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Supplementation of docosahexaenoic acid
(DHA), vitamin D3 and uridine in
combination with six weeks of cognitive
and motor training in prepubescent
children: a pilot study
Solvejg L. Hansen1†, Anina Ritterband-Rosenbaum2,5*† , Camilla B. Voigt2,5, Lars I. Hellgren3,
Ann-Dorit M. Sørensen4, Charlotte Jacobsen4, Line Z. Greve5, Katrine D. Jørgensen5, Peder E. Bilde5,
Bente Kiens1 and Jens B. Nielsen2

Abstract

Background: Learning and memory have been shown to be influenced by combination of dietary
supplements and exercise in animal models, but there is little available evidence from human subjects. The
aim of this pilot study was to investigate the effect of combining a motor- and cognitive exercise program
with dietary supplementation consisting of 500 mg docosahexaenoic acid (DHA), 10 μg vitamin D3 and
1000 mg uridine (DDU-supplement) in 16 prepubescent children (age 8–11 years).

Methods: We designed a randomized, placebo-controlled, double-blinded study lasting 6 weeks in which DDU-
supplement or placebo was ingested daily. During the intervention period, all children trained approximately 30 min
3 days/week using an internet-based cognitive and motor training program (Mitii). Prior to and post the intervention
period dietary record, blood sampling, physical exercise tests and motor and cognitive tests were performed.

Results: Fourteen of the 16 children completed the intervention and ingested the supplement as required.
6 weeks DDU-supplementation resulted in a significant increase in the blood concentration of vitamin D2+3

and DHA (p = 0.023 and p < 0.001, respectively). Power calculation based on one of the cognitive tasks
revealed a proper sample size of 26 children.

Conclusion: All children showed improved performance in the trained motor- and cognitive tasks, but it was not
possible to demonstrate any significant effects on the cognitive tests from the dietary supplementation. However,
DDU-supplementation did result in increased blood concentration of DHA and vitamin D2+3.

Trial registration: Clinical registration ID: NCT02426554 (clinical Trial.gov). January 2015 retrospectively registered.
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Background
Learning and memory require structural changes in
neurons and neuronal networks in the form of down- or
up-regulation of receptors, membrane channels, neuro-
transmitters and synaptic connections [1]. Such plastic
changes depend on the availability of proteins, fatty acids
and carbohydrates involved in the growth of new connec-
tions between the neurons. The influence of different diet-
ary supplements on brain function in animals and humans
has therefore been the subject of intense scientific interest
in the past decade (reviewed in [2]). Most promising among
these dietary supplements are substrates for synthesis of
the neuronal membrane phospholipids uridine and docosa-
hexaenoic acid (DHA), which have been shown in rodents,
independently or in combination, to facilitate development
of new synapses and to improve learning and memory abil-
ities [2–6]. DHA supplementation in rodents has also been
shown to increase the production of brain-derived neuro-
trophic factor (BDNF) [7], a mediator of neurogenesis in
hippocampus and critical in memory formation [8]. Vita-
min D receptors are found in human brain and vitamin D
is like DHA able to cross the blood brain barrier (reviewed
in [9]). In a systematic review, low vitamin D levels have
been associated with decline in cognitive function and
higher frequency of dementia [10]. Taken together, research
results suggest that DHA, vitamin D and uridine are of im-
portance for optimal brain function.
To our knowledge, no studies have investigated the

effect of a combination of vitamin D and DHA supplemen-
tation on cognitive abilities in healthy prepubescent chil-
dren. Some studies have examined the effect of DHA alone
in randomized control trials [11–16]. Thus, the available
evidence does not present a clear and coherent picture.
Three studies have shown a positive effect of DHA supple-
mentation on some cognitive outcomes [15–17] one study
has shown mixed results [14] while others report no effect
[11–13]. In a recent meta-analysis, the effect of n-3 polyun-
saturated fatty acid was evaluated on cognitive outcome
and it was concluded that the supplementation may signifi-
cantly improve cognitive development in infants, but does
not improve cognitive performance in children, adults, or
in the elderly [18].
Interestingly, DHA supplementation also seems to have

synergistic effects together with exercise/physical activity
on learning and memory abilities [2, 19, 20]. In addition, a
recent analysis of 59 studies in children indicated a signifi-
cant and positive effect on cognitive outcomes in response
to exercise and physical activity alone [21]. However, stud-
ies of the effects of a dietary supplement and physical ac-
tivity like motor- and cognitive exercises in combination
in healthy children are lacking.
The aim of the present pilot study was to provide prelim-

inary data of the effect on cognitive and motor abilities by
an intervention consisting of repeated motor- and cognitive

exercises and daily supplementation of DHA, vitamin D3

and uridine (DDU-supplement) in a group of prepubescent
children to enable a power calculation. The purpose of the
study was further to address; 1) the feasibility of including
prepubescent children to participate in repeated bouts of
motor- and cognitive exercises combined with extensive
testing, and 2) whether a relative small supplementation of
vitamin D and DHA can be detected as an increase in
blood levels after just 6 weeks of supplementation.

