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Abstract
The on-going progress in two-dimensional (2D) materials and nanostructure fabri-
cation motivates the study of altered and combined materials. Graphene—the most
studied material of the 2D family—displays unique electronic and spintronic prop-
erties. Exceptionally high electron mobilities, that surpass those in conventional
materials such as silicon, make graphene a very interesting material for high-speed
electronics. Simultaneously, long spin-diffusion lengths and spin-life times makes
graphene an eligible spin-transport channel. In this thesis, we explore fundamental
features of nanostructured graphene systems using large-scale modeling techniques.

Graphene perforations, or antidots, have received substantial interest in the prospect
of opening large band gaps in the otherwise gapless graphene. Motivated by recent
improvements of fabrication processes, such as forming graphene antidots and
layer-by-layer stacking, we consider a hybrid bilayer graphene system: Graphene on
graphene antidot lattice (GOAL). These systems can be engineered to select attractive
features from either bilayer and monolayer graphene. For a certain set of optimized
geometries, we obtain linearly dispersing bands with a high corresponding mobility,
resembling that of monolayer graphene. Nevertheless, these linearly dispersive
GOALs can be made gapped by breaking layer symmetry, using e.g. perpendicular
electric fields.

In the area of graphene spintronics, the formation of magnetic moments is predicted
as the result of breaking the graphene sublattice symmetry. We take advantage of
this, and explore the fundamental features of zigzag-edged triangular graphene
antidots (zz-TGAs). Their specific edge configurations give rise to highly desirable
spin-filtering and spin-splitting transport features. The mechanisms behind these
functionalities are studied in detail in lattices, devices, and finally in disordered
systems of experimentally feasible scale.

We demonstrate that superlattices of triangular antidots exhibit large bands gaps, in-
duced by sublattice symmetry breaking. Spin-polarized TGAs are shown to become
half-metallic near the Fermi level, giving rise to perfectly spin-polarized densities of
states. By studying the transport properties of devices with embedded zz-TGAs,
we highlight an interesting spatial spin-splitting feature analogous to the spin Hall
effect. Unlike the conventional spin Hall effect, this feature is obtained without
spin-orbit interactions or topologically protected transport channels. Motivated by
spin Hall effect measurements, we calculate transverse resistance signals in zz-TGA
devices and show that these can provide a general diagnostic tool to detect the
presence of zigzag edge magnetism. The extraordinary features of zz-TGAs at small
scales motivate our study of their underlying mechanisms in larger, more realisti-
cally sized TGAs. Half-metallic, semiconducting and highly anisotropic transport
behaviors can be induced in these systems. Furthermore, these properties are ex-
tremely robust in the face of substantial disorder, in stark contrast to what is seen for
many other antidot-based devices. Ultimately, these properties may prove useful
in spintronic devices, graphene-based transistors and integrated electronic circuits
where a particular transport direction is preferred.
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Resumé
Dette studie er motiveret af den seneste fremgang i forskningen inden for todimen-
sionelle (2D) materialer. Nye teknologiske fremskridt indenfor nano-skala fabrika-
tion opfordrer til intensiveret fokus på forandrede og kombinerede materialer.
Grafen, som er et af de mest studerede 2D materialer, udviser unikke elektroniske og
spintroniske egenskaber. Elektron-mobiliteten er langt højere end i konventionelle
materialer så som silicium og gør grafen særdeles interessant indenfor højhastigheds-
elektronik. Derudover er lange spin-diffusionslængder og spin-levetider er med til
at gøre grafen et oplagt materiale til spin-transport. Denne afhandling har til formål
at kortlægge fundamentale egenskaber for nanostrukturerede systemer i grafen ved
brug af modelleringsteknikker specielt til store længdeskalaer.

Huller i grafen, også kaldet grafen antidots, er der stor interesse for på grund af
påvirkningen på grafens egenskaber. Antidots har nemlig den effekt at inducere
store båndgab i den elektroniske båndstruktur, der i perfekt grafen viser den lineære
spredning. Den nyeste fremgang inden for fabrikationen af grafen antidots samt
stabling af 2D materialer, motiverer et studie af et grafen bilagshybrid: Grafen på
grafen antidot gitre (graphene on graphene antidots lattices, GOALs). Sådanne
GOALs kan blive designet til at udvise egenskaber fra både bilags- og monolags-
grafen. Ved optimerede geometrier findes den lineære spredning, der kendetegner
monolagsgrafen og den medfølgende høje elektron-mobilitet. Ikke desto mindre
kan et båndgab åbnes ved at bryde symmetrien mellem lagene, for eksempel ved at
benytte vinkelrette elektriske felter.

Dannelsen af magnetiske momenter er specielt interessant indenfor grafen spin-
tronik. Her viser studier at sådanne momenter opstår ved at bryde symmetrien af
undergitrene for grafen, for eksempel ved grafen zigzag (zz) kanter. Vi udnytter
dette og udforsker de fundamentale egenskaber af zz-kantede, trekantede grafen
antidots (zz-TGAs). Deres specielle kantstruktur giver anledning til eftertragtede
spinfiltrering- og spin-delingsegenskaber. Detaljerne af disse mekanismer er studeret
i antidot gitre, enheder og også i større og mere eksperimentalrealistisk skala.

Ved brug af gitre af spin-upolariseret zz-TGAs demonstrerer vi store båndgab til
følge af brudet på undergittersymmetrien. Hvis vi i stedet også betragter spin-
vekselvirkningen, finder vi at spin-polariserede zz-TGAs giver anledning til halv-
metalliske bånd nær Fermi-niveauet, hvilket i sidste ende resulterer i perfekt spin-
polariserede tilstandstætheder. Ved at kigge på transportegenskaberne finder vi,
at enheder med zz-TGAs udviser en meget interessant rumlig spin-deling. Denne
funktion er sammenlignelig med spin Hall effekten, men denne er opstået uden
betragtninger om spin-orbit koblinger eller topologiske transportkanaler. Inspireret
fra spin Hall effekteksperimenter beregner vi de transversale modstande i enheder
med zz-TGAs, og her finder vi et antisymmetrisk signal, der er karakteristiske for de
spin-polariserede TGAs. Hvis vi derimod betragter spin-upolariserede TGAs, finder
vi symmetriske signaler. Dette kan fungere som et mål for de spin-polariserede TGAs,
og endda også for muligheden af magnetiske grafenkanter. Selv hvis vi introducerer
betydelige uregelmæssigheder og en uniform tilfældig fordeling, udviser TGAs
halv-metalliske eller halvledende egenskaber. En interessant bemærkning er at på
trods af den uniforme fordeling af TGAs, viser vores resultater signaturer af an-
isotropisk transport. I sidste ende kan dette bruges i integreret kredsløbsteknologi,
hvor der er behov for specifikke transportretninger.
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Nomenclature

Abbreviations
SHE Spin Hall effect
zz(-edge) Graphene zigzag(-edge)
ac(-edge) Graphene armchair(-edge)
hBN Hexagonal boron nitride
TMD Transition-metal dichalcogenides
GAL Graphene antidot lattice
GOAL Graphene on graphene antidot lattice
TGA Triangular graphene antidot
zz-TGA Zz-edged triangular graphene antidot
ac-TGA Ac-edged triangular graphene antidot
DOS Density of states
LDOS Local density of states
PDOS Projected density of states

General notation and constants
e Elementary charge of an electron (positive) 1.602 × 10−19 C
h Planck’s constant 6.63 × 10−34 Js
~ � h/2π Reduced Planck’s constant 1.05 × 10−34 Js
M Matrix or operator M
[M]i j The i j’th element of M
M† Conjugate transpose M
Tr [M] Trace of M
Re[z] Real part of complex number z
Im[z] Imaginary part of complex number z
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1Introduction

The field of two-dimensional (2D) materials research [1–3] is thriving. The new and
exciting 2D technologies, and the ever-increasing demands for smaller devices, are
challenging otherwise well-established three dimensional (3D) conventions. New
areas are emerging with intriguing possibilities, and which allow for previously un-
accessible phenomena. Below we cover the basics of 2D electronics and spintronics,
with particular focus on graphene based systems.

1.1 Two dimensional electronics
In the past decade, the number of studies in 2D materials has grown substantially [3].
The breakthrough came in 2004, with the first successful isolation of monolayer
graphene [4] by mechanical exfoliation. Graphene is a single layer of carbon atoms
arranged in a hexagonal lattice, which uniquely exhibits Dirac-fermion physics [5]
and a linear bandstructure. This has since spawned entire research centers and huge
conferences dedicated to the advancement of graphene and 2D material research.

As it turned out, graphene was to be only the first of a large series of 2D materials,
each with their own unique properties as well as challenges. A whole host of differ-
ent electronic properties are possible with 2D materials, ranging from insulating to
superconducting. In particular, one material worth mentioning is hexagonal-boron
nitride (hBN), another material with a hexagonal lattice with alternating boron
and nitrogen atoms. With extremely flat surfaces and insulating behavior, hBN
is quickly becoming the de facto standard substrate or encapsulating material for
other 2D systems [6]. Following the rise of graphene, transition-metal dichalco-
genides (TMDs) [7] are now competing with graphene as the primary focus of many
researchers. Still other materials are continually gaining momentum, with huge
efforts being made to understand the properties of silicene [8], germanene [9], and
phosphorene [10], to name only a few.

The true potential however, may lie not in the individual materials but in the combi-
nation of these. Stacking materials layer-by-layer in a predefined sequence, allows
for entirely new materials with unique properties to be envisioned. This is per-
fectly illustrated by the iconic figure in Fig. 1.1(a). Stacking has become particularly
interesting with the latest progress in van der Waals (vdW) stacking of layered
materials [11, 12]. The process illustrated in Fig. 1.1(b) uses only vdW forces, and
in turn the resulting interfaces are kept clean from contaminants from processing
agents.

Of the 2D materials, graphene is by far the most studied [3], with a wide range
of unique properties. Graphene shows exceptional mechanical strength and im-
permeability, which can be used to strengthen composites as well as in protective
coatings [13, 14]. Graphene also displays remarkable optical properties, such as
wavelength-independent absorption, which can be used for efficient photo detec-
tion [14]. Finally, exceptionally high electron mobilities above 106 cm V−1 s−1 have
been demonstrated in graphene at room temperature [6], substantially higher than,
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(a) (b)

Figure 1.1: Illustration of stacked 2D materials. (a) The iconic LEGO-like stack-
ing of 2D materials to create an entirely new material, reproduced from Geim
and Grigorieva [11]. (b) The van der Waals (vdW) stacking technique, which
keeps interfaces clean from processing agents, reproduced from Pizzocchero
et al. [12].

for example, electron mobilities of silicon ∼ 103 cm V−1 s−1. This may prove very
useful for high-speed electronics, where performance is limited by mobilities. In
conventional electronics, the Dirac nature of electrons in graphene make these prop-
agate straight through traditional potential barriers, known as Klein tunneling [5].
This makes a straightforward silicon replacement challenging. However, in partic-
ular for spintronics, graphene exhibits unusually long spin-diffusion lengths and
spin-life times [15], which makes graphene a suitable choice for spintronic transport.

In terms of theoretical descriptions, graphene is an exceptionally ‘‘easy’’ material.
Many first-principle calculations of graphene are reproducible by use of efficient
tight-binding (TB) models [5]. In addition, while fabrication techniques are simul-
taneously improving, making smaller and smaller devices, simulation techniques
and hardware are increasing the length-scales we are able to describe. Ultimately,
the gap between theory and experiment is decreasing.

1.2 Spintronics
Spintronics aims to replace the carrier of information from the electronic charge
to the spin-degree of freedom [16]. The advantages of spintronic logic devices
are, for example, lower power dissipation, and improved computational scalabil-
ity compared to traditional complementary metal–oxide–semiconductor (CMOS)
technologies [17, 18]. One major challenge is, however, the choice of a suitable
spin-channel. Graphene has many of the desired spin properties, and has recently
seen substantial advances: For example, room-temperature spin transport over
several µm [15], efficient spin injection [19, 20], induced magnetism [21–24], and an
improved understanding of spin-orbit coupling and spin relaxation mechanisms [25,
26].

Of particular interest is the prospect of graphene magnetism via the formation of
magnetic moments. This formation is predicted in graphene as the result of e.g.
vacancy defects [21, 22, 28, 29], adatoms [22, 28, 30], and ferromagnetic substrates
and molecular doping [23]. Finally, graphene zigzag (zz) edges are also predicted
to form local ferromagnetic moments. In analogue with Lieb’s theorem [31] for
bipartite lattices, the magnetic moments are the result of local sublattice imbal-

2 Chapter 1 Introduction



(a) (b) (c)

Figure 1.2: Illustration of magnetic moments in nanostructured graphene. Mag-
netic moment contour-maps surrounding (a) hydrogen adatoms, (b) vacancies,
and (c) zigzag (zz)-edged nanoribbons (spin up: red, spin down: blue). Repro-
duced from Han et al. [27].

ID

Is

VNL

VNL

(a) (b)

Figure 1.3: Nonlocal measurement of the graphene Spin Hall effect (SHE). A
charge current is induced across source (IS) and drain (ID), which generates a left
to right spin current. The spin current in turn generates a charge accumulation
inducing a nonlocal voltage (VNL) which can be measured. (a) Actual device.
(a) Device schematic. Reproduced from Balakrishnan et al. [37].

ances. The magnetic moments of an hydrogen adatom and a vacancy are shown
in Figs. 1.2(a) and 1.2(b), respectively. Because of the sublattice dependence, the
magnetic moments orient oppositely on the two sublattices of graphene. This results
in zz-edged nanoribbons with antiferromagnetic order between opposite edges;
An example is shown in Fig. 1.2(c). This has given rise to innovative proposal for
spintronic devices. For example, zz-nanoribbons in external in-plane electric fields
has been proposed to generate half-metallic behavior [32], where the material is
simultaneously a metal for one spin and an insulator for the other.

While first principle calculations predict the existence of magnetic moments, ex-
perimental signatures of magnetic graphene are few. Measurements via SQUID
(superconducting quantum interference device) have been performed on graphene
with fluorine adatoms, which indicate the existence of magnetic moments [21]. Fur-
thermore, spin transport measurements in hydrogenated graphene have shown char-
acteristic magneto-resistance dips, which can be explained through spin-scattering
off of local magnetic moments [22]. More recently, measurements of graphene
nanoribbons [33, 34], perforated graphene (graphene antidots) [35], and graphene-
hBN zz-interfaces [36] also suggest the formation of magnetic moment at graphene
zz-edges. In light of the above, we are motivated to explore such zz-edged nanos-
tructured graphene systems and inspire further experiments.

Another extensively studied phenomena is the graphene spin Hall effect (SHE). In
the SHE, an electrical current is used to generate a transverse spin current [38]. The

1.2 Spintronics 3



low spin-orbit coupling in graphene makes the inherent SHE small [27]. However,
enhanced spin-orbit coupling has been claimed, for example through hydrogen
absorption [37, 39], which has demonstrated significant SHE signals. Often the SHE
effect is measured non-locally, where a combined SHE and inverse SHE is used to
generate a measurable voltage. An example of a typical setup is shown in Fig. 1.3. On
the left side, a charge current is induced transversely across two terminals, which in
turn generates a longitudinal spin current (from left to right). On the right side, the
reverse process generates charge accumulation and in turn a transverse (nonlocal)
voltage drop, which can be measured. The graphene SHE and inverse SHE might
solve two of the major challenges in graphene spintronics: spin generation and
detection.

1.3 Graphene antidot lattices (GALs)
Nanostructuring, or nano-patterning graphene, gives rise to new electronic behavior,
which might prove useful in combination with the unique properties of pristine
graphene. In particular, graphene with small perforations, or antidots has spurred
substantial interest. Pedersen et al. [40] were some of the first to propose the use of
graphene antidots, in this case as a means towards spin qubits. However, it quickly
became apparent that graphene antidot lattices (GALs) could open large band gaps
in the otherwise gapless graphene. Large band gaps may be an alternative to enable
the high on/off ratios needed for traditional transistor technology. Many studies
have since found that the band gaps are difficult to experimentally demonstrate as
they are inherently fragile against the commonly faced types of disorder [41–44].
Even so, experiments [45, 46] and theory [47] suggest that where band gaps are
suppressed by disorder, transport gaps might form instead.

One of the key issues with GALs is the intricate influence of the superlattice vectors,
an issue we face regularly in this thesis. A GAL may be critically dependent on the
orientation and size of the periodically repeated pattern with respect to the graphene
lattice. By critically I mean that, for example, a band gap may appear in some GALs,
but completely vanish upon small changes in the pattern, even down to the scale of
inter-atomic separation [41–43]. The dependency follows from a relation between
the antidot superlattice and the underlying pristine graphene lattice, and we will
refer to this concept as the antidot lattice commensurability. Another intricacy is the
influence of antidot edges. The use of particular edges can make GALs transition
from semi-conducting to metallic [48]. In addition, edge chirality may introduce
yet another complication. Pristine features such as antidot lattice commensurability
and antidot edges are inherently fragile against disorder. This has lead to a number
of works studying the severity of various types of disorder [44, 47, 49].

In the prospect of obtaining gapped graphene, relevant fabrication processes have
improved significantly. Circular antidots in regular lattices have been produced
down to sizes of 25 nm diameters and 50 nm lattice periods [52]. In particular, a lot
of effort has been put into producing particular edge types [50, 53, 54]. For example
large control of zz-edged GALs was demonstrated by Shi et al. [50], illustrated in
Fig. 1.4(a). Furthermore, high-resolution lithography by using hBN as a protective
layer has produced high quality ballistic transport through GALs [52, 55]. Finally,
even small triangular antidots have recently been fabricated [51], illustrated in
Fig. 1.4(b). This is particularly interesting as we explore the electronic and transport
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Figure 1.4: Controllable formation of graphene antidots with particular edges.
(left) Zz-edged antidot production, reproduced from Shi et al. [50]. (right)
Triangular hole (for ballistic rectifying), reproduced from Auton et al. [51].

properties of triangular antidots in this thesis.

1.4 Thesis outline
The remaining chapters in this thesis are structured as follows.

In Chapters 2 and 3 we briefly go through, respectively, the electronic description
and formalism, and the large-scale methods used to describe the electronic proper-
ties in samples of several millions of atomic sites. We will cover the Green’s function
formalism, Landauer-Büttiker transport, Chebyshev polynomial expansions, and
the Kubo real-space method.

In Chapter 4 the most important electronic properties of graphene and GALs are
presented. This includes bandstructures, band gap scaling in GAL, and, in particular,
antidot lattice commensurability.

The main parts of this thesis can be separated in two subjects: an example of a
patterned graphene bilayer and zz-edged triangular graphene antidots (zz-TGAs).
The first is an example of stacking two different graphene layers to generate new
electronic behavior. The second is an extensive exploration into electronic and
magnetic properties of TGAs, both in bulk and embedded devices.

In Chapter 5 we discuss the work published in Paper I, in which we consider a
patterned graphene bilayer: Graphene On graphene Antidot Lattices (GOAL). We
examine a graphene bilayer heterostructure, where a pristine layer of graphene
is placed on top of another layer of graphene with a regular lattice of antidots.
We demonstrate the electronic and transport properties considering a number of
combinations of GAL layers. The bandstructure can be engineered to display either
parabolic or linear dispersion, which nevertheless can be made gapped by breaking
layer symmetry. As demonstrated in graphene bilayer, the band gaps can be tuned
via a transverse electric field, e.g., by dual gating [56].

In the remaining chapters, we discuss the work published in Papers II and III, where
we consider zz-TGAs both in bulk and devices.

We first explore the fundamental properties in TGA lattices in Chapter 6. Spin-
unpolarized superlattices display large band gaps, in which we observe unusual

1.4 Thesis outline 5



robustness against lattice disorder. On the other hand, spin-polarized TGAs have
half-metallic regions near the Fermi level, accessible by gating. The large band
gaps and half-metallic features are independent on conventional geometric rules
(commensurability), in sharp contrast to, for example, the band gaps of conventional
antidots. This in turn makes TGA lattice robust against lattice disorder in particular.

In Chapter 7, we move on to explore device transport properties. The spin-polarized
TGA devices demonstrate an interesting spatial spin-splitting feature; Spin-unpolarized
currents are injected and spin-dependently scattered to opposite sides of the device.
This is somewhat analogous to the SHE, but without the need for spin-orbit interac-
tions or topologically protected transport channels. The spin-splitting is enhanced
by repeated scattering in arrays of TGAs, and the performance is demonstrated
to be robust against typical disorders faced in experiments. We also consider the
transverse resistance, which displays an antisymmetric signal, characteristic of the
spin-polarized TGAs. Using the same device, but assuming spin-unpolarized TGAs,
the transverse resistance is instead completely symmetric.

Finally, in Chapter 8, we consider (unpublished results of) TGAs in larger scales
(360 nm × 360 nm samples and 5 nm TGAs), where we examine the influence of
disorder via the density of states and Kubo conductivities. Similar to the smaller
cases, large-scale TGAs features such as band gaps and half-metallic properties
are robust against disorder. Furthermore, the TGAs display an unusually large
anisotropic behavior, with simultaneously quasi-ballistic behavior in one direction,
and localized behavior in the other.

In the final Chapter 9, I present a summary of the results and discussions, and an
outlook of further possibilities.

In Appendices A, B and C I present, respectively, a derivation of the recursive
Green’s function techniques, derivations and implementation of Chebyshev polyno-
mial expansions and the real-space Kubo method, and attached publications.

6 Chapter 1 Introduction



2Electronic theory

This chapter briefly presents the electronic theory used in this thesis, including the
main formulas and common usage. In particular, Green’s function techniques are
mentioned, but further derived in detail in Appendix A.

2.1 Electronic and transport properties
Throughout the thesis, we use tight-binding (TB) models to describe the electronic
and magnetic properties of different patterned graphene systems [5, 57–59]. Take
for example the TB Hamiltonian

H �

∑
i

εini +
∑
〈
i , j

〉 γi jc†i c j (2.1)

where ni � c†i ci are the number operators and c†i (ci) are the creation (annihilation)
operators. The parameters εi are the on-site energies and γi j are the hoppings
between neighboring pairs

(〈
i , j

〉)
. The actual values depend on context and are

described later in the relevant chapters.

The electronic properties, for example the local or total density of states (LDOS or
DOS) are for the most part determined in Green’s function representation. See, for
example, Datta [60, 61] and Bruus and Flensberg [62] for an in-depth introduction
to Green’s functions in condensed matter physics. The non-interacting Green’s
function between states α and β is defined in energy space (E+ i0±−H) [G]αβ � δαβ,
which leads to the matrix form

G �
(
E + i0± −H

) −1
. (2.2)

The parameter η � 0± is nonzero for numerical stability (between ±10−4 and ±10−12

depending on needed precision), and will usually be omitted for brevity. Using
η � 0+ corresponds to the retarded Green’s functions (Gr) and η � 0− the advanced
Green’s functions (Ga). We will not be breaking time-reversal symmetry (e.g. no
magnetic fields), so Gr

� [Ga]†. The LDOS at site i and DOS are determined from
the Green’s functions

LDOS(i , E) � − 1
π

Im[G]ii and (2.3)

DOS(E) �
∑

i

LDOS(i , E) � − 1
π

Tr [Im[G]] , (2.4)

where G � Gr are the retarded Green’s functions.

Green’s function formalism provides a method to include perturbations. The re-
sponse to an external perturbation V may be found from a Dyson equation [62,
63]

G � g + gVG , (2.5)

7
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Figure 2.1: Illustrations of Landauer-Büttiker devices. (a) Two-lead device, for
example a graphene nanoribbon, with leads left (L) and right (R). The leads
have the chemical potentials µp , where p also denotes the spin index. (b) An
example of a four-lead graphene device. The shaded areas enclose individual
cells used in recursive Green’s function techniques [63] (gray: periodic lead
cells, red: device boundary cells, blue: internal device cells).

which relates the Green’s functions of the perturbed system G to those of the unper-
turbed system g. From the Dyson equation, the local Green’s functions of a device
(D) coupled to an external perturbation (ex) read (derived in Appendix A)

GDD � [E −HD − Σex]−1 . (2.6)

The Σex � VDexgexVexD is the self-energy: the energetic response in the device from
the external perturbation. In particular, this allows to introduce couplings between
two initially uncoupled (unperturbed) sub-systems, by considering the couplings
as the perturbation. For example, joining initially uncoupled carbon chains to form
graphene sheets as illustrated in Fig. 2.1(a). Here the chains (black) are perturbed
by the longitudinal couplings (red).

As an extension to Eq. (2.6), recursive Green’s function techniques [63] can be
employed to lower the calculation cost of Eqs. (2.3) and (2.4). These techniques, pre-
sented in Appendix A, avoid the inversion of the full matrices in Eqs. (2.2) and (2.6).
The implementations of the LDOS and DOS are presented in Appendix A.2.

Electronic transport properties are determined within the Landauer-Büttiker formal-
ism. Landauer-Büttiker is a powerful tool that relates the chemical potentials and
electronic currents through a mesoscopic system via transmission functions T. A
number of good books give a detailed introduction to the subject, for example Datta
[61] and Torres et al. [64]. The multi-channel Landauer-Büttiker formula defines the
current through channel p as

Ip �
e
h

∑
q

∫ ∞

−∞
dE

[
Tqp f

(
E − µp

)
− Tpq f

(
E − µq

) ]
, (2.7)

where Tqp are the transmissions between channels p and q, and µp � eVp are the
chemical potentials. Here, the channel indices p and q denote both the physical
terminals, or leads, and the electronic spin-channels. For example, the transmission
from, say, the left spin-up channel (L↑) to right spin-down channel (R↓) is TR↓L↑.
The functions f (E) are the usual Fermi-Dirac distribution functions. The zero
temperature and low bias limit reads

Ip � G0
∑

q

Tqp
(
Vp − Vq

)
, (2.8)

8 Chapter 2 Electronic theory
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Figure 2.2: Illustration of the on-site spin interaction of the Hubbard model.
The electrons move in a background potential from the atomic lattice. If two
electrons of different spin occupy the same space (right side) the they experience
the Coulomb interaction with energy U. The type of the electronic spin is
colored red for spin up and blue for spin down.

where the (single-spin) quantum of conductance is G0 �
e2

h .

The transmissions are determined through the Fisher-Lee relations [65]

Tpq(E) � Tr
[
ΓpG†ΓqG

]
, (2.9)

where G � [E −HD −
∑

p Σp] is the retarded Green’s function matrix of the device.
The

∑
p Σp �

∑
p VpgpV†p is the sum of the self-energies from coupling to the leads,

where Vp are the lead-to-device couplings and gp is the uncoupled lead Green’s

function [60, 61]. The Γp � i
[
Σp − Σ†p

]
are the level-broadenings from coupling to

the leads. An example of a two-lead device is illustrated in Fig. 2.1(b): A graphene
nanoribbon device. This example shows two graphene leads, left (L) and right (R),
coupled to a central strip of graphene (the device). Notice that the leads can in
principle be semi-infinite. Recursive techniques exist to optimize the calculations of
transmission functions (Appendix A.4), as well as semi-infinite leads (Appendix A.3).

For a more detailed view into the electronic transport, we may also consider the
local transmission currents from channel p between sites i and j [63][

Jp(E)
]

i j
� [H]i j Im[GrΓpGa]i j . (2.10)

Although, it is often more convenient to use the alternative (atomic) form

Jp(i , E) �
1
2

∑
j∈

〈
i , j

〉
[
Jp(E)

]
i j
. (2.11)

which is the sum of all currents passing across the site i. The factor of two enters
from summing over both incoming and outgoing currents.

2.2 Mean-field Hubbard model
In this thesis, we also explore the fundamentals of spin-interaction in graphene
by way of a mean-field Hubbard model [66, 67]. Our model extends the above
TB model by adding an on-site spin-interaction energy U (also referred to as the
Hubbard U). It describes the energy gain with two electrons occupying the same
space with opposite spin, see also Fig. 2.2. The opposite spin are referred to as spin
up and down.

2.2 Mean-field Hubbard model 9



The Hamiltonian in the spin-interacting case is

H �

∑
〈
i jσ

〉 tc†iσc jσ + h.c.︸¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈︷︷¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈︸
TB model

+

∑
i

Uni↑ni↓︸¨̈ ¨̈ ¨̈ ¨̈︷︷¨̈ ¨̈ ¨̈ ¨̈︸
HU : Hubbard model

(2.12)

This two-particle feature makes this a many-particle problem that we cannot solve
in practice. The often used mean-field approach simplifies the problem to a single
particle Hamiltonian interacting with a mean-field background, i.e., niσ � 〈niσ〉 +
δniσ. Using the common notation for the magnetic moments mi �

〈
ni↑

〉
−

〈
ni↓

〉
and local electron densities ni �

〈
ni↑

〉
+

〈
ni↓

〉
the Hubbard model becomes

HU ≈
∑
iσ

U/2(ni ± mi)niσ (2.13)

which can be solved self-consistently for the magnetic moments mi and on-site
densities ni using

〈niσ〉 �
∫ EF

−∞
dE LDOS(iσ, E) , (2.14)

where LDOS(iσ, E) is the LDOS at site i for electronic spin σ. An equivalent integral
more suited for numerical implementation is derived in Appendix A.5.

Often it is advantageous to employ mixing between iterations, for example

mi ← α [mi]old + (1 − α) [mi]new , (2.15)
ni ← α [ni]old + (1 − α) [ni]new , (2.16)

In the case of graphene, however, α � 0 yields reasonably fast convergence.

The self-consistent equation does not define a unique solution, and the final out-
come depends on the initial guess (in a deterministic fashion). Fortunately, the
ground state solution in graphene is readily obtained by starting with an initial
antiferromagnetic guess, where the orientation of the magnetic moments are opposite
on each of the graphene sublattices.

10 Chapter 2 Electronic theory



3Large-scale electronic methods

This chapter presents the methods used in this thesis to calculate electronic proper-
ties of large-scale samples. The formulas are somewhat lengthly so their final forms
are presented here and the derivations are written explicitly in Appendix B.

3.1 Polynomial expansion of the density of states
The inversion operation in determining the Green’s functions G [Eq. (2.2)], for
example to find the DOS, becomes numerically impractical or even impossible for
very large systems e.g. several million sites. However, we wish to explore such
large systems. Instead we can approximate the physically interesting quantities
using Chebyshev polynomial expansions [68]. For a relatively small set of expansion
coefficients (e.g. NCby ∈ [102; 104]) we are able to compute the DOS of several million
atomic sites (even billions if we have the patience and computation memory).

The (orthogonal) Chebyshev polynomials are defined in the region −1 < x < 1

Tn(x) � cos [n arccos(x)] , (3.1)

for which the recursive relations follow

Tn+1(x) � 2xTn(x) − Tn−1(x) . (3.2)

With the DOS defined as Tr [δ (E −H)]we use the expansion [68, 69]

δ(E −H) � 1

π∆E
√

1 − Ẽ2

∞∑
n�0
(δ0n + 1)Tn(Ẽ)Tn(H̃) (3.3)

where the rescaled energy Ẽ � 2(E − 〈E〉)/∆E and Hamiltonian H̃ � 2(H − 〈E〉)/∆E,
such that energy spectrum is bounded (E − 〈E〉) ∈ ] − ∆E/2;∆E/2[. The last term
Tn(H̃) will require the eigenenergies of Schrödingers equation H

��ψ〉
� E

��ψ〉
to lie

within the energy spectrum. (See also full derivation of Eq. (3.3) in Appendix B.2.)

The trace in the DOS [Eq. (2.4)] is replaced by a stochastic approximation

Tr [· · ·] ≈ 1
NR

NR∑
R

〈R | · · · | R〉 , (3.4)

where |R〉 � ∑
j exp(iφR j)

�� j〉 are random-phase states, and φR j are the random
phases given to sites j [68]. This approximation is particularly well suited for
large problem sizes D (the size of the Hamiltonian matrix)—the error scales as
1/
√

NRD [68]. The final form of the approximation becomes [68] (derivation in
Appendix B.5)

DOS ≈ 1

π∆ENR
√

1 − Ẽ2

Nδ∑
n�0

gn(δ0n + 1)Tn(Ẽ)
NR∑
R

〈
R

��Tn(H̃)
�� R

〉
. (3.5)

11



(a) (b)

Figure 3.1: Illustration of the ensemble of separate disordered systems (a) and
the combined disordered system (b). The disorder is here illustrated by blue
dots. In case of the Chebyshev expansion of the DOS, the combined system (b)
is self-averaging.

The truncation to only Nδ in the first sum of Chebyshev polynomials introduces
errors, also known as Gibbs oscillations. The Gibbs oscillations can be severely
reduced by the use of kernel coefficients gn . In case of the DOS we will use the
Jackson kernel [68].

Applying the Jackson kernel to an expansion of the δ-function yields a Gaussian-like
approximation [68]

δ(x − x0) ∼
1√

2πσ2
J

exp

[
−(x − x0)2

2σ2
J

]
. (3.6)

In the worst case (near x0 � 0), the broadening (or Gaussian width) is σJ ≈ π∆x/Nδ,
where ∆x is the spectrum of x. Using graphene as an example (with ∆E ∼ 10 eV)
then the energy resolution of the expansion is σgraphene ∼ 30 eV/Nδ.

Using Eq. (3.2) to iteratively evaluate the last sum in Eq. (3.5), the problem boils
down to a sum of sparse-matrix-vector products, which are particularly fast and
memory efficient.

This form of the DOS is well suited for examining the average influence of disorder
in bulk, or periodic samples. To properly consider all correlated effects, multiple
realizations of the disorder are introduced simultaneously. This can be done in
super cells, where the unit cell is repeated and the disorder is randomly distributed.
Using exact Green’s function techniques, these super cells cannot be very large, and
we instead average over ensembles of smaller super cells. This kind of situation is
illustrated in Fig. 3.1(a).

However, larger samples include more correlation effects, and, in turn, smaller
ensembles can be used. This kind of situation is illustrated in Fig. 3.1(b). By consid-
ering Chebyshev expansions, the ensemble can be reduced considerably, even to
the point where only a single sample is needed. An additional advantage is that
the corresponding Brillouin zones are very small, and a single point in reciprocal
space (e.g. the origin) is enough to capture the physical behavior. The error of
the stochastic trace is even reduced by larger system sizes. In other words, the
influence of disorder is readily studied through Chebyshev expansions using very
large, disordered systems. It is worth noting that the system need not be a regular
square array as illustrated in Fig. 3.1.
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3.2 Kubo-Greenwood transport formalism
The Kubo-Greenwood formalism is based on the fluctuation-dissipation theorem which
relates the conductivity with the velocity correlation function [70, 71]. An efficient
order-N real-space method (Kubo method [64, 72–74]) allows to study the conductivity
of large systems (millions of sites). With this method we can explore features
which are out of reach for standard Landauer-Büttiker models. Nonetheless, some
limitations exists for the Kubo method, which we will discuss at the end of this
section.

