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Optical and acoustic tractor beams are currently the focus of intense research due to their counterintuitive
property of exerting a pulling force on small scattering objects. In this Letter we propose a matter-wave
tractor beam and utilize the de Broglie waves of nonrelativistic matter particles in analogy to “classical”
tractor beams. We reveal the presence of the quantum-mechanical pulling force for the variety of quantum
mechanical potentials observing the resonant enhancement of the pulling effect under the conditions of the
suppressed scattering known as the Ramsauer-Townsend effect. We also derive the sufficient conditions on
the scattering potential for the emergence of the pulling force and show that, in particular, a Coulomb
scatterer is always shoved, while a Yukawa (screened Coulomb) scatterer can be drawn. Pulling forces in
optics, acoustics, quantum mechanics, and classical mechanics are compared, and the matter-wave pulling
force is found to have exclusive properties of dragging slow particles in short-range potentials. We envisage
that the use of tractor beams could lead to the unprecedented precision in manipulation with atomic-scale
quantum objects.

DOI: 10.1103/PhysRevLett.118.180401

Maxwell’s theory of electromagnetism [1] was validated
in a series of seminal experiments, one of which demon-
strated the existence of the radiation pressure [2]. Since then
it has been commonly accepted that nongradient light exerts
a pushing force on objects. The situation changed after
discovery of an unexpected pulling force in the fields of
gradientless structured light (so-called tractor beams) [3–7],
widely modeled by nondiffractive Bessel beams. In both
optics and acoustics [8], the pulling force originates from
the enhanced forward light scattering implying its field
momentum increases, while a scatterer gains a backward
momentum in concordance with the momentum conserva-
tion. This idea has been widely exploited to reverse the
force direction due to the environment. Examples include
the interface between two media [9–11], plasmonic inter-
faces [12,13], and anisotropic materials [14–16]. The
pulling force also depends on the material of the scattering
object and can be accordingly observed for gain [17], chiral
[18,19], and structured [20] particles. Experiments with
tractor beams [21,22] confirm their importance for optical
micromanipulation [23,24]. The pulling force has been also
studied with classical electromagnetic fields interacting
with atoms [25,26].
In analogy with the tractor beams in optics and acoustics,

we propose the concept of the matter-wave pulling forces in
quantum mechanics. The matter-wave tractor beams are
different from optical and acoustic ones, because (i) the
incident beam is a beam of particles (e.g., electrons) or,
equivalently, a wave packet according to the wave-particle
duality, and (ii) the forces have a quantum probabilistic
nature. Remarkably, nongradient matter-wave packets have

been demonstrated recently: generation of both Airy and
Bessel wave packets of electrons using the technique of
nanoscale holograms is reported in Refs. [27,28].
The stationary wave function

ψE;αðrÞ ¼ A0 expðik0 cos αzÞJ0ðk0 sin αρÞ ð1Þ

in the form of the zeroth-order Bessel function J0ðξÞ is a
solution of the stationary Schrödinger equation for non-
relativistic particles of massm and energy E propagating in
the z direction, where r ¼ ðx; y; zÞ is the radius vector,
ρ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, k0 ¼

ffiffiffiffiffiffiffiffiffiffi
2mE

p
=ℏ is the wave number, k0 cos α

and k0 sin α are the longitudinal and transverse wave
numbers, respectively, and ℏ is the reduced Planck constant.
The Bessel wave function is a superposition of plane wave
functions for which wave vectors are located on a cone of
apex angle 2α [see Fig. 1(a)]. Since ∂jψE;αj2=∂z ¼ 0, the
Bessel wave function is gradientless along the z axis. The
envelope, g, of the quasistationary Bessel wave packet

Ψðr; tÞ ¼ ψE;αðrÞe−iEt=ℏg
�
t −

z
vgr

�
ð2Þ

moves with the group velocity vgr ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2E=m

p ðcos αÞ−1. For
details we refer to Secs. S3 and S4 in Ref. [29].
Interaction of the incident wave packet with a scatter-

ing particle positioned at r ¼ 0 is described with the
help of a spherically symmetric potential energy UðrÞ.
Particles in the incident beam are affected by the quantum
average force hFii ¼ h−∇Ui, while the force exerted on
the scatterer is
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hFi ¼ −hFii ¼ h∇Ui ¼
Z