Methods
Study site
The study was conducted during winter and spring 2011.
Children in 3rd and 4th grade (age 8 to 11 years.) were re-
cruited and written informed consent was obtained from
all children and their parents. This study was conducted
in accordance with the Declaration of Helsinki and all
procedures were approved by The National Committee of
Health Research Ethics - the Ethics committee of the
Greater Copenhagen area (H-2-2010-061).

Subjects
Sixteen school children were recruited for the study and
met the inclusion criteria, which were age of 8 to 11 year.
and no history of neurological or psychiatric disorders.
The recruitment period lasted 4 months. All subjects
were right-handed according to the Edinburgh Handed-
ness Inventory [22].
Completion rate was 88%. Two children dropped out

during the experiment, one due to lack of time and one
because he disliked the supplement. Accordingly, 14 chil-
dren (6 girls and 8 boys) completed the study. Results are
from the 14 children unless otherwise stated. Table 1 sum-
marizes the characteristics of the children divided in
DDU-group (6 children, 3 girls/3 boys) and placebo group
(8 children, 3 girls/5 boys).

Random assignment of supplement and blinding
All children received a personal code, which was used in
the randomization process and in the testing results. All

Table 1 Characteristics

DDU supplement Placebo supplement

Mean + SEM Mean + SEM

Age (years) 9.5 ± 0.22 9.4 ± 0.18

Weight (kg) 34.58 ± 2.63 33.58 ± 1.53

Height (m) 1.44 ± 0.02 1.42 ± 0.02

BMI (kg/m2) 16.66 ± 1.0 16.7 ± 0.56
aVO2max (l/min) 1.73 ± 0.17 1.86 ± 0.08
aVO2max (l/min/kg) 0.05 ± 0.002 0.06 ± 0.004

Characteristics for the two intervention groups DDU (6 children) and Placebo
(8 children)
aVO2max: maximal oxygen uptake
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supplement containers (DDU and placebo) were labelled
with the codes. The supplier of the supplement held the
codes until data analyses were completed. None of the
codes were broken before then. Thus, children, parents,
investigators and staff were blinded throughout the
intervention period.

Research design
A combination of DHA, vitamin D3 and uridine (DDU-
supplement) or a placebo supplement, containing medium-
chain triacylglycerol, was ingested daily in a 6-week period.
Children were randomly allocated to start with DDU-
supplement or placebo supplement. The supplements were
administered at home. The intervention was combined
with a cognitive- and motor exercise program, consisting of
a number of progressively challenging cognitive- and motor
training for 30 min a day, 3 days a week. Prior to the inter-
vention period, four representative days of habitual diet re-
cording were completed. Furthermore, the children filled a
food frequency and physical activity questionnaires (FFQ),
which covered periods prior to, during and post interven-
tion. Before and after the intervention period, blood sam-
pling and testing of cognitive parameters such as attention,
learning and memory were performed. Furthermore, max-
imal oxygen uptake (VO2max) was measured on a treadmill
to determine the physical fitness level of the children. The
children were told not to change their daily physical activity
habits during the study. This was controlled by the FFQs.
See Fig. 1.

Dietary record
Four days of diet recording were completed prior to
the intervention period to examine the daily habitual
diet composition and energy intake of the children.
Electronic scales with one gram of accuracy (OBH
NORDICA, attraction, Kitchen scale) and specified
registration schedules were used for weighing all in-
takes. Information and instructions were provided ver-
bally and in writing to the children and a family
member by a researcher with several years of training
in obtaining dietary records. Representative days for
diet recording were planned together with each child
and family member. The computer program DAN-
KOST 3000 was used for data analysis of the dietary
records. This provided details about energy intake
and macro- and micronutrients.
The children and their parents filled out a non-

validated FFQ before, during and after the interven-
tion. The FFQ were designed to detect any changes
in physical activity level (type, duration and intensity
of daily activities) and intake of vitamin D and DHA
rich food sources (for example, how often and how
much the subject had ingested tuna fish the last
3 days).

