
 

 

H3K9me is dispensable for C. elegans 

development but essential for genome 

integrity 

 

 

Inauguraldissertation 

zur 

Erlangung der Würde eines Doktors der Philosophie 

vorgelegt der 

Philosophisch-Naturwissenschaftlichen Fakultät 

der Universität Basel 

 

 

von 

Peter Zeller 

aus Freiburg in Deutschland 

 

Basel 2017 

 

Originaldokument gespeichert auf dem Dokumentenserver der Universität Basel 
edoc.unibas.ch 



Page | 2 

 

 

 

Genehmigt von der Philiosophisch-Naturwissenschaftlichen Fakultät 

Auf Antrag von 

Prof. Dr. Susan M. Gasser   Fakultätsverantwortliche und Dissertationsleiterin 

Prof. Dr. Marcel Tijsterman   Korreferent 

 

 

 

 

 

 

 

 

 

 

 

   Prof. Dr. M. Spiess 

Dekan 

 

Basel, den 21.02.2017 

 

 



Page | 3 

 

Overview 

Rational…………………………………………………………………………………………………….4 

Chapter 1: Introduction.…………………………………………………………………………..………5 

 Histone modifications: establishment, function, removal ..…………………………………..6 

 Impact of histone modifications on transcriptional activity…………………………………...8 

Heterochromatin and H3K9me………………………………...………………………………10 

H3K9me in C. elegans...…………………………………………………………………...…..1γ 

Polycomb………………………….……………………………………………………………..19 

RNA interference……………………...………………………………………………………...β1 

The role of chromatin in genome integrity……………………………………………………24 

Spatial organization of chromatin……………………………………………………………..β6 

Scope…………………………………………………………………………………………….β9 

References………………………………………………………………………………………γ1 

Chapter 2: Repeat DNA in genome organization and stability……………………………………..41 

Chapter 3: Histone H3K9 methylation is dispensable for Caenorhabditis elegans  

development but suppresses RNA:DNA hybrid-associated repeat instability ……………………51  

Chapter 4: Specialized roles of Histone H3 K9me2 and K9me3 in C. elegans  

repeat repression and germline integrity……..…………………………………………………….…81  

Chapter 5: Conclusions and future directions……………………………………………………….115 

List of abbreviations…………………………………………………………………………..………..131 

Acknowledgements…………………………………………………………………………………….133 

CV………………………………………………………………………………………………………..134 

 



Page | 4 

 

Rationale 

Epigenetic mechanisms as key regulators of chromatin biology have been the focus of intensive 

research over the past 20 years. It has become clear that epigenetic pathways play a major role 

in the pathology of numerous diseases ranging from neurodegenerative repeat expansion 

diseases to certain cases of cancer (Egger et al. 2004). 

One of the best-studied epigenetic marks is the methylation of histone 3 on lysine 9 (H3K9me). 

H3K9 methylation plays a major role in silencing parts of the genome. H3K9me domains 

encompass a broad variety of sequences, ranging from single genes to repetitive elements (Matsui 

et al. 2010). In addition to its function in transcriptional repression, H3K9me is implicated in 

chromosome segregation (Peters et al. 2001) and the maintenance of genome integrity (Peng and 

Karpen 2009). Lately the H3K9me mark received even more attention due to an identified role in 

mis-silencing of tumor suppressor genes during the development of cancer (Chen et al. 2010; Hua 

et al. 2014). Consequently, some of the first drugs to manipulate H3K9me are tested as cancer 

therapies (Yuan et al. 2013). 

Studying H3K9me in complex multicellular organisms has so far proven to be difficult. Both mice 

and Drosophila have at least five histone methyl transferase (HMTs) enzymes that are essential 

and partially redundant, allowing only for the study of partial reductions in H3K9me. In the 

nematode C. elegans our lab identified the two methyl transferases, essential for all H3K9 

methyltaion throughout development (Towbin et al. 2012; Zeller et al. 2016).  

Although possessing similar epigenetic complexity and a similar chromosome structure as 

mammals, Caenorhabditis elegans (C. elegans) is able to survive, develop and propagate in the 

absence of H3K9me. Therefore, this model organism gives us the unique opportunity to study the 

potentially overlooked roles of H3K9me in detail and over multiple generations. Acquiring this 

knowledge is crucial before H3K9me targeting drugs make it into clinics, as it will allow us to better 

understand the far-reaching and long-term consequences in the context of an organism.  
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Chapter 1: Introduction 

Nearly every cell in our body contains the same genetic information in the form of DNA. Yet, to 

fulfill its tissue-specific roles and to adapt to changing environments, each cell needs a specific 

protein composition. A crucial step therein is the selective expression of coding and non-coding 

regions of the genome. Transcription is induced by the binding of transcription factors to specific 

gene cis-regulatory sequences, which stabilizes in turn the binding and processivity of the core 

transcriptional machinery (Levine and Tjian 2003). Interestingly, the same transcription factors 

were shown to bind to and activate different target genes in different cell types (Arvey et al. 

2012), and the identification of DNA sequence motifs at the cis-regulatory sequences, have been 

insufficient to predict the actual occupancy of transcription factor sites. Therefore, additional 

processes must exist that guide transcription.  

In eukaryotic organisms, DNA is packaged by proteins in a structure called chromatin that 

influences its interaction with the transcription machinery by modifications to the DNA itself, as 

well as the protein composition and their posttranslational modifications of the chromatin 

complex. The accessibility of DNA sequence to the transcription machinery contributes to gene 

regulation. 

The main DNA modification in mammalian cells is CpG methylation (meCpG, 5-methylcytosine). 

While the majority of the genome constitutively carries this modification, it is regulated at CpG 

islands as well as over the body of genes (Weber et al. 2005), where its presence is usually 

associated with transcriptional inhibition (Razin and Riggs 1980). meCpG does so by the 

recruitment of silencing proteins to gene bodies (Jones et al. 1998; Bird and Wolffe 1999), or by 

disabling transcription factor binding sites at CpG inlands (Watt and Molloy 1988; Bell and 

Felsenfeld 2000). Although C. elegans does not have CpG methylation, very rare adenine 

methylation (0.3% of bulk adenine) was recently discovered as an alternative DNA methylation 

form and first experiments suggest a silencing function (Greer et al. 2015).  

In addition to the regulation by DNA modification, the proteins in chromatin can also be post-

translationally modified. The central unit of chromatin is the nucleosome. A nucleosome consists 

of 147bp of negatively charged DNA wrapped around a positively charged histone octamer (2x 

H2A, H2B, H3 and H4). Posttranslational histone modifications are especially well-studied at the 

protruding tails of histones that are easily accessible by enzymes. Depending on the nature and 

position of the modification on the histone, it can either inhibit or promote transcription. The 

variety of known chemical modifications has been expanding in recent years. The best studied 
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modifications include methylation, acetylation, phosphorylation, ubiquitination, SUMOylation and 

glycosylation (Figure 1A). While acetylation only exists as a single acetyl group, 3 methylation 

groups can be added to lysine residues forming mono-, di- or tri-methylated forms. Different 

chromatin states are defined by the combination of these histone modifications that are thought 

to contain instructive information like a “histone code” (Strahl and Allis 2000). 

Histone modifications: establishment, function, removal  

Enzymes that modify histones post-translationally are referred to as “writers”. These enzymes 

possess characteristic protein domains depending on the modification they catalyze. In the case 

of histone methyl transferases, such as the histone H3K9 methyl transferases, the conserved 

catalytic domain is called a SET-domain, named for the first letters of Su(var)3-9 (H3K9me), 

Enhancer of zeste (H3K27me) and Trithorax (H3K4me), the three first characterized histone 

methyl transferases that share this domain (Tschiersch et al. 1994; Poulin et al. 2005). The SET 

domain contains the SAM binding site and the catalytic center (Yeates 2002).  

Figure 1: histone modifications 

A) Schematic drawing of a nucleosome with 

the four canonical histones (H2A, H2B, H3 

and H4). Amino acids [Lysine (K), Arginine 

(R), Serine (S) and Threonine (T)]. 

Posttranslational modifications [methylation 

(Me), acetylation (Ac), ubiquitination (Ub), 

and phosphorylation (Ph)] are highlighted on 

the N- and C-terminal tails of each histone 

(adapted from (Tollervey and Lunyak 2012)) 

B) Stick model of different states of Lysine 

methylation and acetylation. Yellow = carbon, 

blue = nitrogen, pink = polar hydrogen, red = 

oxygen, green methyl. The background and 

sign indicate the charge of the side chain: 

green = uncharged, blue = positive charge 

(adapted from (Taverna et al. 2007)). 

Histone modifications can have, in principle, two modes of action. They can work directly on 

nucleosome-nucleosome or nucleosome-DNA interactions, by changing the charge of the highly 

basic histone tail (Figure 1B). This is especially well studied in case of histone acetylation. In 
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vitro experiments show that acetylation on H4K16, which is localized in the histone tail, prevents 

the formation of higher-order chromatin structure (Shogren-Knaak et al. 2006). H3K56 is 

positioned at the DNA entry/exit position on the histone core. Similar studies have shown that 

H3K56 acetylation does not affect higher order chromatin but instead leads to enhanced DNA 

unwrapping from the nucleosome (Neumann et al. 2009). These above effects are considered 

“cis” effects. 

Figure 2: Histone mark 

dynamics 

General and modification-

specific steps in the life of a 

histone modification. For all 

histone modifications writer, 

erasers and readers exist 

enabling their establishment, 

removal as well as their 

effect on transcription. For 

many histone modifications, 

pathways for their spreading 

and maintenance over 

mitosis have been identified. 

 

 

 

 

Alternatively, specific histone modifications can generate site-specific binding sites for proteins 

that selectively recognize modified lysine or arginine residues. These “readers” of the histone 

modifications, often act in “trans” by promoting or inhibiting the recruitment of additional 

regulators either of transcription or chromatin compaction. There is a growing list of domains that 

allow readers to bind their specific marks, but the most common are Bromo-, Chromo-, Tudor-, 

MBT-, PHD-, WD40 repeat-, 14-3-3 and BRCT domains (Taverna et al. 2007). 



Page | 8 

 

Histone modifications are removed by “eraser” proteins (Figure 2). In addition to a large family of 

histone deacetylases, there exist two classes of histone lysine demethylases. One is the amine 

oxidases with LSD1 (homologue of the C. elegans H3K4 demethylase LSD-1 and SPR-5) as 

founding member, that have been shown to be competent in demethylation of mono- and di-

methylated lysine residues but are unable to work on tri-methylated lysine. The second are the 

Jumonji C (JmjC)- domain containing demethylases that are able to demethylate all stages of 

lysine methylation (Klose et al. 2006).  

Two additional steps common to many histone modifications are their ability 1) to spread over a 

larger genomic region and 2) to be maintained through DNA replication. This is achieved by the 

combination of a “reader” and “writer” domain for the same histone modification in one protein or 

in a protein complex, which is referred to as a reader-writer complex. As an example, the 

association of HP1 with SUV39H1 maintains H3K9me through DNA replication as well as its 

spreading along the chromatin fiber (Nakayama et al. 2001). A similar process was identified in 

C. elegans, where the methyl transferase SET-25 was shown to be recruited to or stay with its 

own product H3K9me3 (Towbin et al. 2012). 

Impact of histone modifications on transcriptional activity 

The exact mode of action for many histone modifications is still under intensive research. For 

histone modifications, associated with active transcription, some specific mechanisms are 

identified. Besides its “cis” effects, histone acetylation can recruit bromo domain containing 

transcriptional regulators (Filippakopoulos et al. 2012). One example is the SWI/SNF chromatin 

remodeling complexes which are recruited by their bromo-domain containing ATPase 

components (Hassan et al. 2002). SWI/SNF in turn evicts histones close to the promoter, 

promoting RNA polymerase II loading (Qiu et al. 2016). Another active mark, H3K4me3, can be 

found on the promoter and gene bodies of transcribed genes. At promoter regions H3K4me3 

can recruit TAF3,. a PHD domain-containing subunit of the basal transcription complex, TFIID,  

in order to directly promote the pre-initiation complex (Vermeulen et al. 2007). H3K9me3 can 

also recruit chromatin remodelers such as the PHD finger-containing NURF complex (Wysocka 

et al. 2006; Musselman et al. 2012). As their name: “remodeler” implies these protein complexes 

are involved in the remodeling of chromatin compaction and DNA histone interaction. 

Determining the exact mechanisms through which repressive histone modifications influence 

transcription has proven to be very challenging. Early microscopy experiments in moss by Heitz 

in 1928, distinguished the interphase nucleus into two chromatin “states”. Heterochromatic 
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regions at the nuclear envelope and around the nucleolus stained strongly during the whole cell 

cycle, which was interpreted as a constant high level of compaction, while euchromatic regions, 

that only stain strongly during mitosis, “unfold” and therefore stain lightly during the rest of the 

cell cycle. This observation was the foundation for the model that the higher order packaging in 

heterochromatic regions could be refractory for the binding of the transcription machinery. Later 

on, heterochromatic regions were further separated into constitutive and facultative 

heterochromatin. Constitutive heterochromatin is condensed on both homologous chromosomes 

in every cell throughout development; examples are the pericentromeric heterochromatin, 

telomeres and parts of the rDNA. Facultative heterochromatin, initially referred only to the X-

chromosome (Brown 1966), but later was shown to include tissue-specific genes that are 

differentially repressed depending on cell type. Further experiments showed that these 

cytologically defined chromosome regions correlate and depend on specific histone 

modifications, with constitutive and facultative heterochromatin bearing methyl-H3K9 (Noma et 

al. 2001; Schotta et al. 2002) or methyl-H3K27 (Bernstein et al. 2006; Kalantry et al. 2006), 

respectively. Experiments in which histone modification-specific antibodies were used to recover 

sheared chromatin fragments and the sequence of the associated DNA were identified by next 

generation sequencing (ChIPseq), were used to create high resolution maps of histone 

modifications on the complete genome. These experiments showed that interspersed repetitive 

elements all over the genome are also marked by H3K9me in every cell of the body and are part 

of the constitutive heterochromatin (Pimpinelli et al. 1995; Gerstein et al. 2010; Liu et al. 2011).  

The different repetitive elements present in C. elegans and their known dependence on H3K9 

methylation for silencing in other organisms is crucial for this work and is described in detail in 

Chapter 2. The distribution of facultative heterochromatin / H3K27me was further refined, 

showing a striking enrichment on developmentally regulated genes (Orlando 2003). Genome-

wide comparisons between transcriptional activity and the presence of histone modifications 

shows a clear correlation of gene expression with euchromatin, while silent genes are often 

heterochromatic. The division between H3K9me3 and H3K27me3 is not as clear as originally 

thought, as H3K9me3 can also be found on developmentally regulated genes (Tachibana et al. 

2002; Yamane et al. 2006; Zeller et al. 2016).   

Two main approaches have been used to examine if chromatin composition can indeed affect 

the accessibility of the underlying DNA sequence. One method was to expose chromatin to 

DNase1. Early in vitro experiments treating isolated nuclei showed a preferential digestion of the 

actively transcribed albumin gene in liver tissue (Weintraub and Groudine 1976). Combining this 

approach with whole genome sequencing, it became clear that this method mainly identifies 
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histone free regions, which are especially found at active enhancer regions and around the 

transcription start site of active genes (Boyle et al. 2008). Outside of these two regions the 

sensitivity of this approach turned out to be rather limited, and did clearly distinguish eu- and 

heterochromatin. The second approach is based on the expression of an E. coli DNA methyl 

transferase (DAM) whose modification on DNA can be quantified as the degree of protection 

against the methyl-sensitive restriction enzyme DpnI. In a genome-wide study, Bell et al. was 

able to show a small reduction in methylation in H3K27me3 regions, but no difference between 

H3K9 methylated regions and euchromatic unexpressed loci could be observed (Bell et al. 

2010). It has to be noted that heterochromatic chromatin is less readily solubilized in such 

experiments. To prevent a systematic error the authors therefore normalize to the untreated 

input material. The fact that both assays show relatively minor differences between eu- and 

heterochromatin raised the question whether the assays are appropriate for detecting 

differences between untranscribed, but potentially active and heterochromatic regions (Filion et 

al. 2010). One caveat might be that the chromatin compaction induced by heterochromatin does 

not interfere strongly with the temporal interaction of a single protein, but rather hinders the 

assembly of multiprotein complexes, such as the general transcription machinery. Moreover, 

these methods mainly measure nucleosome density, which might not be the level of chromatin 

organization affected in heterochromatin. 

Heterochromatin and H3K9me 

This section aims to give an overview of the current state of knowledge on H3K9me starting with 

its initial discovery as a major component in pericentric heterochromatin in 

Schizosaccharomyces pombe and Drosophila melanogaster and covering recent findings on its 

complex regulation in mammalian gene silencing. Functional roles of H3K9me published so far 

are summarized in Figure 3. 

One of the simplest model organisms used to study H3K9me and heterochromatin is the fission 

yeast S. pombe. In this species, heterochromatic domains are relatively small and are found on 

the outer centromeric repeats, at the mating type locus and at telomeres. Work in S. pombe has 

been instrumental in the understanding of H3K9me establishment and maintenance at the 

centromeres, and in its role in chromosome segregation. S. pombe contains a single H3K9 HMT, 

Clr4, and two members of the heterochromatin protein 1 (HP1) family of H3K9me binding 

proteins (James and Elgin 1986), Swi6 and Chp2 (Ekwall et al. 1995; Ekwall et al. 1996). In the 

absence of Clr4 and Swi6 cohesin loading at the centromere is impaired, and it is speculated 

that the lack of sister chromatid cohesion does not allow the kinetochore to withstand the tension 
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exerted by spindle assembly, leading to chromosome segregation defects (Ekwall et al. 1995). 

This role has been observed across mono-centromeric organisms (Pidoux and Allshire 2005). 

Figure 3: Published function of H3K9me 

Summary of known positions of H3K9me over a chromosome 

as well as its functional relevance. 

 

A second major discovery in S. pombe was the ability of 

the RNA interference (RNAi) machinery to guide H3K9 

methylation. RNAi was first discovered in C. elegans 

(Tabara et al. 1998) and describes a biological process 

in which RNA molecules inhibit gene expression or 

translation, by neutralizing targeted mRNA molecules. It 

was later demonstrated in S. pombe that in the absence 

of main components of the RNAi machinery (Dicer or 

Ago1) heterochromatin formation and spreading around 

the centromere was perturbed (Volpe et al. 2002). 

Additionally, a reduction in pericentromere-specific small 

RNAs in the absence of H3K9me was observed (Hong 

et al. 2005), demonstrating an intriguing interplay 

between different silencing machineries, with the RNAi 

machinery enforcing silencing through and spreading of H3K9me. RNAi-induced H3K9me has 

now also been reported in Arabidopsis (Zilberman et al. 2003), Drosophila (Haynes et al. 2006) 

and in C. elegans (Ashe et al. 2012). Although S. pombe has been very useful to study 

pericentromeric heterochromatinization and its function, it does not have the chromatin 

complexity characteristic of higher eukaryotes. 

The bulk of our current understanding of heterochromatin and H3K9 methylation comes from 

studies in Drosophila. This organism contains 3 major sites of heterochromatin: The 

pericentromeres, telomeres and the small fourth chromosome. Drosophila has two major 

strengths that facilitated early discoveries of the basic machinery involved in heterochromatin 

formation and spreading. One was the early discovery of chromosomal rearrangements that led 

to the variegated repression of the eye pigment gene white when it was juxtaposed to 

pericentromeric heterochromatin. White expression is important for the normally red eye color of 
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flies, which become white in the mutant. Flies carrying this rearrangement show a patchy eye 

color with some cell groups stably expressing and others stably silencing the gene. This stems 

from epigenetic silencing provoked by the stochastic spread of pericentromeric heterochromatin 

to the white gene (Muller 1930). Combining this rearrangement with mutagenic screens led to 

the identification of factors promoting white expression called enhancers of variegation E(var) 

and factors important for their silencing named suppressors of variegation Su(var) – proteins. 

This allowed  the early genetic identification of Su(var)3-9 as a pericentromere-specific H3K9me 

transferase (Tschiersch et al. 1994; Rea et al. 2000; Schotta et al. 2002) and of HP1α as the first 

H3K9me2, me3 reader (James et al. 1989; Eissenberg et al. 1990), and it demonstrated their 

roles in gene silencing (Tschiersch et al. 1994). Importantly, loss of Su(var)3-9 led to a specific 

decrease of H3K9me2 and me3 only at the centromere, suggesting that the other 

heterochromatic regions in the genome and H3K9me1 at the pericentromere depend on other 

HMTs. Subsequent experiments identified dSETDB1 as an additional H3K9 HMT responsible for 

the silencing of the fourth chromosome (Seum et al. 2007).  

A second major advantage of Drosophila, especially in the pre-sequencing era, was the 

formation of polytene chromosomes in terminally differentiated salivary gland cells (in particular 

at larval stage) (Silver and Elgin 1976), allowing for the direct observation of genomic 

rearrangements, heterochromatization (under-replicated chromosome parts) and in combination 

with immunofluorescence (IF), direct co-localization of histone modifications and chromatin 

components along the chromosome. With these tools at hand, it was possible to dissect the 

prerequisites for H3K9 methylation. Grigliatti et al. showed that euchromatic marks first are 

removed, and then Su(var)3-9 can act. The loss of histone deacetylase 1 (HDAC1) (H3K9 

deacetylase (Mottus et al. 2000)), JIL1 (H3S10 dephosphatase (Ebert et al. 2004)), and LSD1 

(H3K4 demethylase (Rudolph et al. 2007)) prevents heterochromatin spreading into bordering 

euchromatic regions.  

Work in Drosophila gave the first indication that H3K9me might have a protective function 

against spontaneous DNA damage, in addition to preventing chromosome segregation defects. 

Karpen and colleagues could see an increase in HβAX and Rad51 foci specifically in DAPI 

bright heterochromatic regions, as well as a distortion of the rDNA locus by DNA-FISH (Peng 

and Karpen 2009). With the development of sequencing technology, H3K9me was identified at 

dispersed repetitive elements in the genome that have been shown to be targeted for H3K9 

methylation in an RNAi dependent process (Haynes et al. 2006). Furthermore, this advance 

highlighted a striking limitation in studying higher-order organisms such as the fly and mouse. 

These genomes contain long stretches of low complexity, repetitive regions creating mega-base 
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domains, which make it impossible to identify the genomic origin of repetitive sequence 

recovered from ChIP and RNA extraction experiments (Hoskins et al. 2007; de Koning et al. 

2011).  

With the increase in complexity of heterochromatic sequences and HMTs involved, work in mice 

nonetheless advanced our understanding of heterochromatin regulation particularly for its 

targeting and removal. So far at least eight partially redundant H3K9 histone methyltransferases 

(HMTs) have been documented in mice (SUV39h1, SUV39h2, G9a, SETDB1, SETDB2, 

PRDM2, PRDM3 and PRDM16). Some of these are essential by themselves; G9a, SETDB1, 

PRDM3 and PRDM16 have been shown to be essential for embryonic development (Dodge 

2004, Tachibana 2002, Hoyt 1997, Aguilo 2011). This made it very difficult to study the specific 

function of the H3K9me deposited by them in development. Nonetheless, work in this organism 

was instrumental for understanding of H3K9me outside the centromere, allowing the 

characterization of different H3K9me targeting pathways, as well as their regulated targeting and 

removal by nuclear hormone receptor families (Metzger et al. 2005; Garcia-Bassets et al. 2007). 

Additionally, the roles observed in fission yeast (silencing and centromere function (Peters et al. 

2001)) and Drosophila (heterochromatin machinery and transposon silencing (Matsui et al. 

2010)) were shown to be conserved in mammals. Thus, despite early genetic identification of 

heterochromatic components in Drosophila, much of their enzymatic characterization was first 

performed in mice (Rea et al. 2000; Shi et al. 2005).  

To understand the role of H3K9me at non-centromeric regions, it is necessary to study their 

behavior in the absence of H3K9me, something that was difficult in the systems discussed 

above. C. elegans has a huge advantage in this aspect: the worm genome lacks the massive 

clusters of pericentric repeats, that make mapping of sequencing reads in these chromosomal 

regions impossible (Treangen and Salzberg 2011). The C. elegans genome contains 

interspersed repetitive elements, with around 80% of them being mapable in chromatin 

immunoprecipitation (ChIP) experiments. Therefore, it is perfectly suited to study the function of 

H3K9me beyond its centromeric role. 

H3K9me in C.elegans 

Similar to mammals and flies, H3K9me was found in C. elegans on repetitive elements. C. 

elegans contains all classes of repetitive elements (e.g. tandem repeats, DNA transposons and 

RNA transposons). However, instead of being concentrated in mega-base domains at the 
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pericentric heterochromatin, repeat sequences in nematodes are organized in smaller clusters, 

and they are enriched on chromosome arms (Gerstein et al. 2010).  

H3K9me writers 

There exist multiple enzymes in the C. elegans genome for which a role in H3K9 methylation 

has been postulated: MET-2 (Poulin et al. 2005; Bessler et al. 2010; Towbin et al. 2012), SET-25 

(Towbin et al. 2012), SET-26 (Hamilton et al. 2005; Ni et al. 2012; Greer et al. 2014), SET-9 (Ni 

et al. 2012) and MES-2 (Bessler et al. 2010).  

In vivo data argue, however, that the main K9 methyl transferases are MET-2 and SET-25. In 

their absence, worms lack all detectable H3K9me by mass spectrometry at embryo and L1 larval 

stages (Towbin et al. 2012). This result was confirmed and extended to L2 stage larvae and 

dissected gonads from adults by IF (Zeller et al. 2016). MET-2 is the C. elegans homologue of 

SETDB1 and was first described as a potential transcriptional repressor by its involvement in 

vulva cell fate determination (Poulin et al. 2005). In C. elegans, the development of the vulva has 

proven to be a very powerful system to study cell differentiation, as it is dispensable for survival 

and defects are readily observed (Horvitz and Sternberg 1991). The study of occurrence of extra 

vulva revealed an intriguing regulatory network with two main branches of regulators: synMUV A 

and synMUV B. These two pathways inhibit vulva cell fate in a redundant manner, leading to the 

occurrence of multiple vulva, when mutants of both branches are combined. These experiments 

allowed the identification of multiple chromatin regulators including MET-2 (Poulin et al. 2005; 

Andersen and Horvitz 2007). 

Using a fluorescent heterochromatin reporter, it was possible to quantify heterochromatin 

silencing, nuclear position, as well as chromatin composition using microscopy (Towbin et al. 

2010). It could later be shown that heterochromatin depends on MET-2, a homologue of 

SETDB1, and SET-25, whose SET domain is homologous to EHMT1/G9a and Suv39h1/2, 

respectively. Both of these enzyme classes target histone H3K9 (Rea et al. 2000; Tachibana et 

al. 2002). SET-25, however, lacks both the Chromodomain found in Suv39h and the Ankyrin 

repeats present in G9a. SET-25 and MET-2 work together to silence and tether not only a 

heterochromatic reporter, but also endogenous chromatin, to the nuclear envelope (Towbin et al. 

2012). Dissecting their individual contributions using null alleles, it could be shown that SET-25 

is essential for all H3K9me3 in embryos and L1 larvae, and in the absence of MET-2, SET-25 is 

able to maintain around 20% of H3K9me1, me2 and me3 levels in embryos. MET-2 was shown 

to be the main H3K9 mono- and di-methyl transferase, being able to maintain wild-type levels in 
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embryos and L1 larvae in the absence of SET-25, as measured by mass spectroscopy. In 

embryos or L1 stage larvae of strains lacking both enzymes, no systematic differences in the 

methylation levels of H3K23, K27 or K36 were scored, arguing for strong specificity in the lysine 

targeted by these enzymes. Relevant lysine targets in nonhistone proteins have not been 

examined, however.  