Ψ�
t∇UΨtdV ¼ FjgðtÞj2; ð3Þ

where the latter equality follows from the assumption that
the interaction between the incident wave packet and
scatterer mainly occurs in the vicinity of the scatterer
[gðt − z=vgrÞ ≈ gðtÞ]. Ψt is the total wave packet describing
the superposition of the incident and scattered waves, and
jFj ¼ Fz is the z-oriented stationary force. The Ehrenfest
theorem yields the averaged momentum acquired by the
incident particle due to the interaction with the scatterer as
Δpz ¼ −Fz

R
∞
−∞ jgðtÞj2dt. Provided the force acting on the

scatterer is negative, the particles of the incident beam
increase momentum, providing evidence of the quantum
pulling force (see Sec. S16 in Ref. [29]). Time evolution of
some averaged quantities is demonstrated in Fig. 1(b).
Hereinafter we inspect the stationary force Fz and reveal

the conditions for the force to be backward. Using the
stress-tensor technique conventionally employed in electro-
dynamics and extended to quantum mechanics, e.g., in

Refs. [34–36], we write the stationary force F ¼ −
H
T
↔
· ds,

where the integration surface should be chosen at infinity.

As shown in [29] (Sec. S6), the stress tensor T
↔ ¼

ðℏ2=2μÞð∇ψ t ⊗ ∇ψ�
t þ∇ψ�

t ⊗ ∇ψ tÞ − I
↔½ðU − EÞjψ tj2 þ

ðℏ2=2μÞj∇ψ tj2� is expressed by means of potential energy
UðrÞ and total stationary wave function ψ tðrÞ ¼
RlðrÞYlmðθ;φÞ=k0r, where r, θ, and φ are the spherical
coordinates, RlðrÞ is the radial wave function, Ylmðθ;φÞ is
the spherical harmonic, μ is the reduced mass, ⊗ stands

for the tensor product, and I
↔

is the identity tensor. Radial
wave function Rl is the solution of the radial Schrödinger

equation. Since the integration surface is at infinity, the far-
field total wave function ψ t¼ψ iþfðθ;φÞexpðik0rÞ=r is
required to carry out the force calculations, where ψ i is the
wave function of the incident particle beam and fðθ;φÞ is
the scattering amplitude.
Adopting the well-established method of phase shifts

[37–40], the stationary force for the incident Bessel wave
function (1) reads (see Sec. S8 in [29])

Fz ¼
X∞
l¼0

FlðE;UÞPlþ1ðcos αÞPlðcos αÞ; ð4Þ

where FlðE;UÞ ¼ FNðlþ 1Þ sin2ðδlþ1 − δlÞ ≥ 0, FN ¼
4πℏ2jA0j2=μ, and Pl is the Legendre polynomial.
Phase shifts δlðE; UÞ are defined according to tan δl ¼
−ð2μ=ℏ2Þ R∞

0 UðrÞRlðrÞjlðk0rÞrdr, where k0 ¼
ffiffiffiffiffiffiffiffiffi
2μE

p
=ℏ,

jl is the spherical Bessel function of order l, and the radial
function asymptotic behaves at infinity as Rlðr → ∞Þ ¼
sinðk0r − πl=2Þ þ tan δl cosðk0r − πl=2Þ.
Since Fl ≥ 0, the backward force can be realized only

due to the negative Legendre polynomials. Since the term
l ¼ 0 in Eq. (4) is positive, the pulling force Fz < 0 appears
owing to the terms with l ≥ 1. When one keeps the first two
terms (l≤1) in series (4), condition α>arccosð1= ffiffiffi

3
p Þ≈55°

holds true. If the first three terms are left (l ≤ 2), the range
of cone angles reads 39° < α < 55°. The matter-wave
pulling force may be enhanced by canceling the positive
term l ¼ 0 in Eq. (4). The equation F0ðE;UÞ ¼ 0 is exactly
the condition for resonant transparency of quantum barriers
known in quantum scattering theory as the Ramsauer-
Townsend effect [41,42]. The canceling of FlðE;UÞ ¼ 0
requires δlþ1 − δl ¼ πnl, where nl is an integer number.
First, we consider a short-range potential using the

