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Abstract. This paper presents a comparison between measured and simulated tower loads for 

the Danish offshore wind farm Nysted 2. Previously, only limited full scale experimental data 

containing tower load measurements have been published, and in many cases the 

measurements include only a limited range of wind speeds. In general, tower loads in wake 

conditions are very challenging to predict correctly in simulations. The Nysted project offers 

an improved insight to this field as six wind turbines located in the Nysted II wind farm have 

been instrumented to measure tower top and tower bottom moments.  All recorded structural 

data have been organized in a database, which in addition contains relevant wind turbine 

SCADA data as well as relevant meteorological data – e.g. wind speed and wind direction – 

from an offshore mast located in the immediate vicinity of the wind farm. The database 

contains data from a period extending over a time span of more than 3 years. Based on the 

recorded data basic mechanisms driving the increased loading experienced by wind turbines 

operating in offshore wind farm conditions have been identified, characterized and modeled. 

The modeling is based on the Dynamic Wake Meandering (DWM) approach in combination 

with the state-of-the-art aeroelastic model HAWC2, and has previously as well as in this study 

shown good agreement with the measurements. The conclusions from the study have several 

parts. In general the tower bending and yaw loads show a good agreement between 

measurements and simulations. However, there are situations that are still difficult to match. 

One is tower loads of single-wake operation near rated ambient wind speed for single wake 

situations for spacing’s around 7-8D. A specific target of the study was to investigate whether 

the largest tower fatigue loads are associated with a certain downstream distance. This has been 

identified in both simulations and measurements, though a rather flat optimum is seen in the 

measurements. 

1.  Introduction 

Fatigue loads on wind turbines are mainly driven by the varying inflow condition, where especially 

turbulence and shear are the most dominating contributors. Especially for offshore turbines, the 

ambient turbulence levels are typically small with average turbulence intensity around 6%. As 

offshore turbines are typically placed in wind farms, the turbulence driven fatigue contribution is, 

depending on the wind farm layout, dominated by wake effects of the neighboring wind turbines. It is 

therefore important to be able to model these effects with high accuracy to ensure the right load level 

and to be able to utilize new advanced passive or active load reducing strategies to alleviate the wake 

induced loading. Usually these effects are included in simulations using the method from Frandsen 

[1],[2], which basically adjust the turbulence level based on the distance to the nearest wind turbine. 

This may be a sufficient method for many applications and site evaluations, especially when the 

turbine spacing is close to 8 diameters (D), which was the distance the model was originally derived 
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for. The method used in this paper is however based on the Dynamic Wake Meander (DWM) 

approach [3],[4],[5],[6] where the wake is modeled as a wind speed deficit that is transported from the 

upstream turbine in a meandering way prescribed by the large turbulence structures. This model has 

been validated based on full scale measurements in [5],[6]. An interesting consequence of the wake 

meandering approach is that for very short distances, the meandering is limited, but the deficit is large, 

i.e. the downwind turbine to have a low thrust and power production while the blade load variations 

are high in half-wake situations. The tower load variations are not expected to increase, as this is 

mainly sensitive to varying thrust of the full rotor – typically not seen at short distances (<3D). For 

very large spacing (>15D) the deficit is reduced to a degree where the load impact on the downstream 

turbine is minimal.  

Consequently, the tower load level reach its maximum level between 3D and 15D, which is the typical 

spacing in most wind farms today. To see if this can be observed experimentally, the Nysted II 

experiment was setup with tower load measurement on several turbines with different spacing, so that 

a broad range of distances could be covered. The result of this study, together with at general load 

comparison, is presented in this paper. 

2.  Experimental setup 

The Nysted II wind farm consist of 90 Siemens SWT2.3 PRVS turbines installed in the southern part 

of Denmark, see Figure 1. A total of 6 turbines were instrumented with strain gauges in top and 

bottom of the tower. The available measurements can be divided into 5 data classes, each with their 

own characteristics, data coverage and time stamp reference.  

1) High frequency sampled meteorological data. 

2) High frequency sampled WT structural strain-gauge data. 

3) Time series data from WT Supervisory Control And Data Acquisition (SCADA) systems. 

4) Statistical 10-minute meteorological data. 

5) Statistical data from the WT SCADA systems.  

The high frequency sampled (i.e. 20 Hz) meteorological data consist of recordings from 3 Sonics 

mounted on an off-shore meteorological mast nearby the WF in altitudes 17m, 40m and 57m above 

mean sea level (AMSL), respectively. The high sampled (i.e. 40 Hz) structural data consist of strain-

gauge measurements from the 6 instrumented turbines (L1, L2, L3, M1, M2, K18) – cf. Figure 1. For 

each WT, the strain-gauge setup resolves two WT tower bottom bending moments and two WT tower 

top bending moments in mutual perpendicular directions as well as the tower top torsion (i.e. yaw) 

moment. It was however problematic to use the tower top bending moment as local stress 

concentrations affecting the strain gauges removed the usable signal from several sectors. The 

analyses in this paper are therefore based on the tower bottom bending moment and the tower top yaw 

moment. 