Using fusion proteins Towbin et al. suggested that MET-2 was enriched in the cytoplasm of 

mixed stage embryos, arguing for a role in modifying histone H3 prior to its assembly into 

nucleosomes (Towbin et al. 2012). The mammalian homologue ESET/SETDB1 shows both a 

nuclear and cytoplasmic localization (Tachibana et al. 2015). Recent work suggests the creation 

of the MET-2-GFP fusion protein altered the localization of the enzyme (M. Guidi and J. 

Padeken unpublished data). In contrast, SET-25 was found strongly enriched in the nucleus, 

where it binds its own enzymatic product (H3K9me3) in a SET-domain independent manner 

(Towbin et al. 2012). In other words, once it deposits H3K9me3, it recognizes this mark or else 

binds another reader, which binds it, and remains associated with heterochromatic domain. Its 

SET-domain is then available to extend methylation to nearby histone H3 tails. In principle, this 

provides a mechanism for the self-maintenance of the modification and potentially, for its spread 

along neighboring nucleosomes.  

Two other SET domain proteins, SET-9 and SET-26, were identified in a longevity screen and 

were further characterized for their potential mode of action (Hamilton et al. 2005; Ni et al. 2012). 

Due to their high homology, it turned out difficult to separate these two enzymes by RNAi or 

antibody-based methods. Using an antibody that recognizes both SET-9 and SET-26 in both WT 

and set-26 mutant animals, it was shown that SET-9 expression was restricted to the germline, 

while SET-26 detected in both somatic and germline cells. Quantifying levels of different histone 

modifications during aging, a decrease of H3K9me3 could be observed in young animals. It is 

important to note that this decrease results from the normalization of modified H3K9me over 

total H3 levels, which shows almost a two-fold increase. Considering that the increased 

complement of histone H3 is most likely not integrated into chromatin, but represents an 

increase in the free histone pool, H3K9me3 levels on chromatin are probably unchanged. 

Further experiments using modification-specific immunofluorescence or Western blots on 

chromatin fractions would be needed to clarify this question. SET-26 was found again in a 

screen for factors modulating the transgenerational sterility effect observed in mutants of the 

H3K4 demethylase SPR-5 (Greer et al. 2014). An in vitro assay using the purified SET-domain 

of SET-26, demonstrated a weak in vitro H3K9 methyl transferase activity on calf histones, 

which already carry a wide range of histone modifications. Other methylation marks on the calf 
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histones did not change upon incubation with the SET-26 SET domain, suggesting that it is not a 

nonspecific methyltransferase. However, in this assay, the H3K9me2/3 mark was the weakest 

pre-existing mark. Considering the lack of robust in vivo data for its relevance in H3K9 

methylation as well as the lack of detectable H3K9me in the absence of MET-2 and SET-25, 

there are two possible explanations. Either SET-26 is active in only a small fraction of the 

worm’s cells at a specific stage, or its function may be dependent on MET-2 and/or SET-25. It is 

clearly not redundant with these two enzymes, given that deletion of SET-25 eliminates all 

detectable H3K9me3 in somatic cells, and the deletion of both SET-25 and MET-2 reduces 

H3K9me below levels detectable by mass spectroscopy.  

In early work it was also shown that loss of MES-2, the homologue to Enhancer of Zeste 

(Drosophila) and EZH1/2 in mammals, affected H3K9 methylation levels, specifically in the 

germline, and not in the soma (Bessler et al. 2010). This result needs additional confirmation, as 

the antibody used (ab8898), was shown to cross-react weakly with H3K27me3, the primary mark 

deposited by MES-2 (abcam.com). Still, considering the co-occurrence of H3K27me3 with 

H3K9me3 in the C. elegans genome (Ho et al. 2014), there may be a strong dependency of 

H3K9me3 on H3K27me3 at certain stages of development, either for its deposition or 

maintenance. Despite potential cross-dependency, SET-25 and MET-2 are the major H3K9 

HMTs in C. elegans, and the absence of the two leads to a striking depletion of detectable 

H3K9me.  

H3K9me readers 

H3K9 methylation does not change the charge of the histone H3 tail and is thought to mainly 

work through the recruitment of its readers. C. elegans contains 5 published H3K9me binding 

proteins, 4 of which contain a chromodomain: HPL-1, HPL-2, CEC-3, CEC-4 and the MBT 

domain containing protein, LIN-61. The highly conserved HP1 family of H3K9me readers is 

defined by their three domains. A chromodomain connects via a flexible hinge domain to a 

chromo-shadow domain. The Drosophila protein HP1α is the prototype of a H3K9me binding 

protein. It is essential for centromeric satellite heterochromatin compaction and silencing 

(Lachner et al. 2001; Nakayama et al. 2001). HP1α is targeted to heterochromatin by its 

chromodomain that recognizes H3K9me (James and Elgin 1986), where it can dimerize through 

its chromo-shadow domain.  

C. elegans contains 2 homologues of HP1: Heterochromatin Protein like (HPL) -1 and -2. Like 

HP1, both protein contain a chromo- and a chromoshadow- domain connected by a flexible 
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linker (Couteau et al. 2002). The exact binding specificity of HPL-1 is not known, but 

unpublished results from our lab show that it co-localizes with a heterochromatic reporter that is 

enriched for H3K9 and H3K27 methylation. For HPL-2, pull-down experiments using modified 

histone tail peptides, and immunoprecipitation experiments, showed strong binding to H3K9me2 

and me3 as well as H3K27me3 (Studencka et al. 2012). Recently the genome wide distribution 

of HPL-2 was characterized by ChIP-seq, showing a slightly different result. In these 

experiments, HPL-2 distribution correlated best with H3K9me1 and me2 and to a smaller degree 

also H3K9me3 (Garrigues et al. 2015). No correlation with H3K27me3 was observed in this 

experiment. As neither of the two studies confirmed the specificity of the antibody used by 

checking KO animals, it is difficult to assess which result is correct. HPL-1 and HPL-2 fusion 

proteins show that both proteins are nuclear, with only partially overlapping distribution inside the 

nucleus (Schott et al. 2006). On an organismal scale, both proteins are expressed in all 

embryonic cells, while at the young adult stage some cells express primarily one or the other.  

However, studies were based on fusion proteins integrated into the genome as large arrays, 

whose expression does not always reflect the expression pattern of the endogenous genes 

(Schott et al. 2006). 

Functionally HPL-2 was shown to be important for the transcriptional silencing of repetitive 

transgenes in the germline. Additionally it is involved in vulva development, where it showed 

genetic interactions of a synMUV-B gene (Couteau et al. 2002). At elevated temperature (25°C), 

loss of HPL-2 leads to partial sterility (Schott et al. 2006). HPL-1 seems to be at least partially 

redundant with HPL-2, as its deficiency was shown to enhance the sterility effect of HPL-2 in a 

double mutant, while having no obvious phenotype by itself (Couteau et al. 2002). At elevated 

temperature (25°C), the hpl-1 hpl-2 deletion also leads to a developmental arrest. Unexpectedly 

hpl-1 only genetically interacts as a synMUV with hpl-2 and no other tested synMUV A or B 

mutant (Schott et al. 2006). Depletion of the H3K4 methyl transferase SET-2 was shown to 

rescue most somatic defects of hpl-2 and hpl-1 hpl-2 worms, showing the antagonistic roles of 

these activating and repressing machineries. Interestingly, germline phenotypes of hpl-2 were 

not affected by SET-25 ablation (Simonet et al. 2007). 

Other H3K9me readers were shown to have non-overlapping functions to HPL-2. The MBT 

domain containing protein LIN-61 was shown to bind H3K9me1/me2/me3 in vitro and localizes 

to H3K9me domains by ChIPseq experiments. Similar to HPL-1 and HPL-2, LIN-61 was 

identified as a synMUV-B protein (Harrison et al. 2007; Koester-Eiserfunke and Fischle 2011). 

CEC-3 contains a chromodomain, but no chromo-shadow domain. It was shown to bind 

H3K9me in vitro and it co-localizes with H3K9me2 and me3 in a MET-2 dependent manner in 
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vivo (Greer et al. 2014). Functionally CEC-3 was shown to play a non-redundant role with HPL-2 

and LIN-61, in restricting somatic gene expression (Zheng et al. 2013). Unclear is its role in the 

transgenerational sterility observed in worms lacking the H3K4 demethylase SPR-5. These 

worms accumulate H3K4me and lose H3K9me3 over multiple generations, an effect that could 

be partially suppressed by the loss of CEC-3 (Greer et al. 2014). Other proteins with similar 

effects were shown to be H3K4 methyl transferases. A potential explanation would be a role for 

CEC-3 in K9me-mediated repression, but at the same time it may destabilize or block binding 

sites for H3K9 HMTs such as SET-25. 

CEC-4 has a canonical HP1 alpha-like chromodomain, but with a C-terminal tail that lacks the 

chromoshadow motif, and which has no homology with any other chromodomain protein. ITC 

experiments show similar binding affinities of CEC-4 to all states of H3K9 methylation (me1, me2 

and me3). CEC-4 localizes independently of histone methylation status to the nuclear envelope. 

The main role of CEC-4, is the tethering of H3K9 methylated regions to the nuclear envelope in 

embryos. It also contributes to perinuclear anchoring in muscle and the intestine cells of larvae. 

Its deletion results in a loss of peripheral localization of a significant number of heterochromatic 

domains in embryos. Despite this loss of anchoring, cec-4 mutants only showed minimal 

alterations in transcription under standard laboratory conditions (Towbin et al. 2012; Gonzalez-

Sandoval et al. 2015). 

Some of these proteins also seem to play roles outside H3K9-methylated heterochromatin. 

Indeed, a recent study looking at the genomic distribution of HPL-2 in embryos shows, besides 

its preferential co-localization with H3K9me1 and me2, that in the complete absence of H3K9me 

(met-2 set-25 embryos) a large fraction of HPL-2 is still bound to chromatin, potentially at 

expressed non-H3K9me positive genes (Garrigues et al. 2015). HPL-1 was shown to bind to 

innate immune response genes in the absence of an infection, together with the C. elegans 

homologue of the linker histone H1 (HIS-24). The authors speculate that the release of HPL-1 is 

a method for rapid activation of the immune genes in bulk (Studencka et al. 2012). LIN-61 may 

also have a second function, as it was shown to play a role in DNA double-strand break repair 

by homologous recombination (Johnson et al. 2013).  

H3K9me erasers 

C. elegans contains 13 JmjC-domain-containing proteins (Klose et al. 2006) of which 2 JMJD2a 

and ceKDM7a are involved in H3K9 demethylation. Depletion of JMJD2A by RNAi was shown 

by IF to lead to an increase of H3K9me3 on meiotic autosomes, as well as a local increase of 
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H3K36me3 on the X-chromosome (Whetstine et al. 2006). Phenotypically, the reduction of 

JMJD2A leads to replication stress, indicated by a replication checkpoint-dependent increase in 

germ-cell apoptosis, slower DNA replication (CY3-dUTP integration), as well as an accumulation 

of RAD-51 foci in the germline (Whetstine et al. 2006; Black et al. 2010). Interestingly, all 

phenotypes could be rescued by deletion of the H3K9me reader HPL-2 (Black et al. 2010). In 

Drosophila it was shown that HP1 modulates replication timing (Schwaiger et al. 2010). Whether 

H3K9 methylation directly influences replication timing in worms, or if perturbations of H3K9me 

levels leads to replication stress that arrests replication, is not yet clear. 

CeKDM7a is a H3K9me2/H3K27me2 demethylase that co-localizes with H3K4me3 on a 

genome-wide scale, probably recruited by its additional PHD domain (Lin et al. 2010). Despite its 

strong H3K9me2/H3K27me2 demethylase activity in vitro, the reduction of both marks in 

mutants is quite limited, potentially due to its effect being restricted to H3K4me3 positive 

promoters. At these specific sites, a clear anti-correlation can be seen for ceKDM7a and its 

targets H3K9me2/H3K27me2. Deletion of ceKDM7a leads to the transcriptional silencing of its 

targets, most likely by allowing the local acquisition of heterochromatic marks, although this has 

not yet been shown. 

Polycomb 

Besides H3K9me the two best studied silencing pathways in C. elegans are the Polycomb 

Repressive Complex (PRC) and the RNAi machinery. The Polycomb group of transcriptional 

repressors consists of two complexes, PRC1 and PRC2. A main role of PRC2 that seems 

conserved from worms to mammals is the repression of Hox genes during development (Ross 

and Zarkower 2003; Deng et al. 2007). Polycomb mediated gene silencing involves the 

methylation of H3K27 by the PRC2 complex (Cao et al. 2002). H3K27me is then bound by the 

PRC1 silencing complex that mediates histone H2A ubiquitination (Schwartz and Pirrotta 2013). 

The C. elegans PRC2 complex contains the SET-domain containing H3K27 methyl transferase 

MES-2 (homologue of Ezh2), the worm specific MES-3 and the WD40 protein MES-6 

(homologue of Eed) (Xu et al. 2001). The composition of the PRC1 complex is less well defined 

in C. elegans, but PRC1-related components were identified, including MIG-32 (homologue of 

Bmi-1) and SPAT-3 (homolgue of Ring1B), that have been shown to be essential for somatic 

H2A ubiquitination (Karakuzu et al. 2009). The somatic defects of mig-32, spat-3 and mes-2 

mutants have been shown to be very similar, consistent with the idea that they work on a 

common pathway in C. elegans, as in other organisms (Karakuzu et al. 2009). 
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The C. elegans PRC2 complex was first described in a screen that aimed to identify genes 

causing sterility in the F1 generation after deletion, classifying them as maternal effect sterile 

(MES) mutations (Capowski et al. 1991). PRC2 was also shown to block artificial induction of 

somatic transcription programs in the germline. While total loss of the PRC2 complex led to 

sterility, depletion of PRC2 components by RNAi, allowed ectopic-expressed, cell-type inducing 

transcription factors in the germline to induce their cell-type specific transcription program (Patel 

et al. 2012). A similar role for PRC2 was also identified in somatic cells, where MES-2 is 

required to limit developmental plasticity of embryos (Yuzyuk et al. 2009).  

One feature of H3K27me that is relatively well studied is its interaction with other histone 

modifications and silencing pathways. Early experiments on the MES proteins already showed a 

mutually exclusive distribution of the PRC2 components (MES-2, 3 and 6) with MES-4 (Fong et 

al. 2002), a C. elegans H3K36 methyltransferase. H3K36 methylation is generally associated 

with actively transcribed genes and is deposited through a co-transcriptional process. Later 

ChIP-seq experiments confirmed this mutually exclusive distribution for the histone modifications 

H3K27me3 and H3K36me3 as well (Ernst and Kellis 2010; Kharchenko et al. 2011; Liu et al. 

2011). Early experiments already showed that PRC2 influences the distribution of MES-4. While 

MES-4 is normally excluded from the majority of the X-chromosome and only found at its left 

end, it was shown to spread over the complete chromosome in the absence of MES-2, 3 or 6 

(Fong et al. 2002). This interaction seems to be bidirectional, as MES-4 seems to limit PRC2 

distribution (Gaydos et al. 2012). In mutants lacking MES-4, H3K27me3 redistributes and 

spreads into formally H3K36me3 positive regions, while it is diluted at its endogenous positions. 

This is accompanied by transcriptional changes including the de-repression and repression of 

normally H3K27me3 and H3K36me3 positive regions respectively. 

Besides antagonizing H3K36me3, PRC2 co-localizes with other repressive pathways. A 

substantial subpopulation of H3K9me3 was shown to co-localize with H3K27me3 (Ho et al. 

2014). This is especially prominent in C. elegans, but can be observed to a lesser degree in 

mammals as well. The sequence specificity or functional relevance of the co-occurrence is not 

clear. Mao et al. could recently show that H3K27me3, like H3K9me3, can be targeted by the 

nuclear RNAi machinery (Mao et al. 2015). A possible hypothesis could therefore be that the 

nuclear RNAi pool defines the set of sequences that are supposed to be marked by both, 

H3K9me3 and H3K27me3.  
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RNA interference 

RNA interference is a third very potent inhibitory pathway that is particularly well-studied in C. 

elegans (Lee et al. 2012). Initially RNA interference was identified in C. elegans, as a pathway 

that degrades RNA homologues to an introduced double-stranded RNA (dsRNA) (Fire et al. 

1998). The introduced dsRNA was shown to be degraded by the RNase III like enzyme dicer 

producing primary exo-siRNA (Zamore et al. 2000). Mutants defective for the exo-RNAi pathway, 

e.g. dicer mutants, also led to defects in seam cell differentiation and fertility, suggesting 

endogenous functions of the RNAi machinery (Ketting et al. 2001). 

With the emergence of deep sequencing, a diverse group of endogenous small RNAs (endo-

siRNA) were discovered (Ruby et al. 2006). A large number of studies have focused on 

classifying these small RNAs according to their length and their most frequent 5`nucleotide 

(Ruby et al. 2006). There are three main groups of endogenous interfering RNAs: microRNAs, 

endogenous small interfering RNAs (endo-siRNAs), and Piwi-interacting RNAs (piRNAs). The 

life of small RNAs contains three phases: they are produced through transcription mainly by 

RNA polymerase II are processed into their functional form and loaded onto Argonaute proteins 

to fulfill their regulatory function. MicroRNAs and piRNAs are transcribed from specific loci in the 

genome, while endo-siRNAs are transcribed from spliced mRNA templates by the RNA-

dependent RNA polymerase RRF-3 (Gent et al. 2009). It is still unclear how transcripts are 

selected for endo-siRNA biogenesis. 

The generated pre-miRNA and pre-siRNAs are exported into the cytoplasm, where a process 

that depends on the helicase DCR-1 further processes them into primary mi- and 26G si-RNA, 

respectively (Grishok et al. 2001; Knight and Bass 2001). The biogenesis of primary 21U 

piRNAs is less well understood and does not depend on DCR-1 (Batista et al. 2008; Das et al. 

2008). All three types of small RNAs bind to Argonaute effector proteins that, with certain 

exceptions, possess the ability to cut the complementary mRNA, which is referred to as slicer 

function (Yigit et al. 2006; Fischer et al. 2011). After their processing, primary siRNA as well as 

piRNA can additionally amplify their repressive potential by targeting mRNAs for the production 

of secondary 22G RNAs by a RNA-dependent RNA polymerases dependent process (Sijen et 

al. 2001; Tijsterman et al. 2002; Gent et al. 2010). These secondary 22G RNAs, were shown to 

be the main effectors of transcriptional repression (Bagijn et al. 2012; Lee et al. 2012). The 

generated 22G RNAs bind to a second set of Worm-specific Argonaute proteins called WAGOs 

(Yigit et al. 2006; Guang et al. 2008; Gu et al. 2009).  
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The endogenous mRNA targets of small RNAs were determined by containing complementary 

sequences as well as the accumulation of mRNAs in small RNA biogenesis mutants. MiRNAs 

are involved in developmental control and physiological processes and target mRNAs in the 

soma (Reinhart et al. 2000). SiRNAs and piRNA work rather like a surveillance system, silencing 

harmful RNAs. The siRNAs contain somatic and germline siRNA populations and target mainly 

mRNAs (Lee et al. 2006). The piRNAs, are specifically expressed in the germline and target 

mRNAs and transposable elements (Batista et al. 2008; Das et al. 2008); which would occur 

post-transcriptionally. 

The RNAi pathway mediates silencing at two stages: transcriptional and post-transcriptional. At 

first it was thought that small RNAs would only elicit post-transcriptional regulation, because the 

introduction of purely intronic dsRNA elicited no silencing response (Fire et al. 1998). But for the 

majority of secondary siRNA bound to WAGOs, this is thought not to be the case, because 

WAGO proteins lack the catalytic triad essential for RNA slicing (Yigit et al. 2006). It is therefore 

thought that WAGO binding leads to the recruitment of other RNA degradation machineries such 

as the RDE-10/RDE-11 mediated de-adenylation machinery (Yang et al. 2012).  

Recent work has now identified a role of RNAi in the control of transcription. A nuclear RNAi 

pathway links RNAi to the chromatin mediated silencing machinery by targeting H3K9 

methylation and heterochromatization. The nuclear RNAi pathway was shown to act in both 

dsRNA induced silencing (Burkhart et al. 2011), as well as endogenous RNAi pathways such as 

the piRNA pathway (Luteijn et al. 2012). Both pathways lead to the production of secondary 22G 

siRNAs that the nuclear RNAi pathway was shown to depend on. If primary siRNAs do not share 

homology with any mRNA for the production of 22G secondary siRNA, H3K9 methylation is not 

observed (Gu et al. 2012).  

Cytosolic 22G RNAs are bound by the Argonaute protein NRDE-3 (Guang et al. 2008) in the 

soma and by HRDE-1 (Buckley et al. 2012) in the germline. Both proteins are thought to shuttle 

the siRNA into the nucleus. This is nicely shown for NRDE-3, where nuclear translocation was 

shown to depend on siRNA binding. Moreover, the ablation of nuclear localization in an NLS 

mutant abrogated RNAi function (Guang et al. 2008). In the nucleus NRDE-3 binds to its specific 

pre-mRNA and recruits the other nuclear RNAi components (Burkhart et al. 2011): NRDE-1, 

NRDE-2 and NRDE-4, that are shared between the somatic and germline nuclear RNAi 

pathway. First NRDE-2 is recruited to the pre-mRNA. Its binding in the soma depends only on 

NRDE-3 (Guang et al. 2010). HRDE-2 binding further enables NRDE-1 recruitment, which in the 
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soma depends on NRDE-2 and NRDE-3 (Burkhart et al. 2011). After its initial interaction with the 

pre-mRNA NRDE-1 is thought to relocate to the transcribed DNA region (Burkhart et al. 2011).  

Targeting of the nuclear RNAi pathway leads to heterochromatization of the target sequence 

including H3K9me3 deposition (Burkhart et al. 2011) and perhaps H3K27me3 deposition (Mao 

et al. 2015). Independent of the initial silencing induction (dsRNA or endo-siRNA) H3K9me3 at 

the target site was shown to depend on all NRDE components, including NRDE-3 (Burkhart et 

al. 2011; Gu et al. 2012) in the soma and HRDE-1 in the germline (Buckley et al. 2012). Again, 

H3K9me3 required the two H3K9 methyltransferases MET-2 and SET-25 (Mao et al. 2015) and 

transcriptional silencing required in addition the H3K9me reader HPL-2 (Ashe et al. 2012). 

Similar experiments showed that H3K27me3 depends on NRDE-2, NRDE-3 and on the H3K27 

methyltransferase, MES-2 (Mao et al. 2015).The two pathways do not seem to be 

interdependent. H3K27me3 was not lost in mutants of met-2 or set-25, nor was H3K9me3 lost 

on MES-2 (Mao et al. 2015). Looking at endogenous targets of HRDE-1 bound siRNAs by ChIP-

qPCR Buckley and colleagues found an enrichment of H3K9me3 (Buckley et al. 2012) that at 

least partially requires the nuclear RNAi pathway and was reduced in a hrde-1 mutant. In this 

context, it is interesting to mention that mutants of nrde-1, nrde-2 and nrde-3 show temperature-

dependent sterility, much like the loss of cytoplasmic RNAi factors (Buckley et al. 2012) and 

H3K9me (Zeller et al. 2016).  

The nuclear RNAi pathway also mediates the transgenerational inheritance of the silent state. In 

the case of the somatic RNAi machinery this only seems to last for one generation (from the 

treated P0 to the F1 generation) (Grishok et al. 2005), but if established in the germline (HRDE-1 

dependent) it can be stably inherited (Grishok et al. 2000). The duration of inheritance seems to 

depend on the silenced target. Transgenic reporters have been shown to stay repressed for over 

20 generations (Ashe et al. 2012), while endogenous sequences lose the silent state in most 

cases after 4 generations (Gu et al. 2012; Mao et al. 2015). The loss of silencing thereby 

correlates with a gradual reduction in locus specific 22G siRNA as well as H3K9- and 

H3K27me3 in the genome (Gu et al. 2012; Mao et al. 2015).  

The establishment and the maintenance of the transcriptionally silent state have different protein 

requirements. The shared silencing agent seems to be the 22G siRNAs. In P0 animals 22G 

generation depends solely on the cytoplasmic machinery involved in their production. They were 

shown to depend on ERI-1 in the case of dsRNA and on PRG-1 in the case of piRNA (Luteijn et 

al. 2012). At this stage (P0 generation), the nuclear RNAi machinery is dispensable for 22G 

generation (Ashe et al. 2012; Gu et al. 2012) as was the H3K9me reader HPL-2 (Ashe et al. 
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2012). To study the maintenance of the silent state, the initiating primary RNAi has to be 

removed. In the case of dsRNA-induced silencing, the primary small RNAs can only be detected 

in P0 animals, while following generations only have 22G siRNAs (Ashe et al. 2012; Gu et al. 

2012). For piRNA initiated inheritance, stably silenced reporters were crossed into a prg-1 

mutant background (Ashe et al. 2012; Luteijn et al. 2012). The first observation was that 

inheritance of the silent state and of 22G siRNAs became PRG-1 independent from the F1 

generation on (Ashe et al. 2012; Luteijn et al. 2012). Interestingly, at this stage the nuclear RNAi 

and heterochromatin machinery become essential to propagate the silent state (namely NRDE-

1, NRDE-2, and HRDE-1 as well as HPL-2 and SET-25) (Ashe et al. 2012; Buckley et al. 2012; 

Luteijn et al. 2012; Shirayama et al. 2012). Looking specifically at the maintenance of 22G 

siRNAs, Lutejin et al. could show that they also require all tested components of the nuclear 

RNAi pathway: nrde-1 and hrde-1 (Luteijn et al. 2012). Set-25 and hpl-2 were not tested in this 

context, but it might well be that heterochromatin is able to feed back into the small RNA 

pathway. At the same time hrde-1 mutants were shown to lose H3K9me3 at endogenous HRDE-

1 target sites, indicating that at least some sites need a constant reinforcement of the silent state 

to stay heterochromatized (Buckley et al. 2012). 

The role of chromatin in genome integrity 

DNA damage occurs in the context of chromatin. During DNA damage response 

heterochromatin seems to play an ambiguous role. On one side, chromatin is thought to be an 

obstacle for the DNA damage repair machinery that has to be removed. Indeed, following UV 

damage ubiquitination-mediated histone mobilization has been reported (Wang et al. 2006; Lan 

et al. 2012) and in the case of DNA double strand breaks histone ChIP experiments showed a 

local histone depletion around an induced DSB (van Attikum et al. 2004; van Attikum et al. 2007) 

and a recent study even showed a global histone loss at high levels of Zeocin- or IR-induced 

DNA damage (Hauer et al. 2017). The local histone release was shown to depend on the active 

action of histone remodelers BRG1 and INO80 (van Attikum et al. 2004; van Attikum et al. 2007; 

Zhao et al. 2009; Jiang et al. 2010). At the same time multiple repressive factors, including HP1 

(Luijsterburg et al. 2009), Polycomb (Hong et al. 2008) and HDAC1/2 (Miller et al. 2010), are 

recruited to sites of DNA damage. Animals lacking HP1 (Luijsterburg et al. 2009) or Polycomb 

components (Hong et al. 2008) are hypersensitive to genotoxic agents, suggesting a functional 

relevance of their recruitment. Besides a role for heterochromatin in repair factor recruitment, 

they are also implicated in the local transcriptional silencing around damage sites, that is meant 
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to prevent conflicts between the repair and the transcription machinery (Vissers et al. 2012; Ui et 

al. 2015). 