model of spherical potential barrier UðrÞ ¼ U0HðR − rÞ
with the radius of interaction R, where HðxÞ is the
Heaviside step function. As shown in [29] (Sec. S10),
conditions F0 ¼ 0 and F0 ¼ F1 ¼ 0 are fulfilled when
j0ðkRÞ ¼ 0 and j1ðkRÞ ¼ 0, respectively, where k ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μðE −U0Þ

p
=ℏ. The backward force stems from the

Ramsauer-Townsend effect at low energies E. Thus, we
can expect that the pulling effect in quantum mechanics is
often accompanied by the suppressed scattering cross
section and, as a consequence, the pulling force is smaller
than the normal, pushing one. The backward force exists
both for slow and fast incident particles, as demonstrated in
Fig. 2 and Fig. S2 in [29], the wave number k being real
(the waves at r ≤ R are not evanescent).
According to Fig. 2(a), the quantum pulling force

exists in the Born approximation (jUj ≪ E0) [37,38].
Importantly, there is a vast family of potentials beyond
the step-function potential focusing the wave function in
the forward direction and, thus, ensuring the negative
transferred momentum. Applying the sufficient condition
U0ð0Þ R∞

0 UðrÞr2dr > 0 of the negative matter-wave force
in the Born approximation (see derivation in Sec. S12 of

(b)(a)

FIG. 1. Wave packet scattering. (a) Sketch of interaction of the
beam of particles (Bessel wave function) with a scatterer
described by a potential energy UðrÞ. (b) Time dynamics of
jΨtð0; tÞj2, force exerting on the scatterer hFziðtÞ, momentum
hpziðtÞ, and coordinate hziðtÞ of the incident quasistationary
wave packet (2). Here gðtÞ ¼ C expð−σ2t2=2ℏ2Þ, where C is a
constant and σ ≪ E0 (see Sec. S5 in [29]). When the wave packet
arrives at the scattering center (the peak in the uppermost plot),
the force acting on the scatterer arises (pulling force Fz < 0 in
the second plot). The incident particle’s momentum change
Δpz ¼ jFzj

ffiffiffi
π

p
ℏ=σ > 0 is shown in the third plot. The depend-

ence of the coordinate on time is shown in the bottom plot.
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[29]) to the Morse potential shown in Fig. 3(a), we
arrive at the constraint on the equilibrium position
0 < b=R < 4 ln 2 ≈ 2.77. The calculated negative force
for cone angle α ¼ 70° is in the range 1.25<b=R<2.77
and does fall into the predicted interval of the equilibrium
positions [see the diagram Fzðb; EÞ < 0 in Fig. 3(b)].
The long-range asymptotic behavior of the potential can

be modeled assuming the short-range core U0 ¼ const for
r ≤ R and the long-range tail U0ðr=RÞ−n for r > R, as
rendered in the inset in Fig. 3(c). For small n < 4 we
observe the degradation of the backward force. The

pulling force at low cone angles fades away, but the
low-energy backward force is still present, as shown for
n ¼ 1 in Fig. 3(c). Diagrams for n from 1 to 6 are shown in
Fig. S4 in [29]. The case n ¼ 4 may be employed in the
elastic electron scattering by an atom, with the value of U0

being proportional to the dipole polarizability [43].
Finally, we consider potentials without the short-range

core. The problem of scattering by the Coulomb potential
UðrÞ ¼ γ=r has a well-known solution [37]. The coefficients
Fl¼FNκ

2ðlþ1Þ=½ðlþ1Þ2þ κ2� (here κ ¼ μγ=k0ℏ2) intro-
duced into Eq. (4) ensure that the force is positive [see
Fig. 3(d)]. However, when the potential decays faster, the
situation may change. The Yukawa or screened Coulomb
potential [see the inset in Fig. 3(c)] has exponential asymp-
totic dependence and, effectively, can be treated as a short-
range potential barrier of some effective height U0. Despite
the large cone angle α ¼ 85° the evidence of the matter-wave
pulling force for slow incident particles is clear [see Fig. 3(e)].
The details of the numerical calculations carried out for the
Yukawa potential can be found in Sec. S14 of [29].
It is instructive to compare the conditions of nascence of

the backward forces for optical, acoustic, classical mechani-
cal, and matter-wave tractor beams. The common feature of
the negative forces, the forward scattering enhancement,
occurs in quantum mechanics too (see Fig. 2) and, thus, can
be treated as a fingerprint of the pulling force. The pulling
force in optics originates from the interaction of electric and
magnetic dipole moments for α > 60° and higher-order
multipoles otherwise [see Fig. 4(a)]. Interestingly, there is a
pronounced difference between electrodynamics or acous-
tics and quantummechanics related to the low-energy limit.
We cannot obtain the low-energy dragging forces for optical
energies approaching zero (Rayleigh approximation), if the