The Kubo-Greenwood formula [70, 71] for the conductivity-tensor elements [σ]αβ ≡
σαβ reads

σαβ(ω) �
π~e2

Ω

∫
dE

f (E) − f (E + ~ω)
~ω

Tr
[
V†αδ (E −H)Vβδ (E + ~ω −H)

]
, (3.7)

where Ω is the sample volume and Vα is the velocity operator in the α direction.
Limiting to the diagonal, zero temperature, and the DC limit ω→ 0 the conductivity
can be expressed in the shorter form [64, 72, 75]

σαα(E) �
π~e2

Ω
Tr

[
V†αδ (E −H)Vαδ (E −H)

]
. (3.8)

By replacing the last δ (E −H) with (1/2π~)
∫
dt exp [i(E − H)t/~] and performing

the integral we are left with

σαα(E) �
e2

Ω
lim
t→∞

d
dt

Tr
[
δ (E −H) (Xα(t) − Xα(0))2

]︸¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨︷︷¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨︸
Ωρ(E)∆X2

α(E,t)

, (3.9)

where Xα(t) is the position operator at time t (Heisenberg picture) in the α direction,
ρ(E) � Tr [δ (E −H)] /Ω is the DOS per unit volume, and ∆X2

α(E, t) is the mean
squared displacement (or spread). We can further generalize the formula to the
running conductivity by lifting the t →∞ limit

σαα(E, t) � e2ρ(E)1
t
∆X2

α(E, t) . (3.10)

We have used a common approximation by replacing the d
dt → 1/t, which is usually

motivated by producing more smooth curves [64, 75]. Although this technically is
an incorrect definition and should be used with caution, it simplifies the analysis
and remains instructive of the qualitative physical behavior. Notice that it is a valid
approximation in the (diffusive) case of ∆X2

α(E, t) ∝ t.

The Eq. (3.10) is used to find the running conductivities of large, disordered samples.
We use periodic samples to avoid edge effects. We define the corresponding diffusion
coefficient

Dα(E, t) �
1
t
∆X2

α(E, t) , (3.11)

and the simulation lengths

Lα(E, t) � 2
√
∆X2

α(E, t) . (3.12)

3.2 Kubo-Greenwood transport formalism 13



Notice that the simulation length is not the same length as the size of the simulation
sample.

The particular form of the expression ρ(E)∆X2
α(E, t) � Tr

[
δ (E −H) (Xα(t) − Xα(0))2

]
motivates the use of Chebyshev-polynomial expansions [Eq. (3.1)] and the stochastic
trace approximation. We use the additional Chebyshev expansion of the exp-function [68]
(Appendix B.2)

exp(iHt/~) �
∞∑
n

(δ0n + 1) (−i)n Jn(∆Et/~)Tn(H̃) , (3.13)

where Jn(x) is the Bessel function of the first kind, and the rescaled Hamiltonian
H̃ � 2(H − 〈E〉)/∆E. The final form of the mean squared displacement is

ρ(E)∆X2
α(E, t) ≈

1

π∆E
√

1 − Ẽ2

Nδ∑
n�0

gn(δ0n + 1)Tn(Ẽ)
NR∑
R

〈
ψR(t)

��Tn(H̃)
��ψR(t)

〉
,

(3.14)

where the δ-function from Eq. (3.9) is expanded in Nδ Chebyshev polynomials. The
time-dependence has been bundled into the new states��ψR(t)

〉
� [X,U(t)] |R〉 �

Nexp∑
m

(δ0m + 1) (−i)m Jm(∆Et/~)
[
X, Tn(H̃)

]
|R〉 , (3.15)

where the expansion is truncated to Nexp polynomials, and |R〉 � ∑
j exp(iφR j)

�� j〉
are random-phase states. However, instead of Eq. (3.15) for every time t, we evolve
the time iteratively using

��ψR(t)
〉
→

��ψR(t + δt)
〉
. In the end, this requires fewer

expansions coefficients Nexp.

The Kubo method relates the conductivity to the mean displacement of wave-packets
initiated by the random-phase states as a function of time, illustrated in Fig. 3.2(a).
By iteration, the wave-packets are continually evolved until the simulation saturates
into a transport regime.

The quantum transport is divided into three important regimes: In the ballistic
regime, the wave-packets experience no scattering and the conductivity diverges in
the long time limit. In the diffusive regime, the strong scattering makes the conduc-
tivity saturate to a maximum value. In the localized regime, scattering dominates
and wave-packets and the corresponding mean-squared displacement saturate.

The Kubo simulation of a sufficiently disordered system will undergo transitions
between ballistic and diffusive, and often also between diffusive and localized. At the
beginning of the simulation, the wave-packets will propagate only short distances,
and very few scattering events will occur. This would manifest itself in a ballistic
regime, where the ∆Xα(E, t) ∝ t and σαα(E, t) ∝ t, illustrated in Fig. 3.2(b). If a
sample is pristine (i.e. no structural imperfections), the simulation will remain in
the ballistic regime. If, however, the sample is weakly disordered, the simulation
may experience a quasi-ballistic behavior. Here the conductivity still diverges,
however, slower than for the ballistic case (sub-linearly). Given enough disorder,
the simulation transitions into the diffusive regime.

The onset of the diffusive regime is identified by a quadric-to-linear transition of
the mean-squared displacement, and, in turn, the ∆Xα(E, t) ∝

√
t and σαα(E, t)
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Figure 3.2: Schematic illustrations of the Kubo method simulation. (a)
Schematic illustration of the time evolution of a wave packet. At start t � 0
the wave packet is extremely local to a particular site and the mean spread is
∆X(t � 0) � 0. As the packet evolves the spreading increases, shown here at
times t0, t1 > t0, and t2 > t1. (b-d) Schematic illustrations of the three important
transport regimes: the ballistic (b), the diffusive (c), and the localized (d). In
all cases the main frames display the mean displacements ∆X(t) and the insets
the corresponding conductivities σ(t). The red dashed lines in the insets of (c)
and (d) denote the semi-classical conductivities.
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is constant (nonzero), illustrated in Fig. 3.2(c). If disorder is not too strong, the
simulation may remain the diffusive regime and the semi-classical conductivity can
readily be obtained through

σαα,SC(E) � σαα(E, tmax) , (3.16)

illustrated by the red dashed line in the inset of Fig. 3.2(c). In many cases, however,
the diffusive regime is short lived, and strong scattering causes the simulation to
move into the localized regime.

At localization, the wave-packets and the mean-squared displacement saturates to
a constant value, and σαα(E, t) ∝ 1/t, illustrated in Fig. 3.2(d). Here, the common
approach is to define the semi-classical conductivities as the maximum running
conductivity

σαα,SC(E) � max[σαα(E, t > 0)] . (3.17)

This is illustrated by the red dashed line in the inset of Fig. 3.2(d).

Using the above, we can analyze the different transport regimes of larger, more
realistically sized samples. Furthermore, this allows us to explore the influence of
experimentally sized features including the influence structural imperfections at
the atomic scale.
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4Graphene and antidot latttices

The electronic properties of graphene are unique and remarkable (as discussed in
Section 1.1) but also quite dependent on the precise atomic structure. Through
nanostructuring, graphene can take on whole new features. As discussed in the
introduction Section 1.3, graphene with small perforations, or antidots has received
substantial interest due to the possibility of introducing large band gaps into the
otherwise linear-dispersive material. This chapter presents the general electronic
properties of graphene, and how these change when introducing a graphene antidot
lattice (GAL).

4.1 Pristine graphene
Graphene is a 2D layer of carbon atoms arranged in a hexagonal lattice, illustrated
in Fig. 4.1(a). The atomic structure is formed from the strong σ bonds: the sp2

hybridization between the s and two p orbitals, deep in the valence energy region.
This leaves the final p orbital, which forms a half-filled π band that dominates the
electronic properties. The resulting atomic lattice is hexagonal—a bipartite with
two sites in the unit cell, illustrated by the orange shaded area in Fig. 4.1(a). The
two equivalent but independent sublattices are usually referred to as A and B.

The lattice vectors can be written as [see Fig. 4.1(a)]

a1 � (−azz , aac)/2
a2 � (+azz , aac)/2 .

(4.1)

where the lattice constants are azz � 2.46 Å and aac �
√

3azz � 4.26 Å, respectively.
The hexagonal lattice further gives rise to a hexagonal Brillouin zone, illustrated in
the inset of Fig. 4.1(a). In turn, the reciprocal vectors read

b1 � 2π(a−1
zz ,−a−1

ac )
b2 � 2π(a−1

zz ,+a−1
ac ) .

(4.2)

where the high-symmetry points can be expressed

K � (b1 + b2)/3
K′ � (2b1 − b2)/3
M � (K + K′)/2
Γ � (0, 0)

(4.3)

Graphene is well described using the nearest-neighbor (NN) TB model [5]

H �

∑
〈
i j
〉 tc†i c j + H.c., (4.4)
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Figure 4.1: Atomic structure (a) and bandstructures (b) and (c) of pristine
graphene. (a) The unit cell of graphene is displayed by the shaded orange
box. Lattice vectors are a1 and a2, and lattice constants are azz � 2.46 Å and
aac � 4.26 Å. The inset displays the Brillouin zone of pristine graphene. The
high-symmetry points K, Γ, M, K′ are illustrated by red points. Reciprocal
lattice vectors are b1 and b2. The bandstructure high-symmetry path used
in (b) is illustrated by the black path in the Brillouin zone in (a). (b) The
bandstructure is calculated using the NN-TB model of graphene, using the NN
hopping t � −2.7 eV. (c) The bands near the Dirac points K, and by symmetry
the bands are similar at K′.

where
〈
i j
〉

represents the set of NNs. The parameter t is the NN hopping, and
its value depends on the context. It is usually fitted to experimental quantities or
the results of first principle calculations. In the case of pristine graphene we use
t � 2.7 eV [5].

The pristine Hamiltonian of graphene reads [5]

H(k) �
[

0 t f (k)
t f ∗(k) 0

]
(4.5)

where

f (k) � 2 cos (kx azz) + 4 cos (kx azz/2) cos
(
ky aac/2

)
. (4.6)

The bandstructure along the of high-symmetry path of pristine graphene is displayed
in Fig. 4.1(b), where the path is demonstrated in the Brillouin zone in Fig. 4.1(a). No-
tice in particular the linear bands near the (Dirac) points K and K′. These particular
bands give rise to many of the unique electronic properties of graphene [5].

4.2 The graphene antidot lattice
By introducing antidots into graphene, whole new features may emerge. In particu-
lar, large band gaps can form in GALs. The bandstructure of such an example is
displayed in Fig. 4.2(a). A relation between the band gap and the antidot lattice was
demonstrated by Pedersen et al. [40], Eg ∝

√
Nrem/Ntot, where Ntot and Nrem are,

respectively, the total number of sites without the antidot and the number of removed
sites with the antidot. This is reproduced in Fig. 4.2(b). The GALs from this study
were arranged in a triangular superlattice, illustrated schematically in the inset of
Fig. 4.2(b). The antidot lattice of Fig. 4.2(a) uses the same triangular superlattice,
and the unit cell is illustrated in the inset.

This particular triangular superlattice results in GALs which always display band
gaps, scaled as described above. However, one of the key issues with GALs is the

18 Chapter 4 Graphene and antidot latttices



M K Γ K′ M−2

−1

0

1

2

En
er

gy
E

(e
V

)

136804-2

(a) (b)

zz
ac

Figure 4.2: Bandstructure (a) and band gaps (b) of GALs. (a) The bandstructure
of a gapped GAL, with the unit cell depicted in the inset. Notice that the Dirac
points of pristine graphene have been folding on to the Γ point of the GAL
Brillouin zone. (b) The band gap scaling of gapped GALs, Eg ∝

√
Nrem/Ntot.

The inset illustrates the triangular superlattice, where all antidots are arranged
on a triangular grid (the graphene lattice orientation is denoted by the zz and
ac directions). The main panel in (b) has been reproduced from Pedersen et al.
[40].

intricate influence of the superlattice vectors. A band gap may appear in some GALs,
but completely vanish upon small changes in the superlattice vectors [41–43]. In
this thesis, we denote this concept antidot lattice commensurability.

The geometrical rules that govern the opening of band gaps can be demonstrated
by extending the pristine graphene TB model with the periodic perturbation U(r).
The superlattice vectors of the perturbation are defined

R1 � n1a1 + m1a2

R2 � n2a1 + m2a2
(4.7)

where a1 and a2 are the pristine graphene lattice vectors [Eq. (4.1)], and n1, n2, m1,
and m2 are integers. At the Dirac points, the perturbed Hamiltonian has the form

H(K) �
[
UAA(K) UAB(K)
UBA(K) UBB(K)

]
, (4.8)

where f (K) � 0 [Eq. (4.6)]. We assume sublattice symmetry such that UAA(K) �
UBB(K). Then, only when UAB(K) � U∗BA(K) , 0 can we open a band gap at the
Dirac point in graphene. This is indeed the case when the reciprocal lattice of the
periodic perturbation coincides with the Dirac points: when RiK � 2nπ for either of
i ∈ {1, 2}, where n is an integer. This can be written explicitly using K � (b1 +b2)/3
[from Eq. (4.3)]

RiK �
ni

3 a1b1 +
ni

3 a2b1 +
mi

3 a1b2 +
mi

3 a2b2 (4.9)

�
2π
3 (ni + mi) (4.10)

where b1 and b2 are the reciprocal lattice vectors of the graphene lattices [Eq. (4.2)].
This is satisfied when (ni + mi)/3 is an integer, or modulus(ni + mi , 3) � 0.

Some examples of GALs and their respective atomic structures and reciprocal lattices
are shown in Fig. 4.3. These three similar GALs are either semimetallic (monolayer
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Figure 4.3: Lattice commensurability of graphene antidot lattices (GALs). Three
different GALs (a),(b), and (c) with different electronic behaviors illustrated in
the bandstructures, respectively, (d), (e), and (f). Next to the atomic structures in
(a), (b), and (c) are the reciprocal lattices display on top of the pristine graphene
Brillouin zone. Notice in (b) the reciprocal lattice points coincide with the Dirac
point of graphene. Reproduced from Dvorak et al. [43].

graphene-like) or semiconducting, depending entirely on the superlattice orientation
and size. On closer inspection, the semi-conducting GAL is the only geometry in
which the reciprocal lattice points coincide with the Brillouin zone of graphene.

On top of the antidot lattice commensurability, the atomic structure of the antidot
also plays a large role in the electronics. For example, in Chapter 6 we explore
the fundamental differences between zz-edged triangular antidots compared the
ac-edged triangular antidot. In particular, the zz-edged triangular antidots displays
large band gaps, irrespective of commensurability arguments.
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5Patterned bilayer graphene

Bilayer graphene [Illustrated in Fig. 5.1(a)] has interesting properties quite different
from those of monolayer graphene [59]. The bandstructure [Fig. 5.1(b) with TB
model of McCann and Koshino [59]] resembles that of monolayer graphene with
an additional band splitting induced by the inter-layer coupling [blue arrows in
Fig. 5.1(a)]. Close to the Dirac points (K) the bands show parabolic dispersion [black
bands in Fig. 5.1(c)]. Furthermore, by breaking the layer-symmetry then sizable
band gaps appear [red bands in Fig. 5.1(c)]. This could be achieved, for example, by
applying a perpendicular electric field (transverse bias), thereby inducing opposite
on-site potentials in the top and bottom layers. In Fig. 5.1(c) an inter-layer potential
difference U � 0.1γ0 is applied, where γ0 is the NN TB hopping energy. However,
the parabolic bands yield lower mobilities, and, in turn, degraded performance
compared to the linearly-dispersive graphene monolayer.

The recent procedural optimization [12] of clean van der Waals (vdW) stacking of
2D materials [11] has paved a way to pursue stacked systems of different layers. Here
we examine a bilayer graphene heterostructure, where a pristine layer of graphene
is placed on top of different layer of graphene with a regular lattice of holes, or
antidots, illustrated in Fig. 5.2. This class of graphene systems has been dubbed
GOAL: graphene on graphene antidot lattice. Through geometric design we can
engineer a band structure very different from the parabolic dispersion of regular
bilayer graphene. We demonstrate below that GOALs can display linearly dispersing
bands (with a high corresponding mobility), resembling that of monolayer graphene.
Nevertheless, these can be made gapped by breaking layer symmetry.

The GOALs depend to a great extent on the orientation of the antidot lattice with
respect to the graphene lattice. That is, GOALs depend on the antidot lattice com-
mensurability, in much the same way as monolayer GALs (Section 4.2). We will
examine two different orientations of the antidot lattices: one which always forms
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Figure 5.1: Structure (a) and electronic properties of pristine (b) and biased
(c) bilayer graphene. (a) Atomic structure of bilayer graphene, with the inter-
layer couplings γ1, γ2, and γ3 illustrated by blue arrows. (b) Bandstructure of
unbiased bilayer graphene. (c) Local bandstructure near K of unbiased (black)
and biased (U � 0.1γ0, red) bilayer graphene. The (full) TB model is reproduced
from McCann and Koshino [59].
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Graphene

GAL

Figure 5.2: Illustration of GOAL: graphene (blue) on graphene antidot lattice
(gray). The inter-layer distance has been exaggerated for illustrative purposes.
We consider a distance similar to bilayer graphene.
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Figure 5.3: Illustrations and atomic structures of GOALs. (a) The Wigner-Seitz
cell (left) and the individual layers (right) of the {L, S} � {6, 2} GOAL. (b) The
individual layers of the {11, 2}rot GOAL.

commensurate lattices, and another in which commensurability depends on the
dimensions.

5.1 Graphene on antidot lattice (GOAL)
In regular bilayer graphene, the relative twist angle between the two layers has
large impact on the electronic properties [76, 77]. We focus on the fundamental
possibilities and consider perfect Bernal (AB) stacking without twisting of the layers.
Indeed experiments with bilayer graphene have demonstrated manually twisting
the top layer until it ‘‘locks’’ into place at the Bernal stacking angle [78].

We use two similar triangular superlattices, here referred to as the regular and the
rotated antidot lattice. The regular lattice is defined by lattice vectors aligned parallel
to the ac-directions. This leads to a hexagonal Wigner-Seitz cell, shown in Fig. 5.3(a).
The rotated vectors align parallel to the zz-directions and the Wigner-Seitz cell takes
the form of a rhombus, shown in Fig. 5.3(b).

The regular lattices are always commensurate, and the corresponding monolayer
GALs are always gapped, as originally demonstrated by Pedersen et al. [40] (see also
discussion in Section 4.2). On the other hand, the rotated lattices exhibit varying
commensurability: one third of the possible superlattice vectors yield commensurate
lattices, while the remaining yield incommensurate lattices. In addition to antidot
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lattice commensurability, the exact shape of the antidot also has large influence on
the electronic properties of antidot lattices [48, 79]. Extended zz-edges, which are
generally present for large circular holes, will induce quasilocalized states that in
monolayer GALs significantly quench any present band gap. We limit our analysis
to hexagonal antidots to avoid this somewhat irregular property.

We adapt the nomenclature of Pedersen et al. [40] and denote GOALs by {L, S}
and {L, S}rot, for the regular and rotated lattices, respectively. The geometry {L, S}
refers to a regular antidot lattice with a hexagonal unit cell of side length Lazz and
a hexagonal antidot of side length Saac. The geometry {L, S}rot refers to a rotated
antidot lattice with a rhombus unit cell of side length Lazz and a hexagonal antidot
of side length Saac. (See also Fig. 5.3.) The lattice constants along the zz- and
ac-directions are azz � 2.46 Å and aac � 4.26 Å, respectively.

In regular bilayer graphene there are four distinct sublattices, two in each layer. The
low-energy properties of bilayer graphene are dominated by the nondimers (sites
above or below a hexagon ring). The dimers (below or above carbon sites) only play
a minor role. The carbon sites of GOALs are not all true dimers or nondimers, since
sites have been removed from the antidot layer. However, their low-energy behavior
remains largely determined by the four original sublattices of bilayer graphene,
irrespective of the removed sites. Under these circumstances we continue to refer to
them collectively as dimers and nondimers, respectively.

The electronic properties are described using a NN bilayer TB model

H �

∑
i

±U
2 c†i ci +

∑
〈
i j
〉 γ0c†i c j +

∑
〈〈

i j
〉〉 γ1c†i c j + H.c., (5.1)

where
〈
i j
〉

represents the intra-layer NNs and
〈〈

i j
〉〉

represents the inter-layer
NNs (dimers). The intra-layer coupling γ0 � −3.16 eV, the inter-layer coupling
γ1 � 0.381 eV, and the onsite energies ε � ±U/2 with + for top layer and − for
bottom layer. The inter-layer asymmetry U, also referred to as the transverse bias,
is varied, but predicted to realistically lie between ±0.3 eV [80]. Demonstrated in
Paper I, extending the model to include the skew hopping terms γ3 and γ4 has little
impact on the properties within the energies of interest, so these terms are excluded.

The transport properties are determined using Landauer-Büttiker [Eq. (2.8)] along
with the Fisher-Lee relations for the transmission functions and currents [Eqs. (2.9)
and (2.11)].

5.2 The linear (parabolic) dispersion of GOAL
We first examine the electronic properties of GOALs in the absence of a transverse
bias (U � 0). The most noticeable feature of commensurate GOALs is a transforma-
tion, near the Dirac-points, from the parabolic bandstructure of bilayer graphene
to a linear bandstructure, illustrated in Fig. 5.4. The commensurate geometries
{L, S} � {16, 6} and {26, 6}rot, respectively Figs. 5.4(a) and 5.4(b), both display lin-
ear bandstructures, regardless of antidot lattice orientation. On the other hand,
incommensurate GOALs remain parabolic, as for example the {27, 6}rot GOAL in
Fig. 5.4(c).

5.2 The linear (parabolic) dispersion of GOAL 23



{16, 6}

M K Γ K′ M

−0.4
−0.2

0
0.2
0.4

En
er

gy
E

(e
V

)

{26, 6}rot

M K Γ K′ M

{27, 6}rot

M K Γ K′ M

S � 3

Γ
−0.2

−0.1

0

0.1

0.2

En
er

gy
E

(e
V

)

S � 4

Γ

S � 5

Γ

S � 6

Γ

S � 7

Γ

vF/v0

0 1 3 5 70

0.25

0.5

0.75

1

S

(a) (b) (c)

(d) (e)

Figure 5.4: Bandstructures of commensurate and incommensurate GOALs. (a-c)
Bandstructures of GOALs with {L, S} � {16, 6} (a), {26, 6} (b), and {27, 6}rot
(c). (d) Bandstructures of {16, S} GOALs near the Dirac point. The size of the
antidot varies from S � 3 to S � 7 (left to right). We compare the GOALs (black
solid) with monolayer (blue dashed) and bilayer (blue dotted) graphene. (e)
The EF � 0 Fermi velocity of {16, S} GOALs.
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Figure 5.5: Bandstructures of rotated GOALs {27, 4}rot (b) and {27, 6}rot. The
bandstructures of GOAL (black solid) are compared to those of regular bilayer
graphene (blue dotted) and the GOAL continuum model (red dashed).

The transition towards linear bands (when present) is gradual. As the antidot size
increases (or the density of antidots decreases), the bandstructures of commensurate
GOALs transform from bilayer-like to monolayer-like. In the panels of Fig. 5.4(d),
we see the transition of the low energy bands of the {16, S} GOALs as the antidot
size is varied. We compare the GOALs (black solid) with monolayer (blue dashed)
and bilayer (blue dotted) graphene. It is apparent that the bands of GOAL resemble
bilayer graphene at small S (left-most panels). At large S (right-most panels) the
bands begin to resemble those of monolayer graphene. This transition does not occur
with an ever increasing curvature at the Dirac-point. Instead the bands always
remain linear for S > 0, but with a regularly increasing Fermi velocity νF (EF � 0).
Albeit, at small S this linear part is confined to a narrow window of energies. The
Fermi velocities νF are shown in Fig. 5.4(e), quantifying the transition from bilayer
νF � 0 towards monolayer νF � ν0, where ν0 is the Fermi velocity of monolayer
graphene.

One of the consequences of incommensurate GAL is a dispersion which resembles
monolayer graphene with a (smaller) renormalized velocity νGAL. This can be
used to approximate the bandstructures of incommensurate GOALs. Within the
low-energy continuum model of bilayer graphene [59],

E±(k) � ±
γ1

2

[√
1 + 4~2ν2

0k2/γ2
1 − 1

]
, (5.2)

we replace the monolayer velocity ν0 with an average layer velocity νF � (ν0 +

νGAL)/2. The TB bandstructures and the continuum models (solid and dashed,
respectively) are shown in Figs. 5.5(a) and 5.5(b) for the {27, 4}rot and {27, 6}rot
GOALs, respectively.

The electronic behavior of a GOAL can be understood from the isolated behavior of
the associated antidot layer. In Fig. 5.6(a) the normalized projected density of states
(PDOS/DOS) of the four sublattices of bilayer graphene are shown as a function
of the antidot size, demonstrated with the {16, S} geometries. The PDOS reveals
a gradual shift from evenly distributed between the two layers towards mostly
top layer (graphene layer) distribution—effectively it transforms from bilayer-like
PDOS towards monolayer-like PDOS. We might expect a simple redistribution of
the PDOS across remaining sites due to missing sites in the bottom (antidot) layer.
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Figure 5.6: The projected density of states (PDOS) of regular (a) and rotated
(b) GOALs as a function of antidot size. The PDOS is projected on top dimers
(black solid), top nondimers (red dashed), bottom dimers (green, dotted), and
bottom nondimers (blue dot-dashed). The inset in (a) shows the relative PDOS
of the bottom antidot layer η � PDOSGAL/DOS×Ntotal/NGAL. (c) The PDOS of
the bottom antidot layer as a function of the isolated GAL layer.

To examine this possibility, we define η as the relative PDOS of the antidot layer,
η � PDOSGAL/DOS×Ntotal/NGAL. The inset of Fig. 5.6(a) (bottom) shows a gradually
decreasing η < 1. That is, the states are pushed more into the top layer (graphene
layer) than a simple redistribution can account for. This is further supported by
considering the incommensurate {27, S}rot GOAL in Fig. 5.6(b), for which the PDOS
remains evenly distributed in the two layers, regardless of antidot size. We note that
at large antidots with very small spacing between them this simple picture breaks
down. The small constrictions introduce other confining effects and the bottom
(antidot) layer becomes slightly gapped in spite of incommensurability.

The single layer confinement is a strong indication that the governing mechanism
behind the electronic behavior is the band gap of the isolated antidot layer. This is
firmly supported by Fig. 5.6(c), which displays the normalized PDOS of the antidot
layer as a function of the isolated antidot layer band gap Eg,GAL. As the local band
gap of the antidot layer increases, the electronic states of GOAL are pushed into the
top (graphene) layer towards monolayer confinement. Ultimately, this results in the
monolayer-like dispersion we observe in GOALs.

5.3 Transverse bias and induced band gaps

Now we consider the case of a nonzero transverse bias U. In regular bilayer graphene
a potential difference between the layers induces a band gap, the size of which scales
approximately linearly with the potential. Through the same mechanism, GOALs
also open band gaps tuned via the interlayer asymmetry. In Figs. 5.7(a) and 5.7(b),
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Figure 5.7: Bandstructures and band gaps of transverse biased GOALs. (a)
Bandstructure of the {16, 3}GOAL (solid) and regular bilayer graphene (dotted)
at U � 200 meV. (b) Same as (a) for the {16, 6} GOAL. (c) Band gaps of {16, S}
GOALs as a function of antidot size. (d) Band gaps of various GOALs versus
the corresponding isolated GAL band gaps.

the near-Dirac bandstructures of the commensurate {16, 3} and {16, 6} GOALs
(solid) display sizable band gaps. Compared to regular bilayer graphene (dotted)
the band gaps are smaller, and, in addition, show electron-hole asymmetry.

The induced band gaps increases near-linearly with the size of the inter-layer poten-
tial difference U. Furthermore, as the size of the antidot increases the induced band
gap decreases. Both features are illustrated in Fig. 5.7(c), which displays the size of
band gap Eg versus the size of the antidot and the transverse bias.

The electron-hole asymmetry appears in GOALs as a result of the atomic imbalance
between the two layers. Combined with the equal but opposite shift in the on-site
energies of the two layers, the GOALs inevitably exhibit a shifted energy spec-
trum compared to regular bilayer graphene. The effect is minor for small antidots
[Fig. 5.7(a)] but has a significant impact on larger antidots [Fig. 5.7(b)].

As in case of {16, 6} in Fig. 5.7(b), it is particularly worth noting that biased GOALs
need not display the ‘‘Mexican hat’’ shape of regular bilayer graphene, identified
by the double dip (or peak) in the bilayer bandstructure. Instead, the bands resem-
ble gapped graphene with parabolic bands. This has interesting implications, for
example larger group velocities which is very attractive for faster electronics.

Similar to the zero-bias case, the transition cannot be attributed solely to the reduc-
tion of atomic sites in the bottom layer, but is instead governed by the electronic
behavior of the isolated GAL layer. The mechanism is illustrated in Fig. 5.7(d) which
compares the GOAL band gap with the isolated GAL band gap at U � 200 meV.
There is a clear trend that the correlates the band gap of the GAL with the band
gap of the GOAL. The slight deviation as a function of antidot lattice L is caused by
atomic asymmetry between the layers, which is not directly related to the antidot
layer band gap.

While we find the largest band gaps in systems whose unbiased electronic structure
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Figure 5.8: Illustrations of the GOAL devices (a) with three different contact
models (b-d). A strip of GOAL—infinite in the transverse direction—is coupled
to either bilayer (b), top layer (c), or bottom layer (d) leads.

resembles that of bilayer graphene, there are a range of {L, S} which yield both
linear dispersion wit large Fermi velocities, and can open sizable band gaps. The
{16, 6} shown here is one such example, but the {12, 4} displays similar features
also.

5.4 Transport through GOAL device
In regular bilayer ribbons and flakes the choice of contact has important implications
on transport [81, 82]. We will explore three different ways to contact a finite-width
strip of GOAL [see Fig. 5.8(a)]: bilayer leads, monolayer top leads, or monolayer
bottom leads. These are illustrated in Figs. 5.8(b), 5.8(c) and 5.8(d) respectively.

The devices are periodic along the transverse direction with the unit cell outlined
(dashed) in Fig. 5.8(a). The transport is chosen along the zz-direction, where the
space between antidots is smaller. This effectively allows for a more narrow unit cell,
with fewer columns of antidots. Our unit cell contains seven consecutive columns
of antidots in the bottom layer. This number is enough to form a transport gap in
the corresponding monolayer antidot lattice [48]. Wider devices yield qualitatively
the same results as those described below.

We demonstrated in the previous section that the dispersion is governed by the
localization in the respective layers. Similarly, the transmissions through GOALs are
largely understood by the localization within the layers. The transmissions of the
{16, 6} (black solid) and {16, 3} (black dashed) GOALs are displayed in Fig. 5.9(a).
In the case of {16, 3}, the GOAL electronically resembles bilayer graphene [see left-
most panel in Fig. 5.4(d)]. In turn, this yields transmission near those of bilayer
graphene (blue dashdotted). On the other hand, the {16, 6} GOAL resembles mostly
monolayer graphene, and yields near-monolayer transmission. As displayed in
Fig. 5.9(a), this behavior occurs over a sizable range of energies. A current map at
E � 100 meV is illustrated in Fig. 5.9(b). Here, it is quite apparent that the monolayer-
like transmission is the result of mostly top-layer confined transport. The additional
Fabry-Perot-like oscillations—particularly clear in the case of {16, 6}—are the result
of scattering at the device interfaces. The period of the oscillations varies with the
width of the device (not shown).

If we consider a monolayer top lead instead, the transmissions are additionally
affected by the bilayer/monolayer wave matching between the lead and device. The
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Figure 5.9: Transmission coefficients and currents of bilayer coupled GOAL
devices [see Fig. 5.8(b)]. (a) The transmission coefficients of a {16, 6} (solid) and
a {16, 3} (dashed) GOAL compared to monolayer (dotted) and bilayer graphene
(dashdotted). (b) The in-plane currents through a {16, 6} GOAL at E � 100 meV.
The quantum of conductance is G0 � 2e2/~.
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Figure 5.10: Transmission coefficients and currents of top layer coupled GOAL
devices [see Fig. 5.8(c)]. (a) The transmission coefficients of a {16, 6} (solid) and
a {16, 3} (dashed) GOAL compared to monolayer (dotted) and bilayer graphene
(dashdotted). (b) The in-plane currents through a {16, 6}GOAL at E � 100 meV.
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Figure 5.11: Transmission coefficients and currents of bottom layer coupled
GOAL devices (see Fig. 5.8(d)). (a) The transmission coefficients of a {16, 6}
(solid) and a {16, 3} (dashed) GOAL compared to monolayer (dotted) and
bilayer graphene (dashdotted). (b) The in-plane currents through a {16, 6}
GOAL at E � 100 meV. (c) Closer view of the near-entry currents including the
directions in the top layer of a {16, 6} GOAL at E � 100 meV. (d) Same as (c)
but for the bottom layer. (e) The E � 0 meV local density of states (LDOS) of a
{9, 2} GOAL; qualitatively similar to a {16, 6} GOAL.

transmissions are displayed in Fig. 5.10(a). The {16, 3} GOAL displays additional
scattering and larger oscillations due to the the lead/device wave mismatch. On
the other hand, the {16, 6} GOAL sufficiently decouples the bottom layer from the
top, and the oscillations almost vanished The transmission is even closer to that of
monolayer graphene. The current maps of the {16, 6} GOAL, Fig. 5.10(b), reveal
almost zero current in the bottom layer, clearly indicating electronic decoupling.
It is worth noting that, wave matching also has an impact in some cases of bilayer
leads. If the band gap of the monolayer GAL is sufficiently large, the bottom layer
completely decouples electronically from the top, and the wave mismatch between
lead and device causes additional scattering.

The bottom monolayer leads yield by far the lowest transmissions. Fig. 5.11(a)
displays the transmission of the {16, 3} and {16, 6} GOALs, and Fig. 5.11(b) displays
the current map at E � 100 meV. In either GOAL, and the transmissions become
limited by the smaller inter-layer coupling γ1 ∼ γ0/10. Both cases also demonstrate
significant oscillations from interface scattering.

However, another interesting feature emerges from bottom layer coupling. In
Fig. 5.11(b) the currents injected from left introduce a particularly large transverse
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current at the beginning of the top layer. These are illustrated more clearly in
Figs. 5.11(c) and 5.11(d), respectively top and bottom layer, displaying the direction
of the current with arrows. The transverse direction is understood by examining
the profile of the LDOS, shown for a single unit cell in Fig. 5.11(e). GOALs display
reduced C3 symmetry compared to the C6 symmetry of regular bilayer graphene.
This is particularly clear at the antidot corners shown in Fig. 5.3(a). In turn, this
makes a three-fold distribution of the LDOS, centered at every second corner of
the bottom layer antidot. In the zz-direction, this vertical asymmetry will in turn
induce large transverse currents. Transport in the ac-direction does not experience
this vertical asymmetry, and the transverse currents are zero. This interesting side
effect could provide alternative inter-layer transport features.

5.5 Discussion and summary
GOALs demonstrate the possibility of obtaining a high mobility device with the
addition of tunable band gaps. By careful design, we can structure the GOAL
geometries to display either parabolic or linear dispersion. For a certain set of
optimized geometries, for example the {16azz , 6aac} GOAL presented in this chapter,
near-monolayer dispersion is achieved. Nevertheless, these linearly dispersive
GOALs can be made gapped by breaking layer symmetry. We demonstrate this using
a fixed, layer-dependent on-site potential. However, inspired by the experiments
in bilayer graphene [83], we could imagine this induced via perpendicular electric
fields. For example, we may use electronic gates both below and above the device
(dual-gating).