In the absence of the heterochromatin components Su(var)3-9 and HP1α in Drosophila the 

Karpen lab could show an increase of spontaneous RAD-51 foci in DAPI dense regions of the 

nucleus, suggesting that heterochromatin is important to prevent spontaneous DNA double-

strand breaks (Peng and Karpen 2009; Chiolo et al. 2011). Although replication of the genome is 

a highly regulated process that ensures the fidelity of DNA duplication, mistakes during 

replication are one of the main sources of mutations in the absence of mutagenic substances. 

DNA replication initiates at specific sites, defined as replication origins. The selection and 

activation of DNA replication origins occurs within the context of chromatin. One of the biggest 

impediments for the replication fork was shown to be transcription (Brewer 1988; French 1992; 

Liu and Alberts 1995). To avoid such collisions of the replication fork with the transcription 

machinery, the coordination of replication and transcription is essential. Interestingly, 

transcriptional active sites were shown to replicate early, while transcriptional silent sites were 

mostly replicated later during S-phase (Schübeler et al. 2002; Rivera et al. 2014).  

The importance of a coordination between transcription and replication was elegantly shown in a 

study using a method that identifies DNA breaks by ligating sequencing adapters onto the open 

ends of un-fragmented DNA (Break-seq). The authors could show that fragile sites occurred at 

sites where replication and transcription both occurred. The shift of collision points by perturbing 

replication timing, or by inducing unscheduled transcription, resulted in a corresponding change 

in break position (Hoffman et al. 2015). At the longest human genes, such conflicts seem to be 

impossible to avoid. Their transcription takes more than one cell cycle, leading to the formation 

of fragile sites that break in a transcription-dependent manner (Helmrich et al. 2011).  

One structure that correlates with conflicts between the replication and transcription machinery 

are R-loops. They are nucleic acid structures composed of an RNA:DNA hybrid, resulting from 

the displacement of the second DNA strand by the transcribed RNA. Studies in yeast and 

mammalian cell culture have shown the accumulation of RNA:DNA hybrids on highly transcribed 

genes (Wahba et al. 2016). In addition certain sequence features were identified to facilitate 

hybrid formation e.g. GC content, poly A tracks (Ginno et al. 2012; Wahba et al. 2016). Of 

particular note is the accumulation of RNA:DNA hybrids on telomeres and the Thy1 transposons 

(Chan et al. 2014), despite the relatively low expression level of those sequences. Recently 

numerous studies tried to elucidate the mechanisms that protect cells from RNA:DNA hybrid 
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accumulation and led to the identification of many more factors involved in transcriptional 

processivity (Santos-Pereira and Aguilera 2015).  

The danger of RNA:DNA hybrids was first shown in cells depleted of certain RNA biogenesis 

and processing factors such as the THO complex in yeast (Huertas and Aguilera 2003) and C. 

elegans (Castellano‐Pozo et al. 2012), or the serine/arginine-rich splicing factor 1 (SRSF1; 

previously known as ASF and SF2) in vertebrates (Li and Manley 2005). Additionally there is 

also some evidence for a replication independent role of R-loops in generating DNA damage. 

Nucleotide excision repair (NER) nucleases XPG and XPF were shown to be able to process R-

loops into DSBs in some circumstances (Sollier et al. 2014).  

Spatial organization of chromatin 

Besides leading to the identification of euchromatin and heterochromatin, the initial cytological 

approaches also identified a second feature of genome organization – the spatial distribution of 

chromatin in the nucleus. Open euchromatin was found in the lumen of the nucleus and 

heterochromatin was enriched at the nuclear envelope and near the nucleolus or in 

chromocenters (Rae and Franke 1972). Further studies identified an intriguing system in which 

the nucleus is spatially organized on multiple levels. 

In cell lines from many species, Cremer et al. found that chromosomes are not intermingled in 

an interphase nucleus, but occupy distinct territories (Cremer et al. 1988). Each chromosome 

territory can be composed of both active and inactive domains. Regions of these territories that 

tend to be heterochromatic are present at the nuclear periphery and are referred to as lamina 

associated domains (LADs) (Guelen et al. 2008). The more transcriptionally permissive regions 

of the territory extend into the nuclear interior and active genes here have been shown to extend 

into the interchromosomal space (Chambeyron and Bickmore 2004; Lieberman-Aiden et al. 

2009) where it is suggested that transcription occurs, possibly in the form of foci or factories 

(Jackson et al. 1998). 

On a more detailed level along the chromosome, regions of preferential topological interaction 

have been identified. Analyzing the interaction frequencies between different genomic loci using 

a technique called chromatin conformation capture (Dekker et al. 2002), it was found in flies, 

mice and humans that commonly regulated genes reside in topologically associating domains 

(TADs) (Dixon et al. 2012; Sexton et al. 2012). Genomic loci inside a certain TAD can more 

frequently be crosslinked and are thought to more frequently interact than regions positioned in 

two different TADs. The biological equivalent of these interactions is still under research, but 
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they are suspected to represent enhancer-promoter interactions. Interestingly genes inside a 

TAD often share an activity, which is distinct from a neighboring TAD, suggesting that these 

structures could be involved in a pathway co-regulating whole chromatin domains. TAD-like self-

interacting domains were recently also identified in C. elegans (Crane et al. 2015). In this 

organism TADs have stronger boundaries and are more numerous on the X chromosome, as 

compared to autosomes. TAD insulation in part depends on the dosage compensation complex 

(DCC) that is found at the strongest TAD boundaries. Transcriptional changes in DCC mutants 

are global and show no clear co correlation with the changes in TAD structure.  

These levels of organization share a spatial separation of active and inactive chromosome 

regions. Separating opposing functions would indeed be an efficient way to optimize the usage 

of involved components by locally concentrating them. In mammals for example HP1 and 

HDAC3 were found to interact with the nuclear envelope associated proteins LBR and LAPβ , 

respectively (Mattout-Drubezki and Gruenbaum 2003; Somech et al. 2005), enriching these 

silencing factor at the nuclear envelope. 

Work in C. elegans was instrumental to study the dynamic nature of nuclear organization over 

differentiation. Following several fluorescently tagged reporters containing a limited number of 

copies of a tissue specific promoter driven mCherry Meister et al. could identify two main forces 

influencing nuclear positioning of the reporter: heterochromatic tethering to the nuclear periphery 

and tissue-specific transcription induced release from the envelope (Meister et al. 2010). Much 

like endogenous repetitive sequences, multi copy transgenes in C. elegans acquire 

heterochromatic marks (namely H3K9me3 and H3K27me3) and were found tethered to the 

nuclear periphery in all cells, except those in which it was expressed. Using a similar fluorescent 

reporter bearing additionally a ubiquitously expressed promoter, a whole genome RNAi screen 

was performed that screened for loss of heterochromatin silencing and anchoring (Towbin et al. 

2012). This study identified two H3K9 methyl transferases in C. elegans – MET-2 and SET-25 as 

important for both (Figure 4).  
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Figure 4: H3K9 methylation in C. elegans 

 

 

 

 

 

 

 

Model from (Towbin et al. 2012) depicting the localization and function of the two sole H3K9 methyl 

transferases in C. elegans. It suggests that cytosolic MET-2 di-methylates free histones. Their integration 

leads to peripheral tethering of target regions. Consecutive function by nuclear SET-25 leads to tri-

methylation, which co-localizes with its own product further tightening the silencing effect.      

Mass spectrometric analysis of the double mutant argued that there were no other active H3K9 

HMTs in C. elegans. It was suggested that MET-2 resides largely in the cytoplasm and is 

responsible for the bulk of H3K9me1 and me2, while SET-25 was nuclear and mediated all of 

H3K9me3. In the absence of MET-2, SET-25 can also partially take over mono and di-methylation 

of H3K9. Based on the heterochromatic reporter system, Towbin et al. suggested that both SET-

25 and MET-2 are able to anchor heterochromatic sequences to the periphery, only leading to 

detachment in the double mutant. SET-25 was found strongly enriched in the nucleus, where it 

binds its own enzymatic product (H3K9me3) in a SET-domain independent manner (Towbin et al. 

2012). The model suggested that the formation of SET-25 foci at the periphery might enhance 

heterochromatin silencing.  
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Scope 

Astonishingly C. elegans is viable and fertile in the complete absence of H3K9me. This allowed 

us to use the met-2 set-25 mutant to characterize the development of a multicellular organism in 

the absence of this central heterochromatic mark and ask: what is the main role of H3K9me in C. 

elegans and is there a functional difference between H3K9me3 and H3K9me1, me2 states. 

Besides its viability in the absence of H3K9me C. elegans has 2 additional major advantages for 

this study: 

1. While mammals possess a multitude of partially redundant partially essential H3K9 methyl 

transferases, C. elegans only has two H3K9me transferases with clear functional 

separation. 

2. The size and distribution of repetitive elements in C. elegans allows one to analyze a 

majority of them through standard sequencing methods, yet the worm still possesses a 

chromatin complexity similar to mammals. 

The major site of H3K9 methylation are repetitive elements (RE). Chapter 2 will therefore give an 

overview of the current state of knowledge on RE classes found in the genome, how they are 

controlled and what danger they pose. A special focus is put on the interplay of different epigenetic 

silencing mechanisms, with H3K9me at its center, that ensure repeat silencing at all stages of 

development. 

Chapter 3 contains the majority of the experimental work characterizing the role of H3K9me in C. 

elegans. Starting with the observation of a striking increase of DNA damage checkpoint dependent 

apoptosis in met-2 set-25 germlines, we identify increased mutagenesis specifically in the context 

of derepressed RE. We suggest that RNA:DNA hybrids that accumulate on derepressed RE drive 

these mutations by provoking conflicts with the DNA replication machinery. 

In the second experimental part (Chapter 4) we closely analyze the distinct contribution of 

H3K9me2 and me3 to the roles identified in Chapter 3. We identify a partially interdependent role 

of MET-2 and SET-25, making SET-25 dependent on, and at the same time, redundant with MET-

2 at the majority of its target loci. Similarly, the majority of H3K9me associated phenotypes are 

not, or only mildly observed in worms lacking H3K9me3, arguing for very similar abilities in 

silencing of H3K9me2 and me3. Besides quantitative differences in the number of transposable 

elements and genes depending on MET-2 or SET-25 for their transcriptional silencing, tandem 

repeats depended exclusively on MET-2. Interestingly, the identified silencing pathways occur in 
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different nuclear sub-compartments. In contrast to our previous model we found that SET-25 

dependent silencing occurs all over the genome, while MET-2 repressed regions are enriched at 

the nuclear periphery. The tethering of endogenous heterochromatic sequences was also found 

to completely depend on the function of MET-2 and was independent of SET-25. We speculate 

that peripheral localization is involved in the MET-2 silencing function. 

In the same study we also take an additional unbiased approach to identify previously overlooked 

roles of H3K9me by performing a whole genome synthetic lethality screen with the met-2 set-25 

double mutant. The hits were then further tested in each of the single mutants, met-2 and set-25, 

showing exclusive genetic interaction with met-2. Finding many factors shown or suggested to be 

involved in RNA:DNA hybrid prevention and DNA damage repair, we conclude that the role of 

H3K9me in genome integrity described in Chapter 3 as one of its most important roles in C. 

elegans. 

This thesis thereby provides evidence how repetitive elements derepression in the absence of 

H3K9me can lead to the occurrence of spontaneous DNA damage, putting a special emphasis 

on the danger of tandem repeat expression.  
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Summary 

Eukaryotic genomes contain millions of copies of repetitive elements (RE). Although the 

euchromatic parts of most genomes are clearly annotated, the repetitive/heterochromatic parts 

are poorly defined. It is estimated that between 50 and 70% of the human genome is composed 

of REs. Despite this, we know surprisingly little about the physiological relevance, molecular 

regulation and the composition of these regions. This primarily reflects the difficulty that REs pose 

for PCR-based assays, and their poor map-ability in next generation sequencing experiments. 

This chapter gives a detailed summary of the nature and classification of REs and their importance 

in disease pathology. Additionally, we give a detailed overview of the recent advances in 

understanding the transcriptional regulation of these sequences. We put special emphasis on the 

differences between somatic and germline specific regulatory mechanisms. 
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Eukaryotic genomes contain millions of copies of repetitive

elements (RE). Although the euchromatic parts of most

genomes are clearly annotated, the repetitive/heterochromatic

parts are poorly defined. It is estimated that between 50 and

70% of the human genome is composed of REs. Despite this,

we know surprisingly little about the physiological relevance,

molecular regulation and the composition of these regions. This

primarily reflects the difficulty that REs pose for PCR-based

assays, and their poor map-ability in next generation

sequencing experiments. Here we first summarize the nature

and classification of REs and then examine how this has been

used in the recent years to broaden our understanding of

mechanisms that keep the repetitive regions of our genomes

silent and stable.
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Repeat classification
Repetitive elements (RE) are simply defined as

sequences that occur multiple times in the genome. This

encompasses a huge variety of DNA elements of very

diverse structure and origin. REs can be grouped into two

broad, but distinct classes. Namely, tandem repeats are

small nucleotide stretches repeated in a head to tail

orientation, while transposable elements are DNA

stretches with the ability to move from one place of

the genome to another. Despite their discovery nearly

half a decade ago [1] and the advent of whole genome

sequencing data, the list of REs is still increasing, as is

their calculated contribution to the human genome [2�].

In Figure 1, we summarize the main repeat classes found

across species, and their genomic contribution in widely

used model organisms.

Tandem repeats
Tandem repeats are short, non-coding sequence stretches

that are repeated in a head to tail fashion. They can be

categorized according to the size of their building block

and total length, forming microsatellite and minisatellite

categories. Microsatellites include simple di-nucleotide

to penta-nucleotide repeats with a total length of hun-

dreds of basepairs (bp), while minisatellites have a unit

length of 30–35 bp with a conserved core sequence of

10–15 bp. The total length of minisatellites ranges from 1

to 15 kb. Not covered by this classification are centromer-

ic and telomeric satellite repeats. At centromeres, organ-

ism-specific tandem satellite repeats of �200 bp building

blocks are strongly enriched around the functional kinet-

ochore. In humans, the major centromeric unit is the

alpha-satellite sequence, which stretches in a repetitive

manner for 3–5 Mb from the centromere. Mouse centro-

meres are similarly flanked by the major satellite repeat,

which form most of the pericentromeric heterochromatin

in this organism.

In contrast, tandem repeats are thought to result from

improper replication and are highly variable even among

genetically related individuals [3]. Even though they are

occasionally found in the coding region of genes (e.g., the

RUNX-2 and the Huntingtin gene in vertebrates [4]),

tandem repeats themselves do not encode for protein and

usually have neither promoter nor enhancer function. In

most organisms, tandem repeats accumulated in peri-

centric heterochromatin and at telomeres, where they

contribute to chromosome structure. At telomeres they

protect the ends of the linear chromosomes and at cen-

tromeres they are essential for sister chromatid cohesion

and kinetochore function [5]. Finally, as discussed below,

trinucleotide microsatellites have garnered much atten-

tion, because their expansion is often linked to human

disease states [6�].

Transposable elements (class I versus class II
autonomous versus non-autonomous)
Transposable elements are sometimes referred to as

selfish DNA, and these sequences have the ability to

change their position in the genome. In contrast to

tandem repeats, transposable elements have a defined

structure: they are of specific size, are flanked by short

repeats and often encode for a unique set of proteins. On

the basis of the intermediate form that is used for trans-

position they are divided into class I, or RNA transposons,

which travel by a ‘copy and paste’ mechanism through an

RNA intermediate, and class II, or DNA transposons, that

jump as a DNA molecule that is either cut out from the

genome (‘cut-and-paste’) or copied from the genome
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(‘rolling circle’ and ‘self-replicating’) as DNA. Both clas-

ses are further subdivided based on the presence of

terminal repeats, the genes they encode, and their exact

mechanism of transposition. If a transposon expresses all

of the proteins necessary for its transposition, it is referred

to as autonomous. Other families of transposons express

only part of this machinery or none at all, and are called

non-autonomous. Their transposition depends on the en-

zymatic machinery expressed by other superfamily mem-

bers. Recently, genome-sequencing has allowed one to

define families of active transposons by the presence of

organism-specific copies, and the degree of sequence

conservation between copies in the same genome, which

is an indication that they have not had time to accumulate

mutations.

The two major RNA transposons are LTR and non-LTR

retrotransposons. LTR retrotransposons derive from an-

cient retroviral infections. They are characterized by their

long terminal repeats (LTR) at the 50 and 30 ends, and are
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closely related to retroviruses. Consequently, their auton-

omous copies encode for proteins closely related to the

retroviral gag (structural proteins of the virus core), pol

(reverse transcriptase, integrase), pro (protease) and in

some cases even functional env (envelope) proteins. The

youngest LTR transposons are still transcriptionally ac-

tive, such as the ERV-I, ERV-II and ERV-K transposons

in humans [7], and the Intracisternal A-particle (IAP)

retrotransposon in mice [8].

Non-LTR interspersed retrotransposons in their fully

autonomous form are also referred to as long interspersed

elements (LINE). LINEs have an internal 50 promoter

that drives the expression of the transposition machinery,

which consists of a reverse transcriptase and an endonu-

clease. The LINE transcript is recognized by the trans-

position machinery through a 50 polyA tail. Short

interspersed elements (SINE), on the other hand, are

non-autonomous non-LTR retrotransposons. They de-

pend differentially on LINE elements for their transpo-

sition, with specificity being determined by their 50 tails.

Most SINEs are derived from tRNA, 7SL RNA or 5s

RNA and therefore possess a RNA-Pol III promoter. The

youngest and transpositionally most active non-LTR

transposons in humans are the L1 LINE elements and

the corresponding SINE Alu elements [9].

Retrotransposition generally involves three steps; the

transcription of the genomic element, the reverse tran-

scription of that RNA in 50–30 direction, and then the

integration of the newly synthesized DNA into a new

genomic locus. This has two major consequences: first,

only transcriptionally active transposons can transpose

and second, interruption of the reverse transcription leads

to 50 truncation, which can result in the loss of the

promoter region and transcriptional inactivation [10].

The only DNA transposons that are found active (and

only in certain species) are ‘cut-and paste’ transposons.

They express one enzyme — a transposase — that recog-

nizes the terminal inverted repeats (TIR) that flank the

transposon, and catalyze the excision of the transposon

from its original position, as well as its integration into a

new position. Transposon amplification depends on the

repair machinery of the host cell and its cell cycle stage. In

contrast to retrotransposons, the transposition of a DNA

transposon does not require active transcription of the

element, but rather on the presence of intact TIRs and a

transposase. Thus, a single expressed DNA transposon

can result in the active transposition of all its family

members, at least in principle. A prominent example of

a species with active DNA transposons is the nematode

Caenorhabditis elegans.

Repeat-linked diseases
An increasing number of diseases have been shown to

have links to repetitive sequences. Till date, 22 diseases

are correlated with changes in the repeat length, most

of which are tandem repeat expansions. These include

well-known heritable diseases like Huntington’s disease,

Friedrich Ataxia and the Fragile X syndrome [11]. A main

characteristic of these diseases is that an expansion of the

repeat over a crucial threshold (e.g., 200 copies) leads to

transcriptional repression of the repeat-linked gene. In

rare cases, such as Facioscapulohumeral muscular dystro-

phy (FSHD), shortening of the disease-linked D4Z4

repeat leads to the transcription of an otherwise silent

locus.

Disease-linked changes in repeat element length can

occur either near a gene (e.g., FSHD), or with a gene’s

coding sequence (e.g., Huntington’s disease). The mo-

lecular mechanisms leading to repeat alterations, and

their impact on disease phenotypes, are often obscure.

In some cases, expanded tandem repeats have the ability

to nucleate heterochromatin at the repeat sequence and/

or in the flanking regions [12,13]. Interestingly, it was

shown that transcriptionally active repeats are more prob-

ably to expand [14], suggesting an important role for

repeat-facilitated silencing, in the prevention of disease.

In other cases, variations in the exact sequence that is

amplified can contribute to dysfunction [15]. In the case

of myotonic dystrophy, for example, it was shown that the

transcribed repeat forms RNA hairpins that sequester

Musclebind1, a protein that normally promotes the splic-

ing of its target RNAs [16].

Comparative studies among different repeat-provoked

diseases, showed that each locus may have a specific

mode of action. In case of Friedrich Ataxia, for example,

even though repeat expansion leads to increased meth-

ylation of histone H3 K9, this methylation mark is not

crucial for the transcriptional effect. Rather, the repeat

itself appears to interfere with transcriptional elongation

[12]. Indeed, each specific repeat-linked disease may

require an in depth study of its mechanism of action

and the correlated pathology. For Huntington’s disease

alone there are now more than 31 disease models [17]. It

therefore becomes important to understand the molecular

mechanisms that establish and maintain heterochromatin

on tandem repeats during normal development, in order

to explain the various ways in which repeat stability can

affect heterochromatin in disease.

Repeats in cancer
Besides effects at specific disease genes, both tandem

repeats and transposable elements have a major impact on

global genome integrity. Palindromic sequences, such as

inverted repeats are found to be enriched at common

fragile sites in cancer genomes. These are thought to form

secondary structures during replication, leading to fork

stalling and the formation of double-strand breaks and

unscheduled recombination events [18,19]. Replication

forks also tend to slow down and stall at GC-rich repeats
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possibly due to G-quadruplex formation [20]. In addition

to favoring breaks, repeat sequences pose an additional

problem during repair, because template switching be-

tween repeats at dispersed sites in the genome can lead to

chromosomal rearrangements [21].

Transposons provoke specific alterations of gene struc-

ture or expression by being excised and subsequently

inserted, either directly into the coding sequence or into

regulatory elements of genes. Due to the presence of

promoter and enhancer elements within the transposon

itself, integration near a gene can provoke inappropriate

gene expression [22,23]. Transposition events can also

introduce genetic information that originates from

sequences outside of the transposon. A recent study

described this for the long non-LTR retrotransposon

L1 [24��], which was shown to be quite potent at intro-

ducing extra sequence arising from its locus of origin upon

transposition. This event was found in �25% of analyzed

cancer samples [24��], and although most insertions did

not lead to cancer-promoting alterations, L1 transduction

was nonetheless oncogenic in a subset of hepatocellular

carcinomas [25]. Such transpositions, with or without

additional DNA, also contributes to the genetic flexibility

of cancer genomes, in some cases facilitating the devel-

opment of therapy-resistant tumors.

The most common cellular mechanism that prevents

activation and expansion of REs is the formation of

heterochromatin over their sequences. One case is the

highly repetitive rDNA locus: in Drosophila it was shown

that loss of SU(VAR)3-9, an important histone methyl

transferase that deposits the repressive H3K9me2/3 mark,

leads to a transcriptional activation of REs and the dis-

ruption of the nucleolus. This was correlated with an

increase in extrachromosomal circular DNA containing

rDNA, a result of aberrant recombination [26]. Below we

summarize the current state of knowledge on the silencing

of non-rDNA repetitive DNA elements, which involves

the interplay of multiple repressive pathways in a devel-

opmental-stage dependent manner.

Importance of heterochromatin at RE
Three epigenetic pathways ensure the silencing of RE:

methylation of H3K9, DNA methylation and the germ-line

specific PIWI pathway. Several recent findings suggest that

the three pathways are interconnected and that the impor-

tance of each pathway for silencing is dependent on the

developmental stage. In somatic cells, as well as in the cells

of the germline, transposable elements are enriched for

H3K9me3, and — in plants and vertebrates — for DNA

CpG methylation as well. Interestingly, the extent of

histone methylation seems to differ between individual

repeat families and even between individual repeats of the

same family. Families that are known to be capable for high

transcriptional and tranpositional activity have particular

high levels of H3K9me3. In mouse, these are the LTR

families IAPEz, IAPEy, and MaLR, and the LINE families

L1-Gf, T, and A [27]. A similar pattern can be observed for

DNA methylation, especially in differentiated cells (sum-

marized in Figure 2; [28��]).

Silencing of RE in the germline
The threat that RE poses to genomic integrity is partic-

ularly crucial in germ cells, as genomic changes in germ-

line cells will be transmitted to the next generation.

Moreover gross rearrangements early in meiosis may

impair meiotic synapsis. Intriguingly, several transpos-

able elements have evolved to be expressed [29], or

transposed, exclusively in germ cells [30]. Cells of the

germline are also subject to widespread epigenetic repro-

gramming during which neither DNA methylation,
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nor — in the paternal genome — H3K9me3, are globally

maintained (reviewed in [31]). This, of course, raises the

question, of how RE silencing is ensured during this

crucial developmental time window, and how the various

repression pathways crosstalk, to ensure a stable propa-

gation of heterochromatin to the next generation.

During mouse germ-cell development DNA methylation

is lost in proliferating pre-migratory and post-migratory

primordial germ cells (PGCs) due to reduced levels of

expression of DNMT3a and sequestration of DNMT3b

and the DNMT1 cofactor NP95 in the cytoplasm [32,33].

DNA methylation on repetitive regions is then re-estab-

lished during spermatogenesis and during the postnatal

growth phase of the oocytes, by DNMT3a and DNMT3b

[34]. In parallel, and before DNA methylation is

completely reestablished, H3K9me3 is progressively lost

during spermatogenesis, and is only re-established during

early embryogenesis [31]. Interestingly, a small percent-

age of the genome retains both DNA methylation and

H3K9me3 throughout PGC production, including several

LINE and LTR element families [33,35,36��].

In contrast to somatic cells, these specific LINE and LTR

elements are not only enriched for H3K9me3 and DNA

methylation, but also for H3K27me3. The deletion of

SETDB1, a major H3K9me3 methyltransferase, results in

the loss of all three silencing marks specifically at LINE

and LTR elements. This leads to the transcriptional

activation of a subset of those transposable elements

[36��,37]. This cascade of events suggests that in PGCs,

H3K9me might function upstream of DNA methylation

and Polycomb-mediated silencing at transposable ele-

ments. Why transposable elements are additionally marked

by H3K27me3 in PGCs remains unclear. It is, however,

interesting that after fertilization the paternal pericentric

heterochromatin is highly enriched for H3K27me3 and

Polycomb repressive complex 1 (PRC1) [38].

Another important pathway that silences transposable ele-

ments in a germ-line specific manner, is the PIWI pathway.

It mediates silencing through a complex of small RNAs,

called piRNAs, and the PIWI family of Argonaut proteins

(PIWI, AUBERGINE and AGO3 in Drosophila and MIWI,

MIWI2 and MILI in mouse). The importance of this RNA-

mediated silencing mechanism is clear: the deletion of

various subunits of the piRNA biogenesis pathway results

in sterility, and this correlates with the reactivation of IAP

and/or LINE1 elements in postnatal male germ cells, both

in mouse and Drosophila [39].piRNAs share homology with

transposable elements, and partially derive directly from

their transcripts. The sequence homology allows for the

specific slicing of transposon mRNA by the Argonaut

proteins [40]. Loss of MILI, or MIWI2 also results in the

loss of de novo DNA methylation of IAPs and LINE

elements [41], indicating that epigenetic modifications

may lie downstream of the PIWI pathway. Indeed, recent

studies found that the targeting of actively transcribed

transposons by the piRNA/Piwi complex results in an

increase of H3K9me3 and DNA methylation over trans-

posable elements in mouse and Drosophila [27,42�,43].

Interestingly, in neither Drosophila nor mouse, did the

disruption of PIWI result in the complete loss of

H3K9me3. Instead, H3K9me3 levels were reduced to a

level comparable with somatic cells. In some cases this led

to the transcriptional activation of RE, while others

remained repressed [27]. In mouse, the loss of H3K9me3

was restricted to a subset of LINE1 loci that contain full-

length retrotransposon insertions, but not fragmented non-

autonomous copies present throughout the genome.