(a) (b)

FIG. 2. Pulling-force diagrams FzðE;U0Þ < 0 for a short-range
potential modeled as a spherical potential barrier. The dashed lines
E−U0¼νil, where ν

i
l is the ith solution of the equation jlðkRÞ ¼ 0,

indicate (a)F0 ¼ 0 for cone angle α ¼ 65° and (b)F0 ¼F1 ¼ 0 for
α ¼ 45°. The differential cross section jfðθÞj2 at points 1–3 clearly
shows the enhancement of forward scattering (cones with half apex
angles α ¼ 65° and α ¼ 45° are shown with the black solid lines).
Energy normalization parameter E0 ¼ ℏ2=2μR2.

(d)
(a)

(e)(b)

(c)

FIG. 3. Matter-wave pulling forces Fz < 0 for nonstep potentials UðrÞ. (a) Function of the Morse potential UðrÞ ¼
U0fexp½−2ðr − bÞ=R� − 2 exp½−ðr − bÞ=R�g for different equilibrium positions b. (b) Backward force for the Morse potentials within
the Born approximation (α ¼ 70°). Several curves of the force versus energy E are depicted in the inset. (c) Dependence of the force on the
asymptotic behavior of the potentialUðr → ∞Þ ¼ U0ðr=RÞ−n. The cases n ¼ 1 and n ¼ 4 are highlighted here (the shape of the potential is
shown in the inset). (e) Because of its rapid decay, the Yukawa potential UðrÞ ¼ U0ðr=RÞ−1 expð−r=RÞ possesses pulling properties
(α ¼ 85°), while (d) the Coulomb potential UðrÞ ¼ U0ðr=RÞ−1 does not. In the inset of (e), the Yukawa potential against the Coulomb
potential is shown.
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scatterers are nonmagnetic. Therefore, the case of quantum
mechanics should be treated equivalent to the magnetodi-
electric scenario in optics (see Sec. S11 in [29]). The dragging
forces for α < 39° in acoustics [Fig. 4(c)] can be explained
similarly to the quantummechanics casewith two-parametric
potentials Uðr; p1; p2Þ through simultaneously satisfying
F0ðE; p1; p2Þ ¼ F1ðE; p1; p2Þ ¼ F2ðE; p1; p2Þ ¼ 0 in
Eq. (4). There are precisely two parameters in acoustics,
inner-to-outer fluid sound speed σ and density λ ratios.
Classical mechanics stands apart for two reasons: First, the
particles cannot be treated as waves. Second, the beam of
particles is not nondiffractive in the sense of keeping cross-
sectional distribution of particles invariant during propaga-
tion (however, all particles have the same projection of
the longitudinal momentum). Nevertheless, we consider a
classic mechanics analogue of a wave tractor beam sketched
in the inset of Fig. 4(b). Charged particles are volleyed out
from the ring and move toward the scatterer along the
generatrix of the cone with apex angle 2α. The particles
should fall into the cone after the Coulomb scattering to
increase the forward momentum and result in the backward
force (see Sec. S2 in [29]). Thematter-wave pulling forces are
similar to those in acoustics except that there are no ways to
pull back the scatterer with cone angles below 39° with a
single-parametric step potential. In contrast to the pulling
forces in electrodynamics, acoustics, and classical mechan-
ics, quantum mechanics offers a low-energy pulling effect in
the extraordinarily wide range of cone angles α > 39° in the
vicinity of the Ramsauer-Townsend values [see Fig. 4(d)].
Quantitative estimations of the pulling forces in optics,
acoustics, and quantum mechanics normalized to the gravity
force of the scatterer are shown in the lowest line of the table

in Fig. 4. This normalized quantum pulling force is of the
order of the optical pulling force, holdingout the hope that our
predictions can be confirmed in experiments with cold atoms
andmolecules. The details of the calculations are provided in
Sec. S17 of Ref. [29].
To summarize, the matter-wave tractor beams can play