Blood sampling
Blood samples were collected by assistants at the Depart-
ment of Biochemistry, Copenhagen University Hospital
(Rigshospitalet). The children arrived fasting (12 h) at the
school laboratory in the morning. The children were
allowed to rest for 15 min in sitting position before blood
was drawn from an antecubital vein. Plasma or serum was
frozen at minus 20 or 80° Celsius for further analysis.

Testing
Math test and reading/comprehension test
All children completed school tests, which included a
reading/comprehension task as well as a math test. All
exercises were specifically chosen in accordance to the
level of 3rd and 4th grade school children. Accuracy and
reaction time of each task were noted. The reading/com-
prehension test is a standardized school test, where chil-
dren have a maximum of 15 min to complete the task.
In order to note the speed of their answers, the colour
of the pencil was changed every fifth minute. For both
the math test and the reading/comprehension test, the
number of errors was assessed. The tests were adminis-
tered by a researcher, who had several years of experi-
ence in performing the tests.

Cognitive tests
A psychologist tested the children in different psycho-
logical tests specifically chosen to provide outcome mea-
sures related to visual learning, memory, attention and
executive functions. We used the CogState [23] program,
which is a computer based testing apparatus. The program
presents tasks with similar levels of difficulty in different
ways for pre and post testing, and is therefore well suited
for repeated administration. The tests lasted around
30 min in total. The main outcomes from the test were
given by reaction time and accuracy.
Attention and working memory were assessed by the

One Back and Two Back Tasks. In these tests the chil-
dren had to recall if a given card was similar to the last
or second to last card, respectively.
Visual learning and memory were assessed by a Con-

tinuous Paired Associative Learning (CPAL) task in which
the children had to memorize positions of up to seven ab-
stract figures on the computer screen.
Executive function, spatial memory and working mem-

ory were assessed by a Groton Maze Learning (GML)
test. The children had to remember a specific path in a
maze, which consisted of 10 x 10 squares. This test was
also used as a recall-test after completing the other tests
in the CogState program.
Visual attention was also evaluated by an Identification

task, in which the children had to give the colour of a
card presented on the computer screen as quickly as
possible (red card vs. black card).
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Measurement of maximal oxygen uptake
Physical fitness level was evaluated by a running test on a
treadmill before and after the intervention. The children
were familiarized with the equipment and test procedure
before the running test. During all tests, the children
breathed through paediatric masks, adapted to their faces.
All children were secured with a safety belt (Teddy pants,
Liko, Sweden) during the entire test. Heart rate (HR) was
continuously recorded (polar Electro, Finland). Respiratory
gas exchanges were measured breath-by-breath using an
automatic gas-analysis system (CPX MedGraphics, USA) to
determine oxygen uptake (VO2) and respiratory exchange
ratio (RER). Calibration of the O2 and CO2 analysis systems
was performed before testing using ambient air and a mix
of known O2 and CO2 concentrations (15% O2 and 5.8%
CO2). The tube flowmeter was calibrated using a 3 L syr-
inge. For data analysis values were recorded every 5 s.
The children performed an incremental running test to

exhaustion on the treadmill. The protocol started with
1 min running at an individual maximal speed (9–
11.5 km/h) on slope 0% followed by stepwise 1% incline
every 1 min until exhaustion. Criteria for reaching exhaus-
tion were: RER > 1.00, a plateau in VO2 despite increasing
slope and unable to continue running despite verbal en-
couragement. Both RER and VO2 could be evaluated
throughout the test due to the use of online measure-
ments. The test was overseen by a human physiologist.

DDU-supplement and placebo supplement
DDU-supplement consisted of a 10 ml oil-in-water (o/w)
emulsion of 500 mg DHA in triacylglyceride form, 10 μg
vitamin D3, 1000 mg uridine and 0.5 g blue berry ex-
tract. We chose the dose of DHA based on a recommen-
dation of a daily intake of 500 mg polyunsaturated fatty
acids (DHA + EPA) in healthy subjects by the Inter-
national Society for Study of Fatty Acids and Lipids
(ISSAFL) [24]). The Nordic recommendation of daily
vitamin D intake is 10 μg. Since there is no known rec-
ommended level for Uridine, we chose a dose well below
that used in animal research. Holguin et al. 2008 used a
dose corresponding to 0.03% of body weight and we
consequently decided to use 1 g of uridine, which corre-
sponds to 0.003% of body weight [25]. Blueberry extract
was added to protect DHA against oxidation and at the
same time to provide a berry like colour of the emulsion.
Placebo consisted of a 10 ml o/w emulsion of 2 g
medium-chain triglycerides (MCT) oil and artificial col-
ouring. Whey protein was used as emulsifier in both
types of emulsions. In addition, both emulsions con-
tained synthetic blueberry flavour to make the flavour
and odour of the two emulsions similar. An overview of
the different ingredients and their concentrations in the
two different emulsions is shown in Table 2. Prior to ad-
ministering the supplements to the children, a group of