It is striking that in these studies, loss of either DNA

methyl transferases, histone methyl transferases (HMTs),

or the PIWI pathway only affected a subset of RE’s. This

suggests that the pathways have distinct subsets of targets

and are not entirely epistatic. Particularly in mouse the

effect was limited to potentially active transposable ele-

ments of the IAP and LINE family. In case of the PIWI

pathway, the limited effect on a subset of LINE elements

probably stems from the mechanism of RNAi mediated

silencing. A comparison between the PIWI-dependent

repeat families in Drosophila and their transcription status

strongly suggests that PIWI requires ongoing transcrip-

tion in order to silence [42�]. PIWI is therefore restricted

to function as an additional layer of silencing, preventing

the transposition of active transposons and potentially

marking new transposon insertions for repression. On the

other hand, heterochromatin coats all repeat families,

whether they are full-length and potentially active trans-

posons, or fragments lacking their endogenous promoters,

and therefore transcriptionally inactive. How these ele-

ments are targeted for chromatin-mediated repression is

unclear, nor is it clear how tandem repeats are silenced.

Silencing of RE in somatic cells
A well-studied example of somatic cells is the embryonic

stem cell (ESC). These are cultured cells originating from

the inner cell mass (ICM) of the blastocyst stage of mam-

malian embryos. In this system, the silencing of REs is

highly dependent on H3K9 methylation, while DNA

methylation becomes essential only after further differen-

tiation [28��]. Importantly, the components of the PIWI

pathway are not expressed in ESC nor in other somatic

cells. On the other hand, studies in Drosophila and human

tissue culture cells showed that there might be an endoge-

nous siRNA that targets transposable elements in somatic

cells of these organisms as well [44,45]. It is not yet clear

how these endo siRNA pathways are related to the remain-

ing silencing pathways, or whether they are related to the

siRNA pathway described for Schizosaccharomyces pombe.

Two recent studies analyzed the distribution of

H3K9me3 carefully for the individual repeat families

[28��,36��]. This showed that in ESCs, the H3K9me3
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distribution is similar to its distribution in germ cells. A

particular strong enrichment could be observed at cen-

tromeric-satellites and telomeric-satellites, even though

the absolute levels of methylation are hard to determine

due to the highly repetitive nature of these regions. Also

enriched for H3K9me3 are SINE elements, LTR trans-

posons of the ERV1 and ERVK families (IAPs) and LINE

elements (e.g., active L1-Gf, T, and A families)

[28��,36��]. Within these classes, the enrichment of

H3K9me3 was highly specific for some families [36��].

As in germ cells, H3K9me3 enrichment in ESCs was

particularly strong at families that encode transcription-

ally active transposons.

It remains unclear what mechanisms nucleate H3K9

methylation, and whether or not the distribution observed

in ESC is a consequence of what was established in the

germline. These questions are further complicated by the

redundancy of the four major H3K9 HMTs, namely, G9a,

SetDB1, Suv39h1 and Suv39h2. A comparison of the

SUV39H1/2 and SETDB1 distribution in mouse ES cells

showed that both HMTs are enriched at euchromatic

insertion sites of transposable elements. Both enzymes

were found on full-length ERVs, and SUV39H1/2 was

additionally enriched on full length LINE elements,

although they had but a weak enrichment for SETDB1.

Elimination of the relevant HMT genes led to the

transcriptional up-regulation of these elements in living

organisms.

It is striking that in somatic cells, as well as in germ cells,

loss of HMTs or components of the PIWI pathway

primarily affects full length LINE and ERV elements.

As mentioned above, the mechanism(s) that nucleate

heterochromatin at incomplete and degenerate copies of

transposons, and at tandem simple repeats, are unknown.

One hint is given by the following observations: whereas

SUV39h1/2 and SETDB-1 co-localized directly on ERV

elements, SUV39h1/2 was found to spread into

sequences adjacent to the repeats. In agreement with

this, deletion of SUV39h1/2 resulted in a complete loss of

H3K9me3 on the surrounding sequences [28��], and only

reduced H3K9me3 on ERV elements themselves. To-

gether with the observation that REs tend to accumulate

in clusters, this suggests the possibility that SETDB1 is

targeted to full length and potential transcriptional active

transposable elements, where it either directly, or indi-

rectly through H3K9me, recruits SUV39h1/2. Thanks to

its interaction with the H3K9me-reader HP1a,

SUV39h1/2 has the ability to catalyze the spreading

of H3K9me into neighboring sequences. It may, there-

fore, mediate heterochromatin formation on larger chro-

matin domains, without requiring a mechanism that

recognizes all RE sequences in order to nucleate the

HMTs action. This mechanism also implies that the

different HMTs may be interdependent at least for a

subset of target sites.

Future challenges
Recent studies have collectively shown that H3K9me,

the PIWI pathway and DNA methylation are interdepen-

dent for the silencing and stabilization of transposable

elements in organisms containing CpG methylation.

Moreover, H3K9me seems to be the link that connects

RNA-mediated silencing and DNA methylation. The

current data suggests a degree of selectivity, specificity,

as well as redundancy among H3K9 specific HMTs. A

second major conclusion is that three pathways of RE

silencing are differentially active at different develop-

mental stages. The exact reasons for this are not yet clear.

Finally, recent data show that it is technically possible to

use next generation sequencing approaches, such as

ChIPseq and RNAseq, to analyze the biology of REs.

Nonetheless, the interpretation of the data is highly

dependent on whether repeat classes, repeat families,

or individual repeats are analyzed. For instance, Pezic

and colleagues concluded that SINE elements are de-

pleted for H3K9me3, when looking at the methylation

state of the complete repeat class [27], yet Bulut-Karslio-

glu and colleagues showed that around 10% of all anno-

tated SINES are actually enriched for H3K9me3 (n.b. a

percentage similar to that of LINE and ERVs enriched

for H3K9me3 [28��]). These complications make this

important field one that depends largely on new technol-

ogies that will improve the mapping of specific REs and

help identify their mechanism of control.

Future studies should be able to distinguish regulation by

H3K9me3, from regulation by mono-methylation and di-

methylation of H3K9. Given that H3K9me2 is able to

mediate silencing at some loci [46], it is essential to know

whether a reduced H3K9me3 signal results in the com-

plete loss of H3K9 methylation, or in an increase in mono-

methylated and di-methylated forms. It will be intriguing

to see whether different repeat families are selectively

marked by H3K9me2 or H3K9me3 and whether the tri-

methyl state is due to the action of a single HMT or

several HMTs. This can be ideally studied in an organism

that does not depend on H3K9me for sister chromatid

cohesion during cell division [47,48�].
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Summary 

Histone H3 lysine 9 (H3K9) methylation is a conserved modification that generally represses 

transcription. In Caenorhabditis elegans it is enriched on silent tissue-specific genes and repetitive 

elements. Studying H3K9me in developing organisms has so far proven to be difficult. Both mice 

and Drosophila have at least five histone methyl transferase (HMTs) enzymes that are essential 

and partially redundant allowing only for the study of partial reductions in H3K9me. In the 
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nematode C. elegans our lab identified the two methyltransferases, essential for all H3K9me 

(Towbin et al. 2012).  

Here we show that in met-2 set-25 double mutants embryos differentiate normally, although 

mutant adults are sterile owing to extensive DNA-damage-driven apoptosis in the germ line. We 

give a detailed analysis of H3K9me2 and me3 distribution on genes and repetitive elements in C. 

elegans. We find that transposons and simple repeats are derepressed in both germline and 

somatic tissues. This unprogrammed transcription correlates with increased rates of repeat-

specific insertions and deletions, copy number variation, R-loops and enhanced sensitivity to 

replication stress. We propose that H3K9me2 or H3K9me3 stabilizes and protects repeat-rich 

genomes by suppressing transcription-induced replication stress. 
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H3K9 is a common target of methylation in vivo and can carry one, 

two or three methyl groups. H3K9me2 or H3K9me3 mark transcrip-

tionally silent heterochromatin in most eukaryotes1–3. In mammals, 

insects and Schizosaccharomyces pombe, H3K9 methylation is highly 

enriched at telomeres, pericentric heterochromatin and interspersed 

repetitive elements (REs)4–7.

Ligands that recognize methylated H3K9, such as heterochromatin 

protein 1 (HP1), mediate transcriptional repression of reporter genes 

and chromatin compaction near centromeres2,8. H3K9me is also 

implicated in the silencing of genes both during development9,10 and 

in pathological states. For instance, tumor-suppressor genes have been 

found to be transcriptionally silenced by mistargeted H3K9me in can-

cers11,12, and H3K9me marks triplet repeat sequences, whose expan-

sion has debilitating consequences in syndromes such as Huntington’s 

or Fragile X13,14. Nonetheless, by reducing levels of H3K9me the effi-

ciency of somatic cell reprogramming can be increased15,16.

It has been difficult to study the function of H3K9me-mediated 

repression in complex organisms for several reasons. First, there are 

at least eight documented and partially redundant H3K9 histone 

methyltransferases (HMTs) in mammals (SUV39h1, SUV39h2, G9a, 

SETDB1, SETDB2, PRDM2, PRDM3 and PRDM16 in mice). Second, 

the vast majority of H3K9 methylation is found on extended stretches 

of REs that cannot be accurately mapped by standard deep sequenc-

ing techniques17. In some cases the disruption of individual H3K9me 

HMTs is embryonically lethal, owing in part to compromised mitotic 

chromosome segregation18–20. The loss of SUV39h1, SUv39h2 or their 

homologs also results in mitotic defects, aneuploidy and chromosomal  

rearrangements in mice, flies and fission yeast7,21,22. This may have 

masked phenotypes arising from the loss of H3K9me in transcrip-

tional repression during development.

The holocentric nematode C. elegans has only two, nonredundant 

H3K9me-depositing HMTs, MET-2 and SET-25 (refs. 23,24). Here we 

exploited the finding that mutants lacking both HMTs have no detect-

able H3K9 methylation24, and yet produce viable embryos, to study how 

the loss of this histone modification impacts a multicellular organism.

RESULTS
Loss of H3K9me did not impair embryonic differentiation into 
adult tissues
The HMT MET-2, which catalyzes the mono- and di-methylation 

of H3K9, is the homolog of mammalian SETDB1, also known as 

ESET23. SET-25, on the other hand, shares considerable SET domain 

homology with SUV39h1, SUV39h2 and G9a enzymes, and it is the 

only C. elegans enzyme that trimethylates H3K9 (ref. 24). To con-

firm that met-2 set-25 double mutant worms lack H3K9 methylation 

throughout development, we performed immunofluorescence analy-

sis at all stages of worm development (Fig. 1a). We found no detect-

able H3K9me2 or me3 in met-2 set-25 embryos, second-stage larvae 

(L2) or gonads of adult worms, confirming our earlier mass spec-

troscopic analysis of total histones isolated from mutant embryos or 

larvae24. Histone acetylation and other common methylation marks 

(Supplementary Fig. 1) remained intact24. Despite this complete 

absence of H3K9me, the met-2 set-25 mutant embryos developed 

into viable adults.
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To monitor the kinetics of somatic development, we compared the 

timing of wild-type (N2) and met-2 set-25 organisms as they transi-

tioned from the first larvae stage (L1) to the L1 stage of the next gen-

eration. This is a highly synchronous cycle that takes 3 d in wild-type 

strains grown at 20 °C (Fig. 1b). In contrast to wild-type worms, 52% of 

the met-2 set-25 mutants showed stochastic delays in stage transitions, 

even though most mutant embryos reached adulthood (88% became 

mature adults; Fig. 1b). These delays were more pronounced at 25 °C 

than at 20 °C and were not restricted to one specific stage (Fig. 1b). 

Nonetheless, only 2% of the adult offspring displayed a grossly irregu-

lar morphology at 20 °C, i.e., ‘dumpy’ appearance, partially defective 

cuticles or bursting as adults (Fig. 1c). Such aberrant morphologies 

were below detection level (<0.1%) in wild-type populations25.

Chromosome missegregation has been suggested to be a main cause 

for the phenotypes observed in mutants for H3K9 HMTs in other organ-

isms7,19,26. Using histone H2B fusion to GFP (H2B-GFP), we tracked 

the frequency of mitotic chromosome bridges or lagging chromosomes 

in wild-type and met-2 set-25 embryos. The frequency of defective 

mitoses at either 20 °C or 25 °C was similar in wild-type and mutant 

embryos (Fig. 1d). Moreover, the duration of mitosis was identical, 

which argues against any mutant-specific spindle checkpoint activation 

(Fig. 1d). To monitor meiotic chromosome missegregation, we followed 

H2B-GFP-tagged oocytes undergoing meiosis in gonads. Thanks to the 

chromosome condensation and enlarged nuclei that occur in diakine-

sis, we could determine bivalent chromosome number per cell. Again 

there was no detectable difference between met-2 set-25 and wild-type 

oocytes at either temperature (Fig. 1e). Thus, we excluded aneuploidy 

and spindle checkpoint activation as triggers for the developmental 

delay or aberrant morphologies of H3K9me-deficient worms.

Temperature-dependent sterility of met-2 set-25 mutant
Brood sizes were notably smaller upon propagation of the double 

HMT mutant, and worms became completely sterile after two genera-

tions at 26 °C (Supplementary Fig. 2a). We determined the number of 

viable progeny of met-2 set-25 vs. wild-type worms under controlled 

growth conditions at 15 °C, 20 °C and 25 °C. Although brood size 

was equal between the met-2 set-25 and wild-type worms at 15 °C, 

mutant adults had significantly fewer viable progeny at both 20 °C and 
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Figure 1 Worms lacking H3K9me were viable but showed stochastically delayed development. (a) Immunofluorescence images using H3K9me2- and 

H3K9me3-specific antibodies on wild-type (wt) and met-2 set-25 strains at indicated developmental stages. H3K9me2 and H3K9me3 signals are in 

green, and DAPI in blue. Scale bars, 5 µm. (b) met-2 set-25 mutation provoked stochastic delays in development from L1 larval stage into fertile adults. 

Developmental progress of singled mutant and wt L1 larvae monitored every 24 h for 3 d at 20 °C and 25 °C (N (number of biological replicates) = 3,  

n (number of animals per replica) = 50). (c) Example images of worm morphologies arising in met-2 set-25 cultures and their frequencies (N = 4,  

n = 50). Scale bar, 100 µm. (d,e) H3K9me2/H3K9me3 was not essential for chromosome segregation in C. elegans. Images (d) from time-lapse  

(∆t = 1 min) movies of mitotic cells in embryos expressing H2B-GFP in which mitotic defects were scored (wt, 20 °C n= 34; wt, 25 °C n = 50;  

met-2 set-25, 20 °C n = 45; and met-2 set-25, 25 °C n = 36). Scale bars, 3 µm. Duration of mitosis reflects minutes from the beginning of 

chromosome condensation until completion of telophase. The number of bivalent chromosomes (e) in wt and met-2 set-25 worms expressing H2B-GFP 

counted in oocytes undergoing diakinesis (N = 3; wt, 20 °C n = 57; met-2 set-25, 20 °C n = 51; wt, 25 °C n = 50; and met-2 set-25, 25 °C n = 50). 

Mean and s.d. are shown. Insets, nucleus of an oocyte in diakinesis.
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25 °C (Fig. 2a). A similar temperature-dependent loss of fertility has 

been observed for mutants of the PIWI pathway27,28 (Supplementary 

Fig. 2b), a germline-specific small RNA pathway that helps to silence 

transposable elements29.

Gonad development per se was not impaired in the met-2 set-25 

mutant (Supplementary Fig. 2c). However, by scoring the expres-

sion of the CED-1::GFP phagocytic receptor, which accumulates 

on the plasma membrane of apoptotic cells30, we detected a high 

level of germline apoptosis (Fig. 2b). The level increased when we 

grew worms at 25 °C. In the double mutant an average of 30 cells 

per germ line were positive for CED-1 at 20 °C (wild-type: 10 cells), 

and over 80 cells per germ line at 25 °C (wild-type: 18 cells; Fig. 2b). 

Consistently, RNA sequencing (RNA-seq) of met-2 set-25 gonads 

showed an increase in mRNA from various other apoptosis-specific 

genes31 (Supplementary Fig. 2d).

Although C. elegans germline cells are known to be particularly sensi-

tive to DNA damage, germline apoptosis can have multiple causes32. To 

see whether apoptosis in H3K9me-deficient gonads is caused by DNA 

damage, we deleted the mammalian p53 homolog, CEP-1, and scored 

CED-1::GFP distribution at 20 °C and 25 °C (ref. 33). In the met-2 set-25 

cep-1 triple mutant and in the strain lacking cep-1 alone, we detected only 

background levels of germline apoptosis at both temperatures (Fig. 2b). 

This strongly suggests that the germline apoptosis seen in the absence 

of H3K9me stemmed from DNA damage. The met-2 set-25 cep-1  

triple mutant was synthetic sterile, as expected (Fig. 2c). Of embryos 

laid at 20 °C, hatching rate dropped from above 95% in the met-2 set-25  

mutant to below 80% when coupled with cep-1 (Supplementary  

Fig. 2e). This is likely due to an increase in DNA damage in the mutant, 

because the number of RAD-51 foci per cell, a marker of processed 

breaks, increased significantly (P < 0.001, two-sided Wilcoxon signed 

rank test), as did the number of cells in the mitotic zone of the germ 

line with RAD-51 foci (3.4% in the wild type and 14.6% in the double 

mutant; Supplementary Fig. 2f). This suggests that germline cells incur 

enhanced levels of damage in the absence of H3K9me.

H3K9me2 marks REs, whereas H3K9me3 marks REs and  
silent genes
To understand the link between the loss of H3K9 methylation and the 

observed increase in DNA damage, we first reexamined the sequences 

reported to be bound by histones bearing H3K9me2 and H3K9me3. 

We performed chromatin immunoprecipitation followed by high-

throughput sequencing (ChIP-seq) experiments, not unlike those 

reported by the modENCODE consortium34,35. We found a tenfold 

enrichment of both H3K9me2 and H3K9me3 along the distal arms of 

the five worm autosomes in early embryos (Supplementary Fig. 3a).  

We did not observe this distribution for other repressive marks, such 

as H3K27me3, nor for the active mark, H3K4me3. Chromosome 

arms were similarly enriched for all types of REs (Supplementary 

Fig. 3a36). A detailed analysis of the distribution of H3K9me2 versus 

H3K9me3 in embryos showed that a high proportion of H3K9me2 

was on REs (~34% of all H3K9me2), whereas H3K9me3 was present 

equally on exons and REs (~26% each, Fig. 3a).

Distinct classes of repetitive DNA constitute large fractions of the 

genomes of complex organisms. These include DNA or RNA trans-

posons, which can generate copies of themselves and integrate into the 

genome, as well as simple repeats, such as tandemly arranged micro- 

or minisatellites (Fig. 3b). Unlike transposons, these latter repeats 

lack open reading frames (ORFs) and regulatory sequences. Worm 

genomes contain all classes of REs, although DNA (rather than RNA) 

transposons are the most abundant transposable elements37. Short 

repetitive sequences are not found as megabase blocks of pericentric 

satellite sequence in worms, but as short clusters distributed along the 

chromosome. As a consequence, 87% of the C. elegans REs, or roughly 

~60,000 discrete elements, can be uniquely mapped to individual sites 

of the genome by standard next-generation sequencing.

Plotting the enrichment of H3K9me2 and H3K9me3 on all REs 

in embryos, we found that 24.3% of REs were exclusively enriched 

for H3K9me2, and 18.1% had either both marks or exclusively 

H3K9me3 (Fig. 3c). This revealed that 42.4% of mappable REs were 

enriched for H3K9me, with H3K9me2 and H3K9me3 distributed 

differentially over the three repeat classes. RNA transposons were 

most strongly correlated with H3K9me3 (58.5%, with 5.7% bear-

ing H3K9me2 only); tandem or simple repeats were more likely to 

carry H3K9me2 alone (31.6%), and DNA transposons fell into two 

groups: 25.5% were uniquely dimethylated whereas 17.7% carried 

H3K9me3 (Fig. 3c).

In embryos H3K9me3 was enriched on transcriptionally silent 

genes (12.0%), where it coated entire ORFs of loci (Fig. 3d and 
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Figure 2  DNA-damage-checkpoint-dependent increase of apoptotic cells in the germ line of met-2 set-25 worms. (a) Number of viable progeny of wt 

and met-2 set-25 mutant per worm at 15 °C, 20 °C and 25 °C (N = 3, n = 75). (b) Example image of a gonad and the quantification of the number 

of apoptotic cells in worms expressing the apoptosis marker CED-1::GFP in wt and met-2 set-25 background, with and without CEP-1. Apoptosis rate 

was determined as the number of cells fully engulfed by CED-1::GFP per gonad arm. CED-1 is a phagocytic receptor, which translocates to the plasma 

membrane during apoptosis. Asterisks indicate gonad tip and boxes mark enlarged section in the overview image (N = 3, n = 75). Scale bar, 10 µm.  

(c) Number of viable progeny per worm of wt and met-2 set-25 with or without CEP-1. At both 20 °C and 25 °C (N = 3, n = 75) cep-1 and met-2 set-25 

showed a synthetic loss of viable progeny. Boxplots show median, boxes 50% and whiskers 90% of the group. Two-sided Wilcoxon signed-rank test: n.s. 

indicates not significant, **P < 0.005, ***P < 0.0001 and ****P < 0.00005.
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Supplementary Fig. 3b), and it was depleted from active genes  

(1.8%; Fig. 3d). Among the H3K9me3-bound genes were many that 

were expressed only in terminally differentiated tissues and a large 

fraction of pseudogenes (Fig. 3d and Supplementary Fig. 3c–e).

Loss of H3K9me led to the derepression of genes and REs
To determine whether loss of H3K9me affects transcription, we 

performed RNA-seq on RNA isolated from either gonads or early 

embryos of wild-type and met-2 set-25 strains, grown at either 20 °C 

or 25 °C. In embryos cultured at 20 °C, we observed the reproducible  

derepression (>2-fold compared to wild-type) of 308 genes. Of these 

72.2% (234) were marked by H3K9me in wild-type cells, and are 

therefore likely to be regulated directly by MET-2 and/or SET-25 

(Fig. 4a and Supplementary Fig. 4a). This set of derepressed genes 

was only a subset (~9.7%) of all genes bearing H3K9me, arguing that 

the loss of H3K9me is not always sufficient to activate transcription. 

Derepression of genes was also temperature-sensitive, with 2.2-fold 

more genes being upregulated at 25 °C, including 83.8% of those 
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Figure 3  Differential enrichment of H3K9me2 and H3K9me3 on repeat element classes and gene types. (a) Percentage of H3K9me2 and H3K9me3 

domains covering promoters, exons, introns, unique intergenic sequences or REs (N = 2). H3K9me positive regions were determined from genomic bins 

of sequences recovered after CHIP-seq using H3K9me2- or H3K9me3-specific antibodies with IP/input > 0. (b) Schematic representation of the three 

major repeat classes. DNA transposons encode a single transposase, which catalyzes all the steps of transposition, flanked by two terminal inverted 

repeats (TIRs). RNA transposons are either long terminal repeat (LTR) or non-LTR retrotransposon types. As derivatives of ancient retrovirus infections 

LTR retrotransposons encode gag (structural proteins of the virus core), pol (reverse transcriptase, integrase), pro (protease) and env (envelope).  

Non-LTR transposons encode a reverse transcriptase (RT) and an endonuclease (EN). Retrotransposon flanking regions in both cases supply promoter 

elements. Tandem repeats are short, noncoding sequence stretches that are repeated in a head-to-tail fashion. (c) High-density scatterplots show 

the enrichment of H3K9me2 and H3K9me3 on REs based on CHIP-seq data. IP, immunoprecipitation. RNA transposons were heavily enriched for 

H3K9me3 (58.5%), whereas 31.6% of tandem repeats had only H3K9me2. Lines indicate the quadrants of single-positive, double-positive and  

double-negative elements. (d) High-density scatterplots of the H3K9me2 and H3K9me3 enrichment on genes. Nonexpressed genes and pseudogenes 

were enriched for H3K9me3.
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Figure 4  Temperature-dependent derepression of subsets of genes and repeat families in embryos and gonads in met-2 set-25 worms. (a) Fold change 

(log2, met-2 set-25/wt) in gene expression of two replicas (rep1 and rep2) of RNA-seq data from embryos (20 °C and 25 °C) and from isolated gonads 

(20 °C) for each strain. The genes marked in red were consistently >2-fold upregulated (P < 0.05, FDR < 0.1), and % of total genes is indicated. 

(b) Venn diagram of the derepressed genes shows that genes affected in gonads were distinct from those upregulated in early embryos, and that 

derepression was temperature-enhanced in embryos (N = 3). (c) Scatterplot of the expression changes of H3K9me-enriched RE subfamilies in  

met-2 set-25 embryos and gonads compared to wt. The REs marked in red were >1.5-fold derepressed in both replicas (P < 0.05, FDR < 0.1). (d) Venn 

diagram of the derepressed REs shows that subfamilies affected in gonads were partially distinct from subfamilies derepressed in embryos, and that  
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(P < 0.05, FDR < 0.05) in embryos (20 °C and 25 °C) and gonads, sorted by repeat class (N = 3).
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already derepressed at 20 °C (Fig. 4a,b). Transcription in gonads was 

elevated by the loss of H3K9me (210 genes). The affected genes were 

largely distinct from those derepressed in somatic cells (37.6% over-

lap; Fig. 4a,b), arguing that transcription factor availability is critical 

for transcriptional activity in the absence of repressive chromatin.  

No essential regulators of meiosis were misregulated.

Given that REs were enriched for H3K9me in wild-type worms, 

we next examined expression changes for REs, which we analyzed as 
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Figure 5  met-2 set-25 worms accumulate RNA:DNA hybrids at repeat elements. (a) Quantification of multiple dot blots against RNA:DNA hybrids 

(antibody S9.6, HB-8730, ATCC, n = 3) in genomic DNA isolated from gravid adults of wt, met-2 set-25 and thoc-2 strains grown at 20 °C. 4 µg,  

2 µg and 1 µg of nucleic acids were loaded for each strain. Where indicated, genomic DNA was treated with RNase H before blotting (mean + s.e.m.; 

N = 3). (b) Immunofluorescence (IF) images of isogenic wt, met-2 set-25 and thoc-2 mutant embryos grown at 20 °C, stained with antibody S9.6 to 

visualize RNA:DNA hybrids (green); DAPI is in blue. Scale bar, 5 µm. (c) Quantification of IF signals after S9.6 staining from embryos of indicated 

strains, grown at 15 °C, 20 °C or 25 °C (mean + s.e.m.; N = 3, n = 15). (d,e) Genome-wide distribution of R loops determined by DRIP with antibody 

S9.6, followed by qPCR or deep sequencing of recovered DNA. DRIP-qPCR (d) for seven repeat subfamilies upregulated in met-2 set-25 worms and 

for three control loci (unc-119, lmn-1 and eef-1A.1), that were not upregulated (mean and s.e.m.; N = 2). Heat map of an S9.6 DRIP-seq experiment 

(e) showing mean log2 enrichment over the corresponding controls treated with RNase H (samples normalized to total number of reads). Loci were 

segregated based on indicated sequence criteria, and were further subgrouped based on the presence of H3K9me and response to the met-2 set-25 

mutations (N = 1). (f) DRIP-seq example showing the R-loop signal over a RE cluster. The IP signal was normalized to the input and the RNase H 

control values were subtracted.
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subfamilies. We characterized ~84% of all annotated repeats (300 sub-

families), and excluded only very-low-complexity repeat sequences or 

elements with a single annotated occurrence. In met-2 set-25 mutant 

embryos at 20 °C, 20% of the H3K9me-enriched repeat subfamilies 

were derepressed by at least 1.5-fold, and at 25 °C this value increased 

to 37.6% (Fig. 4c and Supplementary Fig. 4b). Gonads isolated from 

double mutant adults showed an increase of transcription in 14.4% 

of all H3K9me repeat subfamilies (Fig. 4c). This lower number of 

derepressed REs may reflect germline-specific redundant silencing 

by the PIWI pathway38,39. Indeed, different REs were upregulated 

in gonads and somatic cells (Fig. 4d and Supplementary Fig. 4c), 

with tandem repeats being distinctly underrepresented in the germ 

line (Fig. 4e). We note that each class of repeats includes REs that 

were not derepressed by loss of H3K9me, which may reflect either 

the existence of other, H3K9me-independent silencing pathways, 

or a requirement for transcription factors that are tissue-specific or 

developmental-stage-specific.