The mechanism behind the electronic behavior is attributed to the confinement of
electronic states in the pristine top layer. The confinement depends, in turn, entirely
on the electronic behavior of the bottom GAL layer, regardless of the exact geometry
of the antidot lattice. If the isolated GAL layer is gapped, the electronics states are
redistributed such that they reside mostly in the top layer.

It is worth pointing out the we presented only results using the NN TB model of
pristine bilayer graphene. However, demonstrated in Paper I, upon extending the
number of bilayer couplings the linear dispersing bands split into two, with slightly
different Fermi velocities [84]. Ultimately, we expect the systems to reflect the same
principle features as outline above.

From this fundamental study of GOALs, there are a number of paths to extend our
analysis. For example, twisting the layers is expected to have a significant effect on
the electronic behavior. In bilayer graphene twisting can change the behavior from
parabolic dispersion even to a linear dispersion. Additionally, we assumed uniform
on-site potential shifts throughout the respective layers. In reality, such patterning
of the bottom layer would likely change the overall electron distribution and the
potential profile. Given the large influence of the bilayer graphene sublattices,
changes in the electron distributions could induce entirely different behavior. Such
effects motivate a more extensive studies to examine the influence of twisting or
non-uniform potential distributions.

The indifference to the exact geometry of the antidot lattice suggests a generality
beyond the particular bilayer structure considered here. We could similarly imagine
coupling two other layered materials, where one is gapped and the other is metallic.
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While the combined behavior will likely be metallic, an external influence may
induce additional features only enabled by the coupling of the two layers. Such
a composite system could bring interesting possibilities yet unseen into pristine
graphene systems.
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6Robust band gaps and
half-metallic antidot lattices

Nanostructured graphene has been predicted to support magnetic moments at
vacancy sites and zz-edges [27]. Many proposed spintronic devices rely on magnetic
moments, for example spin-filters [85–88] and half-metals [32, 86, 88, 89]. Half-
metals in particular, with metallic or semiconducting behavior for different spin
channels, make perfect platforms for embedded spin manipulation. A number of
experimental works suggest that zz-edged magnetism is possible [22, 33, 35], even
though clear experimental signatures are still missing. In this chapter we consider
superlattices of triangular graphene antidots (TGAs) with perimeters shaped entirely
with either zz-edges (zz-TGAs) or ac-edges (ac-TGAs).

The zz-edge is sublattice antisymmetric, where either side of the zz-chain is com-
prised only of one particular sublattice type. For clarity the chain is illustrated in
Fig. 6.1(a) with sublattices A and B colored black and white, respectively. Depend-
ing on which side of the chain is exposed, a local sublattice imbalance may arise,
which in turn will induce magnetic moments. The magnetic moments signify spin-
polarization, and the two orientations are denoted up and down. The mechanism can
be understood from Lieb’s theorem [31] in bipartite lattices, which states that the
size of the total magnetic moment is equal to the difference in total number of sites
in the two graphene sublattices. In, for example, zz-edged graphene nanoribbons
[Fig. 6.1(b)] the system displays antiferromagnetic ordering, where one edge is
counterbalanced by the other with the opposite spin polarization. This is readily
transferred to the antidot case with zz-edges as shown in Fig. 6.1(c). Many antidots,
e.g. circular, hexagonal, or diamond shaped, have balanced zz-edges and a total
magnetic moment of zero. In contrast, zz-TGAs only expose a single sublattice, and
the total magnetic moment is therefore nonzero.

Below we demonstrate that zz-TGAs have properties very different from the other

white edge

black edge(a)

↑ ↑ ↑

↓ ↓ ↓
zz-GNR(b)

zz-GAL

↑ ↑

↑

↓

↓↓

(c)
↓

↓
↑

↑

↑ ↑

↑
↓ ↓

↓

Figure 6.1: Illustrations of spin-polarized graphene zz-edges. (a) Bare zz-edge
illustrating the sublattice imbalance on either side. The two sublattices of
graphene have been colored black and white, respectively. (b) Antiferromag-
netic moments in zz-edged graphene nanoribbons (zz-GNR). (c) Anti- and
ferromagnetic moments in examples of zz-edged GALs (zz-GAL). Orientation
of the magnetic moments are illustrated red (spin up) and blue (spin down).
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Figure 6.2: Schematic (a) and atomic structure of the Lzz � 5 zz-edged (b) and
Lac � 3 ac-edged (c) triangular graphene antidots (zz-TGA and ac-TGA). The
antidot spacing in (a) are X � 25 and Y � 15. The sublattices A and B of
graphene are colored black and white, respectively. Notice in if the zz-TGA in
(b) was rotated 180◦, the edge sublattice would change from black sites to white
sites.

antidots [90]. The zz-TGA lattices are shown to display large band gaps in the
spin-unpolarized form (before considering spin-dependency), half-metallicity when
spin-polarized, and are unusually robust against disorder.

6.1 Triangular antidots in graphene

We consider a periodic array of TGAs as illustrated schematically in Fig. 6.2(a). The
antidots are laid out in an approximately square lattice, with all TGAs oriented in
the same direction. We will later consider the case where every second antidot is
”flipped” (or rotated 180◦) such that global sublattice symmetry is maintained. The
rectangular lattice is known to allow for both commensurate and incommensurate
antidot lattices, i.e., those expected (or not) to have an electronic band gap only due
to superlattice [42]. (See also Section 4.2.) The rectangular lattice makes an excellent
testbed to explore the properties in both the commensurate and incommensurate
lattices.

We compare the zz-TGA and the ac-TGA with similar sizes, shown in Figs. 6.2(b)
and 6.2(c), respectively. The sublattices have been colored to clarify the edge struc-
tures. In Fig. 6.2(b) the zz-edges are all black (sublattice A), while the ac-edges in
Fig. 6.2(c) are sublattice balanced. Regular antidots, e.g. circular, rectangular, and
hexagonal, all depend critically on commensurability. The ac-TGAs also depend on
commensurability, and function to illustrate the fundamental differences between
the zz-TGAs and the regular antidots.

We adapt the notation from Pedersen et al. [40]. The geometries are denoted
{X,Y, Lgeo}, with horizontal spacing Xazz, vertical spacing Yaac, and antidot side
length Lgeoageo. The subscript geo ∈ [zz, ac] denotes the antidot edge type. (See also
Fig. 6.2.) The lattice constants along the zz- and ac-directions are azz � 2.46 Å and
aac � 4.26 Å, respectively. With this notation, the rectangular lattices are commen-
surate when X � 3n where n is a positive integer, and incommensurate otherwise
[see also Eq. (4.10)]. The zz- and ac-TGAs can be compared using Lzz �

√
3Lac ≡ L.
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Figure 6.3: Bandstructures of zz- and ac-TGA lattices: (a) {25, 15, 5zz}, (b)
{24, 15, 5zz}, (c) {25, 15, 3ac}, and (d) {24, 15, 3ac}. Notice in particular the
E � 0 midgap states in (a) and (b) (the zz-TGAs). Also note the folding of the
Dirac K-point onto the Γ-point in (a) and (c).
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Figure 6.4: The LDOS of a zz-TGA lattice at E � 0 (a) and E � 0.27 eV (b), and
band gaps as a function of L/(XY) (c) in both zz- and ac-TGA lattice. The LDOS
is displayed via circles, where the radii ∝ r × LDOS(i), and r , 1 is given in
the bottom corner. The LDOS is colored black and white for, respectively, the
A and B sublattices. The symbols at the top of (c) denote the edge type and
commensurability.

The calculations are performed using the NN-TB model Hamiltonian

H �

∑
i

εini +
∑
〈
i j
〉 tc†i c j + H.c., (6.1)

where the NN coupling takes the value t � −2.7 eV for first-NN and zero otherwise.
The spin-polarization is introduced using a mean-field Hubbard model (Section 2.2).
The spin-dependence enters via on-site energies εi � ±Umi/2, with − for spin up
and + for spin down and magnetic moments mi � ni↑ − ni↓. While extending to a
third-NN TB model does change the spin-unpolarized behavior significantly, the
spin polarized properties are qualitatively the same [demonstrated in Paper II]. Here
we focus on the first-NN model which demonstrates the fundamental mechanisms.

6.2 Sublattice induced band gaps
We first consider the spin-unpolarized cases (U � 0). The bandstructures for the
{25, 15, 5zz} and {24, 15, 5zz} geometries are shown in Figs. 6.3(a) and 6.3(b), respec-
tively. The zz-TGA lattices display large band gaps and completely flat degenerate

6.2 Sublattice induced band gaps 35



bands exactly in the middle of the gap at E � 0. The midgap bands are identified as
zz-edge states illustrated via the LDOS at E � 0 in Fig. 6.4(a). The LDOS has been col-
ored black or white according to sublattice, and in Fig. 6.4(a) only the edge sublattice
(black) is observed. Low-dispersive edge states are expected for extended zz-edged
structures, for example in zz-nanoribbons [66, 91] or other zz-edged antidots [92–94].

However, the {25, 15, 5zz} lattice is not commensurate, and band gaps are not
expected from the geometric rules which govern regular antidots. Instead, we
might have anticipated the behavior illustrated in Figs. 6.3(c) and 6.3(d) using the
ac-TGA lattices {25, 15, 3ac} and {24, 15, 3ac}. Only the (former) commensurate
ac-antidot lattice is gapped, in full compliance with usual antidot behavior exhibited
by for example circular or hexagonal antidots [40, 41]. The (latter) incommensurate
ac-antidot lattice is metallic instead.

The difference between zz- and ac-TGAs is further quantified via the size of the band
gaps Eg. Pedersen et al. [40] have demonstrated the scaling behavior Eg ∝ N1/2

rem/Ntot
of regular antidots in commensurate lattices. The numbers Nrem and Ntot are, re-
spectively, the number of atoms removed by the antidot and the total number of
atoms without the antidot in the unit cell. Fig. 6.4(c) illustrates the band gaps versus
L/(XY) ∝ N1/2

rem/Ntot of both zz- (circles) and ac-TGA (squares) lattices. The com-
mensurate and incommensurate lattices are marked by hollow and filled symbols,
respectively. The ac-TGAs follow conventional geometric considerations, where in-
commensurate lattices are gapless. At larger L/(XY), the ideal picture breaks down
and even the incommensurate lattices have nonzero gaps. At these dimensions the
ac-TGAs become separated by only a few atoms, and there is competition between
periodicity and confinement band gap mechanisms. In contrast to ac-TGAs, the
zz-TGAs exhibit band gaps throughout. Furthermore, the band gaps of zz-TGAs are
about twice as large when compared to ac-TGAs.

Band gaps irrespective of commensurability suggest that more is in play than con-
finement effects. Instead, these recurring band gaps are the result of the strong
sublattice imbalance of a zz-TGA. For example, in narrow zz-nanoribbons or zz-
hexagonal antidots the local sublattice imbalance is ‘‘canceled’’ with nearby edges
of the other sublattice type. In zz-TGAs ‘‘cancellation’’ is not possible. Instead a sub-
lattice dependent confinement occurs. The confinement is illustrated via the LDOS at
the conduction bands E � 0.1|t | � 0.27 eV in Fig. 6.4(b). The LDOS near the antidot
shows only edge-sublattice occupation (black circles). Nonzero dispersion relies on
nonzero LDOS at both sublattices, particularly so in the NN-TB model which couples
only neighboring sites. The regions between antidots displays nonzero LDOS at
both sublattices, which is where we then expect the dispersion to take place. This
confinement is analogous to a local mass term—a staggered on-site energy shift with
positive values on one sublattice and negative on the other—which in otherwise
pristine graphene opens a large band gap. Sublattice induced band gaps have also
been demonstrated in other sublattice-patterned graphene systems [95, 96].

Lattice commensurability is a feature of the pristine lattice that is greatly influenced
by lattice disorder. In GALs with regular antidots (circular, hexagonal, etc.) geo-
metric disorders in the form of varying position and size quench any present band
gaps [44, 49]. However, such disorder does not affect sublattice symmetries, and we
can expect the band gaps of zz-TGAs to be robust against geometrical disorder. The
disorder is explored further below, but first we consider the pristine spin-polarized
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Figure 6.5: Magnetic moment profiles of the zz-TGA lattice with Lzz � 3 (a),
Lzz � 5 (b), and Lzz � 7 (c). All three cases have X � 25 and Y � 15. The mag-
netic moments are displayed with circles, where the radii ∝ mi . The orientation
is noted by color; red and blue for spin up or down, respectively. Note that
the atomic sites immediately next the edge sites, in fact, have small blue circles
(difficult to see in the printed version).

case.

6.3 Half-metallic graphene antidot lattice
We now consider zz-TGA systems where spin polarization effects are included using
the spin-dependent on-site potentials calculated using the mean-field Hubbard
approach. The ac-TGAs are sublattice balanced and display zero magnetic moments,
so their behavior is unchanged from the previous section. The magnetic moment
distributions of three zz-TGAs are displayed in Fig. 6.5. The distributions follow
a general pattern: The magnetic moments reach a maximum mi ∼ 0.31 at the zz-
edges, and are reduced near the TGA corners. Long uninterrupted zz-edges have
mostly constant magnetic moments, similar to that calculated for infinite zz-edged
graphene nanoribbons. At short zz-edges Lzz < 5, however, the corners are so close
to each other that even the maximum of the magnetic-moment is reduced, as for
example with Lzz � 3 in Fig. 6.5(a). The corners can be compared to kinks at chiral
zz-edges, which locally display similar reductions in the magnetic moments [97].
All TGAs conform to Lieb’s theorem [31] such that the total magnetic moment
M �

∑
i miµB � ∆NµB , where the total sublattice imbalance ∆N � |NA − NB |. This

also happens to be number of zz edge atoms i.e. ∆N � Lzz. Additionally, the mag-
netic profiles are mostly independent of the superlattice geometry, except for very
narrow spacings between antidots. This independence suggests that neighboring
antidots do not significantly influence each other’s magnetic moment distribution.
This becomes useful for simulating super structures with several zz-TGAs. For
example, in studying disorder (Section 6.4), we can assume the magnetic profiles
of individual zz-TGA are independent on the others. Such super structures are
otherwise impractical to calculate within the full Hubbard model.

The spin-polarized bandstructure of the {25, 15, 5zz} is displayed in Fig. 6.6(a). The
spin-splitting introduces two spin-polarized bands, one for each spin, on either
side of the Fermi level E � 0 (red and blue bands, respectively). These give rise
to half-metallic regions, where the corresponding DOS would becomes perfectly
spin-polarized [90]. The half-metallic regions are separated by a small band gap of a
couple of tens of meV. The transition towards spin-polarized bands is illustrated in

6.3 Half-metallic graphene antidot lattice 37



Γ KX M X′ Γ

−0.4

−0.2

0

0.2

0.4

En
er

gy
E

(e
V

)

VII

VI
V

I

(a) (b)

U

0.2|t | 0.4|t | 0.6|t | 0.8|t | 1.0|t | 1.33|t |

Figure 6.6: Spin-polarized band structure of the zz-edged TGA. (a) The band-
structure of the {25, 15, 5zz} geometry. (b) The bandstructure within the dashed
box in (a), as we vary the parameter U ∈ [0.2|t |; 1.33|t |]. Spin-up bands are
blue and spin-down bands are red. In (b) only a subset of spin-down bands are
shown clearly (see main text). These are denoted I-VII in the order illustrated
in left-most panel of (b).
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Figure 6.7: The spin-down LDOS at E � 0.155|t | [(a) near the bands V], E �

0.135|t | [(b) bands VI-VII], and E � 0.02|t | [(c) I-II] of the spin-polarized zz-TGA.
The LDOS is displayed via circles, where the radii ∝ r ×LDOS(i), and r is given
in the bottom corner. The LDOS is colored black and white for, respectively,
the A and B sublattices.
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Fig. 6.6(b) by artificially varying the exchange parameter U ∈ [0; 3.6 eV], where only
the relevant E > 0 spin down bands are colored (blue). In case of {25, 15, 5zz} there
are seven relevant bands, denoted I through VII in the order shown at U � 0.2|t |
(left-most panel).

Bands I-V are the spin-split versions of the lowest spin-unpolarized edge-states,
and bands VI and VII are the spin-unpolarized conduction bands. The transition
in Fig. 6.6(b) shows how the nearly dispersionless band V spin-splits to the largest
degree, i.e., the spin-down band has moved the furthest (upwards) in energy. In fact,
band V travels past the spin-unpolarized conduction bands VI and VII, and settles
above band VII at full U � 1.33|t | (right-most panel). The degree of spin-splitting
scales with the size of corresponding magnetic moments, and the spin-down LDOS
in Fig. 6.7(a) reveals that band V is predominantly localized near the middle of
the zz-edges, where the largest magnetic moments are located. As band V spin-
splits past bands VI and VII [at U � 1.0|t |], the latter two bands flatten as well.
In Fig. 6.7(b) the LDOS of the spin-down bands VI and VII displays hybridized
edges-states. The LDOS also reveals some occupation on both sublattices, albeit
very little on the non-edge sublattice. This small occupation of both sublattices
explains why only slight dispersion is observed in the bandstructure. The two lowest
bands I and II remain near the Fermi level. The spin down LDOS in Fig. 6.7(c) of
the half-metallic region (bands I and II) shows localization near the corners of the
antidot, where the magnetic moments are lower compared to the remainder of the
zz-edges. Furthermore, Fig. 6.7(c) shows significant LDOS at both sublattices in the
region between antidots, which gives rise to nonzero dispersion.

The final bandstructure at U � 1.33|t | has half-metallic regions near the Fermi level,
whose states show significant LDOS at the corners of the zz-TGAs.

6.3.1 Restoring sublattice symmetry

Before we consider disordered TGA lattices in the next section, we first consider the
effect of pairing two zz-TGAs with opposite sublattices. A 180◦ in-plane rotation of
a zz-TGA will expose the other sublattice at the edges [see also Fig. 6.1(c)], and, in
turn, flip the orientations of the magnetic moments. The flipped case is displayed in
Fig. 6.8(a). We note that in this case sublattices and magnetic moments are balanced
i.e. the total quantities ∆N � |NA − NB | � 0 and M �

∑
i mi � 0.

In the spin-unpolarized case with U � 0, the bandstructure [Fig. 6.8(b)] reveals
that the sublattice balanced zz-TGAs are metallic (zero band gap). By restoring
the sublattice symmetry the band gap closes. However, local sublattice imbalance
still exists, and the spin polarized case gives rise to magnetic moments. The spin-
polarized bandstructure [Fig. 6.8(b)] becomes gapped from band spin-splitting.
Furthermore, the bands are completely spin symmetric. By examining Fig. 6.8(a), it
is clear that an axis-mirror transformation of the unit cell is equivalent to flipping
the signs of all the magnetic moments.

By introducing flipped TGAs the half-metallic behavior is replaced by metallic behav-
ior, and both spins are equivalent. This important feature is used in later chapters
considering device transport and conductivities.
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Figure 6.8: Geometry (a) and corresponding bandstructures in the spin-
unpolarized (b) and polarized (c) cases of the flipped zz-TGA lattice. The mag-
netic moments in (a) are displayed via circles, where radii ∝ mi (spin up: red,
spin up: blue). Both spin types in (c) display the same bandstructure (blue and
red dashed).

6.4 Disorder robustness
Previous studies of regular antidots (circular, hexagonal, etc.) find that band gaps
are severely degraded by disorder [44, 49]. Pristine commensurability depends on
atomically precise superlattice vectors, and any disorder in the superlattice will
break the periodic symmetry. The influence of disorder was studied in Paper II
by considering the bandstructures of disordered superlattices. This work strongly
suggested that the zz-TGA lattices are unusually robust against disorder. However,
by employing the large-scale Chebyshev expansion for the DOS [Eq. (3.5)], becomes
even clearer.

We first consider large sheets of randomly distributed zz- and ac-TGAs. The samples
are approximately 460 nm × 460 nm graphene sheets with 2900 antidots embedded.
The average space between TGAs is ∆X ≈ 8nm. The density of antidots is about
half of what we have considered so far in this chapter. The magnetic moment
distributions surrounding each antidot are assumed independent, and determined
individually. These distributions are calculated in periodic systems using {25, 15, L}
unit cells, and then embedded in graphene to form a final ‘‘patchwork’’. To further
ensure valid magnetic moments, we prevent unit cells from overlapping in the
disordered samples. This gives a minimum distance of Xmin � 25azz ∼ 6nm. We
compare these disordered samples with a similarly spaced pristine (commensurate)
lattice {36, 21, L}. For comparability, both the disordered and the pristine cases are
calculated using Chebyshev expansions.

The DOS (E > 0) is shown in Fig. 6.9(a) for spin-unpolarized zz- (black) and ac-
TGAs (gray) in both the pristine (dotted) and disordered cases (solid). The inset
in Fig. 6.9(a) shows a schematic that illustrates the disordered systems, where the
TGAs are distributed completely randomly. The differences between ac and zz are
striking; while the ac band gaps are completely quenched (grey arrow), zz gaps are
only slightly reduced from energy-level broadening (black arrow). Even in the spin
polarized zz-TGAs [Fig. 6.9(b)] the half-metallic regions remain, and the small band
gap separating the two half-metallic regions is near identical, even slightly increased.
The spin-up and spin-down band edges both move slightly further away from the
Fermi level E � 0 (see red and blue arrows). At higher energies E > 100 meV, outside
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Figure 6.9: Pristine (dashed) and disordered (solid) DOS of the zz- and ac-TGA
lattices: Lattice disorder for the spin-unpolarized (a) and polarized (b) cases,
and edge disorder for the spin-unpolarized (c) and polarized (d) cases. In (a)
and (c) the zz- (top) and ac-TGA (bottom) DOS are shown in black and gray,
respectively. In (b) and (d) the zz-TGA DOS are shown in red and blue for spin
up and down, respectively. The arrows denote interesting differences from
the pristine case to the disordered case. The insert in (a) and (c) illustrate the
disordered samples in (a-d). In (c), the inset has black arrows that indicate the
removed atoms in the illustrated case.

the half-metallic regions, the influence is more pronounced. Peaks are smeared out
and bands gaps reduced in size. Overall though, the zz-TGAs are unusually robust
against lattice disorder when compared to ac-TGAs, and by extension the regular
antidot geometries.

However, the zz-TGAs are susceptible to disorder of the edges themselves. The
spin unpolarized and polarized DOS of an edge-disordered lattice are shown in
Figs. 6.9(c) and 6.9(d), respectively. Now we consider a proper superlattice with
atomically precise positions of the zz-TGAs, while randomly removing edge atoms
with a certain probability petch � 0.05. The ‘‘etching’’ occurs Netch � 3 times. An
example of a single antidot and associated magnetic moment distribution is shown
in the inset of Fig. 6.9(c). Edge disorder has a much greater influence than in the case
of lattice-only disorder. In the spin-unpolarized case, the edge disorder generates
hybridized states which appear in the otherwise gapped region (e.g. at E � 70 meV),
and severely reduces the band gap. In the spin polarized zz-TGA case, the spin
polarized band edges have moved closer to the Fermi level (e.g. red arrow). This
reduces the half-metallic region, which is nonetheless still significant. Furthermore,
the pristine half-metallic DOS has been redistributed, and the previously spin down
gapped region between 110 meV < E < 250 meV has been ‘‘filled out’’ by nonzero
DOS (blue arrow). Compared to lattice-only disorder, the edge disorder has reduced
the half-metallic region, but not completely closed it.

The band gaps and half-metallic features of zz-TGAs are induced by sublattice
imbalance, independently of the superlattice, and are therefore robust against lat-
tice disorder. We exploit this in later chapters when considering larger and more
experimentally feasible sized zz-TGAs (Chapter 8).
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6.5 Discussion and summary
As the result of breaking the graphene sublattice symmetry, superlattices of spin-
unpolarized zz-TGAs exhibit large bands gaps that exceed those of complementary
ac-TGAs. By also considering spin-interaction, spin-polarized zz-TGAs become
half-metallic near the Fermi level, giving rise to perfectly spin-polarized DOS. We
demonstrate that in the case of zz-TGAs, these features are present irrespective of
conventional geometric rules (antidot commensurability), in sharp contrast to, for
example, the band gaps of conventional antidots. In fact, the behavior is a reaction to
the strong sublattice imbalance induced by a zz-TGA. Consequently, these features,
such as the half-metallicity, are particularly robust in the face of disorder.

As an interesting possibility, we also considered restoring sublattice symmetry by
introducing zz-TGAs oriented oppositely, where every second antidot is flipped in
plane. In such a system, the spin-unpolarized TGAs are completely metallic, and
the spin-polarized TGAs are semi-conducting. Since the magnetic moments of the
flipped zz-TGAs are exactly opposite to the regular zz-TGAs, electronic spin types
are equivalent.

The magnetic moments predicted by the Hubbard are in good agreement with ab ini-
tio calculations [98]. While the Hubbard model does not take non-local exchange into
account and ignores spin dynamics, the resulting magnetic moments are supported
by the extended Ruderman-Kittel-Kasuya-Yosida (RKKY) theory predictions [99,
100]. A possible future work could involve extending our model and examine the
exchange between TGAs. At the moment, our model assumes exact periodicity i.e.
all magnetic moments throughout the superlattice are ferromagnetically ordered.
Nonetheless, the non-local exchange between triangles is expected to grow with
the number of locally ordered magnetic moments. As such, the inter-triangle ex-
changes should be stronger than those between, e.g., vacancy defects with similar
separations. It would be worthwhile, however, to explore the larger length scales,
and identify where the exchange coupling is too small to preserve ferromagnetic
ordering between zz-TGAs.

The possibility of half-metallicity induced by the formation of antidots is particularly
interesting in the field of graphene spintronics, and we are motivated to study the
spin-dependent transport properties of zz-TGAs. By embedding half-metallic TGAs
into devices, we could filter electrons according to spin. These devices would act as
a conductor for one spin and an insulator for the other. However, the triangular-
shapes of our antidots also introduce geometrical asymmetries. For this reason, it
is interesting to study also the skew transport properties. In the next chapter, we
explore various transport properties of devices with a small number of embedded
zz-TGAs.
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7Triangular antidot spin filter

As discussed in the previous chapter (Chapter 6), nanostructured graphene with
extended zz-edges are predicted to locally form ferromagnetic moments. To induce
global ferromagnetism, however, the nanostructured pattern must break the overall
sublattice symmetry [32, 87, 101]. Indeed, zz-edged triangular graphene antidots
(zz-TGAs) break the sublattice symmetry and induce large global ferromagnetic
moments [86, 88, 90, 102–104]. The magnetic moment profile of such a zz-TGA is
displayed in Fig. 7.1(a). In Chapter 6 (Paper II), we demonstrated that lattices of
zz-TGAs induce half-metallic bands near the Fermi level. Here, we focus on the
spin-dependent transport properties of nanostructured graphene devices with a
small number of embedded zz-TGAs.

The fundamental mechanisms are first examined in the case of a device with a
single TGA, illustrated in Fig. 7.1(b). We will later extend our analysis to multiple
antidots arranged in a rectangular array—this setup is illustrated in Fig. 7.1(c). In the
latter case, the horizontal and vertical spacings between antidots are X � 25azz and
Y � 15aac, respectively. In all cases, the TGA side lengths are L4 � 5azz throughout.
The remaining dimensions are illustrated in Fig. 7.1(b), and given explicitly in the
figure caption. The lattice constants along the zz- and ac-directions are azz � 2.46 Å
and aac � 4.26 Å, respectively.

The devices are built with four arms which terminate in metallic contacts: left (L),
right (R), top (T), and bottom (B). The four graphene segments in the four arms are
assumed nonmagnetic in order to isolate the magnetic influence of the antidots.
Furthermore, the contacts are considered either nonmagnetic or ferromagnetic.
In other words, the metallic contacts inject either spin-unpolarized electrons or
electrons of a single spin orientation.

The cross-shape geometries illustrated in Figs. 7.1(b) and 7.1(c) are useful in order to
quantify the longitudinal, transverse, and skew transport mechanisms. Ultimately,

−0.3 0.3mi
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L R
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T(a) (b) (c)

Figure 7.1: Magnetic moments of the L4 � 5azz zz-TGAs (a), and device
schematics (b) and (c). (a) Magnetic moments represented by circles with
radii∝ mi . (b) Schematic of the single-TGA device with dimensions Wzz ≈ 6 nm,
Wac ≈ 4 nm, and Lzz ≈ Lac ≈ 2 nm. (c) Schematic of the 5 × 4 TGA-array device
with dimensions Wzz ≈ 26 nm and Wac ≈ 16 nm.

43



L R

T

B

L R

T

B

(a) (c)(b)

Figure 7.2: Illustrations of the spatial spin-splitting feature of a regular TGA
device (a) and a flipped TGA (180◦ rotation) device (b). The underlying images
display the spin current maps Js � J↑ − J↓ injecting from left (L), with colors
Js > 0 red and Js < 0 blue. (c) Illustrates the magnetic moments surrounding
the regular TGA (top) and the flipped TGA (bottom), the TGAs of (a) and (b),
respectively. The colors are red for spin up and blue for down.

we will demonstrate that these devices display a spatial-spin splitting property
analogous to the spin Hall effect (SHE) [38]. The spatial spin-splitting is illustrated
in Fig. 7.2(a) by arrows, where the underlying color map illustrates the distribution
of spin currents Js � J↑ − J↓. Spin-unpolarized currents enter from left and near the
antidot they scatter spin-dependently. Spin-up (red) currents are scattered below
the antidot and spin-down (blue) currents above. The large spin-polarized currents
then collected at opposite T and B contacts.

The sixfold symmetry of the graphene lattice allows only for two orientations of
zz-TGAs, demonstrated in Fig. 7.2(c). With a 180◦ in-plane rotation, the zz-edges
expose the other sublattice, yielding magnetic moments of the opposite orientation.
In our devices, a 180◦ in-plane rotation inverts both the scattering directions and
the spin-polarization simultaneously. An independent inversion of either quantity
flips the direction of the spin-dependent currents, but inverting both restores the
same qualitative behavior. The rotated device is demonstrated in Fig. 7.2(b), and we
note that the individual spin channels are diverted to the same sides of the device
as before. This makes TGA devices further robust against (random) 180◦ in-plane
rotations, demonstrated below in Section 7.2.

The TB model is identical to that presented in the previous chapter, see Eq. (6.1),
where the magnetic moments are calculated from a self-consistent solution of the
Hubbard model within the mean field approximation. The magnetic moments
are calculated for each TGA individually in periodic lattices using a X � 25azz by
Y � 15aac square unit cell (≈ 6 nm × 6 nm). The same lattices are explored in the
previous chapter Chapter 6. Notice that the spacings between TGAs in the array
devices [Fig. 7.1(c)] correspond to the dimensions of the unit cells of the periodic
lattices.

The transport properties are calculated using Landauer-Büttiker [Eq. (2.8)] along
with the Fisher-Lee relations for the transmission functions and currents [Eqs. (2.9)
and (2.11)]. We further define the spin and charge transmissions Ts

pq(E) � T↑pq(E) −
T↓pq(E), and Tc

pq(E) � T↑pq(E) + T↓pq(E), and local currents Js
p(E) � J↑p(E) − J↓p(E), and

Jc
p(E) � J↑p(E) + J↓p(E), respectively. The metallic contacts are included using an

effective self-energy Σmetal � −i |t | added to the edge sites of the metal/graphene
interfaces [105]. For spin-polarized (ferromagnetic) contacts, the self-energy for
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Figure 7.3: Current maps (a), transmissions (b), and spin-polarizations (c)
through a single TGA device. (a) The current map with arrows scaled and
oriented by the charge current Jc

L. The underlying color map displays the
current spin polarization Js

L/J
c
L. (b) Transmission coefficients from the L lead

to either T, R, or B, (LT, LR, and LB panels, respectively). The colors are red:
spin up and blue: spin down. (c) The spin-polarizations Ts/Tc for LT (solid),
LR (dashed), and LB (dotted).

one spin channel is set to zero. The devices are built such that T and B graphene
segments (ac-nanoribbons) are metallic.

7.1 Four-lead device transmissions

The most striking electronic transport feature of a TGA is the spatial spin-splitting.
For a qualitative picture, we consider current maps of left-injected local charge cur-
rents Jc

L and corresponding spin polarization |Js
L |/|J

c
L | � Js

L/J
c
L. A current map at the

energy E � 40 meV of the single-TGA device is displayed in Fig. 7.3(a). The arrows
illustrate the direction and magnitude of the charge currents, and the underlying
color map displays the local spin-polarizations. The current distribution indicates
an overall left-to-right (LR) transport, with a slight concentration at the top corner
of the TGA. Nevertheless, small currents can be spotted running from left-to-top
(LT) and left-to-bottom (LB). However, the spin-polarization of the currents reveals
strongly spin-dependent transport directions. Namely, the spin-up electrons travel
below the antidot and spin-down electrons travel above.

We can quantify the spatial spin-splitting using the spin-resolved LT, LR, and LB
transmissions, as well as their respective spin-polarizations Ts/Tc. The former are
illustrated in Fig. 7.3(b) and the latter in Fig. 7.3(c). Over a wide range of energies, the
transmissions display significant LR charge transmission and largely spin-polarized
LT and LB transmissions [solid and dotted in Fig. 7.3(c)]. In particular, the LT and LB
spin-polarizations are between 70 % and 90 % for energies E < 60 meV. Meanwhile,
the LR transmissions are only moderately spin polarized [dashed in Fig. 7.3(c)].
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Figure 7.4: Spin-resolved current maps JσL at E � 40 meV for the spin-polarized
and spin-unpolarized zz-TGA. The spin-up (left) and spin-down (middle), and
in the (single-spin) spin-unpolarized TGA (right) share the color scale on the
right. Schematic illustrations of the scattering are displayed on top of the current
maps with white arrows, and electrons colored according to spin type: red for
spin up, and blue for spin down.

It is interesting to note, that while TGA lattices are half-metallic, a single-TGA does
not generate a pure spin-filter, in which one spin is entirely blocked (backscattered).
Even so, a spin-dependent bending of the currents does give rise to transverse,
largely spin-polarized currents.

To explain the mechanism behind the spin-splitting, we compare the spin-polarized
TGA to the spin-unpolarized TGA. In Fig. 7.4 the spin-resolved currents J↑L and J↓L of a
spin-polarized TGA device are displayed next to the (single-spin) currents of a spin-
unpolarized TGA (U � 0), where J↑L � J↓L. While the spin-down currents (left panel)
appear unique, the spin-up currents are remarkably similar to the spin-unpolarized
TGA currents (middle and right panels, respectively). The spin-up currents—or
indeed the currents of both spins in the unpolarized antidot case—are explained by
geometrical considerations. Representative paths for currents of each spin type are
illustrated schematically in Fig. 7.4 using white arrows. Above the antidot, the top
corner of the TGA interrupts the longitudinal paths, and electrons are backscattered.
Below the antidot, however, the path is straight and nanoribbonlike. From wave-
function matching arguments, spin-up electrons incident from left would backscatter
at the top of the antidot, effectively bending down towards the nanoribbonlike
section at the bottom. We note that there are no on-site energies near E � 40 meV
for the spin-up electrons, εi � −miU/2 (negative), so their behavior is similar to
spin-unpolarized electrons.

