred in the range of 600 and
1200 MWh. On the contrary, during the 2015, there were 2 h with
a positive increases of 1200 MWh and 1800 MWh respectively that
neither dataset is able to capture.

In the case of Germany and Spain, EMHIRES and MERRA slightly
underestimate the ramping rates with respect to TSOs time series.
In Germany, the 95% coverage of the ramping rates occurs mainly
between �1000 and 2000 MWh, and the datasets capture the sud-
den changes in a 92% of these hours. For Spain, the 95% coverage
ranges between �2000 and 2000 MWh and EMHIRES captures
the 97% of the hours. There is one positive maximum of
8000 MWh in Germany and 10,000 MWh in Spain and one nega-
tive maximum of �6000 MWh and �9000 MWh in Germany and
Spain, respectively. Neither EMHIRES nor MERRA are able to cap-
ture them.

EMHIRES shows a noticeable improvement with respect to
MERRA in the United Kingdom. The 95% coverage ranges between
�940 and 1300 MWh redistributed into three different subinter-
vals. That is, there are 340 h with sudden decrease between �940
and �340 MWh and EMHIRES captures 50% of the hours compared
with 35% captured by MERRA. There are 7278 ramping rates
between �340 and 200 MWh and EMHIRES overestimates the
changes in 8% of the cases while MERRA overestimates in 15%.
Finally, there are 14 large changes between 700 and 1300 MWh.
While MERRA is not able to capture any of these ramps, EMHIRES
captures 7 cases. According to the TSO data, the positive and nega-
tive maximums occurred once at 6000MWh and at �5000 MWh,
this time neither EMHIRES nor MERRA are able to capture them.

For the four countries analysed, EMHIRES shows a clear
improvement with respect to MERRA in the 95% coverage of ramp-
ing rates during 2015 and it also better captures the large negative
sudden increases of wind power out of the 95% of the cases. Finally,
the standard deviations and the extreme values for MERRA,
EMHIRES and TSO data are quantified. Those parameters are nor-
malised with the installed capacity of each country and shown in
the Fig. 12. The standard deviations are represented by the bars
and the extreme values are depicted with the black lines over
the bars. It is observed that both the standard deviation and the
extreme values improve in EMHIRES in a significant amount of
countries analysed and when there is no improvement the result
of EMHIRES is very similar to MERRA.
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Fig. 10. EMHIRES (red), MERRA (blue), ECMWF (green) and TSO (black) wind power hourly time series for one of the bidding zones in Denmark (DK1) in 2015. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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The limitation of the weather derived wind power time series
appears when trying to capture the maximum of the ramping rates
(1 and 100 percentiles of the ramping rates distributions).
EMHIRES (and consequently MERRA) are not able to reproduce
some extreme situations. Because of the limitation of the data sets
it is difficult to assess if these extreme ramps have occurred
because of purely meteorological events or on the contrary they
were triggered by other non-meteorological effects: curtailment,
outages such as maintenances, grid losses and sudden disruptions.
If this were the cases, it is not surprising if the purely meteorolog-
ical methodology developed here did not allow taking them into
account. There could be an extra effect because the change in wind
speed could happen at any time during the hour. The first version
of EMHIRES is release at hourly frequency and this effect is not cap-
tured when we only have one value per hour.

4.2.4. Offshore power
The validation for the MERRA generated offshore time series

also shows the skill of the statistics (Table 5). The correlations
obtained when comparing with the TSO are in all cases high;
0.93, 0.83, 0.95, 0.90 and 0.91 for Belgium, Denmark, Germany,
Netherlands and United-Kingdom, respectively. However, the
overall statistics show that the bias is greater than in the onshore.
This can be explained by the fact that offshore, turbines are mostly
grouped together in wind farms: in the case of Belgium there are 3
wind farms aggregated; Denmark has 16 wind farms, Germany 13
wind farms, the Netherlands 5 wind farms, and the United King-
dom 28 wind farms. Due low turbulence levels over water wind
speed reductions last over relatively long distances, which can lead
to significant power losses of turbines inside a wind farm. Since the
MERRA data does not include turbine induced flow reductions a
bias with the observations can arise. In addition, wind farms are
frequently built in coastal waters. The local wind conditions in
these locations, characterised by coastal wind speed gradients,
are not captured by the MERRA data.