an important part in future applications. De Broglie wave-
lengths λdB ∼ 10−11 m of nonrelativistic particles bring the
hope of achieving an extremely high resolution unattain-
able by optical means. Another aspect of the small wave-
lengths is feasible manipulation with quantum particles on
the atomic scale. The very existence of the matter-wave
pulling force is an issue of fundamental importance.
Amazingly, completely different probabilistic interpreta-
tions of quantum mechanics do not harm the pulling force
phenomenon, thus confirming the wave nature as the
uniting principle of all previous studies [3–6,8]. Matter-
wave tractor beams exhibit pulling forces in the vicinity of
the Ramsauer-Townsend energies and attract scatterers with
long-range potentials. The quantum mechanical predictions
regarding the negative force can be verified either directly
(see the discussion of a possible experimental setup in Sec.
S16 of Ref. [29]) or using the optical analogy. In the latter
case, the short-range potential energy could be realized as a
frequency-dispersive spherical bead embedded into a
homogeneous medium as outlined in Sec. 15 of [29].

The authors acknowledge financial support from the
Belarusian Republican Foundation for Fundamental
Research (Grant No. F16R-049) and partial financial
support from the Villum Fonden via the DarkSILD project.
The authors thank J. Iles-Smith and S. S. Chuchurka for
valuable discussions.

(b) (c) (d)(a)

FIG. 4. (a) Optical or electrodynamic, (b) classical, (c) acoustic, and (d) matter-wave tractor beams exhibiting the pulling forces
FzðE; αÞ < 0. (a) Dielectric particles of radius R cannot be pulled by an optical tractor beam [3,4] of low photon energy E ¼ ℏω (silica
bead permittivity ε ¼ 3.9 and permeability μ ¼ 1 and Bessel beam orderm ¼ 1). Here E0 ¼ ℏc=R and FN ¼ c2jAj2=ω2, where c is the
speed of light, ω is the circular frequency, and A is the Bessel beam amplitude. (b) Pulling force in classical mechanics is demonstrated
as the result of Coulomb scattering to the interior of the cone, as shown in the inset. Normalization coefficients E0 ¼ jq1q2j=2ρ0 and
FN ¼ 4n1E0, where q1 and q2 are charges, ρ0 is the impact parameter, and n1 is the linear particle concentration. (c) Backward force
exerted by the acoustic tractor beam [8] emerges for cone angles below 39° as shown for carbon tetrachloride sphere of radius R in water
(σ ¼ 0.619 and λ ¼ 1.587). We use E0 ¼ ℏc0=R and FN ¼ πR2I0=c0 cos α, where c0 is the speed of sound in the ambient liquid and I0
is the acoustic intensity. (d) For matter-wave tractor beams, pulling force below 39° is impossible, but the backward force may emerge
for small energies E in the wide range of cone angles α > 39°. U0=E0 ¼ −9 and U0=E0 ¼ −17.5 in the figure and inset, respectively.

PRL 118, 180401 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
5 MAY 2017

180401-4



*Corresponding author.
anov@fotonik.dtu.dk

[1] J. C. Maxwell, A Treatise on Electricity and Magnetism
(Dover Publications, New York, 1954).

[2] P. Lebedew, Untersuchungen über die druckkräfte des
lichtes, Ann. Phys. (Berlin) 311, 433 (1901).

[3] J. Chen, J. Ng, Z. Lin, and C. T. Chan, Optical pulling force,
Nat. Photonics 5, 531 (2011).

[4] A. Novitsky, C.-W. Qiu, and H. Wang, Single Gradientless
Light Beam Drags Particles as Tractor Beams, Phys. Rev.
Lett. 107, 203601 (2011).

[5] S. Sukhov and A. Dogariu, Negative Nonconservative
Forces: Optical “Tractor Beams” for Arbitrary Objects,
Phys. Rev. Lett. 107, 203602 (2011).

[6] D. B. Ruffner and D. G. Grier, Optical Conveyors: AClass of
Active Tractor Beams, Phys. Rev. Lett. 109, 163903 (2012).

[7] A. Dogariu, S. Sukhov, and J. J. Sáenz, Optically induced
‘negative forces,’ Nat. Photonics 7, 24 (2013).