naive adults tasted the two emulsions to ensure that they
looked and tasted alike.
Production: DDU-supplement and placebo emulsions

were produced in 2-steps: pre-emulsification and
homogenization. First, whey protein was solubilized in the
water and other hydrophilic ingredients were thereafter
added to the whey protein–water solution (DDU-supple-
ment: uridine and blueberry extract, artificial flavour; Pla-
cebo: artificial colour and flavour). For pre-emulsification,
the aqueous solutions were stirred with an Ultra-Turrax
(Janke & Kunkel IKA-Labortechnik, Staufen, Germany)
and the oil mixture (DDU-supplement: DHA 500TG and
vitamin D3) or oil (Placebo: MCT oil) was added during
the first min of the 2 min total mixing. Pre-emulsions
were then homogenized using a two-valve table
homogenizer at a pressure of 225 bar (GEA Niro Soavi
Spa, Parma, Italy). Produced emulsions were bottled
(10 mL), purged with nitrogen to limit lipid oxidation,
sealed and pasteurized in a water bath (72 °C). All bottles
were cooled at 5 °C and thereafter stored at −20 °C. The
children received the DDU-supplement or placebo supple-
ment for three weeks at a time and stored them in their
private freezer (−18 °C) until 24 h before ingestion. During
the last 24 h until ingestion the supplements were kept in
the refrigerator (5 °C). The supplements were ingested
daily in the morning together with at least 100 ml of
yoghurt or orange juice as part of their breakfast. The
children did not report any side effects of either the DDU-
supplement or the placebo supplement. A few of the chil-
dren noticed taste and texture differences between DDU

Table 2 Composition of supplements shown in WT %
(weight solute/weight total)

DDU supplement Placebo supplement

Hydrophilic ingredients

Water 62.1 58.9

Whey protein 1.01 1.01

Blueberry flavour 5.00

Uridine 10.0

Artificial flavour 1.69 0.85

Red colour 13.1

Blue colour 1.05

Green colour 4.18

Lipophilic ingredients

High DHA oila,b 17.3

Vitamin D3a 2.90

MCT oil 20.1

Composition of DDU-supplement and Placebo emulsions. DHA, Docosahexaenoic
acid. MCT, medium-chain triacylglycerol
aThe amount of these ingredients was adjusted according to their purity to
give the desired amount of bioactive compounds (DHA: 0.5 g; Vitamin D3:
10 μg) in 10 ml of the DDU emulsion
bIncromega DHA 500TG
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and placebo, but were not able to identify which supple-
ment corresponded to the active product or placebo.
Materials: Oils used for DDU-supplement (Incromega

DHA 500TG, 58% DHA) and Placebo (MCT, medium
chain length C6-C12 triglycerides, where of C8 56% and C10

43%, 99.3% triglyceride) were supplied from CRODA (East
Yorkshire, England) and Sasol Germany GmbH (Witten,
Germany), respectively. Vitamin D3, Uridine and blueberry
flavour were purchased from a local dietary shop, Yamasa
Corporation (Chiba, Japan) and DENK Ingredients GmbH
(Munich, Germany), respectively. Artificial flavor and whey
protein were donated by A/S Einar Willumsen (Brøndby,
Denmark) and Arla Foods (Viby J, Denmark), respectively.
Artificial colors (Dr. Oetker: red, blue and green) were pur-
chased from a local super market.

Training procedure
The children completed all training sessions at home
using a recent developed internet based cognitive-
and motor training system (Move It To Improve It:
Mitii [26]). The program consisted of a number of
progressively challenging cognitive- and motor train-
ing modules in which the child used visual informa-
tion, solved a cognitive problem (i.e. mathematical
question, memory related task or similar) and
responded with a motor act (i.e. bend to pick up
needle and blow up balloon with the right answer).
They trained 30 min per day, three days a week. Ex-
amples of modules of Memory: the children had to
memorize a specific order of images and Mathemat-
ics: the children had to solve arithmetic tasks as fast
as possible. Further details have been described earl-
ier [26]. All children practiced the same program.
Data of the task performance were collected on a
server for offline analysis.