4.2.5. Capacity factors and regional statistics
Additional comparison of the EMHIRES dataset with the TSO

time series is done by calculating the capacity factors (CF); that
is, the ratio between the sums of the energy produced (GWh)
and the maximum theoretically possible generation (installed
capacity (GW) ⁄ 8760 h (GWh)) per country. The Table 6 includes
the CF coefficients for EMHIRES, MERRA, ECMWF and TSO data
showing that all values are hovering between 12.8% and 69% with
an average of 22.6%. While EMHIRES presented an improvement in
the ramping rates of several countries, the capacity factors of the
three datasets are very similar between them. The CF TSO are cal-
culated with the total generation of the annual statistical factsheet
provided by ENTSOE (Table 1, last column) and with the total gen-
eration derived from the hourly time series from ENTSOE (Table 1,
penultimate column). The differences in some cases reflect the
mismatches of the data provided by the TSO data. As mentioned
in the data, although for keeping the consistency with yearly statis-
tics the EMHIRES wind power time series have been normalised to
the ENTSO-E annual production statistics reported, the bias with
the hourly time series are implicitly in the EMHIRES time series.
That is the reason why in some cases, the CF EMHIRES differs sig-
nificantly from the CF TSO annual, for example the case of Belgium.

Currently, at NUTS 2 aggregation levels, the only statistics avail-
able for benchmarking theoretical CF values are the annual total
wind power production for Spain, France and Finland. Table 6 pre-
sents the comparison of the annual wind power generation by
NUTS 2 for the three countries. It is observed that both MERRA
and EMHIRES the total production is similar to the annual statistics

except for three NUTS2 in Spain (ES53, ES70, and ES13), three in
France (FR10, FR23, FR25) and one in Finland (FI20). Although in
the comparison between MERRA, EMHIRES and ECMWF the results
were highly correlated between the three datasets, it would be
necessary to validate the data at regional scale with actual hourly
time series. Therefore, the validation by NUTS 2 region will con-
tinue once the data is released by the national TSO.

5. Conclusions

The methodology presented has been used to capture local geo-
graphical information to generate meteorologically derived wind
power time series at high spatial resolution. A statistical downscal-
ing technique has been applied to capture the effect of fine-scale
forcing, in particular in areas characterised by fine spatial variabil-
ity of features such as rugged topography and very diverse land
surface conditions. This allows a better understanding of the wind
resource at the precise location of wind farms. This study is a part
of the methodology followed to develop the EMHIRES dataset, the
first publically available European wind power generation dataset
derived from meteorological sources that is available by country,
bidding zone, NUTS-1 and NUTS-2 level.

Although the three datasets compared, EMHIRES, MERRA and
ECMWF 100 m wind speeds, capture similar broad features of the
wind patterns on the European continental scale, the statistical
results show that in coarser resolutions (MERRA) The variability
of the wind speed is underestimated with respect to the dataset
where the downscaling is applied (EMHIRES) and in the ECMWF
wind speeds. Although the somewhat limited availability of robust
benchmarking data, the validation of EMHIRES against power sys-
tem statistics and time series published by TSOs shows an
improvement in most of the countries and bidding zones in the
performance with respect to time series not applying an accurate
spatial downscaling and the ECMWF derived products. It is shown
that the increased power from EMHIRES may be the overall effect
of wind turbines being sited in favourable locations with speed up
due to orographic or roughness effects, which are captured by Glo-
bal Wind Atlas predicted wind climate data, but not by MERRA.
Also increased variability can be captured because these effects
are locally a function of wind direction. This effect can be observed
at country and by bidding zone aggregation levels.

EMHIRES is able to capture the variability of wind energy, in
particular peaks and ramps, in a much more accurate way than
previous meteorologically derived time series. The limitation of
the weather derived wind power time series appears when trying
to capture the maximum of the ramping rates. EMHIRES (and con-
sequently other meteorological derived time series) are not able to
reproduce some extreme situations since the methodology does
not take into account effects of curtailment, outages such as main-
tenances and grid losses or network incidences. However, this is
the only study, to the best of the authors’ knowledge, trying to
reproduce wind power time series at both national and regional
levels covering the whole Europe with a homogeneous methodol-
ogy avoiding the use of artificial or on-purpose tuned correction
factors. Although it is possible to obtain higher correlation values
on more limited and homogeneous areas and/or using purposely
tailored additional parameters to be set a posteriori through data
fitting, the purpose of this study was to develop an ab initio
methodology for wind power production simulation and apply
homogeneously to all Europe. The methodology has provided
results ranging between good and excellent for all countries for
which reliable TSOs data are available, regardless their sometimes
huge geographical diversity. Using EMHIRES and therefore, the sta-
tistical downscaling technique for power system analysis will
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increase the accuracy of generation adequacy assessments,
renewable energy integration studies and market studies for
power system flexibility options such as storage systems, electric
vehicles and demand response.
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