We asked whether the transcriptional landscape of genes surround-

ing a RE might influence its expression upon loss of H3K9me. This 

is particularly relevant for simple tandem repeats, which lack recog-

nizable promoter or enhancer sequences40. To our surprise, ~50% 

of the derepressed tandem repeats were not in the proximity of an 

upregulated gene (data not shown).

H3K9me-deficient worms accumulated R loops
We next examined the relationship between aberrant RE transcrip-

tion and the observed DNA damage. Perturbation of the replication 

fork is a major driver of DNA lesions41, and a substantial obstacle for 

its progression is the transcription machinery, in particular when 

stalled by RNA:DNA hybrids (R loops)42–45. In fission yeast, R loops 

are enriched at repetitive sequences, such as transposons, telomeres 

or the rDNA46, and correlated with genetic instability47,48. We there-

fore checked whether the met-2 set-25 double mutant accumulated 

R loops, using multiple approaches based on an antibody specific for 

RNA:DNA hybrids (S9.6, gift of P. Pasero49).

We detected an accumulation of R loops in met-2 set-25 worms 

that was not detectable in wild-type worm DNA by performing a dot 

blot analysis of genomic DNA. We also detected significant R-loop 

occurrence by immunostaining of mutant, but not wild-type, embryos  

(P < 0.001, Student`s t-test; Fig. 5a–c and Supplementary Fig. 5a).  

The level was roughly similar to that scored in a mutant strain deficient 

for the Tho-Trex complex (thoc-2), in which RNA:DNA hybrids accu-

mulate owing to impaired RNA processing and export (Fig. 5a)50,51.  

To test for antibody specificity, we treated the isolated DNA with 

RNase H before blotting, to specifically degrade RNA:DNA het-

eroduplexes. Quantification showed that 60% of the signal (met-2 

set-25, loading 4 µg; Fig. 5a) was lost after treatment with RNase 

H. Consistent with the elevated level of RE transcription at higher 

temperatures, the level of R loops increased with temperature, both in 

the dot blot analysis of adult worm DNA, as well as in the immunos-

taining of embryos (Fig. 5c and Supplementary Fig. 5a). The thoc-2 

mutant, on the other hand, reached R-loop saturation even at 15 °C.

To examine formation of R loops in a sequence-dependent manner, 

we immunoprecipitated RNA:DNA hybrids from wild-type or met-2 
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Figure 6  The met-2 set-25 strain is hydroxyurea sensitive and accumulates mutations in repeat elements and reactivated transposable elements. (a) Worms 

lacking MET-2 and SET-25 were hypersensitive to hydroxyurea (HU). Synchronized populations of wt and mutant L1 larvae were exposed to 20 mM HU for 

16 h, and then the numbers of worms that develop into adults after 3 d were quantified. Statistical analysis shows significant differential loss of viability 

between met-2 set-25 and wt worms (Wilcoxon test P < 0.0001 at all doses; N = 6, n = 25). (b) Synchronized populations of wt and mutant L1 larvae were 

exposed to sublethal doses of gamma irradiation (γ-IR), and the numbers of worms that developed into adults after 3 d were quantified. Only at 0 Gy was 

there enhanced met-2 set-25 lethality (Wilcoxon test P < 0.005; N = 3, n = 15). Boxplots show median, 50% boxes and 90% whiskers. (c) Wt and met-2 
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set-25 embryos followed by deep sequencing (DRIP-seq) or qPCR 

(DRIP-qPCR). By qPCR, we found that specific repeat elements that 

were derepressed in the absence of H3K9me, were enriched for R 

loops fourfold to ninefold in mutant over wild-type strains. This was 

not the case for low- or moderate-level transcribed genes (unc-119 

or lmn-1), nor was there a met-2 set-25-dependent increase in DRIP 

for a highly transcribed gene (eef-A.1), although the levels of R loops 

did increase at highly transcribed genes in both wild-type and met-2 

set-25 strains (Fig. 5d). As proof that the antibody was specific for 

RNA:DNA hybrids, we note that the DRIP-qPCR signal was highly 

sensitive to treatment with RNase H (Fig. 5d).

On a genome-wide level (DRIP-seq), we detected the most pro-

nounced enrichment of RNA:DNA hybrids in met-2 set-25 embryos 

on REs that were derepressed in the double mutant (Fig. 5e,f and 

Supplementary Fig. 5e). RNA:DNA hybrids were particularly 

enriched on transcribed DNA transposons and tandem repeats but 

not on RNA transposons (Fig. 5e). Confirming R-loop mapping in 

other organisms, we observed RNA:DNA hybrids more frequently 

on highly transcribed genes, telomeres and the rDNA locus, even 

in wild-type cells (Supplementary Fig. 5b–d)52,53, yet these signals 

showed no further increase in the met-2 set-25 mutant.

This high level of RNA:DNA hybrids suggests the presence of rep-

lication stress in met-2 set-25 worms. To monitor their sensitivity to 

fork stalling, we exposed worms to hydroxyurea, a DNA replication 

inhibitor that reversibly inhibits ribonucleotide reductase, thereby 

depleting deoxynucleotide pools and exacerbating replication fork 

stalling54. L1 larvae exposed to 20 mM hydroxyurea for 16 h and 

allowed to recover for 3 d in absence of the inhibitor, yielded 95 ± 3% 

(mean ± s.d.) viability (resumption of development), whereas only 

43 ± 11% of the met-2 set-25 larvae survived hydroxyurea exposure  

(Fig. 6a). This hypersensitivity was specific to agents causing replica-

tion stress, as treating similarly staged larvae with ionizing radiation 

did not differentially affect wild-type and met-2 set-25 strains (Fig. 6b).  

Thus hydroxyurea hypersensitivity correlated with the accumula-

tion of R loops, and suggests that both the developmental delays and  

sterility detected in H3K9me-deficient worms reflect collisions of 

replication with unscheduled transcription.

In the absence of H3K9me, mutations accumulated in REs
Replication stress and formation of R loops have been correlated 

with both fork instability and double-strand break hotspots in 

yeast44,46,55,56. To determine whether genomes of H3K9me-defi-

cient worms accumulate mutations at elevated rates, we singled 8 

wild-type and 8 met-2 set-25 worms for 12 generations at 25 °C, 

thereby creating 8 individual substrains per genotype. Sequencing of 

the genome of each substrain revealed mutations exclusively in one 

of the 16 genomes (Fig. 6c). This allowed us to score the number, 

nature and location of changes accumulated owing to the met-2  

set-25 mutation.

We note that the rate and nature of single nucleotide variants 

(SNVs) did not differ between wild-type and met-2 set-25 worms, 

which allowed us to exclude generation time as a confounding factor 

in the analysis (Supplementary Fig. 6a). However, 6 of the 8 met-2 

set-25 sub-strains acquired at least one insertion or deletion (indel) 

(with a total of 9 different observed indels; Supplementary Table 1). 

In contrast, only one wild-type strain incurred small deletions (3-base 

pair (bp) and 5-bp). The average indel in the met-2 set-25 substrains 

covered 5.3 kilobases (kb) (the largest being 33.5 kb), all met-2 set-25  

indels occurred at sites enriched for H3K9me3, and 8 of the 9  

met-2 set-25 indels occurred in REs whose majority showed enhanced 

transcription upon loss of H3K9me.

Confirming the existence of large and stable germline changes, we 

detected a 10-kb inversion flanked on one side by a 1-kb deletion by 

whole genome sequencing and PCR of met-2 set-25 worms that had 

been cultivated for several months. The inversion was immediately 

adjacent to an excised Tc3 transposon, and opposite the inversion was 

a de novo Tc3 transposon insertion unique to the cultivated H3K9me-

deficient strain (Supplementary Fig. 6b−d). The excised Tc3 element 

carried H3K9me3 in the wild-type strain, and was transcriptionally 

activated in met-2 set-25.
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Figure 7  Somatic accumulation of indels leading to frameshift mutations in met-2 set-25 mutant larvae. (a) Schematic of reporter to monitor mutation 

frequency in single cells in two different chromatin contexts. A lacZ construct containing a frame-shift mutation under the control of a heat shock 

promoter was integrated either as a high copy (~200−300 copies), or low-copy array (~20 copies). The frameshift prevents lacZ translation, which 

can be reestablished by mutation. (b) To quantify the accumulation of mutations, L1 larvae were released into development for 12 h or 24 h at 20 °C 

before a heat shock and subsequent β-gal staining. (c) ChIP-qPCR monitored enrichment of H3K9me2/H3K9me3 on the reporter array by PCR for 
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served as negative and positive controls. (d) Genomic DNA of the heterochromatic array was isolated from either met-2 set-25, or wt worms grown for 
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We next checked wild-type and met-2 set-25 genomes for copy 

number variations (CNVs) in repeat families with multiple members.  

Two DNA transposons (HELITRON2 and HELITRONY4) and two 

tandem repeats (MSAT1 and (TATCG)n) showed high CNV uniquely 

in the met-2 set-25 substrains. In contrast, the RNA transposon 

CEREP58 and the single-copy gene lmn-1, like telomeric repeats and 

the rDNA, remained stable (Fig. 6d,e and Supplementary Fig. 6e,f)57. 

RNA transposons, which also failed to accumulate R loops, did not 

show CNV. We conclude that met-2 set-25 germ lines accumulated 

indels at sites bearing H3K9me in wild-type strains as well as changes 

in DNA-transposon and tandem-repeat copy number.

A reporter incurred frequent indels in H3K9me-deficient 
somatic cells
This sequence analysis monitored stable germline changes in the 

worm population, and selected against any mutation that would per-

turb meiotic genome transmission. To visualize the mutation rate in 

somatic cells, we used a heterochromatic reporter with a lacZ gene 

placed out of frame to the ATG start codon, generating multiple pre-

mature stop codons in the first 100 bp of the transcript. Insertions 

or deletions between the ATG and the ORF are necessary to enable 

the translation of the lacZ mRNA into a functional β-galactosidase 

enzyme (Fig. 7a)58. This allowed us to compare mutation rates of 

wild-type and met-2 set-25 worms by microscopy, following a colori-

metric stain for heat-shock-induced β-galactosidase expression. By 

comparing two time points during somatic development (12 h and 

24 h after L1) we could differentiate mutations that might have been 

present in the fertilized egg from mutations incurred during somatic 

development (Fig. 7b). To compare the mutation rate of repetitive het-

erochromatic and unique euchromatic sequences, we made use of the 

observation that transgenes integrated as high–copy number arrays 

induce the formation of H3K9me-containing heterochromatin59  

(i.e., enriched for H3K9me2 and H3K9me3; Fig. 7c). We compared 

this reporter with the same reporter construct integrated as a low–

copy number array, which remains unmethylated and euchromatic. 

We classified phenotypes by the extent of β-galactosidase expression 

on a worm-by-worm basis, and sequenced the constructs amplified 

from worms at the 24-h time point (Fig. 7d,e).

In the wild-type background after 24 h of cultivation, the hete-

rochromatic reporter produced functional β-galactosidase in only 

around 3 ± 2% (s.e.m.) of the worms (Fig. 7e; >1/3 expressing in-frame 

lacZ). In the met-2 set-25 mutant, the fraction of worms expressing 

in-frame lacZ increased to 78 ± 8% (>1/3 staining blue, P = 0.01). In 

contrast, the euchromatic reporter did not express in-frame lacZ in 

met-2 set-25 worms (1 ± 1%, any level of in-frame lacZ). We used a 

mutant of the mismatch repair machinery msh-6 as a positive con-

trol60. The met-2 set-25 mutant primarily showed an increase in the 

β-galactosidase-positive phenotype by 24 h, and not by 12 h, unlike 

the msh-6 mutant (Fig. 7e), suggesting that the met-2 set-25-induced 

mutations occurred during differentiation. The types of mutations 

monitored were confirmed by batch-wise cloning of single reporter 

units and Sanger sequencing. We indeed detected small insertions and 

deletions in the met-2 set-25 worms, enabling in-frame translation 

of β-galactosidase (Fig. 7d). Thus, like the germline changes scored 

by genome sequencing, sequences with H3K9me in wild-type back-

grounds accumulated indels at high rates during somatic cell division 

in H3K9me-deficient worms.

DISCUSSION
H3K9 methylation is the defining histone modification for herit-

ably silent chromatin and is conserved as such from fission yeast to 

humans. C. elegans mutants lacking H3K9me are viable, despite the 

enrichment of H3K9me2/H3K9me3 on silent tissue-specific genes, on 

pseudogenes and on RE. In contrast to the case in other species18,19,61,  

we found no defects in chromosome segregation upon loss of 

H3K9me. However, we observed a temperature-dependent sterility, 

which coincided with an increase in DNA-damage-induced apoptosis 

and stochastic delays in development. Correlating with these pheno-

types, we detected derepression of ~20% RE, from all repeat classes, a 

value that increased at elevated temperatures. Expression of these RE 

was accompanied by the accumulation of RNA:DNA hybrids, CNV 

and a hypersensitivity to replication stress. This correlation suggests 

that it is either the transcription of the repetitive sequence alone, or 

transcription coupled with the inherent pairing nature of repeats, 

that generates insertions and deletions within REs in the absence of 

H3K9me. Of note, DNA transposons and tandem repeats showed 

higher levels of R loops and CNV than RNA transposons, although 

all classes were derepressed upon loss of H3K9me.

The damage incurred in the germ line leads to extensive apop-

tosis and Rad51 focus accumulation, suggesting that these cells 

accumulated double-strand breaks as well as indels. There may be 

additional sources of damage in the germ line, other than those that 

correlate with replication-fork-associated damage, R loops and indels 

scored by genome sequencing. We note that RNA polymerase-DNA  

polymerase collision has been reported to generate fragile sites 

of breakage44,62, which in worm germline cells would provoke an  

apoptotic response32,63.

It is likely that the genomic mutations we detected in the met-2 

set-25 strain arise from replication fork perturbation. This can be 

triggered by enhanced stalling of the replication fork generated by R-

loop formation, which in turn allows hairpin or fold-back structures 

to form in repeats as they are being replicated. Hairpin or fold-back 

structures can also arise from breaks in the single-stranded DNA that 

accumulate either at R loops or behind the fork, owing to perturbed 

coordination between leading- and lagging-strand polymerases  

(Fig. 8). The passage of the replication fork through REs itself can 

lead to hairpin structures41. However, we propose that in met-2 set-25 

cells, unprogrammed transcription of REs enhances R loops, which 

may in turn enhance aberrant structures to such a degree that the 

cellular machineries that normally relieve such stress, can no longer 

cope with their abundance.

Repetitive element

H3K9me

RNAP II

Replication fork

Wild-type

met-2 set-25

Repetitive element

Secondary

structures

RNAP II

Replication fork

R loops

Collision

Figure 8  Transcribed REs in H3K9me-deficient strains can exacerbate 

replication stress provoking genomic instability. A model illustrates 

how the loss of H3K9me could lead to the formation of secondary DNA 

structures that engender replication stress specifically at heterochromatic 

repeats, to perturb genome integrity.
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Unscheduled collisions of the replication and transcription machin-

eries appear to generate breaks as well as other forms of genome insta-

bility42–46,62. Damage is often attributed to the presence of RNA:DNA 

hybrids64–67, yet torsional stress, which can arise from high levels 

of bidirectional transcription68,69, may also contribute to genomic 

instability. We consider it notable not only that the derepression of 

RE generated genomic mutations and R loops, but that both these 

events mapped to REs that are normally marked by H3K9me in wild-

type cells, and which became derepressed in a temperature-enhanced 

manner in the met-2 set-25 mutant. We propose that the crucial role 

of H3K9 methylation in suppressing transcription on a genome-wide 

level is not to program cell differentiation, but to stabilize repetitive 

sequences that accumulate in higher eukaryotic genomes.

Several studies have suggested the use of inhibitors for H3K9me 

HMTs in the treatment of cancer (for example, lung, prostate, hepa-

tocellular and pancreatic cancer)19,61, and preclinical studies have 

been considered promising so far70. These same inhibitors have been 

used to show that hypomethylation of H3K9 increases the rate of 

induced pluripotent stem cell generation15,16. We argue that there 

are clear drawbacks to such therapies, given the genomic instability 

provoked by loss of H3K9me shown here. Whereas mammals addi-

tionally silence through meCpG, it has been documented that DNA 

methylation can be targeted by H3K9me or its HMTs71. Thus, the 

findings presented in this study are likely to have implications for 

protocols that attempt to manipulate the mammalian epigenome.

URLs. http://www.bioconductor.org/packages/3.1/bioc/html/ 

QuasR.html.

METHODS
Methods and any associated references are available in the online 

version of the paper.

Accession codes. All data from this study have been deposited in the 

Sequence Read Archive (SRA) under accession SRP080806.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
C. elegans cultures and strains. Supplementary Table 2 lists the strains used 

in this study. Strains were made by backcrossing deletion alleles and reporter 

strains obtained from the C. elegans knockout consortium to the GW638 strain 

(met-2(n4256) III; set-25(n5021) III) at least five times. Worms were grown 

at 20 °C, except where specifically indicated.

Immunofluorescence analysis, antibodies and live microscopy, includ-

ing apoptosis assay. IF analysis was carried out as previously described24 

by freeze-cracking and fixation in 1% paraformaldehyde followed by short 

postfixation in methanol (for embryos and gonads72) or methanol followed by 

acetone (for larval stages). Staining was performed in PBS with 0.1% TritonX-

100 and 2% milk powder. For live-cell imaging, larvae were mounted on 

slides coated with 2% agarose. Microscopy was carried out on a spinning disc  

confocal microscope (SD1, W1, Visitron, Puchheim). Stacks of images were 

analyzed using ImageJ.

Antibodies used in this study were mouse anti-H3K9me2, MABI0317 

(MBL73), mouse anti-H3K9me3, MABI0318 (MBL73), mouse anti-RNA:DNA 

hybrid S9.6, hybridoma HB-8730 (ATCC)49, rabbit anti-pan-acetyl H4, 06-866 

(Merck Millipore) and rabbit anti-RAD-51, 29480002 (Novu Biologics).

Developmental timing, progeny size and hatching rate. Worms of indicated 

genotype were synchronized through bleaching and were then singled onto 

plates containing OP50 bacteria. For the developmental timing their stage 

was determined every 24 h. In order to determine the progeny size, adults 

were transferred to fresh plates once a day for three days to keep generations 

separate and their complete progeny size was determined after their hatching 

at the indicated temperature. To determine the hatching rate singled worms 

were transferred every 8 h to freshly seeded plates. The number of laid embryos 

was determined directly after transfer, the number of hatched animals was 

determined on day 3. If not otherwise indicated, worms were grown at the 

experimental temperature (transferred from 20 °C) for at least two generations 

before the experiments.

Chromatin immunoprecipitation experiments. Early embryonic progeny 

was harvested after synchronization (60–65 h depending on each strain) for 

wt and met-2 set-25 mutant strains in two independent biological replicates. 

H3K9me2 and H3K9me3 ChIP was performed as previously described74 using 

the antibodies mentioned above. In brief, 40 µg of chromatin was incubated 

overnight with 3–6 µg of antibody coupled to Dynabeads Sheep Anti-Mouse 

IgG (Invitrogen) or Dynabeads Sheep Anti-Rabbit IgG (Invitrogen), in FA 

buffer (50 mM HEPES/KOH pH 7.5, 1 mM EDTA, 1% Triton X-100, 0.1% 

sodium deoxycholate, 150 mM NaCl)) containing 1% SDS. Chromatin- 

antibody complexes were washed with the following buffers: 3 × 5 min FA 

buffer; 5 min FA buffer with 1 M NaCl; 10 min FA buffer with 500 mM NaCl; 

5min with TEL buffer (0.25 M LiCl, 1% NP-40, 1% sodium deoxycholate,  

1 mM EDTA, 10 mM Tris-HCl, pH 8.0) and twice for 5 min with TE. Complexes  

were eluted at 65 °C in 100 µl of elution buffer (1% SDS in TE with 250 mM 

NaCl) for 15 min. Both input and IP samples were incubated with 20 µg of 

RNAse A for 30 min at 37 °C and 20 µg of proteinase K for 1 h at 55 °C. 

Crosslinks were reversed overnight at 65 °C. DNA was purified using a Zymo 

DNA purification column (Zymo Research).

Library preparation and analysis. Libraries were prepared from chromatin 

IP and genomic DNA samples using the NEBNext ultra DNA library prep kit 

for Illumina (NEB # 7370) and the NEBNext Multiplex Oligos for Illumina 

(NEB # E7335), according to the manufacturer’s recommendations. No size 

selection was performed during sample preparation and the libraries were 

indexed and amplified using 12 PCR cycles, using the recommended condi-

tions. After further purification with Agencourt AmPure XP beads (Beckman 

# A63881), the library size distribution and concentrations were determined 

using a BioAnalyzer 2100 (Agilent technologies) and Qubit (Invitrogen) 

instrument, respectively. The final pools were prepared by mixing equimolar 

amounts of all individually indexed libraries and then sequenced on a HiSeq 

2500 (Illumina) in rapid mode (Paired-End 50). Processing of the LEM-2 

ChIP-seq data, all paired-end ChIP-seq data (2 × 50 bp) were mapped to the 

C. elegans genome (ce6) with the R package QuasR75 using the included aligner 

bowtie76. Definitions of REs were taken from Repbase77. Repeat subfamilies 

were built to allow assignment of multimapping reads to all REs and collapsing 

single elements according to their Repbase ID into families.

Read density along the genome was calculated by tiling the genome into 

200-bp windows (non-overlapping) and counting the number of sequence frag-

ments within each window, using the qCount function of the QuasR package  

(see URLs). To compensate for differences in the read depths of the various  

libraries, we divided each sample by the total number of mapped reads and 

multiplied by the average library size. Log2 expression levels were calculated 

after adding a pseudocount of 1 (y = log2(x + 1)). ChIP-seq signals are dis-

played as average enrichment of IP − input (log2).

RNA expression experiments (RNA-seq and qPCR). For embryos and  

larvae, RNA was isolated by freeze cracking (four times) followed by phenol- 

chloroform extraction and isopropanol precipitation. Total RNA was depleted 

for rRNA using Ribo-Zero Gold kit from Epicentre before library production 

using Total RNA Sequencing ScriptSeq kit. Gonad RNA was extracted from 

50 prepared gonads per replica using the Arcturus pico pure RNA isolation kit 

followed by library production using the Total RNA-seq NuGen Ovation kit. 

50-bp single-end sequencing was done on an Illumina HiSeq 2500. Processing 

of the RNA-seq data, gene and repeat expression levels from RNA-seq data 

were quantified as described previously24 using WormBase (WS190) annota-

tion for coding transcripts and Repbase annotations for REs. Primers used for 

qPCR experiments are listed in Supplementary Table 3.

Mutation sequencing experiments. Worms were grown at 25 °C for 1 month, 

and singled every second generation. Afterward worms were expanded on 

peptone-rich plates (20 cm) per replica and mixed staged worms were har-

vested for genomic DNA isolation. DNA was extracted by a standard protocol 

digesting worms with proteinase K, followed by phenol/chloroform extraction 

and RNAse treatment. 50-bp paired-end sequencing was done on an Illumina 

HiSeq 2500. Reads were mapped to the WS190 genome using BWA78 and 

converted into BAM files using samtools79. Breakpoints were identified with 

Pindel80 and SNVs with samtools.

Southern blot. Southern blot was performed following a standard protocol 

using a digoxigenin-labeled probe produced by PCR with primers listed in 

Supplementary Table 3.

LacZ mutator assay and cloning for somatic mutations. LacZ mutator assay 

was adapted from ref. 58. Worms were synchronized and grown for indicated 

durations on Dh5α containing plates. After a heat shock (heterochromatic 

array: 5 h (2 h at 33 °C, 1 h at 20 °C and 2 h at 33 °C), euchromatic array: 1 h  

20 min (20 min at 33 °C, 10 min at 20 °C, 20 min at 33 °C, 10 min at 20 °C  

and 20 min at 33 °C) and 2 h recovery at 20 °C, worms were stained for  

β-galactosidase expression. To identify somatic mutations the indicated regions 

of the reporter were amplified using a Q5 proofreading polymerase (NEB) and 

primers listed in Supplementary Table 3. PCR products were batch clones 

into pCR2.1-TOPO sequencing vector (Invitrogen) and Sanger sequencing 

was performed on 20 clones per replica and region.

DNA damage sensitivity assays. Assays were previously described81. Recovery 

from an hydroxyurea (HU) pulse was monitored by soaking L1 larvae in M9 

buffer containing indicated concentrations of HU and OP50 bacteria for 16 h 

before washing and plating on fresh OP50 plates. At day 3, the percentage of 

viable adults was quantified. To quantify IR sensitivity worms were irradiated 

(CellRad, Faxitron) at the L1 stage. At day 3, the percentage of viable adults 

was quantified.

R-loop detection. For dot plots, genomic DNA was isolated using phenol-

chloroform extraction followed by ethanol precipitation. DNA concentra-

tions were determined using Nanodrop and the indicated amount of DNA 

was resuspended to a final volume of 50 µl in nuclease-free water after either 

a 1 h incubation with 5 µl of RNase H (NEB; +RNAse H), or a 1 h mock 

incubation at 37 °C, and spotted directly onto a nylon GeneScreen Plus mem-

brane (NEF988; PerkinElmer) using a Bio-Dot Microfiltration Apparatus 

(Bio-Rad). The membrane was UV-crosslinked and blocked with 5% milk in  
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1 × PBS/0.1% Tween-20 before incubation with primary and secondary antibod-

ies. The mouse S9.6 antibody (HB-8730, ATCC, gift of P. Pasero, Montpellier) 

was used at a 1:500 dilution, and a 10,000× dilution of goat anti-mouse HRP 

(Bio-Rad) was used as the secondary. The HRP signal was developed with 

Clarity Western ECL Substrate (Bio-Rad). Imaging was performed using 

ImageQuant LAS4000 mini und analyzed using ImageJ. Immunofluorescence 

staining was performed according to the steps described for the C. elegans 

larval stages using 4XSSC-T (0.1% Tween-20) instead of PBS-T. R loops 

were stained with the S9.6 antibody, diluted 1:100 in SSC-T and 3% BSA  

overnight at 4 °C.

DNA:RNA hybridization. Embryos were lysed by bead beating (MP 

BIOMEDICALS FastPrep-24 5G Instrument) in G2 buffer (80 mM guanidine 

HCl, 30 mM Tris pH 8.0, 30 mM 5% Tween, 0.5% TritonX). Genomic DNA 

was isolated by proteinase K digestion, followed by purification using genomic 

tips (500/G, QIAGEN). DNA was digested over night with AseI and BstUI at  

37 °C (ref. 82). For RNase H control samples, RNase H was added in parallel to 

digestion. 5 µg of digested DNA per IP was incubated with 10 µl of S9.6 anti-

body overnight in binding buffer (10 mM NaPO4, 140 mM NaCl, 0.5% Triton). 

Bound DNA fragments were recovered with 50 µl of Protein-A Dynabeads 

(Invitrogen), followed by four washes with binding buffer and proteinase K 

treatment. Samples were purified using DNA Clean & Concentrator-5 (Zymo 

Research) columns. Samples were sonicated to ~400-bp fragments before 

library preparation, as described above.
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Supplementary Figure 1 

Immunofluorescence (IF) confirms absence of H3K9me in met-2 set-25 worms. 

