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Paradigm shift in wastewater treatment 

Circular scheme 

Paradigm shift: wastewater     “used water” 

Energy recovery 

Nutrient recovery 

Water reuse 
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Microalgae for used water recovery 

Most resource recovery schemes are based on chemical processes, 
e.g. struvite precipitation 

Cultivation of microalgae on used water resources 

Nutrients recycling through bio-fertilizer production 

Biofuel production 

Decoupling food and biofuel production 
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TRENS – Biochemical Resource Recovery 
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Experimental set up and operation 

The effect of the variation of N-to-P ratio is tested – fed with 
treated municipal wastewater 

Mixed consortium and mono-culture 

Open system 

 

Valverde-Pérez et al., 2016 
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Wágner et al., 2017 
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Analytical procedure 

Total suspended solids 

Nitrate  

Pigments: chlorophyll, lutein, β-
carotene and violaxanthin 

Nitrite 

Phosphate 

Stored nutrients 

Microbial diversity 

Based on morphology of the 
different species 

Using microscopy 
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Predictive model 

Spectra mean-centered 

Principal component analysis 

Principal component regression  based 

on the most informative PCs 

Leave one out cross validation to find 
optimal model 

Revision of detection limits and signal 
saturation 

Masic et al., 2015, Water Res. 
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Chlorella sp. – process performance 
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Chlorella sp. – principal component 
analysis 
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Chlorella sp. – principal component 
regression NO3 3 PCs 

R2=0.84 
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Chlorella sp. – principal component 
regression NO3 3 PCs 
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Chlorella sp. – leave one out cross 
validation NO3 

14 PCs 
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Chlorella sp. – principal component 
regression NO3 14 PCs 

R2=0.92 
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Chlorella sp. – leave one out cross 
validation NO3 without saturation 

10 PCs 

MSR less than half! 



15 

Chlorella sp. – principal component 
regression NO3 10 PCs without saturation 

R2=0.91 
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Chlorella sp. – principal component 
regression TSS 3 PCs 

R2=0.59 
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Chlorella sp. – principal component 
regression TSS 3 PCs 
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Chlorella sp. – leave one out cross 
validation TSS 

40 PCs 
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Chlorella sp. – principal component 
regression TSS 40 PCs 

R2= 0.9 
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Chlorella sp. – leave one out cross 
validation TSS above detection limit 

30 PCs 

~ 18% MSR reduction 
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Chlorella sp. – principal component 
regression TSS 30 PCs above detection limit 

R2=0.84 
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Chlorella sp. – principal component 
regression TSS 10 PCs outliers removed 

R2=0.83 
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Chlorella sp. – principal component 
regression Chlorophyll 3 PCs 

R2=0.54 
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Chlorella sp. – principal component 
regression Chlorophyll 3 PCs 
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Chlorella sp. – leave one out cross 
validation Chlorophyll 

27 PCs 
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Chlorella sp. – principal component 
regression Chlorophyll 27 PCs 

R2=0.83 
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Chlorella sp. – leave one out cross 
validation Chlorophyll without saturation 

24 PCs 

MSR ~ 1g-Chl/L less 
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Chlorella sp. – principal component 
regression Chlorophyll 24 PCs without 
saturation 

R2=0.84 
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Variation in microbial diversity 

Contamination by diatoms when N-to-P is lowered to 5 

Washout of diatoms when N-to-P is set back to 17 

Change in abundance of Chlorella and Scenedesmus sp.  

Hypothesis to test: 

Do changes on shape and size affect the 
prediction capacity by UV-Vis sensors? 
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Mixed culture – process performance 

time (d)
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Mixed culture – principal component 
analysis 
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Mixed culture – principal component 
regression TSS 1 PC 

R2=0.91 
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Concluding Remarks 

Monoculture 

More complex models required to predict data 
“out of range” 

Successful predictive models were built for 
nitrate, suspended solids and chlorophyll 

Mixed culture 

Very simple model succesfully predicted the TSS 
despite contamination in the reactor. 
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