[8] P. L. Marston, Axial radiation force of a Bessel beam on a
sphere and direction reversal of the force, J. Acoust. Soc.
Am. 120, 3518 (2006).

[9] V. Kajorndejnukul, W. Ding, S. Sukhov, C.-W. Qiu, and A.
Dogariu, Linear momentum increase and negative optical
forces at dielectric interface, Nat. Photonics 7, 787 (2013).

[10] M. Mansuripur, Momentum exchange effect, Nat. Photonics
7, 765 (2013).

[11] C.-W. Qiu, W. Ding, M. R. C. Mahdy, D. Gao, T. Zhang,
F. C. Cheong, A. Dogariu, Z. Wang, and C. T. Lim, Photon
momentum transfer in inhomogeneous dielectric mixtures
and induced tractor beams, Light Sci. Appl. 4, e278 (2015).

[12] A. V. Maslov, Resonant Pulling of a Microparticle Using a
Backward Surface Wave, Phys. Rev. Lett. 112, 113903
(2014).

[13] M. I. Petrov, S. V. Sukhov, A. A. Bogdanov, A. S. Shalin,
and A. Dogariu, Surface plasmon polariton assisted optical
pulling force, Laser Photonics Rev. 10, 116 (2016).

[14] A. Salandrino and D. N. Christodoulides, Reverse optical
forces in negative index dielectric waveguide arrays,
Opt. Lett. 36, 3103 (2011).

[15] J. Nemirovsky, M. C. Rechtsman, and M. Segev, Negative
radiation pressure and negative effective refractive index via
dielectric birefringence, Opt. Express 20, 8907 (2012).

[16] A. S. Shalin, S. V. Sukhov, A. A. Bogdanov, P. A. Belov,
and P. Ginzburg, Optical pulling forces in hyperbolic
metamaterials, Phys. Rev. A 91, 063830 (2015).

[17] A. Mizrahi and Y. Fainman, Negative radiation pressure on
gain medium structures, Opt. Lett. 35, 3405 (2010).

[18] K. Ding, J. Ng, L. Zhou, and C. T. Chan, Realization of
optical pulling forces using chirality, Phys. Rev. A 89,
063825 (2014).

[19] A. Canaguier-Durand and C. Genet, Chiral route to pulling
optical forces and left-handed optical torques, Phys. Rev. A
92, 043823 (2015).

[20] A. Novitsky and C.-W. Qiu, Pulling extremely anisotropic
lossy particles using light without intensity gradient,
Phys. Rev. A 90, 053815 (2014).

[21] O. Brzobohatý, V. Karásek, M. Šiler, L. Chvátal, T. Čižmár,
and P. Zemánek, Experimental demonstration of optical

transport, sorting and self-arrangement using a ‘tractor
beam,’ Nat. Photonics 7, 123 (2013).

[22] A. Marzo, S. A. Seah, B. W. Drinkwater, D. R. Sahoo, B.
Long, and S. Subramanian, Holographic acoustic elements
for manipulation of levitated objects, Nat. Commun. 6, 8661
(2015).

[23] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu,
Observation of a single-beam gradient force optical trap for
dielectric particles, Opt. Lett. 11, 288 (1986).

[24] D. G. Grier, A revolution in optical manipulation, Nature
(London) 424, 810 (2003).

[25] I. V. Krasnov, Bichromatic optical tractor beam for resonant
atoms, Phys. Lett. A 376, 2743 (2012).

[26] M. Sadgrove, S. Wimberger, and S. N. Chormaic, Quantum
coherent tractor beam effect for atoms trapped near a
nanowaveguide, Sci. Rep. 6, 28905 (2016).

[27] N. Voloch-Bloch, Y. Lereah, Y. Lilach, A. Gover, and A.
Arie, Generation of electron Airy beams, Nature (London)
494, 331 (2013).

[28] V. Grillo, E. Karimi, G. C. Gazzadi, S. Frabboni, M. R.
Dennis, and R.W. Boyd, Generation of Nondiffracting
Electron Bessel Beams, Phys. Rev. X 4, 011013 (2014).

[29] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.118.180401 for de-
tailed analytical derivations and discussion of Figs. 2–4,
which includes Refs. [30–33].

[30] L. D. Landau and E. M. Lifshitz, Mechanics (Butterworth-
Heinemann, Oxford, 1976).

