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Abstract

Type la supernovae (SNIa) are luminous stellar explosions which mark the fatal
disruption of white dwarfs in a binary system. They are the major producers of
Iron group elements in the solar system and also give relevant contribution to the
alpha-elements Silicon, Solfur, Calcium and Titanium. Within specific conditions SNIa
may also produce about 30 proton-rich isotopes heavier than iron. It is controversial
what is the relevance of this p-process component for the abundance of these isotopes in
the Galaxy and in our solar system. Its efficiency depends on the products of neutron
capture processes active during the accretion phase to reach the Chandrasekhar mass.
The aim of this thesis is to provide for the first time comprehensive stellar simulations
for investigating the possibility of producing this seeds distribution for p-process
nucleosynthesis, calculating it modelling the accretion phase onto a white-dwarfs
increasing mass toward the Chandrasekhar limit. The main stellar model properties
during the accretion phase are not so different from the asymptotic giant branch phase,
before the star becomes a WD and the accretion phase starts. We have used the same
stellar code MESA (revision 4219) to produce AGB stellar models, implementing the
best known physics and producing eleven one-dimensional AGB stellar models with
initial mass M = 2 and 3 solar masses, and with initial metal content Z=0.01 and
7=0.02. The convective boundary-mixing below Thermal Pulses and the Third-Dredge
Up is included directly in stellar calculations to take into account Kelvin-Helmholtz
instability and gravity waves. Rotation and magnetic field are not included. The same
parameterization adopted for AGB models was consistently used for the accretion
models, calculating 4 WD models with initial mass 0.856, 1.025, 1.259 and 1.376 solar
masses accreting Z=0.01 metal content material. Post-processing calculations are
finally done with the Mppnp NuGrid code.
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Chapter 1
Introduction

Low-mass and intermediate-mass stars (M < 8 M) are fundamental contributors for
the chemical evolution of the Galaxy. During their advanced evolutionary stage called
Asymptotic Giant Branch (AGB) phase, these stars are characterized by recurrent He-
shell flashes, or Thermal Pulses, triggering a finite amount of mixing across convective
boundaries between the envelope and the underlying He-rich regions below, called
He-intershell [72]. Thanks to this mixing between the He intershell and the stellar
envelope, AGB stars contributed to the creation of most of the C and N observed
today in the solar system [110, 213].In the same way, heavy elements like e.g. Ba, La
and Pb are made by the slow neutron capture process [or s process,e.g., 101] in the He
intershell and mixed with the stellar surface, and together with other lighter elements
they are scattered in the interstellar medium by the powerful AGB stellar winds.

Despite the efforts in the past decades, the mechanisms driving the convective
boundary mixing in the He intershell during the AGB phase are still matter of debate,
and this poses a major limitation to our understanding of how these stars work. This
is the first main topic discussed in this thesis, in Chapter 2. Crucial questions that we
will try to answer are: what are the dominant physical mechanisms driving convective
boundary mixing during the AGB phase? What is their impact on the chemical
production in these stars? How do the stellar models including such mechanisms
compare with stellar observations?

Once a star has left the AGB phase, the central remnant starts to evolve to become
a CO White Dwarf (WD), or a ONeMg WD if the initial mass is large enough to start
central C-burning off-center [e.g., 97]. If the star is in a binary system with another
star, it may starts to accrete H-rich and He-rich matter from the stellar companion. For
sufficiently high accretion rates, the CO WD may eventually reach the Chandrasekhar

mass and become the progenitor of thermonuclear supernovae [SNe Ia 79]. SNe Ia are



2 Introduction

responsible for the production of most of the iron-group elements in the solar system,
and for a significant fraction of intermediate-mass elements like Ca and Ti [e.g., 211].
Recently an old scenario was reconsidered, in which, together with these elements, SNe
Ia can also produce heavy proton-rich nuclei by activating the p process [12] in the
most external SNla ejecta [83, 84, 217]. A fundamental assumption for this scenario is
to have s-process rich material in the outer layers of the SNIa progenitor.

Detailed stellar evolution calculations of these stages including modern treatment
of convective boundary mixing are missing. This is the second main topic discussed
in this thesis, in Chapter 3. Crucial questions that need an answer are: what are the
main features of stellar evolution during the accretion stage up to the Chandrasekhar
mass? what type of neutron capture nucleosynthesis is activated during the accretion
stage, if any? What distribution of heavy elements made by neutron captures will act
as a seed for the following p process in the SNIa explosion?

One of the main goals of this work is to better understand the production of heavy
elements in stars. Through various stages of hydrostatic burning massive stars (M
> 8 Mg) develop an onion skin structure with a Fe core surrounded by shells of
different composition, changing from Si-rich to H-rich moving toward the stellar surface
[141]. The different elements up to Fe can be made by following fusion reactions and
charged particle reactions [e.g., 10, 209, 231, 234]. Today we know that it is possible to
make elements heavier than Fe also by charged particle reactions in extreme explosive
conditions in core-collapse supernovae, eventually up to the Pd-Ag mass region. These
processes can be activated in a—rich freezout [232], or in the neutrino-driven winds on
the top of the forming neutron star [8, 51, 56, 187, 210]. Nevertheless, it is still unclear
what is the role of these processes on the abundances observed in old stars formed in
the early galaxy [e.g., 66, 67, 175, 214], on the galactic chemical evolution and on the
abundances in the solar system. Still today, the old paradigm that neutron capture
processes are the dominant nucleosynthesis sources for the elements heavier than Fe is

confirmed by stellar simulations and observations.

1.1 Neutron-capture nucleosynthesis and the s-process
in AGB stars

The basic form of the process of slow neutron addition as a mechanism for converting
iron to heavier elements was first discussed by Cameron [31]. Later, Burbidge et al.
[28] and Cameron [32] laid out a general framework for the formation of heavy nuclei.

Analyzing solar system abundance distribution (see figure 1.1), Burbidge et al. [28]
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determined that heavy nuclei were formed in three distinct nucleosynthetic processes,

which they defined as r, s and p-processes.
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Fig. 1.1 Decomposition of solar system abundances into the s-process component,the
r-process component and the p-process component [12].

Beyond Fe, about half of the heavy isotope abundances are made by the s-process ,
while the other half is made by the rapid neutron capture process, or r process [210].
The pattern of the solar "residual" r-process abundances (see figure 1.1) obtained by
subtracting the s-process distribution from the solar abundances [9, 19] was shown to
be consistent at least in first approximation with the r-process abundances observed in
very old metal poor stars [197]. The r process is characterized by high neutron densities
N,,>10%0 ¢cm™3, which can be obtained only in explosive conditions. According to
the most established scenario up to few years ago, the high neutron number density
required was obtained in the neutrino-driven winds associated with the proto-neutron
star formation in core-collapse supernovae [207]. Although the wind naturally ejects
some amount of material enriched in heavy elements over a period of 1 s [8], the current
neutrino-driven wind models have difficulties in providing the required r-process

conditions, with entropies not sufficiently high to produce the heaviest r-process nuclei.
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Recent hydrodynamic simulations for core-collapse supernovae support the idea that
these entropy constraints can be fulfilled in the late phase when a reverse shock is
forming, but at times when temperatures decrease to too low values for an r-process to
operate [210]. Therefore, nowadays other scenarios are discussed, among others polar
jets from rotating magneto-hydrodynamical explosions of core-collapse supernovae
[147, 228], neutron-rich matter ejected from merging neutron stars [54, 162] and
neutron-star-black hole mergers [205]. For a review of the different scenarios and

r-process results see Thielemann et al. [210].

The s-process is characterized by a series of neutron capture nuclear reactions that
occurs at relatively low neutron density: the s-process nucleosnthesis path evolves
along the valley of stability in the chart of nuclei, since the neutron capture timescale
of radioactive nuclei is typically slower than the ($-decay timescale, and it decays to
its stable isobar before a neutron is captured [101]. An example of s-process path is
shown in figure 1.2, in the mass region between Kr and Mo. In figure 1.2, isotopes
like 89Kr and 32Kr are defined as s-only isotopes and the only neutron-capture process
responsible for their production is the s-process, since they are shielded by their stable
isobars (in this case 80Se and #2Se, respectively) from any r-process contribution. From
figure 1.2 it is also possible to see that the neutron-capture path on radioactive nuclei
may change when the timescale of neutron capture becomes comparable to the 5-decay.
In this case, a branching is opened in the s-process path [see for instance the case of
85Kr in the figure, and 1]. The study of s-process branching points can provide crucial
information about the stellar conditions during the s-process activation in stars, by
comparing stellar observations with theoretical stellar model predictions [e.g., 19, and
references therein]. In chapter 2 we will discuss further the s-process branching points

in our analysis.

The typical neutron density range of the s-process in stars is 107 < N,, < 1013
(where N, is the neutron density expressed in cm™3). The temperature range associated
to the s-process activation in stars is 108 < T < 10° K. These conditions are obtained

in different types of stars.

Most of the s-elements in the region 60<A<90 are produced by massive stars;
among the solar system abundances, these form the so-called weak s-process component
[100, 101, 166, 176, 177, 208]. In massive stars, the main neutron source for the s
process is the 22Ne(a,n)?Mg reaction [34, 116, 163]. Depending on the initial mass of
the star [e.g., 173] and on the ?2Ne+a rates [102, 166], some ?2Ne may be left in the

He-burning ashes, which is activated later in the subsequent shell C-burning conditions
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in bold and unstable isotopes are outlined with dashed lines.
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[176, 180]. The elements produced most efficiently by the weak s-process are copper,

gallium and germanium [166, and references therein].

For abundances with A=>90, the main astrophysical circumstance in which s-process
takes place is in the AGB phase, which is the final evolutionary stage of low- and
intermediate-mass stars before losing all their envelope through stellar wind and forming
a Planetary Nebula [115, 184]. In the solar system isotopic abundances, the s-process
distribution for AZ90 can be divided into main s-process component (between Sr and
Pb) and strong s-process component (which includes about half of the solar 2°8Pb).
The main component is made by AGB stars with metallicity close to solar, while the
strong component is mostly due to the galactical chemical contribution from much older
and more metal-poor AGB stars [22, 59]. The s-process properties of metal-poor AGB
stars are not very different from those of younger and more metal-rich objects. The
more efficient production of Pb in metal-poor AGB stars is due to the lower amount of
Fe seeds, which increases the number of neutron captures per Fe seed and makes the

production of heavier s-process isotopes more efficient.

Most of the neutrons for the s-process in AGB stars are due to *C(a,n)'%0 neutron
source, activated in the radiative 13C-pocket in the He intershell stellar region [203].
The physics mechanisms driving the formation of the 3C-pocket are still matter of

debate [see 72, and references therein] and will be discussed in this work.

Neutrons are also made from the ?2Ne(a,n)?°Mg source, partially activated at the
bottom of the He intershell during the Thermal Pulses [e.g., 29, 38, 104, 168, 202].
Whereas the contribution to the total amount of neutrons is smaller compared to the
13C neutron source, the activation of the ??Ne(a,n)?°Mg generates higher neutron
densities above 1019 neutrons cm™3, leaving its fingerprints in the final s-process AGB
stellar yields [e.g., 38, 59, 202].

The production of the s-process elements has been directly observed on a large
sample of intrinsic or extrinsic AGB stars at different metallicities [e.g., 2, 29, 197, 235,
and references therein|, in grains of presolar origin condensed in the winds of old
AGB stars and found in pristine carbonaceous meteorites [e.g., 14, 129, 130, 133, 236],
in post-AGB stars [e.g., 43, 182, 185, 186, 218] and in ionized material of planetary

nebulae around their central remnant star after the AGB phase [e.g., 154, 194, 200, 201].

The possibility to compare stellar models predictions with such a large variety
of independent observations together with the needs for galactic chemical evolution
[e.g., 214] has triggered the production of different sets of AGB stellar yields [e.g.,
21, 38, 104, 134]. Indeed, s-process nucleosynthesis is extremely sensitive to the

thermodynamic conditions, abundances and convective boundary mixing mechanisms
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in the parent AGB stars, providing fundamental constraints to the macro- and micro-
physics inputs used to produce theoretical stellar AGB models [e.g., 72]. In particular,
the convective boundary mixing (CBM) below Helium-intershell during the convective
TPs affects the abundances of the most abundant species (e.g., *He, '2C and '60),
and therefore the thermodynamic evolution and all the nucleosynthesis reactions in
the He intershell during the AGB phase [e.g., 74, 133]. On the other hand, the CBM
below the envelope after the convective thermal pulse, during the so-called Third
Dredge Up event (TDU, see chapter 2), directly affects the formation of the '3C-
pocket. While the existence of the radiative C-pocket is a well-established scenario
in stellar nucleosynthesis, the assumptions made in hydrostatic one-dimensional stellar
models do not allow to simulate directly the physics mechanisms responsible for the
CBM. Guidance from hydrodynamics simulations is needed to include simpler CBM

parameterizations.

Five physics mechanisms have been considered in AGB stars during the TDU: semi-
convection [86], overshooting [74], rotation-driven instabilities [120] internal gravity
waves [45, hereafter De03] and magnetic buoyancy [30, 152]. Limitations in distin-
guishing between these scenarios include also the uncertainty of their implementation
in hydrostatic models, leading to different nucleosynthesis results to compare with
observations. For instance, starting from indications of hydrodynamics simulations by
[55], different implementations in stellar models lead to different '3C -pockets with
s-process production of heavy elements changing by at least one order of magnitude
[39, 74, 133].

Convection always causes gravity waves propagation across the convective boundary,
as also remarked by [75] (hereafter He07) where a new set of multi-dimensional
hydrodynamical simulations for the TP was provided, considering the whole He-
intershell. In these simulations, He07 showed the overlap of two different convective
boundary-mixing contributions at the bottom of the TPs, a first steeper profile due
to Kelvin-Helmholtz instability and a second slower decrease due to gravity waves.
This is the dominant situation that arises when simulating TP events. Considering
the mixing processes occurring under the convective envelope during TDU, the role of

gravity waves on the 3C-pocket formation have been discussed by De03.

In Chapter 2, the physics prescriptions by He07 and De03 will be adopted and their

impact on the AGB stellar evolution and nucleosynthesis will be discussed.
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1.2 The p-process

The p process is responsible for the formation of proton-rich isotopes heavier than Fe.
The 35 p-nuclei [although today few of them should not be considered as p-process
nuclei anymore, see 48] are bypassed both by the s- and the r-process. The p-process
is characterized by sequences of proton captures and/or photodisintegration reactions
on seed nuclei, resulting in the production of p-nuclei [12, 140].

Meyer [140] explored the conditions required for the p-process considering an
environment at a fixed temperature Tg=1 (hereafter, To=10°K) and target nuclei with
atomic number 10 < Z < 80. The timescale of a (y,p) or a (y,n) reaction is grater than
10! seconds even considering a mass density in protons of 10 g/cm?, while proton
capture reactions are characterized by timescales always at least 10° times shorter. If
an astrophysical site could maintain a mass density in protons of 106 g/cm? for 10°
seconds at T9=1, the proton-rich isotopes of all elements up to platinum (Z=78) could
capture a proton. The timescale for proton capture reactions decreases if the setting
has a higher density in protons available. The proton capture rates also increase with
temperature because the reactants have a higher relative kinetic energy compared
to the Coulomb barrier than at lower temperatures. If we increase the temperature
we see that the timescale for proton capture decreases, but so does the timescale for
photo-disintegration reactions, which at some point becomes predominant. For example,
if we consider T9=3 and a mass density in protons of 10° g/ cm?, photodisintegration
reactions always have shorter timescales than proton capture reactions for Z > 70. If a
system is evolving towards nuclear statistical equilibrium (hereafter NSE), nuclei that
are more massive than the nucleus with the highest binding energy per nucleon will
tend to disintegrate nucleons to increase the number of macroscopic states available
to the system [140]. If thermodynamic conditions favour proton-captures, a large
supply of protons must be available for a long time, thus putting severe constraints
on hypothetical astrophysical sites. If the proton-capture process occurs at higher
temperatures, disintegration reactions will dominate the flow and prevent capture to
higher mass. Therefore, any astrophysical stellar site in which high temperatures and
sufficiently short timescales lead to incomplete melting of seed heavy nuclei can produce
p-nuclei [140]. For this reason, SNe Ia and core-collapse supernovae are potentially both
hosts of the p process. If the p-process consists of sequences of photo-dissociations and
B decays, it is usually called ~-process [233]. This occurs in explosive O/Ne burning
during CCSN explosions and reproduces the bulk of p-isotopes within a factor 3 [180].
However, this scenario in CCSNe suffers from a strong underproduction of the most
abundant p-isotopes (?2Mo, Mo, PRu and “*Ru), and destroys '3In and '°Sn due
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to lack of seed nuclei with A>90 [48, 172]. SNe Ia has been proposed as candidates
for a complementary p-process production. In particular, in the Travaglio et al. [217]

92Mo, ?*Mo; %Ru and 2®Ru were produced at the same level of the heavy isotopes.

1.2.1 Core-collapse supernovae as p-process sites

CCSNe results from the internal collapse and violent explosion of a massive star. The
presence of hydrogen in its spectrum is what distinguishes a type I supernova from other
classes of supernova explosions. In a typical type II supernova, the newly formed neutron
star has an initial temperature of about 100 billions Kelvin; 104 times the temperature
of the Sun’s core. Much of this thermal energy must be spent for a stable neutron star
to form, and this is accomplished by a further emission of neutrinos releasing about 1046
Joules. Later on, about 10** Joules are re-absorbed by the stalled shock, producing an
explosion [95]. Arnould [11] computed the p-process in the hydrostatic O-burning phase
in stars. The timescales are longer in this site than in the SN site and would allow for
more proton capture. In this site, temperatures are high enough for disintegrations
(especially (7,n) reactions) to be important. A major challenge for this model is to eject
the new p-nuclei without significantly modifying their abundances during subsequent
SN explosion. Woosley and Howard [233] computed the p-process in the ejected O/Ne
shell in CCSNe. The supernova shock heats up this shell and activates the v-process,
where photodisintegrations are driving the nucleosynthesis of p-process nuclei. The
inner regions of the O/Ne shell will achieve the highest temperatures (T > 3x107K)
and thus get closer to the NSE. These regions make the lightest p-nuclei. Outer regions
produce the heavier p-nuclei because photodisintegration is less complete, due to the
lowest temperatures in the SN shock. In particular, intermediate-mass (50 < N < 82)
and heavy (N < 82) p-nuclei are made in the temperature ranges 2.7 < Tg < 3 and Ty
< 2.5 respectively. Rapp et al. [178], Rauscher [179], Rauscher et al. [180], Rayet et al.
[181] carried out detailed p-process nucleosynthesis simulations in CCSNe. All of these
works confirm for the p-isotopes serious deficiencies for the p-process isotopes of Ru
and Mo and in the 150<A <165 atomic mass region (see Fig.1.3). On the other hand,
[169] showed that a comparable production of >Mo, Mo, *Ru and *®Ru isotopes
compared to other p-process isotopes can be obtained, if a much higher “'2C+'2C rate
is used compared to the standard rate by [33]. A strong C-fusion rate indeed allows to
increase the s-process production, which is seed for the following ~ process. On the
other hand, the v process contribution to the p-nuclei strongly depends on the initial

metal content, being significant only around solar metallicity.
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Alternative scenarios were proposed complementing the ~ process in CCSNe.
Woosley et al. [230] explored of the impact of neutrino-interaction with the ejected
material, showing that the production of 138La and '89Ta may be strongly increased.
Wanajo [222] proposed that neutrino-driven winds in CCSNe can be one of the possible
sites for p-nuclei production through the rapid-proton-capture-process or rp-process,
which is expected to take place in proton-rich compositions with sufficiently high
temperature, and which leads to the production of proton-rich isotopes beyond iron.
However, there are a number of nuclei with (-decay timescales of a few minutes on
the rp-process path. These “waiting point” nuclei inhibit the production of heavy
proton-rich nuclei beyond the iron group in CCSNe. The situation changes when
neutrino-induced reactions are taken into account. Pruet et al. [174], Wanajo [222]
have shown that such “waiting points” are bypassed by neutron capture reactions
even in proton-rich environments. This is due to the continuous supply of neutrons
from the anti-electron neutrino absorption by free protons in the early ejecta that are
subject to intense neutrino flux. As a consequence, the rp-process takes place, leading
to the production of proton-rich nuclei beyond the iron group. This last case is called
vp-process [56]. Arcones and Montes [8] performed a two-dimensional simulation of
SNII explosion, showing that, when the consequent external layers expansion becomes
slower, the matter stays exposed to high neutrino fluxes for a longer time, increasing the
efficiency of the v-process. Other types of core collapse supernovae were investigated,

as the electron-capture type Supernovae explored by Wanajo et al. [223].

1.2.2 High energy astrophysical sources as p-process sites

Other astrophysical sites besides standard core-collapse events can be the scene of
neutrino induced rp-processes. Among these are the disk winds formed around a black
hole, which are associated to v-ray bursts, or the area around a neutron star, with
possible super-burst as consequence. Schatz et al. [192] showed that photo-disintegration
triggered conversion of heavy rp-nuclei into iron group nuclei can dominate the energy
release in super-bursts that originate from a carbon flash in the ashes of a type I X-ray
bursts. Therefore, X-ray bursts must produce a large amount of rp-nuclei to allow
subsequent super-burst to happen and to explain their duration, energetics and spectral
evolution. Type I X-ray bursts are flashes of accumulated H on an accreting neutron
star. X-ray bursters exhibits periodic luminosity bumps peaked in the X-ray regime.
These objects are made up of an accreting compact object and a ’donor’ star. X-ray
bursters differ from other X-ray variable objects since they show a fast rise in luminosity

(1-10 seconds) followed by spectral softening [193]. The integrated flux of such events
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is of the order of 1039740 ergs, to be compared to the steady luminosity which is of the
order 1037 ergs for accretion onto a neutron star. The ratio of the burst flux to the
persistent flux ranges from 10 to 103. The timescales of those burst range from hours
to days, even if more extended recurrence times and and weak bursts with recurrence
times lower than 30 minutes are observed in some cases. To date, the thermonuclear
explosion of hydrogen-rich material on accreting neutron stars makes these sites likely
candidates for the occurrence of the rp-process. Schatz et al. [191] proposed that this
type of transmutations could produce a substantial amount of p-nuclides, and could be
a source of the p-isotopes Mo and Ru in the solar system content. However, a small
amount of nucleosynthesis products is expected to be ejected, and its contribution to
the Galactic chemical evolution is likely to be negligible [112, 191].

1.2.3 Type Ia supernovae as p-process sites

A SNTa is the result of the violent thermonuclear explosion of a white dwarf after having
accreated mass from a companion star in a binary system reaching and overcoming in
this way the critical Chandrasekhar mass. Since a few years ago, no clear consensus had
been reached on whether the star explodes as a result of a subsonic nuclear deflagration
that becomes strongly turbulent [27, 91|, or a supersonic detonation, or whether this
turbulent flame phase is followed by a delayed detonation during the expansion [107].
Today it seems that suitably tuned delayed detonations satisfy all the constraints given
by SNla spectra, light curves, and nucleosynthesis. A white dwarf is the remnant of a
low or intermediate mass star that has completed its normal life cycle and has ceased
nuclear fusion. However, CO white dwarfs are capable of further fusion reactions that
release a great amount of energy if their temperatures rise high enough. Two are the
most accepted explanations for a SNIa creation: a white dwarf that accretes mass
in a binary system at the proper rate for a sufficiently long time to grow to nearly
the Chandrasekhar Mass (1.39 M) at which it ignites carbon burning at or near its
center (Single degenerate scenario, Whelan and Iben [227]) or the collision/merging
of two white dwarfs resulting again in a final explosion (Double-degenerate scenario,
Webbink [224]). At the onset of the explosion a thermonuclear energy runaway occurs,
reaching almost 10'° L, [80]. SNe Ia peak luminosity is up to 20 times greater than
typical CCNSe like SN Type-II [142]. This has important consequences concerning
the production of Fe peak elements, which are produced more efficiently in SNe Ia
than in SN II, as it can also be inferred from the corresponding higher luminosity. SNe
Ia are responsible of about 70 % of the solar Fe amount, while the remaining 30% is
attributed to CCSNe [138].
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The p-process is expected to take place in the outermost zones of SNe Ia. Howard
et al. [84] considered both solar abundances as seeds for the p-process as well as
s-enhanced seeds considering the Khokhlov delayed detonation model. They obtained
an efficient p-process production. In this case, the p-process is activated on the surface
of a degenerate CO white-dwarf when it undergoes a type la supernova explosion. With
an initial solar system-like composition of s- and r-process elements, they observed
an insufficient galactic yield of p-nuclei. On the other hand, if the outer layer of CO
white dwarfs became s-process rich during He shell flashes, a p-process component with
average enrichment of 10* was obtained. When these stars undergo explosive disruption,
there is a region near the surface where the temperature lies in the range 2.4<T9<3.2.
At these temperatures, the enhanced s-process seeds are efficiently transmuted into
p-isotopes (including light p-isotopes) on a time scale of much less than 1 second. The
significant enhancement of the seed nuclei in the mass region A=>96 was a key feature
of Howard et al. work that could allow them to produce most of the light mass p-nuclei,
with the exception of an overproduction of Se™, Kr™® and Sr8 and underproduction of
Mo and Ru isotopes, in particular **Mo and ?SRu, even if not in such a dramatic way
as in the case of a SN II explosion. More precisely, %Mo and ?Ru were underproduced
by a factor between 7 and 8 compared to the other p-process nuclei. For comparison,
Rayet et al. 1995 obtained an underproduction by a factor of about 50 for these
isotopes in the p-process in CCSN.

Goriely et al. [63] found that the He-detonation in CO white dwarfs is accompanied
by an efficient p-process and triggers a variant of the rp-process, the pn-process, which
develops in the presence of neutrons and with less protons than in classical rp-processes.
The nuclear flow associated with this variant of the rp-process lies much closer to the
valley of stability compared to the classical rp-process. This results from the lower
proton and nonzero neutron concentration encountered in the He-detonation. Most of
the p-nuclides, including the puzzling cases of Mo and Ru isotopes, are found to be Co-
produced in these conditions in quantities close to the solar ones. Unfortunately they
were underproduced (except 78Kr) with respect to the Ca to Fe species, which means
that at the moment this scenario does not seem to be relevant for the chemical inventory
of the p-process nuclei in the galaxy. More recently, Kusakabe et al. [114] calculated
the p-process in the C deflagration model for SNe Ia, using the W7 model [150]. Initial
abundances of s-nuclei were obtained by calculating the s-process nucleosynthesis
that they expected to occur in the repeating He shell flashes on the CO white dwarf
during mass accretion. In practice, they derived the s-seed distribution assuming an

exponential distribution of neutron exposures with two choices of the mean exposure
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+0= 0.30 mb~!, which reproduces the main component in the solar system [9], or ¢
=0.15 mb~!, which results in an s-process distribution decreasing with atomic mass
number. These two particular choices of seeds distributions were justified by the
expectation that the s-process nucleosynthesis proceeds through the neutron source
reactions of 22Ne (a,n)?°Mg as well as of 1¥C(a,n)1%0 assuming physical conditions
similar to the AGB scenario. It was found that in all cases more than 50% of p-nuclides
are Co-produced at almost the same degree of enhancement with respect to their solar
abundances. They also showed that the effect of variable C/O ratio in the initial
composition of the CO WD on the final p-nuclei yields is marginal. On the contrary,
they confirmed that the effect of initial abundances of s-process nuclei on the p-process
is crucial to calculate the final p-process yields. Travaglio et al. [217] presented 2D
SNTIa simulations, starting at the onset of the explosion. As seed distribution for
the p-process, they assumed an s-process distribution similar to the main s-process
component, obtained from AGB models simulations by varying the 3C concentration
in the pocket from 0 up to a factor of two times the standard value of 4 x 1076 M
of 13C (Gallino et al. [59], ST case). The multidimensional SNIa simulations assume
instant burning of the C + O material once crossed by a deflagration or detonation
front. A number of lagrangian tracer particles that record thermodynamic trajectories
was passively advected with the hydrodynamic flow in the explosion simulation. In this
way, they obtained for the first time a complete p-process distribution, with similar
enhancements relative to °°Fe, including the puzzling light p-nuclei 92Mo, %*Mo; YRu
and ®Ru. They found that only the isotopes ''3In, 15Sn, 138La, 92Gd, and %9Ta
diverge from the average p-process production. Among them, 2Gd and '¥°Ta have
an important contribution from the s-process in AGB stars [9] or from the neutrino
process in the SNe II [223, 230]. Both ''3In and ''°Sn are not fed by the p-process
nor by the s-process [48]. A fundamental assumption for this scenario is the s-process
distribution in the outer accreated layers of the SNIa progenitor. Travaglio et al. [217]

assumed seeds distributions and resulting p-nuclei nucleosynthesis results are shown in
Fig.1.4 and 1.5.

One of the main goals of this work is to calculate consistently for the first time
the distribution of the seeds nuclei heavier than Fe needed to simulate the p-process
in SNe la. In order to do that, we simulated the last phases of the accretion on the
WD, before the progenitor reaches the Chandrasekhar mass. Chapter 3 will explore
the neutron-capture nucleosynthesis of heavy elements in these conditions, in order to
verify if the seeds needed for an efficient p-process activation during the SNIa explosion

are realistic. One of the main limitations is the lack of observational constraints of
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production and adopted by Travaglio et al. [217]. Abundances are shown relative to
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the accretion-phase in a single-degenerate scenario to calibrate our 1D simulations.
On the other hand, the physical conditions that lead to the He-flash both during the
accretion phase and during AGB evolution are similar, relying on the accumulation
of H-burning ashes on the top of the He-rich intershell. Nevertheless, the AGB phase
is can be constrained by an large amount of observational data. The same stellar
code and physics prescriptions used for the simulation of AGB stellar evolution and

nucleosynthesis have been applied also to the simulations of the accretion phase (chapter
2).