 

Figure 1 Site overview with instrumented WTs indicated. 
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3.  Turbine and ambient inflow conditions  

The baseline is a model of a 2.3MW pitch regulated turbine equipped with the DTU controller [14] in 

order to mimic as close as possible the Siemens 2.3MW WTs at the Nysted II site. Simulations have 

been performed for mean wind speeds ranging between 6m/s and 24m/s with increments of 2m/s. The 

ambient turbulence level has been chosen to 6%, corresponding approximately to the mean turbulence 

level at different previously investigated offshore WFs (Egmond aan Zee, Lillgrund, Horns Rev I) as 

well as to the mean of the undisturbed ambient turbulence intensity level at the present Nysted II site. 

In Figure 3 the measured turbulence intensity has been given for the full polar (i.e. [0
o
; 360

o
]), and as 

seen significant systematic variations are observed. These are partly caused by upstream (turbulence 

generating) WTs (i.e. L1, M1, M2, K1 etc.), partly to variations in the upstream fetch conditions e.g. 

the upstream roughness element constituted by summer cottage area in direction 340
o
. 

 

 
Figure 2. Measured turbulence intensity levels at the Nysted II site. 

4.  The numerical model 

The DWM model complex [3] is based on the combination of three cornerstones: (1) Modeling of 

quasi-steady wake deficits; (2) a stochastic model of the downwind wake meandering; and (3) added 

or self-generated wake turbulence, see Figure 3. 

The quasi-steady wake deficit is the wake deficit formulated in the moving (i.e. meandering) frame of 

reference and includes the wake expansion as a function of downstream transportation time caused 

partly by turbulence diffusion and partly by recovery of the rotor pressure field. The modeling of this 

deficit is based on a thin shear layer approximation of the Navier–Stokes equations in their rotational 

symmetric form combined with an eddy viscosity closure. The initial condition is constituted by the 

induced wind field in the rotor plane determined from a BEM approach. In the present formulation, the 

aerodynamic module of HAWC2 is used for this purpose. Further details on the implementation can be 

found in Madsen et al. [4]. 

The wake meandering part is based on a fundamental presumption stating that the transport of wakes 

in the atmospheric boundary layer can be modeled by considering the wakes to act as passive tracers 

driven by the large-scale turbulence structures in lateral and vertical directions [3]. Modeling of the 

meandering process consequently includes considerations of a suitable description of the ‘carrier’ 

stochastic transport media as well as a suitable definition of the cutoff frequency defining large-scale 

turbulence structures in this context. For the stochastic modeling of wake meandering, we imagine the 

wake as being constituted by a cascade of wake deficits, each ‘emitted’ at consecutive time instants in 
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agreement with the passive tracer analogy [3], [4]. We then subsequently describe the propagation of 

each of the ‘emitted’ wake deficits, and the collective description of these thus constitutes the wake 

meandering model. 

 

Figure 3. Overview of the three fundamental parts of the DWM model. 
 

Adopting Taylor’s hypothesis [7], the downstream advection of these is assumed to be controlled by 

the mean wind speed of the ambient wind field. With this formulation, the wake momentum in the 

direction of the mean flow is invariant with respect to downstream displacement. This is a 

considerable simplification allowing for a straight forward decoupling of the wake along the wind 

deficit profile (and its expansion) and the wake transportation process. As for the dynamics in the 

lateral and vertical directions, each considered wake cascade element is displaced according to the 

large-scale lateral and vertical turbulence velocities at the position of the particular wake cascade 

element at each time instant. The choice of a suitable stochastic turbulence field, that in turn defines 

the stochastic wake transport process, is not mandatory, but may be guided by the characteristics of the 

atmospheric turbulence at the site of relevance. These characteristics encompass in principle not only 

turbulence standard parameters such as turbulence intensity, turbulence length scale and coherence 

properties, but also features such as degree of isotropy, homogeneity of the turbulence, Gaussianity of 

the turbulence, etc. 

 

The DWM model has been implemented into the aeroelastic code HAWC2. This code is based on a 

multibody formulation as described by Shabana [8] with Timoshenko beam elements as described in 

[9]. The aerodynamic model is based on an extended BEM model as described in [10].  Validation can 

be found in [5],[6],[11],[12]. 

5.  Validation: 

Measurement are compared to simulations with respect to 1Hz equivalent fatigue loads, see Figure 4-

13. Note that all loads are non-dimensionalised with the fatigue load level in the free sector at 9m/s. 

When comparing the tower bottom bending loads (Figure 4-7) at 8m/s a small offset can be seen in the 

free sector between the measurement and simulations, however when comparing the relative load level 

in the wake sectors to the free sector there is an excellent agreement between measurement and 

simulation. This is yet another indication that the DWM model captures the wake effect very well. The 

tower yaw loads also have a very fine agreement, which can be seen in Figure 8-9. When comparing 

loads levels at rated wind speed at 12m/s (Figure 10-11) there is a fine agreement in the multiwake 
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sector, which is mainly caused by a change in the approach the individual wakes are superimposed, 

see more about this in [6]. However, the simulated load levels in the single wake situation at 12m/s are 

significantly underestimated. The reason for this may very well be caused by the simplified way the 

deficit is evaluated. In the present approach, the deficit is based on the assumption that the upstream 

turbine operates at the average setting of pitch and rotor speed corresponding to the average ambient 

wind speed. As the controller has a highly nonlinear influence on the thrust of the turbine, it seems that 

this leads to slightly underestimated load levels. One solution could simply be to subdivide the results 

into more narrow wind speed bins, or perhaps to expand the DWM model with a time varying deficit. 