On the other hand, spin-down currents are greatly influenced by the on-site energies
near this energy since εi � +miU/2 (positive). Notice especially that the spin-
down currents in Fig. 7.4 (left panel) appear the most dense at the top corner of the
antidot. It was demonstrated in Section 6.3 that the LDOS of TGA lattices suggests
significant dispersion at the corners in particular. Furthermore, the LDOS also
indicates sublattice asymmetries at the bottom of the antidots, which for the spin-
down electrons will act as scattering centers. Ultimately, the spin-down currents are
backscattered at the bottom of the antidot, and effectively bend upwards towards
the top corner.

The spatial spin-splitting is thus a combined result of the geometrical skew scattering
of the spin-up currents, and an opposite skew scattering of spin-down currents due
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Figure 7.5: Current spin-polarization Js/Jc (a) and charge current Jc maps (b)
at E � 40 meV through the 5 × 4 TGA array. Note that the charge current in (b)
is displayed logarithmically, ln [Jc].
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Figure 7.6: Splitting efficiencies ηL (a) and spin selectivities T↑
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(b) of TGA
devices (see main text). The legend is displayed on the right.

to spin-polarized the localized states.

The spatial spin-splitting feature is enhanced with arrays of multiple TGAs. Initially,
we consider a device with a 5×4 array of TGAs which all have the same alignment [see
schematic in Fig. 7.1(c)], and the magnetic profiles of each antidot are identical. We
will later consider rotating the antidots in-plane, which results in magnetic moments
with both signs. The spin-polarization and charge current maps at E � 40 meV are
displayed in, respectively, Figs. 7.5(a) and 7.5(b) for the 5 × 4 TGA-array device. In
contrast to the single-TGA device, the currents in the array device decay visibly
from L to R [Fig. 7.5(b)], and further demonstrate near-perfect LT spin-polarization
[Fig. 7.5(a)].

For convenience, we introduce here a figure of merit: the spin-splitting efficiency
from left-injected currents

ηL �
Ts

LB − Ts
LT

Tc
LB + Tc

LT + Tc
LR
. (7.1)

A value of ηL � 1 means perfect spatial spin splitting of all left-inject into top and
bottom leads. The efficiencies of the single-TGA (1×1) and the 5×4 TGA-array devices
are shown in Fig. 7.6(a). The 5 × 4 array (solid curve) is more than twice as efficient
as the single TGA (dotted curve), for all considered energies 0 ≤ E ≤ 100 meV. By
simultaneously reducing LR currents and increasing LT and LB spin-polarizations,
the efficiency in turn significantly improves.
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Figure 7.7: Current spin-polarization Js/Jc (a) and charge current Jc maps (b)
at E � 40 meV through the flipped 5×4 TGA array. Note that the charge current
in (b) is displayed logarithmically, ln [Jc].

A closer examination of the spin-down currents [the top part of the device in right
panel of Fig. 7.5] reveal a magnitude continuously decreasing longitudinally along
the device. At each antidot, the spin-down currents bend slightly upwards towards
the T lead. The net effect can be describes as repeated scattering from single TGAs.
This effect is somewhat similar to a previously described ratchet effect for triangular
perturbations in graphene [106], where skew scattering is reported.

While the TGA-array device is far more efficient compared to the single-TGA device,
the former is still limited by the half-metallic region induced by the TGA array. This
is made clear by comparing the total spin-up transmission and the total spin-down
transmission. We introduce the additional figure of merit: the spin selectivity T↑

Σ
/T↓
Σ
,

where Tσ
Σ
� TσLT + TσLR + TσLB. In Fig. 7.6(b) we display the spin-selectivities for both

the single TGA (1×1) and the 5×4 TGA array. Because of the half-metallic properties
of multiple TGAs, spin-up electrons are blocked from entering the array. Both for
the single and, in particular, the array case, the spin-selectivities are T↑

Σ
/T↓
Σ
< 1.

The spin-current blocking is also noticeable in Fig. 7.5, where the area of spin-up
currents is very small compared to spin down (red versus blue areas).

Alternatively, as demonstrated in the previous chapter (Section 6.3.1), TGA lattices
where every second antidot has been rotated 180◦ are semi-conducting, and spins
are interchangeable. With this in mind, we consider the flipped 5 × 4 antidot array,
where every second antidot has been rotated 180◦. Current maps at E � 40 meV are
shown in Fig. 7.7, and the efficiency as well as spin-selectivity are also displayed in
Figs. 7.6(a) and 7.6(b), respectively.

The current maps reveal a transverse spin polarization, which is completely anti-
symmetric. Electrons of both spin types can now penetrate the array region, and
each antidot (regardless of orientation) will bend the spin-up currents below and
spin-down currents above [see also Fig. 7.2(b)]. The spin-selectivity in the flipped
case [Fig. 7.6(b) (dashed curve)] is almost exclusively T↑

Σ
/T↓
Σ
� 1. With near-perfect

LT and LB spin polarizations, the flipped case yields the largest spin-splitting effi-
ciency (dashed curve) of those considered in Fig. 7.6(a). In effect, the flipped case is
a better illustration of the ideal repeated scattering of single TGAs, as now neither
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Figure 7.8: Spin-splitting efficiencies of disordered TGA arrays devices. Disor-
der types: (a) randomly flipped TGAs, (b) randomly varied side lengths, and
(a) randomly removed edge atoms. The individual realizations are illustrated
in gray, and the configurational average in solid black. The pristine 5 × 4 array
device is illustrated in dashed black. In (a) we also illustrate the pristine flipped
5 × 4 array device in dotted black. The insets illustrate the type of disorder.

spin is blocked from entering the array.

7.2 Disordered devices
We now consider the influence of disorder. We previously demonstrated [Paper II,
and previous chapter (Section 6.4)] that TGA lattices are unusually robust against
disorder, with persistent band gaps and half-metallicity. We demonstrate below
that our TGA devices are similarly robust with respect to spatial spin-splitting. We
consider several 5 × 4 array devices with three types of disorder: random 180◦
in-plane rotation, side length variation, and edge disorder. Despite any of these
types of disorder, our TGA devices still show significant spatial spin-splitting for
the levels of disorder considered here. Each type of disorder is considered using 10
different realizations.

For the first type of disorder, the TGAs are randomly rotated in-plane, which si-
multaneously flips the signs of the magnetic moments [illustrated via blue and red
triangles in the inset of Fig. 7.8(a)]. The efficiencies ηL of 10 disorder realizations
along with the configurational average (gray and solid black curves, respectively) are
displayed in Fig. 7.8(a). These are compared to the pristine case of a 5× 4 TGA-array
(black, dashed), with all TGAs oriented the same [reproduced from Fig. 7.6]. Overall,
both the individual and the average efficiencies are for the most part larger than
in the pristine case. Furthermore, the efficiencies of the individual realizations are
very similar within the range 0 ≤ E ≤ 50 meV. This is understood from regular and
flipped single-TGA devices yielding qualitatively the same spatial spin-splitting
[Figs. 7.2(a) and 7.2(b)]. For comparison, we also display the flipped case, where
every second antidot has been rotated (black, dotted), and the efficiency is very
close to the disordered average. This further supports that rotating TGAs, ordered
or at random, can significantly increase the efficiencies. Notice the optimal energy
range 0 ≤ E ≤ 50 meV, where all realizations have high efficiencies very close the
configurational average.

In the second type of disorder [in Fig. 7.8(b)], we consider the effect of varying the
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Figure 7.9: Transverse/Hall resistance Rx y � VTB/Ic
L of the single-TGA device

(a) and the 5×4 TGA-array devices (b). L and R are source and drain, T and B are
voltage probes. Both the spin polarized TGAs (red) and the spin unpolarized
TGAs (black) are considered. In (b) we also consider the flipped 5× 4 TGA array
(dashed).

side lengths L4 → L4 ± δL [inset in Fig. 7.8(b)]. The lengths are varied by δL ∈
{0, 1azz , 2azz}. Varying the side lengths has the least effect of those types of disorder
that we consider. There is very little variation of efficiency between realizations,
and in the range 0 ≤ E ≤ 50 meV all configurations have very similar efficiencies.
By increasing (decreasing) the side length L4, the total magnetic moments of the
individual TGAs increase (decrease) as well. The average magnetic moment is then
(nearly) unchanged. These results emphasize that it is the presence of multiple
spin-dependent scatterers with similar qualitative behavior and not their exact
positioning or size, which enhances the spin-splitting effect.

Finally, we also consider edge disorder in Fig. 7.8(c). The edge disorder is imple-
mented by randomly removing edge atoms (atoms with only two neighbors) with a
certain probability p � 0.05. This ‘‘etch’’ is performed Netch � 3 times. Edge disor-
der has been demonstrated (Section 6.4) to severely reduce the magnetic moments
surrounding the antidots, and can be described as kind of a worst case scenario. An
example of a disordered TGA and its distribution of magnetic moments is shown in
the inset of Fig. 7.8(c). For this particular TGA three edge atoms have been removed,
illustrated with black arrows in the inset of Fig. 7.8(c). The efficiencies in Fig. 7.8(c)
show the largest influence of disorder—only in the range 0 ≤ E ≤ 25 meV do we
observe significantly sized efficiencies. However, for experimental purposes an
energy window of approximately 25 meV is sufficient. The level of edge disorder
considered here is particularly severe for small antidots with short edges. In some
cases, this can completely suppress the magnetic moments along an edge. For larger,
more experimentally feasible antidots, such disorder should have a smaller effect,
and the energy window for large efficiencies should be less influenced.

7.3 Transverse resistances

Inspired by the SHE-like transport signatures of TGA devices, we consider the
transverse resistances of our four-terminal devices. This is a measure of skew
transport, in which the induced transverse potential difference VTB is measured as a
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function of a longitudinal current ILR. The transverse resistance is given

Rxy � VTB/Ic
LR , (7.2)

where the transverse potential difference VTB � VT − VB. The L and R leads are
source and drain and T and B are voltage probes i.e. they carry zero (charge) current
Ic
T � Ic

B � 0. By current conservation the L and R currents are then equal and
opposite Ic

L � −Ic
R � ILR. We further assume spin mixing in the T and B leads, which

then get the spin-unpolarized potentials V↑T � V↓T � VT and V↑B � V↓B � VB. The
source and drain potentials are set to VL � VLR and VR � 0 (reference value). The
resistance is determined by solving the Landauer-Büttiker current equation for the
unknown VT, VB, and the longitudinal current Ic

L.

The transverse potential difference is VTB ∝ Tc
LTTc

RB − Tc
RTTc

LB, which is zero in case
of left-right symmetry. Instead, in Fig. 7.9 we consider spin-up polarized L leads,
illustrated via red L contacts in the respective insets. The transverse resistance of
a single-TGA device is shown in Fig. 7.9(a). The device displays a characteristic
antisymmetric resistance with respect to energy (red curve). Considering the same
device but with spin-unpolarized (U � 0) TGAs (black curve), the observed resistance
is symmetric instead.

In the spin-polarized case, the current through the T contact is dominantly by
the top-to-right (TR) transmission of spin-down electrons, such that Ic

T → T↓TRVT.
In order for the voltage probe to rest at Ic

T � 0, the electronic potential of the
T contact settles towards that of the R lead, i.e., VT → 0. At the same time, at
the B contact, both the left and right spin-up transmissions dominate, such that
Ic
B → T↑BL(2VB − VLR) and T↑BL � T↑BR. The B electronic potential at rest (Ic

T � 0) then
remains approximately midway between the L and R potential i.e. VB → VLR/2.
Ultimately, this results in a negative transverse potential difference VT − VB < 0 and
in turn a negative resistance Rx y < 0. Inverting the sign of the energy flips the spin-
dependent scattering directions, and, in turn, inverts both the transverse potential
and the resistance. In contrast, a spin-unpolarized TGA is electron-hole symmetric,
and the transverse resistance (black curves) becomes symmetric as well. Notice that
the resistance of the spin-unpolarized TGA device is nonzero. This originates from
the spin-polarized L lead, or, in other words, the left-right asymmetry.

The influence of spin-polarized TGAs is even more pronounced in case of the 5 × 4
array device (solid curves) and the flipped array device (dashed curves) [Fig. 7.9(b)].
Both the resistances are larger than for a single-TGA device, and furthermore the
spin-unpolarized TGAs display near-zero resistances. The improved signal is related
to the larger spin-splitting efficiencies of TGA-array devices. In particular, the flipped
array device shows the most clear signal of spin-polarized TGAs.

The antisymmetric resistance gives a clear distinction between magnetic and non-
magnetic TGAs. It further provides an indirect measure of the spin-splitting induced
by TGAs, and an excellent measure of proof-of-concept and TGA-based spatial spin-
splitting. It may even be be used to detect spin-polarized signals in more general
graphene nanostructures.
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Figure 7.10: Illustrations of a dual TGA setup, to both generate and measure
spin currents generated from the spatial spin-splitting of the devices. (a) The
spin-preserving bend, where two devices are coupled through a 90◦ turn. (b)
The spin-preserving grain boundary, where two devices are coupled through
a straight channel that undergoes a 90◦ rotation of the underlying graphene
lattice. The black arrows illustrate the source-drain spin-unpolarized currents.
The generated spin-polarized currents are colored red and blue, for spin-up
and down, respectively. The final device illustrates the transverse potential
measurement.

7.4 Discussion and summary
The zz-TGA devices demonstrate an intriguing spatial spin-splitting feature. Spin-
polarized currents injected from either left or right are spin-dependently scattered
into top and bottom leads, and the scattering directions can be flipped by gating. The
effect is somewhat analogous to the spin Hall effect. However, this effect is obtained
without the need for spin-orbit interactions or topologically protected transport
channels. By avoiding spin-orbit coupling, a major source of spin relaxation, we
may be able to maintain the excellent spin-transport properties of graphene over
long distances.

The performance of TGA devices are shown to be very robust against typical disor-
ders faced in experiments. Similar to the TGA lattices (Section 6.4), the influence
of positional and size disorder is minor. Even when edges are disordered to such
an extent, that the magnetic moments may nearly vanish at certain TGAs, still we
observe significant performance.

Inspired by the spin Hall effect measurements, we consider the transverse resistance
of our devices. A nonzero resistance is demonstrated, antisymmetric with respect
to energy, characteristic of the spin-polarized TGAs. With a similar device, but
assuming spin-unpolarized (mi → 0) TGAs, the transverse resistance is instead
symmetric. This may prove to be an excellent measure of, not only the quality of
the spatial spin splitting, but a proof of spin-polarized TGAs, and by extension
magnetic graphene edges.

When considering the transverse resistance, we used single-spin injected currents.
This usually requires an external ferromagnetic contact, which are often used in
spin-precession and spin-transport lifetime experiments [27]. As an interesting
extension to our simulations we could employ a dual setup, where one TGA device
is used to split the currents, and another to convert the spin-polarized currents into
a (measurable) charge voltage difference. Unfortunately, such a setup would require
the top (or bottom) lead of one TGA device to couple to the left (or right) of another.
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In a single sheet of graphene, there is no way to make such a setup with zz-edged
TGAs, as a 90◦ rotation will not yield another zz-TGA. It would require a 90◦ turn to
couple two TGA devices of different orientation, illustrated in Fig. 7.11(a). Another
option is to introduce a grain boundary and subsequent rotation of second device,
illustrated in Fig. 7.11(b). Most importantly, the electrons cannot lose information
of spin between devices, i.e., the coupling must be spin-preserving. Both methods
would make an all-TGA experiment possible, which would further promote the use
of spatial spin-splitting in TGA devices.

The prospect of being able to filter or even split spin currents, without the use of
spin-orbit couplings or topological transport channels, has large implications on the
field of spintronics. In particular, TGAs could be a path towards realizing efficient
graphene-based spin generators and detectors.
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8Large scale triangular antidots

The two previous chapters have demonstrated principle features that motivate future
experiments using embedded zz-TGAs (zz-edged triangular graphene antidots).
In particular, we have demonstrated that zz-TGA lattices display near-Fermi level
half-metallicity when all antidots are oriented the same (aligned) [90]. If, however,
every second antidot is flipped (rotated 180◦ in-plane), lattices instead display semi-
conducting behavior (Section 6.3.1). One of the most remarkable features was
presented in cross-shaped devices with embedded TGAs, where spin-dependent
scattering was demonstrated to direct electrons of different spins to opposite leads
(spatial spin-splitting) [107]. In all cases, these features were explored using zz-
TGAs with side lengths L ∼ 1 nm, which would be very challenging to produce in
experiment. Here, we look at how the mechanisms we have discovered may have
signatures in systems much closer to what is currently experimentally feasible.

Triangular holes with side lengths L ∼ 0.3 µm have been fabricated in graphene
flakes using electron beam lithography [51]. Even though edge-alignment was not
considered in this case, we can imagine rough alignment to crystalline edges of the
graphene flakes. Additionally, the lithography mask could be replaced with hBN—a
recent study demonstrates fabrication of atomically precise zz-edged holes in hBN
with controllable side lengths L between ∼ 2 nm and 10 nm [108]. Controlled edge
formation in graphene nanostructures is also progressing, with recent advances
in growth of zz-edged triangular nanoislands [109, 110]. To study length scales
significantly larger than the atomic details, we consider L ∼ 5 nm, which is still
small enough to consider a large number of TGAs. Furthermore, some fabrication
techniques are based on seeded growth, where the distribution might be difficult to
control. Such methods result in large samples with extreme positional disorder. In
this chapter, we study such samples that no longer resemble lattices. Additionally,
we compare the effects of pristine and disordered zz-TGAs. We consider both side
length variation and edge disorder.

To explore these samples, we employ large-scale methods which allow for studying
systems of millions of atomic sites. In particular, we study the electronic behavior
using the Chebyshev expansion of the DOS, and the quantum transport proper-
ties via the Kubo method [64, 68, 72–74]. The Kubo-method allows to study the
diagonal conductivities σxx and σy y . However, through collaboration 1 we have
also studied the off-diagonal conductivities σx y and σyx using an alternative Kubo
method [69], and these preliminary results are also presented below (Section 8.3).
The off-diagonal conductivities allow for studying the large-scale equivalent of the
previously observed spatial spin splitting: the spin Hall conductivity σs

x y � σ↑x y−σ↓x y .

With access to both the transverse and longitudinal quantum transport, we also
examine the transport anisotropy σy y/σxx . As demonstrated below, the zz-TGAs
indeed display significant transport anisotropy, where samples are more conductive
in one direction, while being more resistive in the other. This opens the possi-
bility of engineering anisotropic features, which can be used to build electronic

1Stephan Roche’s group at ICN2, Barcelona; Stephan Roche and Jose H. García, in particular.
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Figure 8.1: Illustrations of the aligned (a) and the flipped (b) TGA samples. The
insets illustrate the corresponding disordered TGAs. The illustrations in (a)
and (b) are approximately 120 nm × 80 nm. The samples considered in the
simulations are in full 360 nm × 360 nm.

circuits or waveguides [111], optical circuits [112], or communications devices [113].
Anisotropic transport has been demonstrated in graphene through stretching [114,
115], periodic nanofacets [116], and even suggested in an-isotropically arranged
GALs [117], where antidots are spaced closer in one direction and further in the
other. In contrast to these other methods, the zz-TGAs considered here are dis-
tributed uniformly, and anisotropic features originate solely from the orientation of
the individual zz-TGAs.

We study the electronic and transport properties for two uniform distributions of
TGAs: The aligned case, where every TGA is oriented in the same direction, and
the flipped case, where antidots are randomly oriented in opposite directions. The
aligned sample is illustrated in Fig. 8.1(a), and the flipped in Fig. 8.1(b). The zz- and
ac-directions are noted in the bottom left corner: respectively, the x- and y-directions.
Furthermore, we consider pristine and disordered TGAs; The disorder is illustrated
in the insets of Figs. 8.1(a) and 8.1(b). All samples are approximately 360 nm×360 nm,
periodic in both directions, and contain 400 embedded TGAs (∼ 5 million atoms).
The side lengths of the pristine TGAs are L � 20azz, and the disordered TGAs are
L � 22azz. The lattice constant along the zz-direction is azz � 2.46 Å. The difference
in side lengths is relatively small and is not expected to have a major influence on
the results demonstrated below.

The TB model is identical to that presented in the previous two chapters, see Eq. (6.1),
where the magnetic moments are calculated from a self-consistent solution of the
Hubbard model within the mean field approximation. The magnetic-moment
distributions surrounding each antidot are assumed independent, and determined
individually. These distributions are calculated in periodic systems using 50azz ×
30aac unit cells (∼ 12 nm × 12 nm), and then embedded randomly in the graphene

56 Chapter 8 Large scale triangular antidots
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−0.3 0 0.3
mi

−0.3 0 0.3
mi

(a) (b) (c)

Figure 8.2: Illustration of an L � 20azz pristine (a) and an L � 22azz disordered
(b) TGA, including a 180◦ rotated TGA (c). The disorder in (b) and (c) includes
side length variation L→ L± δL, where δL � 8azz, and edge disorder by ‘‘etch’’
percentage p � 0.05 for Netch � 4 times. The magnetic moments are illustrated
by circles with radii ∝ mi .

samples. To ensure valid magnetic profiles, we prevent unit cells from overlapping
in the samples. This gives a minimum distance of Xmin ∼ 12 nm.

The DOS are calculated using the Chebyshev expansion [Eq. (3.5)], and the diagonal
conductivities σxx and σy y using the real-space Kubo method [Eq. (3.14)]. When
considering only the DOS, we use Nδ � 20000 expansion coefficients [see Eq. (3.5)];
This is the upper limit of our system size. Upon further increase of Nδ, additional
oscillations occur from the periodicity of our samples. For the conductivities, how-
ever, we instead use a lower Nδ � 4000 for optimal performance, and Nexp ≤ 5000
expansion coefficients for the time evolutions [see Eq. (3.14)]. Preliminary tests indi-
cate that the qualitative behavior demonstrated below does not change significantly
with increased sample sizes or Nδ.

The off-diagonal conductivities are calculated using the method from García et al.
[69], and have been calculated by José H. García based on Hamiltonians supplied
from the above models.

8.1 Influence of disorder

In the face of disorder, small-scale zz-TGAs have been demonstrated to display robust
half-metallicity in aligned lattices (Section 6.4). Here, we consider the influence of
disorder on large-scale TGAs via the DOS using two types of disorder: Side length
variation L � 22azz ± δL, where δL ≤ 8azz, and edge disorder, where edge atoms
are removed with a certain probability p � 0.05. The latter ‘‘etch’’ is performed
Netch � 4 times. Variation of the side length was previously shown to have minor
impact on the qualitative transport-scattering mechanisms of small-scale TGAs.
Edge disorder, on the other hand, was shown to severely reduce the corresponding
magnetic moment distributions.

A pristine TGA with L � 20azz is displayed along with its associated magnetic
moments in Fig. 8.2(a). By comparison to small-scale TGAs [e.g. Fig. 6.5], the
pristine magnetic moments distributions are remarkably similar. The magnetic
moments along the zz-edges are for the most part constant, decay perpendicularly
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Figure 8.3: The DOS of an L � 20azz pristine (solid) and an L � 22azz disordered
(dashed) TGA sample, in the aligned (a) and flipped cases (b). The spin-up DOS
is colored red and spin-down blue.

to the edges, and are nearly zero after only a couple of azz. The distributions indicate
that the magnetic profiles of each TGA do not influence each other.

The magnetic moments of two disordered TGAs are illustrated in Figs. 8.2(b) and 8.2(c).
These display a regular and flipped TGA, respectively, and in both cases, the mag-
netic moments are reduced in size. In the second case [Fig. 8.2(c)] the flipped TGA
is oppositely spin-polarized. Notice in the second case, at certain edges (e.g. bottom-
left edge) the magnetic moments have almost vanished. However, compared to
previous demonstrations of edge disorder (Section 6.3), both of these large-scale
TGAs still display significantly sized magnetic moments.

The Chebyshev-expanded DOS of the samples, shown in Fig. 8.3, reveal that the
effects of disorder are quite similar in the aligned and the flipped case. The half-
metallic peaks (and the metallic peaks in the flipped case) at E � ±40 meV form as
the result of spin-polarized edge states (Chapter 6). The most obvious difference
between the pristine (solid) and disordered cases (dashed) is the smearing out of
these peaks. However, regardless of disorder these peaks preserve their respective
half-metallic (aligned) or metallic (flipped) behavior. It is worth pointing out that in
the flipped cases, the spin types are nearly equivalent, but with very small differences.
In fact, also in the aligned case, the DOS of the two spins are nearly antisymmetric
with respect to energy. In a perfectly infinite sample, we expect spin types in the
aligned case to be exactly antisymmetric with respect to energy. Similarly, in the
flipped case, we expect spin types to be exactly equivalent. The finite size of our
samples introduces these small spin-type differences, and increasing the sample
sizes will average these artifacts out (not shown).

The disorder in both the aligned and flipped cases has only a minor impact on the
DOS. Namely, the band gaps and the half-metallicity are both observed even in the
presence of disorder. Notice, in particular, that these features of zz-TGAs emerge
without the need of periodic superlattices.

8.2 Spin-dependent conductivities
Using the efficient real-space Kubo method, we study the quantum transport in our
four samples. The running conductivity, which is the conductivity of the simulation
wave-packets as a function of time, gives access to study of the ballistic, diffusive,
and localization regimes of a given sample. We first consider the aligned case,
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Figure 8.4: Spin-down running conductivities σy y (solid) and σxx (dashed) at
E � 30 meV (a) and transport anisotropy σy y/σxx (b) of the aligned sample in the
pristine case. The inset in (a) displays the lengths Lα∈{x ,y} � 2

√
∆X2

α(E, t), and
the dotted line denotes the actual length of the sample Lsample ∼ 360 nm. The
transport anisotropy σy y/σxx in (b) is illustrated as a color map, as a function
of energy E and time t. In the energy interval −45 meV . E . 5 meV (white
area), the spin-down conductivities are zero from the spectral gap in the DOS,
and the anisotropy is ill-defined. The dashed line in (b) corresponds to the
E � 30 meV displayed in (a).

which is half-metallic, and for 15 meV < E < 50 meV only the spin-down displays a
nonzero DOS and, in turn, nonzero conductivities [apparent from Fig. 8.3(a)].

The first considered sample contains pristine, aligned TGAs. The conductivities of
this sample reveal a huge anisotropy, as for example illustrated via the spin-down
conductivities at E � 30 meV displayed in Fig. 8.4(a). The σy y conductivity (solid)
shows quasi-ballistic behavior, i.e., σy y increases sub-linearly yet does not saturate
within the accessible time range of 5 ps. Meanwhile, the σxx conductivity (dashed)
saturates to a maximal value at t ∼ 1 ps, signifying the onset of the diffusive regime.
At larger times, t > 1 ps, localizing effects dominate and the conductivity decays
inversely proportional to time, σxx ∼ 1/t. The quasi-ballistic simulation length
Lx � 2

√
∆X2

x(E, t) [inset in Fig. 8.4(a)] is revealed to far exceed the samples size Lx >
Lsample ∼ 360 nm. Meanwhile, along the localization direction the simulation length
saturates just within the sample size, Ly ∼ Lsample. At the point of Lα & Lsample,
the wave-packets become larger than the simulation samples. The corresponding
conductivities may develop artifacts which originate solely from the periodicity,
making any quantitative analysis challenging. Nevertheless, the huge anisotropy
in the conductivities strongly suggest significantly higher scattering along the zz-
direction compared to the ac-direction.

Indeed, if we examine the anisotropy σy y/σxx of the spin-down conductivities,
displayed in Fig. 8.4(b) as a function of both energy and time, it reveals that σy y/σxx >
1 throughout. Notice that the spin-down spectral gap −45 meV . E . 5 meV (white
area) displays conductivities σxx � σy y � 0, and the corresponding anisotropy is
ill-defined. The anisotropy displays particularly high values in the half-metallic
interval 15 meV . E . 50 meV—up to σy y/σxx ∼ 20 at times t � tmax ∼ 5 ps.
Throughout this particular energy interval, the simulations display quasi-ballistic
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Figure 8.5: Spin-down running conductivities σy y (solid) and σxx (dashed) at
E � 30 meV (a) and transport anisotropy σy y/σxx (b) of the aligned sample in
the disordered case. The corresponding lengths Lα are displayed in the inset.
The transport anisotropy σy y/σxx is illustrated as a color map. In the energy
interval −45 meV . E . 5 meV (white area), the spin-down conductivities are
zero from the spectral gap in the DOS. The dashed line in (b) corresponds to
the E � 30 meV displayed in (a).

behavior and over-simulated lengths Ly (not shown). This suggests that the large
anisotropies observed in this pristine case are induced by quasi-ballistic transport
channels in the ac-direction.

The second sample contains aligned TGAs with individual disorder, and while it
displays lowered conductivities in general, it also displays anisotropic transport
features. The spin-down conductivities at E � 30 meV are displayed in Fig. 8.5(a).
In the disordered case, both the σy y (solid) and the σxx (dashed) conductivities
saturate near t ∼ 0.5 ps and afterwards begin to localize. For completeness, the
corresponding simulations lengths are displayed in the inset of Fig. 8.5(a), and
both remain within the sample size. The anisotropic map is displayed in Fig. 8.5(b).
While the sample remains anisotropic σy y/σxx > 1 throughout, in the half-metallic
interval 15 meV . E . 50 meV the huge anisotropy has reduced considerably. At
the remaining energies, the anisotropy is qualitatively the sames as for the pristine
case. The large peak in the anisotropy near E ∼ −100 meV corresponds to a metallic
region in the DOS [see Fig. 8.3(a)]. The bands structures of small-scale TGAs suggest
that these are highly dispersive spin-polarized bands [see for example Chapter 6
and Fig. 6.6], which are not present for the opposite side of the Fermi level E ∼
100 meV.

In aligned TGAs, disorder has the effect of suppressing the quasi-ballistic transport
channels in the ac-direction. However, significant anisotropic features are observed
in both the pristine and disordered cases. This highlights the possibility of observing
similar anisotropic features in experiment.

The corresponding semi-classical limits (the maximum conductivities) are found
to occur at times tSC . 1 ps, where the tSC differs for each energy. For example, in
Fig. 8.5(a) the semi-classical limit reads tSC ∼ 0.5 ps. The spin-up (red) and spin-
down (blue) 2D semi-classical conductivities σSC � σxx ,SC + σy y ,SC are displayed in
Fig. 8.6(a). The conductivities σSC are largely proportional to the DOS, in which case
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Figure 8.7: Running conductivities (a) and the semi-classical conductivity (b)
of the pristine (solid) and disordered (dashed) TGAs samples in the flipped
case.

no additional transport gaps are formed. This even hold true for conductivities at
longer times, illustrated by the conductivities σ at tmax ∼ 4.8 in the inset of Fig. 8.6(a).
This means that in the face of disorder, the conductivities are not suppressed to the
point of preventing transport. In comparison, similar studies of disordered GALs
with circular antidots was demonstrated to close spectral gaps and subsequently
open transport gaps [118].

The semi-classical ratios σy y ,SC/σxx ,SC for both spin-up (red) and spin-down conduc-
tivities (blue) are displayed in Fig. 8.6(b). Notice that the curves are dis-continuous
where σxx � σy y � 0. At the semi-classical limit, the anisotropy is the highest in the
half-metallic intervals 15 meV . |E | . 50 meV. Whereas, from the anisotropy map
in Fig. 8.5(b) it is apparent that this changes in the localizing regime. To emphasize,
the anisotropy is also displayed at t � tmax in the inset of Fig. 8.6(b). In the localizing
regime, the anisotropy is largest near E ∼ ±100 meV. The anisotropy mechanism
shows clear signs of different impact in the different transport regimes.

We now consider the flipped samples. Because spins are nearly equivalent, we
examine the total (charge) conductivities σ→ σ↑ + σ↓. The conductivities of both
the pristine and disordered, flipped TGAs are the lowest compared to the previous
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cases. The 2D conductivities σ � σxx + σy y at E � 30 meV are displayed in Fig. 8.7(a).
Both the pristine (solid) and disordered (dashed) are displayed. By introducing
zz-TGAs of opposite orientation, we effectively introduce transport channels for
both spins. However, we simultaneously introduce increased scattering, as now
every antidot acts as a scattering center for every second electron: either spin up
or spin down. The conductivities in both cases show localizing behavior, and the
semi-classical conductivities σSC are displayed in Fig. 8.7(b). The σSC reveals no
additional transport gaps, albeit less pronounced peaks at E � ±40 meV.

The transport anisotropies σy y/σxx of the flipped samples with pristine and dis-
ordered TGAs are displayed in Figs. 8.8(a) and 8.8(b), respectively. In the case of
pristine TGAs, it is interesting to note that along the energy axis the anisotropy
oscillates between > 1 and < 1. In particular, a reduced σy y/σxx < 1 is revealed near
±30 meV. On the other hand, the disordered case displays σy y/σxx > 1 throughout,
similar to the previous cases.

The mechanisms behind the anisotropic transport of zz-TGA are not completely
understood. However, these findings are highly suggestive of both anisotropic
transport, and, above all, robust band gaps and half-metallic conductivities These
features strongly motivate further studies.

8.3 Off-diagonal conductivities

We now move on to consider the off-diagonal conductivities of uniformly distributed
TGAs. The off-diagonal conductivities express the average conductivity of skew
scattering processes, i.e., how much deflection an electron experiences on average.
Unlike the diagonal conductivities, these off-diagonal conductivities are signed, and

62 Chapter 8 Large scale triangular antidots



−200 −100 0 100 200

−0.4

−0.2

0

0.2

0.4

Energy E (meV)

σ
↑ x

y
(e

2 /
h)

−200 −100 0 100 200

−0.4

−0.2

0

0.2

0.4

Energy E (meV)

σ
↓ x

y
(e

2 /
h)

(a) (b)

Figure 8.9: Off-diagonal conductivities of spin-up (a) and spin-down (b) elec-
trons in a pristine TGA sample in the flipped case. The values are displayed in
solid and the standard deviation in dashed. Illustrative lines of the expected
trends are displayed, added to emphasize the possible trend in (b). Notice
that the sample used here is larger than in previous sections, approximately
∼ 500 nm × 500 nm.

the sign corresponds to the scattering direction: positive is upwards, and negative
is downwards. The TGA devices have demonstrated exactly such skew scattering
mechanisms (spatial spin-splitting), where transversely generated spin-polarized
currents flow in opposite directions according to spin. Of particular interest here
are the spin-resolved conductivities σ↑x y and σ↓x y , as we might expect such quantities
to be nonzero at the magnetic resonance peaks of the DOS.

We use the alternative Kubo-method [69], which because of its framework requires
far more random phase states compared to that above. We calculate a statistical
average of 30 random phase vectors, and also decrease Nδ � 1000 for efficiency.
This results in an energy resolution of δE ≈ 30 meV. Instead of the samples we have
considered so far, we make this particular sample larger ∼ 510 nm × 510 nm (∼10
million atoms). To further increase any present signals, we embed 1400 pristine TGAs
(twice as dense), and reduce the minimum distance Xmin ∼ 10 nm. We consider
only the flipped case. The single-spin off-diagonal conductivities for spin-up and
spin-down are displayed in Figs. 8.9(a) and 8.9(b), respectively. Both the values
(solid) and the standard-deviation errors (dashed) are displayed.