Chapter 2

AGB stars evolution and

nucleosynthesis

2.1 Preliminary introduction to stellar simulations

After the exhaustion of H in the core at the end of the Main Sequence phase, in
low-mass stars H starts to burn in an outer shell while the star is evolving along the
Red Giant Branch. If the mass of the star is large enough, the central conditions
allow to ignite He-burning and the star evolves to the Horizontal Branch until also the
central He is consumed and a degenerate CO core is formed. The major production of
energy to sustain the stellar structure is provided by the He shell, and by the H shell
few 10* Kilometers outward, just below the stellar convective envelope. In this phase
the star evolves along the AGB [72, 104]. Because of the different energy generation
rates and instabilities caused by nuclear burning proceeding in thin shells, the star
undergoes a series of pulses, with burning oscillating between the H and He-shell. H
burning in the outer shell leads to the deposition of He onto the quiescent He shell,
which contracts and heats up due to the addition of mass and eventually reaches the
conditions necessary for the He to abruptly ignite creating an He-Flash. The rapid
release of energy during the shell flash causes the outer H-burning shell to expand and
cool down, hence interrupting the H-burning. After the shell flash, the He-burning
continues trough the He-shell depositing the CO ashes onto the core until the He-shell
is depleted.

These recurrent thermal pulses or TPs are caused by a combination of thin-shell
instability and partial-degeneracy [72, 108]. Thin-shell instability occurs when nuclear
burning happens in a spherical shell. Let us consider a shell of mass dm, temperature

T and density p, lying between a fixed inner boundary ry and an outer boundary r,
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such that [=(r-rg) < rg. If the shell is in thermal equilibrium, then the rate of nuclear
energy generation within the shell is equal to the net rate of heat flow out of the shell.
If the nuclear energy generation increases, then the shell will expand and lift the layers
above it. Depending on the thickness of the shell and the equation of state of the gas,

this can result in an instability. Hydrostatic equilibrium requires:

dP dr
o — g x— 2.1
2 X — (2.1)
Since
om = 4rr3lp (2.2)
we obtain p p p
P r rr
S 2.
p [ r ol (2:3)
and dP dpl
0
o 2.4
P pr (24)
Considering a generic equation of state of gas in the form
P =Cp*T? (2.5)
We find l J T
»
4——a)— =b— 2.
=)L =1 (26)

Therefore, ag% is required by thermal stability. On the other hand, a sufficiently
thin shell can always violate this condition for any value of a, at which point an
expanding shell will result in an increase of temperature, which will increase the
nuclear burning rate [17]. Degeneracy condition is met when free particles (in our case
electrons, i.e. fermions) are limited to a finite volume and can take only a discrete
set of energies, called quantum states. Being fermions, electrons obey the quantum
mechanical principle known as the Pauli Exclusion Principle: two electrons cannot
share the same quantum state. At the lowest total energy, all the lowest energy
quantum states are filled. Electrons want to sit in the lowest possible energy state.
They cannot all do that. So the higher the density, the more the electrons have to
exist in higher and higher energy states. Therefore, more energy means more motion,
which is translated into higher pressure. If the gas is completely degenerate, we obtain

an equation of state which is given by:

P~ p°3 (2.7)
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Notice that there is no temperature dependence [108].

During the AGB phase, He is accumulated below the H-shell through H-burning,
compressing and heating the He-intershell. Therefore, temperature keeps rising. When
the temperature is high enough, He can begin to fuse together to form C via the
triple-a reaction rate. However, the core is degenerate, so that when temperature rises,
pressure does not: the core cannot expand and cool. Therefore, energy rising causes
temperature rising which in turn makes energy rise and so on, causing in this way a

nuclear energy runaway known as He flash.

Once the energy feedback generated by the convective TP is decreased, the H-shell
re-ignites and begins again to refill the He-shell. These burning-oscillation cycles
characterize the whole AGB phase, which lasts for a few 10° years. During this phase,
each expansion and cooling of the envelope as a consequence of a TP event causes
an increase of the envelope opacity, thus making the convection more efficient and
eventually penetrating into the C-rich intershell, dredging-up freshly syntetized C and
s-process elements. This event is called TDU. In this way, the stellar envelope is more
and more enriched in C and heavy s-process elements that will pollute the surrounding
interstellar medium trough stellar winds (see also discussion in Chapter 3.1). AGB stars
are the main contributors of the Solar-System amount of C and half of the elements
between Fe and Bi [59, 215]. The recurrent expansion and the consequent cooling down
together with the increasing C enrichment, leads to recurrent shocks dust formation in
the outer stellar atmosphere. The combination of these two facts results in a sufficiently
high mass-loss rate which leads to the ejection of the envelope [24, 25]. Once the entire
AGB stellar envelope is lost via stellar winds, the post-AGB evolution starts and the
star evolves through the proto-planetary nebula and the planetary nebula phase [e.g.,
220]. Finally, after the nebula also disappears because is too far away and lost in the

interstellar medium, the stellar remnant cools down along the White Dwarf path.

As it is mentioned in the introduction, the AGB evolution and nucleosynthesis is
regulated by the CBM at the He-shell boundaries and between the envelope and the
He intershell. The correct treatment of these mechanisms in the stellar simulations
is crucial for stellar nucleosynthesis, since they are responsible for the formation of
the radiative '3C-pocket, the main contributor to s-process nucleosynthesis in AGB
stars via the '3C(a,n)'%0 reaction. As today, the answer to what are the physics
mechanisms producing CBM during the AGB is still controversial. Multi-dimensional
hydrodynamics simulations by He07 highlighted the relevance of Kelvin-Helmholtz
instabilities and gravity waves (hereafter IGW, following the naming scheme of De03)
below the TPs.
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To answer these puzzles, in this work I present eleven one-dimensional AGB stellar
models with initial mass M = 2 and 3 solar masses, and with initial metal content
7=0.01 and Z=0.02. Consistently with He07 results, the CBM below TPs and the TDU
is included directly in the stellar calculations to take into account Kelvin-Helmholtz
IGW. Other physics mechanisms, such as rotation [e.g., 767 | and magnetic field, are

not included.

2.2 Computational tools: Stellar codes

2.2.1 Stellar Evolution Calculations — MESA

All the new stellar models presented in this work were computed using the stellar code
MESA [MESA revision 4219, 160].

The solar distribution used as a reference is given by [65]. The CO-enhanced
opacities are used throughout the calculations, using OPAL tables [87]. For lower
temperatures, the corresponding opacities from [52] are used. The Reimers formula
[183] with nr = 0.5 is used for the mass loss up to the end of the RGB phase. Along
the AGB phase, the Blocker [23] formula is used instead, with ng = 0.01 for the O-rich
phase, ng = 0.04 and np = 0.08 for the 2 and 3 M models respectively after the TDU
event that makes the surface C/O ratio larger than 1.15. This choice is motivated by
observational constraints, as for example the maximum level of C enhancement seen
in C-rich stars and planetary nebulae [72], as well as by hydrodynamics simulations
investigating mass loss rates in C-rich giants [139]. For the simulations the MESA nuclear
network agb.net is used, including the pp chains, the CNO tri-cycle, the triple-a and
the a-capture reactions 2C (a, 7)1°0 "N (o, 7)®BF (e*1)B0 , 180 (o, 7)*?Ne 13C
(o, 1)190 and YYF (a, p)*2Ne . I use the NACRE [7] reaction rate compilation for
most reactions. For the 12C (a,7)'60 the rate by [113] is adopted, "N (p, 7)*°0 is by
[89] and the triple-a by [58].

Convective mixing follows the standard mixing length theory [36], taking into
account also CBM treatment. For MESA simulations the convective boundary mixing is

computed by default using the exponential overshooting of [70]:

D(dr) = Dy x exp~ 24"/ f1Hpo (2.8)

where dr denotes the geometric distance from the edge of the convective zone. The

term f; xHpg identifies the scale height of the overshoot regime. The values Dy and
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Hpg are respectively the diffusion coefficient D and the pressure scale height at the
convective boundary.

In order to consider also the gravity waves contribution discussed by [75], a second
slower decreasing mixing coefficient is included in a number of new AGB models

presented in this work. This coefficient is defined as:

Do = Dy X eXp_ZdTQ/(ﬁXHpO) . (2.9)

with length scale = fo x Hpg, which is adopted for distances dr > drs.

Therefore, for dr < dry in this new scheme the mixing coefficient is given by:

D(dr) = D0 x exp~ 24"/ ftHpo (2.10)

For dr > drs:

D(dr) = Dy x exp Adr=dr2)/(faxHpo) — D x exp~2dra/(J1xHpo) 5 =2(dr—dra)/(f2x Hpo)
(2.11)

That becomes:

D(d’l") _ DO % exp—z(dTQ/(fl x Hpo)+(dr—drs)/(f2xHpo)) (212)

As discussed in Herwig [70], this exponential decay starts before reaching the
convective Schwarzschild boundary, at a distance f; x Hpgy from the estimated location
where the adiabatic temperature gradient is equal to the radiative gradient. This new
implementation can be defined by the three parameters fi,fo and Do, where f; defines
the Kelvin-Helmholtz instability slope, and D9 and fy the efficiency and the slope due
to the gravity waves contribution. A schematic description of this formalism is given
in Fig.2.1. This new CBM scheme is only applied during the AGB phase, since the
physics behind our CBM scheme has been specifically studied in this phase, whereas
during all the previous stellar evolution stages the default overshooting is applied [70].

The list of complete stellar models is given in Tab. 2.1 with the models names and
the CBM parameterization. A detailed description of the scheme used to assign model
names and other details can be found in section 2.2.2. In Section 2.5.1 the criteria to

select f1.,fs and Do at the two He intershell convective boundaries are provided.
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Fig. 2.1 Schematic description of the double-exponential CBM applied in this work.
The red line is the standard overshooting mixing coefficient profile following the
single-exponential decaying. This profile is dominated by a single ’f” parameter that
determines the slope of the mixing profile: the lower the 'f’ value, the steeper the
profile is. In order to account for the gravity-waves mixing effect, in this work we apply
a second, slower, decay (green line) that takes over the first as soon as the mixing
coefficient is equal or lower than a 'Dy’ value, whose slope is determined by the ’fs’
parameter.
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All the AGB stellar models in Tab. 2.1 include the mixing contribution due to
molecular diffusion. We assume that the molecular diffusivity is equal to the molecular
viscosity, because both of them are proportional to a product of the mean free path
and mean velocity of the same particles. On the contrary, we do not consider the
radiative viscosity as a component of the microscopic diffusivity, because it describes the
exchange of momentum between photons and particles, and therefore it is proportional
to the photon mean free path and the speed of light. The default MESA revision
used for this work allows to include radiative viscosity as microscopic diffusion term,
according to Morel and Thévenin [146]. For this work, also according to [3], we only

consider the molecular viscosity term, using the following expression [198]:

T5/2 ¢ A1/2

=221 %107 (147X .
Vol % (1+7X) p X Z*x LogA

(2.13)

where A is the Coulomb integral, with values ranging from 15 to 40 depending
on the composition stellar layers. With the present implementation, the impact of
molecular diffusion on final elemental abundances is < 5%. On the contrary, the
impact on s-process nucleosynthesis is severe if the controversial implementation from
Morel and Thévenin [146] is adopted, strongly increasing the 4N diffusion into the
13C pocket and completely suppressing the s-process production by the 3C(a,n)!%0
neutron source. While we may rule out the implementation by [146] (we refer to the
discussion in Alecian and Michaud [3] for more details), the role of molecular diffusion

during the AGB phase deserves further investigation.

2.2.2 Stellar models: list and main parameters settings

In table 2.1 the list of models analyzed during this thesis, together with their main
parameters settings, is presented. In the first line of the table, the parameters of our
reference model M3.z2m2.st (with the final st standing for standard) are shown. Its
main feature, which makes it differ from the other models, is the single exponential
slope used in describing the CBM in order to effectively compare it with Pil3. The
10 models following the reference model can be joined into 3 different groups, their
respective labels changing accordingly. The first group collects the main stellar grid
made up of 4 models combining 2 initial masses (2 and 3 M) and 2 initial metallicities
(0.01 and 0.2), more precisely: M2.z1m2, M2.z2m2, M3.z1m2 and M3.z2m2. Following
them are the two hC'BM models, whose only major difference from the main grid

is a higher CBM under the convective envelope (check the difference in D2* and £2*
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Table 2.1 List of AGB stellar models and their relevant parameters: initial mass, initial
metallicity and CBM parameterization. The CBM parameterization can be given by
a single exponential decreasing profile (sf), consistently with Pil3, or by a double
exponential decreasing profile (df) introduced in this work, with or without limiting
the mixing length to the size of the convection zones (clipping). The CBM parameters
are given below the TP (f1, D2 and {2) and below the TDU (f1*, D2* and {2*).

name mass [Mg] metallicity CBM f1 D2 {2 f1I*  D2* 2% clipping
M3.22m2.st 3.0 0.02 sf 0.008 - - 0126 - - yes
M3.z2m2 3.0 0.02 df  0.024 10° 0.14 0.014 10" 025  yes
M3.z1m2 3.0 0.01 df  0.024 10° 0.14 0.014 10' 0.25 yes
M2.22m?2 2.0 0.02 df  0.024 10° 0.14 0.014 10" 025  yes
M2.z1m2 2.0 0.01 df  0.024 10° 0.14 0.014 10" 0.25 yes
M3.z1m2.hCBM 3.0 0.01 df  0.024 10° 0.14 0.014 102 0.27  yes
M2.22m2.hCBM 2.0 0.02 df  0.024 10° 0.14 0.014 10" 027  yes
M3.22m2.he07 3.0 0.02 df  0.010 10° 0.14 0.014 10' 0.25 no
M3.z1m2.he07 3.0 0.01 df  0.010 10° 0.14 0.014 10' 0.25 no
M2.22m2.he07 2.0 0.02 df  0.010 10° 0.14 0.014 10' 0.25 no
M2.z1m2.he07 2.0 0.01 df  0.010 10° 0.14 0.014 10" 0.25 no

between models with same initial mass and metallicity) in order to test the impact
of the CBM parameters uncertainty on TDU and '3C-pocket formation. The last
group is formed by the he07 models. Crucial differences from our main grid are: the
lower f1 parameter, in order to be fully consistent with He07 recommended values, and
the absence of the clipping. From MESA revision 3713 on, it is introduced by default
the limitation (or clipping) of the mixing length to the length of the convection zone.
However, this feature is disabled in models with no clipping. Through the comparison
of the he07 models with the main grid we want to check the consistency them both
from an evolutionary and from a nucleosynthetic point of view.

Finally, an overview of the global stellar properties of each model is given in table
2.2.

In addition to the initial stellar mass and initial metallicity, the H-free core mass at
the first TP, the approximated mean luminosity, the approximated mean radius, the
number of TP’s, the number of TP’s with TDU, the time at first TP, the maximum
dredged-up mass after a single TP, the average interpulse duration of TPs, the total
mass lost during the evolution and the maximum temperature during the TPAGB
phase are given. In particular, the dredged-up mass after a single TP and the maximum
temperature during the TPAGB directly influence the total s-enrichment of the envelope

and the activation of s-process branchings respectively.
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Table 2.2 AGB stars properties.

Name Mini Zini mc  logLy R« Nrp Nrpup trpr AMpmax Mp tip Miost  TPDCZmax
(M) [Mo]  [Lo] [Ro) [10r]  [1072Mg] [1072Mg]  [yr]  [Mg) (K]
M2.21m2 2.00 001 0.495 347 169 24 12 1.265E+03 0.8 6.348 164516 1.38 8.476
M2.22m2 2.00 0.02 0515 359 229 24 12 1.357E+03 0.7 5563 112625 1.34 8.394
M3.21m2 3.00 0.0l 0.640 3.97 308 13 12 4.092E402 1.2 9.324 57740 2.33 8.480
M3.22m2 3.00 0.02 0.58% 3.89 302 21 18 4.798E402 1.3 12.983 67556  2.36 8.487
M2.22m2hCBM  2.00 0.02 0514 358 223 21 12 1.357E+03 0.7 4.807 122534 1.35 8.487
M3.zlm2hCBM  3.00 0.01 0645 3.98 310 12 11 4.125E402 1.4 9.874 58824  2.33 8.488
M3.z2m2st  3.00 0.02 0593 3.87 300 14 11 4.835E402 1.0 7188 69414  2.35 8.400
M2.z1m2.he07  2.00 0.01 0.497 348 170 25 13 1.279E+03 0.4 3.748 146344 1.36 8.460
M2.22m2.he07  2.00 0.02 0510 3.58 223 27 14 1.406E+03 0.4 3.243 107980 1.32 8.463
M3.z1m2he07  3.00 0.01 0.647 3.99 312 15 14 4.127E402 0.7 6.426 46333  2.30 8.247
M3.22m2he07  3.00 0.02 0.592 3.85 281 23 19 4.818E+02 0.8 7120 58434  2.34 8.471

M;p;: Initial stellar mass.

Zini: Initial metallicity.

me: H-free core mass at the first TP.

L,: Approximated mean Luminosity.

R, : Approximated mean radius.

Npp: Number of TP’s.

Nrpyp : Number of TP’s with TDUP.

trpr: Time at first TP.

AMpmaz: Maximum dredged-up mass after a single TP.
tip : Average interpulse duration of TPs.

M, Total mass lost during the evolution.

Tppczmar: Maximum temperature during the TPAGB phase.

2.3 Nucleosynthesis Post-Processing Calculations
— MPPNP

The multi-zone post-processing code mppnp is described in detail in [168]. The
network includes up to about 5000 isotopes between H and Bi, and more than 50000
nuclear reactions. A self-controlled dynamical network defines the number of species
and reactions considered in calculations, based on the strength of nucleosynthesis
flows producing and destroying each isotope. Rates are collected from different data
sources: European NACRE compilation [7] and [88], or more recent if available
[e.g., 58, 90, 113]. In particular, for the 3C(a,n)'®O and ??Ne(a,n)?*Mg rates [69]
and [94] are used, respectively. For experimental neutron capture rates of stable
isotopes and available rates for unstable isotopes I use mostly the Kadonis compilation
(http://www.kadonis.org). Exceptions relevant for this work are the neutron-capture
cross sections of 90:91:9293,94.95.96 7y, the new rates by [135] were used instead, based
on recent experimental measurements. For stellar $-decay and electron-capture weak
rates I use [57], [153], [118] and [62], according to the mass region. Rates are taken
from JINA reaclib library [41] if not available from one of the resources mentioned

above.
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2.4 Choosing the MESA revision and impact of the

new nuclear reaction network

For this work, I used the MESA stellar evolution code revision 4219. In this section
I compare the results of this choice with a previous MESA revision, 3372, that was
used by Pignatari et al. [168] (here and after Pil3). These two different revisions
are examined both in the HR and Kippenhahn diagrams. An HR diagram shows the
evolution of the star in absolute magnitude or luminosity with respect to its effective
temperature. A Kippenhahn diagram shows the evolution of the internal structure of

a star in mass coordinates as a function of time.

In Fig. 2.2 and Fig. 2.3 the HR and Kippenhahn diagrams of two models with initial
mass M = 3 Mg and initial metallicity Z=0.02, from pre-main sequence to the tip of the
AGB phase, are shown: the model M3.z2m2.st (Tab. 2.1), calculated with the MESA rev.
4219, and its analogous stellar model from Pil3. For both models all the prescriptions
regarding mass loss, nuclear reaction rates, convective boundary mixing parameters,
resolution, timesteps, opacities and atmosphere description are the same. In particular,
the CBM is included with same parameterization. As already mentioned, the only
relevant difference is the MESA revision. In Fig. 2.2, the HR diagrams are extremely
similar until the start of the AGB. Then, the two models tend to give different results.
The different behavior is observed also in the C/O ratio at the surface during the AGB
phase (see Fig.2.3). This is due to specific modifications adopted since MESA rev. 3713,
which are related to the handling of single convection zones of the order of 1073 M,
where the radial extent of the zone is so small that the normal calculation for mixing
length gives a distance that is larger than the size of the zone. Therefore, from rev
3713 on (including rev. 4219) the mixing length is restricted to values smaller than
the height of the zone. The main impact for our analysis is that small convection
zones, which are present in particular under the PDCZ during a TP event, are mixed
more weakly because of the mixing scale length being limited to the size of the zone,
and therefore the He-intershell tends to be less enriched in O than with older MESA

revisions.

This is shown in Fig. 2.5, where the evolution of He, C and O abundances in the He
Intershell is shown for model M3.z2m2.st, M3.z2m2.he07 and the analogous model
in Pi13. Note that M3.z22m2.st is the only model including clipping (see table 2.1 for
more detail about models parameters). The *He abundance in the He-intershell of
model M3.22m2.st is 30% higher compared to Pil3, while "2C and 'O are smaller. On
the other hand, M3.z2m2.he07 is more similar to the results of Pil3, showing a good
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panel, and zoomed in the He-intershell in the right panel. Lower panels: As in the
upper panels, but for model M3.z2m2.st.
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agreement all along the AGB evolution. For M3.z2m2.st the final mass fractions of
4He, 12C and 90 in the He intershell are 0.55, 0.35 and 0.045, respectively, while for
the 3 M, star model adopting the older MESA revision are 0.40, 0.40 and 0.15. Finally,
we obtain 0.44, 0.34, and 0.16 for the model M3.z2m2.he07. Therefore, the clipping is
the main source of the differences seen in Fig. 2.5. While this choice may be irrelevant
in other stellar mass regimes, it appears to be crucial for AGB simulations. This is
affecting the parameterization of physics mixing mechanisms in 1D models, and it is
not clear a priori what is the best solution. However, hydrodynamics simulations give
a clear indication that the clipping implementation used in the last MESA revisions
should be switched off, as we did in the set of AGB models labeled he07. In He07, the
mixing parameters extrapolated for the parameterization in 1D models f,fs and Do
should be more considered as upper limits. Indeed, an overestimation of the CBM

efficiency can be expected in case of hydrodynamics simulations not fully resolved.

In order to obtain similar C and O concentrations in the He intershell, the models
with the clipping activated demand an f; larger than the upper limit given by hydro-
dynamics simulations. Based on these considerations, the set of AGB models labeled
he07 are more realistic in terms of physics setup. On the other hand, I will show in
the next sections that once similar He, C and O abundances are present in the He
intershell, similar s-process nucleosynthesis results are obtained during the AGB phase,

independently of the physics setup that leads to these He, C and O concentrations.

Fig. 2.3 compares the evolution of models Pil3 and M3.z2m2.st. In addition to the
usual mass-coordinate on the y-axis, also the surface numerical C/O ratio is shown,
following in this way the progressive formation of the C star (which is achieved once
the surface C/O is larger than 1). It should be noted that the C/O ratio evolves with
a step-like behavior, where each step-up of the C/O value corresponds to a TDU event
that brings freshly syntetized C from the intershell to the surface. Important points
to consider are the following: 1) with the new revision, less TPs are made compared
to the old revision. In particular, the Pil3 model has 23 TPs, with 19 TDU events,
while M3.z2m2.st has 17 TPs and 14 TDUs respectively; 2) TDUs are more efficient
in M3.z2m2.st compared to the older revision. Point (1) and (2) are connected, since
more efficient TDUs allow the AGB envelope to become C-rich earlier, and therefore
to be consumed by stellar winds at earlier times. The final surface C/O ratio reached
in the 3 Mg star model by Pil3, M3.z22m2.he07 and M3.z2m2.st is equal to 1.7, 1.6
and 2.2 respectively. Compared to Pil3, in this work I am using an updated nuclear

reaction network, including few different neutron capture reaction rates: the new cross
sections for 2%-21:22Ne by [68], 6293Ni by [124], and 90:91,92,93,94.95.967, 1135 206, and
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references therein]. The only exception is model M3.z2m2.st, that was calculated using

the same nuclear reaction network of Pil3.

While none of the rates mentioned above has a relevant impact on stellar evolution
or on the total s-process production, the new Zr cross section affects the s-process
branching at ?°Zr during convective TPs. This aspect is crucial since *6Zr is produced
via a branching at the unstable %Zr only if the neutron density exceeds 5 x 108
neutrons cm 3. Data from single SiC grains show deficits in the %6Zr/%Zr ratio with
respect to the solar values and point to a marginal activation of 22Ne neutron source in
the grain parent stars [136]. For this reason, we also provide here below the results for
the 3 M, star model described by Pil3, but using the same nuclear reaction network
adopted for this work (model Pil3.newnet). Fig.2.4 shows the differences arising from
the nucleosynthesis calculations of the three models. Due to the lower number of
TDU, the M3.z2m2.st shows a milder s-process enrichment at both the Sr peak and
the Ba peak (where Is (light — s) and hs (heavy — s) represent the production at the
two neutron magic peak in logarithmic notation, Luck and Bond [131]), only partially
compensated by the larger TDU efficiency as we mentioned earlier. On the other hand
we obtain similar [hs/ls| ratios, defined as the average logarithmic ratio normalized
to solar (|hs/ls|]=log(hs/ls)—log(hs/ls)s). A similar definition is given to the [ls/Fe]
and [hs/Fe] indices. The evolution of the Zr isotopic ratios shows strong differences.
The comparison of the results obtained by the Pil3 model and the Pil3.newnet model
shows that the use of new Zr neutron capture cross sections (and in particular of the
957r cross section, that is more than a factor of two lower than the rate used by Pil3)
allows to obtain much lower 6Zr/%*Zr ratios. On the other hand, adopting the same
nuclear reaction network of Pil3, M3.z2m2.st shows milder s-process signatures by, on
average, 0.1 dex compared to Pil3 and Pil3.newnet models, due to the lower amount of
TPs and to the lower temperatures obtained at the bottom of the convective TPs. This
is an effect of the larger *He abundance in the He intershell of M3.z22m2.st, allowing
the He-burning activation at lower temperatures (see e.g., Fig. 2.5). Interestingly,
the new Zr cross sections have a larger impact on the final Zr isotopic ratios than
the stellar model uncertainties. The %6Zr /% Zr ratio is considered an indicator of the
22Ne(ar,n)?°Mg efficiency at the bottom of convective TPs [e.g., 133]. T will come back

to the s-process signature on Zr isotopes in the following sections.

Concluding, significant differences were obtained during the AGB evolution using the
two different MESA revisions, despite the fact that the same physics parameterizations
were adopted. I showed that the main source of these differences comes from the

different handling of small convective zones in the setup of the two revisions. A priori it
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is not clear what is the best implementation for 1D models. However, hydrodynamics
simulations clearly indicate that the no-clipping setup (Tab.2.1) should be favored.
Thanks to the example of the Zr isotopes, we have seen that nuclear uncertainties are
crucial: they might be locally more relevant than stellar uncertainties, assuming that

it is possible to disentangle their complementary contributions.

2.5 Stellar models - CBM in the He intershell and
the C-pocket

Most of the metals made by low-mass and intermediate-mass stars are made during
the AGB phase in the He intershell region. Its nucleosynthesis products like C and
s-process abundances are brought to the stellar surface by recurrent TDU events.
The AGB stellar yields carry the signature of the relevant physics processes in the
He intershell, challenging our understanding of these stars [72, 204]. On the other
hand, independent observations are available to verify the results of theoretical stellar
models. I will compare the results obtained with part of these observations in §3.4. For
this work, I calculated a set of models considering two initial masses and two initial
metallicities: M = 2, 3 Mg and Z = 0.02, 0.01. As mentioned in the previous sections,
the CBM included at the He-intershell boundaries has a crucial impact on AGB stellar
evolution and nucleosynthesis. In this section, the CBM setup at the He-intershell

boundaries and the main features of the stellar models are described.

2.5.1 CBM below the convective TP

Based on hydrodynamics simulations of the AGB He flash, He07 showed that Kelvin-
Helmotz instabilities are crucial to shape the CBM below the convective TP. He07
obtained that convective motions induce a rich spectrum of IGW in the neighboring
stable layers, triggering more mixing across the convective boundary. Three parameters
are needed to fit such complex CBM profiles in one-dimensional hydrostatic models,
f1, Do and fy (see §2.2.1). He07 extracted the following values: f;=0.01, Da=10°,
fo=0.14. Moreover, HeO7 quantified the uncertainty affecting the f; and fa parameters,
mainly derived from the adoption of different heating rates, number of dimensions and
computational codes: in particular, it resulted that 0.004 < f; < 0.016, as it is visible
in Fig.2.6 (central panel). Left and right panels show the same kind of results for the
fo parameter and the single slope formalism case respectively. Focusing more on how

RAGE results for the f; value evolve as a function of resolution in the central panel, it
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Fig. 2.4 Comparison between the nucleosynthesis products of the same models in
figure 2.5 and model PI13.newnet. The evolution of the [ls/Fe] ratio (upper panel)
and of the [hs/Fe| ratio (middle panel) are shown in comparison with the [hs/ls] ratio.
In particular, each marker represents a TP during the AGB phase. Larger markers
are used when the surface C/O ratio exceeds 1. In the lower panel the evolution of
6(0Zr/?7Zr) and §(%Zr/*Zr) ratios are shown for the same models in the previous
panels. The isotopic ratios are shown in d=((ratio/solar)-1)x1000.



34 AGB stars evolution and nucleosynthesis

®-® 016 M3.z2m2.he07 E
®-@ Cl2 M3.z2m2.he07 |H

v Y |e—e Hed M3.z22m2.he07
Ly == 016 Pil3

¢-4 C12Pi13
4—¢ He4 Pi13
V¥ 016 M3.z2m2.st
107 A Cl2M3.z2m2st [

| | | »-» Hed4 M3.z2m2.st
I
0 5 10 15 20 25

TP number

Mass Fraction (X)

Fig. 2.5 He, C and O abundances evolution in the He Intershell as a function of the TP
number along the AGB evolution of M3.z2m2.st and the analogous model calculated
with MESA rev. 3372 (as in Pignatari et al. [168]). We also included M3.z2m2.he07
model to get the impact of mixing-length clipping during the TP by comparing it with
M3.z2m2.st (see text for more details).
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should be noticed that a further increase in resolution could result in even lower values
for f;. I therefore started from HeO7 values and tested the impact of each one of the
three parameters on the intershell nucleosynthesis of He, C and O, which represent
the main observational constraints to be matched. Fig. 2.7 shows the impact of the Dy
parameter, whose logarithm turns out to have a linear relation with the O abundance
for values higher than 6. No impact is seen for lower values of Ds. A linear relation
with O has been found also for the f;, which resulted to be the parameter with the

highest impact in the description of this scenario.
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Fig. 2.6 f-values over number of vertical grid points for fy and f; values to describe
CBM under the PDCZ during TP with a double-exponential slope (left and center
panel respectively) and the single slope formalism case in the upper overshoot region
(right panel). The plots represent results from Herwig et al. [75] and combine data for
two heating rates, several 2D runs and two 3D models, runs with the RAGE code and
one simulation with the FLASH code.