Blood analysis
25(OH)D was used as measurement of plasma vitamin
D2+3 concentration [27], and was measured by a com-
petitive chemiluminescens immunoassay on a Immuno-
DiagnosticSystem (iSYS).
DHA (C22:6, n-3) in plasma was analysed as described

earlier [28]. Briefly, plasma lipids were extracted using a
modification of the Folch-method, and fatty acid methyl
esters (FAME) were produced using a BF3-catalyzed
method, in which hydroquinone is added as antioxidant
[29]. The method has been validated for DHA, and does
not induce double-bond losses. The mass-percentage
contribution of DHA to the total plasma FAME-pool
was analysed using GC-FID, as described earlier [28].
Plasma BDNF concentration was measured by a com-

mercial available kit (Cat. No. CYT306, Chemicon Inter-
national Chomikine) by ELISA (Millipore, Corporation).

Power analysis
Power analysis was performed on one of the cognitive
tests in order to determine the sample size necessary to
obtain a statistically significant difference between the
two groups.
The sample size (N) is determined by:

N ¼ 2 σ
Z1−a= 2τð Þ þ Z1−β

μA−μB

� �2

σ = standard deviation
τ = number of pairwise comparison
α = type I error (0.05)
β = type II error (0.80)
μ =mean Δ outcome from the groups

Statistics and calculations
All data were analysed using SigmaPlot (version 11.0,
SYSTAT Software, San Jose, CA, USA). Data are
expressed as mean ± SEM. Data were evaluated using two-
way ANOVA with repeated measures for both
intervention (DDU-supplement/placebo) and time (Pre/
Post intervention). To test for differences between boys
and girls an unpaired t test was performed when variables
were independent of time and intervention. A Holm-Sidak
test was used as a post hoc test.
The association between vitamin D intake and plasma

vitamin D level and relationships between dietary satu-
rated fatty acids, added sugars, and cognitive function
were investigated using the Pearson product moment
correlation. A significance of P < 0.05 was chosen.

Results
Subjects
We found that our randomization process was accept-
able as the two groups (DDU and placebo) did not differ
significantly from each other in their baseline character-
istics (average age, body weight, body mass index (BMI)
and maximal oxygen uptake (VO2max) (ref. Table 1).

Habitual diet
All data from the dietary records are presented as the
average values from the total group of children and
given as average data according to sex (see Table 3 mac-
ronutrients and Fig. 2).
Diet records from three children were excluded because

of insufficient registration (less than two days of recording).
Eight of the children supplemented their daily diet with vi-
tamins and minerals. All children were well below the
upper limit for recommended intake of vitamin D regard-
less of extra supplementation. The dietary records are re-
ported without these individual supplements when nothing
else is noted. There was no cross-sectional relationship (at
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pretest) between dietary saturated fatty acids, added sugars,
and cognitive function (p > 0.05).
Energy intake was 208.0 ± 17.2 kJ/kg body weight (bw)

in girls and 245.8 ± 25.7 kJ/kg bw in boys (not statistically
different; p = 0.3). The composition of the habitual diet av-
eraged 56.6 ± 1.5 energy percentage (E%) of carbohydrates,
27.5 ± 1.3 E% fat and 16.0 ± 0.5 E% protein. The boys con-
sumed a higher E% of carbohydrates (p < 0.05) and a lower
E% fat (p = 0.056) than the girls (Table 3).
The intake of fatty acids in the diet was low in relation

to recommendations. Despite of this, the average intake
of mono- and polyunsaturated fatty acids was within the
range of recommended levels. 45% of the children were
below recommended intake of both mono – and polyun-
saturated fatty acids (Fig. 2a and b).
The average daily vitamin D intake was below the recom-

mended level for both genders (mean 4.15 ± 0.84 μg, rec-
ommended level; 10 μg). Seven children supplemented
their daily diet with vitamins and minerals and thereby
reached the recommended level of vitamin D intake
(Fig. 2c). Evaluation of the FFQs showed that none of the
children changed their diet habits related to food items
containing vitamin D or DHA during the study period.

Blood parameters
Before the DDU-supplementation the average plasma
concentration of vitamin D2+3 (25(OH)D) was 58.5 ±
4.1 nmol/l. It increased to 64.5 ± 8.6 nmol/l (p = 0.023)
after DDU-supplementation, but remained unchanged in
the placebo trial (pre: 51.13 ± 6.7 nmol/l, post: 44.6 ±
7.2 nmol/l) (Fig. 3a).