Because of a highly oscillating values for each random phase state, the errors are, in
fact, larger than the actual conductivities. This means that we cannot say whether
the off-diagonal conductivities are zero or not. Even so, trends may be identified in
the spin-down conductivity [Fig. 8.9(b)]. In accordance with the previously observed
spatial spin-splitting, at positive energies we expect σ↑x y < 1 and σ↓x y > 1. We also
expect antisymmetry with respect to energy. The expected antisymmetric behavior
is illustrated by a red (spin-up) and a blue (spin-down) line in Fig. 8.9, where the
slopes have been manipulated to emphasize the trends. Both the values and the
errors of the spin-down conductivities in Fig. 8.9(b) appear to follow the expected
trend. In the spin-up conductivity, the picture is not as clear, and the values do
not follow the trend. In fact, the spin-up conductivity appears closer to symmetric
than antisymmetric. Even so, it is important to notice that the conductivities are not
trivially zero. This fact motivates further investigation and future studies of such
effects as the spin Hall conductivity in TGA samples.
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8.4 Discussion and summary
Samples of uniformly distributed, large-scale zz-TGAs perform extraordinarily well,
even in the face of disorder. In samples with all TGAs oriented in the same direction
(aligned TGAs), both the DOS and conductivities display half-metallic behavior
near the Fermi level. More importantly, this is observed regardless of the disorders
we consider. The same disorder was demonstrated to have severe impact on the
individual magnetic profiles of TGAs. In other samples with oppositely oriented
TGAs (flipped TGAs), the DOS and conductivities display semi-conducting behavior,
with a similarly robust band gap. These finding suggest excellent scaling behavior
with respect to disorder, and strongly motivate experiments using zz-TGAs.

In addition, the conductivities also display significant anisotropic transport signa-
tures. In particular, the pristine, aligned case suggested simultaneous quasi-ballistic
transport in one direction and localized transport in the other. Even with disorder,
the anisotropy presented itself in both the aligned and flipped cases, with particular
favor to the ac-direction. This may prove interesting for the design of integrated
electronic circuits. The possibility of inducing anisotropic features by a random
distribution of antidots is an intriguing feature in itself.

Finally, to explore macroscopic signatures of the spatial spin-splitting demonstrated
in small-scale TGAs, we presented results of an off-diagonal conductivity simula-
tion. Although the results were inconclusive due to errors larger than the signal,
the results were not trivially zero. This motivates a further study into the effects
surrounding large-scale TGAs with respect to the spin-dependent scattering pro-
cesses. As it stands at present, the currently employed method appears impractical
because of the highly oscillating values, which in turn make the simulations con-
verge very slowly. A method to circumvent these difficulties would yield a perfect
demonstration of effects that could be indistinguishable from the spin Hall effect on
a macro-scale.
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9Summary and outlook

The increasing possibilities in nanostructure-fabrication paves the way for develop-
ing new technologies by altering or combining old ones. Be it graphene or other
two-dimensional materials, advanced material control and manipulation encourages
the exploration of new features in both theory and experiment.

By employing the Landauer-Büttiker formalism, combined with Green’s function
methods, we explore the fundamental features of two systems with interesting elec-
tronic properties. Firstly, the hybrid bilayer system: graphene on graphene antidot
lattice (GOAL), which demonstrates both the tunable band gaps of bilayer graphene
as well as the linear dispersion of monolayer graphene. Secondly, the zigzag-edged
triangular graphene antidots (zz-TGAs), which because of their specific edge con-
figuration, give rise to highly desirable spin-filtering and spin-splitting transport
features. Here, the spin-polarization of zz-TGAs is considered using a mean-field
approximation of the Hubbard model. Finally, we employ efficient large-scale meth-
ods to study the mechanisms of zz-TGAs in disordered systems of experimentally
feasible scale. Below we summarize the principle findings that are presented in this
thesis.

In Chapter 5 we demonstrate that by careful design of the underlying graphene
antidot lattice (GAL), the dispersive properties of GOALs can be engineered. The
bandstructure can display either parabolic or linear dispersion. For a certain set
of optimized geometries, we obtain linearly dispersing bands with a high corre-
sponding mobility, resembling that of monolayer graphene. Nevertheless, these
linearly dispersive GOALs can be made gapped by breaking layer symmetry, for
example, using perpendicular electric fields. The linear dispersion forms as a result
of electronic states confined to the pristine top layer, which, in turn, depends entirely
on the electronic behavior of the bottom GAL layer. If the isolated GAL layer is
spectrally gapped, the corresponding GOALs display top-layer confinement and
subsequent linear dispersion.

The possibility of a high mobility device with tunable band gaps is particular in-
teresting for high-speed electronic—conventional technologies are bound by their
mobilities, which in graphene is uniquely high. It is interesting to note that GOALs
depend on the electronic behavior, and not the exact orientation of the bottom GAL
layer. This suggests a generality beyond this particular bilayer considered here, and
similar features could be envisioned in comparable bilayer hybrids.

In Chapter 6 we explore the fundamental electronic properties of rectangular lattices
of zz-TGAs. The zz-TGAs consist of three zz-edges, all of which expose atomic sites
of the same sublattice. In turn, this gives rise to a net sublattice imbalance, which
manifests itself as large band gaps in spin-unpolarized superlattices of zz-TGAs.
If we also consider spin interactions, spin-polarized bands form on either side of
the Fermi level with opposite electronic spin. In effect, these superlattices show half-
metallic regions, where the densities of states are perfectly spin-polarized. We may
also consider restoring sublattice symmetry by introducing TGAs of the opposite
orientation, where every second antidot is flipped in plane. In such a system, the
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spin-unpolarized TGAs are completely metallic, and the spin-polarized TGAs are
semi-conducting, where spins are exactly equivalent. Finally, we also consider the
influence of positional and edge disorder. Both the band gaps and the half-metallic
regions are preserved despite severe levels of disorder.

The durability of TGAs is surprising in the light of regular antidot lattices, which
display strongly sensitive band gaps. Because of sublattice imbalance, the TGAs do
not follow conventional geometric rules, which govern the regular antidot lattices.
Instead, TGAs are entirely dependent on the quality of the zz-edges, and not the
individual positions or sizes of the antidots. In lattices of spin-unpolarized TGAs,
the formation of large band gaps could prove beneficial for graphene electronics or
optics. Meanwhile, the spin-polarized TGAs with inherent half-metallicity might
prove valuable for graphene spintronics. In particular, the half-metallicity allows
for straightforward spin-filtering by complete electronic backscattering of one spin
type, while transmitting the other.

In Chapter 7 we turn to embedded zz-TGAs in devices and employ a cross-shape
geometry to examine the longitudinal, transverse, and skew transport. The zz-
TGA devices demonstrate a remarkable spatial spin-splitting feature, analogous to
the spin Hall effect. Spin-unpolarized currents enter the device from left or right
and spin-polarized currents are generated surrounding the antidot. The currents
then exit at top and bottom leads with near-perfect, oppositely polarized currents.
However, rather than spin-orbit interactions or topologically protected transport
channels, this feature comes naturally from the mean-field solution to the Hubbard
model. The spin-splitting feature is enhanced by repeated scattering in arrays of
TGAs, and is demonstrated to perform well under the influence of disorders typically
faced in experiments. Ultimately, using the transverse resistance we demonstrate an
antisymmetric signal, characteristic of spin-polarized TGAs. Using the same device,
but assuming spin-unpolarized TGAs, the transverse resistance is instead completely
symmetric. This gives an unambiguous signal for detecting spin-polarized or spin-
unpolarized zz-TGAs.

The spatial spin-splitting could perform as an alternative to the spin Hall effect,
and potentially be used to generate or detect spin currents—a major challenge in
graphene spintronics. Furthermore, the transverse resistance might also be an
excellent proof of spin-polarized TGAs, and by extension, the spin-polarization of
graphene zz-edges.

In Chapter 8 we consider disordered TGAs in length scales closer to those of experi-
ments (side lengths L ∼ 5 nm). The large-scale TGAs display robust half-metallic and
semi-conducting properties, suggesting excellent scaling behavior with respect to
disorder. In addition, the large-scale TGAs show signatures of anisotropic transport.
This even gave rise to simultaneously quasi-ballistic behavior in one direction, and
localized behavior in the other. Finally, we considered the spin Hall conductivity;
The large scale equivalent of the spatial spin-splitting observed in devices. While
the results were inconclusive, we underline the nonexistence of a trivial zero in the
spin Hall conductivity. Indeed, if we can find a method to circumvent the difficulties
of the current method, this result would be a perfect demonstration of inducing
effects indistinguishable from the spin Hall effect on a macro-scale.
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9.0.1 Outlook

The GOAL system we have explored here is an excellent example of how coupling
two layers electronically may induce new behavior. Exploring such combined
systems further is motivated by the ever improving stacking techniques. While
we consider perfectly stacked patterned bilayers, instead, we could explore more
loosely coupled systems, which are less challenging to fabricate experimentally. For
example, through Moiré patterns, or even indirectly via Coulomb drag effects.

However, it would be particularly interesting to improve on the work presented for
zz-TGAs. The preliminary results demonstrated here of the spin Hall conductivities
proved quite challenging. If possible, improvement on the method could be a huge
step towards determining the true potential of zz-TGAs. This could be possible by
designing the perfect system of TGAs such as to induce faster convergence. However,
it is more likely that an alternative route to the same or similar macroscopic quantities
is more beneficial. This, in turn, might require a more in depth understanding on
the scaling properties of the TGAs. An efficient method for exploring such a large
parameter space might also be needed.

Finally, we could also consider completely different paths for using spin-polarized
TGAs. For example, proximity induced magnetic moments have been proposed in
graphene on a EuO substrate [119]. Interestingly, a recent ab initio study on triangular
holes in hexagonal boron nitride (hBN) has demonstrated magnetic profiles largely
resembling that of TGAs [120]. Coupled with the fact that holes in hBN naturally
form in triangular patterns, a dual-layered hBN-graphene system could act as an
interesting alternative to TGAs.
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AGreen’s function techniques

In this chapter, we consider the problem of determining the Green’s function matrix
of a large-sized Hamiltonian. The Green’s function of a particular Hamiltonian H is
defined using

G(E) � [E −H]−1 . (A.1)

where the energy is slightly offset from the real axis E � Re[E] + i0±, and G and
H are matrices. The sign of the imaginary part of energy defines whether this is
a retarded or an advanced Green’s function. Note, however, that either version
is allowed during the following derivations. From a numerical point of view the
imaginary part must be small but nonzero to stabilize the matrix inversion.

Inverting matrices is a notoriously difficult operation—it is approximately anO(D2.3)
operation, with D being the problem size (the Hamiltonian matrix size is D ×
D). Fortunately, there are a number of recursive techniques which allow efficient
evaluation of a certain class of problems.

For many of the operations below, the Hamiltonians may be rearranged into a
layered, or chained form. While the layers often are physically separable layers
of a device, they do not strictly need to be. The form must satisfy two important
conditions: Firstly, the individual layers in the device may only couple to their
neighbors. Secondly, the layers express separate parts of the Hamiltonian (no overlap).
The Hamiltonian then has an equivalent tri-block diagonal matrix form

H �


H1 V12 0 · · ·
V21 H2

0 . . .
... HN


, (A.2)

i.e. individual layers, or cells, in the diagonal and hoppings in the off-diagonals.

A.1 Self-energy
The self-energy is demonstrated using a device (D) coupled to an external pertur-
bation (ex), illustrated on the left side of Fig. A.1(a). The explicit Green’s function
matrix [Eq. (A.1)] then reads[

g−1
D −VDex

−VexD g−1
ex

] [
GDD GDex
GexD Gexex

]
�

[
1 0
0 1

]
(A.3)

which can also be expressed

GDD � gD + gDVDexGexD , (A.4)
Gexex � gex + gexVexDGDex , (A.5)
GDex � gDVDexGexex , (A.6)
GexD � gexVexDGDD . (A.7)
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Figure A.1: Illustration of the self-energy formulas in case of (a) coupling to a
single external perturbation, and (b) coupling to a external perturbation chain.
The panels illustrate the physical samples (left), the full Green’s function matrix
G (middle), and the local Green’s function GDD after perturbation. Straight
lines indicate initially coupled systems, and curved arrows the perturbation.
Lower blue triangles illustrate applied self-energies.

The first equation in particular [Eq. (A.4)] can be rearranged

GDD � [E −HD − Σex]−1 , where Σex � VDexgexVexD . (A.8)

which defines the self-energy of the device in response to the external perturbation.
The full explicit Green’s function matrix is illustrated in the middle of Fig. A.1(a).
By using the self-energy, we can express the local device region without further
considering the external perturbation. This situation is illustrated in the right of
Fig. A.1(a), where the lower blue triangle denotes the added self-energy.

The self-energy in Eq. (A.8) can also describe indirection couplings. Consider the
device (D) divided into a left (L) and a right (R) side, which are not coupled. However,
these do couple indirectly via an external perturbation (ex). The definition in Eq. (A.8)
is rewritten such that the local self-energies of the separate left and right sides are
explicit

Σex �

[
ΣL γLR
γRL ΣR

]
, (A.9)

where ΣL � VLexgexVLex and ΣR � VRexgexVRex are the left and right self-energies,
and γLR � VLexgexVRex and γRL � VRexgexVLex are the self-energy hoppings. The
self-energy hoppings now describe the indirect coupling through the external per-
turbation.

The remaining Eqs. (A.5) to (A.7) can used to determine the Green’s functions of
the entire system. In the following, consider the iterative building of a chain, from
cell 1 to N , [e.g. similar to the Hamiltonian in Eq. (A.2)]. The surface of the chain is
illustrated in the left side of Fig. A.1(b). In this case, Eqs. (A.4) to (A.7) are written
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explicitly for each of the local Green’s functions at the build step n

G(n+1)(n+1) �
[
E −H(n+1) − Σn

] −1 , where Σn � V(n+1)ngnVn(n+1) , (A.10)
Gi j � gi j + ginVn(n+1)G(n+1)(n+1)V(n+1)ngn j , (A.11)

G(n+1)i � g(n+1)V(n+1)iGii , (A.12)
Gi(n+1) � giVi(n+1)G(n+1)(n+1) . (A.13)

There are particularly useful for determining the diagonal and first column and
row. It is also worth noting the Eq. (A.10) now describes the self-energy of the
entire chain, by use only of the surface Green’s function gn . The full explicit Green’s
function matrix is illustrated in the middle of Fig. A.1(b), and the surface on the
right of Fig. A.1(a).

A.2 Density of states
The LDOS is defined via the Green’s function matrix

LDOS(i , E) � − 1
π

Im[G]ii . (A.14)

To solve this efficiently, we can employ a recursive scheme.

Consider a linear chain of N coupled cells. First, we build the chain from left to
right using Eq. (A.10)

gn � [E −Hn − Σn]−1 , where Σn � Vn(n−1)g(n−1)V(n−1)n , (A.15)

To determine the full diagonal, we realize that at the end of the above sweep all
cells have been coupled, and we obtain gN � GNN . Then Eq. (A.11) allows for a
backwards iteration

Gn � gn + gnVn(n+1)G(n+1)V(n+1)ngn , (A.16)

The DOS is a straightforward simplification of the above. It is defined

DOS(E) � − 1
π

Tr [Im[G]] . (A.17)

Using the relation in Eq. (A.16), we find the partial trace

Tr [G] �
∑
i≤n

Tr [Gii] � Tr [Gnn] + Tr
[
g
]
+

∑
i<n

Tr
[
gi(n−1)V(n−1)nGnnVn(n−1)g(n−1)i

]
(A.18)

Using the rotation property of the trace we get the following form

Tr [G] � Tr [Gnn] + Tr
[
g
]
+ Tr

[
GnnVn(n−1)

∑
i<n

g(n−1)igi(n−1)V(n−1)n

]
(A.19)

� Tr [Gnn] + Tr
[
g
]
+ Tr

[
GnnVn(n−1)A(n−1)V(n−1)n

]
(A.20)
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where we have introduced an intermediate matrix A(n−1) �
∑

i<n g(n−1)igi(n−1). How-
ever, an alternative, but identical form reads An �

∑
i≤n GniGin , but which defines

the intermediate matrix of this step—for the equation above we will need the previ-
ous A(n−1). Using the relations from Eqs. (A.6) and (A.7), we create the recursive
relation

An �

∑
i≤n

GniGin � GnnGnn +

∑
i≤n−1

GniGin (A.21)

� GnnGnn + GnnVn(n−1)

( ∑
i≤n−1

g(n−1)igi(n−1)

)
V(n−1)nGnn (A.22)

� Gnn
[
Vn(n−1)A(n−1)V(n−1)n + 1

]
Gnn (A.23)

By using the above equations, the trace can be calculated recursively by a single
forward sweep

Tn � Tr [G] � T(n−1) + Tr
[
Gnn

(
Vn(n−1)A(n−1)V(n−1)n + 1

) ]
, where (A.24)

An � Gnn
[
Vn(n−1)A(n−1)V(n−1)n + 1

]
Gnn (A.25)

where Tn is the trace at step n.

A.3 Semi-infinite leads
The semi-infinite lead is a chain of identical cells. We distinguish the bulk (B) unit
cells, which have neighboring cells on both sides, and the surface (S) cell which has
only one neighbor on its side.

We consider the case of a bulk unit cell as the perturbation, thereby inducing indirect
couplings between the remaining cells. By straightforward use of Eq. (A.9), we find
the self-energies

ΣB � VLgBVR + VLgBVR (A.26)
ΣS � VRgBVL (A.27)
γL � VLgBVL (A.28)
γR � VRgBVR (A.29)

where gB � [E −HB]−1, and γL (γR) is the self-energy hopping from one bulk cell
to the cell of its left (right). Notice above that the surface cell has only one neighbor,
hence one self-energy term.

If we were to consider every second bulk cell as a perturbation simultaneously, we
may realized that the bulk self-energies above may be applied to every remaining cell
in the semi-infinite lead. However, the resulting system is now exactly equivalent
to a new semi-infinite lead, with Hamiltonians corrected by self-energies. In other
words, the new system displays H′B � HB +ΣB and H′S � HS +ΣS, and the hoppings
V′L � γL and V′R � γR. The above equations can be repeated until to the effective
hoppings V′L are below a certain tolerance.

The above algorithm works well for small unit cells in the leads. However, if the
unit cell are large the inversion in gB make the calculations cumbersome. Instead,
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SLeads

SS

Figure A.2: Illustration of the self-energy formulas in case of coupling to a set of
semi-infinite leads. The figure illustrates the sample setup (left) and the device
Green’s function matrix GDD (right) after coupling the semi-infinite leads. The
set illustrates a physical sample, which can be arranged into the setup in main
panel. Lower blue triangles illustrate applied self-energies.

we may further use recursion to first simplify the unit cells of the leads, and then
use the above algorithm to find the surface Green’s function.

For each sub-cell in the lead unit cells, apart from the last, we consider it a pertur-
bation and subsequently remove it. Similar to above, when considering the cell
i � 1, 2, ...,N − 1 as the perturbation, the self-energies are given

Σi+1 � V(i+1)igiVi(i+1) (A.30)
V′N(i+1) � V′NigiV

′
i(i+1) (A.31)

V′(i+1)N � V′(i+1)igiV
′
iN (A.32)

And for each of the removed sub-cells, we add the self-energy to the unit-cell surface

ΣB �

∑
i

V′NigiV
′
iN (A.33)

(A.34)

At i � N , the simplified surface cell can be used ΣS � ΣN .

A.4 Multi-terminal transmissions
In a multiterminal setup, we need to differentiate between what couples to the
device, and what does not. Illustrated on the left of Fig. A.2, we rearrange the
system such that all leads are external perturbations on one site. The boundary
which they all couple to is denoted the surface of the device, and the leads are
included using the self-energies, illustrated on the right of Fig. A.2.

gS � [E −HS − ΣS]−1 , where ΣS �

∑
p

Σp , (A.35)

where Σp are the self-energies from the leads.

When considering the transmissions, we consider all parts of the device which do not
couple to the leads as external perturbations, Using Eq. (A.10), we recursively add the
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Figure A.3: Schematics of a function resembling the Green’s function (a), and
an optimal contour path in the complex energy plane (b).

cells furthest from the leads as a self energy

gn � [E −Hn − Σn]−1 , where Σn � Vn(n−1)g(n−1)V(n−1)n . (A.36)

At the end of the recursion, we have only the final cells which couple to the leads,
and we use that the Green’s function of the device coupled to the leads p is

GD �

[
E −Hn − ΣD −

∑
p

Σp

] −1

(A.37)

and the final transmissions are

Tpq(E) � Tr
[
ΓpG†ΓqG

]
, (A.38)

where Γp � i
[
Σp − Σ†p

]
are the level-broadenings from coupling to the leads.

When considering the currents, we need the nonlocal Green’s functions GSi and
GiS. Following the same iterations as in the LDOS, at the end Eqs. (A.12) and (A.12)
allows for a backwards iteration

GNi � GN(i+1)V(i+1)igi , (A.39)
GiN � giVi(i+1)G(i+1)N . (A.40)

and the final currents straightforward[
Jp(E)

]
i j
� [H]i j Im[GNiΓpG†Ni]i j . (A.41)

A.5 Integrating the Greens function
Some physical quantities require integrating the Green’s function, for example the
electron densities n(E) � −1/πIm[

∫ ∞
−∞dE′ f (E′ − E)G(E′)]. However, the Green’s

functions are particularly difficult to numerically integrate due to their close resem-
blance to δ-functions. For illustrative purpose, the Green’s function can be thought
of as the function displayed in Fig. A.3(a). Here, I introduce a well behaved integral
along an alternative contour.
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At zero temperature, the integral reads∫ E

−∞
dE′ G(E′ + i0±) (A.42)

which we can relate to the quarter-circle contour integral (
∮

) demonstrated in
Fig. A.3(b). The contour is divided into three paths C1, C2, and C3. The path C1 is
the desired path near the real axis, Z � −∞ → E. The path C2 is the alternative
path along the imaginary axis, Z � E→ ±i∞ + E. The path C3 is the final path that
connects the two, along a quater-circle in from the positive imaginary axis to the
negative real axis, Z � ±i∞ + Ey −∞.∮

dE′ G(E′ + i0±) �
∫
C1

dZ G(Z + i0±) +
∫
C2

dZ G(Z + i0±) +
∫
C3

dZ G(Z + i0±)

(A.43)

where
∫
C1
dZ ↔

∫ E
−∞dE′ . At zero temperature there are no poles in this contour

(
∮
→ 0), and the original integral is given∫ E

−∞
dE′ G(E′ + i0±) � −

∫
C2

dZ G(Z + i0±) −
∫
C3

dZ G(Z + i0±) (A.44)

In the curved integral we make the transformation Z � R exp(iφ) + E such that
dZ � iR exp(iφ)dφ . The curved integral now reads∫
C3

dZ G(Z + i0±) � i lim
R→∞

∫ ±π

±π/2
dφ R exp(iφ)

[
R exp(iφ) + E + i0± −H

] −1 (A.45)

� i
∫ ±π

±π/2
dφ lim

R→∞

[
1 + i0±/R + E/R −H exp(−iφ)/R

] −1 (A.46)

� ±iπ/2 (A.47)

Finally, the original integral can be replaced by∫ E

−∞
dE′ G(E′ + i0±) � ∓iπ/2 − i

∫ ∞

0
dE′ G(iE′ + E + i0±) (A.48)
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BChebyshev polynomial methods

The Chebyshev polynomials of the first kind Tn(x) are confined to the open region
x ∈] − 1, 1[, where n is an integer. In this thesis we deal only with positive n. The
polynomials can be expressed in trigonometric form

Tn(x) � cos (n arccos(x)) , − 1 < x < 1 (B.1)

which yields the useful recursive relations

T0(x) � 1
T1(x) � x

Tn+1(x) � 2xTn(x) − Tn−1(x)
(B.2)

The polynomials are orthogonal with respect to the weight function w(x) � 1
π

√
1 − x2,

such that

(δ0n + 1)
∫ 1

−1
dx w(x)Tn(x)Tm(x) � δnm . (B.3)

A function f (x) for which x ∈] − 1, 1[ can straight forwardly be expanded in a set
of Chebyshev polynomials. However, in general the function f (x) is bounded by
a larger spectrum x ∈]x + ∆x , x − ∆x[ and we introduce a variable transformation
into the expansion

f (x) � f (∆x x̃ + x) �
∞∑

n�0
cnTn(x̃) , − 1 < x̃ < 1 , (B.4)

where the rescaled variable x̃ � (x − x)/∆x. The expansion coefficients cn are defined

cn � (δ0n + 1)
∫ 1

−1
dx̃ w(x̃) f (∆x x̃ + x)Tn(x̃) . (B.5)

Finally, two other useful relation read

Tn (Tm(x)) � Tnm(x) and (B.6)
2Tn(x)Tm(x) � Tn+m(x) + T|n−m | (x) , (B.7)

and using the latter relation we find

T2n(x) � 2Tn(x)Tn(x) − T0(x)
T2n+1(x) � 2Tn+1(x)Tn(x) − T1(x) .

(B.8)

A useful point of note is that the evaluation of Tn(x) has a particularly well suited
choice of variable x � cos θ, which yields a simple fast-Fourier transform

Tn(cos θ) � cos nθ . (B.9)
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B.1 δ-function expansion
With δ (x − x0), where x ∈]x+∆x , x−∆x[ and x+∆x < x0 < x−∆x, we consider the
function f (x̃) � δ (x̃ − x̃0) /w(x̃), where the rescaled x̃ � (x − x)/∆x and x̃0 � (x0 −
x)/∆x. The expansion coefficients from Eq. (B.5) then become simple evaluations

cn � (δ0n + 1)
∫ 1

−1
dx̃ w(x̃)δ (x̃ − x̃0)

w(x̃) Tn(x̃)

� (δ0n + 1)Tn(x̃0) . (B.10)

The final form of the expansion is

δ (x − x0) �
1
∆x

f (x̃)w(x̃) � w(x̃)
∆x

∞∑
n�0
(δ0n + 1)Tn(x̃)Tn(x̃0) . (B.11)

Notice that we can exchange x and x0 above, such that an equivalent expansion
reads

δ (x − x0) �
w(x̃)
∆x

∞∑
n�0
(δ0n + 1)Tn(x̃)Tn(x̃0) . (B.12)

B.2 exp-function expansion
With exp(−ix), where x ∈]x + ∆x , x − ∆x[, the expansion coefficients from Eq. (B.5)
read

cn � (δ0n + 1)
∫ 1

−1
dx̃ w(x̃)e−i(∆x x̃+x)Tn(x̃)

� (δ0n + 1) e−ix(−i)n Jn (∆x) , (B.13)

where the usual x̃ � (x − x)/∆x. The Jn (x) is the Bessel function of the first kind,
and final expression is

e−ix
� e−ix

∞∑
n�0
(δ0n + 1) (−i)n Jn (∆x)Tn(x̃) (B.14)

B.3 Kernels
Now we have expressed our difficult function in terms of infinite sums. In practice
though, we need to truncate our sum to a finite number of polynomials N , such that

f (∆x x̃ + x) ≈
N∑

n�0
cnTn (x̃) (B.15)

The error we introduce by truncating the sum will oscillate, also known as Gibbs
oscillations. These can be alleviated through the use of kernels. A Kernel is a
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convolution of the expansion function c̃n � gn cn , where gn are the kernel scaling
coefficients.

In general we use the Jackson Kernel,

gn �

(NCby − n + 1) cos
(

πn
NCby+1

)
+ cot

(
π

NCby+1

)
sin

(
πn

NCby+1

)
NCby + 1 (B.16)

Of particular interest, applying the Jackson kernel to an expansion of the δ-function
yields a Gaussian-like approximation [68]

δ(x − x0) ∼
1√

2πσ2
J

exp

[
−(x − x0)2

2σ2
J

]
. (B.17)

In the worst case (near x0 � 0), the broadening (or Gaussian width) is σJ ≈ π∆x/Nδ,
where ∆x is the spectrum of x.

Other kernels also exist and an overview is presented in Weiße et al. [68].

B.4 Stochastic evaluation of traces
Before we move to applications of the Chebyshev expansions, we include an approx-
imation of traces for large problem sizes. The trace can be replaced by a stochastic
trace using random phase states |R〉

Tr [A] ≈ 1
NR

NR∑
R

〈R | A |R〉 (B.18)

where the random phase states are

|R〉 � 1
D

∑
j

e iφR j c†j |0〉 (B.19)

where φR j ∈ [−π; π] is the random phase of the state R on orbital j, NR is the
number of random states, and D is the number of orbitals, or indeed the problem
size.

The error of the approximation is ∝ 1/
√

DNR. Ensuring 1/
√

DNR � 10−4 yields the
condition NR � 108/D, in which case a system with 108 orbitals or more needs only
one random state to evaluate the trace.

B.5 Density of states
The density of states can be expressed

DOS � Tr [δ (E −H)] . (B.20)
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Using the Chebyshev expansion of the δ-function Eq. (B.11)

DOS ≈ 1
∆E

N∑
n�0
(δ0n + 1)Tn(Ẽ)Tr

[
Tn(H̃)

]
(B.21)

≈ 1
∆ENR

N∑
n�0
(δ0n + 1)Tn(Ẽ)

NR∑
R

〈R | Tn(H̃) |R〉 , (B.22)

where the rescaled energy Ẽ � 2(E − 〈E〉)/∆E and Hamiltonian H̃ � 2(H− 〈E〉)/∆E,
such that energy spectrum is bounded (E − 〈E〉) ∈ ] − ∆E/2;∆E/2[. The final form
in Eq. (B.22) uses the stochastic trace from Eq. (B.18).

The form 〈R | Tn(H̃) |R〉 is readily solved using the recursive relations from Eq. (B.2)

Tn+1(H̃) |R〉 � 2H̃Tn(H̃) |R〉 − Tn−1(H̃) |R〉 . (B.23)

However, we can employ a slight simplification by using the additional relations
from Eq. (B.8)

〈R | T2n(H̃) |R〉 � 2 〈R | Tn(H̃)︸¨̈ ¨̈ ¨̈︷︷¨̈ ¨̈ ¨̈︸
〈αn |

Tn(H̃) |R〉︸¨̈ ¨̈ ¨̈︷︷¨̈ ¨̈ ¨̈︸
|αn〉

− 〈R | T0(H̃) |R〉︸¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨︷︷¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨︸
1

, and (B.24)

〈R | T2n+1(H̃) |R〉 � 2 〈R | Tn+1(H̃)︸¨̈ ¨̈ ¨̈ ¨̈︷︷¨̈ ¨̈ ¨̈ ¨̈︸
〈αn+1 |

Tn(H̃) |R〉︸¨̈ ¨̈ ¨̈︷︷¨̈ ¨̈ ¨̈︸
|αn〉

− 〈R |︸︷︷︸
〈α0 |

T1(H̃) |R〉︸¨̈ ¨̈ ¨︷︷¨̈ ¨̈ ¨︸
|α1〉

. (B.25)

For each state |αn〉 we gain the values of both of the above, and effectively the first
sum in Eq. (B.22) can be evaluated twice as fast.

The power of the Chebyshev expansion really emerges at large sparse matrices H. By
using Eqs. (B.24) and (B.25) to iteratively evaluate the sums in Eq. (B.22), the problem
boils down to a sum of sparse-matrix-vector products, which are particularly fast
and memory efficient.

B.6 Electronic mean squared displacement

The electronic mean squared displacement is defined in the Kubo method [72] [see
also Section 3.2]

∆X2
α(E, t) �

Tr
[
δ (E −H) (Xα(t) − Xα(0))2

]
Tr [δ (E −H)] , (B.26)

where Xα(t) � U(−t)XαU(t) is the position operator in the α-direction (Heisenberg
picture), and U(t) � e−iHt/~ is the evolution operator

To evaluate ∆X2
α, we first recognize the DOS in the denominator, which can be

calculated using Eq. (B.22). The numerator is rearranged to a symmetric form

C � Tr
[
δ (E −H) (Xα(t) − Xα(0))2

]
� Tr

[
[X,U(t)]† δ (E −H) [X,U(t)]

]
(B.27)
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where [A,B] is the commutator between the A and B. Then we replace the exact
trace with the stochastic approximation from Eq. (B.18)

C ≈ 1
NR

NR∑
R

〈R | [X,U(t)]†︸¨̈ ¨̈ ¨̈ ¨̈ ¨̈︷︷¨̈ ¨̈ ¨̈ ¨̈ ¨̈︸〈
ψR(t)

��
δ (E −H) [X,U(t)] |R〉︸¨̈ ¨̈ ¨̈ ¨̈ ¨︷︷¨̈ ¨̈ ¨̈ ¨̈ ¨︸��ψR(t)

〉 (B.28)

≈ 1
aNR

Nδ∑
n�0
(δ0n + 1)Tn(Ẽ)

NR∑
R

〈
ψR(t)

�� Tn(H̃)
��ψR(t)

〉
, (B.29)

where in the last step we replaced the δ-function with the Chebyshev expansion from
Eq. (B.18). Notice that this form is exactly that of the DOS, where |R〉 →

��ψR(t)
〉
,

and we can follow the exact same steps as in Eqs. (B.23) to (B.25).

The entire time evolution is now bundled in to the states
��ψR(t)

〉
� [X,U(t)] |R〉 . The

time evolution operator is replaced by its Chebyshev approximation in Eq. (B.14).
However, it is worth noting that the number of expansion coefficients drops consid-
erable for small time evolutions δt rather than large.