According to Tab. 2.1, with the exception of model M3.z2m2.st (§2.4), below the TP
£1=0.024, Dy=10° cm?s~!, f=0.14 were used for all the models, i.e. the values given
by HeO7 but with a f; higher by a factor of two. I use this larger value to reproduce
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Fig. 2.7 Evolution of He, C and O mass fraction in the He-intershell during AGB
evolutions in stellar models adopting different Dy parameter values in describing the
CBM at the bottom of the PDCZ during TP events. All the other CBM parameters
are fixed to He07 values.
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the full range of the observed O abundances in post-AGB H-deficient stars (see §3.4
for more details). For instance, by using He07 parameters we obtain for the M=3Mg
7=0.02 a final He, C and O of 55%, 29% and 6% respectively, compared to 48%,
31% and 13% for model M3.z2m2. Note that the f;=0.024 value has been determined
with a MESA revision with the peculiar treatment of small convection zones during TP
under the He intershell discussed in §2.4. In the upcoming sections it will be shown
that the results obtained with older MESA revisions (i.e., without limiting the mixing
length to be smaller than the height of the zone) adopting He07 parameterizations
are similar to those obtained with our newer revision using the parameters previously
described, demonstrating in this way the consistency of our parameterization with
hydro-simulations results. For the same reason also the uncertainty interval previously
specified should be shifted to values higher by a factor of two as well, becoming 0.008
< f; <£0.032.

The Do and fo parameters were not modified here. We found that the parameter fo has
a negligible impact on the evolution and composition of the He intershell with Dy=105.
The parameters Do and fy become relevant only for D2>10% cm?s™!, two orders of
magnitude higher than the indications by He07 results. For this reason, according to
these simulations, Kelvin-Helmotz instabilities are the most relevant physics mechanism
to consider below the convective TP for AGB stellar evolution, while IGWs have a

minor impact.

2.5.2 CBM below the convective envelope during TDU: the
formation of the 3C-pocket

The CBM below each TDU during the AGB phase causes a decreasing profile of
protons in the He-intershell material, due to a finite amount of proton diffusion from
the convective envelope to the He intershell. This profile is the product of the physics
mechanisms triggering the CBM, and will have direct impact on crucial features of the
radiative 1*C-pocket. The H/Y(12C) ratio (where Y(*2C) is the 2C concentration in
the He intershell) defines the boundary between the 13C-pocket and the "N-pocket
above. The proton capture rates involved in the production and in the depletion of
13C in these stellar radiative layers and the amount of >C define where the condition
X(13C)>X(1*N) is satisfied [e.g., 64, 133]. The *N-pocket is also 3C rich, but the
neutrons made by the 13(3(04,r1)160 reaction are mostly captured by the poison reaction
N (n,p)*C, thus reducing the s-process efficiency [e.g., 37, 59]. In the present models,
the upper boundary of the '3C-pocket is given by H/Y(12C) ~ 0.4. During the TDU,
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this ratio is obtained for a mixing coefficient D ~ 107cm?s~!. For comparison with
other models, see the discussion in [133], [64] and [40]. For H/Y(*2C) < 0.4 the
13C-pocket forms, with a decreasing abundance of >C moving toward the center of the
star. The s-process production in the He-intershell layers with concentration of 13C
X(13C)<1073 becomes negligible. The size of the 3C-pocket (i.e. the 13C-rich mass
region with X(13C)>X(*N) and X(13C)<1073) is crucial for the s-process production.
In this work, at the bottom of the AGB envelope during the TDU we have used the
same double-exponential formalism used at the bottom of the convective TPs (see the
previous section). As a guidance to derive the Dy and fa parameters to include in the
initial setup of the AGB stellar models, we compared the mixing coefficient given by
the double-exponential profile with the De03 IGW mixing coefficent. In particular, we
are mostly interested in fitting the results of Denissenkov et al. for mixing coefficents
within the range relevant for the 3C-pocket (D<107ecm?s™1). The results are shown
in Fig.2.8. T used as default Do=10"cm?s™!, consistently with the maximum mixing
coefficient given by IGW according to De03, and f2=0.25 (see also Tab.2.1). The
f; parameter affects only marginally the size of the C-pocket, since in my models
it defines the H profile below the TDU for D>>107cm?s™!. In general, by increasing
(decreasing) f; the position of the ¥C-pocket is shifted downward (upward) in the He
interhell layers. This parameter may affect instead the overall TDU efficiency, and thus
the amount of C and s-process material dredged-up to the surface of the AGB star.

For this work, f; is equal to 0.014 by default, consistently with the explonential
decay parameter used during the AGB interpulse phase in Pil3, while the impact of
the Dy and fy parameters on the size of the C-pocket is analyzed. As an example,
Fig. 2.9 and Fig. 2.10 show the '3Cpocket size resulting from the model M2.z22m?2 as a
function of Do and fy after the 3rd and 5th TDU. In order to produce the results of this
test, I recalculated the stellar structure from the end of the previous convective TP
until the formation of the 3C pocket. In these calculations, the parameter ranges 107
<D2< 10" and 0.17<£,<0.29 were explored. All the other stellar parameters were not
changed. The typical 13C-pocket size obtained by using the parameter setup by De03
is ~ 7-8 x107° M. The size of the 13C-pocket tends to increase with the increasing
of Do and fs, up to a size of 1.5 x10~4 Mg with the largest Do and fs values in the
figure. The colored area represents the range of fy still giving an acceptable fitting of
the De03 calculations, and of Dy assuming an uncertainty of one order of magnitude.
the Cpocket size that I obtain ranges from about 4x107° to 1.2x107*Ms. The
impact of this uncertainty on the full AGB stellar simulations is studied in the models
M2.z2m2.hCBM and M3.z1m2.hCBM, which are characterized by Do=10"2cm?s~! and
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Fig. 2.8 Comparison between the internal gravity waves mixing coefficient profile
derived by Denissenkov and Tout [45] (red line) and the CBM profile derived with the
parameterization used in this work (blue line).
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fo=0.27. The same investigation has been performed at the 3rd TDU of the same model,
giving consistent results. As an example, in Fig.2.11 three snapshots of the abundance
profiles of indicative species from model M3.z2m2 are reported, showing the maximum
penetration of H in the He intershell during the 5th TDU (upper panel). After the
TDU, a finite amount of H has diffused into the C-rich intershell, triggering the nuclear
reaction chain 2C(p,y)!3N(3+)'3C leading to the 3C -pocket full formation. At this
point, neutrons produced by 3C(a,n)'%0 start to be released and captured by 6Fe
(refer to the plot to see how this starts to be depleted) and other Fe-peak isotopes,
producing s-process species. Finally, the > C-pocket is totally consumed in the bottom
panel, close to the end of the AGB interpulse period. From the top to the middle panel
about 10 years have passed, while it takes around 10% years to reach the stage shown
in the bottom panel. The following convective TP will mix the s-process products in

the He intershell.

2 Msun; #TDU=3; f1=0.014 — B C-pocket mass

- BC-pocket mass at fixed f2 or D20 (as indicated)

©
n

N
S

15

13
C-pocket mass (510 Me:,

Fig. 2.9 13C-pocket size as a function of the CBM parameters associated with the 3rd
TDU event. The red dot represents the tipical '3C-pocket size obtained with our stellar
models. The yellow area is the typical uncertainty that still affects its value.

2.5.3 AGB stellar models: summary of their main features

In the previous two sections, the CBM setup used to calculate the AGB stellar structures
listed in Tab. 2.1 has been discussed. The main properties of these AGB models are
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Fig. 2.10 Same kind of plot as in the previous figure, but for the 5th TDU.

summarized in Tab. 2.2 and A.2. In Fig. 2.12, top panel, we show the evolution of the
C/O ratio at the stellar surface during the AGB evolution. The surface C/O ratio
evolves similarly considering each model and its analogous He07 model. In particular,
the He07 models show a C/O ratio lower by about 0.2, which corresponds to an avarage
departure of 10% and is mostly due to a lower A\ pyp dredge-up parameter during the
AGB phase. This latter parameter is shown in the middle panel and is defined as:

_ AMpyp

= 2.14
A=Ay (2.14)

where AMpy is the growth of the H-free core after each TP and AMpyp is the dredged
up mass. As expected, we obtain more efficient TDUs (i.e., higher A\ pyp) as the
initial metallicity decreases [e.g., 121]. In the lower panel, the temperature at the
bottom of the convective envelope at the deepest extent of TDU (Togp) is presented.
The larger temperatures at the last TDUs for models with Z=0.02 compared to the
models at Z=0.01 are due to the inverse correlation between the largest temperature
at the bottom of the He-flash convective zone (Trpor) and Togpp: the higher the TP
luminosity, the more the He intershell will expand causing colder TDUs (Togp and
Trpor for all the AGB models and all the TPs are provided in Tab. A.2). We also
confirm the strong dependence of the interpulse period on the core-mass as already
discussed by Paczynski [157]. This is obtained not only along the evolution of single
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Fig. 2.11 Three different steps of ®C-evolution in M3.Z2m2 are presented. The
abundances of H, 4He, 10, 13Cand “Nare shown, together with the main Fe-seeds,
%Feand the heavy s-process isotopes of the different neutron magic peaks N=50 (*3Sr),
N=82 (13Ba) and N=126 (?*®Pb). The top panel refers to the moment of maximum
penetration of the TDU, which is followed by the radiative burning of the ¥C-pocket
with the consequent neutron release and s-nuclei synthesis (middle and bottom panel).
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models, but also from the comparison of the results between different models. The
envelope mass is not important in this sense, since our 3 M models have almost
the same interpulse period of our 2 My models when core masses are similar. The
extension of the different thermal pulse episodes reflects the intershell thickness instead,
being larger in the 2 My models and smaller in the 3 M ones as expected. Finally,
all my models experience a large mass-loss increase as the star becomes C-rich, as
a consequence of the higher opacities in such regime and of a higher bloecker-wind
coefficient adopted during this phase as already discussed in section 2.2.1. In particular,
a super-wind regime occurs after the last TDU event of each model, leading to the loss
of an envelope mass ranging from about 0.7 to 1 My and finally leaving the degenerate
CO core surrounded by the He-intershell. In order to simulate the last TPs, the opacity
is modified to prevent convergence problems related to the Fe opacity peak at the
bottom of the envelope. Indeed, when the star is approaching the end of the TP-AGB,
close to stripping the envelope from the CO core, unstable pulsations are set up, due
to the effect of the Fe-group opacity bump at temperatures around 2x10° K, in a zone
right below the surface. This becomes apparent in the large and irregular variations of
effective temperature and luminosity in the HR diagram. This effect was identified
by Dziembowski and Pamiatnykh [50] to explain 3 Chepheids pulsations: the authors
dermined that a typical solar metal content suffices to explain the pulsation. In order
to get through this phase in my stellar models, I need to lower the opacity to prevent
the Fe bump is effective [96, 122].

2.6 Post-processing nucleosynthesis calculations and

comparison with observations

In this section I discuss the nucleosynthesis results of our AGB models, in comparison
with observations and stellar yields from other authors. The abundances for all the
isotopes up to Bi have been calculated using the post-processing tool mppnp(§2.3). In
addition to the stellar models in Tab. 2.1, other post-processing calculations have been
performed on the same stellar structures, but using different reaction rate networks.
The complete list of these tests is given in Tab. A.1 (see Appendix). Specifically, we
tested the impact of the "*N(n,p)'C reaction rate (models labeled with ntest, where
the default rate is multiplied by a factor of two) and of the neutron capture cross section
957r(n,7)%Zr (models labeled with zrtest, where the default rate has been reduced by
a factor of two). The “N(n,p)'*C is the main neutron poison in the *C-pocket. While

there are several experimental results beyond 20 keV [221, and references therein],
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Fig. 2.12 Main stellar properties during the AGB phase. From top to bottom panel:
C/O surface ratio, Dredge-Up Lambda parameter and Temperature at the bottom
of the convective envelope during interpulse periods (in logarithmic scale). All those
quantities are plotted against the total stellar mass.
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there is only one available so far at energies ~ 8 keV, typical of the '3C-pocket [111].
Beyond 20 keV, independent experiments gave rates changing within a factor of three.
The Zr neutron capture cross sections have been updated by a number of works in the
last years [135, 206, and references therein]. [135] provided a new evaluation of the
957r(n,y)"Zr cross section based on the measurements on the neighboring Zr species.
Its value is more than a factor of two lower compared to older rates [e.g., 15]. This
rate is crucial for the s-process branching point at °Zr, leading to the production of
967y, Zr isotopic ratios are observed in presolar SiC mainstream grains from AGB stars
[16, 129], and provide an important diagnostic for the thermodynamics conditions at
the bottom of convective TPs [e.g., 133]. Therefore, we have tested the impact of this
reaction on the s-process Zr products by reducing its rate by a factor of two. The
uncertainties of other reaction rates crucial for s-process nucleosynthesis in AGB stars,
among which the 22Ne(a,n)?*Mg, were not considered in this work. We refer to other
works for details [e.g., 59, 105, 130, 167].

In §2.5.1 we defined the new CBM parameterization adopted at the boundaries
of the He intershell to calculate the AGB stellar structures discussed here. We have
already seen from Fig.2.12 that all the AGB models become C rich before the end of
the AGB phase, with final 1.4 < C/O < 2.4. In this section the s-process production
in our AGB models is discussed. In Fig.2.13 and 2.14, the evolution of the s-process
indexes during the AGB evolution [131] are shown, where [ls/Fe] is representative of
the surface abundance of s-process elements at the neutron shell closure N=50 (ls
elements = Sr, Y, Zr), and [hs/Fe| of the elements at N=82 (hs elements = Ba, La,
Nd, Sm). The ratio [hs/ls] is given by the relative s-process production at the two
s-process neutron-magic peaks, independently from the absolute production of these
elements [e.g., 29]. Compared to the model Pil3.newnet for a star with the same mass
and metallicity (M = 3Mg),, Z=0.02), the production is more efficient by 0.3-0.4 dex
at the two s-process peak elements. This is due to the different CBM prescription
used below the TDU compared to Pil3: the IGW parameterization allows to form 3C
pockets that are a factor of 3-5 larger compared to the overshooting CBM prescription
used by Pil3. On the other hand, the two models have comparable concentrations of
He, C and O in the He intershell (see §2.6.1). As a consequence, the [hs/Is] ratios are
consistent within ~ 0.05 dex. The model M3.z1m2 and the associated test cases show
a stronger s-process enrichment compared to the models with M=2Mg, and/or with
higher metallicity. In particular, [Is/Fe| ~ 0.7 for M3.z21m2.hCBM.ntest, and [hs/Fe] ~
0.95 for M3.z1m2 and M3.z1m2.hCBM.ntest.
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From a comparison between each model and its analogue with He07 CBM (see Tab.
2.1), it can be seen that the results are consistent within 0.1 dex. This is because the
set of AGB models he07 and the analogous models with no clipping but higher f; share
enhanced C and O abundances in the He intershell (see discussion in §2.4 and 2.5.1).
Therefore, our s-process results are not strongly affected by using these two different

setups.

Most of the models show a final [hs/ls| > 0, with the exception of the models
M2.z2m2.hCBM and M2.z22m2.hCBM.ntest, where [hs/ls] = -0.1 and -0.25 respectively.
The models with more efficient IGW CBM are expected to host >C-pockets on average
50-70% larger compared to the default case. The consequent s-process enrichment in
the AGB star envelope increases by < 0.2 dex for Is elements, while is quite comparable
for hs elements (Fig. 2.14). In general, a larger '3C-pocket allows to have a smoother
decline of 13C, and thus to produce lighter elements more efficiently and, consequently,
lower [hs/ls] ratios. Therefore, while the total amount of s-process elements dredged-up
in the AGB envelope is not drastically affected, the uncertainties associated with the
IGW CBM setup in my models are affecting the relative production at the Sr peak
with respect to the Ba peak. According to the discussion in §2.5.1, the parameters
Dy (i.e. the point where the IGW mixing efficiency dominates CBM) and fz need
to be constrained by future hydrodynamics simulations with an uncertainty much
lower than what was considered here. In Fig.2.14, we also show the cases labeled
as reference__model.ntest, where the only difference with respect to their reference
models is the 4N (n,p)'*C rate multiplied by a factor of two (Tab.A.1). By changing
the N(n,p)'“C rate, the impact is comparable to the uncertainties due to the IGW
CBM setup: for the default models the rate increase reduces the [hs/Is] by about 0.05
dex, while for hCBM models the [hs/ls] ratio is reduced by 0.1 dex. In general, this
is due to the poisoning effect of the rate, which reduces the neutron exposure and
favors the production at the Sr peak in comparison to the models that use the lower
rate. While the errors given by [111] are much lower than a factor of two, the large
departure among different experiments at energies larger than 20 keV requires further
experimental analysis. An accurate determination of the MN(n,p)'*C cross section at
~ 8 keV would allow to constrain more efficiently the physics mechanisms driving the

formation of the '3C pocket.

In the Appendix, we provide two more tables comparing our 2 and 3 M models,
Cristallo et al. [38] and [103] for the stellar yields. The yields values of C and O in
Cristallo et al. [38] are visibly much lower than what we obtain, as a consequence of
the absence of CBM under the PDCZ in their models.
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Fig. 2.14 As in Fig. 2.13, but the abundances obtained in reference model M2.z2m2 are
compared with the models M2.z22m2.hCBM and M2.z2m2.hCBM.ntest; the results of
the model M3.z1m2 are compared with the models M3.z1m2.ntest, M3.z1m2.hCBM
and M3.z1m2.hCBM.ntest.
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2.6.1 Comparison with spectroscopic observations of post-AGB

H-deficient stars and planetary nebulae

About 10% of the AGB stars will experience a Late Thermal Pulse or Very Late
Thermal Pulse event during their post-AGB evolution, becoming H-deficient stars [e.g.,
73, 144]. Examples are the Sakurai’s object [e.g., 77, and references therein], and the
Fg Sagittae [61]. The observation of the surface abundances of stars like the PG1159
objects reveals the He-intershell abundances at late AGB stages, where the amount
of the most abundant elements He, C and O are relics of the AGB stellar evolution
phase. Therefore, they can be used as diagnostics for CBM during this earlier phase
[e.g., 225, 226]. The observed range of abundances in mass fractions are 0.3 < He <
0.85, 0.15 < C < 0.6 and 0.02 < O < 0.20. The CBM below the convective TPs allows
to cover this range of abundances and the largest observed concentrations for C and O,
independently on whether the physics mechanism driving the CBM is overshooting
[e.g., 74] or Kelvin-Helmotz instabilities (this work). [123] partially reproduced the
observed C and O enrichment in the He intershell, with a maximum O concentration
of 5.9%, by including semi-convection in their calculations. While the observation of C
and O in H-deficient stars is affected by relevant uncertainties [e.g., 13, 60], there are
no controversial observations questioning the large spread of C and O abundances in
post-AGB H-deficient stars, and the largest C and O enrichments that are observed. In
Fig.2.15, upper panel, the abundances of He, C and O are shown in the He intershell
after each TP for models M2.z2m2, M3.z22m2, M2.z1m2 and M3.z1m2. The final C and
O abundances are 0.4-0.5 and 0.2-0.1, respectively. Moreover, the linear dependence
between O mass fraction and the adopted f is confirmed. As a comparison, in Fig. 2.15,
lower panel, we also report the abundances observed for PG1159 stars [225], which
are consistent with the predicted He-intershell abundances shown in the upper panel.
Along the post-AGB evolutionary phase, planetary nebulae (PNe) are still carriers of
the abundance signature of the previous AGB phase [220, and references therein]. The
abundances of elements such as O, Cl, Ar have been used in order to identify the initial
metallicity of the PNe progenitor, assuming that their initial concentrations are not
affected by AGB nucleosynthesis. However, evidence for O enrichment has been found
first for PNe at low metallicity [e.g., 161], and lately for PNe with metallicities close to
solar [44, 188]. In particular, [44] confirmed that the O enrichment calculated for AGB
models including CBM at the bottom of the convective TP by Pil3 are compatible
with observations for PNe with solar-like metallicity. Consistently with post-AGB
H-deficient stars, this is another independent observational confirmation that CBM
should be included during the AGB phase. On the other hand, stellar AGB models with



2.6 Post-processing nucleosynthesis calculations and comparison with observations49

large C and O concentrations in the He intershell, typically yield s-process abundances
with [hs/lIs] larger compared to models without CBM [e.g., 22, 38]. In the past this has
been considered a conundrum for AGB stellar evolution and nucleosynthesis. This point
will be discussed later in this section. Furthermore, it is known that the 2?Ne(a,n)?**Mg
tends to be more efficient in models with CBM, causing a higher neutron capture
efficiency at s-process branching points, among others at Zr [e.g., 133]. Later in this
section we will see that this point is controversial at the moment, and that for AGB
models with initial mass M <2My and with CBM at the bottom of the convective
TPs the ?2Ne(a,n)?°Mg does not efficiently activate the neutron-capture channel at
the ?°Zr branching.

2.6.2 Comparison with spectroscopic data from AGB stars

In Fig. 2.17, the [hs/lIs] ratios obtained from my models are compared with spectroscopic
observations of galactic AGB stars [2, 235]. The results for the stellar models with the
same initial mass from the FRUITY database are also shown [38]. The different [Fe/H]
between the two theoretical data sets is due to the different reference solar metals
distriburion adopted. In my models, CBM is considered below the convective TP, while
this is not the case for the models in the FRUITY database. This implies that we
obtain concentrations of >C in the He intershell up to a factor of two larger compared
to models without CBM. As explained by [133], this causes a higher abundance of 3C
in the 13C pocket and, as a consequence, a larger neutron exposure yielding a more
efficient production of heavier s-process elements. This is the reason why my models
tend to show a systematic larger [hs/ls] compared to AGB calculations by [38], and
in general compared to all models without CBM [e.g., 21, 135]. Note that it is not
only the CBM below the convective TP to define the evolution of the [hs/ls] ratio at
the surface of the AGB star. Indeed, the s-process nucleosynthesis is affected by the
complex interplay between CBM at both the two He intershell boundaries, and the
selection of the nuclear reaction rates. In Fig. 2.14, we have shown that a different IGW
CBM setup below the TDU combined with the uncertainty of the N(n,p)'*C rate
might reduce of up to ~0.3 dex the final [hs/ls] ratio. In §?7 we have quantified for the
first time the effect of molecular diffusion, where with our present implementation the
[hs/ls] is only marginally affected. On the other hand, the models shown in Fig.2.17
do not include other relevant physics mechanisms such as rotation and magnetic field.
For instance, [164] have recently shown that by considering rotation in AGB models

the final [hs/ls] ratio tends to be reduced, compared to non-rotating models. Overall,
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Fig. 2.16 He, C and O abundances observed for a sample of H-deficient post-AGB
stars classified as PG1159 objects: He2-459, NGC1501, Sanduleak3 and PG1159-035.
Observations are given by [225].Also the final intershell abundances from M2.z22m2.he07
are presented

both the two sets of models in Fig. 2.17 are consistent with observations. This is also

due to the large observational uncertainties (reported in the figure).

In Fig.2.18, my models are compared with spectroscopic observations for the
[Rb/Fe| and the [s/Fe| ratio, given by the average production at the Is and hs s-process
neutron-magic peaks. The [s/Fe] ratio is a diagnostic tool for the s-process efficiency,
while the [Rb/Fe] ratio increases with the increasing of the efficiency of the ?2Ne
(a,n)?>Mg reaction during the TP [e.g., 117]. In particular, Rb is not made efficiently
at neutron densities typical of the 13C pocket, while at the high neutron densities
during the TP the nucleosynthesis flow $Kr(n,y)®Kr(n,y)*Kr(n,7)8"Kr(37 )3 Rb
allows to accumulate 8”Rb. In these conditions, 8"Rb is made more efficiently than
85Rb and the s-process production of Rb is higher, because of the lower neutron
capture cross section of 8’Rb compared to 8Rb [e.g., 1]. As for Fig.2.17, in Fig. 2.18
observational uncertainties pose a serious limitation to the diagnostic power of these
observed abundance ratios. A large observational scatter is obtained for s-process and
Rb enrichment. On the other hand, it needs to be clarified whether such a scatter is just
due to uncertainties, or if, instead, it traces a real spread of s-process nucleosynthesis

conditions in the He intershell of AGB stars. In my models, the [s/Fe] ratio changes



52 AGB stars evolution and nucleosynthesis

0.6 I T
p M2.zIm2
¢ mM2.z2m2
0.4— @® M3zim2 i
<« M3.z22m2
0.2— - E ® M=2M_; Z=0.01 FRUITY H
V M=2M,; Z=0.02 FRUITY
0.0 )| @ M=3M,;Z=0.01 FRUITY |
'Gl F Bl M=3M,; Z=0.02 FRUITY
= _0.2 + - Abia et al. 2002
_8 4 Zamora et al. 2009
0.4 —
—0.6— —
—-0.8— —
- | | |
1'—%.4 -0.2 0.0 0.2 0.4 0.6

[Fe/H]

Fig. 2.17 Comparison of the [hs/ls] vs [Fe/H] obtained from my models with the
distribution of observational data from Abia et al. [2] and Zamora et al. [235], including
my models and F.R.U.LLT.Y. results.

between ~ 0.4 dex (M2.z2m2) and 0.8 dex (M3.z1m2.hCBM). They all show quite
similar theoretical curves in Fig. 2.18, consistent also with results from the FRUITY
models at Z=0.02. Yet, the s-process abundance evolution for the models at Z=0.01
by [38] shows a larger [s/Fe] up to [s/Fe|~1.3 dex, with a production of Rb comparable
with the models at higher metallicity.

Moreover, as already observed from Fig. 2.13, we obtain again a visible similarity

between each model and its HeO7 analogue.

The model Pil3.newnet has a final [s/Fe| ~ 0.3 and [Rb/Fe] ~ 0.1. As we mentioned
in the previous sections, the IGW CMB allowed to obtain larger '3C pockets compared
to PI13, causing a higher s-process enrichment of the AGB star surface. As it is
possible to see from Fig. 2.18, within the observational and stellar uncertanties these
models can reproduce the observed range of [s/Fe]. Therefore, IGW provide a suitable
mechanism to drive the CBM below the TDU, leading to the formation of the radiative
13C pocket. Of couse this is not a definitive result. Multidimensional hydrodynamics
simulations are required to constrain IGW efficiency in these conditions and to provide

a consistent set of CBM parameters to include in one-dimensional AGB models.
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our results. In particular, considering model M3.z1m2 it turns out that a higher CBM
efficiency during TDU allows to reproduce the abundances of s-process and Rb-rich
stars inside the observational uncertainties.
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2.6.3 Comparison with presolar-grains data

Different types of dust of presolar origin are found in primitive Caceous meteorites.
Their isotopic abundance signatures are anomalous compared to solar material. Today
we know that they were made in stars before the formation of the Sun, by different
stellar sources. Their astrophysical relevance is due to the fact that they are pieces of old
stars, and they still carry the peculiar abundance signatures of the stellar environments
where they were forged [236]. The major stellar sources of presolar C-rich grains are
core-collapse supernovae and AGB stars: nano-diamonds [4, 126, 156], SiC grains of
type X [e.g., 18, 127] and of Type C [82, 170], and low-density (LD) graphite grains
[e.g., 5] were made by core-collapse supernovae, while AGB stars are the astrophysical
source of SiC grains of type mainstream [125, 132, 155] and of high-density (HD)
graphite grains [e.g., 81, 93]. Other types of presolar C-rich grains are SiC classified as
nova grains that are made in Novae and core-collapse supernovae [148] and SiC grains
of Type AB, which may have many different stellar sources [6, 190]. Mainstream SiC
grains are the most abundant type of presolar SiC grains [more than 90% 236]. They
condensed in the envelope of C-rich AGB stars and were ejected into the surrounding
interstellar medium by stellar winds. The condition to form in a C-rich environment
(i.e., C/O>1) is crucial for the formation of C-rich grains. Thanks to high-precision
laboratory measurements of their isotopic composition for heavy elements like Sr,
Zr and Ba, it is possible to derive fundamental constraints about their parent AGB
stars. In particular, theoretical stellar simulations can be compared with the inferred
conditions in the He intershell, where the s-process is activated in AGB stars [e.g.,
14, 16, 128-130, 133, 135]. In this section, the results of our stellar calculations are
compared with measurements of isotopic abundances in mainstream SiC grains for
Zr and Ba. Recently, [130] and [135] have reconsidered the measurements of Zr in
mainstream SiC grains by [16]. The measured ?6Zr/?*Zr ratio in SiC grains is known to
be a diagnostic for the activation of the 22Ne(a,n)2°Mg neutron source at the bottom of
the convective TPs. This is due to the s-process branching point at °Zr, which needs
high neutron densities to produce *5Zr via direct neutron capture on *Zr [133]. [135]
identified a positive correlation between the %2Zr/%Zr and 27Si/28Si ratios, suggesting
that the observed spread of 92Zr/%*Zr is a signature of the initial metallicity of the
AGB progenitor. Furthermore, [130] suggested that this ratio can be used to constrain
the internal structure of the ¥C-pocket. The same methodology is adopted by [128]
by using new measurements for Sr and Ba. In particular, the comparison of AGB
calculations with new measured 3Sr/%0Sr and 13¥Ba/!3°Ba ratios is used to derive

information about the size and 3C concentrations in the '3C-pocket. In Tab. A.3 the
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final isotopic ratios obtained in the He intershell and in the AGB envelope are shown
for our AGB models. In Fig. 2.19 and 2.20 the evolution of the Zr abundances at
the stellar surface during the AGB evolution are shown. In Fig. 2.19, the models
cover a large range of %6Zr/%4Zr ratios, with 200 > §(?6Zr/4Zr)>-600. The physical
factors with the largest impact on this quantity are the temperature at the bottom of
the PDCZ, which is correlated to the CBM description at the bottom of such zone,
and the neutron-capture reaction rates on Zirconium isotopes. Compared to Pil3
and the results by [132] obtained for AGB models including CBM at the bottom of
the convective TPs, the negative § values are mostly due to the new Zr MACS by
[135] (see also Fig.2.4). My models reproduce the observed scatter of 6(*°Zr/%*Zr),
while a relevant fraction of grains with low §(*1Zr/%Zr) and §(%2Zr/%*Zr) ratios are
not reproduced. As discussed by [130], Zr isotopic ratios can be used to test size and
properties of the C pocket. In my models, the ¥C pocket is made after each TDU
consistently with the IGW CBM adopted to calculate the stellar structure, while the
IGW CBM implementation is made by a simple fitting of the [45] simulations. This
allows to provide a good indication of the size of the 3C pocket due to IGW CBM, but
the detailed shape needs to be constrained by hydrodynamics simulations. Furthermore,
rotation and magnetic field are two fundamental pieces of physics still missing in my
models, that will affect the 3C pocket properties after its formation [for rotation, see
76, 164], and eventually the s-process Zr isotopic ratios [128]. Therefore, a crucial
step forward to challenge the scenario where IGW CBM is the physics mechanism
responsible for the formation of the '3C pocket, will be to calculate how the pocket is

modified by rotation and magnetic field during the s-process production.