IF images of wild-type (wt) and met-2 set-25 worms showing the loss of H3K9me2/me3 at the indicated developmental stages grown at 

20 °C (Online Methods). The staining of H4 pan-acetyl (H4ac) served as a positive control. (a) Gonads (bar, 20 m). (b) Embryos and 

L2-stage larvae (bar, 20 m). 
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Supplementary Figure 2 

Phenotypes of strains losing H3K9me in the germ line. 

(a) Number of viable progeny of wt and met-2 set-25 per worm at 26 °C, over three generations, starting at generation 3 after transfer of 
the worms from 20 °C (number of independent experiments (N) = 3, number of worms counted per experiment (n) = 60). (b) Number of 
viable progeny of wt, met-2 set-25 and mutants of the PIWI pathway per worm at 15 °C, 20 °C and 25 °C by generation 3 after transfer 
from 20 °C to the indicated temperature (N = 1, n = 25). (c) Percentage of worms developing full gonad arms at 20 °C. mex-5:gfp-h2b 
was used to visualize gonad cells at all stages (N = 7, n = 2). (d) Analysis of RNA-seq data showing average fold change in expression 
of apoptosis response genes in the gonads of met-2 set-25 mutant versus wt (N = 3, P < 0.05 adjusted for multiple testing; FDR < 
0.05). (e) Percentage of laid eggs hatching at 20 °C. Strains deficient for CEP-1 (p53) additionally expressed the CED-1::GFP 
apoptosis reporter (N = 2, n = 80). (f) Analysis of RAD-51 foci detected by IF in the mitotic zone of the indicated genotypes to quantify 
the presence of resected DNA double-strand breaks. The percentage in images is equal to the frequency of mitotic tip cells with 
detectable RAD-51 foci. The bar graph further segregates positive cells by number of foci per cell (N = 3, n = 40 gonads). 
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Supplementary Figure 3 

H3K9me distribution on genes and repeats. 

(a) H3K9me2 and H3K9me3 ChIP-seq were performed on early embryos at 20 °C (N = 2) in a wild-type (N2) strain. Distribution along 
chr. I in relation to repetitive elements (REs) is shown. Quantification to the right shows the ratio of the coverage of the indicated 
histone modification on chromosome arms (outer two-thirds) versus the center (inner one-third). H3K27me3 and H3K4me3 mapping 
data are from the modENCODE project based on ChIP performed on mixed-population embryos, 20 °C. (b) Metaplot and heat map 
showing log2 enrichment of H3K9me2 and H3K9me3 (IP versus input) over gene bodies. Each row represents one gene, displaying the 
binned coding region plus 1 kb upstream of the transcription start site (TSS) and 1 kb downstream of the transcription termination sites 
(TES). Blue is most enriched, red is least enriched. (c) High-density scatterplot showing H3K9me2 and me3 enrichment over muscle-
specific genes and pseudogenes. The upper number indicates the percentage of genes that are H3K9me3 positive (including K9me2 
positive and negative), and the lower number indicates the percentage of genes that are H3K9me2 positive but H3K9me3 negative 
(d,e) Distribution of H3K9me2 and H3K9me3 determined by ChIP-seq over the gene body of a gene with tissue-spec expression (d) 
neuronal unc-54, and a cluster of pseudogenes (e). 
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Supplementary Figure 4 

Gene and repeat element derepression in the absence of H3K9me. 

(a,b) H3K9me2 and H3K9me3 ChIP-seq was performed on early embryos at 20 °C (N = 2) in a wt strain, and gene expression was 
determined by two replicas of RNA-seq from embryos (20 °C and 25 °C) and from isolated gonads (20 °C) from wt and met-2 set-25 
strains. Scatterplots show H3K9me2 and H3K9me3 enrichment over the genes that are derepressed in early embryos at 20 °C and 25 
°C, and in the gonads of met-2 set-25 animals, versus wt. Number indicates the percentage of derepressed genes enriched for either 
H3K9me2 or H3K9me3 in wt embryos. (b) Scatterplot of H3K9me2 and H3K9me3 enrichment over repeat subfamilies. Red dots mark 
repeat subfamilies that are derepressed in the indicated tissue and conditions; black dots represent non-affected repeat subfamilies. 
The red number indicates the percentage of derepressed repeat subfamilies that are either H3K9me2 or H3K9me3 positive. (c) qPCR 
verification of a subset of REs that were detected as derepressed (>2 fold, met-2 set-25/wt) in met-2 set-25 embryos at 20 °C. 
Expression of the same REs was additionally analyzed in gonads and L1-stage larval RNA. REs of all three main classes are detected 
(N = 3), but clearly there are strong stage-specific expression differences, with larvae and embryos showing more similarity. 
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Supplementary Figure 5 

R-loop accumulation on repeat elements (REs). 

(a) RNA:DNA hybrids were detected on dot plots of genomic DNA isolated from the indicated genotypes grown at 20 °C or 25 °C (three 
blots at each temperature were quantified by scanning for Fig. 5a). Equal amounts of DNA (determined by OD260/280) extracted from 

adult worms were spotted with or without RNase H treatment in decreasing concentrations (4, 2 and 1 g). The nitrocellulose 
membrane was probed with the RNA:DNA-specific S9.6 antibody (n(20 °C) = 3, n(25 °C) = 3). Quantification on the right side with 
signals normalized to the background of each blot. (b) DRIP-seq signals in wt embryos are shown for genes grouped on the basis of 
their transcriptional activity. The upper box blot shows the level of transcription of the separate groups (N = 1). This enhancement of R 
loops on very highly expressed genes has been observed in many organisms. (c,d) Graphs show the accumulation of RNA:DNA 
hybrids in wt and met-2 set-25 embryos relative to the distribution of H3K9me2 and me3 over the rDNA cluster (c) or the right telomere 
of chr. I (d), in wt embryos. (e) DRIP-seq examples showing the R-loop signal over two RE clusters. The ChIP signal from antibody 
S9.6, which is specific for RNA:DNA hybrids, was normalized to input, and the RNase H control values were subtracted. 
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Supplementary Figure 6 

Germline mutations in met-2 set-25 worms. 

Further verification and characterization of the mutations detected in the genome sequencing experiment described in Figure 6. (a) 
Number and distribution of single-nucleotide variants (SNVs) or polymorphisms observed in the sequencing experiment described in 
Figure 6a. No dinucleotide preferences were found among SNVs. (b) Sketch of a complex rearrangement involving a Tc3 transposon, 
found exclusively in the met-2 set-25 genome. The rearrangement was identified by genome sequencing. The graph to the left indicates 
the precise site of Tc3 insertion. Below are H3K9me2 and H3K9me3 ChIP-seq tracks for the region around the Tc3 transposon that 
provoked the inversion: it bears high levels of H3K9me3 and showed roughly a twofold change in expression in met-2 set-25 over wt 
gonads at 20 °C. (c) Southern blotting with a probe against Tc3 shows a novel band detected in the met-2 set-25 mutant. (d) Depiction 
of the rearrangement shown in b indicating the position of the primer pairs used to verify the rearranged genomic context by PCR. PCR 
confirmation of the rearrangement is shown to the right. (e) Copy number ratios of met-2 set-25 worms relative to wt for the entire 
telomeric repeat subfamily, and for single telomere repeats. (f) Copy number ratios of met-2 set-25 worms relative to wt for rDNA 
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Size [bp] Type RE 
H3K9me3 

enrichment 

Fold change 

expression 

33481 Insertion PALTTAA2 2.0 5.0 

2335 Transposition Tc3 3.4 5.7 

2335 Transposition Tc3 3.4 5.7 

2335 Transposition Tc3 3.4 5.7 

1600 Transposion Tc4 3.9 1.4 

536 Deletion - 1.4 - 

23 Deletion AT-rich 2.1 2.0 

3 Deletion Trinucleotide-rep 3.0 - 

2 Deletion/insertion HELITRON2 2.9 - 

 

Supplementary Table 1 

Germline mutations identified in 1 month old met-2 set-25 substrains. 

Characteristics of the insertions (ins), deletions (del) and transpositions (trans) unique to one of the eight met-2 set-25 sub-strains. 
H3K9me3 enrichment and fold change in expression is given as the mean enrichment and mean fold change (log2) over the complete
domain. 

 

Nature Genetics: doi:10.1038/ng.3672



Name in manuscript Genotype International 

name 

Reference 

Wild-type (wt)  N2 (bristol)  

met-2 set-25 met-2(n4256) III; set-25(n5021) III GW638 24 

mex-5:h2b::gfp unc+119;rrrSi192[mex-5 prom::gfp: 

h2b::tbb-2 3'UTR;unc119(+)] II 

gift of R. 

Ciosk, FMI 

82 

met-2 set-25 mex-

5:h2b::gfp 

met-2(n4256) III; set-25(n5021) III; 

unc+119; rrrSi192[mex-5 prom::gfp: 

h2b::tbb-2 3'UTR;unc119(+)] II 

GW1028 This paper 

ced-1::gfp bcIs39 [Plim-7::ced-1::gfp; lin-15(+)] V MD701 83 

met-2 set-25 ced-1::gfp met-2(n4256) III; set-25(n5021) III; 

bcIs39 [Plim-7::ced-1::gfp; lin-15(+)] V 

GW1203 This paper 

cep-1 ced-1::gfp  cep-1(ep347) I; bcIs39[(lim-7)ced-

1p::GFP + lin-15(+)] V 

GW1266 This paper 

met-2 set-25 cep-1 ced-

1::gfp 

cep-1(ep347) I; met-2(n4256) III;set-

25(n5021) III; bcIs39[(lim-7)ced-

1p::GFP + lin-15(+)] V 

GW1268 This paper 

mut-7 mut-7(pk204) III NL917 28 

mut-14 mut-14(pk738) V NL1838 28 

prg-1 prg-1(tm872) WM161 27 

Hc array 

(heterochromatic array) 

pkls1604 [hsp-16.2 ATG(A)17::gfp/lacZ 

+ pRF4(rol-6(su1006))] 

NL3400 58 

met-2 set-25 hc array met-2(n4256) III; set-25(n5021) III; 

pkls1604 [hsp-16.2 ATG(A)17::gfp/lacZ 

+ pRF4(rol-6(su1006))] 

GW1198 This paper 

msh-6 hc array msh-6(pk2504) I; pkls1604 [hsp-16.2 

ATG(A)17::gfp/lacZ + pRF4(rol-

6(su1006))] 

GW1280 This paper 

ec array (Euchromatic 

array) 

pkls1604 [hsp-16.2 ATG(A)17::gfp/lacZ 

+ pRF4(rol-6(su1006))] 

GW1351 This paper 

met-2 set-25 ec array met-2(n4256) III; set-25(n5021) III; 

pkls1604 [hsp-16.2 ATG(A)17::gfp/lacZ 

+ pRF4(rol-6(su1006))] 

GW1278 This paper 
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msh-6 ec array msh-6(pk2504) I; pkls1604 [hsp-16.2 

ATG(A)17::gfp/lacZ + pRF4(rol-

6(su1006))] 

GW1279 This paper 

thoc-2 thoc-2(tm1310) III/hT2[bli-4(e937) let-

?(q782) qIs48](I;III) 

GIN101 84 

 

Supplementary Table 2 

Worm strains used in this study 
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Repeat qPCR: 

 Forward Reverse 

 Name Sequence Name Sequence 

DNA1 SG-7490 AGGCCCATTCCATAGCTTTT SG-7491 TTTCTGGGATTTCATGCACA 

DNA2 SG-7494 CCGTTATCGTGACAAGCAGA SG-7495 AAGCTTGAGCCGCTGATTAC 

DNA3 SG-7521 CACGTTCCCAGCTTCAATTT SG-7522 TGCAAATCTACAGTAACCCAGAA 

RNA1 SG-7498 TACCAACGAGCCGAGTCTTC SG-7499 TCTTCAGTTTCCTCGCCTGT 

RNA2 SG-7502 GAAGCAGTCATTGTGGCTCA SG-7503 GATTCTCCCTGTGCTCTTGC 

RNA3 SG-7509 TACCAACGAGCCGAGTCTTC SG-7510 TCTTCAGTTTCCTCGCCTGT 

RNA4 SG-7523 TGCATGCAAGACTAATTTTCAA SG-7524 CCAAAAGTTATTGGGCTTTCG 

RNA5 SG-7527 GGCACGATGTTTTTGTTGAA SG-7528 TCTATGAATTTCCCGCAGAA 

RNA6 SG-7533 GCCGCTAGACACCTAACGAG SG-7534 ATTATGGGGACGCAGAAAAA 

Tan1 SG-7537 GGATGGATTGGGATGGATG SG-7536 AACCATGCCAATCCTTTGTT 

Tan2 SG-7541 GTGTAGCCGTGGATTGTGTG SG-7542 ATTTGCCTGCTGGTCCATAG 

Tan3 SG-7543 GTTGGGGCGGCTGTAGTT SG-7544 AGCACCAAAGACGACAACAA 

Tan4 SG-7545 ATCGGGATGGCTCGGTAT SG-7546 ATCCCGATCCTTTGTTGTTG 

Tan5 SG-7548 CAGCCACAACTACCACAACG SG-7550 CAGTCTGTTGGACACGGAAC 

Tan6 SG-7551 ACCTACGTGCCTGCCTACAT SG-7552 TTTTGTCAGGGACATGCGTA 

Tan7 SG-7555 CCTGGCACTTACCAGTCCAT SG-7556 ATCGGGATGGATGGCTTC 

 

DRIP qPCR:  

Tc4 SG-7513 GAGTTTCCGTCCCGATTACA SG-7514 AGAAACGGTTCGAACAATGC 

CEMUDR-1 SG-7490 AGGCCCATTCCATAGCTTTT SG-7491 TTTCTGGGATTTCATGCACA 

Tc3 SG-6909 GAAGGATCCGGTGAGCTACG SG-6910 TACAGGAGTTGGAGGCAGCA 

CER10-I_CE SG-7498 TACCAACGAGCCGAGTCTTC SG-7499 TCTTCAGTTTCCTCGCCTGT 

Helitron 2 SG-8080 GATGTTTGGAGAGATAGTGG

G 

SG-8082 GACAACATCCATCCACTAACC 

MSAT-1 SG-8076 GGAATGTTCCAGAACTTTCTA

G 

SG-8077 ACATTCCAGACTTTTCCCAA 

(TATCG)n SG-8078 CGTATCGTTTCTAGCTATATCG SG-8079 CGATACGATATAGCTTTTTACG 

unc-119 SG-2869 CCACACCACCTCTAATCTCC SG-2870 TCATTTCTCTGCGTCTTCCT 

lmn-1 SG-2797 CAAGAGAACAACAGACTCCA

G 

SG-2798 TAATAAGACCACCGCATCAG 

eef-1A.1 SG-8975 AGGAATGGTCGTTACCTTCGC SG-8976 CAGACGGATCCACGACGAATA 

 

Repeat copy number:  

HELITRON Y4 SG-8074 TGTTCTGCCAATTTATTTACTC SG-8075 GGCAGAACATTAGAGTAAATAT 

HELITRON 2 SG-8080 GATGTTTGGAGAGATAGTGGG SG-8082 GACAACATCCATCCACTAACC 

MSAT-1 SG-8076 GGAATGTTCCAGAACTTTCTAG SG-8077 ACATTCCAGACTTTTCCCAA 

(TATCG)n SG-8078 CGTATCGTTTCTAGCTATATCG SG-8079 CGATACGATATAGCTTTTTACG 

CEREP 58 SG-8071 CGGGCAAATCAACAATTGAA SG-8073 GAAGATGAGGAATTTAATTG 

lmn-1 SG-2797 CAAGAGAACAACAGACTCCAG SG-2798 TAATAAGACCACCGCATCAG 

 

Rearrangement: 
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PP1 SG-7680 CAAGGTGGAAGACATGTA SG-7681 TACGAGCAATTCAACTGG 

PP2 SG-7682 TTTATATCGGGTCCAACC SG-7683 GAAGCACGTCGACTGAAG 

PP3 SG-7684 AGGGGGGAAGAATTTAAC SG-7685 TCAAATTAGGGGGGGTCC 

PP4 SG-7685 TCAAATTAGGGGGGGTCC SG-7686 GTGTGGATACTGTCGTTC 

PP5 SG-7680 CAAGGTGGAAGACATGTA SG-7685 TCAAATTAGGGGGGGTCC 

PP6 SG-7682 TTTATATCGGGTCCAACC SG-7684 AGGGGGGAAGAATTTAAC 

Tc3-probe SG-7201 CTGTAAGACGGCAAGAGA SG-7202 TCTTGTTCTGAGCATACACG 

 

H3K9me2 and H3K9me3 ChIP on LacZ mutator arrays 

Tc4 SG-7513 GAGTTTCCGTCCCGATTACA SG-7514 AGAAACGGTTCGAACAATGC 

gfp (array) SG-6987 GGAGAGGGTGAAGGTGATGC SG-6988 CATAACCTTCGGGCATGGCA 

lmn-1 SG-2797 CAAGAGAACAACAGACTCCAG SG-2798 TAATAAGACCACCGCATCAG 

 

Cloning of array parts 

Part 1 SG-8150 CTACTTTTCCATGTACCG SG-8258 GTTTCTTTCATCTCACTGGATCCCC 

Part 2 SG-8151 TCATCTCACTGGATCCCC SG-8259 GTTTCTTGTGTCCAAGAATGTTTCC 

Part 3 SG-6987 GGAGAGGGTGAAGGTGATGC SG-2039 GCAGCTGTTACAAACTCAAG 

 

Supplementary Table 3 

Primers used in this study 
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Summary 

The methylation of lysine 9 of histone 3 (H3K9me) constitutes a major histone modification and a 

hallmark of constitutive heterochromatin. Lysine can be mono-, di- or tri-methylated, and these 

modifications provide binding sites for me-lysine readers like HP1 (Lachner et al. 2001). Members 

of the HP1 family recognize H3K9me, leading to the compaction and silencing of appropriately 

modified chromatin domains. While most of these readers can recognize more than one 

methylation state, it has been difficult to identify roles that differentiate the physiological roles of 

H3K9me2 from those of H3K9me3.  Using C. elegans, an organism with a single enzyme that can 

trimethylate H3K9 (SET-25), we were able to differentiate the roles of me2 and me3.  

We show that H3K9me3 specifically represses a subset of transposable elements and genes. In 

contrast, the MET-2-deposited H3K9me2 suppresses transposable elements and tandem repeats. 

MET-2 suffices to suppress the vast majority of deficiencies that characterize worms lacking all 

H3K9 methylation. In the complete absence of H3K9me, RNA:DNA hybrids accumulate on 
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transcribed repeats, forming obstacles for the DNA replication machinery and thereby provoking 

insertions and deletions at these sites. The loss of MET-2, which reduces H3K9me1, me2, and 

me3 to 20% of wild-type levels, provokes the same R-loops and delocalizes chromosome arms 

from the nuclear periphery, leading to sterility, delayed development, and synthetic lethality with a 

variety of RNA processing enzymes and factors involved in DNA repair. This is not the case in the 

set-25 mutant, which loses H3K9me3, but retains H2K9me2. This clearly distinguishes the 

physiological roles of di- and tri-methylated H3K9. 

ChIP-qPCR experiments for H3K9me2 and me3 in single mutants allows us to identify 3 pathways 

of H3K9 methylation mediated silencing that differ in their dependency on MET-2 and SET-25 as 

well as the localization of the genomic locus relative to the nuclear envelope.  
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Summary 

The methylation of lysine 9 of histone 3 (H3K9me) constitutes a major histone modification and a 

hallmark of constitutive heterochromatin. Lysine can be mono-, di- or tri-methylated, and these 

modifications provide binding sites for me-lysine readers like HP1 (Lachner et al. 2001). Members 

of the HP1 family recognize H3K9me, leading to the compaction and silencing of appropriately 

modified chromatin domains. While most of these readers can recognize more than one 

methylation state, it has been difficult to identify roles that differentiate the physiological roles of 

H3K9me2 from those of H3K9me3.  Using C. elegans, an organism with a single enzyme that can 

trimethylate H3K9 (SET-25), we were able to differentiate the roles of me2 and me3 

(Supplementary Figure 1a, (Towbin et al. 2012)). We show that H3K9me3 specifically represses 

a subset of transposable elements and genes. In contrast, the MET-2-deposited H3K9me2 

suffices to suppress transposable element, tandem repeat and gene expression as well as the 

vast majority of deficiencies that characterize worms lacking all H3K9 methylation. In the complete 

absence of H3K9me, RNA:DNA hybrids accumulate on transcribed repeats, forming obstacles for 

the DNA replication machinery and thereby provoking insertions and deletions at these sites. 

Compared to lacking all H3K9me, the loss of MET-2, which reduces H3K9me1, me2, and me3 to 

20% of wild-type levels, provokes the same level of R-loops and delocalizes chromosome arms 

from the nuclear periphery, leading to sterility, delayed development, and synthetic lethality with a 

variety of RNA processing enzymes and factors involved in DNA repair. These phenotypes are 

not observed in the set-25 mutant. A major transcriptional difference is the derepression of tandem 
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repeats only in the met-2, not in the set-25 mutant. This clearly distinguishes the physiological 

roles of di- and tri-methylated H3K9. 

SET-25 activity silences a specific subset of genes and repeats, while MET-2 represses the 

majority of H3K9 methyl dependent sequences  

In C. elegans, H3K9me can be found on genes as well as tandem repeats, DNA- and RNA-

transposons, which constitute the three main classes of repetitive elements (RE) (Gerstein et al. 

2010; Zeller et al. 2016). By RNA-seq analysis of transcripts differentially expressed in met-2 set-

25 double mutant vs wild-type embryos, we observe that a large fraction of RE, as well as tissue-

specific genes are derepressed (Zeller et al. 2016). Using highly specific antibodies, we have 

mapped the distribution of H3K9me2 and me3 to partially overlapping sequence classes (Zeller et 

al. 2016). Whereas H3K9me2 is primarily enriched on DNA transposons and tandem repeats, 

H3K9me3 is found over the body of unexpressed genes as well as DNA- and RNA transposons. 

Their distinct distribution raised the possibility that the two marks are responsible for repressing 

different sequences. 

We therefore performed total RNA sequencing experiments in early embryos of mutants lacking 

either met-2 or set-25, comparing their transcripts with those recovered from wild type and met-2 

set-25 animals (Zeller et al. 2016). We identified 336 gene transcripts whose levels are 

significantly increased upon loss of MET-2 (Supplementary Figure 1b, fold change > 2), 75% of 

these are identical to those detected in worms lacking all H3K9 methylation (Supplementary Figure 

1c). In striking contrast, and despite the fact that H3K9me3 is enriched on many genes (Zeller et 

al. 2016), set-25 embryos showed derepression of only 30 genes (Supplementary Figure 1b), with 

over 90% of these genes also abnormally expressed in met-2 set-25 double mutants 

(Supplementary Figure 1c). This discrepancy between the distribution of the methylation state in 

wt embryos and the transcriptional consequence of its loss suggested that H3K9me2 (or another 

modification) can compensate for H3K9me3 loss to repress most genes.   

We next examined the derepression of repeat subfamilies in the single mutants, and compared 

these to the derepression scored in the double mutant. Very similar to the situation of H3K9me3-

marked genes, embryos showed 55 repeat subfamilies derepressed in the met-2 mutant (Figure 

1a, fold change > 1.5; 98% overlapping with met-2 set-25, Figure 1b), while in the set-25 mutant, 

only 34 repeat subfamilies were significantly derepressed (85% overlapping with RE mis-

expressed in met-2 set-25 embryos; Figure 1a,b).  
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Figure 1 MET-2 and SET-25 suppress a partially overlapping set of genes and repetitive elements 

(a) Scatter blot showing repeat 

subfamily expression as log2 

fold change over wt in early 

embryos of indicated mutants 

(2 replicas shown, N = 3). (b) 

Venn diagram showing repeat 

subfamilies commonly or 

uniquely regulated by MET-2 

and SET-25 (N = 3). (c) Heat 

map showing derepressed 

repeat subfamilies in met-2 

and/or set-25 worms 

separating them into the three 

major repeat classes (DNA 

transposons, RNA 

transposons, Tandem 

repeats). (c) H3K9me2 and 

me3 ChIP qPCR in early 

embryos of indicated 

genotypes on the RE analyzed 

in (supplementary 1d) (N= 3). 

 

 

 

 

 

 

We next examined precisely the classes of repeats that were affected by loss of SET-25 or of 

MET-2. By separating the REs into the three main classes, it was clear that met-2 embryos 

derepressed all three repeat classes, especially tandem repeats, while loss of SET-25 led to 



Page | 86 

 

derepression of both transposon classes but not tandem repeats (Figure 1c). This separation of 

function was confirmed by qPCR of specific examples of each class (Supplementary Figure 1d). 

We note that the vast majority of H3K9me3-positive regions do not become expressed in a set-25 

mutant, and that by mass spectroscopy, H3K9me2 levels increase slightly (Towbin et al. 2012). 

Correlating the enrichment of H3K9me2 and me3 over the genomic regions derepressed in the 

single mutants (Supplementary Figure1e), we could see that while regions derepressed in the set-

25 mutant are only enriched for H3K9me3, regions dependent on MET-2 could be found enriched 

for both H3K9me2 and me3, suggesting an interdependency of both marks. To test this 

hypothesis, we performed H3K9me2 vs H3K9me3 ChIP-qPCR in both met-2 and set-25 single 

mutants as well as wt (Figure 1d). We identify three classes of HMT dependency. First, a group 

of transposons whose transcriptional silencing depends on SET-25 and that is mainly H3K9me3 

positive under wild type conditions. The H3K9me state of this class depended solely on SET-25. 

Second, different group of transposons that like the first is mainly H3K9me3 positive in wild type 

animals but depended on MET-2 for its silencing. Indeed, we find that H3K9me2 accumulates on 

these sequences in the absence of SET-25 and H3K9me is completely lost in met-2 embryos 

(Figure 1d). We conclude that at these loci SET-25 mediated H3K9me3 depends on the preceding 

catalysis of H3K9me1/me2 by MET-2. The third group shows high level of H3K9me2, but not 

H3K9me3, which is dependent on MET-2. This group encompasses all the tested tandem repeats. 

H3K9me2 is sufficient to suppress the accumulation of RNA:DNA hybrids 

We recently showed that the transcription of RE leads to a striking accumulation of RNA:DNA 

hybrids which are specifically enriched on expressed RE (Zeller et al. 2016). These RE classes 

were enriched for DNA transposons and tandem repeats (and not RNA transposons), much like 

the transcription patterns detected upon loss of MET-2. We therefore monitored the accumulation 

of RNA:DNA hybrids in set-25 vs met-2 single mutants.  

The detection of RNA:DNA hybrids can be performed with the S9.6 antibody (Boguslawski et al. 

1986) in early embryos (Figure 2a). As expected, wild-type worms showed very little staining, while 

the met-2 set-25 double mutant shows a strong nuclear enrichment for RNA:DNA hybrids (see 

also Zeller et al. 2016). Both single mutants, met-2 and set-25, are positive for RNA:DNA hybrids 

, but to different degrees: the met-2 mutant shows multiple strong foci in the majority of cells, while 

foci in set-25 are weaker and less frequent (Figure 2a,b). We examined the synthetic lethality of 

the single mutants in the presence of transiently applied replication stress (16h HU), and found 
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that both single mutants (met-2 and set-25) show clear sensitivity to HU (Supplementary Figure 

2a).  