From the state
��ψR(t)

〉
at time t we find the evolved state at time t + δt,��ψR(t + δt)

〉
� [X,U(t + δt)] |R〉 (B.30)
� [U(δt) [X,U(t)] + [X,U(δt)]U(t)] |R〉 (B.31)
� U(δt)

��ψR(t)
〉
+ [X,U(δt)]U(t) |R〉︸¨̈ ¨︷︷¨̈ ¨︸

|R(t)〉

. (B.32)

We divide this evolution into three steps

|S1(t + δt)〉 � U(δt)
��ψR(t)

〉
(B.33)

|S2(t + δt)〉 � [X,U(δt)] |R(t)〉 (B.34)
|S3(t + δt)〉 � U(δt) |R(t)〉 , (B.35)

such that we find ��ψR(t + δt)
〉
� |S1(t + δt)〉 + |S2(t + δt)〉 (B.36)

|R(t + δt)〉 � |S3(t + δt)〉 . (B.37)

The time evolution operators are approximated by Chebyshev approximations from
Eq. (B.14), and we get

|S1(t + δt)〉 ≈ e−ibδt/~
Nexp∑
n�0
(δ0n + 1) (−i)n Jn(aδt/~)Tn(H̃)

��ψR(t)
〉

(B.38)

|S2(t + δt)〉 ≈ e−ibδt/~
Nexp∑
n�0
(δ0n + 1) (−i)n Jn(aδt/~)

[
X, Tn(H̃)

]
|R(t)〉 (B.39)

|S3(t + δt)〉 ≈ e−ibδt/~
Nexp∑
n�0
(δ0n + 1) (−i)n Jn(aδt/~)Tn(H̃) |R(t)〉 , (B.40)
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Steps one and three are readily solved using the recursive relations from Eq. (B.2)
[same as in Eq. (B.23)]

Tn+1(H̃)
��ψR(t)

〉︸¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈︷︷¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈︸��βn+1
〉 � 2H̃ Tn(H̃)

��ψR(t)
〉︸¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨︷︷¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨︸��βn

〉 −Tn−1(H̃)
��ψR(t)

〉︸¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈︷︷¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈︸��βn−1
〉 (B.41)

Tn+1(H̃) |R(t)〉︸¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈︷︷¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈︸��γn+1
〉 � 2H̃ Tn(H̃) |R(t)〉︸¨̈ ¨̈ ¨̈ ¨̈ ¨︷︷¨̈ ¨̈ ¨̈ ¨̈ ¨︸��γn

〉 −Tn−1(H̃) |R(t)〉︸¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈︷︷¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈︸��γn−1
〉 . (B.42)

The final step (S2) is solve using the recursive relations from Eq. (B.2) with in the
commutator

[
X, Tn(H̃)

]
. We find[

X, Tn+1(H̃)
]
|R(t)〉︸¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨︷︷¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨︸��ηn+1

〉 � 2
[
X, H̃Tn(H̃)

]
|R(t)〉 −

[
X, Tn−1(H̃)

]
|R(t)〉 (B.43)

� 2H̃
[
X, Tn(H̃)

]
|R(t)〉︸¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈︷︷¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈︸��ηn

〉 +2
[
X, H̃

]
Tn(H̃) |R(t)〉︸¨̈ ¨̈ ¨̈ ¨̈ ¨︷︷¨̈ ¨̈ ¨̈ ¨̈ ¨︸��γn

〉 −
[
X, Tn−1(H̃)

]
|R(t)〉︸¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨︷︷¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨︸��ηn−1

〉
(B.44)

where we have used the commutator relation [A, BC] � B[A, C] + [A, B]C.

The final set of master equations become

��ψR(t + δt)
〉
�

N∑
n�0
(δ0n + 1) (−i)n Jn(aδt/~)

(��βn
〉
+

��ηn
〉)

(B.45)

|R(t + δt)〉 �
N∑

n�0
(δ0n + 1) (−i)n Jn(aδt/~)

��γn
〉

(B.46)

For each evolution t → t + δt we need the β, η, and γ states. To then determine
the full ∆X2

α [Eq. (B.29)], the α states are determined from the newly evolved states��ψR(t + δt)
〉
.
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Graphene bilayer systems are known to exhibit a band gap when the layer symmetry is broken by applying
a perpendicular electric field. The resulting band structure resembles that of a conventional semiconductor with
a parabolic dispersion. Here, we introduce a bilayer graphene heterostructure, where single-layer graphene is
placed on top of another layer of graphene with a regular lattice of antidots. We dub this class of graphene systems
GOAL: graphene on graphene antidot lattice. By varying the structure geometry, band-structure engineering can
be performed to obtain linearly dispersing bands (with a high concomitant mobility), which nevertheless can be
made gapped with a perpendicular field. We analyze the electronic structure and transport properties of various
types of GOALs, and draw general conclusions about their properties to aid their design in experiments.

DOI: 10.1103/PhysRevB.91.115424 PACS number(s): 73.21.Ac, 73.21.Cd, 72.80.Vp

I. INTRODUCTION

The intrinsic properties of graphene, including ballistic
transport, physical strength, and optical near-transparency,
are very attractive for consumer electronics as well as
for fundamental research platforms [1,2]. One of the main
attractions of graphene is the prospect of manipulating its
electronic properties and introducing a band gap, making
the semimetal into a semiconductor as required for many
electronic applications [3–5]. As conventional potential bar-
riers in graphene can exhibit Klein tunneling [1,2], much
research has focused on finding methods to introduce a band
gap in graphene. Most proposals use structural modifications
of graphene systems, such as nanoribbons, or superlattice
structures imposed by periodic gating or strain [6–14]. More
recent attempts use chemical modification through absorption
or substitution [15,16]. Periodic perforation of graphene
sheets, to form so-called graphene antidot lattices (GAL), is
of particular interest since theoretical predictions suggest the
possibility of obtaining sizable band gaps [17–22]. The band
gaps of nanostructured graphene are, however, very sensitive to
disorder and defects [23,24]. Current nanostructure fabrication
methods, e.g., block copolymer [25,26] or e-beam [27–32]
lithography, will inevitably yield systems with a significant de-
gree of disorder, especially near perforation edges. Yet another
emerging strategy towards altering the intrinsic behavior of
graphene is to use structures composed of several 2D materials.
Bilayer graphene opens a band gap when an asymmetry is
introduced between the two graphene layers [3,33–37]. This
is usually obtained by applying an electric field to create a
potential difference between the top and bottom layers. A
transistor based on bilayer graphene has already been reported
with a high on-off ratio ∼100 [3]. Large areas of bilayer
graphene can be fabricated, without etching, by mechanical
exfoliation [38] or by growth on a substrate [36], which reduces
the risk of generating imperfections. Unfortunately, most of
these gapped or modified graphene systems lack the linear
band structure of pristine graphene, e.g., bilayer graphene
has a parabolic dispersion [35,36]. The implication of the
parabolic bands is a lower mobility and thus degraded device
performance [5]. To overcome this, we propose the use of
heterogeneous multilayered structures. Bilayer superlattices

have been studied in detail, with, e.g., periodic potential
barriers [39], and dual-layer antidot lattices [40]. A 1- or 2D
potential modulation of the potential in bilayer graphene has
even been predicted to yield linear dispersion [41]. However,
heterostructure bilayers composed of two different single-layer
systems are not widely studied. Stacked heterostructures from
multiple 2D materials created and held together only by van
der Waals (vdW) forces [47] are particularly interesting as the
interfaces may be kept clean from processing chemicals.

Previous studies have theoretically looked into single-
layer doping in bilayer graphene, [42–45] and experimentally
single-sided oxygenation of bilayer graphene [46], the latter
of which reports electronic decoupling of one of the layers. In
this work, we propose an all-carbon heterostructure that serves
as a hybrid between single- and bilayer graphene. It exhibits
essentially linear bands at zero transverse bias while retaining
the possibility of a bias-tunable band gap when dual-gating the
top and bottom layers. The material is a bilayer heterostructure
composed of a pristine graphene layer and a GAL layer, which
we call Graphene On (graphene) Antidot Lattice (GOAL). We
can hypothesize at least two methods in which a GOAL-based
device could be realized experimentally, by either employing
standard lithography [27–32] to etch the antidot pattern in only
a single layer of bilayer graphene, or alternatively, by creating
a sheet of GAL and then transferring pristine graphene on top
using vdW stacking techniques. [47]

The remainder of this paper is organized as follows.
The atomic structure and the tight-binding model used for
describing GOAL systems is introduced in Sec. II. Section III
examines the properties of a representative sample of GOALs
both with and without an applied bias. In Sec. IV, the effects
of different schemes for injecting current into and out of a
GOAL device are addressed using two-lead transport simula-
tions. Finally, in Sec. V, we discuss the implications of the
investigated GOAL properties, the limitations of such systems
and considerations relating to feasibility and application.

II. GEOMETRIES AND METHODS

We consider a heterostructure consisting of a single layer
of pristine graphene on top of a layer of GAL, as illustrated

1098-0121/2015/91(11)/115424(12) 115424-1 ©2015 American Physical Society
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FIG. 1. (Color online) (a) Schematic illustration of the consid-
ered structures, consisting of a single graphene layer (blue) on top
of a GAL layer (red), arranged in an AB stacking. (b) A closer view
of the atomic structure of the Wigner-Seitz cell of a {L,R} = {6,2}
GOAL, with carbon atoms in the graphene (GAL) layer illustrated
with blue filled circles (red open circles). The integers L and R used
for denoting a given geometry are illustrated and the antidot hole
edge is highlighted by a black line. The GAL superlattice of the
illustrated geometry is of the type that always has a band gap, as
explained in the main text. Zooms of two different corners of the
antidot, corresponding to the thick blue outlines are shown on the
right. The corner site in the bottom-left corner is a dimer, identified
by the filled blue circle on top of an open red circle. Conversely, the
corner site in the bottom-right corner is a nondimer, identified by
only either a filled blue or open red circle. This gives rise to a C3

symmetry, as discussed in the main text.

schematically in Fig. 1(a). The twist angle between the
layers greatly influences the electronic properties of bilayer
graphene [34,48], and we expect the properties of the proposed
GOAL structures to also depend on the angle between the two
layers. However, for simplicity, we focus in this paper on
perfect Bernal (AB) stacking of the two layers. We discuss the
possible influence of the angle in more detail in the final section
of the paper. Furthermore, experiments suggest the possibility
of manually twisting the top layer until it “locks” into place at
the Bernal stacking angle [49].

Similar to the intricate edge dependence observed for
graphene nanoribbons [7], the exact shape of the antidot
greatly influences the electronic properties of isolated GALs.
In particular, extended regions of zigzag edges, which will
generally be present for larger, circular holes, tend to induce
quasilocalized states that significantly quench any present
band gap [20,21]. To simplify the analysis of the proposed
structures, we focus on hexagonal holes with armchair edges.
Experimental techniques exist that tend to favor the creation

of specific edge geometries [27,32,50,51]. In addition to the
hole shape, the orientation of the GAL superlattice with
respect to the pristine graphene lattice has a profound impact
on the electronic properties [18,21]. The orientation of a
superlattice may be defined by the vectors between two
neighboring antidots R = n1a1 + n2a2, where a1 and a2 are
the lattice vectors of pristine graphene. It has been shown that
if mod(n1 − n2,3) = 0 for any R, the degeneracy at the Dirac
point will break and a band gap is induced [18,52,53]. In
this paper, we consider GALs with two types of triangular
superlattices: those with vectors parallel to carbon-carbon
bonds, which always induce a band gap, and those with vectors
parallel to the pristine graphene lattice vectors, which only
induce gaps for a subset of superlattices. We only briefly
discuss GOALs where the superlattice of the GAL layer is of
the latter type, which we refer to as rotated GOALs and rotated
GALs, respectively, and focus mostly on the GAL superlattices
for which band gaps are always present. We demonstrate
below that GOALs containing gapped GAL layers display
similar properties regardless of the superlattice type, whereas
GOALs with nongapped GAL layers essentially behave as
bilayer graphene with a renormalized Fermi velocity.

The Wigner-Seitz cell of a specific GOAL is illustrated in
Fig. 1(b), where the red open circles represent the GAL layer
atoms and the blue filled circles are the graphene layer atoms.
To denote a given GOAL, we use the notation {L,R}, where
La is the side length of the hexagonal unit cell, while

√
3Ra

is the side length of the hexagonal hole in the GAL layer, with
a = 2.46Å the graphene lattice constant. We use {L,R}rot to
refer to GOALs in which the isolated GAL layer is of the
rotated type, as discussed above. Note that in this case, the
Wigner-Seitz cell is not as shown in Fig. 1 but is rather in the
shape of a rhombus with side length La [18]. The condition
for band gaps reads L = 3n + 2, where n = 0,1,· for isolated
rotated GALs and within our model the other two thirds of
the rotated GALs are gapless. The superlattice constant of a
GOAL is � = √

3La, while for a rotated GOAL it becomes
�rot = (L + 1)a.

In Bernal-stacked bilayer graphene there are four distinct
sublattices, two in each layer. Within each layer, we refer to
these as dimer and nondimer sites, and these sit directly above
or below carbon sites (dimers) or the centers of hexagons
(nondimers) in the other layer. These sites are illustrated in the
right of Fig. 1(b), where two of the antidot corners have been
magnified. It has been shown that the low-energy properties of
bilayer graphene are dominated by nondimer sites, and can be
described using an effective two-band model with parabolic
bands touching at the Fermi energy [35]. The introduction
of the hole, forming the GAL layer of the GOAL system
results in a higher number of sites from each sublattice in the
graphene layer than in the GAL layer, but within our model
maintains the sublattice symmetry within each individual
layer. The interlayer asymmetry has important consequences
when applying a bias across the layers, which we will discuss
below in Sec. III B. Furthermore, the structures of GOALs no
longer display a 60◦ rotational symmetry. Neighboring corners
of a hexagonal hole are now associated with sites from opposite
sublattices, as can be seen on the right of Fig. 1(b), reducing
the C6 symmetry of bilayer graphene to C3. Not all carbon
sites in the graphene layer of a GOAL system are true dimers
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or nondimers, as the respective sites or hexagons below may
have been removed by the holes. However, they still exhibit
similar behavior to other sites in the same sublattice and we
will thus collectively refer to them as dimers and nondimers,
respectively.

To calculate the electronic properties of the proposed
structures, we use a nearest-neighbor tight-binding model.
The low-energy properties of single-layer graphene are quite
accurately described by a model taking into account just
the nearest-neighbor hopping term, γ0. For bilayer graphene,
additional interlayer hopping terms need to be included. We
consider the Slonczewski-Weiss-McClure model [35] with the
direct intralayer hopping term γ1 between AB dimers and the
skew hopping terms γ3 and γ4 between dimers and nondimers.
As we show below in Sec. III, omitting the skew hopping terms
has no qualitative impact on the results obtained. Therefore in
most our calculations we disregard the skew hopping terms
which are responsible for trigonal warping and electron-hole
asymmetry in bilayer graphene [35]. Furthermore, we do
not include any on-site energy difference between dimer and
nondimer sites [35]. The Hamiltonian then reads

H =
∑

i,j∈{nn}
γ0cic

†
j +

∑
i,j∈{dimers}

γ1cic
†
j + H.c., (1)

where {nn} is the collection of nearest-neighbor pairs within
each layer and {dimers} is the collection of dimer pairs. We
take γ0 = −3.16 eV and γ1 = 0.381 eV [35,54]. An interlayer
bias U (initially U = 0) can be included via a shift ±U/2
of the on-site energies on the GAL and the graphene layer,
respectively. We define a positive bias to be one where the
on-site energies of the graphene (GAL) layer are increased
(decreased), as illustrated in Fig. 1(a).

III. ELECTRONIC PROPERTIES

We begin by examining the electronic band structures of
some GOAL systems in the absence of a transverse bias.
The left-most panel of Fig. 2 shows the band structure of a
{16,6} GOAL. The {16,R} GOALs all contain GAL layers
with a triangular superlattice, which in their isolated form

are gapped for all R. The solid lines show the band structure
calculated with intralayer and direct interlayer hoppings only,
whereas the dashed lines show the results obtained when
including also the skew hopping terms, γ3 = −0.38 eV and
γ4 = 0.14 eV [35,54]. The most striking features of the {16,6}
band structure are the linear bands near the Fermi energy,
resembling the linear bands of single-layer graphene. The
reduced Brillouin zone of the GOAL means that the K and
K′ points of pristine graphene are folded onto the � point.
The most significant consequence of the skew hopping terms
is to split the linear band into two linear bands with slightly
different Fermi velocities. The band splitting and the difference
in Fermi velocities becomes more pronounced in cases near
pristine bilayer graphene, where the antidot size is relatively
small. As we are mainly interested in a qualitative study of
the proposed structures we disregard the skew hopping terms
from hereon.

To illustrate the transition from the parabolic bands of
bilayer graphene to the linear bands of single-layer graphene
as the antidot size is increased, we show in the right panels
of Fig. 2 the dispersion relation near the � point for the
{16,R} GOALs with increasing values of R. For comparison,
the dashed (dotted) lines illustrate the pristine single-layer
(bilayer) graphene dispersion, folded into the � point. As
the antidot size is increased, a transition from bilayer to
single-layer-graphene-like (SLG-like) electronic properties is
quite apparent, but with Fermi velocities that are slightly
smaller than that of single-layer graphene. This transition is
also clear from Fig. 3, which plots the Fermi velocity of the
{16,R} GOALs at E = 0 as a function of R. The transition
towards SLG-like bands does not occur via an ever increasing
curvature of two parabolic bands touching at the Fermi energy.
Instead, we always observe a region of linear bands for R > 0,
albeit the energy range in which the bands are linear is very
narrow for small antidot sizes, and is accompanied by a
strongly reduced Fermi velocity. Thus the low-energy band
structure of GOAL can be considered as the crossing of two
bands, similar to the case of single-layer graphene.

As the antidot size is increased, more atoms are removed
from the GAL layer and this leads to an effective reduction
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FIG. 2. (Color online) Band structures of {16,R} GOALs. The left-most panel shows the full band structure within our model (solid blue
lines), and for comparison the results obtained if skew scattering terms are included (red dashed lines). The right panels show a section of the
band structure of GOALs near the � point, for increasing antidot sizes, in solid lines. Dashed gray lines show the corresponding single-layer
graphene dispersion, while dotted gray lines illustrate the bilayer graphene dispersion.
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FIG. 3. (Color online) The Fermi velocity vF,GOAL of {16,R}
GOALs as a function of R. The vF,GOAL is shown relative to the
Fermi velocity of pristine graphene vF,SLG.

in the amount of bilayer graphene in the GOAL. We can
quantify this via the relative area of bilayer graphene in the
system, i.e., the ratio of the GAL and SLG layer areas, fBLG =
AGAL/ASLG = 1 − 2π

3
√

3
R2

L2 . It is reasonable to ask whether the
cause of the transition from parabolic to linear bands is simply
caused by a reduction in fBLG → 0 as R is increased. To
determine whether this is indeed the case, we show in Fig. 4
the band structures near the Dirac point for two {27,R}rot

GOALs, which consist of gapless rotated GAL layers. The
superlattice constants of the {27,R}rot and the corresponding
{16,R} GOALs are roughly similar (�/�rot ≈ 1.01) yielding
very similar relative areas fBLG. The band structures for the two
{27,R}rot GOALs are shown in solid lines together with those
of bilayer graphene in dashed gray lines. These rotated GOALs
show a completely different dispersion, with no transition
towards linear bands as the antidot size increases, even beyond
the sizes shown in the figure. Despite having similar bilayer
relative areas fBLG to the GOALs considered in Fig. 2, the
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FIG. 4. (Color online) Band structures near the Dirac point of two
{27,R}rot GOALs with gapless GAL layers. The solid lines indicate
the GOAL band structures, while the dashed gray lines are the band
structure of pristine bilayer graphene. The dashed red lines show the
bilayer graphene band structure with a renormalized Fermi velocity,
as discussed in the main text.

band structures of the rotated GOALs remain parabolic and
closely resemble that of pristine bilayer graphene.

We note that the isolated rotated GALs are gapless and
that their band structures retain linear bands similar to
pristine single-layer graphene, renormalized to a lower Fermi
velocity [18]. This suggests that GOALs with gapless rotated
GAL layers can be described by a model similar to that of
bilayer graphene, but with a renormalized Fermi velocity. The
low-energy dispersion of bilayer graphene is well described in
a continuum model [35],

E = ±1/2γ1

[√
(1 + 4�2v2

F k2/γ 2
1 − 1

]
, (2)

where vF is the Fermi velocity of single-layer graphene.
To model the rotated GOAL, we replace the Fermi velocity
with the average Fermi velocity of the pristine graphene and
renormalized GAL velocities, v̄F . The results of this simple
model are illustrated by red dashed lines in Fig. 4, and indeed
show quite good agreement with the full tight-binding results.
Interestingly, rotated GOALs with gapped rotated GAL layers
(e.g., {26,R}rot, not shown) display no qualitative difference
from the regular GOALs with gapped nonrotated GAL layers.

A. Distribution of states

The transition from parabolic to linear bands can thus not
be explained entirely by the relative area of bilayer graphene,
fBLG, in the GOAL system, but instead depends critically
on the existence of a band gap in the isolated GAL layer.
To illustrate how the band gap of the GAL layer induces
the SLG-like behavior in the combined system, we show
the projected density of states (PDOS) at the Fermi energy
E = 0 for each layer of the {9,2} and {9,3} GOALs in
Figs. 5(a) and 5(b). We will later discuss the differences in
{15,R}rot GOALs which consist of gapless GAL layers. The
properties illustrated by the {9,R} GOALs are qualitatively
similar to those of {16,R}. The PDOS of the two layers
are displayed separately, with the graphene layer above and
the GAL layer below. Furthermore, the PDOS of dimers
and nondimers are illustrated by filled red and blue circles,
respectively. The size of the filled circles represents the value
of the PDOS, which is normalized relative to that of pristine
single-layer graphene shown by the open circles. The PDOS
of the {9,2} and {9,3} GOALs are illustrated in Figs. 5(a)
and 5(b), respectively. We recall that in the case of pristine
single-layer (bilayer) graphene the Fermi energy density of
states is equally distributed across all sites (all nondimer sites).
Examining first the graphene layers of the GOAL systems, we
note that, unlike in bilayer graphene, there is a nonzero PDOS
on dimer sites. Furthermore, this is equally distributed within
the graphene layer, regardless of whether or not the sites are
above another carbon site or above an antidot. Comparing the
{9,2} and {9,3} cases, we see that the PDOS on dimer sites in
the graphene layer increases with the antidot size. Meanwhile,
the PDOS of the graphene layer nondimers remains unchanged
from that of single-layer graphene as the antidot size varies.
Interestingly, in the GAL layer dimer PDOS remains zero for
all antidot sizes. The PDOS of the nondimer sites in the GAL
layer displays a C3 symmetry, yielding a three-fold symmetric
confinement around antidot corners associated with nondimer
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FIG. 5. (Color online) The projected density of states at the Fermi
energy E = 0. For the four systems considered, the PDOS of the two
layers are displayed separately; the graphene layer above the GAL
layer. The panels illustrate the PDOS of the {9,2} GOAL (a), the {9,3}
GOAL (b), the {15,2}rot GOAL (c), and the {15,3}rot GOAL (d). The
PDOS of dimer sites are illustrated by red filled circles and PDOS of
nondimer sites by blue filled circles. Their sizes represent the value
of the PDOS relative to that of pristine single-layer graphene, shown
by open circles. Thus, if the PDOS is lower than that of pristine
graphene, the filled circles are smaller than the open circles and vice
versa.

sites. Furthermore, the PDOS of the GAL layer nondimers
clearly decreases as the antidot size is increased. The net result
of these features is that, for large antidots, the PDOS eventually
displays a distribution largely confined in the graphene layer.
This emerges from a decrease in the GAL layer nondimer
PDOS and an increase in that of the graphene layer dimer
sites.

We can illustrate these findings more clearly by considering
the PDOS integrated over all sites within each of the layers,
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FIG. 6. (Color online) The integrated PDOS (overlap) of various
GOALs. (a) The overlap of the graphene layer for {16,R} (solid lines)
and {27,R}rot (dashed lines) GOALs. The inset displays the dimer
overlap in the graphene layer for the {16,R} GOALs. The overlap of
the nondimers in the graphene layer, OSLG,nondimers, does not change.
(b) The relative overlap of the GAL layer for the {16,R} (solid lines)
and {27,R}rot (dashed lines) GOALs. (c) The overlap with the GAL
layer at the � point vs the band gap of the isolated GAL layer for
{L,R} GOALs with L ∈ [7; 24] and valid R within [0,L]. The color
of each dot indicates the value of L.

which we quantify via the overlap

Oi(E) ≡
∑

n

∑
m∈i

|cm(En)|2δ(E − En), (3)

where cm(En) is the expansion coefficient of the nth eigenstate
on to the π orbital centered at the mth atomic site, and where
i denotes the layer, i ∈ {GAL,SLG}. A value of OSLG(E) =
OGAL(E) = 1

2 thus corresponds to an equal distribution of the
eigenstates across both layers. The graphene layer localization
at the Fermi energy is illustrated for {16,R} GOALs in
Fig. 6(a). The solid line in the figure shows the graphene
layer overlap as a function of antidot size. As R is increased,
the graphene layer overlap increases, i.e., the density of states
become more confined in the graphene layer. The increased
confinement is purely due to increased dimer PDOS, as
apparent from the inset in Fig. 6(a), which displays the dimer
overlap in the graphene layer, obtained by limiting the sum
in Eq. (3) to dimer sites, as a function of antidot size. The
increased graphene layer localization could be due to a simple
redistribution of the density of states on to the remaining sites,
where the overlap is proportional to the number of sites in
the particular layer. We therefore consider the relative overlap
OiNTot/Ni , with NTot denoting the total number of carbon
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atoms with R = 0, while Ni the number of carbon atoms
within the layer i. The valueOGALNTot/NGAL = 1 thus denotes
a GOAL with layer overlaps proportional to the number of
sites in that particular layer. We show the relative overlap
OGALNTot/NGAL of the {16,R} GOALs in Fig. 6(b). The solid
line shows the relative overlap of the GAL layer as a function
of the antidot size. The relative overlap is below unity for any
nonzero R and decreases with increasing antidot size. Thus
the GAL layer confinement decreases more quickly than a
simple redistribution can account for, pushing the density of
states even further into the graphene layer. This transition from
bilayer to single-layer confinement is critically dependent on
the GAL band gap, and we therefore illustrate the GAL layer
overlap for various {L,R} GOALs as a function of the isolated
GAL gap in Fig. 6(c). Each GOAL is represented by a point
colored by the value of L. We find that the overlap in the GAL
layer decreases with the GAL band gap in a largely one-to-one
correlation, except at high GAL band gaps obtained through
rather impractical antidot lattices, e.g., where the distance
between antidots is only slightly larger than the antidot size.
As the GAL band gap increases states are pushed out of the
GAL layer and into the graphene layer, effectively localizing
the states in a single-layer yielding the SLG-like behavior. This
occurs, as we saw in Fig. 5, via a transfer of states between
the GAL layer nondimer and graphene layer dimer sites as the
antidot size, and thus the band gap, is increased.

To further illustrate the importance of the GAL band gap,
we now consider the rotated GOALs which consist of gapless
GAL layers and display a renormalized bilayerlike dispersion.
The PDOS at E = 0 for the {15,2}rot and {15,3}rot GOALs
are illustrated in Figs. 5(c) and 5(d), respectively. The most
notable feature in the rotated GOAL systems, as opposed
to the nonrotated {9,R} GOALs, is the zero PDOS of dimer
sites in both layers of the rotated GOALs. The PDOS of the
nondimer sites in the graphene layer remains unaffected by the
introduction of an antidot and the increasing of R. Therefore
the PDOS of the GAL layer nondimer sites must increase.
This is more clearly seen in Fig. 6(a) where the graphene layer
overlap of the {27,R}rot GOALs is illustrated by the dotted
red line. As the antidot size increases, no changes occur in
the overlap of the graphene layer and hence also not in the
overlap of the GAL layer. In Fig. 6(b), we display the relative
overlap of the GAL layer of the {27,R}rot by the dotted red line.
In these rotated GOALs, the relative overlap increases above
unity, corresponding to the redistribution of the PDOS onto the
remaining nondimer sites within the GAL layer. This is also
seen in the GAL layers of the {15,R}rot GOALs shown in right
panels of Fig. 5, where the PDOS of the individual nondimer
sites has been significantly increased compared to the {9,R}
GOALs. GOALs with gapless GAL layers do not push states
into the graphene layer, but instead simply redistribute the
density of states in the nondimer sites of the GAL layer. A
low-energy distribution of states amongst nondimer sites only
is a noted property of bilayer graphene, and confirms again the
relation between the properties of rotated GOALs and those of
the pristine bilayer. We limit the remainder of this paper to an
investigation of the nonrotated GOALs, where the migration
of states from the GAL to the graphene layer leads to an even
distribution of states amongst the sublattices of the graphene
layer, and thus to SLG-like behavior.

B. Bias-tunable band gaps

We now turn to biased structures. A potential difference
between the layers induces a band gap in the case of pristine
bilayer graphene, the size of which can be tuned by the bias
voltage [33,35,36,55]. The potential U can be created by
a uniform electric field perpendicular to the two layers. In
experimental systems, the voltage difference V is an induced
quantity from the larger applied potential Vext that due to
screening and interlayer coupling is significantly reduced. For
bilayer graphene, the potential is uniform within the two layers
and the induced voltage difference can be assumed linearly
proportional to the applied voltage V ∝ Vext, in which case
currently U has been predicted to realistically lie between
±0.3 eV [55]. We note that in GOAL the edges will likely
induce an inhomogeneous potential distribution. To find this,
distribution requires a self-consistent solution to the Poisson
equation and band structure, a level of complication beyond
the current scope. We limit our model to include the bias
via a uniformly distributed on-site energy shift ±U/2 for the
graphene and GAL layers respectively.

In a biased GOAL system, the interlayer asymmetry of the
on-site energies opens a band gap around the Dirac point.
We illustrate this in Fig. 7(a) through the band structures
of two biased {16,R} GOALs at U = 0.2 eV. In this figure,
the bands of biased {16,3} and {16,6} GOALs are shown in
dashed red and solid blue lines respectively, together with the
bands of pristine biased bilayer graphene in dotted gray lines.
The band gap of biased {16,6} GOAL is smaller than that of
biased bilayer graphene or of the smaller antidot GOAL. The
change of the gap size is quantified in Fig. 7(b) where we
illustrate the band gaps of several biased {16,R} GOALs as a
function of U . Each {16,R} GOAL is shown as a solid line
colored according to the value of R. Additionally, the band
gap of biased bilayer graphene is shown as a dashed line. The
band structures of the two biased {16,R} GOALs in Fig. 7(a)
further display electron-hole asymmetry. This arises due to the
atomic imbalance between the two layers combined with the
equal but opposite on-site energy shifts used to model the bias.
While the effect is minor in case of small antidots, for larger
antidots the net energy shift caused by the imbalanced bias
distribution yields a valence band shifted towards E = 0. We
note also that the band structure of the biased {16,6} GOAL
resembles that of gapped graphene, identified by the absence
of the “Mexican hat” profile of biased bilayer graphene [35].
The absence of the flat profiles of biased bilayer graphene
yields larger group velocities, which in turn is very attractive
in fast electronic applications. The transition between the
bilayer graphene and gapped SLG-like dispersion is smooth,
and similar to the zero-bias case can not be contributed solely
to the reduced area fBLG. To illustrate this, we plot the biased
GOAL band gap dependence on the isolated GAL gap for
various {L,R} GOALs in Fig. 7(c) at U = 0.2 eV, where
each GOAL is represented by a point colored by the value
of L. The figure demonstrates clearly that an increase in the
isolated GAL gap will cause a decrease of the biased GOAL
band gap. Although perhaps counterintuitive, this behavior
is the direct result of GOALs with large band gap GAL
layers exhibiting graphene layer confinement. This effectively
reduces the interlayer asymmetry felt by the electronic states
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FIG. 7. (Color online) Band structures and gaps of biased various
GOALs. (a) Band structures for the {16,3} (red, dashed) and {16,6}
GOALs (blue, solid) and pristine bilayer graphene (gray, dotted), with
a bias U = 0.2 eV applied across the layers. The bands resemble
biased bilayer graphene, i.e., the “Mexican hat” profile, for the small
antidot {16,3} and gapped single-layer graphene for the large antidot
{16,6} GOAL. (b) Band gaps for {16,R} GOALs with R = 3,4,5,6,7
and an increasing bias. Note the near-linear dependence on the bias
for all antidot sizes. (c) The band gap of {L,R} GOALs with a bias
U = 0.2 eV applied across the layers versus the isolated GAL layer
gap, with L ∈ [7; 26] and valid R within [0,L]. The color of each dot
indicates the value of L.

and reduces the band gap of the combined structure. Figure 7(c)
displays a clear correlation between the GAL band gap and
the biased GOAL band gap, though it does display increased
spreading as the GAL band gap is increased. This spreading
signifies an additional complication due to the uniform on-site
energy shift ±U/2 in the two asymmetric layers. While the
largest band gaps are found for GOAL systems whose unbiased
electronic structure most closely resembles that of bilayer
graphene, there is a range of {L,R} values that yield both
sizable band gaps and largely linear dispersion relations, e.g.,
the {16,6} shown here and also the {12,4} case. This presents
the interesting possibility of combining high Fermi velocity
electronic transport similar to single-layer graphene with a
gate-controllable band gap.

IV. TRANSPORT PROPERTIES

We mentioned two ways of experimentally fabricating
GOAL devices; either by single-layer etching bilayer graphene
or stacking a graphene sheet onto a GAL sheet. Most
experimental transport measurements in bilayer graphene have
been performed with top-contacts to inject current, and using

FIG. 8. A schematic illustration of the GOAL device transport
model. The incoming and outgoing leads (black), both of which are
semi-infinite sheets of either single- or bilayer graphene, are coupled
to a central GOAL device (gray). Bilayer leads are coupled to both
layers of the GOAL device, while single-layer leads are coupled to
either layer of the GOAL device. The considered model is periodic
in the transverse direction.

dual-gates to control the interlayer bias [56–58]. With recent
advances in side-contacts, first in single-layer graphene [59]
and then in bilayer graphene [60], there are now several ways
of injecting current into a bilayer material such as GOAL.
The consequence of the choice of contacts has been studied
for pristine bilayer graphene ribbons and flakes [61,62]. To
illustrate the consequences of the choice of contacts, we
consider the electronic transport through a finite-width strip
of GOAL. To calculate the transport properties, we employ
the Landauer-Büttiker formalism. The transport is calculated
between two leads composed of either single or bilayer
graphene. A schematic illustration of the transport model is
shown in Fig. 8. In case of bilayer leads, these are connected
to both the graphene and GAL layers, while single-layer leads
are coupled to either the graphene or the GAL layer. Both the
leads and the device are periodic in the transverse direction,
and the unit cell used in calculations is outlined by the dashed
rectangle. We consider transport in the zigzag direction. This
yields a dense cross-section of antidots, effectively reducing
the width of the GOAL device needed to represent large-width
GOAL transport [20]. Our calculations are performed on strips
of GOAL with seven antidots rows present along the transport
direction. This width yields a well defined transport gap in the
isolated GAL layer [20].

With respect to the Landauer-Büttiker formula G(E) =
2e2

h
T (E), the transmission T is determined using the Fisher-

Lee relation which couples the transport to the Green’s
function of the full system [63,64]. The two leads are accounted
for in the central device through the left (L) and right (R)
self-energies �L and �R. The retarded Green’s function at
energy E then reads

G(E) = [E + iη − HD − �L(E) − �R(E)]−1, (4)

where HD is the isolated Hamiltonian of the device region
and iη is a small imaginary parameter needed for numerical
stability. Finally, the transmission is determined using the
relation

T (E) = Tr[�R(E)G(E)�L(E)G†(E)], (5)
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where the �(L/R)(E) = −2Im[�(L/R)(E)] are the linewidths
for the respective leads. Bond currents through the device
at specific energies are useful quantities in establishing how
current flows through different parts of the device [63]. The
current between two neighboring sites i and j at the energy E

is [65]

Iij (E) = 4e

h
Im{Hij [G(E)�L(E)G∗(E)]ij }, (6)

where Hij = [H]ij is the hopping term between the sites i and
j . The transport calculations use both approximative recursive
Green’s function techniques to determine the lead self-energies
and exact techniques for the device region to significantly
speed up calculations, following Ref. [63].