Grains with 6(?9Zr/%*Zr)<-900 are not reproduced by baseline AGB models [130,
135]. The models shown in Fig. 2.19 confirm the increasing trend of the %6Zr/%*Zr ratio
with the increase of the initial mass and with the decrease of the initial metallicity
[130, 133, 135]. However, my AGB models cannot reproduce grains with &(?6Zr/%Zr)<-
600. Fig. 2.20 shows the impact of the ?Zr(n,y)?Zr neutron capture cross section
on our results. The cross section provided by [135] was reduced by a factor of two.
In general, the use of the reduced rate allows to decrease the final %Zr/?Zr ratio by
§ ~200. Therefore, while the new % Zr(n,y)Zr cross section helps to alleviate the
overproduction of 6Zr compared to ?4Zr, the observed range is not reproduced. From
the nuclear physics point of view, the other reaction rate relevant for the ?Zr branching
is the rate of the neutron source ??Ne(a,n)?*Mg. Once the combined uncertainties of
the %°Zr(n,y)"Zr and ?2Ne(a,n)?°Mg rates will be reduced by nuclear experiments,

the 99Zr/%4Zr will be a crucial diagnostic to constrain our simulations. From Fig. 2.19
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Fig. 2.19 Upper panel: §(*°Zr/%4Zr) vs. §(%Zr/9Zr) for the same models in figure
2.13 but also including the M2.z2m2.hCBM and M3.z1m2.hCBM to check the CBM
impact. Middle panel: 6("1Zr/%Zr) vs. §(?°Zr/%Zr) for the same models in the upper
panel. Lower panel: 6(°2Zr/%*Zr) vs. 6(°%Zr/**Zr) again for the same models. In all
these plots is visible how difficult is to reproduce observational data from grains with
low 6(?9Zr/%Zr), even if a higher CBM efficiency during TDU seems to help as this is
translated in a higher **Zr production.
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of panels as in figure 2.19, but here showing the impact of

957r(n,y)?Zr reaction rate. In particular we show what results dividing the reaction

rate by a factor of two.

It’s noticeable the impact of the rate uncertainty that, together

with the CBM one, can explain the SiC presolar grains here plotted.
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Fig. 2.21 As in figure 2.19, but the results are shown for the models calculated with
the Herwig et al. [75] CBM prescriptions.
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and Fig. 2.20, it appears that the impact of Zr(n,v)?Zr is comparable with the
variations between models M2.z2m2 and M2.z2m2.hCBM. These two models carry the
impact of the uncertainty associated to the IGW CMB implementation in my models.
This is due to the fact that model M2.22m2.hCBM tends to have C pockets larger
than model M2.z2m2, changing the relative contribution to the total neutrons made
from ¥C(a,n)'%0 (producing **Zr but not %9Zr) and from 2?Ne(a,n)?*Mg (eventually
producing also “6Zr). Furthermore, a larger s-process enrichment in the He intershell
allows a more efficient pollution of the AGB envelope. Therefore, in my models the
13C-pocket properties affect also the %6Zr/4Zr ratio. An additional aspect that deserves
more discussion is the parameterization of the CBM at the bottom of the PDCZ. As
mentioned in §2.5, HeO7 upper-limit parameter values were adopted in this work, with
the f; value higher by more than a factor of 2. The same section also outlined the
peculiar treatment of small convection zones made in our adopted MESArevision and
in the following ones, in which the mixing length was forced to be smaller than the
height of the zone, resulting in a less efficent CBM for the same CBM parameters. It is
shown now how the CBM parameters with the MESArevision adopted in this work are
consistent with the upper-limit values given in He07. First of all, the final He, C and O
mass-fractions in the Intershell obtained with our M3.z22m2 model (48%, 31% and 13%
respectively) are clearly comparable with the values obtained with the analogue model
calculated without any forced-limit on mixing length and He07 upper-limit parameters
(in this sections briefly referred to as 'He07 models’ ), i.e. 58%, 25% and 10%. These
values can be compared with their analogous ones obtained by re-introducing the forced
mixing-length limit, i.e. 55%, 29% and 6%. It should be noted in particular that O is
the most sensitive element to such mixing-description. Moreover, each He07 model
has the same number of TDU events, also considering the C-rich phase. The impact
on 6(?9Zr/%4Zr) was also considered. As already said, this too depends on the CBM
description at the bottom of the PDCZ. In general, the values from each model evolve
in a similar way compared to its He07 analogous, also considering final values. The
only exception can be identified comparing models M3.z2m2 and M3.z2m2.he07, where
the final §(%Zr/%Zr) values differ by more than 100. The Zr isotopic ratios for the
He07 models are shown in Fig. 2.21, compared to the observed abundances in presolar

grains.

From Tab. A.3, it appears that the final surface abundance for most of the models
is quite representative of the He-intershell abundances, with the tendency to show a
milder departure from the solar composition in the AGB envelope compared to the He

intershell, due to the contribution from the pristine stellar composition. Concerning
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the 907Zr/ 9471 ratio, this trend is maintained for both positive and negative ¢ values.
For instance, the model M3.z21m2.hCBM has final §(%%Zr/%*Zr) equal to +631 and
+162 in the He intershell and in the AGB envelope, respectively. On the other hand,
the model M2.22m2.hCBM shows § = -741 and -584. The model with the lowest ¢
values is M2.z1m2.zrtest, with -831 and -613. More efficient TDUs, or a larger number

of them would have eventually allowed to reach lower final §(%°Zr/%*Zr) values.

If we look carefully at the theoretical evolution curves in Fig. 2.19 and 2.20, all the
models with initial mass M=3 M, show a signature of efficient “°Zr production due to
the 22Ne(04,n)25Mg activation at the bottom of the convective TP, eventually leading
to positive § values. This picture is consistent with [133] and Pil3, where CBM at the
bottom of the convective TPs makes the He intershell more He-poor, causing a stronger
22Ne(a,n)**Mg activation due to the larger temperatures compared to models without
CBM. On the other hand, in our M=2 Mg, models the new %Zr(n,y)?Zr cross section
strongly reduces the production of 6Zr. Therefore, according to our simulations, AGB
models with initial mass M<2 M can have negative 6(°9Zr/%Zr)and, at the same
time, C and O concentrations in the He intershell consistent with post-AGB stars
and planetary nebula observations. However, for the 2 Mg stellar models the degree of
pollution of the AGB envelope with He-intershell material seems to be not high enough
to explain the abundances for all the presolar grains. In Fig. 2.22, the Ba isotopic ratios
from our calculations are compared with the observations. The '3®Ba/!3%Ba ratio
decreases with increasing metallicity and with decreasing stellar mass. Furthermore, as
also indicated by [129] and [128], the shape of the !3C pocket affects the results. Also
the uncertainty of the '*N(n,p)'*C rate is relevant for the Ba isotopic ratios, since it is
the main neutron poison in the 3C pocket. In Fig. 2.22, we compare the results for
the models M3.z1m2, M3z1m2.hCBM and M3.z1m2.hCBM.ntest (Tab. 2.1 and A.1).
With the exception of the grains with the lowest d(1*Ba/!?0Ba) and §('3°Ba/!'3Ba),
the observed range is reproduced by my models within the uncertainties, and the same

conclusion can be drawn considering §('3"Ba/!?Ba).

In Fig. 2.23 we show the same kind of comparison as in Fig. 2.22, but this time

time for our HeO7 models, confirming again the high similarity of the results.

Summing up, 2 My AGB models that include CBM at the bottom of the convective
TP and with C and O concentrations in the He intershell are presented in this work.
Thanks to the recent update of the Zr neutron capture cross sections, these models
are, for the first time, consistent with observations in post-AGB stars, with no efficient
production of %Zr. The ?6Zr/?Zr ratio was also shown to be affected by the '3C pocket
implementation. As indicated by [129], [130] and [128], observations of the s-process
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signature in presolar grains from AGB stars may help to derive important constraints
for the main features of the 13C pocket. In the future, AGB models will need to include
rotation and magnetic field, since, as shown recently by [164], rotation affects the 3¢
pocket history once the '3C pocket has formed. A more detailed description of the
IGW CBM is crucial to fully test a scenario where gravity waves are the dominant

physics mechanism responsible for the formation of the 3C pocket.

2.7 AGB stars models: Discussion and summary

In this work I have presented eleven new AGB stellar models with initial mass M
= 2Mgy and 3 My, and initial metallicity Z = 0.01 and 0.02. Additionally, other
seven complete stellar runs have been calculated using the same stellar structures,
but different rates for the reactions “N(n,p)'4C and %Zr(n,y)?Zr. The element
distribution at the stellar surface after the last TDU event for these models is given
in Fig.2.24. In the lower panel it’s possible to compare the results of Pil3 with our
M3.z2m2, finding the confirmation of the larger s-process production (by about a factor
of 4 at both Sr and Ba peaks) due to the larger 13C -pocket obtainedin our models and
at the same time the [hs/lIs| index, characterising the slope of the s-process distribution
is overall the same. In both panels, the difference between He07 models and their
corresponding ones with clipping is about the same. The isotopic distribution is given
in the Appendix, Fig. A.1 and Fig. A.2.

For the first time, these models study the impact of the following physics processes
on AGB stellar evolution and nucleosynthesis: the CBM at the bottom of the convective
TPs keeping into account Kelvin-Helmholtz and IGW instabilities, guided by He07
hydrodynamics simulations and by observations in post-AGB stars; the CBM below
the TDU driven by IGW, according to De03; the molecular diffusion in the stellar
layers where the radiative '3C pocket forms and evolves.

The main results are the following. The Kelvin-Helmholtz instabilities at the
bottom of convective TPs affect the AGB evolution and the He intershell abundances
by allowing to accumulate C and O and reducing the He abundance. Our results are
consistent with previous AGB simulations where overshooting was assumed to be the
dominant CBM mechanism. In these models, the final C and O mass fractions in
the He intershell are 0.4-0.5 and 0.2-0.1, respectively. Compared to Kelvin-Helmholtz
instabilities, gravity waves have a marginal contribution. These results are obtained
by applying a decreasing double-exponential profile of the mixing coefficient to my

one-dimensional stellar models. The CBM parameters adopted for MESA calculations
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Fig. 2.23 Same as in Fig.

2.22, but the results are shown for the models calculated

with the Herwig et al. [75] CBM prescriptions.
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below convective TPs are f;=0.024, f=0.14 and Dy= 10° cm?s™ .
Therefore, compared to the original prescriptions by HeO7, we have increased f; by a

factor of two in order to be consistent with the observations in post-AGB stars.

While guidance from hydrodynamics simulations is crucial to build robust AGB
stellar models, it is difficult to derive absolute recipes directly applicable to one-
dimensional simulations without some preliminary work and additional guidance from
observations. For instance, we have shown that different sets of parameters may be
needed to get the same results by using different MESA code revisions. The same
conclusions could possibly be derived by using different stellar codes. These differences
need to be considered as intrinsic uncertainties of the one-dimensional stellar evolution.
Following the discussion in section 2.4, it is worth emphasizing that it is not clear
whether the default choices made for convection in MESA revision 4219 (used to
calculate the AGB models in this work) are more correct than the previous setup in
MESA revision 3372 (Pil3). Both cases are characterized by assumptions that are not

unequivocally correct for the He-intershell conditions.

In our AGB models the IGW allow to form radiative 13C pockets with size in
the order of 1074 My, by using the following CBM setup below the TDU in MESA
calculations: f;=0.014, f,=0.25 and Dy=10"" cm?s~!. This setup was obtained from
fitting De03 results. However, the parameter f; does not affect the size of the 3C
pocket, which is dominated by the IGW parameterization (i.e., f2 and Da).

At the end of the the AGB evolution, an s-process production of 0.36 <[s/Fe| <0.78
and -0.23 <[hs/ls] <0.45 is obtained. This is consistent with spectroscopic observations.
The impact of the uncertainty in the IGW CBM parameterization for the C pocket,
and of the 14N(n,p)14C rate on the results is also . According to my models, an increase
of the mentioned rate by a factor of two at a relevant energy of ~8 keV reduces the
final [hs/ls] by 0.05-0.1 dex. Comparable variations are obtained by using different
IGW parameterizations. Therefore, the 14N(n,p)MC rate needs to be constrained with
an uncertainty much lower than a factor of two in order to better explore the IGW

scenario.

The s-process abundance signatures in presolar C-rich grains are the most chal-
lenging and constraining observations to study the s-process nucleosynthesis in AGB
stars, and they also provide crucial information about the stellar conditions in the
He intershell of the parent stars. Recent works compared new measurements in SiC
mainstream grains and stellar AGB models predictions, and ascertained that the size
and shape of the C pocket can be indirectly studied by isotopic ratios of s-process
elements like Sr; Zr and Ba. Thanks to the flexibility given by the use of AGB models
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with parameterized C pockets, [129], [130] and [128] tried to infer about the main
properties of the pocket where the s-process takes place. On the other hand, [164] and
[128] showed that a physics mechanism like rotation might affect the main properties
and the nucleosynthesis in the C pocket after its formation. This is due to e.g., the
slow mixing of material (including "N and the s-process seed 5Fe) from stellar layers
located above the pocket into the thin regions where the s-process takes place. Quali-
tatively, the same effect is triggered by molecular diffusion in my models. Molecular
diffusion does not have an impact in the typical timescales of the 3C pocket formation.
However, it might affect the 13C-pocket at later stages. It has been shown shown that
with the implementation of the molecular diffusion adopted in this work the impact
on the final s-process abundances is marginal. However, by using the default MESA
setup the s-process nucleosynthesis in the C pocket would have been suppressed.
Therefore, the measurements in presolar grains may allow to infer about the physics
mechanisms crucial for the formation '3C pocket, but also about the physics events
affecting the pocket along its evolution before the 3C(a,n)'%O neutron source runs out
of fuel. These information is wrapped together in the s-process abundance signatures
in presolar grains from AGB stars. In order to use presolar grain data to answer the
question of what the physical mechanisms for the formation of the C-pocket are,
AGB stellar models need to take into account processes with a delayed impact like
rotation, magnetic field and molecular diffusion. This might be challenging, but the
future guidance from multi-dimensional hydro-simulations will make it possible in the
next few years, thus making AGB stars a unique laboratory to study different physics

mechanisms in stellar environments.



Chapter 3

Production of the p-process seeds
for thermonuclear supernovae in

the single-degenerate scenario

3.1 Introduction

At the end of the AGB evolution, stars lose all their envelope entering the planetary
nebula phase and cooling down as a WD. However, a fraction of those WDs that
are part of a binary system can evolve differently, and eventually explode as SNe Ia.
Several studies in the past tried to simulate the accretion of material on a central WD,
since, depending on different details of the binary system and of accretion efficiency,
they may generate different objects that are observed in the galaxy, like Novae [e.g.,
98] and cataclismic variables [109]. If the star can reach the Chandrasekhar limit (1.39
Mg) by accretion, it will end its life as a SNIa [79].

Sion et al. [196] and Paczynski [158] investigated the long-term evolution in close
binary systems of accreting WDs, focusing on H-shell flashes occurrence and on their
dependence on the accretion rate. Paczynski [158] introduced a one-zone formalism
that has been adopted later by e.g., Shen and Bildsten [195]. In this work, a stable
H-burning condition on accreting WDs is studied, and the dependence of various
H-burning regimes (unstable, nova-recurrent, stable burning and super-Eddington
limit) on the accretion rate, on the metallicity of the accreted material and on the WD
mass is defined.

In these studies, the evolution of the deeper He-burning layers is not followed in

detail, and only the feedback to the He luminosity is considered (see also Nomoto et al.
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[151], Ma et al. [137] and Starrfield et al. [199]). One of the first works to simultaneously
simulate H and He flashes was that presented by Jose et al. [99], performing a numerical
two-zone study. Later, Tornambé et al. [212] performed a similar study. In particular,
he highlighted that during the accretion phase of WDs the He-flashes strongly reduce
the capability of the star to retain the accreted mass, making it more difficult for the

SNIa single-degenerate scenario to reach the Chandrasekhar mass.

Langer et al. [119] studied the evolution of close binary systems consisting of a
main sequence star and a WD, resolving both the components of the binary system,
but txreating the WD as a material point. With this setup, they investigated the
properties of the systems as a function of the initial donor star mass, initial WD mass,
initial period, and chemical composition. They obtained that, in order to reach the
Chandrasekhar limit, the initial mass of the WD when the accretion starts should be
about 0.7 M.

As mentioned in Chapter 3.1, SNe Ia are fundamental sources for galactical chemical
evolution. They produce iron group elements in the ejecta exposed to the most
extreme SN conditions [e.g., 26, 92]. In the ejecta exposed to less extreme conditions,
intermediate mass elements like Si and Ca are made, as also confirmed from optical
spectra of recent SNIa remnants [e.g., 53, 79, and references therein]. Finally, in the
most external 0.2-0.3 M, ejected also the p-process nuclei from "Se to " Hg can be

made.

Travaglio et al. [217] and more recently Travaglio et al. [216] obtain that almost all
the p-nuclei are calculated with similar enhancement factors relative to *Ni, including
the puzzling light p-nuclei 22Mo, ?*Mo, Ru and ?*Ru. As also pointed out by the
authors, a crucial assumption for the this scenario is to have s-process rich material
in the outer accreted layers of the SNIa progenitor. Indeed, the p-process products
in SNe Ia can be made in large quantities only if there is a previous heavy-elements
enrichment by neutron captures during the accretion stage, which will act as seed
for the p process during the SNIa explosion. Furthermore, this enrichment should be
located in the most external layers of the SNIa progenitor. If they are located too
deep, the temperature conditions are too extreme and the SN shock will completely
photo-disintegrate all abundances heavier than the Fe group, including the p-process

isotopes.

Possible sources of s-process enrichment in the SNIa progenitor are the s-process
abundances accumulated during the AGB phase before the formation of the WD
[20, 59, 104]. T presented in Chapter 2 my results for the s-process in AGB stars.
On the other hand, the s-process production made during the AGB phase will be
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buried inside the progenitor at mass coordinate about 0.6-0.65 Mg (see e.g., Tab. A.2).
For typical SNIa explosions in the single-degenerate scenario, this region will be first
convectively mixed during the simmering phase before exploding as SNIa, where a
convective region grows at the WD center including up to about 1 Mg, over a timescale of
~ 1000 yr [171]. The s-process enrichment built in the AGB He intershell is mixed over
the WD structure, with a strong dilution of heavy element enrichments. Furthermore,
the same region will later experience a-rich freezout or incomplete Si-burning conditions
during the SNIa explosion [211]. So, there will be no p-process material ejected from
this stellar region.

Travaglio et al. [217] assumed that during the accretion phase the s-process material
was accumulated in the external 0.2-0.3 Mg of the SNIa progenitor, with a distribution
typical of the main s-process component. Iben [85] proposed that heavy elements could
be made in these conditions, where He-burning layers were burning with convective
TPs below the accreting H-burning layers. They suggested the ??Ne (a,n)*Mg as
the main neutron-source during the following TPs events. That work was a first
attempt to access and discuss this possibility, without actually simulating the accretion
phase. Another interesting case prospective is the Helium-accreting scenario, which
was recently considered by Piersanti et al. [165], who studied the thermal response of
non-rotating WDs to direct accretion of helium. They explored the impact of different
Helium accretion-rates on the WD structure, without investigating the nucleosynthesis

coming from a SNIa event with a this kind of progenitor.

In the next sections of this chapter I will report the results of my calculations. I
will present my simulations of solar-composition matter accreting WD models, and the
neutron-capture nucleosynthesis of heavy elements during the accretion phase, testing

the assumption of Travaglio et al. [217].

3.2 Accreting WD models: main stellar model prop-

erties and initial setup

The stellar models presented in this chapter are computed using the stellar code MESA
[MESA revision 4219, 160].

The solar distribution used as a reference is given by [65]. For a description of the
MESA code and the CBM implementations in these models, I refer to chapter 2.

Mass loss is only considered when Super-Eddington wind conditions are met,
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which is triggered when the luminosity of the accreting WD exceeds the Eddington

luminosity, defined as

4 GMe

L = — 1
Edd kap (3.1)

where M is the WD mass and kap is the opacity [137, 149, 195]. After the TP, the
balance between the radiation and the gravitational forces is violated and a highly
intensive mass loss rate results. Considering a pure ionized H plasma, a simple
derivation of the Eddington limit is obtained by setting the outward radiation pressure

equal to the inward gravitational force, thus giving:

M
Lpgq=3.2 % 104mL<D (3.2)

Once Lggq is defined, if the stellar luminosity L exceeds Lggq mass-loss is calculated
according to Paczynski and Proszynski [159], who determined an analytical relation

between the stellar luminosity and the mass outflow rate:

dM L
—=1. 108gs 1 (———1 .
7 67 x 10*°gs (LEdd ) (3.3)

For the simulations the following nuclear networks are adopted: 1) wd-accr.net,
including 33 isotopes from protons to 2Mg linked by nuclear-reactions including the
pp chains, the CNO tri-cycle, the triple-oc and the a-capture reactions 2C (a, 7)'00
YN (a, 7)BF (et)180 |, O (a, v)?2Ne 13C (a, n)'°0 and F (o, p)*?Ne . We use
the NACRE [7] reaction rate compilation for most reactions. For the 12C (a,7)%0 we
adopt the rate by [113], N (p, )50 is by [89] and the triple-a by [58]. This network
is used for the main calculations in this chapter, presented in section 3.2.2; 2) nova.net,
which includes 48 isotopes from H to Si%0 coupled by 120 reactions. The same network
was used by e.g., Denissenkov et al. [47], and, compared to wd-accr.net, it differs by
not including He-burning reactions. This network is used for the tests presented in
section 3.2.1; 3) cno — extras.net, including 13 isotopes from H to Mg?* coupled by 56

reactions. This network is used for the tests presented in section 3.2.1.

The initial WD models used to start the simulations are included in the MESA
revision 4219, in the data folder. We did not calculate WD models since the simulations
are focused on the accretion phase, that is quite independent from the WD interior
structure [e.g., 137, 229]. For the models presented in section 3.2.1, we use the MESA
WDs models 0.639from3.0z2m2.mod, 0.819from4.0z2m2.mod, 1.025from7.0z2m2.mod
and 1.316from8.5z2m2.mod. For the models in section 77, we use CO WDs with initial
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mass M = 0.639and0.856 M. In the center they are made of about 30%, 68% and 2%
on C, O and Ne respectively. They are characterized by an He-rich cap over the CO
core, which is a relic of the He-burning layers on top of the CO core, with typical mass
fractions 55% < He < 65%, 35% < C < 45% and 2% < O < 10%.

As shown in chapter 2, these are consistent with the results of the CBM adopted in
this work. We also use the following ONeMg WDs: M = 1.259 My, with 60% O, 30%
Ne, 7% C and 3% Mg, and M = 1.376 M, with 60% O, 37% Ne, and 3% Mg. WD
models have all a central temperature of the order of 100 MK, which means that we
assume that the WD has been formed recently and it did not spend a long time cooling
down [see 137]. Notice that I use ONeMg WDs, that are not SNIa progenitors. As
already mentioned, the central conditions are not relevant for the accretion simulations
on the surface of the WD. On the other hand, it is plausible to use these WD models as
progenitors assuming that they reached that mass by previous accretion, or by forming
recently as hybrid WDs [46].

3.2.1 Models description: identification of different burning

regimes

In accreting WDs, different burning regimes are possible, depending on the accretion
rate, on the composition of the accreted material and so on. Five main accretion
regimes are identified: strong H-shell flash regime, mild H-shell flash regime, steady
H-burning regime, red-giant regime and super-Eddington wind regime. Supersoft
X-ray sources have been proposed as observational signatures of accreting WDs in
which steady burning of H is taking place [219]. Given a specific composition of the
accreted material and assuming constant accretion rate, stable burning of H requires
accretion rates within a narrow range. Below this range unstable H burning occurs,
and above this range the stellar envelope expands to red giant size, or eventually a
strong overflow or Super-Eddington wind is set for higher rates. Therefore, the highest
probability to efficiently accrete material and reach the Chandrasekhar-mass limit is by
adopting an accretion-mass rate within the steady H-burning regime. For such systems,
theoretical stellar calculations found H-rich matter transfer rates ranging between 1077
and 4x10~7 Mg yr=! [e.g., 151, 195].

The steady H-burning conditions were defined by considering only H burning and
without including He-burning rates for deeper stellar layers. Nevertheless, it may
be assumed that they still hold even if He-burning is also considered, provided that
burning is dominated by reactions of the full CNO cycle [151, 195]. In this section, we
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present a preliminary study done to identify these conditions with the MESA code.
The main goal is to verify with our code setup the critical mass-accretion rate resulting
in a transition from unstable to stable H burning as a function of the accreting WD

mass, to apply for the following calculations.

The stellar models and their basic properties are presented in Table 3.1. All of the
models are used starting from WDs of different masses, described in section 3.2. Those
models denoted by cbml and cbm2 were calculated using nova.net, with the cbml
models using the CBM prescription of Denissenkov et al. [47], i.e. a single-exponantial
decay overshooting scheme with f=0.004 applyed to every convective boundary, and the
cbm?2 ones using the double-exponential decay formalism introduced in Chapter 2 with
f1=0.014 applied under the H-burning shell. Notice that this last case is equivalent to
a single-exponantial decay overshooting scheme with f=0.014, since the second decay
is activated only when TDU conditions are achieved (see Chapter 2) and this cannot
happen in this preliminary study, since the H-burning shell is never extinguished.
Models denoted by simple were calculated using cno — extras.net and no CBM ap-
plied. Moreover, M0p639.Z1m2.Hburn.cbm2 and M0p639.Z1m2.Hburn.simple achieved
H-burning with dm /dt=4x10"% Mg, yr~!, while in M0p639.Z1m2.Hburn.cbm1 I used
dm /dt=5x10"8 Mg, yr~!. In MOp856.Z1m2.Hburn.cbm1, M0p856.Z1m2.Hburn.cbm?
and MOp856.Z1m2.Hburn.simple dm/dtzl.lxlo_7 My yr~! was identified, which in-
creases to dm /dt=2.75% 10" My yr~! in M1p316.Z1m2.Hburn.cbm1, M1p316.Z1m2.Hburn.chbm?
and M1p316.Z1m2.Hburn.simple. Finally, M1p025.Z1m2.Hburn.cbm2 and M1p025.Z1m2.Hburn.simple
achieved H-burning with dm /dt=1.8x10~7 M yr—!, while in MOp639.Z1m2.Hburn.chm1
I used dm/dt=2x10"" Mg yr—'.

These calculations allow to explore the impact (if any) of different nuclear networks
and CBM schemes. A summary of the results is given in figure 3.3. For comparison,
I include also the models provided by Nomoto et al. [151] and Shen and Bildsten
[195]. The results show that: 1) the details of the stable-burning accretion are only
marginally affected by the CBM, or 2) by using different networks; 3) a good agreement
is obtained between my calculations and Nomoto et al. [151] and Shen and Bildsten

[195], despite using different stellar codes and simulations setup.

As indicated in the previous section, the accreted material has Z=0.01 metallicity.
The results obtained above depend on the metallicity of the accreted material [195]. In
the next section, I will use the fixed accretion rates indicated in table 3.2 consistently
with the WD initial mass. From the table and from figure 3.3, the accretion rate
needed to burn H steady increases with increasing WD mass, as expected [137, 195].

This will also imply a decrease of the interpulse period with the WD mass. Paczynski
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Table 3.1 List of accreting WD models with critical stable H-burning conditions:
initial mass, initial metallicity and CBM parameterization are given. The CBM
parametrization is given by a single-exponential decreasing profile. The CBM parameter
f is given below the H-burning shell. The nuclear network adopted is denoted by cno
where cno — extras.net was used or nova where nova.net was used.

name mass [Mg| metallicity f network
MOp639.Z1m2.Hburn.simple 0.639 0.01 - cno
MOp856.Z1m2.Hburn.simple 0.856 0.01 - cno
M1p025.Z1m2.Hburn.simple 1.025 0.01 - cno
M1p316.Z1m2.Hburn.simple 1.316 0.01 - cno
MOp639.Z1m2.Hburn.cbm1 0.639 0.01 0.004 nova
MOp856.Z1m2.Hburn.cbm1 0.856 0.01 0.004  nova
M1p025.Z1m2.Hburn.cbm1 1.025 0.01 0.004 nova
M1p316.Z1m2.Hburn.cbm1 1.316 0.01 0.004 nova
MO0Op639.Z1m2.Hburn.cbm?2 0.639 0.01 0.014 nova
MOp856.Z1m2.Hburn.cbm?2 0.856 0.01 0.014 nova
M1p025.Z1m2.Hburn.cbm?2 1.025 0.01 0.014 nova
M1p316.Z1m2.Hburn.cbm2 1.316 0.01 0.014 nova

w
o

N
U

N
o

=
(92

® cno_extras.net, no CBM
® nova.net; CBM1
A A nova.net; CBM2
Shen & Bildsten 2007
— Nomoto et al. 2006

0.7 08 09 1.0 1.1 1.2 1.3 1.4
WD mass (M)

=
o

o
U

Accretion rate * 10" (M _/yr ')

Fig. 3.1 Critical mass accretion rate resulting in a transition from unstable to stable H
burning as a function of the accreting WD mass. All the accretion rates lower than the
critical values result in unstable H burning, making the reaching of the Chandrasekhar
limit more difficult. A comparison between our accretion models and the literature is
also provided.
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[157] found the same result in AGB stars, where in that case the relation is between

the interpulse period and the CO core mass.