 Figure 2 MET-2 and SET-25 accumulate RNA:DNA hybrids and impair developmental timing and 

fertility to different degrees 

(a) Representative images taken under identical conditions, of early embryos grown at 20°C ofindicated 

genotypes, stained for RNA:DNA hybrids (antibody S9.6, HB-8730, ATCC). Images on the right show 
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enlargements, with the lower panel showing the RNA:DNA hybrid signal alone and the upper panel showing 

the overlay with DAPI (blue, scale bar=5µm). (b) Quantification of RNA:DNA microscopy showing the 

percentage of cells showing nuclear specific staining in indicated genotypes (N=3, n (number of animals per 

replica) = 20, ***=p-value < 0.0001). (c) Fertility was measured by counting the complete progeny of singled 

worms at indicated temperatures (N = 3, n = 25); (d) Developmental timing was analyzed by following 

singled worms over 3 days of development at indicated temperature. Each dot represents a single worm (N 

= 3, n = 50). 

As previously noted, the complete loss of H3K9me leads to a pronounced loss of fertility, which is 

detected at 20°C but enhanced at 25°C. This is thought to arise at least in part from the enhanced 

DNA damage incurred by the high level of RNA:DNA hybrids (Zeller et al. 2016). We therefore 

scored for fertility in the single mutants by counting the total number of viable progeny produced 

by singled worms. Whereas met-2 worms showed impaired fertility at 20°C and became nearly 

sterile at 25°C (Figure 2c), set-25 worms were indistinguishable from wild type animals at both 

temperatures tested. Thus, loss of fertility correlates with the enhanced accumulation of RNA:DNA 

hybrids scored in met-2 worms. 

In the same context we also monitored a stochastic delay in somatic development in worms that 

lack all H3K9me (met-2 set-25). To test whether somatic development is also differentially affected 

by the single mutants, like germline infertility, we monitored the timing of somatic development of 

singled mutants over three days of somatic development. We note that wild-type and set-25 

mutant worms develop in a highly synchronized fashion at 20°C (100% wt and 95% set-25 young 

adults at day 2; Figure 2d), whereas met-2 worms show a strong albeit stochastic delay in 

development (13% young adult at day 2, 20°C). When exposed to temperature stress (25°C), set-

25 worms also began to show delayed development (98 and 85% reaching adulthood at day 2 in 

wild type and set-25 respectively), although it is less pronounced than in met-2 mutants.  

We conclude that H3K9 methylation levels are important for both the robust kinetics of 

development and for the integrity of oocytes during their maturation in the gonad. MET-2 deposited 

H3K9me2 is able to compensate for the loss of H3K9me3 under normal conditions, except under 

temperature stress (25°C), or replication stress (HU). The strong defects in development and 

germline maturation detected in the met-2 mutant, correlate with the higher levels of RNA:DNA 

hybrid accumulation in this mutant, and the transcription of tandem repeats (Figure 1c).  
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A synthetic lethality screen identifies RNA processing and repair genes that that become 

essential in the absence of MET-2, but not SET-25 

In order to determine whether specific pathways compensate for the loss of MET-2 and SET-25, 

we combined the genetic strength of C. elegans with its ability to survive in the complete absence 

of H3K9 methylation, to perform a whole genome RNAi synthetic lethality screen. For this an RNAi 

library based on bacteria expressing small RNAs that target 72% of C. elegans coding genome 

(Kamath et al. 2003), were fed in parallel to wild-type and met-2 set-25 worms (Figure 3a). The 

primary screen was performed in quadruplicates, images were taken using the automated IN-Cell 

microscope system (GE Healthcare) and differential effect of RNAi clones on the survival and 

reproduction of met-2 set-25 versus wild type worms was determined both with a by eye (Figure 

3b). 

Hits having a mutant specific effect in three of 4 replicas were repeated two additional times. RNAi 

clones of reproducible hits were singled, sequenced and verified on plates, and where possible, 

clones of a second RNAi library (Vidal (Rual et al. 2004)) were tested, too. Supplementary table 1 

contains the complete list of RNAi clones that were reproducibly synthetic sterile or nonviable 

upon ablation of all H3K9me, and not in wild-type worms. We indicate known or predicted 

functions, the human homologue, as well as the strength of the mutant specific effect as a fold 

change in F1 progeny numbers. Classifying them by biological pathways they are involved in, it is 

striking to see that the majority of hits play roles in transcriptional and repair processes (Figure 3c, 

RNA processing and degradation, transcription, Chromatin remodelers, Chromatin structure), 

although effects were also observed for genes involved in translation and mitosis. This supports 

the proposal that H3K9me is primarily a transcriptional regulator and that misregulation of 

transcription is at the root of the observed sterility (Zeller et al. 2016). We note that none of these 

hits was itself transcriptionally affected by loss of H3K9me (Supplementary Figure 3a). 

We note that two groups of RNAi targets strongly support the role of H3K9me in preventing 

RNA:DNA hybrid related DNA damage. Specifically, components of the exosome (Pefanis et al. 

2015) and mediator complex (Wahba et al. 2011) as well as arginine methylation (Yang et al. 

2014) and topoisomerases (El Hage et al. 2010) are related to the prevention of hybrid 

accumulation (Figure 3d) (Santos-Pereira and Aguilera 2015), as are proteins involved in DNA 

damage repair, such as the BRCA1 and BRCA2 interacting factors (Bhatia et al. 2014) and 

components of the SWI/SNF nucleosome remodeler complex (Figure 3d).   
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Figure 3 Repair and RNA processing genes that are synthetic lethal with loss of H3K9me are 

sensitive to met-2, but not set-25 mutation 

(a) Synthetic lethality screen concept. L1 worms of wt and met-2 set-25 worms were fed with RNAi 

expressing bacteria for 4 days at 20°C before their viability and fertility was assessed based on the number 

of F1 progeny. (b) Representative pictures of worms of indicated genotypes being fed with bacteria 

expressing either the empty vector (L4440Δ) control or prmt-1 (positive hit) RNAi. (c) Bar-chart showing the 

different functional categories that RNAi clones synthetic lethal with met-2 set-25 belong to (N=3, n=2).  
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(d) Selected screen hits implicated in the prevention of RNA:DNA hybrids, their induction of DNA damage 

and the repair of DNA damage in general. (e) The developmental stage affected by screen hits was further 

assed using pMEX-5:H2B-GFP to visualize the germline. Graph shows the cumulative percentage of screen 

hits having encountered development problems at the indicated stage specifically in combination with met-

2 set-25 (N=2, n=20).  

Using a H2B-GFP fusion protein to visualize the germline, we characterized the strongest 55 hits 

in detail to identify the developmental stage at which H3K9me is especially important (Figure 3e 

and supplementary table 2).  84% of the analyzed hits led to problems in germ cell development, 

proliferation or maintenance, consistent with the accumulation of germline DNA damage in met-2 

set-25 mutants (Zeller et al. 2016). 

Finally, we tested all 103 hits, which reproducibly generated sterility or embryonic death in the 

background of the double mutant, in two independently derived met-2 deletion strains (n4256 and 

ok2307) and a set-25 mutant (n5021). We found that that all RNAi clones were also synthetic 

lethal with loss of MET-2 alone (N=3) but none showed any synthetic effect with loss of SET-25 

(Figure 3b and Supplementary Figure 3b). 

Two pathways control tandem repeat expression: MET-2 mediated H3K9me2 and the 

BRCA-1 complex 

One hit from the synthetic lethality screen that especially caught our attention is K07F5.14. The 

only identified interactor of K07F5.14 by yeast two hybrid screens is BRC-1 (Li et al. 2004), the C. 

elegans homologue of the human breast-cancer susceptibility gene 1 (BRCA1). BRCA1 is a tumor 

suppressor with E3 ubiquitin ligase activity that contributes to DNA repair by homologues 

recombination (Scully et al. 1997; Moynahan et al. 1999) and transcriptional regulation under DNA 

damage conditions (Chapman and Verma 1996; Anderson et al. 1998). Mutations in BRCA1 lead 

to a strong predisposition to developing breast and ovarian cancer. C. elegans BRC-1, as well as 

mammalian BRCA-1, forms a heterodimer with BRD-1 and BARD1 respectively (Boulton et al. 

2004), which is essential for its role in preserving genome integrity as well as ubiquitination 

(Polanowska et al. 2006).  

New evidence suggests that the repressive function of BRCA1 is of central importance for the 

preservation of genome integrity. Zhu et al. could show that loss of BRCA1 in mice leads to the 

derepression of the tandemly repeated satellite DNA, but no other heterochromatic sequences 

including transposable elements (Zhu et al. 2011). The function of BRCA1 in repeat silencing is 

mediated by its ability to monoubiquitinate H2A, because the expression of a constitutively 
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ubiquitinated Histone H2A could restore satellite expression to wt levels. Strikingly, artificial 

expression of these tandem repeats from a transgene can phenocopy the BRCA1 deletion effect, 

including loss in centrosome amplification, cell-cycle checkpoint defects, DNA damage and 

genomic instability (Zhu et al. 2011). This argues that transcriptional control of tandem repeats is 

one of the main functions of this central and well-studied tumor suppressor.  

In order to determine if BRC-1 is also involved in transcriptional tandem repeat repression in C. 

elegans and if BRC-1 and MET-2 work on the same pathway, met-2, set-25 as well as met-2 set-

25 worms were fed bacteria expressing RNAi against BRC-1 or its interacting proteins K07F5.14 

or BRD-1. Because K07F5.14 is synthetic sterile with met-2 and met-2 set-25, RNA was isolated 

from young adults of the F0 generation. Relative expression was measured by qPCR of three 

tandem repeats, two transposons that are transcriptionally derepressed in met-2 set-25 embryos 

and one unaffected gene as a negative control (Figure 4). Silencing of all 3 BRC-1 associated 

proteins in wt worms led to the specific derepression of tandem repeats, while it had no effect on 

transposable elements or genes, indicating that the role of BRCA1 in tandem repeat silencing is 

conserved from mammals to worms. 

Figure 4 MET-2 and BRC-1 redundantly control tandem repeat repression 

QPCR analysis of tandem repeats, transposon and the smg-5 gene expression at the young adult stage. 

Worms of indicated genetic background (wt=N2, set-25, met-2 and met-2 set-25) were treated from the L1 

larval stage on with RNAi against brca-1 and it’s interaction partners brd-1 and K07F5.14. Expression is 

normalized to wt animals grown on empty vector control expressing bacteria (N=2). 
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Strikingly, depletion of each of the three BRC-1 associated proteins in met-2 and met-2 set-25 

animals led to an additive effect specifically in tandem repeat expression. Transcription of H3K9 

methylated transposable elements and genes did not increase upon BRC-1, BRD-1 or K07F5.14 

knockdown beyond that provoked by set-25 or met-2 mutation alone. We conclude that MET-2 

and BRC-1 complex-mediated silencing of tandem repeats occurs in a partially redundant manner. 

H3K9me2 is able to establish normal peripheral organization in the absence of H3K9me3 

We have previously ascribed a function in heterochromatin localization at the nuclear envelope to 

both H3K9me2 and H3K9me3 (Towbin et al. 2012).  This was monitored with a fluorescently 

tagged, artificial array of genes, bearing a lacO site, which binds lacI-GFP.  This array lost its 

perinuclear localization in set-25 met-2 mutants, but was anchored peripherally in either single 

mutant (Figure 5a). Given the parallels of the met-2 phenotypes with those of the met-2 set-25 

mutant, we examined the perinuclear localization of chromatin genome-wide, using LEM-2 ChIP 

(Ikegami et al. 2010), to see whether we could score specific roles for H3K9me3 (SET-25 function) 

in chromatin positioning, as opposed to H3K9me2 (MET-2).  To our surprise, the loss of met-2 

caused a complete loss of perinuclear anchoring, even more pronounced than the met-2 set-25 

mutant, while no obvious effect could be observed in the set-25 single mutant (Figure 5b). This 

argues that perinuclear anchoring may be primarily mediated by H3K9me2, and that peripheral 

sequestration may contribute to H3K9me2 mediated silencing.   

Indeed, comparing the LEM-2 enrichment under wild type conditions and the transcriptional de-

repression in the single mutants, we can see clear correlation for MET-2 dependent, but not SET-

25 dependent regions (Figure 6a).  This would argue that SET-25 is able to silence RE 

independent of their nuclear organization relative to the nuclear envelope. Indeed, when we 

checked the distribution of the SET-25 dependent loci over the chromosome, they were distributed 

all over with no particular enrichment on the repeat rich chromosome arms (Figure 6b) (Gerstein 

et al. 2010).  
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Figure 5 MET-2, but not SET-25, is necessary for the association of the majority of endogenous 

heterochromatin with the nuclear envelope  

(a) Example pictures of 

fluorescent microscopy of 

early embryos of indicated 

genotypes showing the 

nuclear localization of the 

heterochromatic reporter 

array gwIs-4, which by IF is 

covered by H3K9me3 and 

H3K27me3, but no active 

marks (Towbin et al. 2012).  

(b) LEM-2 ChIP-seq 

performed in early embryos 

of the indicated genotypes, 

grown at 20°C. Graph shows 

the distribution of LEM-2 

signal as a marker for 

perinuclear positioning over 

input along chromosome 1,2 

and X (N = 2).  

In sum, we could show that in the absence of H3K9me3, H3K9me2 fulfills the majority of the 

functionality ascribed to H3K9 methylation: transcriptional silencing, prevention of the majority of 

RNA:DNA hybrid accumulation and peripheral anchoring of heterochromatin. At the same time, 

we do note that there is a specific subset of genes and transposable elements that specifically do 

depend on SET-25 and H3K9me3, possibly, because they cannot be targeted by MET-2, which 

seems to be restricted to chromosomal regions that can be tethered to the nuclear envelope 

(Figure 7).  

The replication stress sensitivity we can observe in both set-25 and met-2 either points to the fact 

that already few replication obstacles can be detrimental in combination with replication stress, or 

an additional role of H3K9me in replication stress response. Furthermore the hits identified in the 

synthetic lethality screen strengthen our proposition that prevention of RNA:DNA hybrid driven 

mutagenesis is one of the major functions of H3K9 methylation. 
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Figure 6 Silencing dependent on MET-2 occurs at the nuclear periphery, while SET-25 dependent 

silencing occurs also away from the periphery 

 

(a) Correlation of the wild type LEM-2 ChIP enrichment with the fold change expression over wt observed 

in met-2 set-25 double mutants as well as set-25 and met-2 single mutants. Heat map visualizes the Pearson 

correlation coefficient. (b) Visualization of the distribution of genomic region derepressed in met-2 or set-25 

mutants over chromosome V. Bars indicate regions at least 2 fold derepressed over wt. LEM-2 ChIP 

enrichment is indicated the chromosome arms tethered to the nuclear periphery. 

Additionally, this work highlights the danger of tandem repeat expression, which is the only 

sequence type exclusively affected by loss of MET-2 and not SET-25. In our previous work 

focusing on the complete loss of H3K9me we could also show a prominent derepression of  

tandem repeats in embryos at elevated temperature and in somatic cells compared to the germline 

(Zeller et al. 2016). This correlated with an increase in RNA:DNA hybrid accumulation 

accompanied with elevated rates of DNA damage induced germ cell apoptosis at elevated 

temperature as well as an increased mutation rates of a LacZ-reporter in somatic vs germline 

cells. Originally, tandem repeats were mainly considered as functionally and structurally important 

sequences, especially at the telomere (de Lange 2009) and centromere (Haaf et al. 1992), but 

recent studies also report the potential danger of their derepression (Nakamori et al. 2010). 

Results by Zhu and colleagues on BRCA1 in mammals (Zhu et al. 2011) as well as our results 

presented here and in our previous work (Zeller et al. 2016) suggest that transcriptional control of 

tandem repeats is crucial for the preservation of genome integrity. As BRCA1 deletion was 

associated with changes in the nuclear distribution of HP1 foci, as well as loss of histone H2A 

monoubiquitination it was unclear if BRCA1 mediates its silencing role via the H3K9 methylation 

machinery.  

Our results suggest that MET-2 and BRC-1 regulate tandem repeat expression in a partially 

redundant manner, providing two layers for the protection of the genomes integrity.  
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Figure 7 Spatial separation of MET-2 and SET-25 dependent silencing  

Model visualizing the 3 different pathways to target H3K9me mediated silencing and its localization inside 

the nucleus. Direct targeting of SET-25 to transposable elements happens independent of the nuclear 

localization. MET-2 dependent silencing is mainly found close to the nuclear envelope. In can include the 

additional tri-methylation by SET-25 in the case of transposons or stay in a di-methylated form for tandem 

repeats. 

Methods 

C. elegans cultures and strains 

Worms were grown on OP50 at 20°C where not otherwise stated. Worms used in this study come 

from the c. elegans knockout consortium or from the Ciosk laboratory and were at least 6 times 

backcrossed to wt worms. Supplementary table 3 contains a full description of used animals. 

Immunofluorescence (IF), antibodies and live microscopy 

RNA:DNA hybrid IF was carried out as previously described by freeze-cracking and fixation in 

methanol followed by acetone. Staining was performed in 4XSSC-T (0.1% Tween-20) and 3% 

milk BSA. Primary antibody (S9.6, HB-8730, ATCC, gift of P. Pasero, Montpellier) was incubated 

was performed at a dilution of 1:100 in 4XSSC-T and 3% BSA overnight at 4°C. For live cell 

imaging larvae were mounted on slides coated with 2% agarose. Microscopy was carried out on 

a spinning disc confocal microscope (Yokogawa X1 and a Yokogawa W1 scan-head mounted on 

an Olympus and a Zeiss microscope respectively, Visitron, Puchheim). Stacks of images were 

analyzed using ImageJ.  

Developmental timing and progeny size 

For experiments performed at 25°C, animals were adopted for 2 generations to the new 

temperature and the F3 generations were used for the experiment.  
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For developmental timing experiments single worms were followed over 3 days of somatic 

development starting with stage 1 larvae synchronized by starvation. The developmental stage 

was determined by eye and noted down every 24h.  

For progeny size experiments worms were singled as stage 4 larvae. Adults were transferred to 

fresh plates to keep generations separated and the total number of viable F1 progeny was 

determined.  

RNAi screen 

For the primary screen worms were grown in liquid culture (NGM containing NaCl, peptone, 

CaCl2, MgSO4, KH2PO4 Cholesterol, Carb, IPTG) containing RNAi expressing bacteria of the 

Ahringer library in 384 well plates from Greiner (781 097) allowing for direct automated 

microscopy. After incubation of 4d at 20°C in a humid chamber worms were anesthetized by 

adding Levamisol and imaged on a GE inCell automated microscope. Rescreening was performed 

in 96 well format adjusting volumes appropriately using sequenced pure RNAi clones from the 

Ahringer library and where possible also the Vidal RNAi library. 

Chromatin Immunoprecipitation (ChIP) experiments 

Chromatin was isolated from Early embryos grown after L1 synchronization (60–65 h depending 

on each strain) in two independent biological replicates. Lem-2 ChIP was performed as previously 

described (Ikegami et al. 2010) using an antibody from Novus Biologicals (48540002). In brief, 

20µg of chromatin was incubated overnight with 3 µg of antibody coupled to Dynabeads Sheep 

Anti-Rabbit IgG (Invitrogen), in FA-buffer (50 mM HEPES/KOH pH7.5, 1 mM EDTA, 1% Triton X-

100, 0.1% sodium deoxycholate, 150 mM NaCl)) containing 1% SDS. Chromatin/ antibody 

complexes were washed with the following buffers: 3 x 5min FA buffer; 5min FA buffer with 1M 

NaCl; 10 min FA buffer with 500 mM NaCl; 5min with TEL buffer (0.25 M LiCl, 1% NP-40, 1% 

sodium deoxycholate, 1 mM EDTA, 10 mM Tris-HCl, pH 8.0) and twice for 5 min with TE. 

Complexes were eluted at 65°C in 100 µl of elution buffer (1% SDS in TE with 250 mM NaCl) for 

15 min. Both input and IP samples were incubated with 20 µg of RNAse A for 30 minutes at 37°C 

and 20 µg of proteinase K for 1 h at 55°C. Crosslinks were reversed overnight at 65°C. DNA was 

purified using a Zymo DNA purification column (Zymo Research). 

Library preparation and analysis 

Libraries were prepared from chromatin IP and genomic DNA samples using the NEBNext ultra 

DNA library prep kit for Illumina (NEB # 7370) and the NEBNext Multiplex Oligos for Illumina (NEB 

# E7335), according to the manufacturer’s recommendations. No size selection was performed 

during sample preparation and the libraries were indexed and amplified using 12 PCR cycles, 

using the recommended conditions. After further purification with Agencourt AmPure XP beads 
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(Beckman # A63881), the library size distribution and concentrations were determined using a 

BioAnalyzer 2100 (Agilent technologies) and Qubit (Invitrogen) instrument, respectively. The final 

pools were prepared by mixing equimolar amounts of all individually indexed libraries and then 

sequenced on a HiSeq 2500 (Illumina) in Rapid mode (Paired-End 50). Paired-end ChIP-seq data 

(2x50bp) were mapped to the C. elegans genome (ce6) with the R package QuasR (Gaidatzis et 

al. 2015) using the included aligner bowtie (Langmead et al. 2009). Definitions of REs were taken 

from Repbase(Jurka et al. 2005).  

Read density along the genome was calculated by tiling the genome into 200bp windows (non-

overlapping) and counting the number of sequence fragments within each window, using the 

qCount function of the QuasR package. To compensate for differences in the read depths, libraries 

were normalized to the total number of reads per library. ChIP-seq signals are displayed as 

average enrichment of IP – input (log2).  

RNA expression experiments (RNAseq and qPCR) 

RNA was isolated from early embryos by freeze cracking (4 times) followed by phenol/chloroform 

extraction and isopropanol precipitation. Total RNA was depleted for rRNA using Ribo-Zero Gold 

kit from Epicentre before library production using Total RNA Sequencing ScriptSeq kit. 50 bp 

single-end sequencing was done on an Illumina HiSeq 2500. Processing of the RNA-seq data, 

gene and repeat expression levels from RNA-seq data were quantified as described previously 

[9] using WormBase (WS190) annotation for coding transcripts and Repbase annotations for 

repetitive elements. Log2 expression levels were calculated after adding a pseudocount of 1 

(y=log2(x+1)). Repeat sub-families were built to allow assignment of multimapping reads to all 

repetitive elements and collapsing single elements according to their Repbase ID into families. 

DNA damage sensitivity assays HU 

Assays were previously described (Craig et al. 2012). Recovery from an HU pulse was monitored 

by soaking larvae in M9 buffer containing indicated concentrations of HU and OP50 bacteria for 

16h before washing and plating on fresh OP50 plates. For somatic HU sensitivity stage 1 larvae 

were exposed to HU and the percentage of viable adults was quantified at day 3.  
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Supplementary Information 

Supplementary Fig 1 Transcriptional derepression in the absence of MET-2 or SET-25 

(a) Mass spec 

quantification of the 

H3K9me and H3K27me 

state of met-2, set-25 or 

double met-2-set-25- 

mutant used in this 

publication at early 

embryonic stage (Values 

are relative to wt levels 

(Towbin et al. 2012)). (b) 

Scatter blot showing 

gene expression as fold 

change over wild-type 

early embryos of 

indicated single mutants 

(2 replicas shown, N 

(number of biological 

replicates) = 3). (c) Venn 

diagram showing genes 

commonly or uniquely 

regulated by MET-2 and 

SET-25 (N = 3). (d) 

qPCR confirmation of the strongest derepressed single repeats and their dependency on met-2 and set-25 

for silencing in early embryos (N= 3). (e) Box-blot, showing the log2 fold enrichment of H3K9me2 and me3 

ChIP-seq signal on genomic regions significantly derepressed in met-2 or set-25 single mutants. 
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Supplementary Fig 2 HU sensitivity of mutant larvae 

(a) Sensitivity to replication stress assayed by recovery after a 16h exposure to hydroxyl urea (HU). somatic 

cell sensitivity was assayed by exposing stage 1 larvae (L1) to indicated concentrations of HU and 

quantifying the percentage of worms still developing until adulthood (N = 3, n = 5).  

 

 

 

 

 

 

 

 

 

 

 

 

 



Page | 103 

 

 

Supplementary Fig 3 MET-2 deposited H3K9me2 is sufficient to protect from the observed 

synthetic lethality 

(a) Vulcano blot displaying transcriptional changes in gonads dissected from met-2 set-25 mutants relative 

to wt. Green marks significantly differentially expressed genes (Log2 fold change > 2, -Log10(p-value) > 2) 

Red marks genes whose downregulation by RNA is synthetic lethal with loss of H3K9me (N= 3). (b) The 

complete list of RNAi clones synthetic lethal with met-2 set-25 double mutants was retested on 2 met-2 and 

1 set-25 single mutant. The total number of synthetic RNAi clones is indicated; The fill color indicates the 

strength of the synthetic effect as fold reduction in progeny numbers (N=3). 
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Larval development 
cel-1, his-38, his71, swsn-7, epc-1, T27E9.2, T26A8.4 
Gonad formation 
M01F1.3, mdt-17, snpc-1.1, prp-6, F27C1.3, let-70, F54C9.9, mrlp-23, taf-5, D1046.2, F33H1.4, 
kbp-3, B0280.9, lpl-1 
Germ cell maturation / number 
vars-1, his-10, HMG-1.2, K04G7.1, let-630, bcs-1, C05D11.9, C23H3.5, let-504, mrps-6, nfyc-1, 
mrpl-10, mrpl-11, F16B4.6, rpac-40, rpl-2, exos-7, ostd-1, cdc-48.3, lpd-6, snfc-5, prmt-1 
Oocyte fertilization / egg number 
exos-3, C33A12.1, F52C6.13, sec-6, mep-1, mrpl-51, snpc-3.4, C47E12.2, ZK550.4, mys-1 
Egg hatching 
K07F5.14 

 

supplementary table 2 categorization of the 55 strongest RNAi clones dependent on the 

earliest developmental stage they impair. 
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Name in 
manuscript 

Genotype Strain 
designation 

Reference 

Wild-type (wt)  N2 (Bristol)  
met-2 set-25 met-2(n4256) III; set-25(n5021) III GW638 (Towbin et al. 

2012) 
met-2 (used in most 
experiments) 

met-2(n4256) III GW907 (Andersen and 
Horvitz 2007) 

met-2 (second allele 
used to verify screen 
hits) 

met-2(ok2307) III GW502 (Consortium 
2012) 

set-25 set-25(n5021) III GW641 (Andersen and 
Horvitz 2007) 

mex-5:h2b::gfp unc+119;rrrSi192[mex-5 prom::gfp: 
h2b::tbb-2 3'UTR;unc119(+)] II 

gift of R. 
Ciosk, FMI 

(Tocchini et al. 
2014) 

met-2 set-25 mex-
5:h2b::gfp 

met-2(n4256) III; set-25(n5021) III; 
unc+119; rrrSi192[mex-5 prom::gfp: 
h2b::tbb-2 3'UTR;unc119(+)] II 

GW1028 (Zeller et al. 
2016) 

 

Supplementary Table 3 

Worm strains used in this study 
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Chapter 5: Conclusions and directions 

In this thesis I present the first in depth characterization of the role of H3K9me in the multicellular 

nematode C. elegans. We could demonstrate that in the double mutant of the two H3K9 specific 

HMTs, worms lack all detectable H3K9me as monitored by immunofluorescence and mass 

spectroscopy. Despite showing temperature-dependent defects, the majority of worms 

nonetheless complete development from fertilized eggs into fertile adults. In contrast to previous 

studies in fission yeast (Ekwall et al. 1996), flies (Kellum and Alberts 1995) and mice (Peters et 

al. 2001), we did not observe an increase in mitotic chromosome segregation defects, which likely 

reflects the holocentric organization of the C. elegans chromosomes (Maddox et al. 2004). 