A. Transmission

We consider two illustrative examples, the {16,3} and
{16,6} GOALs. From previous sections, we recall that the
{16,3} and {16,6} GOALs exhibit bilayerlike and single-layer-
like dispersions, respectively. The transmissions between
bilayer graphene leads connected to the {16,3} and the {16,6}
GOAL devices are shown by solid blue lines in Figs. 9(a)
and 9(b), respectively. These transmissions are compared with
pristine single- and bilayer graphene transmission, shown by
dashed black and dotted gray lines, respectively. Close to the
Fermi energy, the transmission of the {16,3} GOAL appears
very similar to the pristine bilayer case, but with a slightly
smaller magnitude. This is consistent with the bilayerlike
dispersion of the {16,3} GOAL. In contrast, the {16,6} GOAL
transmission appears very similar to that of single-layer
graphene. The qualitative transition from bilayerlike to single-
layer-like transport behavior as a function of isolated GAL
band gap is similar to that previously noted for the band
dispersion. Furthermore, an oscillatory behavior is observed
which is particularly apparent for the {16,6} transmission.
By increasing the number of antidot rows beyond seven
(not shown) the transmissions yield an increased oscillation
frequency, suggesting a Fabry-Perot like interference between
scatterings at the lead-device interfaces. The low transmission
valleys just above |E| ≈ 0.2 eV, which are present for both
GOALs, appear at the end of the linear dispersion region and
the onset of higher order bands.

The transmission between single-layer graphene leads
coupled to the graphene layer of the GOALs is shown in
Figs. 9(c) and 9(d) (solid blue lines), compared again to
pristine single- and bilayer graphene transmission (dashed
black and dotted gray lines, respectively). The transmission
through the graphene layer of the {16,3} GOAL is much
lower than single-layer graphene transmission. This generally
occurs for GOALs containing small-gap GAL layers due
to wave mismatching, where the single-layer nature of the
incoming wave is mismatched with the propagating bilayer
waves in the GOAL device. We note that this also occurs in
cases of bilayer graphene leads coupled to extremely large
GAL gapped GOALs, e.g., like {12,5} where the incoming
bilayer wave is mismatched with the single-layer nature of the
GOAL device. However, in the {16,6} GOAL, the layers are
sufficiently decoupled to have single-layer-like propagating
states, thus yielding a single-layer-like transmission. Likewise,
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FIG. 9. (Color online) The transmission through {16,3} and
{16,6} GOALs. The couplings are displayed in the insets of the
left panels. (a,b) Transport between two bilayer graphene leads
through a central {16,3} and {16,6} GOAL device, respectively.
(c,d) transport between two single-layer graphene leads through a
central {16,3} and {16,6} GOAL device coupling into the graphene
layer, respectively. (e,f) transport between two single-layer graphene
leads through a central {16,3} and {16,6} GOAL device coupling
into the GAL layer, respectively. The central devices of [(a), (c), and
(e)] and [(b), (d), and (f)] have the same widths, receptively. The
transmissions are displayed in solid blue lines along with pristine
single- and bilayer graphene transmission, dashed black and dotted
gray lines, respectively. Additionally, (b) and (d) display transmission
through a biased {16,6} GOAL device coupled to bilayer graphene
leads or single-layer graphene leads coupled to the graphene layer,
respectively, in solid red lines.

the Fabry-Perot oscillations have disappeared signifying low-
ered interface scattering, while they remain for the {16,3}
GOAL. The transmission between single-layer leads coupled
to the GAL layer of {16,3} and {16,6} GOALs is shown in
Figs. 9(e) and 9(f), respectively. In this case, the transmissions
for both GOAL devices are lower than that of single-layer
graphene. The current must flow through either the GAL layer
or couple in to and out of the graphene layer, which limits the
transmission by the GAL band gap or the interlayer couplings.

Finally, we consider the {16,6} GOAL devices with an
applied bias of U = 0.2 eV. The single layer and bilayer
contact transmissions are illustrated in Figs. 9(b) and 9(d)
by red solid lines. The band gap of the GOAL system
forms a corresponding transport gap, effectively providing a
SLG-like material with a tunable transport gap. The optimal
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configuration for injecting current into a GOAL-based
device should contact both layers, e.g., a side-contacted
device.

B. Bond currents

In order to clarify the single-layer-like transport of GOALs,
we now examine the bond currents in the systems studied
above. We distinguish between in-plane and out-of-plane
currents; currents flowing within either layer or currents
flowing between the layers, respectively. The model is the same
as for the transmission illustrated in Fig. 8, where semi-infinite
leads are coupled to a central GOAL device.

We consider the two cases where GOAL devices displayed
transmissions similar to single-layer graphene, i.e., the {16,6}
GOAL device connected to either bilayer graphene leads or
single-layer graphene leads which couple to the graphene layer
only. We illustrate current maps of the {16,6} GOAL device
at the energy E = 0.1 eV in Fig. 10. In Fig. 10(a) the currents
of the {16,6} GOAL device coupled to the bilayer leads is
shown. We plot the in-plane currents in each layer of the
GOAL device separately, and show those of the graphene layer
above those of the GAL layer. These currents are displayed
as vector maps, which are scaled relative to the maximum
current in both layers. The most notable feature of the in-plane
currents of the {16,6} GOAL device with bilayer leads is the
confinement of the current to the graphene layer throughout
most of the device. The out-of-plane current components are
shown below the in-plane components as normalized color
maps. Blue shading represents for current flow from the GAL
layer to the graphene layer, whilst red represents current from
graphene layer to GAL layer. This map displays a large current
entering the graphene layer at the left interface and leaving at
the right, yielding largely single-layer current transport. The
current within the GAL layer is not zero, and as the energy
E is increased the current within the GAL layer increases
in magnitude. The current thus becomes more and more
bilayerlike as the energy of transport in increased, consistent
with moving away from the band gap of the GAL layer. In
Fig. 10(b), the bond currents in the {16,6} GOAL device
with a graphene layer connection to the single-layer leads
are shown. The in plane currents in this case also display
noticeable confinement in the graphene layer. However, in this
case, we observe that the in-plane current within the GAL layer
is significantly larger. The out-of-plane current map suggests
the current flows to the GAL layer near the left electrode and
oscillates between the two layers near antidot edges, before
returning to the graphene layer at the right electrode. In both
of these transport configurations, the current is largely confined
to the graphene layer, yielding a transmission similar to, but
slightly smaller than, single-layer transport.

Another interesting behavior occurs in the final case of
single-layer leads connected to the GAL layer, illustrated in
Fig. 10(c). In this case, the transport currents in a {16,6}
GOAL exhibit large edge currents within the graphene layer
along the transverse (periodic) direction. This behavior is a
consequence of the high localization at every other corner in
the hexagonal antidots, see Fig. 5, such that the zigzag transport
direction will always scatter the current asymmetrically along
the transverse direction. If the same calculation is done along

FIG. 10. (Color online) Current maps of GOAL transport de-
vices. In all panels, the in-plane current maps are displayed separately,
the graphene layer above the GAL layer, and the out of plane current
maps are displayed below. The in plane currents are displayed as
relative vectors scaled with the maximum in plane current within
both layers. The out of plane currents are displayed as shaded areas
colored according to the value, blue shading indicates current from
the GAL layer into the graphene and red vice versa. (a) The current
maps of the {16,6} GOAL device coupled to bilayer graphene leads.
(b) The current maps of the {16,6} GOAL device coupled from the
graphene layer to single-layer graphene leads. (c) The current maps of
the {16,6} GOAL device coupled from the GAL layer to single-layer
graphene leads.

the armchair transport-direction, the scattering at the corners
is symmetric and one finds much smaller and symmetric
transverse currents. Even though the transmission here is
far smaller than single-layer graphene transport, the high
transverse currents induced in the graphene layer suggest that
interesting interlayer transport couplings may be possible.
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V. DISCUSSION AND CONCLUSION

In this work, we have studied the electronic and transport
properties of an all-carbon bilayer heterostructure consisting
of a layer of pristine graphene atop a layer of nanostructured
graphene. In order to determine the general properties of
such a heterostructure, we considered antidots as the ideal
testbed, where structurally similar configurations yield entirely
different single-layer properties. These antidots were arranged
into a triangular, or rotated triangular, superlattice orientation,
yielding respectively gapped and gapless antidot layers.
The electronic properties of the unbiased composite GOAL
structures were seen to depend critically on the existence of
this band gap in the isolated GAL layer. A gapped GAL layer,
regardless of superlattice orientation, will push electronic
states into the graphene layer. This is evident from the
graphene layer confinement of the density of states, shown
in Fig. 6(c), which increases with the GAL band gap. As
a consequence, the sublattice distribution of states seen in
bilayer graphene is broken. Instead, we find an approximately
even distribution of states between sublattices in the graphene
layer, i.e., dimers as well as nondimers. Upon increasing the
graphene layer confinement, the GOAL dispersion becomes
linear near the Dirac point, and furthermore, the Fermi velocity
increases until (at high GAL band gaps) it resembles that of
pristine single-layer graphene. Conversely, if the isolated GAL
layer does not contain a gap, the GOAL composite retains a
bilayerlike dispersion, except for a slight renormalization of
the Fermi velocity. The electronic state distribution in such
GOALs is unchanged in the graphene layer, i.e., entirely
located on nondimers, while it is redistributed amongst the
remaining sites in the GAL layer in a manner that conserves
the pristine bilayer sublattice asymmetry. The dependence
on the gap, and not directly the superlattice orientation
or dimension, suggests a generality beyond this particular
heterostructure.

Introducing an interlayer bias to the GOALs with single-
layer-like dispersion induces band gaps smaller than those
predicted for pristine bilayer graphene. The GOAL band gap
size decreases as the band gap of its associated isolated
GAL layer is increased. While GOALs with large-gap GAL
layers have significantly reduced band gaps in the combined
GOAL systems, specific GOAL structures were seen to exhibit
both SLG-like dispersion and a sizable, tunable band gap.
Certain structures, such as the {16,6} and {12,4} GOALs,
were identified which retained a high Fermi velocity in the
unbiased case and sizable band gap in the biased case. Ad-
ditionally, these GOAL systems when biased display gapped
graphenelike bands, as opposed to the “mexican hat” shape
bands of bilayer graphene. The consequence is higher electron
velocities than those in regular gapped bilayer graphene, which
is of great interest in high-speed electronics. Introducing a
band gap in bilayer systems has been successfully done in
experiments [36,56,66], and our results suggest a possibility
of manipulating and fine tuning similar electronic behavior by
nanostructuring of one of the layers.

In this work, we have limited our study to Bernal-
stacked GOAL systems and to the most important coupling
parameters, the intralayer hopping γ0 and interlayer hopping
γ1. Nonetheless, we expect more elaborate models to show

the same qualitative results. The inclusion of additional
interlayer couplings, responsible for electron-hole asymmetry
and trigonal warping [35], causes only a minor splitting of
the bands near the Dirac point into two separate linear bands
with slightly different Fermi velocities. While this effect is
more pronounced in GOALs with gapless or smaller gap GAL
layers, our focus is mainly on the more interesting single-layer-
like GOALs with larger gap GAL layers. It would however
be very interesting to verify or modify these parameters
through the use of ab initio calculations specifically for
GOALs. Additionally, we employ a simple uniform potential
distribution to describe the bias, which neglects edge effects
that are likely to arise in these structures. Given the intricate
edge distribution of the density of states, the correct potential
distribution may induce changes in the band edges of biased
GOALs. We also do not employ disorder or twisting of the
GOAL systems. In the case of disorder, this tends to decrease
the band gap on an isolated GAL system. The dispersion of
the corresponding GOALs may exhibit transitions towards
bilayerlike dispersion. However, antidots with a hexagonal
armchair shapes display higher stability against disorder than
circular or hexagons with extended zigzag edges [24]. By using
experimental methods that prefer armchair edged shapes, this
transition can be limited. In case of twisting, models have
been developed to illustrate what effect a small-angle twist
has on the electronic properties in pristine twisted bilayer
graphene [34,67]. Depending on the angle, the dispersion
relations of twisted bilayers range from the parabolic bands
of Bernal-stacked bilayer graphene to linear bands with a low
Fermi velocity [67]. In the case of GOAL-based systems, the
effect might be similar, i.e., decreasing the Fermi velocity.
Furthermore, when the twisted bilayer graphene dispersion
becomes linear the application of a perpendicular electric field
is no longer guaranteed to open a band gap [34]. As such, the
inclusion of a twist angle would require a more extensive study.

We have also studied transport properties including differ-
ent contact configurations. The transmission through GOALs
exhibiting single-layer-like dispersion has approximatively the
same magnitude as transmission through pristine graphene.
Furthermore, the current flow was largely confined to the
graphene layer of the GOAL. This follows from the electronic
transport in pristine biased bilayer graphene, which depends
greatly on the sublattice balances of the system. The current
density is greatest in the layer where the charge density is
distributed equally across nondimers and dimers [37]. The
transport properties of GOALs also depend greatly on the
type of contact to the device, similar to the case of pristine
bilayer graphene [61,62]. As the GOALs are bilayer materials,
their propagating waves are also usually bilayer, albeit largely
confined in the graphene layer. This holds true except at
very large GAL band gaps. As such, GOALs display the
highest transmission when coupling to bilayer graphene leads.
Unlike isolated GAL devices, the GAL layer of a GOAL
device does not act as a barrier for transport. Instead, the
graphenelike transmission should be viewed as a result of
mostly single-layer confinement of the propagating states.
Coupling from single-layer leads, the mismatch between the
incoming single-layer states and bilayerlike device states
gives rise to increased interface scattering. Except for very
large GAL band gaps, this leads to transmissions below that
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of single-layer graphene. The transmissions through GOAL
devices with large-gapped GAL layers resemble that of SLG,
suggesting single-layer-like propagation states. In contrast to
this, where single-layer leads connect only to the GAL layer
the transmission is always low. Both the lead/device wave
mismatch and the current flow between the layers lead to
the reduced transmission. Furthermore, in these cases, the
transport can display significant transverse currents within the
graphene layer due to asymmetric scattering at hole edges. For
realistic devices, the best transmission is gained by injecting
current into both layers, e.g., a side contact.

In this study, we have demonstrated that the bilayer
heterostructure can exhibit single-layer-like behavior similar
to that of pristine graphene, while still allowing a tunable
band gap. The bilayers in this paper are seen to display a
critical dependence on the band gap within the nanostructured
layer. All results suggest that, as this band gap is increased,
the electronic states localize in the pristine layer, which
yields monolayer behavior. From this, we expect that such
a bilayer, with a gapless and a gapped layer, will transition
from monolayer to bilayer behavior as the band gap within
the gapped layer decreases. Modifications, which decrease
such a gap may include structural defects, disorder and other
imperfections, which in turn would lead to more bilayerlike

behavior. Many of the features discussed in this work may also
be of relevance to other instances of 2D heterostructures where
a metallic or semimetallic layer is coupled to a semiconducting
or insulating layer. We expect that in these cases a similar
interplay between the electronic properties of the individual
layers, and the redistribution of states when they are stacked,
will determine the electronic and transport properties. Such
similar bilayer systems could include other forms of pat-
terning of the nanostructured, e.g., with dopants [42–44,68],
absorbants [15,45,46], or a Moiré potentials arising from cou-
pling to a substrate [69]. Given the intense research currently
underway in the field of nanostructured graphene, and the
recent experimental progress in 2D heterostructure stacking,
we believe that this type of composite system could bring in-
teresting possibilities yet unseen in pristine graphene systems.
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Biró, P. B. Sorokin, and L. A. Chernozatonskii, Nano Res. 1, 1
(2014).

[41] M. Killi, S. Wu, and A. Paramekanti, Phys. Rev. Lett. 107,
086801 (2011).

[42] S. O. Guillaume, B. Zheng, J. C. Charlier, and L. Henrard, Phys.
Rev. B 85, 035444 (2012).

[43] A. J. Samuels and J. D. Carey, ACS Nano 7, 2790 (2013).
[44] Y. Mao, G. Malcolm Stocks, and J. Zhong, New J. Phys. 12,

033046 (2010).
[45] H. P. O. Collado, G. Usaj, and C. A. Balseiro, Phys. Rev. B 91,

045435 (2015).
[46] A. Felten, B. S. Flavel, L. Britnell, A. Eckmann, P. Louette,

J. J. Pireaux, M. Hirtz, R. Krupke, and C. Casiraghi, Small 9,
631 (2013).

[47] A. K. Geim and I. V. Grigorieva, Nature (London) 499, 419
(2013).

[48] D. S. Lee, C. Riedl, T. Beringer, A. H. Castro Neto, K. von
Klitzing, U. Starke, and J. H. Smet, Phys. Rev. Lett. 107, 216602
(2011).

[49] M. Dienwiebel, G. S. Verhoeven, N. Pradeep, J. W. M. Frenken,
J. A. Heimberg, and H. W. Zandbergen, Phys. Rev. Lett. 92,
126101 (2004).

[50] X. Jia, M. Hofmann, V. Meunier, B. G. Sumpter, J. Campos-
Delgado, J. M. Romo-Herrera, H. Son, Y.-P. Hsieh, A. Reina, J.
Kong, M. Terrones, and M. S. Dresselhaus, Science 323, 1701
(2009).

[51] F. Pizzocchero, M. Vanin, J. Kling, T. W. Hansen, K. W.
Jacobsen, P. Bøggild, and T. J. Booth, J. Phys. Chem. C 118,
4296 (2014).

[52] T. W. Odom, J.-L. Huang, P. Kim, and C. M. Lieber, J. Phys.
Chem. B 104, 2794 (2000).

[53] F. Ouyang, S. Peng, Z. Liu, and Z. Liu, ACS Nano 5, 4023
(2011).

[54] A. B. Kuzmenko, I. Crassee, D. van der Marel, P. Blake, and
K. S. Novoselov, Phys. Rev. B 80, 165406 (2009).

[55] J. Nilsson, A. H. Castro Neto, F. Guinea, and N. M. R. Peres,
Phys. Rev. B 76, 165416 (2007).

[56] J. B. Oostinga, H. B. Heersche, X. Liu, A. F. Morpurgo, and
L. M. K. Vandersypen, Nat. Mater. 7, 151 (2008).

[57] X. Du, I. Skachko, A. Barker, and E. Y. Andrei, Nat.
Nanotechnol. 3, 491 (2008).

[58] R. T. Weitz, M. T. Allen, B. E. Feldman, J. Martin, and
A. Yacoby, Science 330, 812 (2010).

[59] L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran,
T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo,
P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, Science 342,
614 (2013).

[60] P. Maher, L. Wang, Y. Gao, C. Forsythe, T. Taniguchi,
K. Watanabe, D. Abanin, Z. Papić, P. Cadden-Zimansky,
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Robust band gap and half-metallicity in graphene with triangular perforations
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Ideal graphene antidot lattices are predicted to show promising band gap behavior (i.e., EG � 500 meV) under
carefully specified conditions. However, for the structures studied so far this behavior is critically dependent on
superlattice geometry and is not robust against experimentally realistic disorders. Here we study a rectangular
array of triangular antidots with zigzag edge geometries and show that their band gap behavior qualitatively differs
from the standard behavior which is exhibited, e.g., by rectangular arrays of armchair-edged triangles. In the
spin unpolarized case, zigzag-edged antidots give rise to large band gaps compared to armchair-edged antidots,
irrespective of the rules which govern the existence of gaps in armchair-edged antidot lattices. In addition the
zigzag-edged antidots appear more robust than armchair-edged antidots in the presence of geometrical disorder.
The inclusion of spin polarization within a mean-field Hubbard approach gives rise to a large overall magnetic
moment at each antidot due to the sublattice imbalance imposed by the triangular geometry. Half-metallic
behavior arises from the formation of spin-split dispersive states near the Fermi energy, reducing the band gaps
compared to the unpolarized case. This behavior is also found to be robust in the presence of disorder. Our results
highlight the possibilities of using triangular perforations in graphene to open electronic band gaps in systems
with experimentally realistic levels of disorder, and furthermore, of exploiting the strong spin dependence of the
system for spintronic applications.

DOI: 10.1103/PhysRevB.93.245429

I. INTRODUCTION

Two-dimensional materials continually gain interest and
achieve huge advances towards industrial realization in a num-
ber of fields, particularly electronics and spintronics. Graphene
is the most studied material within the two-dimensional
family [1] due to unique properties such as high electron
mobilities [2] above 105 cm V−1 s−1, gate-tunable carrier con-
centration [3], and predicted long spin-relaxation lengths [4] of
several μm. These studies have led to substantial efforts in fab-
ricating and processing clean graphene systems [5] as well as
pushing the limits of nanostructuring, e.g., by high-resolution
lithography [6,7]. To realize graphene-based electronics and
in particular transistors, opening a band gap has been one
of the main drivers of both theoretical and experimental
work. Many studies propose using structural modifications
of graphene systems, such as nanoribbons [8], or superlattice
structures imposed by periodic gating [9,10] or strain [11,12],
to achieve a band gap. More recent attempts have considered
chemical modification through absorption, substitution, or
sublattice symmetry breaking, for example, by doping [13–
16]. Periodic patterning of graphene sheets, for example,
periodic perforation to form so-called graphene antidot lattices
(GAL) or nanomeshes, is of particular interest since theoretical
predictions suggest the possibility of obtaining sizable band
gaps [17,18]. Several groups have realized these structures
in the laboratory [19–22]. Band gaps induced in periodically
patterned graphene are however very sensitive to disorder
and defects [23]. Current fabrication methods will inevitably
yield systems with a significant degree of disorder. A clear

*sorgre@nanotech.dtu.dk
†spow@nanotech.dtu.dk

experimental signature of minibands and -gaps has yet been
elusive. In the magnetic and spintronic areas, the possibility
of making graphene magnetic or realizing graphene-based
spintronics has also attracted a lot of attention [4]. It has
been predicted that pristine graphene exhibits uniquely long
spin-relaxation times [4] ∼1 μs, although to date experi-
ments [24–26] still find relaxation times at least two orders
of magnitudes lower; reasons for this are still under debate.
Inducing magnetic ordering, or at least magnetic moments,
is desirable in order to achieve tunable magnetism useful for
magnetic information storage or spin-manipulation devices.
There have been many works, theoretical and experimental,
studying magnetic moments induced by vacancy defects [27–
30], adatoms [27,30,31], substrate coupling, and molecular
doping [32]. Nanostructured graphene is also predicted to
display significant spin polarization at certain extended edges,
namely those with a zigzag (zz) geometry [33,34]. Recent
experimental findings also support the prospect of magnetic
zz edges even with a reasonable amount of edge roughness
observed [35–37].

In this paper, we propose using superlattices of triangular
shaped GALs with entirely zz edges to gain large spin
polarization, as confirmed by previous ab initio studies [38,39].
Graphene nanostructures which contain noncomplementary zz
edges, e.g., triangles and Christmas trees (stacked triangles),
display unique global ferromagnetic order [34,38,39], as we
also will illustrate for the GAL case in Sec. III B below. In con-
trast, complementary zz-edged nanostructures, e.g., zz-edged
hexagons, rhombi (two triangles back to back), or straight
nanoribbons, display antiferromagnetic ordering [33,34,40].
Even before spin polarization is considered, we show through
our tight-binding study how zz-edged triangular antidot lattices
form exceptionally robust band gaps. When the effects of spin
are included, a similarly robust half-metallicity is displayed
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near the Fermi level, allowing for only either spin up or down
states at a particular energy. In contrast to the half-metallic
behavior predicted for nanoribbon devices [33], triangular
antidots naturally exhibit half-metallicity without the need
for difficult side gates and transverse electrical fields. We
envisage that triangular antidots could be fabricated, for
example, through lithography using patterned hexagonal boron
nitride as a mask. Hexagonal boron nitride naturally etches
into triangular holes due to the different etch rates of the
two species, i.e., boron and nitrogen [41]. Kinks or chirality
within triangle edges may form during fabrication, but it
is likely that they will still display a magnetic signature,
albeit reduced, in accordance with theory for chiral graphene
nanoribbons [42]. Our findings suggest a realistic path towards
fabricating realistic spin polarized graphene nanostructures
which could act as components in graphene-based spintronic
devices.

The remainder of this paper is organized as follows. The
system geometries and electronic and spin polarization models
are described in Sec. II. Then we present our results in Sec. III,
first considering several representative geometries in Sec. III A
of both zz-edged and armchair(ac)-edged triangles without
spin polarization. Next we focus on a single zz-edged antidot
lattice and include spin interaction in Sec. III B. Finally we
consider the robustness of our results by extending the tight-
binding description in Sec. III C and by considering the effect
of positional disorder in Sec. III D. In Sec. IV, we discuss our
findings and other important considerations.

II. GEOMETRY AND MODEL

Rectangular arrays of triangular antidots are considered
as shown schematically in Fig. 1. Specific geometries are
denoted using {X,Y,Lgeo} where X and Y represent the
interantidot spacings in the two in-plane directions, L is the
side length of the triangular antidot, and the index geo = ac
or zz denotes the edge geometry of the triangles. X and
Y take integer values and the associated antidot separations
are Xa and Y

√
3a, respectively, where the graphene lattice

constant a = 2.46 Å. The rectangular superlattice makes for
an ideal test bed for antidot lattices. The electronic properties
change qualitatively with the superlattice dimensions, e.g.,

Y
√

3
a

Xa

L
a

FIG. 1. Schematic of the {25,15,5zz} triangular antidot super-
lattice geometry (left) and the approximately square unit cell with
X = 25,Y = 15, and L = 5zz-triangular antidot (right). The A and
B sublattices of graphene are denoted by white and black circles,
respectively. The antidot spacings are approximately 6 nm, and the
triangular side lengths are approximately 1 nm.

a semiconducting superlattice can become metallic and vice
versa by changing the unit cell dimensions by just one lattice
constant [17,18,43,44]. For any periodic external potential
imposed onto graphene, for example, an antidot lattice, if the
Fourier transformed potential is zero at the Dirac points of
pristine graphene a band gap cannot form. Antidot lattices
for which the Fourier transformed potentials are nonzero at
the Dirac points have sizable band gaps. This criterion is
from hereon referred to as the periodicity selection rules [44].
For rectangular superlattices, due to the lattice orientation
chosen, the periodicity selection rules depend critically on
the X spacing. All antidot lattices for which X = 3p where
p = 1,2,3,... are semiconducting, while for all other antidot
lattices the existence of gaps or not depends on the particular
antidot. Embedding the same triangular antidots into several
rectangular superlattices which display different electronic
behavior allows us to identify properties which arise due to
the triangles themselves. The triangular antidots we consider
are aligned to have either zz edges as shown in Fig. 1 or ac
edges (not shown). The latter ac-edged triangles are rotated by
30◦ with respect to those in Fig. 1 and the side length is scaled
differently for the two orientations. L corresponds to a side
length of La for the zigzag case and (L

√
3a) for the armchair

case.
Spin polarization at single-point defects, as well as that at

zz edges, is usually interpreted via Lieb’s theorem [45]. The
theorem states that the total ground state magnetic moment of a
half-filled bipartite lattice is given by the sublattice imbalance,
M = μB |NA − NB | ≡ μB�N , where NA and NB are the
number of sites belonging to each sublattice. Creating a zz
triangle, such as that in Fig. 1, involves removing a different
number of sites from the two sublattices and results in edge
atoms belonging only to a single sublattice; with the orientation
shown in Fig. 1 this is sublattice B. Accordingly, zz triangles
form nonzero total magnetic moments, in full compliance with
Lieb’s theorem [38,39]. Rotating the antidot 180◦ flips the
triangle orientation and also swaps the edge sublattice. Thus
the relative edge sublattices of two adjacent triangular antidots
can be determined by a quick visual inspection. The ac triangle
has both sublattices present at the edge and is not expected to
exhibit spin polarization [42]. We examine both the {X,Y,L} =
{24,15,(5zz/3ac)} and {25,15,(5zz/3ac)} geometries; i.e.,
two geometries differing by a along the x direction and
with either zz- or ac-edged triangular perforations; we later
focus on the {25,15,5zz} superlattice with the zz triangle
displayed in Fig. 1. The side lengths of the zz- and ac-edged
triangles are similar for these geometries. The two triangle
orientations highlight the fundamental differences between
zz-edged triangular antidots and the other antidot families
represented by the ac-edged cases.

The calculations in Secs. III A and III B are performed using
a nearest neighbor (NN) tight-binding Hamiltonian

Hσ =
∑

i

εiσ c†iσ ciσ +
∑
ij

tij c†iσ cjσ . (1)

The operator c†iσ (ciσ ) creates (annihilates) an electron with
spin σ on site i, and the hopping parameter tij takes the value
t = −2.7 eV when sites i and j are nearest neighbor sites and
is zero otherwise. |t | is taken as the unit of energy throughout
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the paper. In Secs. III C and III D we will consider an extension
to a third nearest neighbor model (3NN) by including terms
t2 = −0.074|t | and t3 = −0.067|t | connecting second and
third nearest neighbor sites, respectively [46]. The inclusion
of t2 results in a band-center shift, which we compensate for
by adding a uniform on-site shift so that the Fermi energy lies
at E = 0. Electron-electron interactions and the resulting spin
polarization are included via spin-dependent on-site energy
terms found from a self-consistent solution of the Hubbard
model within the mean field approximation

εiσ = ±U

2
mi, (2)

with + for σ =↑ and − for σ =↓, the on-site magnetic
moments mi = 〈ni↑〉 − 〈ni↓〉, and niσ is the number operator.
We use the on-site Hubbard parameter U = 1.33|t | which
has been shown to give results in good agreement with
full ab initio calculations for nanoribbon systems [47,48].
The self-consistent Hubbard calculations are initiated with
an antiferromagnetic guess, mi = ±c, with opposite signs
used for the two sublattices A and B, and then iterated to
convergence.

III. RESULTS

A. Unpolarized antidots with different lattice geometries

We first consider periodic structures of zz- or ac-triangular
antidots in the U = 0 case. The band structures of zz and
ac-triangular antidots, together with their total density of
states and that projected onto the (edge) B sublattice, are
shown in Fig. 2. The zz cases shown in Figs. 2(a) and 2(b)
for the {24,15,5zz} and {25,15,5zz} geometries, respectively,
display both sizable band gaps and dispersionless midgap
states. The fivefold degenerate midgap states originate from
the single-sublattice zz edges. The level of degeneracy is equal
to the sublattice imbalance �N , which also equals the number
of zz chains along the triangle edges L = 5. Similar midgap
states are also observed in other noncomplementary zz-edged
nanostructures, e.g., triangular quantum dots [49–51] and wide
nanoribbons [46,52], where the degeneracy is proportional to
the global sublattice imbalance in the quantum dots, and to
the local imbalance in the wide nanoribbons. Such zz-edge
states are localized on the edge sublattice. Within the NN
approximation states localized in a single sublattice remain
completely dispersionless. If higher order hopping parameters
are included, such states can also become dispersive, as we
will discuss in Sec. III C below.

The other characteristic of zz-edged triangular antidot lat-
tices apparent from Figs. 2(a) and 2(b) is the formation of large
electronic band gaps surrounding the dispersionless midgap
states. In comparison, the ac cases shown in Figs. 2(c) and 2(d)
reveal that the {24,15,3ac} is gapped and the {25,15,3ac}
is metallic. These are in full compliance with periodicity
selection rules, which in rectangular lattices predicts bands
gaps only for cases with X = 3p. The zz-triangular antidots
with large band gaps regardless of X indicate a different band
gap mechanism. This hypothesis is supported by examining
the band gaps of several triangular antidot lattices.

Γ X M X′ Γ
−0.2

−0.1

0

0.1

0.2

E
/
|t|

DOS Γ KX M X′ Γ DOS

Γ X M X′ Γ
−0.2

−0.1

0

0.1

0.2

E
/
|t|

DOS Γ KX M X′ Γ DOS

(a) (b)

(c) (d)

FIG. 2. Unpolarized band structures and densities of states
(DOS) of different triangular antidot systems. (a) {24,15,5zz},
(b) {25,15,5zz}, (c) {24,15,3ac}, and (d) {25,15,3ac} geometries,
respectively. The DOS projected onto the edge sublattice B (black)
is shown together with the total DOS (gray). The structures in (a)
and (b) notably show very large and narrow peaks in the DOS at the
Fermi level E = 0.

Pedersen et al. demonstrated that a scaling behavior Egap ∝
N

1/2
rem

Ntot
∝ L

XY
was followed by many gapped graphene antidot

lattices [17], where Nrem and Ntot are, respectively, the number
of atoms removed to form an antidot and the total number of
atoms in the superlattice unit cell before the antidot atoms are
removed. In Fig. 3, a linear behavior is clearly noted for those
ac-edged systems with periodicity selection rules predicting
semiconducting behavior (filled green squares) whereas those
for metallic superlattices (hollow green squares) have zero
band gap in almost all cases. We associate the breakdown of

0 0.02 0.04
0

0.1

0.2

0.3

L/(XY )

E
g
a

p
/
|t|

zz(sc)

zz(m)

ac(sc)

ac(m)

FIG. 3. Unpolarized band gaps for various geometries as the
dimensionless parameters X, Y , and L are varied. The zigzag (blue)
and armchair (green) triangle geometries are divided into groups
where the superlattice is expected to display semiconducting (sc,
filled) or metallic (m, hollow) behavior, according to the periodicity
selection rules. For a rectangular superlattice this distinction depends
solely on the value of X.
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this trend for metallic systems with large L
XY

to large antidots
in small unit cells, where additional band gap behavior is
now induced by small constrictions between the antidots.
The zz triangles are meanwhile consistently gapped (blue
circles), irrespective of the behavior predicted by periodicity
arguments. The band gap magnitude has an approximately
linear dependence on L

XY
, but the slope is much greater than

the ac case. The reason zz-edged triangular antidot lattices
are consistently gapped is the global sublattice imbalance
which induces sublattice symmetry breaking. Independent of
the periodicity selection rules, sublattice symmetry breaking
imposes an effective nonzero potential between sublattices
in a similar manner to a mass term, i.e., a staggered on-site
potential, with a different on-site potential for each sublattice.
In other systems where sublattice symmetry is broken, for
example, by doping such a term also opens a band gap [15,16].

The sublattice-projected densities of states (DOS) for zz-
triangle lattices in Figs. 2(a) and 2(b) show that each sublattice
contributes equally to the DOS at all energies except at the
E = 0 edge states which reside only on the B sublattice.
However the local density of states (LDOS), shown in Fig. 4,
reveals a more complex picture. The edge state localization
is clear in Fig. 4(a) where the LDOS is mapped at E = 0
by circles whose radius is proportional to the LDOS at that
site. White and black circles are used for sites on the A
and B sublattices, respectively, and we note that only large
black circles near the triangle edges are found at this energy.
Despite the equal contributions from sublattice projected DOS
at other energies, the LDOS distributes inhomogeneously
around the triangles. This is shown in Fig. 4(b) for the
conduction band energy E = 0.1|t |, where we note that the
B sublattice contribution to the DOS is now spread throughout
most of the unit cell, but is significantly larger near the
triangle edges. The A sublattice has a vanishing LDOS in
this region and its DOS contribution is mostly distributed at
sites midway between neighboring antidots. The dispersion of
the states at this energy is due to the large regions where both
sublattices have a significant occupation. The different electron
distributions for the A and B sublattices suggest different

(a)

×10

(b)

FIG. 4. Unpolarized local density of states (LDOS) of the
{25,15,5zz} system. (a) The LDOS at the energy E = 0 and (b)
at the energy E = 0.1|t |. A white (black) circle is placed on every
site on the A (B) sublattice, and its radius is scaled by the LDOS
at that site. The zz-triangle edge is shown by a dashed red line. For
clarity, the radii in (a) are reduced by a factor of 10 relative to those
in (b).