The latter will be invested in future work.  

 

 
 

Figure 4. Measured tower bottom bending equivalent 

moment; WT M2; m = 4; U = 8m/s. 

Figure 5. Simulated tower bottom bending 

equivalent moment; WT M2; m = 4; U = 

8m/s. 

 

 
 

 

Figure 6. Measured tower bottom bending equivalent 

moment; WT L2; m = 4; U = 8m/s. 

Figure 7. Simulated tower bottom bending 

equivalent moment; WT L2; m = 4; U = 

8m/s. 
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Figure 8. Measured tower top yaw equivalent moment; 

WT L2; m = 7; U = 10m/s. 

Figure 9. Simulated tower top yaw 

equivalent moment; WT L2; m = 7; U = 

10m/s. 

 

 

 

Figure 10. Measured tower bottom bending equivalent 

moment; WT L3; m = 4; U = 12m/s. 

Figure 11. Simulated tower bottom 

bending equivalent moment; WT L3; m = 

4; U = 12m/s. 

 

 
 

Figure 12. Measured tower top yaw equivalent 

moment; WT L3; m = 7; U = 12m/s. 

Figure 13. Simulated tower top yaw 

equivalent moment; WT L3; m = 7; U = 

12m/s. 



7

1234567890

Wake Conference 2017  IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 854 (2017) 012027  doi :10.1088/1742-6596/854/1/012027

 

 

 

 

 

 

 

6.  Tower loads as function of turbine interspacing  

To investigate whether the load levels decrease for increased turbine spacing and find the distance 

causing the highest load levels, a simulation study was first carried out. It is important to realize that 

the largest loads may not occur in full wake situations, but in half wake conditions [13]. In Figure 14-

16 the load levels of a turbine in a single wake situation were mapped with respect to fatigue load 

levels as function of wind direction and turbine distance.  

At 8m/s the full wake situation shows a rather constant load plateau until 8D spacing for which load 

decrease beyond this spacing. This, however, only covers a narrow wind direction interval. For wind 

directions resulting in half wake situations, the loads levels are higher and also continuously 

decreasing for increased spacing. Therefore, one should expect that for wind speeds below rated, the 

tower loads are indeed decreasing for increased distance (or the maximum load level is for distances 

below 4D). This is also seen clearly at 10m/s, Figure 16, where a load peak is identified around 8D for 

the full wake case. The yaw loads at 8m/s, Figure 15, reveal a distance where the loads have a 

maximum close to 5D spacing. 

Based on the measurements, presented in Figure 17 and 18, it was investigated whether this showed a 

similar trend. It is not possible from the measurements to identify a certain downstream distance where 

the loads have a maximum. It is, however, clear to see that between 6.2D until 9D the bending 

moment loads levels remain on a constant plateau, where a small however clearly visible lower load 

level is seen for 9-10D spacing’s. A similar conclusion can be drawn from the yaw moment 

measurements. Loads remain at a rather constant plateau until 7D and decrease or further downstream 

distances. 

7.  Conclusion 

In this study the Nysted II wind turbine park has been analyzed with respect to tower bending load and 

tower yaw loads. A total of 6 turbines, with different inter spacing’s, were fully instrumented with 

strain gauges. First a load validation between the measured loads and simulated loads using the DWM 

approach in combination with the aeroelastic code HAWC2 was carried out. A very fine agreement 

was seen between measurements and simulations in single and multiple wake situations until just 

below rated wind speed at 12m/s. At 12m/s it seems as the DWM approach under predicts the load 

levels. It is expected that this is caused by the complex interaction between the nonlinear turbine 

control characteristics, which may cause a highly varying deficit depth not yet accounted for in the 

DWM approach. 

The measured and simulated cases have also been used to study how load levels vary as function of 

downstream distance. It is found that the tower bottom bending moments are on same level between 6 

and 9D spacing and decreasing for further distances. For the yaw moment, the load levels are on a 

constant level from 5 to 7D spacing and decreasing for further distances. 
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Figure 14. Tower bottom bending moments at 8m/s and 6% turbulence intensity. 

 

Figure 15: Tower top yaw moments at 8m/s and 6% turbulence intensity. 

 

 
Figure 16: Tower bottom bending equivalent moment; U = 10m/s; TI = 6%. 
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Figure 17: Measured tower bottom bending equivalent moment as function of the relative wind 

direction between wind and full wake direction; m = 4; U = 8m/s. 

 

 
 

Figure 18: Measured tower top yaw equivalent moment as function of the relative wind direction 

between wind and full wake direction;  

m = 7; U = 8m/s. 
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