Detailed analysis of the genomic distribution of H3K9me2 and me3 in embryos showed a 

distribution of H3K9me that is comparable to that in mouse and human cells: at telomeres, the 

rDNA locus, dispersed repetitive elements and non-transcribed genes. This allowed us to 

characterize the role of H3K9me mediated repression on development and genomic function, 

without interference phenotypes caused by chromosome missegregation. 

We could observe temperature-dependent sterility, which coincided with an increase in DNA-

damage-induced apoptosis and stochastic delays in development at 25°C. Correlated with these 

phenotypes, we detected derepression of ~20% of all mappable repeat elements at 20°C, and this 

value increased at 25°C. Expression of these RE was accompanied by the accumulation of 

RNA:DNA hybrids (specifically at DNA transposons and tandem repeats), increased copy number 

variation (CNV) of RE and a hypersensitivity to replication stress. This correlation suggests that 

the generation of insertions and deletions within RE is either due to the transcription of the 

repetitive sequence alone, or is due to transcription coupled with the danger of mispairing events 

due to the repetitive nature of RE during repair. This suggests a potential mechanism for the 

previously unexplained observation of spontaneous heterochromatic DNA damage in partially 

H3K9me deficient flies (Peng and Karpen 2009). 

We carefully mapped the distribution of H3K9me2 and me3 over the genome and found that: me2 

is mainly found on DNA transposons and tandem repeats, while me3 was enriched on DNA and 

RNA transposons, and a small fraction of tandem repeats. The clear separation of HMT function 

in C. elegans, with SET-25 being the only H3K9 trimethylase, which does not alter global 

H3K9me1 or -me2 levels, allowed us to separate their unique roles.  

We further showed that in the absence of H3K9me3, H3K9me2 fulfills the majority of the 

functionality ascribed to H3K9 methylation: transcriptional silencing, peripheral anchoring of 
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heterochromatin (Towbin et al. 2012) and prevention of the majority of RNA:DNA hybrid 

accumulation. At the same time, we identify a specific subset of genes and transposable elements 

that depend on SET-25 and H3K9me3, potentially because they cannot be targeted by MET-2. 

Interestingly, loci that require MET-2 for H3K9me correlate with chromosomal regions that can be 

tethered to the nuclear envelope. Finally, we identified a number of RNAi targets that are synthetic 

lethal with loss of MET-2, which strengthens our proposition that prevention of RNA:DNA hybrid-

driven mutagenesis is one of the major functions of H3K9 methylation. 

Temperature sensitivity in the absence of H3K9me 

In this study we see a very strong effect of increased temperature on transcriptional de-repression, 

R-loop accumulation and the DNA damage-driven apoptosis in the germline. All three 

characteristics become more prominent at 25°C vs. 20°C, additionally strengthening the 

correlation between DNA damage and R-loop accumulation specifically on de-repressed repeats. 

Our model would suggest that the transcriptional changes induced by the elevated temperature 

are at the basis of the sensitivity (Zeller et al. 2016).  

We do note that even wildtype animals show an increase in global transcription at 25°C vs. 20°C. 

However, this difference becomes much more pronounced in H3K9me-deficient animals. We 

speculate that the increase in temperature provides a transcriptionally more active environment, 

which in the absence of H3K9me-mediated silencing causes a drastic increase in transcription. 

Interestingly, one sequence type, i.e. tandem repeats, are especially affected in H3K9me-deficient 

worms at 25°C, relative to H3K9-methylated genes or transposons. The potential danger 

accompanied with their expression is discussed below. 

With our current results, we cannot identify the driver of the temperature-enhanced transcription. 

We speculate that specific temperature-induced transcription factors are involved, or that RNA 

polymerase II becomes generally more active. It would be interesting to see if the subnuclear 

localizations of genomic regions is affected at 25°C, or to see if there is an increase in level or 

activity of known temperature-induced transcription factors. This could help to identify the 

components involved. 

Repetitive elements: Sequences prone to form higher order structures 

Unscheduled transcription appears to drive the formation of RNA:DNA hybrids in cells lacking 

H3K9me. While we observe the derepression of genes (234 @ 20°C) and all three RE classes in 

embryos lacking H3K9me, yet the DRIP-seq analysis shows a specific increase of RNA:DNA 
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hybrids on DNA transposons and tandem repeats, when we compare met-2 set-25 worms with 

wildtype. We also observe the occurrence of RNA:DNA hybrids on highly transcribed genes in 

wildtype worms similar to a previous report (Wahba et al. 2016), yet they do not increase in the 

absence of H3K9me. It is not clear if replication is necessary for RNA:DNA hybrid formation or 

whether this stems from the specific character of the repeat RNA and its lack of processing. 

Different sequences may be differentially prone to form RNA:DNA hybrids, when transcribed. 

Indeed, previous studies in yeast and mammalian cell culture have made similar observations. 

Whereas the accumulation of RNA:DNA hybrids correlates with the strength of expression for 

most genes (Wahba et al. 2016), sequence features that facilitate hybrid formation are also 

detected, e.g. GC content, poly A tracks (Ginno et al. 2012; Wahba et al. 2016). Of particular note 

is the accumulation of RNA:DNA hybrids on telomeres and the Thy1 transposons (Chan et al. 

2014a), despite the relatively low expression level of those sequences.  

In recent years numerous studies have tried to elucidate the mechanisms that protect cells from 

RNA:DNA hybrid accumulation and led to the identification of many factors involved in 

transcriptional processivity (Santos-Pereira and Aguilera 2015), very similar to the factors we 

found synthetic lethal with loss of H3K9me. This lead to the hypothesis that there are three factors 

promoting RNA:DNA hybrid formation: first: the affinity of the transcribed RNA to the homologous 

DNA, which is dictated by the sequence; second, the factors that bind, process and protect the 

RNA; and third, the processivity and abundance of the RNA polymerase. The coordination of 

transcription with the replication fork is a fourth factor that we have not been able to examine in 

worms.  

It is intriguing that under the conditions where we score the most striking differences in the level 

of RNA:DNA hybrids , i.e. high temperature and met-2 vs. set-25 single mutant that the major 

transcriptional difference seems to be a strong derepression of tandem repeats. This class of 

repetitive elements consists of the linear repetition of a 2-5 base pair sequence, which in theory 

allows for RNA:DNA pairing in multiple positions. They were neither reported to possess a 

promoter sequence, an open reading frame or any other sequence elements known to promote 

the recruitment of RNA processing factors. These characteristics would facilitate the formation of 

RNA:DNA hybrids in the case of aberrant transcription. A pyrimidine vs purine preference in 

RNA:DNA hybrid formation, as shown in genes, could not be analyzed due to low resolution of the 

sequencing data. 
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Unscheduled collisions of the replication and transcription machineries appear to generate breaks 

as well as other forms of genome instability (Azvolinsky et al. 2009; Hoffman et al. 2015). In this 

context damage is often attributed to the presence of RNA:DNA hybrids (Skourti-Stathaki et al. 

2011; Chan et al. 2014b), which are thought to stall DNA replication fork progression. Interestingly, 

tandem repeats have previously been shown to be very fragile if transcription (especially 

bidirectional) is allowed to pass through them (Wierdl et al. 1996; Lin et al. 2006; Nakamori et al. 

2011). So far this was mostly attributed to their potential to form higher order structures such as 

stem loops (Pearson et al. 2005). The torsional stress produced by bidirectional transcription could 

favor the formation of stem loops and G-quadruplexes. All these factors have now been shown to 

also favor RNA:DNA hybrid accumulation (Roy and Lieber 2009; El Hage et al. 2010; Hamperl 

and Cimprich 2014). Thermodynamically the RNA:DNA hybrid was shown to be more stable than 

the DNA:DNA structures favoring them as obstacles DNA replication fork progression (Thomas et 

al. 1976). It is unclear what the predominant harmful structure at transcribed tandem repeats really 

is. Experiments combining systems for inducible tandem repeat transcription with the depletion of 

RNA:DNA hybrids through RNAseH overexpression, or specific targeting of a RNAseH fusion 

protein, may be able to answer this question. Alternatively depleting H3K9me after replication is 

terminated in L1 larvea would show whether or not replication is required for genome instability. 

RNA transposons are also derepressed in the absence of H3K9me, yet they do not accumulate 

RNA:DNA hybrids.  Although C. elegans does contain full length RNA transposons of the long 

terminal repeat (LTR) class (Ganko et al. 2001), no transposition has been reported so far 

(Bessereau 2006). Besides the possible lack of hybridization-promoting sequence features in the 

transcript, there may be a link between the absence of RNA:DNA hybrid formation on RNA 

transposons and their lack of transposition. To prevent co-transcriptional RNA:DNA hybrid 

formation (Huertas and Aguilera 2003) co-transcriptional RNA degradation would be needed. The 

5’-3’ exonuclease XRN-2 was shown be involved in the co-transcriptional degradation of nascent 

RNA as part of transcriptional termination process (West et al. 2004). A later study could 

additionally show that XRN-2 is involved in the degradation of many endogenous transcripts, if 

transcriptional processivity is impaired by Spliceostatin A (Davidson et al. 2012). RNA transposons 

in C. elegans are considered to be evolutionary very young (Ganko et al. 2001) and its transcript 

might not be able to be efficiently processed, thereby leading to XRN-2 recruitment. Unpublished 

results from our lab (Mattout et al.) additionally showed that the nuclear RNA chaperone complex 

LSM2-8 targets heterochromatic transcripts for degradation in a H3K27me- and XRN-2-dependent 

manner. Our study shows that retrotransposons are particularly enriched for H3K9me3 that 

frequently co-occurs with H3K27me3. Therefore, the specific targeting of the RNA transposon 
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transcripts for degradation is plausible. This hypothesis could be tested by analyzing sequence 

specific RNA:DNA hybrid accumulation in worms lacking both H3K27me as well as H3K9me, and 

in the lsm-8 and xrn-2 deletion strains. 

Involvement of H3K9me at multiple stages of repeat stability 

We hypothesize that the accumulation of RNA:DNA hybrids at RE explains why the genomic 

mutations scored in the met-2 set-25 mutant mapped almost exclusively to RE. Considering that 

REs have multiple copies in the genome, additional factors may influence the pathway of repair. 

In particular, when the lesion is a DNA double-strand break, H3K9me may play an additional role 

by sequestering repetitive elements away from the machinery that could repair through ectopic 

homologous recombination (HR), to prevent the use of a false template during repair. Indeed, the 

groups of Karpen (Chiolo et al. 2011; Janssen et al. 2016), Chiolo (Ryu et al. 2015) and Soutoglou 

(Tsouroula et al. 2016) have shown that DNA double-strand breaks within heterochromatic 

sequences are repaired differently than euchromatic breaks when undergoing repair by 

homologous recombination. In IF experiments using DAPI as a proxy for heterochromatin, they 

could describe a HP1a dependent pathway (Chiolo et al. 2011) that allows early steps of the DNA 

damage response to occur in heterochromatin, while the late steps of homologous recombination 

(e.g. Rad51 binding) only occurs after the break site has been relocated outside of the 

heterochromatic region, away from other repeat copies. Non-homologous end joining, which does 

not need a template, can occur unperturbed within heterochromatic domains (Janssen et al. 2016). 

The suppression of HR depends on both the H3K9 methyltransferase Su(var)3-9, as well as its 

reader HP1a, arguing that H3K9me works also in this role through its reader.  

Although it is still under debate how exactly those differences are relevant for the repair outcome 

(Janssen et al. 2016), the mutations we see might be the result of an increase in repeat specific 

DNA damage coupled with the loss of heterochromatin-specific repair, which assigns two roles to 

H3K9me in guarding the genome. 

 How are tandem repeats targeted for H3K9 di methylation? 

Taking chapter 3 and 4 together, we identified three pathways that result in the methylation of 

H3K9. The majority of H3K9me targets appear to depend on the incorporation of H3K9 di-

methylated histones. This mark is further processed by SET-25 to H3K9me3. This accounts for 

H3K9-methylated genes as well as the majority of H3K9-methylated transposons. A second group 

remains H3K9 dimethylated, apparently lacking the necessary cue to recruit SET-25. This group 

consists largely of tandem repeats and a subset of DNA transposons. Both groups depend on the 
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action of MET-2. A third group seems to be directly targeted by SET-25, and not MET-2, as their 

high levels of H3K9me3 depend solely on SET-25. This group mainly consists of DNA and RNA 

transposons. 

For both transposable elements and genes, the mechanisms that are known to recruit H3K9 HMTs 

include small RNA pathways like the PIWI pathway in the germline (Haynes et al. 2006; Sienski 

et al. 2012), dsRNA transcripts at satellite repeats in S. pombe (Keller et al. 2012), as well as 

transcription factors, i.e. the orphan nuclear receptor SHP (Fang et al. 2007; Garcia-Bassets et al. 

2007; Bulut-Karslioglu et al. 2012). Considering the potential risk arising from the transcription of 

tandem repeats, it is relevant to ask what targets this class of RE for H3K9me2 so efficiently? 

Indeed, beyond centromeric satellite repeats, very little is known about the control of tandem 

repeats.  

One intriguing possibility is the existence of a feedback loop from the DNA damage caused by 

the transcription of tandem repeats, which might then recruit HMTs which then deposit H3K9me. 

Several arguments support such an idea. multiple repressive factors, including HP1 (Luijsterburg 

et al. 2009), Polycomb (Hong et al. 2008) and HDAC1/2 (Miller et al. 2010), are recruited to sites 

of DNA damage. Besides a role for heterochromatin in repair factor recruitment, they are also 

implicated in the local transcriptional silencing around damage sites, that is meant to prevent 

conflicts between the repair and the transcription machinery (Vissers et al. 2012; Ui et al. 2015). 

In this context the Almouzni group showed a transient transcriptional silencing during DNA 

damage repair (Adam et al. 2013). In their study, they identified the histone chaperone HIRA as 

a crucial component to ensure transcriptional reactivation after UVC induced DNA damage 

repair. But what would happen in a region that does not contain a strong and specific 

transcription factor to recruit HIRA? Would the heterochromatic state remain, marking the region 

as potentially dangerous? Would this prevent future breaks from happening? UV damage and 

replication-fork associated damage are repaired by completely distinct mechanisms, but it 

cannot be excluded that fork-associated damage also recruits heterochromatin components. 

The only other sequence type that accumulates H3K9me2 and not H3K9me3 besides tandem 

repeats are DNA transposons. The most prominent group of DNA transposons in C. elegans works 

by a cut and paste mechanism leaving a double-strand break behind when it jumps (Vos et al. 

1996; Bessereau 2006). This means that both repeat classes that are solely H3K9 dimethylated 

(DNA transposons and tandem repeats) can potentially cause double strand breaks, once 

expressed. Coupling the occurrence of DNA damage to the chromatin state in such a manner 

would allow the silencing and safeguarding of naturally fragile sites. 
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Crosstalk between HMT pathways 

Although H3K9me3 could be found on 12% of all genes (developmentally regulated- and pseudo-

genes) while H3K9me2 was only found weakly on 6%, a total of 336 genes were derepressed in 

the met-2 and only 30 genes in set-25 single mutants. Similarly, although we find mainly H3K9me3 

on retrotransposons (H3K9me3 pos 58%, H3K9me2 pos 6%), some retrotransposons, i.e. 

LTR2_CE and Cer16-LTR_CE, are only de-repressed in met-2 but not set-25 mutants. Our 

H3K9me2 and me3 ChIP experiments in wt and set-25 mutants show that in the absence of SET-

25, many normally H3K9me3 positive sites become H3K9me2 positive. This not only suggests 

their sequential function at these loci, but also shows that MET-2 deposited H3K9me2 is sufficient 

for their transcriptional silencing. Interestingly, this also shows that the methylation level that 

dominates under wild type conditions does not need to be the one that is essential for silencing.  

Additionally, it should not be forgotten that loss of silencing and transcriptional activation are not 

identical. Even in the absence of H3K9me, gene expression still depends on their activation by 

specific transcription factors. Multiple studies show that this might also be the case for RE, as 

tissue-specific transposon expression was scored (Kim et al. 2001; Singer et al. 2010). 

Alternatively, a pluripotency specific factor may be needed. For instance, a recent study showed 

that the transcription of the retrotransposon HERVK is induced during normal human 

embryogenisis by the transcription factor OCT-4 (Grow et al. 2015). A dependency on transcription 

factor-mediated activation is thus true for transposons, as for all genes.  

A second explanation for the fact that a majority of RE remain transcriptionally silent in the absence 

of H3K9me would be that H3K9me-mediated silencing is redundant with other repression 

pathways. As mentioned in the introduction, it was shown that there is an interplay between DNA 

methylation and H3K9me in mammalian cells (Leung et al. 2014; Liu et al. 2014). In C. elegans a 

substantial proportion of H3K9me3 co-localizes with the repressive H3K27me3 (Ho et al. 2014). 

In addition, multiple studies could show that H3K27me is able to mark, or spread into regions that 

lost their original chromatin state (H3K36me (Gaydos et al. 2012; Patel et al. 2012), H3K9me 

(Saksouk et al. 2014)). This suggests that it can potentially compensate for the loss of another 

silencing mark, such as H3K9me. If we wish to understand the role of specific epigenetic marks, 

it will be crucial to consider and monitor adaptive changes brought about by other epigenetic marks 

or other levels of methylation (me1, me2 and me3), when H3K9me is ablated. 

These results also put our previous model concerning the roles of H3K9me2 and me3 into a new 

light. Based on experiments using a large heterochromatic array, Towbin et al. could show that 
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either MET-2 (H3K9me2) or SET-25 (H3K9me3) alone are sufficient to anchor chromatin to the 

nuclear periphery, while SET-25 was more important for the complete transcriptional silencing of 

the reporter (Towbin et al. 2012). The repression of endogenous sequences is different. Both 

enzymes can work independently, or else SET-25 depends on, and can be partially compensated 

by MET-2. This makes MET-2 more crucial for the transcriptional silencing of endogenous 

sequences than SET-25. Similarly, although SET-25-deposited H3K9me3 is sufficient to tether 

the heterochromatic reporter in the absence of MET-2, the amount of H3K9 methylation it deposits 

on the genome may not be sufficient for anchoring to the nuclear periphery, unlike the large 

repetitive array used as a heterochromatin surrogate. Our study thus has been crucial for refining 

our understanding of MET-2 and SET-25 roles at a reporter and comparing these with their roles 

at endogenous sites of repression. 

Why have two enzymes, if one can do it all? 

The data presented in this thesis shows that H3K9me2 is able to inhibit transcription, and that 

MET-2 is able to methylate its target sites independently of SET-25. Only a very specific subset 

of genomic loci depends on the function of SET-25, raising the question what function SET-25 and 

H3K9me3 have. 

A potential explanation might be provided by work on DNA methylation in mammalian cells, where 

a clear separation into maintenance (DNMT1 (Gruenbaum et al. 1982; Bestor and Ingram 1983)) 

and de novo methyl transferases exist (DNMT3a and b (Okano et al. 1998; Lyko et al. 1999)). 

Supporting a similar separation of work, de novo H3K9 trimethylation was identified in C. elegans 

as a SET-25 dependent transgenerational silencing pathway initiated by the addition of exogenous 

RNAi (Ashe et al. 2012; Buckley et al. 2012). Although the authors did not prove MET-2 

independence of this process, it shows the potential of the H3K9me3 machinery to target new 

sequences for methylation independent of their position in the genome. A pathway crucial for 

survival in an environment where new retro-transposons can infect at any time, spreading in the 

host genome, if not transcriptionally silenced.  

A second potential reason for the existence of two pathways comes from the localization of the 

two enzymes, MET-2 is at least partially cytoplasmic, while SET-25 is exclusively nuclear and 

binds its own product H3K9me3 (Towbin et al. 2012). A cytoplasmic enzyme can modify histones 

even before they are integrated into the genome and can thereby target any locus in the genome, 

as long as histones are turned over. However, once the modified histone is integrated, it can be 

de-methylated if not protected. The nuclear SET-25, on the other hand, by binding its product 
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could protect H3K9me3, constantly reinforcing and spreading its repressive chromatin state. This 

ability would be especially crucial when sequences must be repressed in an otherwise 

euchromatic environment. This fits exactly to the distribution of strongly SET-25 dependent targets 

along the genome. Unlike MET-2-dependent sequences, SET-25-dependent sequences have no 

clear correlation with the heterochromatin-rich chromosome arms, nor with association with the 

nuclear periphery.  

A project in progress together with Jan Padeken is aiming to identify the machinery that targets 

SET-25 to the genome in a H3K9me2-dependent and -independent manner.  

Different ways to control heterochromatin propagation: foci formation and the 

nuclear envelope 

As mentioned above, SET-25 might be able to establish and maintain a strong and stable 

H3K9me3 domain by itself. But how can MET-2, which does not seem to bind its own mark, 

prevent the loss of H3K9me2? One possibility would be a high histone turnover to integrate freshly 

methylated histones continuously. On the other hand recent studies of local histone turnover argue 

against such a hypothesis ((Toyama et al. 2013) (Aygün et al. 2013)). Following the integration 

kinetics of an inducible tagged histone, heterochromatin was shown to be a zone of especially low 

histone turnover. A second option would therefore be to prevent the access of demethylating 

enzymes that could remove the repressive H3K9me (e.g. KDM4b (Tsurumi et al. 2013)), or those 

that activate transcription like histone acetyl transferases. 

In chapter 4 of this thesis we compare the fold-change derepression of sequence windows in met-

2 and set-25 single mutants with the respective nuclear localization (LEM-2 ChIP signal) under 

wildtype conditions. This analysis showed a clear correlation of MET-2-dependent silencing and 

localization close to the nuclear periphery, while sequences that depend on SET-25 for silencing 

are not enriched at the nuclear envelope. The nuclear envelope has been suggested to facilitate 

the compartmentalization of chromatin by concentrating certain factors and bringing different loci 

into close proximity. Peripheral localization of genomic regions in general correlates with an 

untranscribed state (Pickersgill et al. 2006), silencing factors such as HDAC3 (Somech et al. 2005) 

and HP1 (Ye and Worman 1996) have been shown to interact with components of the nuclear 

envelope. Tethering reporter sequences to the periphery can lead to their transcriptional silencing 

(Finlan et al. 2008; Reddy et al. 2008). However it should be noted though that not every sequence 

tethered to the periphery is silenced (Ruault et al. 2008). 
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Trying to put these results together, the most likely hypothesis would be that localization does not 

force a transcriptional state onto a sequence, but can favor it or its propagation during replication. 

As mentioned in the introduction, DNA replication can be divided into an early and a late phase, 

with regions localized at the nuclear periphery replicating late (Guelen et al. 2008; Hansen et al. 

2010). Disruption of this separation by depletion of the origin of replication-associated protein 

(ORCA) was shown to interfere with H3K9me propagation (Wang et al. 2016). This suggests the 

existence of two main silencing pathways: One that can form locally and reinforcing its own 

heterochromatic state, in the case of C. elegans by direct targeting of SET-25. And a second 

pathway that depends on the local enrichment of silencing factors at the periphery, but which still 

contains sequence characteristics that must be targeted for silencing. If this hypothesis would be 

true, nuclear organization might become more crucial for H3K9me2 maintenance in the absence 

of self-reinforcing heterochromatic factors such as SET-25. 

Future perspectives 

This work establishes a previously unreported link between transcriptional derepression of 

interspersed RE and the accumulation of repeat centered mutations through the accumulation of 

RNA:DNA hybrids. The consequences of this connection might even be more detrimental in 

humans, where recent analyses suggest that over two thirds of the genome consists of repetitive 

sequences (de Koning et al. 2011) compared to at least 12% in C. elegans (see Chapter 2 

(Padeken et al. 2015)). New therapeutic approaches in cancer therapy (Kondo et al. 2008) and 

stem cell induction (Chen et al. 2013) on the basis of H3K9 HMT inhibition, should therefore be 

carefully controlled for mutagenic side effects. 

Additionally, this work highlights the potential danger of tandem repeat expression. In the absence 

of H3K9me they are the main repeat class transcriptionally effected by the elevation of 

temperature, and thus correlated with sterility (Chapter 3). They represent one of the main 

differences between germline and somatic repeat derepression in H3K9me-deficient worms, 

correlating with increased somatic mutation rates of the LacZ-reporter (Chapter 3). Moreover, they 

are the only sequence type that is affected by loss of MET-2, and not SET-25 (Chapter 4). While 

repeats were recognized as functionally and structurally important sequences, especially at 

telomeres and the centromeres, recent studies now also report the potential danger of their 

derepression (Nakamori et al. 2010). Of particular interest are studies concerning the well-

characterized tumor suppressor breast cancer susceptibility gene 1 (BRCA1) (Castilla et al. 1994). 

Zhu et al. could show that loss of BRCA1 leads derepression of the tandemly repeated satellite 

DNA. Very strikingly, artificial expression of these tandem repeats from a transgene can 
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phenocopy the BRCA1 deletion effect, including: loss in centrosome amplification, cell-cycle 

checkpoint defects, DNA damage and genomic instability (Zhu et al. 2011). This argues that 

transcriptional control of tandem repeats is one of the main functions of this central and well-

studied tumor suppressor. As BRCA1 mutation was associated with changes in the nuclear 

distribution of HP1a foci, BRCA1 was speculated to mediate this role through the H3K9 

methylation machinery. But as we could show combining mutants of the H3K9 HMTs with RNAi 

against the worm homologue of BRCA1 (BRC-1) shows an additive effect and therefore rather 

suggest those two pathways work in a partially redundant manner to regulate tandem repeat 

expression and genome integrity. 

An exciting field for future research will be the role of heterochromatin and its maintenance in 

differentiated cells. In Chapter 3 we showed that the transcriptional derepression as well as the 

rate of heterochromatic mutation are elevated in differentiated somatic cells, compared to the 

germline. Counter-selection of highly damaged oocyte genomes by apoptosis, might partially 

explain the difference in mutation rates, but, considering the absence of the transposon silencing 

PIWI pathway in somatic cells (Girard et al. 2006), as well as the accumulation of heterochromatin 

during differentiation (Gifford et al. 2013; Ugarte et al. 2015), these data could also indicate an 

increased importance of the H3K9me machinery in differentiated cells. 
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List of abbreviations 

CNV   copy number variation 

ChIP   chromatin immunoprecipitation 

DAPI   4′,6-Diamidin-2-phenylindol (DNA stain used in IF-microscopy) 

DNA   deoxyribonucleic acid  

DRIP   DNA:RNA hybrid immunoprecipitation 

EE   C. elegans early stage embryos 

EM   electron microscope 

FISH   fluorescence in situ hybridization 

GFP   green fluorescent protein 

H1,2a,2b,3,4  histone 1,2a… 

H3K4me  histone 3 Lysine 4 methylation 

H3K9me1,2,3  histone 3 Lysine 9 mono- di- tri- methylation 

H3K27me  histone 3 Lysine 27 methylation 

HDAC   histone deacetylase 

HMT   histone methyl transferase 

HU   hydroxyurea 

HP1   heterochromatin protein 1 

HPL-1   heterochromatin protein like 1 

IF   immunofluorescence 

L1   C. elegans larvae stage 1 

LAD   lamina associated domain 

meCpG  DNA methylation on CG dinucleotide 
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PRC   Polycomb Repressive Complex 

ORF   open reading frame 

PolII   RNA polymerase II 

qPCR   quantitative polymerase chain reaction 

rDNA   ribosomal DNA 

RE   repetitive element 

RNA   ribonucleic acid 

RNAi   RNA interference 

RNA-seq  RNA sequencing 

SNV   single nucleotide variants 

SUV39H1  suppressor of variegation 3-9 homolog 1 (HMT) 

TAD   topologically associating domain 

TFIID   transcription factor II D 
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