3.2.2 Models description: accretion models calculations

Once the accretion rate is defined in order for a given initial WD mass to have steady
burning of H, the accreted material is burned via CNO cycle efficiently. The H-burning
ashes are accumulated in the He-rich intershell just below the surface. The bottom of
the He intershell is compressed and temperature rises until an He flash occurs, releasing
large amounts of energy and developing a pulse-driven convection zone (hereafter
PDCZ). Therefore, the accretion phase appears to have strong similarities with the
convective TPs occurrence during the evolution of AGB stars, discussed in the previous
chapter. The first qualitative difference is that during the AGB phase there is a large
H-rich envelope on top of the He-burning region, while in this case there is no envelope.

Despite this, as also indicated by previous works [e.g., 106], during the accretion
regular convective TPs occur in the He-burning layers. Thousands of TPs would be
required in order to reach the Chandrasekhar-mass limit. However, I simulate only
a limited number of TPs for each initial WD mass, to study the different conditions
obtained along the accretion phase.

In table 3.2 the list of models analysed during this thesis, together with their main
parameters setup, is presented.

All the models were calculated using the reaction network wd — accr.net and a
double-exponential mixing-coefficent decay formalism to include CBM [75]. Each
model is characterized by a fixed accretion rate. dm/dt is 2.08x10~7 M yr~! in
MOp856.Z1m2, dm,/dt is 3.16x 107 Mg yr~! in M1p025.Z1m2, dm/dt is 3.7x10~" Mg,
yr~1in M1p256.Z1m2 and dm/dt is 6x10~" Mg yr~! in M1p376.Z1m?2.

Initial mass, metallicity, CBM parameters and number of TP simulated are given
in the table.

Table 3.2 List of accreting WD models and their relevant parameters: initial mass,
initial metallicity and CBM parameterization. The CBM parametrization is given by a
double exponential decreasing profile. The CBM parameters are given below the TP
(fl, D2 and fg).

name mass [Mg] metallicity f1 Do fa TP MESA TP MPPNP Accretion rate (1077 Mg )
MOp639.Z1m2 0.639 0.01 0.011 10° 0.14 4 0 1.00
MOp856.Z1m2 0.856 0.01 0.011 10° 0.14 4 4 2.08
M1p025.Z1m2 1.025 0.01 0.011 10° 0.14 137 7 3.16
M1p259.Z1m2 1.250 0.01 0.011 10° 0.14 4 4 3.70
M1p376.Z1m2 1.376 0.01 0.011 10° 0.14 2 2 6.00
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In table B.1 (see appendix), for each model the main stellar properties after each
TP event are given. In addition to the mass coordinate at the top and bottom of
the He-flash convective zone, for every TP the largest temperature (in logarithm) at
the bottom of the flash-convective zone is presented. This is the most crucial stellar
property from a nucleosynthetic point of view, since it directly determines the efficiency
of the 22Ne (a,n)?Mg and the resulting neutron-density. Finally, the stellar mass at

and after the TP is given, allowing to estimate the mass retention rate for each model.

3.3 Accretion-WD models: summary of their main

features

As it is possible to see from table 3.2, a limited number of TPs is simulated for each
model. The only exception is model M1p025.Z1m2, where 137 TPs are calculated to
explore relevant changes of the TPs properties in a longer sequence, and to study if
the accreting WD is actually increasing in mass.

Figure 3.2 shows the Kippenhahn diagram for a TP and a sequence of TPs of the
model M1p025.Z1m2. The results of this model (and of all the models in table 3.2)
confirm the calculations of Tornambé et al. [212]: the Eddington limit [189] is easily
exceeded immediately after each He flash, ejecting almost all the matter accumulated
during the previous interpulse phase. This reduces the efficiency of the accretion
process toward Chandrasekhar mass. Despite these powerful winds, in figure 3.2 it
is highlighted that the star is still growing in mass. Furthermore, higher WD mass
will finally result in higher surface gravity, thus reducing the net amount of mass loss
after the super-Eddington wind phase which follows every TP. According to the models
presented here, the average net amount of mass loss in MOp856.Z1m?2 is around 0.006
M), while it is around 0.001 Mg in M1p025.Z1m2 model (figure 3.2), 2x10~% Mg in
M1p256.Z1m2 and 10~° My, for M1p376.Z1m2.

Based on the WD mass increase all models, a WD with at least an initial mass of M
~ 1.1 Mgwouldbe able to reach the Chandrasekhar limit. This estimate can be done
looking at figure 7?7, where the retention efficiency, defined as the total mass difference
before and after the mass loss by super-Eddington wind after each TP, as a function
of the initial WD mass is shown. A stellar donor as a companion is needed with an
initial mass lower than the progenitor star from which a WD of a given mass comes

from, allowing to have enough material accreted before finishing the mass reservoir in



Production of the p-process seeds for thermonuclear supernovae in the
76 single-degenerate scenario

0.007 convection zones
'''''' He-free core
— M,

10 20 30 40 50 60
tyrs T e

convection zones
- He-free core
— M,

10000 20000 30000 40000 50000
t/yrs
0.00077 .
convection zones
0.0006/| He-free core
M,
0.0005
©
=
% 0.0004
g
0.0003
0.0002
0.0001 I . , .
10000 20000 30000 40000 50000
t/yrs

Fig. 3.2 Upper panel: Kippenhahn diagram of a typical He-flash event during the
accretion phase of our 1 Mg accreting WD model. Indicated are the convective
boundaries of the TP, and the surface of the star. The fast mass loss is due to the
super-Eddington wind after the He flash, and it is indicated by the reduction in mass
of the star. The He-free core is also indicated. Middle panel: Kippenhahn diagram of a
sequence of He flashes. Lower panel: A zoom of the plot in the middle panel, showing
the WD mass increase during the accretion. The fast mass loss after each TP is visible.
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the binary companion. A simple integration of the parabolic fit obtained shows that a
WD with an initial mass lower than ~ 1.1 Mg and accreting Z=0.01 material would
not be able to reach the Chandrasekhar mass. Notice how ,lowering the metallicity of
the accreated material to Z=0.001, the retention efficiency increases by around a factor
of two for all initial masses higher than 1 Mg : In this case, the resulting minimum
WD mass required to reach the Chandrasekhar limit passes from 1.1 Mg to 0.86 My .
On the other hand, in our simulations we resolve the accreting WD structure but we
do not simulate the evolution of the donor, using instead a constant rate accretion on
the WD surface. Langer et al. [119] computed the evolution of binary systems formed
by a main sequence star and a WD star, including orbital separation and accretion
rates. With this different approach, Langer et al. [119] obtain that the minimum WD
mass to reach the Chandrasekhar limit is M=0.7 M.
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Fig. 3.3 Retention efficiency as a function of the initial WD mass. A parabolic fit has
been derived for two different accreated material metallicities, showing in this way hi
the the quantity of retained material increases lowering the metal content of the donor.

In figure 3.4 the Kippenhahn diagram for three convective TPs of different models
are shown. As in figure 3.2, the strong mass loss is clearly visible, forcing the structure
to lose most of the mass accreted in the last interpulse phase. The highest energy
generation coincides with the highest downward extension of the PDCZ. It is also
interesting to observe that the energy generation from He burning continues to be

significant also when the H-burning has already started. The abundance profiles of
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indicative isotopes for the same TPs are shown in figure 3.5. Figure 3.5 shows the
mixing coefficient, including convection and CBM. In particular, the extra-mixing due
to IGW (see chapter 2) penetrates down to the core. However, the results indicate
that the mixing timescale due to this term is not relevant because of the low Dg; this

same result was obtained also for the TP-AGB stars.

Despite the mass increase of about 0.4 Mg between MOp856.Z1m2 and M1p259.Z1m2,
the Kippenhahn diagrams and the abundance profiles look quite similar. However, as
already mentioned earlier in this section, there is one important difference: the mass
lost by super-Eddington wind decreases by increasing the WD mass. But there are also

other important differences that become crucial from the nucleosynthesis point of view.

In figure 3.6, the evolution of temperature and density at the bottom of the PDCZ
(Trpor, see table B.1) with respect to the WD mass is shown. The temperatures
Trpor are taken from one TP, but they are representative of others TPs calculated
with the same WD mass. Indeed, according to table B.1, the Tgppgor variation is
marginal. Even for the more extended M1p025.Z1m2 model, T ppor variation is less
than 3%. In figure 3.6, the logarithm of the temperature linearly increases with the
WD mass. This trend is consistent for all the mass range explored. The main reason
of the temperature increase with the progenitor mass is the thin shell instability and
partial degeneracy described in §2.5.1: the higher the accreting WD mass, the lower
the shell thickness will be, making thin shell instability more efficient, as the expanding
shell pushed by triple o will need more time to reach a thickness high enough to restore
hydrostatic equilibrium, giving more time for the temperature to rise. A similar trend

is also visible for the density.

I have mentioned that the thickness of the He intershell decreases with the increase
of the WD mass. This statement is shown in figure 3.7. Between models M0p639.Z1m2
and M1p376.Z1m2, the mass of the He intershell decreases by almost three orders
of magnitude, from few 1072 Mg (wich is consistent with the TP-AGB simulations
in chapter 2) down to a few 107° M. In figure 3.7, it is also reported the amount
of H-rich mass that is not processed by H burning before the next convective TP
will occur. Its mass is reduced from M ~ 10~ M for model M0p639.Z1m2 to M ~
10~" My for model M1p376.Z1m2. These last numbers need to be compared to the
mass accreted during the same interpulse phase, that is comparable to the He-intershell
mass. This means that at the onset of the convective TP, only few per cent of the
H-rich material accreted still has to burn. In general, for the mass range explored
in our simulations and for all the convective TPs, the size of the He intershell mass

is about two orders of magnitude larger than the unburned H-rich material. These



3.3 Accretion-WD models: summary of their main features

—— Star Mass 1012
0.860 N N PPN He boundary
0.858 L
L 'Tw
~0.856 10° 7
&4\;‘ o0
= 20
(%)
£ 0854 — 10° —
= R
=1 u‘f
42
0.852 10 £
0.850 107
_______________________________________________________________________ .
0.04795 0.04800 0.04805 0.04810 0.04815 10
Age [Myr]
+1.022 10*
—— Star Mass .
----- He boundary 10%2
0.004 -
_c" 10 —
w | 107~
4t ?
~50.003 | < 108 o0
= S ) &0
= ; &
§ T 10° —
0.002 I
g
10* &
0.001 102
L 0
0.00002 0.00003 0.00004 0.00005 0.00006 10
Age [Myr] +5.573e-2
0.0009+1.2586 .1014
1 —— Star Mass
0.0008 o e He boundary 1012
0.0007 10—~
10 va
_.0.0006 i
O 10° o
=
% 0.0005 &
é I 10°
=1 L &
0.0004 4 i
. 10* &
0.000 3 [t el . -
: 2
0.0002 : 10
"""""""""""""""""""""""""" *100
0.001306  0.001308  0.001310  0.001312  0.001314

Age [Myr]

Fig. 3.4 Kippenhahn diagram of a convective TP for the models M0p856.Z1m2 (top
panel), M1p025.Z1m2 (middle panel) and M1p259.Z1m2 (bottom panel). The energy
generation (blue shaded areas) and convective zones (grey-shaded areas) are indicated.



Production of the p-process seeds for thermonuclear supernovae in the

80 single-degenerate scenario
10° I I
5 — H1 -14
L HE4 -
10 C12 ]
[ E
& [ — o6 o
+ i x
O - Ral
© : -8 £
- 107 : a
[ ' (o2
a E ; -6 3
(EU C K
0% o N
. 4
r . ; -~ Dmix
1074 Lt | | 1 1 1
B.830 0835 0840 0845 0850 0855 0.860 0865 0870

Mass Coordinate

10
cl —14
Lol —12
c E
o o —10
+ r <
O - R
CI -8 €
107 =)
C (o]
a E -6 3
n r
g r
107 -4
F o))
[ ' : === Dmix
Q 070 1.015 1.020 1.025 1030
Mass Coordinate
10°
F —14
Lol —12
c E
o o —10
+ r <
@] L 2
© 2 ¢ -8 £
A= 107
C (o]
a  F ; -6 S
© [ e eecoecceccesassascessessssmesssses mmmmmmmmmm—
= :
107 : -4
F o))
[ K ' === Dmix
190600 0.0005 0.0010 0.0015 0.0020

+1.258

Mass Coordinate

Fig. 3.5 Abundances profiles of H, ‘He, 12C and 90 are shown for the convective
TPs in figure 3.4. The mixing-coefficient is also reported, including the CBM profile
extending down to the core.
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Fig. 3.6 Temperature and density at the bottom of the TPs with respect to the WD
mass for the models MOp856.Z1m2, M1p025.Z1m2, M1p259.Z1m2 and M1p376.Z1m2.

proportions are similar to those found in the very late thermal pulse (VLTP) or late
thermal pulse (LTP) events in post-AGB stars. A famous star experiencing a VLTP is
the Sakurai’s object [e.g., 77, 143]. T will come back to this point in the next section:
also TPs during the accretion phase may indeed cause the ingestion of H, still present
at the surface of the star (figure 3.7).

3.3.1 The model M1p025.Z1m2: extended stellar calculations

As reported in table 3.2, model M1p025.Z1m2 includes 137 convective TPs. This is
the longest accreting WD model in the set presented in this thesis. For lower WD
masses, | only simulate a small number of TPs. Indeed, the production of p-process
isotopes in SNIa deeper than M ~ 1 Mis not relevant, due to the simmering phase
and the SN shock temperatures, which are too high to make p-process isotopes [217].
For higher WD masses, convergence criteria for stellar calculations become more and
more difficult to achieve, and require more computing time. For example, with the
simulations setup adopted in this work, a typical TP of the M1p025.Z1m2 model is
calculated in about 7000 timesteps. More than 25000 timesteps are needed to complete
a TP of the M1p376.Z1m2 model. The larger number of timesteps needed can be
explained by the higher temperatures at the bottom of the PDCZ. For both simulations,
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the accretion interpulse phase is the most difficult to resolve, with up to 10* mass
zones needed. The largest resolution down to 10713 M is required to have convergence
in the top layers where accretion and H burning is taking place. These limitations are

more severe for larger WD masses and larger accretion rates.

The simulations details for different TPs of M1p025.Z1m2 are given in table B.1.
Here only the numbers for the first seven TPs and the last three are reported. Their
variation during the evolution is extremely slow, and local variations between TPs are
not relevant. While in general the thermodynamics conditions at the bottom of the
TP and the amount of mass lost after each TP event are not changing significantly
during the evolution of the M1p025.Z1m2 model, I obtain an interesting evolution for
the He intershell.

As shown in the Kippenhahn diagram of Fig. 3.8, upper panel, the He intershell
before each convective TP is made of H-burning ashes, produced during the interpulse
phase, and of older material in the He intershell that was exposed and affected by
previous TPs events. These two zones will be mixed by the following TP. In the lower
panel of Fig. 3.8, the evolution of the fraction of H ashes and older He-inteshell material
for the sequence of TPs is given. Typical total mass of the He intershell is given in

Fig.3.7. The He intershell component becomes more relevant with increasing the TP
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number: it accounts of about 50% of the material affected by the first TP event, and
about 80% of the last TP in the simulations. The evolution of the intershell component
in Fig. 3.8, I(x), can be expressed with a polynomial-fit of the amplitude-evolution as

a function of the TP number (z):

I(z)=257e 2" —1.40e 225 +3.14e 71025 —3.85¢ 82 +2.90¢ %2 — 0.00022 +0.007x +0.49
(3.4)

The H-ashes component is simply given by 1 — I(x). The main reason of this
variation is that the initial WD progenitor was calculated from the previous AGB
phase, which, despite the many similarities, has also a number of basic differences
compared to the accretion stage. This means that the common assumption that
the progenitor structure is not relevant for the evolution properties during the WD
accretion stage is not entirely true. Furthermore, the WD progenitor is calculated
with a different simulation setup compared to the one adopted here, which makes the
analysis more difficult.

While the general TP properties are not affected over 137 TPs (table B.1), these
variations need to be considered as potential source of uncertainty, affecting also the
nucleosynthesis calculations (see next section). The He intershell tends to evolve toward
a ratio 0.8:0.2 for the old intershell and the H ashes. The same extended calculations
should be done for different WD masses to verify these results (in particular for larger
WD masses), but computational issues are a problem, as mentioned before.

In the lower panel of Fig. 3.8, after the 12th TP (green symbol in the figure) basically
all the TPs are ingesting some H present at the WD surface. This specific feature will

be discussed in the next section.

3.3.2 H-ingestion events in WD-accretion models

In Fig. 3.9, I compare the Kippenhahn diagrams obtained for the 6th and the 34th
convective TPs ;| where the last one was affected by ingestion of H. The behavior of the
convective region is affected in the upper part of the TP, where the H burning activated
by the ingestion of H-rich material splits the He intershell in two parts: about 90%
of the He intershell region is affected by the usual He burning at the bottom of the
TP, while the remaining upper part undergoes a short convective episode, triggered by
H burning (see horizontal blue line in Fig.3.9). This result is qualitatively consistent

with theoretical predictions of H-ingestion episodes in post-AGB stars [e.g., 71].
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In this specific case, both the two convective regions below and above the split
end before the H ingested is exhausted and the super-Eddington winds start to eject
material. After about three-four months from when the split is formed, the star
becomes H-free by losing a large fraction of the He intershell (the vertical blue line in
Fig. 3.9 indicates when the stellar surface becomes H-free). This behavior may change
for different TPs, but at least for model M1p025.Z1m2 it seems to become quite regular.
For a given WD mass, similar thermodynamic conditions at the bottom of the PDCZ,
He-intershell size and amount of H-rich material to accrete are the main causes of such
a regular behavior. However, H-ingestion events for different WD masses may look

quite different because of the differences seen in the previous sections.

It is important to keep in mind that one-dimensional hydrostatic stellar models
(including the models produced in this thesis) cannot simulate the H ingestion properly,
and multi-dimensional hydrodynamic calculations are needed [77, 78]. Nevertheless,
one-dimensional stellar models can be adapted and constrained by gathering information
from hydrodynamics simulations and observations. For instance, this was the approach
followed to study the H-ingestion event in the post-AGB star Sakurai’s object by
Herwig et al. [77].

Unfortunately, there are no observations or specific hydrodynamics simulations
available to do the same with the accreting-WD models. It would be plausible to
assume that H-ingestions for WD masses of M = 0.6 — 0.8 M, are similar to the VLTP
observed in post-AGB stars, since the conditions of the VLTP and of the TP are in
the two cases quite similar, including the amount of H available at the surface of the
star [see Fig.3.7 and e.g., 143]. However, for this work I am interested in WD masses
of M 2 1 Mg, where the TP physics properties are quite different.

In the next sections I will discuss the neutron capture nucleosynthesis in my models.
I will not consider TPs affected by H ingestion in the calculations, but I will discuss
its potential relevance for the conclusions of this research. In general, the occurrence
of H-ingestion events is a crucial source of uncertainty that needs to be considered to

provide a comprehensive picture of neutron-capture nucleosynthesis in accreting WDs.

3.4 Post-processing nucleosynthesis calculations

The nucleosynthesis during the accretion is calculated for the TPs and the relative
interpulse phases indicated in table 3.2. The post-processing code mppnp was used (see

§2.3), with the same setup and nuclear reaction rates as discussed in chapter 2.
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One of the main assumptions made by Travaglio et al. [217] for their p-process
calculations was a seed distribution similar to the main s-process component. As
discussed in chapter 2, the production of the main s-process component in AGB stars
is dominated by the '3C(a,n)'®0 activation in the radiative '3C-pocket. The condition
to form the 13C-pocket is to have CBM at the bottom of TDUs when the convective
H-rich envelope penetrates the He intershell. However, during the accretion on a WD
within the steady H-burning regime, there is no envelope and there are no TDU events.
Thanks to the mass refinement used in these simulations (with mass resolution limit of
1071 Myg), radiative '3C-rich regions at the bottom of the H-burning shell are well
resolved. They are in the order of 107? Myor less, and have negligible impact for the

production of heavy elements in the He intershell.

Therefore, during the interpulse phase the H burning activated on the stellar surface
by the accretion is dominating the nucleosynthesis. There is no s process activated.
As predicted by Iben [85], in our simulations the 22Ne(a,n)?*Mg reaction is the main
neutron source at the bottom of the convective TP. As discussed in chapter 2, the
22Ne(a,n)?Mg is partially activated in low-mass AGB stars, with neutron densities
up to few 10" cm™3. The typical timescale of few decades of convective TPs and the
temperatures at the bottom of the PDCZ in these stars do allow to fully consume the

22Neby « capture.

However, the temperature at the bottom of the PDCZ increases with the increase
of the CO core (and of the WD mass). This is why larger neutron densities and a
more efficient 2’Nedestruction are obtained in massive AGB stars [e.g., 104, 202] and
even more in super AGB stars [e.g., 49]. The same happens for TPs in accreting
WDs. In low mass AGB stars, typical temperature conditions obtained at the bottom
of TPs are about 3x10% K or less. According to table B.1, typical Trpor ranges
from 3.2x10% K (model M0Op639.Z1m2) up to 5.9x10% K (model M1p376.Z1m2). The
T rpor variation is also shown in Fig. 3.6 excluding the model M0p639.Z1m2, which
has conditions similar to low-mass AGB stars. The higher temperatures obtained cause
an efficient 22Nedepletion by « capture, producing neutron densities up to four orders

of magnitude higher than typical TPs in low mass AGB stars.

In Fig.3.10, I show the neutron density calculated in the temperature range of
interest, by using realistic abundances from the He intershell abundances of model
M1p025.Z1m2 at the onset of the TP, which is similar to the other models presented
here. The initial 2?Ne abundance in mass fraction is X(??Ne) = 0.00393 (0.393%). The
neutron density peak obtained ranges from few 10" cm™3 up to few 101° cm™3, that

is well beyond the s-process typical conditions.
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Fig. 3.10 Neutron density from ??Ne(a,n)**Mg as a function of temperature at the
bottom of the TP during the accretion phase.

As mentioned before, I want to calculate the neutron seeds for the p-process, and
therefore I am mostly interested in the nucleosynthesis for WD masses M 2 1 M.
Combining Fig. 3.6 with the results shown in Fig. 3.10, TPs for WD masses of M ~ 1 M
or larger are characterized by temperatures of about 4x108 K or higher, which means

the neutron density peaks will be few 10'? cm™ or higher.

In the upper panel of Fig.3.11, the abundance distribution beyond Fe in the
He intershell at the end of the 7th TP of model M1p025.Z1m2 is shown. All the
nucleosynthesis up to this stage has been consistently simulated trough the previous
TPs by the mppnpcode. The largest production is obtained for elements between Fe
and Zr, in the mass region typical of the weak s process [e.g., 166]. On the other hand,
neutrons are mostly released at neutron densities larger than in massive stars. The
isotopes produced the most are 86Kr, 3"Rb and %6Zr. Also Zn, %Ge and 82Se, that
are classically indicated as r-process isotopes, are efficiently made together with other
isotopes nearby that are less neutron-rich. The heaviest isotope showing a production
factor in the order of 100 is '?*Sb, but overall the production efficiency decreases
beyond Zr. The impact of the two main neutron-source rates is also given, showing the
distribution resulting setting the >C (a, n)10 or the 2?Ne(a,n)?>Mg reaction rates to
zero. In particular, the 2?Ne(a,n)?*Mg results to be the key reaction producing isotopes
till A=130. The situation changes significantly when considering the M1p259.Z1m?2
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model, as shown in the lower panel: in this case the C (a, n)'®0 is the main neutron
source producing the bulk of the final distribution, as a result of the larger efficiency
of H-ingestion producing ®C in the intershell during the TP. Therefore, the main
role in producing the neutrons necessary to the synthesis of the final heavy elements
distribution, passes from the 3C (a, n)!%0 to the ?2Ne(a,n)?*Mg as soon as the WD

mass overcomes a sort of critical value between 1.03 and 1.26 M, .

The larger production of the elements at the neutron magic peak N=50 (Sr, Y and
Zr) compared to heavier elements at the neutron magic peak N=82 (e.g., Ba and La) is
not surprising, since the neutron source is ?Ne. Even the complete depletion of 2’Ne by
a-capture in massive stars does not allow to produce efficiently s-process elements much
heavier than Sr [e.g., 101]. The main reason is that 2?Ne is also efficiently capturing
neutrons via (n,y), and the 2?Ne(a,n)?*Mg efficiently produce 2?Mg, which is a strong
neutron poison [e.g., 166]. Therefore, the impact of a stronger production of neutrons
by 22Neis partially compensated by the higher efficiency of light isotopes in capturing

these neutrons compared to the Fe seeds.

In Fig. 3.12, upper panel, the production of the neutron-magic isotopes 8’Rb and
88Sr, for %67r and for the neutron-magic isotope ®®Ba is shown for different TPs in
the M1p025.Z1m2 model. As observed in Fig.3.11, ®Ba is not efficiently produced.
Interestingly, the abundances increase up to about the 3rd TP, and then they saturate
to some production factor in the following TPs. This is due to the fact that at each
TP the super-Eddington wind ejects a large fraction of the He intershell. During the
following accretion interpulse phase, new H ashes are built until the next convective TP
starts. As discussed in section 3.3.1 (see also Fig. 3.8), at this point the He intershell
will be made of two components: 1) the old intershell component, rich of heavy isotopes
made by neutron capture in the previous TPs, Fe-poor and ??Ne-poor; 2) the H-ashes
component, where the heavy abundances are representative of the accreted material,
and the initial CNO has been mostly converted to YN by the CNO cycle. As soon
as the convective TP mixes these two components, the N in the H ashes will be
converted into 22Ne by «a captures, becoming available to produce neutrons. Since the
different TPs are quite similar, the 2?Ne and the Fe seeds available will be more or less
the same, yielding a similar production of heavy elements by neutron captures TP after
TP. To this fresh neutron-capture products, the old enriched intershell component needs
to be accounted for. The first TP in Fig. 3.12 starts from the accreted composition,
and has no memory of previous TPs by definition. Instead, the next TPs will include
a fraction of the heavy abundances made in previous TPs. After 3-4 TPs, a stable

balance between the two components is obtained.
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Fig. 3.11 Upper panel: Isotopic distribution beyond Fe at the 7th TP of model
M1p025.Z1m2. The impact of the two main neutron-source rates is also given, showing
the distribution resulting setting the '3C (a, n)'®O or the ?2Ne(a,n)?*Mg reaction rates
to zero. The abundances are plotted assuming complete decay of unstable isotopes.
Lower panel: same as in the upper pannel, but for the M1p259.Z1m2 model.
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description in the text). Lower panel: the same as in the upper panel, but for the
MOp856.Z1m2 model.
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This means that there is no need to calculate with the post-processing code all
the 137 TPs of model M1p025.Z1m2 to know what is going to be the final abundance
distribution. In Fig.3.12, upper panel, the mppnp results are compared with the
calculations obtained by using a simple analytical model (for the distribution in the
figure I used as a reference the 3rd TP). In this model, the distribution of production
factors of a typical TP are multiplied by the abundance distribution given by the
mixture of two components: the H-ashes (with normal heavy element abundances)
and the old intershell (already enriched by previous neutron capture processing). The
relative weight of the two components can be taken from Fig.3.8. In Fig.3.12 the
analytical distribution shows the same behavior observed in the full nucleosynthesis
calculations, saturating the production factors after the 5th TP. Of course the results
are not exactly the same. There are some differences due to the simplifications in the
analytical model, but the main features and the general abundance pattern are the

same.

To verify these results, in Fig. 3.12, lower panel, I also compare the mppnp calcula-
tions for the first 4TPs of the MOp856.Z1m2 model with the analytical calculations
using the results of the 3rd TP from the same model. Again, the saturation of the

production is obtained, and mppnp and the analytical model give similar results.

Therefore, for a given WD mass, by only simulating few convective TPs it is possible
to obtain a good estimation of the heavy isotope abundances in the He intershell.
As I have shown in the previous sections, the He intershell conditions during the
entire accretion phase up to the Chandrasekhar mass are evolving significantly. The
neutron density peak due to the 2?Ne(a,n)?’Mg reaction changes by four orders of
magnitude, also indicating a more and more efficient depletion of the available 2?Ne.
The production factors shown in Fig. 3.12 calculated for the M1p025.Z1m2 model are
larger than the ones calculated for the MOp856.Z1m2 model. This can be better seen
in Fig. 3.13, where the abundance distribution calculated for different WD masses is

shown. The complete abundance distributions are also given in Tab. B.2.

The production factors tend to increase with the increase of the WD mass, due
to the most efficient production of neutrons. The abundance distribution for the
MOp856.Z1m2 and M1p025.Z1m2 models is quite similar, with the largest efficiency in
the mass region between Fe and Zr. On the other hand, the distributions obtained
for the M1p259.Z1m2 model shows a strong production up to ®9Xe, while the one
obtained in M1.376.Z1m2 continues with large efficiency up to the Pb region. In the
figure, the larger neutron exposure obtained is given by the numerous H-flashes shown

in Fig.3.14, which trigger proton captures onto the abundant '?C producing C |
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Fig. 3.13 Final abundance distribution calculated for models MOp856.Z1m2,
M1p025.Z1m2, M1p259.Z1m2 and M1p376.Z1m?2.

which is then completely burned radiatively via 3C (a, n)1%0 in a region of the order
of 10=7 M, , concentrating all the neutron captures in a very tiny zone and with a
resulting very high neutron exposure and a nuclear production reaching the Pb region.
Notice that this happens during the time interval before the onset of the TP. The most
produced isotopes in the Pb region is 24Hg and 2%Bi.

Therefore, these calculations show that in the SNIa progenitor the heavy seeds
of the p-process are changing between M ~ 1M; and the surface: the abundance
distribution will be enriched between Fe and Zr in the deepest (and hottest) layers
that will host the p-process products; instead, the abundance distribution will be
enriched up to and over the Ba mass region approaching the surface [where the heaviest
p-process products are made 217|. Moving from M ~ 1 Mg outward, the production
factors are also increasing up to more than one order of magnitude between Fe and Zr,
and even two orders of magnitude between Zr and Xe. Elements heavier than Ba can
increase up to three order of magnitude approaching the surface, while over the mass
range between 0.85 Mg and 1.26 M in the progenitor they are always less abundant

compared to the lighter neutron capture products.