Before the DDU-supplementation trial the average
plasma DHA concentration was 2.69 ± 0.36% of total
FAME-pool and increased to 4.15 ± 0.21% of total FAME-
pool (p < 0.001). In the placebo trial plasma DHA concen-
tration was unchanged (pre: 2.54 ± 0.28, post: 2.16 ± 0.27%
of total FAME-pool). Delta plasma concentration of DHA
was significantly larger in DDU-supplementation trial
compared to placebo trial (Fig. 3b).
BDNF concentration remained unchanged following

both the DDU- and the placebo supplement (Fig. 3c).
A correlation was found between dietary vitamin D in-

take and plasma vitamin D2+3 concentration (Fig. 2d, r =
0.7, P < 0.05).

Table 3 Macronutrients before intervention

Girls + boys Girls Boys RIa

Mean ± SEM Mean ± SEM Mean ± SEM

Energy intake (KJ) 7797.4 ± 462.1 6733.3 ± 400.9 8405.5 ± 586.3 Girls: 8600
Boys: 9300

Energy intake (kJ/kg bw.) 232.1 ± 17.8 208.0 ± 17.2 245.8 ± 25.7

Macronutrients

Protein (E%) 16.0 ± 0.5 17.2 ± 0.2 15.3 ± 0.7 10-20

Fat (E%) 27.5 ± 1.3 30.7 ± 1.9 25.6 ± 1.4 25-40

Carbohydrate (E%) 56.6 ± 1.5 52.1 ± 2.0 *59.1 ± 1.2

Lipid profile

Saturated fatty acid (E%) 8.3 ± 0.6 9.0 ± 0.7 7.9 ± 0.8 <10

Monounsaturated fatty acid (E%) 11.6 ± 1.4 13.3 ± 3.2 10.7 ± 1.4 10→ 20

Polyunsaturated fatty acid (E%) 7.0 ± 1.2 8.4 ± 2.6 6.3 ± 1.3 5→ 10

Cholesterol (mg) 217.7 ± 35.3 266.4 ± 52.1 189.8 ± 46.2 <300

Added sugar (E%) 3.48 ± 0.66 3.80 ± 1.84 3.30 ± 0.37 <10

Fibers (g) 26.0 ± 2.1 21.1 ± 1.6 28.8 ± 2.7 2-3 g/Mj

Macronutrients given by an average of four independent days of 24 h dietary weighing for girls and boys together (n = 11) and girls (n = 4) and boys
(n = 7) separately
*p < 0.05, vs. girls (t test), bw = body weight. E%, percentages of total energy intake
aRI: Recommended intake for a child aged 10–11 years [37]

Fig. 1 Study design. The children completed dietary registration
during four representative days two weeks prior to the pre-test.
During the intervention two children dropped out of the study,
which resulted in 6 children in the DDU group and 8 children in
the Placebo group
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Training intervention
Compliance to Mitii training was good. Out of 18 pos-
sible training sessions the children completed on average
16 sessions during the intervention period.
The training program resulted in significant im-

provement in performance of motor-and cognitive
tasks with no difference in relation to dietary supple-
mentation. Examples of progression in the perform-
ance of two of the training modules are shown in
Fig. 4.

School test
Reaction time for completing reading/comprehension
test was significantly reduced following the motor and
cognitive exercise intervention (p = 0.008), with no de-
cline in accuracy. Reaction time of the math test was
improved (p = 0.016) following DDU-supplement, but
not in response to placebo. There was no decline in
accuracy following the interventions.

Cognitive tests
There was in general effect of improvement in perform-
ance in the cognitive tasks following both DDU and

placebo intake, suggesting that this was a simple test-
retest effect. Only one of the subtests showed a signifi-
cant change following the intervention (p < 0.05) (Fig. 5).

Maximal oxygen uptake and physical activity level
Physical fitness status was evaluated by the measurement
of maximal oxygen uptake and supported by evaluation
of physical activity level from the FFQ.
Maximal oxygen uptake remained unchanged during

the intervention both in the DDU-supplementation group
(pre; 1.73 ± 0.17 l/min, post: 1.865 ± 0.08 l/min) and the
placebo group (placebo pre: 1.86 ± 0.21 l/min, post: 1.98 ±
0.23 l/min).
Analyses of FFQ revealed no changes in habitual daily

activity level during the intervention period.