↓

↑

mi

mi = 0.31 mi = −0.06

FIG. 5. The magnetic moments surrounding a triangular antidot
in the {25,15,5zz} geometry. Spin up (mi > 0, red) and spin down
(mi < 0,blue) moments are represented by circles whose radii are
scaled by |mi | at each site. The largest spin up (mi = 0.31) and spin
down (mi = −0.06) moments are located, respectively, on an edge
and on a site immediately next to the edge. The moments throughout
the structure are antiferromagnetic, i.e., the sign of a moment is
determined by the sublattice on which it resides.

effective scattering potentials for the different sublattices. The
inhomogeneous LDOS distribution, together with the band gap
formation regardless of periodicity selection rules, suggests
that sublattice symmetry breaking is the driving mechanism
behind band gap formation and not the periodic selection
rules usually forming band gaps in graphene antidot lattices.
Importantly, this suggests that band gap behavior in zz triangles
should be stable against geometrical variations as long as the
sublattice imbalance is maintained. Since the dimensions X

and Y of the antidot lattice play a minor role, one may expect
that lattices made of triangular zz-edged antidots are robust
against disorder, as we discuss in Sec. III D below.

B. Effect of spin polarization

A nonzero Hubbard interaction (U = 1.33|t |) leads to
spin dependence in zz-edged triangle systems through the
formation of magnetic moments mi .

The self-consistent solution to the Hubbard model using the
{25,15,5zz} geometry is shown in Fig. 5. Different superlattice
and triangle dimensions always yield a similar pattern, namely
a distribution with antiferromagnetic alignment between mo-
ments on the different sublattices. The magnitude of the
moments is maximum at the zz edges, decreases slightly
towards the corners of the triangles, and quickly decays
perpendicular to the zz edges. Similar moment distributions
have been reported in ab initio studies of triangular per-
forations [38]. Triangles with large side lengths have long
segments with approximately constant magnetic moments
with a maximum mi ∼ 0.31 μB . Only below L < 5 do these
constant-moment segments vanish and the maximum moment
decreases. All the geometries considered are consistent with
Lieb’s theorem such that M = ∑

i miμB = μB�N ≡ μBL.
The triangle corners are geometrically similar to the kinks
arising in chiral graphene nanoribbons, which display a similar
drop in moment values [42]. The magnetic moment profile is
found to be almost completely independent of the superlattice
geometry, suggesting that nearby triangles do not influence
each other unless they are very near.

The spin-split band structure of the {25,15,5zz} system
is shown in Fig. 6(a), together with the spin up (red) and
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FIG. 6. The effect of Hubbard interaction U on the {25,15,5zz}
geometry. (a) The spin polarized band structures with spin up (↑,
red) and spin down (↓, blue). (b) The densities of states. Projection
on the edge sublattice B (darker shading, ↑; red, ↓: blue), and the
total DOS (lighter shading, ↑: red, ↓: blue) (c) A zoom of the band
structure [dashed box in (a)] for varying interaction strength U/t =
0.2. · · · 1.33.

spin down (blue) DOS in Fig. 6(b). As before, the lighter
regions show the total DOS, and the darker regions show its
projection onto the edge B sublattice. There are a number
of key differences from the unpolarized band structure of
the same geometry system in Fig. 2(b) compared to the spin
polarized band structure in Fig. 6(a). The fivefold degenerate
dispersionless bands are no longer present at zero energy,
and the band gap is considerably reduced by the presence of
dispersive bands at the energies E = ±0.02|t |. These bands
have opposite spin orientations on either side of E = 0, as
do the five low-dispersive nondegenerate bands in the energy
range (±)0.1|t | → 0.15|t |. To examine the formation of this
band structure the Hubbard interaction U is varied from a low
U = 0.2|t | to U = 1.33|t | in Fig. 6(c), left to right. The band
structures in these panels correspond to the region shown by
the dashed box in Fig. 6(a). We denote three low energy spin
down bands V, VI, and VII at low Hubbard-interaction strength
U = 0.2|t |, the fifth through seventh lowest energy spin down
bands in this region. In the unpolarized band structure, band
V corresponds to one of the fivefold degenerate dispersionless
bands whereas VI and VII form the conduction bands. The V,
VI, and VII bands are labeled both at the left- and rightmost
panels for clarity. These panels reveal how the formerly
degenerate and dispersionless bands undergo different degrees
of spin splitting. The highest of these (V) initially at low U

(left) appears below both bands VI and VII and finally at high U

(right) appears above said bands. The degree of spin splitting
is determined by the LDOS distribution and the magnitude
of the magnetic moments. High degrees of spin splitting can
be attributed to a LDOS localized around areas with large

(a)

◦ × 2; • × 20

E = 0.155|t| [V] (b)

◦ × 1/3; • × 3

E = 0.02|t| [I, II]

(c)

◦ × 2; • × 10

E = 0.135|t| [VI, VII] (d) E = 0.1|t| [VI↑, VII↑]

FIG. 7. Polarized LDOS of {25,15,5zz}. (a) At energy E =
0.155|t |, (b) E = 0.02|t |, (c) E = 0.135|t |, and (d) E = 0.1|t |. A
white (black) circle is placed on every site on the A (B) sublattice,
and its radius is scaled by the LDOS at that site. The zz-triangle edge
is shown by a dashed line. For clarity, the radii in (a)–(c) are reduced
by factors denoted in the lower right corner relative to those in (d).

magnetic moments, which is confirmed by examining the spin
polarized LDOS.

At U = 1.33|t | and E = 0.155|t |, corresponding to the
zz-edge states band V and shown in Fig. 7(a), the LDOS is
localized almost entirely on magnetic edge sites, consistent
with a large degree of spin splitting. Meanwhile, the LDOS of
the spin polarized conduction bands at E = 0.02|t | shown
in Fig. 7(b) is mostly localized near the triangle corners
which have smaller magnetic moments, consistent with a
small degree of spin splitting. Further, the dispersion of
the conduction bands is shown to emerge due to a nonzero
occupation of the A sublattice as shown in Fig. 7(b). In the
unpolarized case bands VI and VII define the conduction band
edge, but as U increases [see Fig. 6(c)], the spin-down versions
flatten and increase in energy, whereas the spin-up versions
broaden and decrease slightly in energy. We noted earlier that
the unpolarized cases displayed LDOS contributions from both
sublattices, which overlapped to form dispersive conduction
bands. When spin polarized, this distribution is quite different
for each spin. The LDOS of the spin-down band shown in
Fig. 7(c) is localized almost entirely on B sublattice sites near
the center of the zz-edge sections, which leads to a flattening
of the dispersion and an upwards energy shift. Conversely, the
LDOS of the spin-up bands shown in Fig. 7(d) is localized
both on the B sublattice near the antidot corners and on sites
from both sublattices further away from the triangle. The more
homogeneous distribution of the spin-up bands leads to further
broadening and a weaker downwards shift from spin splitting.
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FIG. 8. Polarized band gaps for various geometries with zz-
triangular antidots embedded varying X, Y , and L. The geometries
are divided into groups where the superlattice is expected to display
semiconducting (sc) or metallic (m) behavior, which for a rectangular
superlattice depends solely on the value of X.

The band gaps for spin polarized zz triangles are shown
for a range of geometries in Fig. 8, where we note a decrease
of approximately one order of magnitude compared to the
unpolarized cases. In fact, the gaps of semiconducting ac
triangles are larger than those for polarized zz triangles.
However, spin polarized zz-edged antidots display another
interesting feature. The dispersive states surrounding the band
gap are completely spin polarized, so that a spin-selective
half-metallicity can be induced by small EF shifts applied
using a back gate. This suggests that such geometries may be
employed in a range of spintronic components to filter spins
of different orientations.

Many of the features we have described in both unpolarized
and polarized zz triangles depend on the inhomogeneous
electron distributions and in particular the localization on the
edge sublattice and near zz edges. It is important to determine
if such features are artifacts of the NN model we employ for
our calculations and whether they are robust in the face of
disorder. The latter point is of interest as many effects induced
by superlattices tend to vanish at any realistic disorder [23].
We now briefly address both issues.

C. Effect of higher order hopping terms

Within the NN model, states which occupy only a single
sublattice appear completely dispersionless. In comparison, a
3NN model enables intrasublattice coupling by the inclusion of
the 2NN terms, and the parametrization we use has been shown
to accurately describe zz nanoribbons [46]. For the unpolarized
case, we note that the introduction of these additional hopping
terms leads to an energy splitting of the previously degenerate
midgap states, see Figs. 9(a) and 9(b). This leads to a shift of the
Fermi energy relative to the bulk valence and conduction bands
in order to satisfy half-filling, increasing the electron-hole
asymmetry already introduced by the 2NN hoppings. The
NN-model band gap can be identified in the 3NN band
structure between the energies E = −0.025|t | and E = 0.1|t |
but is now slightly smaller and more importantly contains
multiple midgap states. In particular a dispersive channel
opens at E ∼ 0.05|t |, similar to that seen near zz-ribbon edges
when a 3NN model is employed [53]. Disregarding these
midgap states, the 3NN band gap between E = −0.025|t | and
E = 0.1|t | scales similarly to the NN model when varying
the system dimensions. The emergence of dispersive states
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FIG. 9. Band structures for the {25,15,5zz} geometry within first
(NN) and third (3NN) nearest-neighbor tight-binding models. For
NN and 3NN spin unpolarized as well as the 3NN spin polarized
band structures, the DOS is also shown. (a) NN and (b) 3NN without
spin polarization, (c) NN and (d) 3NN with spin polarization. (a) and
(c) are reproduced from, respectively, Figs. 2(b) and 6(a). The DOS
projected onto the edge sublattice B (darker shading, ↑: red, ↓: blue)
is shown together with the total DOS (lighter shading, ↑: red, ↓:
blue).

in the band gap could of course limit the applicability of
these systems. However we note that in many cases they have
either very little dispersion, or are spaced far enough apart in
energy, so as to still offer reasonable band gap or transport gap
behaviors.

Considering the polarized case, the band structures and
DOS in Figs. 9(c) and 9(d) are remarkably similar despite
the large changes we have discussed in their associated un-
polarized versions. The most significant change now between
NN and 3NN models is the expected (minor) electron-hole
asymmetry. Notably the system remains half metallic with
spin-dependent dispersive states close to the Fermi level. The
excellent agreement between NN and 3NN models in this case
can be understood by the fact that the features introduced
by the additional 3NN terms in the unpolarized case, namely
dispersion and splitting of the midgap states, also result inde-
pendently from the inclusion of the spin-dependent potentials.
We note that the 3NN model, both with and without spin
polarization, also agrees qualitatively with previous ab initio
calculations, which display similar band structures [38].
Although the 3NN model serves to correct the missing
intersublattice interaction, it appears that the most important
behavior in polarized systems is captured by the lower order
NN model.
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D. Robustness against disorder

One of the major obstacles in inducing band gaps using
graphene antidots is that the large gaps predicted in atomically
precise systems are extremely fragile in the presence of even
mild geometrical disorders [23]. The gap mechanism for usual
antidot arrays, namely the periodicity selection rules, relies
on pristine conditions and regular antidot spacing. We have
shown that zz-edged triangular antidots behave very differently
from other antidots and that their behavior arises from the
breaking of sublattice symmetries around individual antidots.
We further demonstrated that these effects were independent of
the superlattice geometry, which suggests also that they should
be more stable than, for example, ac-edged antidots, in the face
of disorder. While a full-fledged disorder analysis is beyond the
scope of the present paper, we highlight the essential effects by
examining a 4 × 4 geometrically disordered array of antidots
in a repeated superlattice. We present one particular random
configuration but also note that an additional 10 different
configurations have been examined all showing qualitatively
the same behavior. The triangle centers are randomly shifted
by �r = {δxa,δy(

√
3a)} with δx = δy � 3, as shown for

zz triangles in Fig. 10(a) and ac triangles in Fig. 11(a).
The same size triangles as before are considered, but for
computational efficiency we use smaller {X = 15,Y = 9}
“blocks” to compose the supercell, essentially cutting down
on the amount of pristine graphene between perforations.
Note that according to the periodicity selection rules these
superlattice geometries are predicted to form band gaps [44].
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FIG. 10. (a) Schematic of a disordered 4 × 4 array of {15,9,5zz}
triangular antidots. (b) Pristine band structure. (c) Disordered system
for U = 0. (d) Pristine system for U = 1.33|t |. (e) Disordered system
for U = 1.33|t |.
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FIG. 11. (a) Schematic of a disordered 4 × 4 array of {15,9,3ac}
triangular antidots. (b) Band structure for a pristine system, U = 0.
(c) Band structure for a disordered system, U = 0.

Pristine band structures calculated within the 4 × 4 framework
are shown for unpolarized and polarized {15,9,5zz} systems in
Figs. 10(b) and 10(d), respectively, and for the (unpolarized)
{15,9,3ac} system in Fig. 11(b). All calculations here were
performed within the 3NN model. We note that larger gaps are
present in all cases due to the reduced X and Y values and that
significant folding of the bands has occurred due to the larger
supercell. However the same qualitative behavior for zz edges
from Fig. 9(b) and ac edges from Fig. 2(c) is evident. The
gapped region in the disordered unpolarized zz-edged antidot
case, Fig. 10(c), is partially quenched due to a small energy
spreading of states. The polarized bands, Fig. 10(e), show even
less variance relative to the ordered case. In contrast, similar
levels of disorder quench the gap almost entirely for ac-edged
triangles, as demonstrated in Fig. 11(c), consistent with results
for other disordered antidot systems whose band gap emerges
from periodicity selection rules. [23] Despite the same level
of geometrical disorder, zz-edged triangles appear far more
robust compared to ac-edged triangles. In comparison, the spin
polarized band structure of the {25,15,5zz} geometry, which
displays smaller band gaps in Figs. 9(c) and 9(d), might in the
presence disorder significantly reduce the spin polarized band
gap. Nevertheless, even with reduced band gaps in the spin
polarized case we expect the band gap of the unpolarized bands
and the half-metallicity of the polarized bands to remain at
these levels of disorder. Two additional types of disorder could
have a significantly larger effect: orientation angle disorder
and edge disorder. The former has the effect of dividing
the triangles into smaller regions of zz edges connected by
kinks. Reducing the length of the zz-edged regions will in
turn reduce the sublattice symmetry breaking and the band
gap formed in the superlattice. The latter type of disorder has
the same effect of reducing the length of the zz-edged regions
but additionally can introduce localized scatterers which could
induce additional states within the previous band gap, severely
reducing the final band gap of such a superlattice. What is
truly different for zz-edged triangular antidots compared to, for
example ac-edged antidots, is that while intra-antidot disorder
like angle and edge disorder might quench the band gap of both
shapes, interantidot disorder will have a much larger effect on
the ac-edged antidots.
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IV. CONCLUSION

We have discussed the electronic properties of triangular
antidots systems in graphene sheets, with a particular focus
on zigzag edged geometries whose geometry breaks the
symmetry between graphene’s two sublattices. In order to
shed light on the possibility of magnetic states at such edges,
we have analyzed systems in both the spin polarized and the
unpolarized cases. We further have illustrated the robustness
against disorder by individually displacing the antidots of a 4 ×
4 array unit cell. Spin unpolarized superlattices of triangular
zz-edged antidots form band gaps significantly larger than
similarly sized ac-edged counterparts. Gap opening occurs
irrespective of conventional rules governing the formation of
band gaps in, for example, ac-edged triangular antidots and
scales with the triangular antidot side length. Furthermore
zz- as opposed to ac-edged triangles are far more robust
against geometric disorders. We conclude that these unique
features are caused by a gap-opening mechanism related
to sublattice-symmetry breaking. In contrast to conventional

graphene antidot lattices, this mechanism is less sensitive to
experimentally unavoidable imperfections in lattice spacings.
The zz-edged triangular antidots become half-metallic over
a wide range of energies when spin polarization is included,
with a high degree of spin selectivity achievable by gating.
Spin splitting of the unpolarized band structure leads to the
emergence of dispersive spin-dependent states and subsequent
reduction of the band gaps compared to the unpolarized cases.
The half-metallic behavior of zz-edged triangles also appears
more robust against geometric disorder compared to ac-edged
counterparts. These findings suggest a robust path to realize
devices based on nanostructured graphene with robust band
gaps. Further, devices with half-metallic and spin-selective
properties appear feasible.
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Potasz, E. S. Kadantsev, O. Voznyy, and P. Hawrylak, Frontiers
of Physics 7, 328 (2012).

[52] K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus,
Phys. Rev. B 54, 17954 (1996).

[53] P.-H. Chang and B. K. Nikolić, Phys. Rev. B 86, 041406 (2012).
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Zigzag edges of the honeycomb structure of graphene exhibit magnetic polarization, making them attractive
as building blocks for spintronic devices. Here, we show that devices with zigzag-edged triangular antidots
perform essential spintronic functionalities, such as spatial spin splitting or spin filtering of unpolarized incoming
currents. Near-perfect performance can be obtained with optimized structures. The device performance is robust
against substantial disorder. The gate-voltage dependence of transverse resistance is qualitatively different for
spin-polarized and spin-unpolarized devices, and can be used as a diagnostic tool. Importantly, the suggested
devices are feasible within current technologies.

DOI: 10.1103/PhysRevB.95.121406

Introduction. The weak intrinsic spin-orbit coupling and
long spin diffusion lengths suggest graphene as an ideal spin-
tronic material [1–10]. Spin splitting or filtering in graphene is
predicted for half-metallic nanoribbons [2,11–13], modulated
Rashba fields [14], flakes [15], chains [16], or via the spin
Hall effect (SHE) [17–21]. Half-metallic systems are excellent
platforms for manipulating spin due to their inherent spin
filtering behavior. Self-assembled organometallic frameworks
[22] and graphene-boron-nitride structures [23], point defects
and hydrogenation [24–26], and, in particular, nanostructured
zigzag (zz)-edged devices [11–13,15,16,27–33] are among the
proposed graphene-based half metals. Spin filters have been
proposed using triangular dots [15,31] or perforations [29]
with many similarities, e.g., low-energy localized magnetic
states and a net sublattice imbalance. However, perforations,
or antidots [34–36], have the advantage over dots of being
embedded in the graphene sheet which allows a wide range of
spin-dependent transport properties. Although signatures of
localized magnetic states have been detected [37–39], spin
manipulation in graphene-based half metals has yet to be
realized in experiments.

In this Rapid Communication, we investigate the transport
properties of graphene devices with embedded zz-edged
triangular antidots. Such devices are within the reach of state-
of-the-art lithographic methods: Triangular holes in graphene
have recently been fabricated [40], and experiments suggest
the possibility of zz-etched nanostructures [41,42]. Another
possibility is to employ a lithographic mask of patterned
hexagonal boron nitride, which naturally etches into zz-edged
triangular holes [43,44]. The zz-edged structures support local
ferromagnetic moments [3], however, global ferromagnetism
is induced when the overall sublattice symmetry of the
edges is broken [11–13,16,27,28,45]. This occurs for zz-
edged triangles [15,29–33]. We have recently discussed the
electronic structure of triangular graphene antidot lattices
(GALs) [33]—here, we focus on transport through devices

*sorgre@nanotech.dtu.dk

containing a small number of antidots. Our calculations show
that large spin-polarized currents are generated by the device
illustrated in Fig. 1(a). An unpolarized current incident from
the left is funneled below the triangle if the electron spin is up
(↑, red) and above if the spin is down (↓, blue), resulting in
spin-polarized currents at contacts top (T) and bottom (B),
respectively.

The sixfold symmetry of the graphene lattice allows only
two orientations for zz-edged triangles. A 180◦ rotation
exposes zz edges with magnetic moments of opposite sign.
In turn, this inverts both the scattering directions and spin
polarization simultaneously. An independent inversion of
either scattering direction or spin polarization would change
the direction of spin current flow, but inverting both restores the
spin current flow pattern [Fig. 1(b)]. This results in robust spin
behavior over a wide range of superlattice geometries. The zz-
edged triangular GALs have magnetic moment distributions
as shown in Fig. 1(c), and display half-metallic behavior over
a wide range of energies near the Dirac point. The roles of
the two spin orientations can be interchanged by gating, as
shown in Fig. 1(d). The magnetic profile remains qualitatively
similar when the side length is varied [insets of Fig. 1(c)],
changes sign under a 180◦ rotation, and magnetism vanishes
for the 90◦ rotated (armchair-edged) triangular antidot.

In analogy to (inverse) spin Hall measurements [21], we
study the transverse resistance generated by a longitudinal
current. Using a spin-polarized left contact we suggest a
method to distinguish between magnetic or nonmagnetic
antidots in such devices: The transverse resistance has a
characteristic antisymmetric behavior with respect to the Fermi
level only for spin-polarized antidots.

Geometry and model. The device in Fig. 1(a) consists of a
central graphene region with a single triangular antidot. (Below
we also consider a larger central region with an array of tri-
angles.) The device has four arms which terminate at metallic
contacts—left (L), right (R), top (T), and bottom (B)—which
act as sources of either unpolarized or single spin-orientation
electrons. The triangular antidots here have a side length
L� = 5a, where the lattice constant a = 2.46Å. The remaining

2469-9950/2017/95(12)/121406(5) 121406-1 ©2017 American Physical Society
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FIG. 1. Device geometry (above) and infinite antidot lattice
results (below). Spin up (down) is denoted red (blue) throughout.
(a) Device geometry, with Wzz ≈ 6 nm, Wac ≈ 4 nm, L� ≈ 1 nm,
Lzz ≈ Lac ≈ 2 nm, and spin-splitting effect with color map display-
ing the local spin-dependent current magnitude for spin-unpolarized
injection through the left electrode (L) J s

L. (b) Same as (a) but with
a 180◦ rotated antidot. (c) Magnetic moment profile of the antidot
lattice: Moments are represented by circles with radii ∝|mi |. The
inset illustrates magnetic moment profiles for, from left to right,
L� = 1 nm, L� = 4 nm, rotated L� = 4 nm, and armchair-edged
L� = 1 nm. (d) Spin-dependent transmissions (Tσ ) and density of
states (ρσ ) of the antidot lattice. The lattice geometry is shown in the
inset and has a ∼6 × 6 nm square unit cell (dotted box).

dimensions in Fig. 1(a) are given in the caption. Our previous
work [33] validates the use of a nearest-neighbor tight-binding
Hamiltonian Hσ = ∑

i εiσ c†iσ ciσ + ∑
ij tij c†iσ cjσ , to describe

the electronic structure of such systems, where c†iσ (ciσ ) is
a creation (annihilation) operator for an electron with spin
σ on site i. The hopping parameter tij is t = −2.7 eV for
neighbors i and j , and zero otherwise. The T and B arm
widths are chosen to yield metallic behavior near the Fermi
level E = 0.

Local magnetic moments are included via spin-dependent
on-site energy terms εiσ = ±U

2 mi , with − for σ =↑ and +
for σ =↓. The on-site magnetic moments mi = 〈ni↑〉 − 〈ni↓〉,
where niσ is the number operator, are calculated from a
self-consistent solution of the Hubbard model within the mean-
field approximation. This is performed for the corresponding
extended GAL, displayed in the inset of Fig. 1(d), which
is an approximately square lattice with a 25a × 15

√
3a

(∼6 nm × 6 nm) unit cell. The four short graphene arm
segments are assumed to be nonmagnetic in order to isolate
the magnetic influence of the antidots. An on-site Hubbard
parameter U = 1.33|t | gives results in good agreement with
ab initio calculations in the case of graphene nanoribbons
[3]. The sublattice-dependent alignment of moments agrees
with Ruderman-Kittel-Kasuya-Yosida (RKKY) theory predic-
tions [46,47]. Our calculations assume that this extends to

J
c l

G
0

J
s l

J
c l

T
G

0

E

FIG. 2. (a) Local current magnitude through a device with a single
triangular antidot at E = 20 meV. (b) Spin polarization of currents
in the same system (red: spin up; blue: spin down). Bottom: Spin-
dependent transmissions left top [LT, (c)] and left bottom [LB, (d)].

intertriangle alignments also. Due to the large total moment
at each triangle, the intertriangle couplings should be stronger
than those between, e.g., vacancy defects with similar separa-
tions.

The transmission T σ
αβ for spin σ between two leads α and β

and local (bond) currents Jσ
α from lead α are calculated using

recursive Green’s function techniques [48]. They are T σ
αβ(E) =

Tr[�αGr
σ�βGa

σ ] and [Jσ
α ]ij = [Hσ ]jiIm[Gr

σ�αGa
σ ]ij , respec-

tively. Gr
σ (Ga

σ ) is the retarded (advanced) Green’s func-
tion, �α = −2 Im[�α] is the broadening for lead α, �α

is the self-energy, and i and j are indices of neigh-
boring sites. The spin and charge transmissions and lo-
cal currents are defined for independent spin channels
as T s

αβ(E) = T
↑
αβ(E) − T

↓
αβ(E), T c

αβ(E) = T
↑
αβ(E) + T

↓
αβ(E),

Js
α(E) = J↑

α(E) − J↓
α(E), and Jc

α(E) = J↑
α(E) + J↓

α(E), re-
spectively. The metallic leads are included via an effective
self-energy �metal = −i|t | added to the edge sites of the
metal/graphene interfaces [49]. For spin-polarized contacts,
the self-energy for one spin channel is set to zero. The
four-terminal transverse resistance Rxy is determined using
L and R as the source and drain and T and B as voltage probes,

Rxy = VTB/I c
L. (1)

where the transverse potential drop eVTB = μT − μB. Using
the Landauer-Büttiker relation, the charge currents through
lead α are I c

α = ∑
βσ T σ

βα(μα − μβ). It is assumed that spin
mixing occurs in the T and B leads, yielding spin-unpolarized
potentials μ

↑
T = μ

↓
T and μ

↑
B = μ

↓
B. We apply source and drain

potentials μL = eVLR and μR = 0, while T and B probes carry
zero current, I c

T = I c
B = 0. The resistance is then determined

by solving for μT, μB, and the longitudinal current.
Results and discussion. Transport properties of the system

in Fig. 1(a) are presented in Fig. 2. The spatial spin separation
is illustrated by the magnitude of the local charge current
J c

L,i = [Jc
L]

i
and its spin polarization J s

L,i/J
c
L,i = [Js

L]
i
/[Jc

L]
i
at

E = 20 meV, in Figs. 2(a) and 2(b), respectively. At this
energy, ↓ electrons are channeled above the antidot and ↑
electrons below it. Incoming ↑ electrons are backscattered

121406-2
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E

η

J
c l

G
0

J
s l

J
c l

5 × 4

FIG. 3. (a) Schematic of the graphene cross device with a 5 × 4
array of triangular antidots. All triangles are oriented in the same
direction with same magnetic moment profile, i.e., as in Fig. 1(c)
(red triangles). Wzz = 60

√
3a ≈ 26 nm and Wac = 131a/2 ≈ 16 nm.

(b) The splitting efficiency, as defined in main text, of the 5 × 4 array
(solid) and the single-antidot (dotted) devices. (c) The local charge
currents and (d) spin polarization for injection from the left electrode
for E = 20 meV (red: spin up; blue: spin down).

near the top vertex of the triangular antidot. This ↑-electron
behavior is also seen for both spins in the unpolarized system,
i.e., letting all mi → 0 (not shown), and is due to geometrical
factors: The jagged top half of the device is a more effective
backscatterer in general than the nanoribbonlike bottom half.
Conversely, the ↓ behavior is the opposite: Backscattering
occurs in the lower half of the device. This behavior is
indicative of scattering near the bottom edge of the triangle
which only occurs for ↓ electrons. This is supported by the
presence of strong ↓ local density of states (DOS) features
at the middle of each edge in the corresponding bulk lattice
[33]. Therefore, the scattering of ↑ electrons is dictated mainly
by the triangular shape of the antidot, whereas ↓ electrons
are more sensitive to the magnetic profile. The L-T and L-B
transmissions shown in Figs. 2(c) and 2(d) reveal that the
spin polarization occurs for a broad range of energies. Thus,
a single-antidot device can partially split or filter incoming
currents into either T or B with a large degree of polarizations
T s/T c ∼ 70%–90%.

A 5 × 4 array of triangular antidots is shown in Fig. 3(a).
We first assume that the magnetic moment profile is the same
for each antidot [illustrated in Fig. 3(a) by red triangles] but
below we relax this assumption. The electronic splitting of the
spin currents can be quantified by an effective figure of merit

η = T
↓

LT − T
↑

LT + T
↑

LB − T
↓

LB∑
σα =L T σ

Lα

, (2)

where η → 1 for perfect spatial spin splitting into T and B.
The figure of merit in Fig. 3(b) is larger for the array (solid
line) than for the single-antidot device (dotted line), further
illustrated by the charge and spin currents at E = 20 meV in
Figs. 3(c) and 3(d). The ↑ electrons are effectively blocked

FIG. 4. (a), (b), (d) Transport splitting efficiency of 5 × 4 an-
tidot arrays with different disorder. The splitting efficiency of ten
disordered device realizations is shown in gray, the configurational
average for each type in black, and the pristine 5 × 4 array in black
dashed [reproduced from Fig. 3(b)]. (a) Random flipping of antidots
and reversal of spin polarization (see inset). An additional array
realization with every second antidot flipped (5 × 4R) is shown by
the black dotted curve. (b) Random variation of side length, as in the
inset. (c) Realization of an antidot with removed atoms (black arrows)
and the corresponding magnetic moment profile. The moment profile
here and in Fig. 1(c) are scaled equally. (d) Splitting efficiencies for
antidot edge atom disorder [see (c)].

away from the array because of half metallicity at this energy,
and are either backscattered, or directed towards the B contact.
The ↓ electrons, on the other hand, may enter the array,
but have a large probability of deflection towards the T
contact due to repeated scattering of the type discussed for the
single-antidot case. Thus, a large imbalance between the spin-
resolved transmissions develops, with T and B polarizations
T s/T c ∼ 99% around E = 20 meV, and η is enhanced.

The ↓ behavior is similar to the ratchet effect previously
noted for triangular perturbations in graphene [50]. The spatial
spin splitting shown here is somewhat analogous to the SHE
[17–21], where currents of opposite spin are pushed to the
opposite edges of the device. A key distinction is that our
device does not require spin-orbit coupling, or topologically
protected transport channels. Even though the antidots share
many similarities with regular dots, the enhanced spin splitting
by repeated scattering from different antidots is difficult to
envision in a dot-based system.

In experiments, disorder severely degrades properties of
atomically precise antidot lattices [51]. The half metallicity
of triangular GALs is unusually robust against lattice disorder
[33]. In Fig. 4, we study the effect of disorder in a 5 × 4 antidot
array using three different methods and ten realizations of each
disorder type.

The first disorder type is a random flip of individual antidots,
as illustrated in the inset of Fig. 4(a). The individual (gray
solid) and averaged (black solid) figures of merit for this
disorder [Fig. 4(a)] are of the same order as the pristine 5 × 4
array (black dashed). This is expected as the standard and
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FIG. 5. Transverse resistance R in units of R0 = h/e2 for a
single-antidot device and two 5 × 4 array devices when injecting
only ↑ electrons into the L lead (shown in red). The resistances
of spin-unpolarized (mi = 0) and spin-polarized (M = ∑

mi = 0)
antidot devices are shown in black and red, respectively. (a) Single-
antidot device, with the inset showing a schematic of ↑-polarized
electron injection. (b) 5 × 4 array devices with aligned (solid) and the
alternatingly flipped triangles (dotted). The inset shows the schematic
of a 5 × 4 array device with ↑-polarized electron injection).

flipped single-triangle devices display very similar behavior
[Figs. 1(a) and 1(b)]. For comparison, for the case where every
second antidot has been flipped [5 × 4R (black dotted)], the
efficiency is almost exactly identical to the disordered average.
The spread of the different disorder realizations (gray curves)
is very small, suggesting that the orientation of the individual
antidots plays only a very minor role in these devices, and
may even improve the figure of merit compared to the lattice
of aligned antidots.

The second disorder type [inset of Fig. 4(b)] randomly
varies the triangle side lengths L → L ± δL, where δL ∈
{0,a,2a}. The individual and the averaged splitting efficiencies
are shown in Fig. 4(b). The effect of this disorder is minimal,
suggesting that it is the presence of multiple spin-dependent
scatterers with similar qualitative behavior and not their exact
positioning or size, which enhances the spin-splitting effect.
Enlarging or shrinking a triangle changes the length of the
spin-polarized zz edge, and thus the total magnetic moment
of an individual triangle [see the inset of Fig. 1(c), and
the Supplemental Material [52]]. However, the qualitative
scattering processes are unchanged.

The third type of disorder, in Fig. 4(c), randomly removes
Nrem � 3 edge atoms. Removing an edge atom splits the
zz edges into smaller segments and significantly influences
the magnetic moment profile (see also the Supplemental
Material [52]). Random flipping of local moments should play
a similar role. Each device realization comprises several anti-
dots with a randomly chosen Nrem ∈ {0,1,2,3}. The splitting
efficiencies shown in Fig. 4(d) show some deviations from
pristine behavior. This can be attributed to the reduction of

the total magnetic moment as well as the random introduction
of scattering centers at each of the antidots. Edge disorder
is particularly severe for small antidots and is capable of
quenching magnetism entirely at some edges. The longer edge
lengths likely in experiment will be more robust against this
type of disorder.

Finally, we consider the transverse resistance in a four-
terminal device. The resistances Rxy of the single-antidot
device and the 5 × 4 and 5 × 4R devices are shown in Figs. 5(a)
and 5(b), respectively. The difference between the top and
bottom chemical potentials is μT − μB ∝ T c

LTT c
RB − T c

RTT c
LB,

and vanishes in the case of complete left-right symmetry.
For spin-unpolarized electrons the system is exactly L/R
symmetric and the resistance is zero (not shown). Figure 5
shows cases with a ↑-polarized L lead. The transverse
resistances in Fig. 5(a) through a single magnetic antidot (red)
show clear antisymmetry with respect to energy. At positive
energies, the fact that the ↓ electrons are now not flowing
between L and T has the effect of shifting the potential at T
closer to that at the R lead, i.e., μT < eVLR/2. Simultaneously,
the potential at B remains close to midway between the L and R
potential, i.e., μB ∼ eVLR/2. This yields a negative transverse
potential drop μT − μB < 0 and in turn a negative resistance
Rxy < 0. For E < 0 the spins are flipped and the sign of both
the potential drop and the resistance is inverted. When the
antidot is unpolarized, positive and negative energies behave
similarly, and the resistance is symmetric across the Fermi
level, as shown in Fig. 5 (black). The same is seen for the both
the 5 × 4 array and the 5 × 4R array devices in Fig. 5(b). This
clear distinction between magnetic and nonmagnetic antidots
provides an excellent measure of whether the device actually
splits spin currents, and can, in general, be used to detect
magnetism in other nanostructured devices.

Summary. We have demonstrated that magnetic triangular
antidots in graphene provide an efficient platform for spatial
spin-splitting devices. The incoming current is split into
output leads according to spin orientation, analogous to the
spin Hall effect, but without relying on spin-orbit effects.
The outgoing spin polarizations can be flipped using a gate
potential. The predicted performance is robust against typical
disorders present in realistic devices. The transverse resistance
yields a clear signal distinguishing the magnetic nature of the
perforations.
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