As example, in Fig.3.15 I show the average production factor of 86Kr, 8Rb,
88Gr, 39Y, D7Zr and 2°Zr for models M0p856.Z1m2, M1p025.Z1m2, M1p259.Z1m2 and

M1p376.Z1m2. The production factor increases up to two orders of magnitude, as
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Fig. 3.14 Upper panel: Kippenhahn diagram of the accretion phase of our 1.376 Mg
accreting WD model. Indicated are the convective boundaries of the TP and the
surface of the star. The zone highlighted is where the H-flashes take place. Lower panel:
The highlited zone in the upper panel is zoomed in, showing in detail the sequence of
H-flahes responsible of the production of C in a tiny 10~7 Mg, zone just below the
WD surface.
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seen in Fig. 3.13. The logarithm of the production factor shown in the figure might be
interpolated from the simulated data. For instance, by using a linear fit with the WD

mass, the following equation is obtained:

Log(PF) = 4.24 x My p — 2.49 (3.5)

where PF is the production factor and Myyp is the WD mass. Similar equations
can be obtained for each single isotope by using the abundances available in Tab. B.2,
providing the distribution of the p-process seeds for a given mass coordinate of the
SNTa progenitor. In particular, we provide the parameters for linear fit in Tab. B.3.
The validated stellar mass range is between 0.86 M, and 1.38 M, , covering the needs
of the p-process in SNIa.
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3.5 Summary of the nucleosynthesis results and

stellar uncertainties

In the previous section I have analyzed the neutron capture nucleosynthesis in accreting
WD models. My interest is mostly focused on WDs with masses larger than 1 M.
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Only the external 0.2-0.3 Mgof the SNIa progenitor are relevant for the p-process
production [217], and realistic p-process seeds made by neutron captures during the

accretion phase were needed.

The calculations presented in this work do not rule out the seed assumptions
made by Travaglio et al. [217] and Travaglio et al. [216]: the neutron capture process
activated during the accretion phase looks like the main s-process component in the
very external zones of the WD when it approaches the Chandrasekhahr limit. The
main neutron source is the ?2Ne(a,n)?*Mgfor WD masses lower than 1.2 M , while
for higher masses the 3C (v, n)16O plays a major role. Those reactions are activated
at the bottom of convective TPs in the He intershell, with a possible additional and
critical contribution during the interpulse period by the 3C (o, n)'*O when the WD
mass is close to Chandrasekhahr. In my simulations, the ?2Ne(a,n)?°Mg is activated
in a temperature range between 4x10% K and 5.9x10® K, with neutron density peaks
between few 102 cm™ and few 10'® em ™3, much higher than the typical s-process
conditions. The isotopic distribution obtained at the end of the TP is changing with
the WD mass: the isotopes between Fe and Zr are mostly produced for WD masses
of about 1 Mg, while for WD masses close to the Chandrasekhar mass also heavier
isotopes are efficiently made, up to Bi. The overall production of neutron-capture
species increases with the WD mass, with variations of 3-4 orders of magnitude in the

external ~ 0.4 M of the SNIa progenitor.

These results will need to be tested as seeds for the p-process production in SNIa.
But first it may be important to spend few words about the uncertainties affecting
these calculations. I have explored the impact of CBM at the He intershell boundaries,
and this component has likely a minor impact compared to other sources of uncertainty.
I have also mentioned that the uncertainty associated to the stellar structure of the
WD used to start the accretion can be considered of smaller relevance. However, I
have discussed the case of the M1p025.Z1m2 model, where the relative variation of the
balance between the H-burning ashes and the older He-intershell material may be due

to the progenitor structure from which I started the simulations.

The major source of uncertainty for which it is difficult to set some definitive
conclusions is the occurrence of H ingestion, discussed in section 3.3.2. For the
M1p025.Z1m2 model, the H ingestion becomes common after 12 TPs, while for other
WD masses we did not simulate the models long enough to study this event with
more detail. For the case the I have discussed, the He intershell is split in two by

the H burning. This is the same that is obtained for H ingestion events in post-AGB
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stars. In post-AGB stars H ingestion has been shown to trigger the activation of the

intermediate neutron capture process, or i-process [77].

The i-process was first proposed theoretically by Cowan and Rose [35], associated
to the ingestion of fresh H in deeper and hotter He-burning stellar layers in stars. The
capture of protons on the abundant 2C (direct product of He-burning) produces the
unstable isotope 3N that decays to >C, the main neutron source of the i-process via the
13C(a,n)'0 reaction. The neutron densities associated with the i process are about few
1015 cm ™3, that is orders of magnitude lower than the r-process, but still higher than the
s-process. The i-process has been ignored in the conventional nucleosynthesis picture.
Firstly, its observational evidence was missing. Recently, observational evidences of
the i-process signature are collected from different astrophysical sources, e.g., in young
open stellar clusters [145] and in a sample of old Carbon Enhanced Metal Poor stars
[CEMP-rs stars, 42]. Secondly, the baseline one-dimensional hydrostatic stellar models
fail to simulate the H ingestion, suppressing the i-process activation. As mentioned in
section 3.3.2, in order to account for the H-ingestion events and their nucleosynthesis
products, one-dimensional stellar models need to be guided by full 3D-hydrodynamic

simulations [e.g., 78].

H-ingestion events are found in the stellar simulations presented here, and there
is the possibility that the i-process is also activated. The i-process, powered by the
13C(a,n)'%0 during the convective TPs, could potentially change the results of this
work, allowing to produce heavier abundances more easily than with the 22Ne(Oz,n)%Mg.
Multidimensional hydrodynamics simulations are made to study the H ingestion in post-
AGB stars. The same events in accreting WDs represent other important candidates to
study in future simulations. Finally, one more source of uncertainty is the still unknown
size of the surface zone experiencing the very high neutron-exposure conditions able to
produce heavy isotopes up to Bi: this aspect is critical for the p-process nucleosynthesis
taking place during the WD explosion [217]. Until then, not much is possible to do to
better constrain these events in accreting WDs. However, two important considerations
can be made: 1) The most well known star where the H ingestion and the i-process took
place is the Sakurai’s object. As mentioned before, VL TP events in post AGB stars
have several similarities with the TPs in accreting WD models. In the Sakurai’s object,
the i-process produced efficiently heavy abundances up to the Rb-Sr mass region,
while heavier elements were only marginally affected. This means that if during the
accretion phase the i-process episodes are similar to the VLTP case, the 1?’C(04,11)160
should produce an amount of neutrons comparable to the 2?Ne(a,n)?°Mg. Therefore,

results could not look so much different from what I have obtained here. 2) The
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22Ne(a,n)?*Mg is efficiently activated at the high temperatures obtained for high WD
masses, up to neutron densities that are also typical of the i-process. This means that
similar heavy isotopic distributions would be obtained, whether the neutron source is

13C or 22Ne, at least in the mass region between 1 My and 1.3 M.



Chapter 4
Conclusions

In this thesis I have presented my research in stellar evolution and nucleosynthesis of
intermediate-mass stars. My work was focused on two distinct evolutionary stages. First
I focused on the AGB evolution phase and on the s-process nucleosynthesis. In this case
I have simulated the evolution of single stars, without considering any feedback from
e.g., binary system evolution. I have also not considered the contribution from rotation
and magnetic field. Instead, I have included in my simulations a new parameterization
of the convective-boundary-mixing (CBM) at the He intershell boundaries, based on
the best data available from multidimensional hydrodynamics simulations. Secondly, I
have simulated the accretion of material with Z=0.01 and the following nucleosynthesis
on the surface of a WD. The donor of this material is another star bounded with the
WD in a binary system. I did not follow consistently the details of the binary evolution.
Instead, I have assumed an accretion rate constant with time, but different within the
range of WD mass considered. The accretion rate was previously calculated to evolve
the accretion within the steady H-burning regime. This choice was made because these
are the most favorable conditions for the accreting WD to reach the Chandrasekhar
mass, and explode as a SNIa. My goal in this case was to simulate the neutron capture
nucleosynthesis during the accretion phase, to constrain the abundance distribution of

the p-process seeds made in the external part of the SNIa ejecta.

The evolution and nucleosynthesis for both the two types of stars are dominated by
the interaction between H burning and shell He burning in the stellar region called He
intershell. He burning is triggered by the He flash at the bottom of the He intershell,
forcing the entire region to become convective in a thermal pulse (TP) and to expand.
For all the work included in this research I have consistently used the same stellar code

MESA and for the nucleosynthesis the post-processing code mppnp.
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[ have calculated eleven AGB stellar models with initial mass M = 2 Mg and 3 M),
and initial metallicity Z = 0.01 and 0.02. Additionally, I have provided seven more
stellar runs using the same stellar structures, but by using different nuclear reaction
rates that are not relevant for energy generation. For the first time, these models
study the impact of the CBM at the bottom of convective TPs keeping into account
Kelvin-Helmholtz and gravity waves instabilities, guided by hydrodynamics simulations
and by observations in post-AGB stars. The CBM at the bottom of the third dredge-up
is introduced according to the simulations of Denissenkov and Tout [45]. In this case,
gravity waves are the dominant physics mechanism to set the conditions to form the
13C-pocket in the He intershell.

The Kelvin-Helmholtz instabilities at the bottom of convective TPs are affecting
the AGB evolution and the He intershell abundances by allowing to accumulate C
and O, and reducing the He abundance. My results are consistent with previous AGB
simulations where overshooting was assumed to be the dominant CBM mechanism. In
these models, the final C and O mass fractions in the He intershell are 0.4-0.5 and
0.2-0.1, respectively. Compared to Kelvin-Helmholtz instabilities, gravity waves have a

marginal contribution.

At the end of the the AGB evolution we obtain an s-process production of 0.36
<[s/Fe] <0.78 and -0.23 <[hs/Is| <0.45, which is consistent with spectroscopic observa-
tions. I have explored the impact on the nucleosynthesis results of the uncertainty in
the adopted CBM parameterization at the bottom of the TDU, considering a range of
acceptable fitting of Denissenkov and Tout [45] results, and increasing up to a factor
of ten their efficiency. Interestingly, the overall impact is comparable to the effect of
the uncertainty of the N (n,p)'*C nuclear rate. For instance, by increasing of a factor
of two the mentioned rate at a relevant energy of ~8 keV is reducing the final [hs/Is]
by 0.05-0.1 dex. This implies that in order to better explore what is the correct CBM
scenario responsible for the formation of the '3C-pocket, the MN(n,p)'*C rate needs to

be constrained with an error much lower than a factor of two.

The s-process abundance signatures in presolar C-rich grains are the most chal-
lenging and constraining observations to study the s-process nucleosynthesis in AGB
stars, and crucial information are provided also about the stellar conditions in the He
intershell of the parent stars. These AGB models does not have a good reproduction
of a number of isotopic ratios measured in presolar grains. I have focused my analysis
in the Zr isotopes. AGB models with CBM activated at the bottom of the convective
TP always showed problems to reproduce the Zr abundances in presolar grains, in

particular at the ?Zr branching and the consequent overproduction of 5Zr. I confirm
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that at least part of these problems to fit the Zr measurements is still an issue also for
my models. On the other hand, Piersanti et al. [164] and Liu et al. [128] showed that
a physics mechanism like rotation affects the main properties and the nucleosynthesis
in the 13C pocket after its formation. From preliminary explorations on the impact
of slow extra-mixing processes like e.g., molecular diffusion, I can anticipate that this
could definitely solve this conundrum. With the implementation of molecular diffusion
adopted in this work, I have shown that the impact on the stellar results is marginal.
However, if molecular diffusion (or any other physics mechanism triggering a slow
mixing between the '3C-pocket and the upper N-rich layers) would have been a
factor of 2-5 higher, the resulting s-process production in the 3C-pocket could be
more efficient at the Sr-Y-Zr peak and produce less Ba and La. A larger s-process
production in the Zr mass region would naturally solve the present overproduction of

967y compared to the other Zr isotopes, by producing those isotopes more efficiently.

In the second part of the thesis, I have calculated a set of five accretion models con-
sidering four initial WD masses: M = 0.639,0.856,1.025,1.259 and 1.376 Mg, accreting
material with metallicity Z = 0.01. I adopted the same CBM formalism introduced in
the first part of this thesis. The model with WD mass M = 0.639 M, is not crucial
for the purpose of this analysis, therefore in this case I did not calculate the complete
nucleosynthesis. During the accretion phase, all the models go through recurrent TPs,
experiencing temperatures at the bottom of the PDCZ growing with the WD mass.
The largest temperature at the bottom of the TP is obtained for the model with the
largest WD mass, M = 1.376 M), and it is 5.9x10% K.

The stellar conditions during the convective TPs are crucial for neutron capture
nucleosynthesis. During these events the ??Ne(a,n)?*Mg and the '3C(a,n)'%0 are
activated and are the main neutron sources for masses lower and higher than 1.2 M
respectively. In particular, with this work I have shown that the assumption made by
Travaglio et al. [217] that the p-process seeds in SNIa are similar to the main s-process
component, could be correct. More precisely, the 22Ne(a,n)?°Mg mostly produce heavy
elements between Fe and Zr for WD masses of M ~ 1 M), while elements up to Bi can
be made for larger WD masses. This is due to the extra contribution coming from
the production of '3C during the H-flashes and his consumption during the interpulse
period when the WD is close in mass to the Chandrasekhahr limit. Also the total
production efficiency increases with the WD mass increase: between M ~ 1 My and
the surface of the SNIa progenitor the abundances of heavy elements may increase
up to 3-4 orders of magnitude, depending on the mass region. Finally, due to the

temperature rise the neutron density peak also increases with the WD mass. Again,
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the model with the largest WD mass, M = 1.376 M), experienced the largest neutron
densities, up to values in the order of few 10" cm™3 that are well above the s-process

regime.

For the first time, I presented here the results of neutron capture processes from
realistic simulations of the WD-accretion phase. These can now be used as seeds for
the p-process calculations in SNIa. Nevertheless, more simulations should be done
in the future. First of all, the mass accretion rate should be included taking into
account consistently also the evolution of the binary system during the accretion. These
results were obtained by using accreted material with metallicity Z=0.01. The same
calculations should be done by accreting material with different composition. If T just
focus on the simulations presented in this thesis, the largest uncertainty that could
affect my conclusions is the occurrence of H-ingestion events during the accretion stage.
Multiple H ingestions are obtained in the model at WD mass M = 1.025 M. The same

did not happen for different models probably because too few TPs were simulated.

Baseline stellar codes cannot simulate properly H ingestion, and multidimensional
hydrodymanics models are needed to explore this scenario. The good news is that
these kind of simulations are already done for H-ingestion events in post-AGB stars,
that are not too different from the models considered here. I discussed the modification
of the TPs behavour when H ingestion is obtained in my models. This was just a
rough grasp of what could happens in more realistic simulations. Neglecting for now
the impact on the stellar structure, the main conclusions of this work could be affected
because the i-process is activated following the H ingestion, producing heavy isotopes
beyond Fe at neutron densities in the order of 10’ cm™3. The ¥C(a,n)!®0 activation
and the consequent i-process production was observed after the Very Late Thermal
Pulse in the surface of the Sakurai’s object, a post-AGB star that is a close relative of
the events discussed here. I do not have strong arguments at the moment to better
constrain the conditions of the i-process activation in accretion WD models. There are

no observations available that might help to guide this analysis further at the moment.

On the other hand, the larger temperatures experienced at the bottom of the TPs
in accreting WD models compared to AGB and post-AGB phases allow to activate
more efficiently the 22Ne(a,n)?*Mg, up to neutron densities similar to the i-process.
Furthermore, the amount of neutrons made by the '3C(a,n)00 in the Sakurai’s object
was enough to produce efficiently only up to the Rb-Sr mass region [77]. This means
that in case similar i-process events are triggered during the accretion, the two neutron
sources 22Ne and '3C could have comparable strengths, not dramatically changing the

present conclusions.
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Finally, one more source of uncertainty is the still unknown size of the surface zone
experiencing the very high neutron-exposure conditions able to produce heavy isotopes

up to Bi: this aspect is critical for the p-process nucleosynthesis taking place during
the WD explosion [217].
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Table A.2 TP-AGB evolution properties of stellar models presented in this work.

TP  DUPy trp Trpor Tues Tus Tce ™MFBOT MHTP  ™MD,max M
[yrs] (K] (K] (K] (K] (Mp] [Mp)] (Mp] [Mp)]
M2.z1m2
1 0.00 0.00E+00 8.31 8.15 7.09 6.25 0.4452 0.4948 0.4961 1.978
2 0.00 7.43E405 8.36 8.15 7.14 6.31 0.4574 0.5056 0.5063 1.978
3 0.00 1.15E4-06 8.38 8.16 7.16 6.27 0.4677 0.5131 0.5138 1.978
4 0.00 1.33E4-06 8.37 8.15 7.17 6.33 0.4721 0.5165 0.5174 1.978
5 0.00 1.50E4-06 8.38 7.75 7.15 6.33 0.4758 0.5208 0.5215 1.977
6 0.00 1.68E4-06 8.41 7.76 7.16 6.33 0.4808 0.5261 0.5267 1.977
7 0.00 1.86E4-06 8.41 7.78 7.18 6.36 0.4873 0.5319 0.5324 1.977
8 0.00 2.02E+06 8.43 7.79 7.25 6.37 0.4948 0.5381 0.5385 1.976
9 0.00 2.18E+06 8.42 7.79 7.27 6.37 0.5029 0.5444 0.5447 1.975
10 0.00 2.33E+06 8.44 7.79 7.31 6.40 0.5114 0.5508 0.5511 1.974
11 0.00 2.47E+06 8.43 7.80 7.32 6.39 0.5198 0.5572 0.5574 1.972
12 0.00 2.60E4-06 8.45 7.80 7.57 6.41 0.5280 0.5636 0.5636 1.970
13 0.13 2.72E4-06 8.44 7.79 7.64 6.41 0.5362 0.5699 0.5693 1.967
14 0.26 2.83E4-06 8.46 7.81 7.66 6.43 0.5437 0.5758 0.5742 1.964
15 0.42 2.94E4-06 8.45 8.11 7.66 6.43 0.5504 0.5810 0.5783 1.960
16 0.55 3.04E+06 8.46 8.13 7.67 6.45 0.5561 0.5854 0.5815 1.954
17 0.66 3.14E+06 8.47 8.13 7.70 6.47 0.5608 0.5890 0.5841 1.947
18 0.75 3.24E+06 8.47 7.93 7.46 6.29 0.5647 0.5920 0.5862 1.937
19 0.82 3.34E4-06 8.47 8.13 7.71 6.55 0.5679 0.5945 0.5877 1.925
20 0.88 3.43E4-06 8.47 8.13 7.70 6.50 0.5704 0.5964 0.5887 1.876
21 0.91 3.52E4-06 8.48 8.12 7.68 6.56 0.5723 0.5979 0.5896 1.795
22 0.88 3.61E4-06 8.48 8.12 7.68 6.49 0.5739 0.5990 0.5907 1.682
23 0.75 3.70E+06 8.46 8.12 7.68 6.49 0.5759 0.6001 0.5931 1.522
24 0.46 3.78E+06 8.44 8.21 7.68 6.34 0.5800 0.6023 0.5941 1.233
M2.z2m2
1 0.00 0.00E+00 8.23 8.15 7.16 6.28 0.4737 0.5145 0.5151 1.951
2 0.00 3.19E+05 8.26 8.17 7.17 6.37 0.4796 0.5203 0.5209 1.951
3 0.00 4.77E405 8.27 8.16 7.19 6.27 0.4824 0.5233 0.5240 1.950
4 0.00 6.11E4-05 8.30 8.07 7.18 6.41 0.4854 0.5269 0.5275 1.950
5 0.00 7.51E405 8.30 7.83 7.22 6.39 0.4895 0.5315 0.5320 1.950
6 0.00 8.94E4-05 8.30 7.84 7.22 6.50 0.4949 0.5368 0.5372 1.949
7 0.00 1.03E4-06 8.30 7.85 7.29 6.50 0.5016 0.5425 0.5429 1.948
8 0.00 1.17E406 8.29 7.86 7.30 6.46 0.5091 0.5484 0.5487 1.947
9 0.00 1.29E4-06 8.29 7.86 7.36 6.45 0.5168 0.5544 0.5547 1.945
10 0.00 1.41E4-06 8.28 7.87 7.34 6.49 0.5246 0.5604 0.5606 1.943
11 0.00 1.52E4-06 8.28 7.87 7.44 6.49 0.5323 0.5664 0.5665 1.940
12 0.00 1.62E4-06 8.27 7.85 7.56 6.61 0.5399 0.5724 0.5722 1.936
13 0.13 1.72E4-06 8.27 7.86 7.73 6.62 0.5471 0.5782 0.5776 1.932
14 0.25 1.81E4-06 8.27 7.91 7.72 6.91 0.5541 0.5837 0.5823 1.927
15 0.38 1.90E+4-06 8.28 8.05 7.74 7.12 0.5602 0.5886 0.5863 1.920
16 0.49 1.98E4-06 8.27 8.11 7.72 7.39 0.5657 0.5929 0.5897 1.911
17 0.59 2.06E+06 8.27 8.11 7.74 7.47 0.5704 0.5965 0.5925 1.900
18 0.68 2.14E406 8.27 8.11 7.69 7.58 0.5743 0.5997 0.5948 1.886
19 0.75 2.22E406 8.27 8.11 7.69 7.63 0.5778 0.6023 0.5967 1.869
20 0.77 2.30E4-06 8.29 8.11 7.71 7.58 0.5806 0.6045 0.5985 1.848
21 0.80 2.37E4-06 8.26 8.11 7.72 7.64 0.5831 0.6064 0.6001 1.822
22 0.82 2.45E4-06 8.26 8.11 7.70 7.62 0.5854 0.6082 0.6015 1.793
23 0.83 2.52E+406 8.25 8.11 7.72 7.42 0.5875 0.6097 0.6029 1.683
24 0.79 2.59E+06 8.29 8.21 7.41 7.46 0.5894 0.6113 0.6035 1.437
M3.z1m2
1 0.00 0.00E+00 8.39 8.20 7.59 6.37 0.6192 0.6397 0.6393 2.973
2 0.39 4.85E+404 8.41 8.17 7.68 6.54 0.6218 0.6421 0.6411 2.972
3 0.59 9.69E4-04 8.31 8.16 7.68 6.53 0.6243 0.6450 0.6428 2.970
4 0.75 1.48E4-05 8.42 8.15 7.69 6.63 0.6268 0.6477 0.6440 2.967
5 0.91 2.03E4-05 8.46 8.14 7.70 6.64 0.6293 0.6498 0.6445 2.963
6 1.04 2.59E+05 8.43 8.13 7.67 6.75 0.6310 0.6512 0.6443 2.957
7 1.08 3.18E+05 8.46 8.12 7.65 6.76 0.6319 0.6517 0.6437 2.909
8 1.12 3.78E+05 8.46 8.12 7.63 6.82 0.6321 0.6517 0.6427 2.832
9 1.18 4.40E+05 8.47 8.12 7.60 6.77 0.6318 0.6513 0.6411 2.731
10 1.17 5.02E4-05 8.48 8.11 7.60 6.79 0.6308 0.6501 0.6395 2.601
11 1.20 5.65E405 8.45 8.11 7.60 6.79 0.6297 0.6489 0.6376 2.426
12 1.18 6.29E4-05 8.46 8.11 7.65 6.91 0.6280 0.6474 0.6358 2.168
13 1.23 6.93E4-05 8.46 8.10 7.65 7.11 0.6265 0.6458 0.6336 1.713
M3.z2m?2
1 0.00 0.00E+00 8.31 8.19 7.21 6.32 0.5644 0.5879 0.5888 2.978
2 0.00 5.72E+404 8.37 8.18 7.26 6.51 0.5645 0.5903 0.5906 2.978
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3 0.00 1.22E4-05 8.39 8.18 7.30 6.45 0.5670 0.5936 0.5937 2.978
4 0.10 1.89E4-05 8.42 8.17 7.57 6.61 0.5706 0.5977 0.5974 2.977
5 0.18 2.57TE+05 8.43 8.15 7.59 6.53 0.5751 0.6021 0.6015 2.976
6 0.31 3.25E+05 8.43 8.11 7.67 6.62 0.5803 0.6067 0.6052 2.974
7 0.46 3.93E+05 8.42 8.14 7.68 6.56 0.5853 0.6109 0.6084 2.972
8 0.60 4.59E+05 8.44 8.14 7.72 6.55 0.5899 0.6145 0.6109 2.969
9 0.73 5.25E405 8.46 8.14 7.71 6.64 0.5937 0.6174 0.6127 2.966
10 0.83 5.91E4-05 8.44 8.14 7.69 6.64 0.5967 0.6196 0.6139 2.962
11 0.89 6.58E4-05 8.46 8.13 7.70 6.73 0.5990 0.6213 0.6147 2.956
12 0.96 7.24E4-05 8.46 8.13 7.69 6.66 0.6006 0.6225 0.6150 2.950
13 1.02 7.92E4-05 8.45 7.76 7.64 6.30 0.6017 0.6233 0.6148 2.943
14 1.04 8.60E+05 8.45 7.51 7.66 6.08 0.6021 0.6236 0.6145 2.935
15 1.08 9.29E+05 8.39 8.12 7.66 6.73 0.6022 0.6235 0.6138 2.877
16 1.09 9.98E+05 8.49 8.11 7.63 6.99 0.6019 0.6233 0.6129 2.787
17 1.11 1.07TE406 8.42 8.09 7.65 7.71 0.6014 0.6229 0.6119 2.672
18 1.09 1.14E4-06 8.34 8.10 7.67 7.66 0.6006 0.6219 0.6109 2.531
19 1.10 1.21E4-06 8.33 8.10 7.67 7.68 0.5999 0.6212 0.6099 2.349
20 1.06 1.28E+4-06 8.21 8.10 7.73 7.52 0.5991 0.6203 0.6092 2.103
21 1.19 1.35E406 8.23 8.04 7.79 7.54 0.5985 0.6197 0.6079 1.721
M2.z2m2.hCBM
1 0.00 0.00E+00 8.31 8.21 7.39 6.22 0.4743 0.5141 0.5153 1.950
2 0.00 2.36E+05 8.16 8.24 7.42 6.27 0.4783 0.5177 0.5187 1.950
3 0.00 4.71E+05 8.19 8.18 7.23 6.25 0.4840 0.5233 0.5238 1.950
4 0.00 7.16E+405 8.28 8.13 7.25 6.35 0.4922 0.5308 0.5311 1.949
5 0.00 8.40E4-05 8.25 8.22 7.36 6.55 0.4980 0.5341 0.5347 1.949
6 0.00 9.63E4-05 8.26 8.10 7.52 6.85 0.5021 0.5388 0.5392 1.948
7 0.00 1.09E+406 8.27 8.20 7.61 7.21 0.5078 0.5440 0.5443 1.947
8 0.00 1.21E406 8.25 8.09 7.49 7.41 0.5142 0.5495 0.5497 1.945
9 0.00 1.32E4-06 8.25 8.11 7.39 7.55 0.5212 0.5552 0.5553 1.944
10 0.06 1.43E4-06 8.28 7.81 7.62 7.61 0.5285 0.5610 0.5608 1.941
11 0.11 1.54E4-06 8.28 7.75 7.65 7.21 0.5357 0.5667 0.5662 1.938
12 0.22 1.64E4-06 8.23 7.76 7.66 7.15 0.5426 0.5724 0.5711 1.934
13 0.35 1.74E4-06 8.29 8.02 7.62 7.19 0.5491 0.5776 0.5753 1.928
14 0.47 1.83E4-06 8.28 8.13 7.63 7.37 0.5549 0.5823 0.5791 1.921
15 0.57 1.92E+406 8.28 8.14 7.63 7.21 0.5599 0.5865 0.5823 1.911
16 0.65 2.01E+06 8.27 8.14 7.63 7.07 0.5643 0.5902 0.5851 1.899
17 0.71 2.11E+06 8.27 8.14 7.64 6.83 0.5682 0.5934 0.5875 1.883
18 0.76 2.19E+06 8.26 8.13 7.63 6.67 0.5717 0.5963 0.5897 1.863
19 0.77 2.28E406 8.26 8.16 7.68 6.32 0.5748 0.5988 0.5918 1.759
20 0.72 2.37E406 8.47 8.13 7.61 6.60 0.5777 0.6011 0.5944 1.598
21 0.53 2.45E406 8.47 8.08 7.47 6.42 0.5815 0.6038 0.5958 1.311
M3.z1m2.hCBM
1 0.00 0.00E4-00 8.39 8.20 7.56 6.46 0.6251 0.6445 0.6437 2.972
2 0.65 4.59E+04 8.40 8.17 7.59 6.63 0.6271 0.6466 0.6448 2.970
3 0.83 9.31E+04 8.41 8.16 7.64 6.66 0.6287 0.6489 0.6455 2.968
4 0.98 1.44E405 8.43 8.14 7.65 6.63 0.6304 0.6508 0.6456 2.965
5 1.10 1.99E4-05 8.43 8.13 7.66 6.69 0.6318 0.6519 0.6450 2.960
6 1.17 2.57TE405 8.46 8.12 7.65 6.71 0.6323 0.6523 0.6437 2.913
7 1.23 3.18E405 8.45 8.11 7.62 6.75 0.6320 0.6518 0.6418 2.837
8 1.26 3.81E4-05 8.46 8.11 7.59 6.78 0.6308 0.6505 0.6395 2.738
9 1.25 4.46E4-05 8.47 8.10 7.54 6.80 0.6291 0.6490 0.6371 2.604
10 1.26 5.13E+05 8.46 8.10 7.55 6.80 0.6272 0.6472 0.6344 2.417
11 1.21 5.80E+05 8.49 8.10 7.55 6.81 0.6248 0.6448 0.6322 2.143
12 1.28 6.47TE+05 8.46 8.14 7.55 7.04 0.6229 0.6427 0.6304 1.685
M3.z2m2.st
1 0.00 0.00E+00 8.35 8.19 7.17 6.43 0.5689 0.5928 0.5933 2.975
2 0.00 5.48E404 8.37 8.18 7.20 6.44 0.5710 0.5951 0.5955 2.973
3 0.00 1.17E405 8.37 8.18 7.25 6.46 0.5741 0.5988 0.5988 2.968
4 0.20 1.81E4-05 8.38 8.17 7.45 6.49 0.5787 0.6029 0.6022 2.960
5 0.37 2.45E4-05 8.41 8.16 7.46 6.51 0.5833 0.6071 0.6054 2.948
6 0.56 3.11E+05 8.44 8.14 7.46 6.56 0.5877 0.6111 0.6079 2.930
7 0.71 3.79E+05 8.41 8.13 7.47 6.55 0.5915 0.6144 0.6098 2.903
8 0.81 4.49E+05 8.42 8.12 7.42 6.62 0.5948 0.6172 0.6112 2.866
9 0.88 5.22E+05 8.39 8.11 7.44 6.65 0.5973 0.6195 0.6123 2.815
10 0.91 5.96E4-05 8.47 8.11 7.42 6.61 0.5995 0.6214 0.6131 2.746
11 0.95 6.73E4-05 8.48 8.10 7.42 6.66 0.6013 0.6229 0.6136 2.652
12 0.97 7.50E405 8.48 8.09 7.42 6.68 0.6024 0.6239 0.6139 2.527
13 0.92 8.28E4-05 8.39 8.10 7.42 6.62 0.6033 0.6247 0.6147 2.348
14 0.94 9.02E+05 8.49 8.10 7.47 6.67 0.6045 0.6253 0.6154 2.094
15 1.05 9.76E+05 8.49 8.11 7.48 6.76 0.6056 0.6261 0.6262 1.668