Power analysis
Data from one of the cognitive tasks (One Back Task)
were used to calculate the sample size necessary to de-
termine significant differences between the two groups
(DDU and Placebo):

Fig. 2 Individual dietary intake of mono- and polyunsaturated fatty acids and vitamin D. 1–4 represents girls and 5–11 represents boys. Bold line
represents daily minimum recommended levels of intake monounsaturated fatty acid intake (E%) (a), black horizontal line indicates recommended level
at 10–15 E% [37]. Polyunsaturated fatty acid intake (E%) (b), black horizontal line indicates recommended level at 5–10 E% [37]. Vitamin D (μg) intake
(c) with (grey bars) and without (black bars) vitamin supplement (7 out of 11), black horizontal line indicates recommended daily intake at 10 μg [37].
d Correlation between dietary intake of vitamin D incl. dietary supplement and plasma 25(OH)D2+3 (vitamin D2+3) concentration in blood. Pearson
product moment correlation is presented on the graph
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N ¼ 2 3:64
Z1−0:05=2 þ Z1−0:8

4:62‐1:74

� �

This revealed that a sample size of 26 children would
be necessary to determine significant differences be-
tween the DDU and placebo groups given the variability
and effect size in the test.

Discussion
The main purpose of the study was to provide prelimin-
ary data on the possible effect of DDU supplementation
in combination with cognitive-motor training on the
cognitive and motor abilities of prepubescent children.
This enabled us to determine the feasibility of a random-
ized clinical study and perform a power analysis.
Our pilot study does support the possibility of imple-

menting a quite comprehensive protocol with dietary

Fig. 3 Plasma concentrations of vitamin D2 + 3, docosahexaenoic acid (DHA) and brain-derived neurotrophic factor (BDNF). Vitamin D2+3 plasma
concentration (a) DHA plasma content (b), and BDNF plasma concentration (c) before and after DDU- and placebo supplement. Right upper
corner: Delta concentrations of vitamin D2+3 (a), DHA (b) and BDNF (c) in relation to interventions. Data are mean ± SEM
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questionnaires combined with physical and cognitive test-
ing, including blood sampling, prior to and post diet sup-
plementation and cognitive motor training intervention.
The children generally showed a high compliance to

the study with only two children dropping out for
reasons that had little to do with the study protocol.
All children and their families were willing to supple-
ment their daily food intake with the DDU or placebo
supplement. We believe that a similar compliance is
to be expected also in a larger study with more chil-
dren. We were in contact with the families on a
weekly or biweekly basis, but this was primarily by
mail or phone, which can easily be implemented in a
larger study.

Since we have data from only 14 children, all conclu-
sions should be made with caution. Our power calcula-
tion indicated that a sample size of at least 26 children
would have been necessary to detect true significant
effects with the tests that we performed here. With a 10-
15% drop-out ratio (2 out of 16) a somewhat larger
sample size probably should be aimed for.
Only few studies have investigated the effect of DHA

supplementation on cognitive abilities in healthy chil-
dren and the results are conflicting [11–17]. The NEMO
study [11] included a total of 644 healthy children from
Australia and Indonesia aged 6–10 years. One group of
children (n = 165) was provided with a supplement of
vitamin: A, B-6, B-12, C, folate zinc and iron, DHA
(88 mg/d) and eicosapentaenoic acid (EPA, 22 mg/d)
during a period of 12 months. Higher plasma micronu-
trient levels and plasma DHA concentrations were found
and the children improved verbal learning and memory
after the dietary supplementation [11]. These findings
are consistent with the double-blinded RCT by Portillo-
Reyes et al. (2014), who investigated cognitive outcomes
in 50 children aged 8–12 years. Half of the group re-
ceived 60 mg DHA and 90 mg EPA and the other half
received placebo. Significant changes between the two
groups were observed in visual-perceptive capacity, at-
tention and executive functions following three month
of intervention [17]. In contrast, a double-blinded RCT
by Kennedy et al. [12] in 88 healthy children aged 10–
12 years. showed no effect on a number of cognitive
skills after 8 weeks intake of supplement, containing two
different daily doses of DHA (400 mg, 1000 mg) com-
pared to placebo. In that study no dietary recording or
blood sampling was performed [12]. None of these stud-
ies accounted for changes in daily physical activity level,
although exercise has been shown to have significant,
positive effects on cognitive function [21]. McNamara et
al. (2010) found altered activity in cortical attention net-
works in a group of children (aged 8–10 year.) following
8 weeks of either a low (400 mg pr. day) or high (1200 mg
pr. day) dose of DHA compared to placebo. However, all
children displayed the same level of performance in a cog-
nitive task regardless of whether they received DHA or
placebo. One important finding from the study by McNa-
mara et al. (2010) was that blood levels of DHA increased
significantly after only 8 weeks of DHA ingestion [16]. In
the present study a significant increase in plasma DHA
(>50%) was observed in response to only 6 weeks of
DDU-supplementation. Similar to the study by McNa-
mara (2010), this was not associated with significant im-
provements in cognitive skills when compared to placebo
(besides one test) [16]. It is likely that a longer interven-
tion period is necessary to demonstrate significant cogni-
tive changes as also suggested by Stonehouse (2014) who
recommended a minimum of 16 weeks [30].