[31] M. V. Berry and N. L. Balazs, Nonspreading wave packets,
Am. J. Phys. 47, 264 (1979).

[32] S. Grimme, Accurate description of van der Waals com-
plexes by density functional theory including empirical
corrections, J. Comput. Chem. 25, 1463 (2004).

[33] E. O. Gadamer, UTIA Report No. 83, 1962.
[34] O. H. Nielsen and R. M. Martin, Quantum-mechanical

theory of stress and force, Phys. Rev. B 32, 3780 (1985).
[35] B. M. Deb and S. K. Ghosh, On some ‘local’ force densities

and stress tensors in molecular quantum mechanics,
J. Phys. B 12, 3857 (1979).

[36] R. E. Wyatt, Quantum Dynamics with Trajectories:
Introduction to Quantum Hydrodynamics (Springer-Verlag,
New York, 2005).

[37] L. D. Landau and E. M. Lifshitz, Quantum Mechanics:
Non-Relativistic Theory (Pergamon Press, Oxford, 1977).

[38] A. Messiah, Quantum Mechanics (Dover Publications,
New York, 2014).

[39] A. S. Davydov, Quantum Mechanics (Pergamon Press,
Oxford, 1976).

[40] R. G. Newton, Scattering Theory of Waves and Particles
(Springer-Verlag, New York, 1982).

[41] C. Ramsauer, Über den Wirkungsquerschnitt der
Gasmoleküle gegenüber langsamen Elektronen, Ann. Phys.
(Berlin) 369, 513 (1921).

[42] J. S. Townsend and V. A. Bailey, The motion of electrons in
gases, Philos. Mag. 42, 873 (1921).

[43] P. G. Burke, R-Matrix Theory of Atomic Collisions
(Springer-Verlag, New York, 2011).

PRL 118, 180401 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
5 MAY 2017

180401-5

https://doi.org/10.1002/andp.19013111102
https://doi.org/10.1038/nphoton.2011.153
https://doi.org/10.1103/PhysRevLett.107.203601
https://doi.org/10.1103/PhysRevLett.107.203601
https://doi.org/10.1103/PhysRevLett.107.203602
https://doi.org/10.1103/PhysRevLett.109.163903
https://doi.org/10.1038/nphoton.2012.315
https://doi.org/10.1121/1.2361185
https://doi.org/10.1121/1.2361185
https://doi.org/10.1038/nphoton.2013.192
https://doi.org/10.1038/nphoton.2013.249
https://doi.org/10.1038/nphoton.2013.249
https://doi.org/10.1038/lsa.2015.51
https://doi.org/10.1103/PhysRevLett.112.113903
https://doi.org/10.1103/PhysRevLett.112.113903
https://doi.org/10.1002/lpor.201500173
https://doi.org/10.1364/OL.36.003103
https://doi.org/10.1364/OE.20.008907
https://doi.org/10.1103/PhysRevA.91.063830
https://doi.org/10.1364/OL.35.003405
https://doi.org/10.1103/PhysRevA.89.063825
https://doi.org/10.1103/PhysRevA.89.063825
https://doi.org/10.1103/PhysRevA.92.043823
https://doi.org/10.1103/PhysRevA.92.043823
https://doi.org/10.1103/PhysRevA.90.053815
https://doi.org/10.1038/nphoton.2012.332
https://doi.org/10.1038/ncomms9661
https://doi.org/10.1038/ncomms9661
https://doi.org/10.1364/OL.11.000288
https://doi.org/10.1038/nature01935
https://doi.org/10.1038/nature01935
https://doi.org/10.1016/j.physleta.2012.07.035
https://doi.org/10.1038/srep28905
https://doi.org/10.1038/nature11840
https://doi.org/10.1038/nature11840
https://doi.org/10.1103/PhysRevX.4.011013
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.180401
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.180401
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.180401
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.180401
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.180401
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.180401
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.180401
https://doi.org/10.1119/1.11855
https://doi.org/10.1002/jcc.20078
https://doi.org/10.1103/PhysRevB.32.3780
https://doi.org/10.1088/0022-3700/12/23/013
https://doi.org/10.1002/andp.19213690603
https://doi.org/10.1002/andp.19213690603
https://doi.org/10.1080/14786442108633831