M2.z1m2.he07
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1 0.00 0.00E+00 8.30 8.15 7.12 6.25 0.4490 0.4975 0.4993 1.978
2 0.00 5.50E+05 8.34 8.15 7.12 6.29 0.4590 0.5051 0.5061 1.978
3 0.00 9.09E+05 8.37 8.16 7.15 6.29 0.4674 0.5117 0.5124 1.978
4 0.00 1.10E4-06 8.35 8.15 7.18 6.31 0.4722 0.5149 0.5159 1.978
5 0.00 1.26E4-06 8.37 8.15 7.18 6.33 0.4752 0.5190 0.5198 1.977
6 0.00 1.43E4-06 8.37 8.13 7.17 6.34 0.4805 0.5240 0.5247 1.977
7 0.00 1.60E4-06 8.39 7.76 7.17 6.34 0.4866 0.5296 0.5301 1.977
8 0.00 1.76 E4-06 8.41 7.78 7.20 6.36 0.4936 0.5354 0.5359 1.976
9 0.00 1.92E4-06 8.40 7.79 7.23 6.37 0.5013 0.5415 0.5419 1.975
10 0.00 2.06E+06 8.42 7.84 7.23 6.38 0.5092 0.5477 0.5480 1.974
11 0.00 2.20E+06 8.42 8.11 7.27 6.40 0.5175 0.5541 0.5543 1.973
12 0.00 2.33E+06 8.41 8.13 7.31 6.40 0.5257 0.5603 0.5604 1.971
13 0.04 2.45E+06 8.43 8.14 7.53 6.41 0.5334 0.5666 0.5665 1.968
14 0.08 2.56E+06 8.41 8.14 7.63 6.42 0.5412 0.5727 0.5724 1.966
15 0.20 2.67E+06 8.42 8.14 7.64 6.44 0.5487 0.5788 0.5777 1.962
16 0.34 2.77TE+06 8.43 8.14 7.68 6.45 0.5556 0.5843 0.5822 1.957
17 0.47 2.87E+06 8.45 8.14 7.68 6.47 0.5615 0.5893 0.5860 1.951
18 0.51 2.97E+06 8.42 8.14 7.68 6.48 0.5668 0.5934 0.5897 1.943
19 0.51 3.06E+06 8.42 8.14 7.68 6.49 0.5715 0.5969 0.5932 1.934
20 0.51 3.14E+06 8.45 8.15 7.66 6.50 0.5758 0.6005 0.5969 1.923
21 0.53 3.22E+406 8.44 8.14 7.69 6.51 0.5802 0.6039 0.6002 1.873
22 0.56 3.30E+06 8.45 8.15 7.65 6.51 0.5844 0.6077 0.6036 1.804
23 0.54 3.37E+06 8.44 8.14 7.65 6.49 0.5884 0.6106 0.6069 1.722
24 0.52 3.44E+06 8.46 8.15 7.70 6.47 0.5925 0.6142 0.6104 1.602
25 0.36 3.51E+06 8.46 8.15 7.70 6.50 0.5970 0.6174 0.6222 1.428
M2.z2m2.he07
1 0.00 0.00E+00 8.29 8.16 7.13 6.29 0.4686 0.5097 0.5112 1.959
2 0.00 2.72E+05 8.33 8.16 7.18 6.34 0.4722 0.5139 0.5149 1.959
3 0.00 6.42E+05 8.36 8.18 7.19 6.34 0.4836 0.5230 0.5236 1.958
4 0.00 7.79E405 8.36 8.16 7.19 6.37 0.4884 0.5257 0.5265 1.958
5 0.00 9.04E+05 8.38 8.16 7.20 6.38 0.4906 0.5298 0.5303 1.958
6 0.00 1.04E4-06 8.39 8.15 7.21 6.39 0.4954 0.5343 0.5348 1.957
7 0.00 1.17E4-06 8.38 8.14 7.24 6.40 0.5008 0.5396 0.5399 1.956
8 0.00 1.29E4-06 8.40 8.12 7.25 6.41 0.5076 0.5452 0.5455 1.955
9 0.00 1.41E4-06 8.40 8.09 7.30 6.42 0.5146 0.5508 0.5511 1.954
10 0.00 1.53E4-06 8.40 8.13 7.29 6.43 0.5217 0.5567 0.5569 1.952
11 0.00 1.64E4-06 8.40 8.14 7.35 6.44 0.5292 0.5625 0.5627 1.949
12 0.00 1.74E4-06 8.41 8.15 7.41 6.45 0.5366 0.5683 0.5684 1.946
13 0.00 1.84E4-06 8.43 8.15 7.53 6.46 0.5437 0.5741 0.5741 1.943
14 0.08 1.93E4-06 8.43 8.15 7.71 6.47 0.5509 0.5799 0.5796 1.938
15 0.10 2.01E+06 8.43 8.15 7.70 6.47 0.5580 0.5857 0.5852 1.932
16 0.12 2.10E+06 8.43 8.15 7.71 6.47 0.5646 0.5911 0.5905 1.925
17 0.19 2.17E+06 8.44 8.15 7.73 6.48 0.5711 0.5964 0.5953 1.917
18 0.31 2.25E+06 8.45 8.15 7.74 6.49 0.5771 0.6014 0.5996 1.907
19 0.41 2.32E+06 8.42 8.15 7.74 6.49 0.5824 0.6060 0.6035 1.894
20 0.45 2.39E+06 8.46 8.15 7.74 6.49 0.5873 0.6100 0.6071 1.879
21 0.46 2.46E+06 8.42 8.15 7.74 6.51 0.5918 0.6138 0.6107 1.860
22 0.46 2.52E+06 8.46 8.15 7.75 6.52 0.5960 0.6172 0.6143 1.839
23 0.46 2.59E+06 8.44 8.15 7.74 6.51 0.6002 0.6208 0.6178 1.814
24 0.40 2.64E+06 8.44 8.16 7.75 6.49 0.6044 0.6242 0.6217 1.786
25 0.48 2.70E+06 8.44 8.15 7.76 6.52 0.6088 0.6279 0.6249 1.753
26 0.58 2.76E+06 8.44 8.15 777 6.52 0.6127 0.6317 0.6278 1.710
27 0.46 2.81E+06 8.46 8.15 7.76 6.52 0.6164 0.6345 0.6346 1.463
M3.z1m2.he07
1 0.00 0.00E+00 8.22 8.23 7.49 6.79 0.6275 0.6467 0.6468 2.971
2 0.20 4.42E+04 8.24 8.20 7.60 6.75 0.6304 0.6494 0.6490 2.970
3 0.40 8.76E+04 8.24 8.19 7.63 6.73 0.6333 0.6526 0.6513 2.968
4 0.50 1.34E405 8.23 8.18 7.68 6.69 0.6363 0.6557 0.6535 2.965
5 0.69 1.81E405 8.14 8.18 7.71 6.72 0.6397 0.6586 0.6551 2.961
6 0.78 2.31E+05 8.17 8.17 7.71 6.61 0.6426 0.6610 0.6564 2.956
7 0.90 2.80E+05 8.21 8.15 7.65 6.60 0.6448 0.6626 0.6570 2.949
8 0.57 3.31E+05 8.25 8.16 7.66 6.44 0.6463 0.6638 0.6599 2.885
9 0.85 3.75E+405 8.07 8.14 7.78 6.57 0.6493 0.6655 0.6608 2.821
10 0.95 4.22E+405 8.06 8.13 7.76 6.58 0.6509 0.6674 0.6611 2.728
11 1.04 4.70E+05 8.05 8.13 7.72 6.16 0.6518 0.6682 0.6609 2.605
12 0.99 5.18E+405 8.04 8.13 7.72 6.95 0.6519 0.6682 0.6609 2.440
13 0.68 5.65E+05 8.04 8.13 7.72 6.67 0.6523 0.6683 0.6633 2.208
14 0.78 6.07E+05 7.99 8.13 7.76 7.35 0.6546 0.6694 0.6647 1.911
15 0.97 6.49E+05 7.98 8.13 7.72 7.47 0.6565 0.6712 0.6712 1.441
M3.z2m2.he07
1 0.00 0.00E+00 8.36 8.20 7.22 6.41 0.5681 0.5925 0.5930 2.978
2 0.00 5.60E+04 8.35 8.18 7.31 6.45 0.5700 0.5944 0.5949 2.978
3 0.00 1.16 E+405 8.38 8.18 7.31 6.46 0.5722 0.5980 0.5982 2.977
4 0.00 1.79E405 8.42 8.17 7.35 6.48 0.5764 0.6020 0.6020 2.976
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5 0.09 2.43E+05 8.41 8.17 7.59 6.51 0.5810 0.6064 0.6062 2.975
6 0.15 3.05E+05 8.42 8.16 7.67 6.52 0.5864 0.6111 0.6105 2.973
7 0.25 3.67E+05 8.44 8.16 7.67 6.54 0.5920 0.6158 0.6146 2.971
8 0.40 4.27E405 8.42 8.15 7.67 6.56 0.5972 0.6201 0.6180 2.969
9 0.52 4.87TE+05 8.44 8.15 7.72 6.58 0.6019 0.6239 0.6209 2.965
10 0.54 5.46E+05 8.46 8.15 7.74 6.59 0.6059 0.6271 0.6238 2.961
11 0.63 6.03E+05 8.43 8.15 7.73 6.62 0.6096 0.6300 0.6262 2.956
12 0.68 6.60E+05 8.46 8.15 7.71 6.63 0.6128 0.6327 0.6283 2.951
13 0.66 7.15E4-05 8.47 8.15 7.73 6.64 0.6156 0.6350 0.6306 2.945
14 0.75 7.69E+4-05 8.45 8.14 7.73 6.67 0.6185 0.6373 0.6324 2.938
15 0.81 8.23E+05 8.44 8.14 7.71 6.68 0.6207 0.6393 0.6337 2.930
16 0.85 8.77TE+05 8.47 8.14 7.73 6.64 0.6226 0.6409 0.6350 2.827
17 0.89 5.46E+05 8.49 8.14 7.74 6.59 0.6253 0.6429 0.6430 2.718
18 0.90 6.03E+05 8.48 8.12 7.73 6.62 0.6258 0.6439 0.6439 2.585
19 0.92 6.60E+05 8.26 8.14 7.71 6.63 0.6263 0.6444 0.6445 2.436
20 0.94 7.15E4-05 8.34 8.15 7.73 6.64 0.6285 0.6455 0.6456 2.247
21 0.95 7.69E4-05 8.48 8.14 7.73 6.67 0.6293 0.6465 0.6466 1.993
22 0.94 8.23E+405 8.26 8.16 7.71 6.68 0.6301 0.6480 0.6481 1.767
23 1.00 8.77TE+05 8.26 8.04 7.71 6.63 0.6309 0.6500 0.6501 0.735

TP: TP number.

DUP): DUP Lambda parameter.

tpp: Time since first TP.

Trpor: Largest temperature at the bottom of the flash-convective zone.

Ty Ers: Temperature in the He-burning shell during deepest extend of TDUP.

Tcogp: Temperature at the bottom of the convective envelope during deepest extend of TDUP.
mppoT: Mass coordinate at the bottom of the He-flash convective zone.

MpP maz: Mass coordinate of the H-free core at the time of the TP.

M, : Stellar mass at the TP.
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Fig. A.1 Upper panel: Isotopic abundance distribution after the last TDU event in our
models with initial M=2 Mg and Z=0.01. Lower Panel: same as in the upper panel,
but for models with initial M=3 M and Z=0.01.
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Table A.4 Comparison between the present work, [38] (Crll) and [103] (Kal0) for the
2 M and Z=0.02 stellar yields. Also the surface mass fraction (X0) of a given isotope
in M2.22m2.he07 is given

Isotopes X0 Z A Yields M2.22m2.he07 Yields M2.z22m2 Yields M2.z22m2.hCBM Yields Crl11 Yields Kal0
H-1 7.064E-01 1 1 9.175E-01 9.232E-01 9.257E-01 9.24950E-01  1.2335814E+00
He-4  2.735E-01 2 4 4.004E-01 4.045E-01 4.074E-01 3.95700E-01  5.6186771E-01
C-12  3.425E-03 6 12 1.462E-02 2.289E-02 2.392E-02 9.33420E-03  2.7675023E-03
C-13  4.156E-05 6 13 1.360E-04 1.368E-04 1.376E-04 1.31110E-04  1.2363438E-04
N-14  1.059E-03 7 14 3.549E-03 3.469E-03 3.476E-03 3.26650E-03  3.0212691E-03
N-15  4.171E-06 7 15 2.752E-06 2.755E-06 2.768E-06 2.80090E-06  3.0777028E-06
0-16  9.624E-03 8 16 1.767E-02 2.376E-02 2.445E-02 1.18310E-02  1.3041234E-02
O-17  3.813E-06 8 17 5.434E-05 4.492E-05 3.996E-05 4.03320E-05  2.4374334E-05
0-18 2.171E-05 8 18 2.146E-05 2.152E-05 2.160E-05 1.91220E-05  2.2738323E-05
F-19  5.611E-07 9 19 1.686E-06 2.760E-06 3.332E-06 1.71410E-06  5.5231231E-07

Ne-20  1.818E-03 10 20 2.485E-03 2.547E-03 2.564E-03 2.09900E-03  2.2048058E-03
Ne-21  4.575E-06 10 21 6.631E-06 6.855E-06 6.949E-06 5.34460E-06  5.6205986E-06
Ne-22  1470E-04 10 22 9.618E-04 1.771E-03 2.096E-03 9.87250E-04  1.6960394E-04
Na-23  4.000E-05 11 23 7.384E-05 8.433E-05 9.051E-05 9.54390E-05  5.3539075E-05
Mg-24 5.862E-04 12 24 8.047E-04 8.229E-04 8.283E-04 1.05810E-03  7.0122938E-04
Mg-25 7.733E-05 12 25 1.338E-04 1.620E-04 1.628E-04 1.38140E-04  9.2150629E-05
Mg-26  8.848E-05 12 26 1.771E-04 2.462E-04 2.523E-04 1.61950E-04  1.0570988E-04
Al-27  6.481E-05 13 27 8.974E-05 9.203E-05 9.244E-05 1.19650E-04  7.9080222E-05

Si-28  7.453E-04 14 28 1.015E-03 1.034E-03 1.039E-03 1.36490E-03  8.8968419E-04

Si-29  3.919E-05 14 29 5.394E-05 5.537E-05 5.570E-05 7.18800E-05  4.6674944E-05

Si-30  2.673E-05 14 30 3.822E-05 4.052E-05 4.106E-05 4.95380E-05  3.2046293E-05

P-31 7.106E-06 15 31 9.934E-06 1.035E-05 1.056E-05 1.30750E-05 1.1111028E-05

S-33 3.265E-06 16 33 4.595E-06 4.785E-06 4.818E-06 5.94620E-06  4.3899581E-06

S-34 1.890E-05 16 34 2.623E-05 2.701E-05 2.721E-05 3.41060E-05  2.5454728E-04
Fe-54  8.118E-05 26 54 1.091E-04 1.098E-04 1.102E-04 1.44260E-04  9.7166812E-05
Fe-56  1.322E-03 26 56 1.790E-03 1.812E-03 1.820E-03 2.35860E-03  1.5932062E-03
Co-59  3.991E-06 27 59 6.846E-06 8.251E-06 8.511E-06 7.55400E-06  4.5764918E-06
Ni-58  5.711E-05 28 58 7.676E-05 7.722E-05 7.751E-05 9.91850E-05  6.7378882E-05
Ni-60  2.276E-05 28 60 3.188E-05 3.336E-05 3.380E-05 4.00250E-05  2.6685300E-05
Ni-61  1.006E-06 28 61 1.873E-06 2.372E-06 2.506E-06 1.94490E-06  4.7256694E-06
Ni-62  3.259E-06 28 62 5.328E-06 6.176E-06 6.498E-06 6.01960E-06  1.7063927E-07

Sr-86  5.845E-09 38 86 1.194E-08 1.496E-08 2.320E-08 6.51720E-08 -

Sr-87  4.443E-09 38 87 8.666E-09 1.057E-08 1.588E-08 4.31680E-08 -

Sr-88  5.011E-08 38 88 1.103E-07 1.368E-07 2.094E-07 7.07640E-07 -

Y-89 1.229E-08 39 89 2.845E-08 3.544E-08 5.359E-08 1.38720E-07 -
7Zr-90  1.534E-08 40 90 3.248E-08 3.931E-08 5.588E-08 1.47450E-07 -

Zr-96  8.903E-10 40 96 1.511E-09 1.629E-09 1.821E-09 2.50880E-09 -
Ba-136  1.409E-09 56 136 5.004E-09 6.510E-09 7.325E-09 1.35020E-08 -
Ba-138 1.305E-08 56 138 4.215E-08 5.070E-08 4.608E-08 7.93670E-08 -
La-139  1.790E-09 57 139 5.132E-09 6.008E-09 5.299E-09 9.42830E-09 -
Pb-208 8.850E-09 82 208 1.294E-08 1.303E-08 1.289E-08 2.52760E-08 -
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Table A.5 Comparison between the present work, [38] (Crll) and [103] (Kal0O) for
the 3 Mg stellar yields. Also the surface mass fraction (X0) of a given isotope in

M3.z22m2.he07 is given

Isotopes X0 Z A Yields M3.z22m2.he07 Yields M3.z2m2  Yields Crl1 Yields Kal0
H-1 7.064E-01 1 1 1.540E+00 1.536E+400 1.57830E+00 1.5249571E+00

He-4  2.735E-01 2 4 7.148E-01 7.337E-01 7.04700E-01  7.3096633E-01

C-12 3.425E-03 6 12 3.916E-02 5.150E-02 1.86110E-02  2.0739544E-02

C-13  4.156E-05 6 13 2.300E-04 2.338E-04 2.20200E-04  1.9436399E-04

N-14  1.059E-03 7 14 7.197E-03 7.327E-03 6.64840E-03  5.6565693E-03

N-15  4.171E-06 7 15 4.382E-06 4.289E-06 4.29400E-06  5.0818235E-06

0-16 9.624E-03 8 16 3.600E-02 4.259E-02 1.94360E-02  2.1144016E-02

O-17  3813E-06 8 17 6.205E-05 6.310E-05 7.91850E-05  5.5763638E-05

0O-18  2.171E-05 8 18 3.490E-05 3.457E-05 3.12110E-05  3.6596495E-05

F-19  5611E-07 9 19 5.937E-06 1.012E-05 3.68770E-06  4.3487280E-06

Ne-20 1.818E-03 10 20 4.327E-03 4.407E-03 3.63520E-03  3.7571993E-03

Ne-21  4.575E-06 10 21 1.355E-05 1.444E-05 9.90460E-06  1.0039988E-05

Ne-22  1.470E-04 10 22 3.360E-03 5.387E-03 2.32210E-03  2.1113991E-03
Na-23  4.000E-05 11 23 1.599E-04 1.929E-04 1.87730E-04  1.2845088E-04
Mg-24 5.862E-04 12 24 1.404E-03 1.442E-03 1.84710E-03  1.1949923E-03
Mg-25 7.733E-05 12 25 3.379E-04 3.680E-04 2.43210E-04  1.6784266E-04
Mg-26  8.848E-05 12 26 5.377E-04 6.289E-04 2.88120E-04  1.9374024E-04

Al-27  6.481E-05 13 27 1.583E-04 1.617E-04 2.08100E-04  1.3861095E-04

Si-28  7.453E-04 14 28 1.754E-03 1.780E-03 2.36270E-03  1.5164100E-03

Si-29  3.919E-05 14 29 9.452E-05 9.652E-05 1.24570E-04  7.9920115E-05

Si-30  2.673E-05 14 30 7.082E-05 7.378E-05 8.60130E-05  5.5390818E-05

P-31 7.106E-06 15 31 1.808E-05 1.857E-05 2.28230E-05  1.9017965E-05

S-33 3.265E-06 16 33 8.144E-06 8.462E-06 1.04160E-05  7.6937777E-06
S-34 1.890E-05 16 34 4.651E-05 4.761E-05 5.91400E-05  4.3391171E-04

Fe-54  8.118E-05 26 54 1.856E-04 1.865E-04 2.49280E-04  1.6390771E-04

Fe-56  1.322E-03 26 56 3.065E-03 3.098E-03 4.08090E-03  2.7071363E-03

Co-59  3.991E-06 27 59 1.519E-05 1.703E-05 1.33220E-05  8.5931824E-06

Ni-58  5.711E-05 28 58 1.306E-04 1.311E-04 1.71330E-04  1.1363259E-04

Ni-61 1.006E-06 28 61 4.501E-06 5.167E-06 3.46150E-06  8.8770785E-06

Ni-62 3.259E-06 28 62 1.214E-05 1.280E-05 1.04870E-05  5.0042019E-08

Sr-86 5.845E-09 38 86 3.391E-08 3.824E-08 1.51990E-07 -

Sr-87  4.443E-09 38 87 2.294E-08 2.592E-08 1.01840E-07 -

Sr-88  5.011E-08 38 88 3.357E-07 3.860E-07 1.63060E-06 -

Y-89  1.229E-08 39 89 9.175E-08 1.055E-07 3.17410E-07 -

Zr-90  1.534E-08 40 90 9.561E-08 1.104E-07 3.24600E-07 -

Zr-96  8.903E-10 40 96 6.089E-09 5.654E-09 5.17810E-09 -
Ba-136  1.409E-09 56 136 2.074E-08 2.437E-08 2.79920E-08 -
Ba-138 1.305E-08 56 138 1.945E-07 2.128E-07 1.68590E-07 -
La-139 1.790E-09 57 139 2.273E-08 2.452E-08 2.00170E-08 -
Pb-208 8.850E-09 82 208 3.234E-08 3.023E-08 4.82470E-08 -
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Fig. A.2 Upper panel: Isotopic abundance distribution after the last TDU event in our
models with initial M=2 Mg and Z=0.02. Lower Panel: same as in the upper panel,
but for models with initial M=3 M and Z=0.02.






Appendix B

Tables of accreting WD models

properties

Table B.1 Evolution properties of stellar models presented in this work.

TP trp TrpoT ™MFBOT  M™MHTP M My
[yrs] K] (Mo Mo)] Mop)] (Mp]
MOp639.Z1m2
1 0.00E+00 8.51 0.6035 0.6500 0.650 0.638
2 1.43E405 8.51 0.6040 0.6521 0.652 0.640
3 2.86E+405 8.51 0.6068 0.6543 0.654 0.642
4 4.32E4-05 8.51 0.6087 0.6568 0.657 0.645
MOp856.Z1m?2
1 0.00E+00 8.58 0.8380 0.8608 0.861 0.855
2 2.60E+04 8.58 0.8368 0.8606 0.861 0.856
3 5.21E404 8.59 0.8354 0.8609 0.861 0.855
4 8.02E+404 8.59 0.8351 0.8609 0.861 0.855
M1p025.Z21m2
1 0.00E+00 8.65 1.0144 1.0265 1.026 1.024
2 5.53E403 8.64 1.0149 1.0261 1.026 1.025
3 1.11E404 8.64 1.0148 1.0262 1.026 1.025
4 1.68E+04 8.64 1.0145 1.0263 1.026 1.025
5 2.24E404 8.64 1.0145 1.0264 1.026 1.025
6 2.81E404 8.64 1.0144 1.0264 1.026 1.025
7 3.38E+04 8.64 1.0141 1.0265 1.026 1.025
136 7.88E+405 8.66 1.0155 1.0308 1.031 1.029
137 7.94E405 8.66 1.0155 1.0309 1.031 1.029
M1p259.Z1m2
1 0.00E+-00 8.74 1.2591 1.2595 1.2595 1.2592
2 5.90E+02 8.71 1.2587 1.2595 1.2595 1.2592
M1p376.Z1m2
1 0.00E+00 8.77 1.37616 1.37619 1.37619 1.37618
2 2.50E401 8.73 1.37618 1.37620 1.37620 -

TP: TP number.

tpp: Time since first TP.

TrpoT: Largest temperature (in logarithm) at the bottom of the flash-convective zone.
mppoT: Mass coordinate at the bottom of the He-flash convective zone.

mpgrp: Mass coordinate at the top of the He-flash convective zone.

M, : Stellar mass at the TP.

M, «: Stellar mass after the TP.
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Table B.2 Isotopic production factors resulting from the listed models.

Specie MO0.85670.0100 M1.025Z0.0100 M1.25970.0100 M1.37670.0100

H1 3.937E-24 1.123E-26 2.762E-11 3.505E-20
HE 4 2.570E4-00 1.612E4-00 2.309E+00 6.669E-03
C 12 8.454E+01 1.460E4-02 6.898E+01 5.285E+01
C 13 3.014E-09 1.013E-10 3.472E-03 5.501E-09
N 14 1.252E-05 4.970E-14 3.234E-06 7.233E-14
N 15 1.699E-06 9.052E-16 2.505E-04 4.761E-20
O 16 2.544E4-00 5.937E4-00 1.264E+00 1.446E+00
O 17 4.231E-02 7.832E-04 2.730E-04 2.389E-06
O 18 6.711E-03 3.306E-10 7.771E-03 7.448E-14
F 19 2.302E4-00 3.672E-05 6.389E-02 7.184E-11
NE 20 8.191E-01 2.789E+00 5.474E+00 5.008E+00
NE 21 1.724E+01 2.761E4-01 1.685E4+01 3.187E-02
NE 22 2.908E4-01 1.685E+00 1.047E+00 2.713E-08
NA 23 2.004E4-00 1.445E400 4.368E-01 1.943E-03
MG 24 1.807E-01 2.884E4-00 1.67T9E+02 5.649E+02
MG 25 3.439E+01 6.340E+01 2.417E+02 2.365E+02
MG 26 4.187E+01 7.874E401 9.273E+01 7.327E4-01
AL 27 5.947E4-00 4.774E+00 8.718E+00 2.184E+01
SI 28 8.315E-01 1.227E4-00 1.421E401 5.637TE+02
SI 29 2.183E4-00 4.361E400 1.496E+01 2.887E+02
SI 30 5.753E4-00 1.085E+01 5.818E4+00 4.520E401
P 31 4.295E+00 1.007E+01 4.287E+00 1.681E+01
S 32 2.639E-01 2.093E-01 4.188E-01 6.946E+00
S 33 1.131E4-00 1.630E4-00 1.620E4-00 2.405E+01
S 34 1.844E4-00 2.109E+00 9.197E-01 4.270E+00
S 36 4.085E+01 5.919E+01 2.347E+01 5.080E+02
CL 35 2.319E-01 2.512E-01 4.515E-01 6.859E-01
CL 37 3.632E4+00 3.741E400 2.187E400 4.926E400
AR 36 1.292E-01 7.500E-02 3.435E-01 1.164E-01
AR 38 1.282E+00 1.320E+00 7.559E-01 1.201E+00
AR 40 1.103E4-02 1.835E4-02 8.611E+01 2.853E+02
K 39 1.184E4-00 1.398E4-00 7.571E-01 1.476E4-00
K 40 2.067E+402 1.211E4-02 4.748E+02 1.492E4-02
K 41 2.588E4-00 2.844E+00 3.343E+00 6.129E+00
CA 40 2.020E-01 1.385E-01 3.676E-01 1.672E-01
CA 42 2.065E4-00 2.044E4-00 1.580E+00 6.810E400
CA 43 3.260E+00 3.929E+00 2.673E+00 9.033E+00
CA 44 8.785E-01 1.096E+00 6.825E-01 1.557E+00
CA 46 2.147E4-02 3.745E+02 1.119E4-02 9.987E+02
CA 48 6.579E-01 1.442E4-00 9.258E-01 5.873E+01
SC 45 1.038E4-01 1.432E4-01 5.187E+00 2.594E+01
TI 46 2.678E-01 3.137E-01 5.616E-01 2.389E-01
TI 47 4.680E-01 1.009E+00 7.648E-01 5.812E400
TI 48 6.225E-02 8.580E-02 3.036E-01 2.882E-01
TI 49 1.534E+00 1.024E+00 2.353E+00 6.908E+00
TI 50 6.319E+00 6.096E+00 3.649E+00 2.540E+01
V 50 1.500E-03 1.508E-04 1.727E-01 1.183E-02
V 51 3.113E-01 3.436E-01 6.414E-01 1.900E4-00
CR 50 1.701E-03 1.858E-04 1.745E-01 8.549E-03
CR 52 1.613E-01 1.017E-01 3.618E-01 2.371E-01
CR 53 2.402E-01 1.631E-01 4.747E-01 4.470E-01
CR 54 8.310E+00 7.501E4-00 3.204E400 1.003E4+01
MN 55 1.209E-01 7.577TE-02 8.921E-01 2.473E-01
FE 54 1.052E-02 2.187E-03 2.306E-01 2.154E-02
FE 56 1.001E-01 4.599E-02 3.295E-01 9.443E-02
FE 57 1.462E4-00 7.410E-01 2.250E+00 1.448E+4-00
FE 58 4.540E+01 3.254E+01 1.120E+01 2.761E+01
CO 59 2.397E4-01 2.300E4-01 5.437E+00 1.775E401
NI 58 6.789E-03 9.958E-04 2.265E-01 2.080E-02
NI 60 7.688E4-00 1.118E+01 2.710E+00 8.167E+00
NI 61 1.846E+01 2.003E+01 9.056E+00 1.818E+01
NI 62 1.375E4-01 1.747E4-01 5.490E+00 1.673E4-01
NI 64 6.405E+01 9.247E+01 2.222E+01 6.872E+01
CU 63 2.253E4-01 2.890E+01 7.727E400 2.414E+01
CU 65 3.780E+01 5.815E401 1.883E+01 4.852E4-01
ZN 64 2.002E-02 7.244E-02 5.343E-01 2.019E-02
ZN 66 1.170E+01 2.127E4-01 1.034E+01 3.587E+01
ZN 67 1.744E+01 3.350E+01 1.923E+01 6.314E401
ZN 68 1.975E+01 3.958E+01 1.307E+01 3.408E+01
ZN 70 2.397E4-01 7.627E401 6.375E+01 1.536E4-02