Fig. 4 Performance in two Mitii modules. Mathematics (a) and
Memory (b) during the intervention periods when children received
DDU-supplement (closed circles) or placebo (open circles). The
mathematic task is given by an average increase in percentage of
correct responses each possible training day (note: nobody from the
placebo group trained day 18 therefore no results are provided). The
memory task is given by an average decrease in percentage of errors
during each possible training day. The error bars indicate SEM for
each group
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DHA may facilitate improvements in cognitive skills by
increasing BDNF production in the brain. BDNF is believed
to be an important mediator of neurogenesis in hippocam-
pus and critical in memory formation [8]. DHA mediated
BDNF production has been reported in rodents [7]. It is
known that BDNF crosses the blood barrier in both direc-
tions. Thus, plasma/serum drawn from an antecubital vein
is believed to reflect the BDNF level in the brain [31]. We
found no effect of supplementation on plasma BDNF con-
centration (Fig. 2c), despite an increase in plasma DHA
concentration (Fig. 2b). Aerobic exercise and resistance
training have been shown to increase serum BDNF concen-
tration in adults in some studies [32, 33] but not in all [34].
The habitual physical fitness level of the children in the
present study, as indicated by their maximal oxygen uptake,
remained unchanged during the intervention period. Thus,
the training may not have been sufficiently intensive to fa-
cilitate BDNF production. This may have contributed to
the lack of a combined effect of the supplement and the
training on cognitive performance.
The baseline plasma concentration of vitamin D2+3

was 58.5 ± 4.1 nmol/l (23.4 ± 1.6 ng/ml) in the DDU
group and 51.1 ± 6.7 nmol/l (20.5 ± 2.7 ng/ml) in the pla-
cebo group. This is considered as vitamin D insufficiency
[35]. 90-95% of vitamin D plasma concentrations are
caused by exposure to sunlight [27]. The study was initi-
ated in wintertime and stopped during the spring. Dur-
ing this period, only little synthesis of vitamin D occurs
in the skin of people living at the latitude of Denmark
(54-58°N) [36]. At the same time adequate intake of
Vitamin D may be a challenge due to limited availability
of food sources containing vitamin D [27]. This is a
likely reason for the low vitamin D concentration found
in the children in the present study and points to the
importance of supplementing the daily diet with Vitamin
D during the winter in countries at high latitudes. Our

data indicated that supplementation of 10 μg vitamin D3

per day in 6 weeks increased plasma levels of vitamin
D2 + 3 to 64.5 ± 8.6 nmol/l, which corresponds to 25.8 ±
3.5 ng/ml. This is still below the insufficiency threshold
at 29 ng/ml [27]. A higher amount or a longer supple-
mentation period should be considered in future studies.

Conclusions
We find that it is feasible to combine daily supplementa-
tion and cognitive- and motor training during 6 weeks
in prepubescent children.
All children showed improved performance in the

trained motor- and cognitive tasks, but it was not pos-
sible to demonstrate any significant effects on the cogni-
tive tests from the dietary supplementation. However,
DDU-supplementation did result in increased blood
concentration of DHA and vitamin D2+3.

Abbreviation
BDNF: Brain Derived Neurotrofic Factor; DDU: Vitamin D/DHA and Uridine;
DHA: Docosahexaenoic acid; FAME: Fatty acids methyl esters; FFQ: Food
Frequency and physical activity Questionnaire; HDL: High density lipoprotein
cholesterol; HR: Heart Rate;Respiratory exchange rate; LDL: Low density
lipoprotein cholesterol; MCT: Medium chain tryglyceride; Mitii: Move It To
Improve It; NEFA: Non-esterified Fatty acids; TG: Triglyceride
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