GA 69 2.690E4-01 5.354E4-01 1.698E4-01 3.627E+01
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GA
GE
GE
GE
GE
GE
AS
SE
SE
SE
SE
SE
SE
BR
BR

71
70
72
73
74
76
75
74
76
7
78
80
82
79
81

KR 78
KR 80
KR 82
KR 83

KR
KR
RB
RB
SR
SR
SR
SR

84
86
85
87
84
86
87
88

Y 89

ZR
ZR
ZR
ZR
ZR
NB

90
91
92
94
96
93

MO 92
MO 94
MO 95
MO 96
MO 97
MO 98
MO100

RU
RU
RU

96
98
99

RU100
RU101
RU102
RU104
RH103
PD102
PD104
PD105
PD106
PD108
PD110
AG107
AG109
CD106
CD108
CD110
CD111
CD112
CD113
CD114
CD116
IN113
IN115
SN112
SN114
SN115
SN116
SN117
SN118
SN119
SN120

2.077E+401
3.122E+01
2.298E4-01
2.431E4-01
2.557E4-01
1.428E+01
1.719E4-01
3.177E-07
3.798E-+01
1.951E4-01
3.353E401
1.574E+01
9.012E+00
1.737E+01
1.446E4-01
1.781E-07
3.176 E+00
2.797E4-01
1.077E+01
1.185E+01
3.360E+01
2.044E4-01
6.639E+01
1.097E-07
1.344E4-01
3.843E+00
5.568E4-00
4.926E+00
2.350E4-00
3.087E+00
2.449E4-00
2.722E4-00
1.912E4-01
2.727E400
2.795E-04
1.170E-03
5.843E4-00
3.5635E+00
2.336E4-00
1.903E4-00
1.004E+00
7.644E-07
1.638E-05
7.075E-01
1.489E4-00
2.936E-01
7.989E-01
3.804E-01
2.538E-01
1.083E-07
1.113E+00
1.961E-01
7.363E-01
7.561E-01
7.606E-01
2.045E-01
3.352E-01
2.124E-07
3.030E-04
6.971E-01
3.238E-01
6.155E-01
3.387E-01
6.797E-01
2.319E4-00
9.305E-05
4.175E-01
7.031E-07
5.500E-05
6.401E-05
4.075E-01
4.395E-01
6.571E-01
5.464E-01
7.678E-01

4.597E+01
6.257E+01
4.912E+401
5.398E+01
6.031E+01
5.912E+01
4.086E+01
1.461E-07
9.387E+01
5.112E+01
9.435E+401
4.748E+01
6.126E+01
4.238E+01
4.728E+01
7.127E-08
7.953E+01
9.210E+01
3.604E+01
4.464E+01
2.016E+02
8.024E+01
3.607E+02
3.703E-08
6.203E+01
1.449E+401
3.397E+01
3.557E+01
2.059E+01
2.658E+01
2.056E+01
2.566E+01
2.614E+02
2.383E+01
2.489E-05
2.732E-04
6.368E+01
4.727E+01
2.630E+01
2.245E+01
1.191E+401
4.278E-07
9.022E-06
7.639E+00
2.038E+01
3.995E+00
1.121E+401
4.625E+00
3.243E+00
3.709E-08
1.732E+401
2.776E+00
1.066E+01
1.071E401
8.246E+00
3.076E+00
4.733E+00
8.936E-08
8.025E-02
1.021E+401
4.173E+00
7.374E+00
3.979E+00
7.279E+00
1.926E+401
2.800E-02
3.876E+00
3.411E-07
4.798E-03
5.875E-03
4.166E+00
3.893E+00
4.822E+00
3.779E+00
4.539E+00

1.761E4-01
1.341E4-01
1.558E401
2.404E4-01
2.189E4-01
5.569E4-01
2.307E+01
1.240E-02
2.628E+01
3.199E+01
4.170E401
2.530E4-01
1.068E+02
2.373E+01
3.213E+01
8.860E-03
1.567E4-01
4.443E+401
4.119E401
3.198E+01
7.178E4-02
8.767TE+01
1.086E4-03
9.325E-03
1.359E4-02
6.969E+01
3.233E4+02
4.651E402
2.696E+02
6.101E+02
4.721E+02
5.633E+02
4.164E+03
6.186E+02
2.560E-01
1.007E+00
1.103E+03
9.904E+02
1.027E4-03
7.185E4-02
7.141E4-02
5.250E-02
4.967E-01
5.852E4-02
1.625E4-02
1.050E4-02
2.503E+02
2.422E+02
1.384E+02
9.394E-03
7.072E4-01
9.010E+01
2.494E+02
2.427E+02
5.800E4-02
5.181E+401
1.290E+02
1.792E-02
6.273E+00
6.926E+01
1.169E4-02
2.542E+02
1.167E402
2.451E4-02
1.039E+03
2.480E4-00
2.398E+02
3.995E-02
1.555E4-00
1.414E4-00
6.255E+01
1.334E+02
1.895E+02
1.581E+02
2.219E+02

3.722E401
3.726E401
4.420E401
5.316E+01
4.316E401
9.378E+01
3.055E401
2.067E-05
6.123E401
4.370E401
8.444E+01
4.362E+01
1.836E+402
4.752E401
4.272E401
9.433E-06
2.432E401
7.674E401
3.814E+01
3.337E+01
2.548E403
5.423E402
3.432E403
4.282E-05
4.373E401
9.074E+00
5.454E+02
8.790E+02
6.207E+02
1.019E+03
1.146E+03
1.585E+03
2.614E404
1.876E+03
2.262E-02
1.011E-01
7.787TE+03
1.067E+03
1.817E+03
3.116E403
1.383E+03
5.175E-04
1.070E-02
1.203E+03
3.758E+03
6.869E+02
2.017E403
1.027E+03
6.154E+02
4.314E-05
2.724E+03
4.475E402
2.404E+03
1.913E+03
2.110E403
5.584E+02
1.119E+03
9.050E-05
3.805E+01
1.723E+03
7.735E402
1.550E+03
7.967TE+02
1.746E+03
6.519E+03
6.275E+02
1.028E+03
3.954E-04
4.336E+401
3.678E+01
8.547E+02
1.046E+03
1.338E+403
1.035E+403
1.428E+03
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SN122 6.003E+00 3.230E+01 1.562E4-03 1.533E4-04
SN124 2.431E4-00 1.663E401 8.205E+02 1.839E+-04
SB121 5.394E-01 2.761E4-00 2.686E4+02 1.220E403
SB123 8.262E-01 4.157E400 2.981E402 1.857E4+03
TE120 3.418E-08 7.564E-09 2.696E-03 1.257E-05
TE122 7.709E-01 5.331E4-00 5.143E+01 1.595E+03
TE123 6.143E-01 4.550E+00 4.388E+01 1.103E4-03
TE124 1.190E4-00 6.611E+00 1.858E4-02 2.305E+03
TE125 3.288E-01 1.799E4-00 8.527E+01 9.978E+02
TE126 5.859E-01 3.295E+00 1.548E+-02 5.174E+03
TE128 1.905E-01 8.984E-01 4.920E401 9.556E4+02
TE130 2.030E-01 5.534E-01 3.626E+01 1.068E+03
1127 1.707E-01 8.054E-01 7.240E4-01 7.911E4-02
XE124 1.627E-08 2.556E-09 1.216E-03 6.122E-06
XE126 4.135E-07 1.434E-07 2.353E-02 1.511E-04
XE128 1.118E4-00 5.799E4-00 5.261E+01 4.277E+03
XE129 5.817E-02 2.713E-01 1.210E4-01 2.629E+02
XE130 1.130E+00 5.361E4-00 1.280E+02 4.163E403
XE131 1.087E-01 4.366E-01 2.165E401 4.640E402
XE132 3.901E-01 1.375E+00 6.042E+01 2.313E403
XE134 2.261E4-00 4.326E+00 1.892E+02 7.681E4-03
XE136 3.185E+00 9.014E+00 1.296E+02 1.270E+05
CS133 2.516E-01 7.340E-01 7.627E401 1.877E403
BA130 9.708E-09 1.235E-09 7.751E-04 3.752E-06
BA132 2.930E-07 8.867E-08 1.554E-02 1.017E-04
BA134 9.702E-01 3.943E+400 5.011E+401 6.608E403
BA135 8.749E-01 1.977E4+00 9.504E401 3.928E+403
BA136 9.003E-01 1.957E+00 1.009E+02 3.268E403
BA137 3.071E+00 4.294E+00 9.954E+01 2.423E+04
BA138 8.352E-01 7.874E-01 8.228E+01 4.468E+03
LA138 2.618E-08 1.234E-09 8.211E-03 2.218E-05
LA139 7.265E-01 6.774E-01 7.044E4-01 6.838E+03
CE136 2.184E-07 8.550E-08 1.612E-02 7.521E-05
CE138 3.209E-06 1.749E-06 1.212E-01 1.769E-03
CE140 3.759E-01 3.138E-01 3.431E401 7.299E4-03
CE142 2.153E4-00 2.093E4-00 7.568E4-01 2.549E+04
PR141 5.360E-01 4.977E-01 5.280E401 1.256E+04
ND142 1.623E-01 1.416E-01 1.028E4-01 8.633E+02
ND143 4.248E-01 3.823E-01 3.477E+01 4.824E+03
ND144 1.010E4-00 1.158E4-00 4.063E+01 1.669E+-04
ND145 4.298E-01 5.126E-01 2.780E+401 6.148E4+03
ND146 7.728E-01 7.989E-01 3.635E401 9.122E403
ND148 8.569E-01 7.784E-01 4.974E401 1.205E4+04
ND150 1.420E-01 1.444E-01 1.923E+01 2.158E+03
SM144 5.544E-05 7.724E-06 1.980E-01 1.168E-02
SM147 3.581E-01 3.075E-01 2.448E+01 5.359E+03
SM148 3.539E-01 6.312E-01 4.361E+00 3.469E+03
SM149 1.454E-01 1.484E-01 1.142E+01 2.055E+03
SM150 8.918E-01 1.026E400 1.042E+01 1.051E4+04
SM152 2.818E-01 2.494E-01 8.153E4+00 3.135E403
SM154 3.322E-01 2.846E-01 1.771E+01 4.464E+03
EU151 7.701E-02 5.844E-02 1.018E+01 9.026E+02
EU153 8.935E-02 8.726E-02 5.117E+00 1.127E403
GD152 5.365E-01 4.772E+00 3.637E+00 1.463E4-04
GD154 9.492E-01 1.398E4-00 2.784E+00 1.321E4-04
GD155 1.413E-01 1.164E-01 6.404E+00 1.953E403
GD156 2.796E-01 3.316E-01 8.561E4+00 3.758E4+03
GD157 1.693E-01 1.982E-01 7.480E4-00 2.730E4+03
GD158 3.727E-01 4.255E-01 7.986E4-00 5.212E4+03
GD160 3.080E-01 2.940E-01 2.065E+01 5.953E+03
TB159 1.253E-01 1.274E-01 8.583E+00 1.916E4-03
DY156 5.443E-10 1.372E-11 1.976 E-04 9.686E-08
DY158 8.688E-03 2.962E-01 1.431E-01 4.091E+02
DY160 9.322E-01 1.280E+00 3.282E+400 1.613E4+04
DY161 9.850E-02 9.959E-02 4.940E400 1.979E403
DY162 2.477E-01 2.892E-01 5.284E+400 4.465E403
DY163 8.529E-02 7.540E-02 2.971E400 1.736E+03
DY164 3.347E-01 3.151E-01 1.092E4-01 6.577TE+03
HO165 2.123E-01 3.047E-01 8.455E+00 4.418E+03
ER162 4.570E-10 1.005E-11 1.810E-04 7.203E-08
ER164 1.069E4-00 2.525E4-00 1.945E4-00 2.392E+04
ER166 1.482E-01 2.364E-01 1.283E+01 2.937E403
ER167 1.228E-01 1.281E-01 6.941E400 2.238E403
ER168 4.353E-01 4.716E-01 9.883E+00 7.735E4-03

ER170 4.932E-01 4.837E-01 1.670E+01 1.164E+04
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TM169
YB168
YB170
YB171
YB172
YB173
YB174
YB176
LU175
LU176
HF174
HF176
HF177
HF178
HF179
HF180
TA180
TA181
W 180
W 182
W 183
W 184
W 186
RE185
RE187
OS184
OS186
OS187
0S188
OS189
OS190
085192
IR191
IR193
PT190
PT192
PT194
PT195
PT196
PT198
AU197
HG196
HG198
HG199
HG200
HG201
HG202
HG204
TL203
TL205
PB204
PB206
PB207
PB208
BI209

1.933E-01
1.239E-09
9.695E-01
4.945E-01
5.535E-01
4.305E-01
9.310E-01
1.480E4-00
3.269E-01
7.663E+400
2.749E-09
2.023E-01
4.456E-01
1.100E+00
7.671E-01
1.482E4-00
7.131E-09
5.379E-01
6.463E-02
1.354E+00
1.364E+00
1.275E+00
1.057E4-00
1.015E4-00
2.403E-01
1.952E-08
1.183E+00
6.221E-01
9.317E-01
1.713E-01
4.041E-01
2.251E-01
5.234E-02
5.198E-02
3.725E-08
9.917E-01
2.426E-01
6.432E-02
2.740E-01
4.243E-01
1.563E-01
3.634E-05
1.473E+00
6.518E-01
1.238E4-00
9.629E-01
1.609E4-00
3.557E+00
1.658E+00
1.770E+00
1.511E+00
1.678E+00
1.295E4-00
1.041E4-00
7.343E-01

1.499E-01
5.178E-11
1.629E+00
4.555E-01
7.894E-01
5.131E-01
1.129E4-00
1.489E4-00
3.531E-01
1.127E4-01
1.745E-10
5.476E-01
4.727E-01
1.348E+00
9.214E-01
1.614E4-00
4.466E-10
4.941E-01
2.497E4-00
1.440E+00
1.269E+00
1.305E+00
8.393E-01
6.754E-01
1.931E-01
3.226E-09
1.956E+00
6.355E-01
9.767E-01
1.834E-01
4.591E-01
1.914E-01
5.640E-02
4.422E-02
8.188E-09
1.940E+00
2.453E-01
8.889E-02
3.226E-01
4.623E-01
1.654E-01
1.921E-03
1.750E+00
6.861E-01
1.384E4-00
1.081E4-00
1.714E4-00
.687E4-00
755E4-00
.499E4-00
.634E4-00
561E4-00
.466E4-00
.348E4-00
9.990E-01

R R e W

1.025E4-01
2.509E-04
2.403E400
1.734E+01
1.880E+01
8.717E+00
1.355E4-01
3.515E+01
9.848E+00
2.008E+01
3.189E-04
1.177E+00
2.099E+01
1.210E+01
1.413E4-01
1.305E4-01
6.649E-01
1.218E+01
2.598E4-00
1.278E+01
1.173E+01
6.472E+00
8.132E+00
1.395E4-01
6.688E+00
1.310E-03
9.392E-01
4.070E-01
5.575E4-00
7.940E-01
1.409E4-00
2.066E+00
3.101E-01
8.091E-01
2.682E-03
4.886E-01
1.105E+00
2.352E-01
1.475E4-00
7.737TE+400
2.472E4-00
5.216E-02
2.671E4-00
7.212E4-00
6.868E+00
7.039E4-00
7.100E4-00
1.083E401
7.218E4-00
3.357TE+00
2.709E4-00
1.262E+00
1.176E4-00
2.247E+00
1.613E4-00

3.673E+03
3.481E-07
2.338E4+04
1.110E4+04
8.883E+03
8.096E+03
1.591E4-04
1.995E4-04
5.914E+03
2.204E+05
8.401E-07
2.663E+04
6.501E+03
1.446E+04
1.080E4-04
1.492E4-04
8.576E-01
5.586E4+03
5.973E4+04
1.052E+04
1.358E+04
1.055E+04
9.391E+03
1.061E4-04
2.801E+03
6.412E-06
8.665E403
2.655E4+03
9.798E+03
1.749E4-03
3.030E+03
1.591E4-03
4.246E+02
3.943E+02
1.213E-05
7.733E4-03
1.962E+03
4.525E+02
1.555E4-03
2.597E+03
9.575E402
3.973E401
7.754E4-03
3.769E+03
7.551E4-03
7.864E4-03
1.449E4-04
1.967E404
1.696E+04
7.514E4-03
1.123E+04
7.277TE402
2.494E+03
7.750E4-04
8.102E+04

Table B.3 Linear fitting parameters A and B, where LOG(PF) = A x WDmass + B,
to interpolate production factors of each single tabulated isotope as a function of the
WD mass. This fitting is valid in the mass range between 0.86 My and 1.38 M .

Specie

A

B

H1
H2
HE 3
HE 4
LI7
B 11
C 12

2.19939481635e-11
1.70768899512e-06
2.4949511687e-16
-3.47581520576
987.936713827
-0.00135372979452
-99.4895672605

-1.79261674585e-11
-1.64435172548e-06
-2.0335288703e-16
5.54861260157
-945.693868781
0.501103357469
200.416222505
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C 13
N 14
N 15
O 16
O 17
O 18
F 19
NE 20
NE 21
NE 22
NA 23
MG 24
MG 25
MG 26
AL 27
ST 28
SI 29
SI 30
P 31
S 32
S 33
S 34
S 36
CL 35
CL 37
AR 36
AR 38
AR 40
K 39
K 40
K 41
CA 40
CA 42
CA 43
CA 44
CA 46
CA 48
SC 45
TI 46
TI 47
TI 48
TI 49
TI 50
V 50
V 51
CR 50
CR 52
CR 53
CR 54
MN 55
FE 54
FE 56
FE 57
FE 58
CO 59
NI 58
NI 60
NI 61
NI 62
NI 64
CU 63
CU 65
ZN 64
ZN 66
ZN 67
ZN 68
ZN 70
GA 69
GA 71
GE 70
GE 72
GE 73
GE 74
GE 76
AS 75

0.00276477459491
-1.83612046502e-05
0.000196633290801

-4.84201273437

-0.0710304346132

-0.00503432130668
-3.79864585868
8.78952850994
-32.95225882
-48.8684501449
-3.92093345339
986.242493898
452.389709356
64.5198338183
26.9996020239
862.010073302
442.281334452
56.4872591107
15.2496418723
10.268012402
34.7474915755
2.76564746815
681.265331754
0.849466469535
0.737697205511
0.185809836832
-0.565695096703
198.87720513
-0.0344800505598
181.02404477
5.79558825459
0.119668717287
6.80625895403
7.84081875828
0.731923930488
1002.51633057
87.575736623
16.8967986954
0.160989034998
7.97706646611
0.519043649221
9.10781956091
26.8850933767
0.15281602386
2.64595473462
0.148926870036
0.312310859523
0.548733878532
-0.948240824197
0.834100957927
0.197232361438
0.20856424744
1.06561552527
-45.95716207
-23.5507236504
0.199845887078
-5.46384824858
-8.91224627397
-4.43860461822
-44.3486288198
-13.4097793441
-11.8506129119
0.376387186837
29.3892341033
60.3376321235
3.72909558049
194.487182774
-10.6935820904
6.31868026157
-25.0151285766
9.56044094561
24.5333670993
1.55199787537
124.691829943
9.81684829194

-0.00225342838987
2.46683001525e-05
-0.000158949238671
8.2643823187
0.0910355078045
0.00930424881575
4.88015286658
-6.40085267928
52.6360678985
63.1254801996
5.39866961988
-929.50160212
-366.750482397
-1.19039234266
-20.1628005334
-828.21724775
-421.78462655
-46.868865535
-8.35134568621
-9.63308600071
-32.1221679782
-0.83674099755
-611.271060446
-0.553922645202
2.78863984067
-0.0437543088107
1.77839477004
-58.2298636757
1.24270297789
33.5738492583
-2.81721911559
0.0837190196793
-4.55951635648
-4.12853438096
0.227157868889
-706.890937599
-83.4340816392
-5.11973582529
0.163743385305
-6.99265805259
-0.4010377769
-7.32797828093
-19.9872704495
-0.125984090237
-2.18820789689
-0.121904485398
-0.13712396311
-0.288270547343
8.33181397635
-0.607682488419
-0.156463586232
-0.092964036775
0.272170074234
81.0731365397
44.1280167791
-0.161854805432
13.604934809
26.4934259251
18.3711843851
111.934602834
35.9638910149
54.2043421493
-0.263203626864
-13.3854451977
-34.7936866484
22.4098514711
-140.178530363
45.4955541991
23.2587105569
64.3570798769
22.1762617719
11.1743285259
35.9802945132
-85.0595766823
16.8342784882
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SE 74
SE 76
SE 77
SE 78
SE 80
SE 82
BR 79
BR 81
KR 78
KR 80
KR 82
KR 83
KR 84
KR 86
RB 85
RB 87
SR 84
SR 86
SR 87
SR 88
Y 89
ZR 90
ZR 91
ZR 92
ZR 94
ZR 96
NB 93
MO 92
MO 94
MO 95
MO 96
MO 97
MO 98
MO100
RU 96
RU 98
RU 99
RU100
RU101
RU102
RU104
RH103
PD102
PD104
PD105
PD106
PD108
PD110
AG107
AG109
CD106
CD108
CD110
CD111
CD112
CD113
CD114
CD116
IN113
IN115
SN112
SN114
SN115
SN116
SN117
SN118
SN119
SN120
SN122
SN124
SB121
SB123
TE120
TE122
TE123

0.0099048330197
-9.74438648616
26.3999045588
44.7865938423
29.5747731199
308.732922614
34.7483651261
35.9197340059
0.00706919261283
-6.70138493031
46.0415694918
49.5357516587
27.7002701301
4242.04490055
805.003980535
5716.53208434
0.00749012459267
112.389708357
53.5660955253
1051.67318614
1669.37363123
1136.74391319
2005.45729883
2092.61754004
2825.73322835
42666.6093352
3311.20343658
0.237594481726
0.952710948867
12609.5602006
2366.98560588
3546.2290179
5269.10630626
2651.82638622
0.0425874350063
0.411680501069
2280.06295771
5799.70465102
1119.84188574
3242.51816611
1743.11288178
1038.80603111
0.00754555596622
4164.77679678
746.709180174
3827.77971336
3079.50643966
3647.71933415
883.802955394
1792.17206572
0.0144063011233
62.512472895
2654.34630685
1260.17807107
2541.81258715
1295.21860717
2831.06341473
10674.3287942
951.351652025
1743.12984005
0.0324092282764
66.8379089404
56.7695219091
1339.61733503
1685.5889823
2171.09610601
1688.50881195
2333.05973397
24407.1935826
28462.4071514
2057.06200526
3042.95221057
0.00216579488006
2449.47150056
1699.83275274

-0.0080772729402
65.8414130867
6.77450748607
12.9409350562

-0.354919214721
-258.391469267
-6.48090386497
-6.40587972124

-0.00576369776509
38.2398633298
8.32906756689
-24.3908636227

-0.813605148591
-3914.01869463
-726.186994883
-5217.69222032

-0.00611435886826
-63.1129826706
-36.2018713112
-960.279529937
-1538.57382818
-1055.07387645
-1849.46954653
-1952.28795134
-2646.08231792
-40524.4719407
-3108.05943602

-0.198513069328
-0.79822486891
-11996.3127164

-2145.2754928
-3285.53356141
-4984.10776957

-2466.4084962

-0.0348265414819

-0.337930937997
-2125.05445123
-5562.27430122
-1065.25433903
-3090.97578377

-1649.4230943
-983.487810635
-0.00615961126726
-3998.74475332
-707.891639794
-3655.36422295
-2934.97124613
-3443.52347819
-844.440911301
-1710.09521225
-0.0117620134085
-59.4756937069
-2545.96520489
-1199.01684189
-2416.65903665
-1232.87238323
-2696.50591875
-10156.4224586
-916.573991869
-1649.97021367
-0.0265034081092
-64.2300359568
-54.5428054744
-1281.97209647
-1607.09683757
-2067.92272868
-1606.97009715
-2220.22274118
-23323.145805
-27326.6674241
-1949.44790244
-2895.47224419
-0.00176802947369
-2352.32034909
-1631.10010252
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TE124 3629.1704116 -3472.6831439
TE125 1575.85628017 -1507.84229115
TE126 7948.34656233 -7640.51304309
TE128 1484.09080327 -1424.06629169
TE130 1644.04441659 -1579.87204675
1127 1253.7722659 -1199.38986282
XE124 0.000977540638794 -0.000798108188198
XE126 0.0189648891151 -0.0154909453808
XE128 6507.34432292 -6262.65999046
XE129 407.127570787 -390.814659827
XE130 6395.15703134 -6145.75953837
XE131 718.802715097 -689.97944044
XE132 3546.10669546 -3409.75818464
XE134 11765.3217845 -11313.8515454
XE136 192240.564028 -185254.147036
CS133 2899.70890001 -2785.20744894
BA130 0.000622875814796 -0.0005085110534
BA132 0.0125279055704 -0.0102334849586
BA134 10033.5389238 -9662.10964483
BA135 6015.94291364 -5785.52657428
BA136 5022.01287741 -4826.91321321
BA137 36730.8932159 -35384.9521905
BA138 6823.61535177 -6565.88608245
LA138 0.0065719747778 -0.00536145769785
LA139 10400.2010133 -10014.3659684
CE136 0.0129498102971 -0.0105714573976
CE138 0.0991821664517 -0.0812331757414
CE140 11069.7321001 -10664.2276157
CE142 38621.185141 -37210.8365241
PR141 19043.8574926 -18347.0566843
ND142 1313.9798453 -1265.01227041
ND143 7325.34804941 -7055.42367267
ND144 25281.5596441 -24359.681338
ND145 9322.89165411 -8981.35907767
ND146 7.48346923493 -7.12104825385
ND148 7.70701201082 -7.30076010667
ND150 8.01976252325 -8.32184031584
SM150 6.97120025578 -6.62026378076
SM152 7.31945811577 -7.45007010914
SM154 7.66393324977 -7.68418632959
EU151 7.92170081141 -8.53947512875
EU153 7.61086178856 -8.17945069339
GD152 6.76831566879 -6.35786393795
GD154 6.53410385 -6.20489401206
GD155 7.63714340665 -8.04402272775
GD156 7.3823242432 -7.4659858406
GD157 7.63238424133 -7.90800559754
GD158 7.29547962101 -7.28169831638
GD160 7.95212922309 -7.96631539688
TB159 7.78814924444 -8.18803172599
DY156 8.85038904 -17.7033084372
DY158 7.06252271706 -8.17909467598
DY160 6.75976016868 -6.43164621783
DY161 7.86127191737 -8.37991980399
DY162 7.45454711065 -7.60920653436
DY163 7.78090789022 -8.40446456857
DY164 7.71774156351 -7.7434915643
HO165 7.70771578675 -7.85622069038
ER162 8.83850766108 -17.7843567389
ER164 6.55032930972 -6.12059181116
ER166 7.91491080868 -8.15577774159
ER167 7.82990957414 -8.24296051285
ER168 7.48737708676 -7.40432084025
ER170 7.83963828493 -7.684384471
TM169 7.91729204245 -8.17917814897
YB168 8.80869540391 -17.2579077389
YB170 6.80066178751 -6.44093036114
YB171 7.83613854661 -7.68774373129
YB172 7.48370488372 -7.23331975091
YB173 7.45865246635 -7.37261545889
YB174 7.27676634023 -6.87665592941
YB176 7.34189482046 -6.74174307953
LU175 7.59781258954 -7.62104493219
LU176 6.97251872256 -5.72639911304

HF174 8.55564592263 -16.6320853325
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HF176
HF177
HF178
HF179
HF180
TA180
TA181
W 180
W 182
W 183
W 184
W 186
RE185
RE187
0S184
0S186
0S187
0S188
0S189
0S190
08192
IR191
IR193
PT190
PT192
PT194
PT195
PT196
PT198
AU197
HG196
HG198
HG199
HG200
HG201
HG202
HG204
TL203
TL205
PB204
PB206
PB207
PB208
BI209

8.07900908154
7.616038675
7.00464129885
7.23355600933
6.78505114525
19.3378298976
7.17917986636
9.29252945513
6.64538271258
6.81312958802
6.482846308
6.74363640233
7.10002060438
7.36341971713
8.14908446402
5.62840845698
5.33979784987
6.69064916939
6.57709123345
6.25935622591
6.63542087816
6.5090696754
6.86440668564
8.08877739444
5.45801451902
6.43371689868
6.17972896404
6.21665238281
6.7096805145
6.66911122053
10.5526620535
5.78843496852
6.50910601513
6.28875343727
6.57481496385
6.47898705172
6.03777833699
6.55978403274
5.75626811524
6.03716635847
3.9114376941
4.90192461712
7.5655978934
7.81650966244

-8.23604951193
-7.48387681815
-6.55473096187
-6.90846820347
-6.24328998961
-26.2676324465
-7.04097791263
-9.39159466702
-6.14800512849
-6.33190485581
-6.05528057568
-6.40584013959
-6.76434410231
-7.57851450445
-15.2694642374
-5.28575309366
-5.37097310031
-6.37963802066
-7.01559423689
-6.34212572986
-6.95361068132
-7.45134102877
-7.78359416719
-14.8830738176
-5.19672751141
-6.73600396974
-7.03085029428
-6.44186619891
-6.67631893599
-7.08275613585
-13.6238633839
-5.35328295024
-6.32758478956
-5.86282974922
-6.23282575406
-5.95155298748
-5.20510429907
-6.01807008609
-5.29242733726
-5.59703450366
-3.57071151473
-4.59784602285
-7.19454867199
-7.57942299576
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Fig. B.1 Logarithmic production factors relative as a function of WD mass. I show
Fe®0, Zn™, 7r% and Sr®0, i.e. one Fe-seed, one r-only, one major product and one
s-only respectively. Also the difference between the fit and each data-point is plotted.
A linear fit is shown for each one of the isotopes considered, whose fitting parameters
are taken from Tab. B.3.
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