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Summary 

Background 
Plasmodium vivax mainly affects Asia, Central and South America and is responsible for 350-

450 millions cases per year, hence 25-40% of annual infections of malaria worldwide. In Papua New 

Guinea (PNG) P. vivax prevalence is among the highest worldwide. The biggest challenge for the 

control of P. vivax infections is the formation of dormant liver stages, which have the ability to 

relapse and cause disease even after successful clearance of asexual stages in the blood 

circulation. P. vivax strains in PNG relapse frequently and fast, and one of the highest doses of 

Primaquine is necessary to reduce the relapse rate in this region.  

Aims and objectives 
The overall aim of this thesis was to deepen our understanding of P. vivax molecular 

epidemiology, infections, transmission and its contribution to the infectious reservoir of P. vivax 

malaria in PNG. The specific objectives pursued can be summarized as follows. First, to assess P. 

vivax infection dynamics and transmission dynamics in semi-immune children and to contribute to 

the understanding of the biology of relapses by comparing two treatment arms. Second, to 

identify the best RNA sampling strategy for field surveys and improve molecular detection and 

quantification of P. falciparum and P. vivax gametocytes in field samples. Third, to develop 

genotyping tools to better study the dynamics of gametocyte production in multi-clone infections 

in consecutive samples. 

Methods 
For the above objectives, the laboratory work of this thesis was split into three parts.  

 P. vivax PCR-positive blood samples from a treatment-to-reinfection survey were genotyped 

by the marker msp1F3 and analyzed for gametocyte carriage by pvs25 qRT-PCR. These samples 

were collected from 524 children aged 5-10 years and actively and passively followed-up over 8 

months in PNG. The children were randomly attributed to two treatment arms consisting of blood-
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stage clearing drugs and either PQ or placebo. Genotyping data and gametocyte positivity were 

used to investigate the contribution of relapses to the infectious reservoir of P. vivax malaria. The 

molecular epidemiology of relapses was assessed by comparing the investment in 

gametocytogenesis, the molecular force of blood-stage infections (molFOB, number of distinct 

blood-stage infections per child and year) and the duration of infections in both trial arms using a 

Bayesian approach that allows for imperfect detection of blood-stage infections.  

In a cross-sectional survey in 315 5-10 years old children from Papua New Guinea, the optimal 

strategy for gametocyte detection in field studies was assessed. Gametocytes need to be detected 

by amplification of stage-specific transcripts, which requires RNA-preserving blood sampling. The 

efficiency of sampling and storage on filter paper versus in solution were compared.  

111 archived DNA samples from PNG were genotyped by capillary electrophoresis for 6 

length-polymorphic and gametocyte-specific markers and their diversity was determined. Serial 

dilution of gametocyte enriched culture of P. falciparum 3D7 strain permitted to establish the 

detection limit of each marker in vitro. The two most promising markers, pfg377 and pfs230, were 

then tested to simultaneously genotype paired RNA and DNA samples from 46 individuals from 

Burkina Faso.  

Results 
In the randomized treatment-to-reinfection trial, children who received PQ showed 82% lower 

risk of experiencing at least one P. vivax infection. The estimated duration of infection, the parasite 

density and the probability of detection of individual infecting clone (detectability) was similar in 

both arms of the trial. Gametocyte densities and carriage in positive samples also did not differ 

between trial arms. Durations increased by age, whereas parasite density and detectability 

decreased by age. Over the 8 months follow-up, molFOB in placebo arm was 9.9 infections per 

child and year and almost three times as high as molFOB in PQ arm with 3.5. About 2 relapses were 

observed per each new infection at all villages. The increasing individual exposure of participants, 

as measured by molFOB, translated proportionally into an increased relapse burden.  

In the cross-sectional survey in PNG, RNAprotect resulted in the highest proportion of 

gametocyte positive samples and gametocyte-specific transcript yields. The RNA-based detection 

resulted in a P. falciparum positivity of 24.1%; of these 40.8% carried gametocytes. P. vivax 

positivity was 38.4% with 38.0% carrying gametocytes. Most of the gametocyte carriers were also 

positive by DNA-based detection.   

Analysis of genotyping markers of P. falciparum gametocytes revealed highest discrimination 

power for pfs230 with 18 alleles, followed by pfg377 with 15 alleles. When assays were performed 

in parallel on RNA and DNA, only 85% pfs230 samples and 60% pfg377 samples contained at least 

one matching genotype in DNA and RNA.  



 Summary VIII 

Conclusion 
This thesis was the first attempt to fill the gaps in the knowledge of infection dynamics of 

relapses and new infections in semi-immune children. By comparing two trial arms results 

demonstrated how relapses and new infections have similar duration, parasite density, 

detectability and investment in gametocytogenesis. The mathematical model applied to 

genotyping data from the two treatment arms proved very useful to evaluate the infection 

dynamics of P. vivax. This was achieved despite a major complication of P. vivax molecular 

epidemiology, namely the unknown history of infections in our participants giving rise to relapses.  

Data generated during the course of this thesis was used to highlight that relapses are the 

major contributors to P. vivax infections and transmission in PNG.  

The molecular genotyping tools developed to study P. falciparum gametocyte transmission 

dynamics will open up new investigations of clone interaction, within-host competition, and clonal 

fitness. So far, very little is known on gametocyte dynamics in natural infections, where concurrent 

clonal infections might contribute to transmission equally or in competition with each other. This 

determines parasite recombination in mosquitoes, which in turn has major consequences for 

development of multi-locus drug resistance phenotypes or antigenic diversity.  
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Chapter 1: Introduction 

Malaria: a short overview 

Malaria is a life threatening disease and was responsible for 198 million cases and estimated 

584'000 deaths in 2013 (WHO, 2014). 3.2 billion people are estimated to be at risk of malaria. The 

majority of the cases (90%) were reported in the African continent and the majority of the victims 

(78%) are children under 5 years of age (WHO, 2014). In schools, the presence and active 

participation of children is repeatedly hindered due to malaria episodes.  

Malaria is caused by five species of parasite of the genus Plasmodium that affects humans – P. 

falciparum, P. vivax, P. malariae, P. ovale and P. knowlesi. P. falciparum is responsible for most 

mortality and morbidity and predominates in Sub-Saharan Africa, where it accounts for up to 10% 

of all DALYs (Jamison et al., 2006). The diversity found in this parasite shows a joint origin with its 

host, the humans. It is suggested to have migrated out of Africa together with humans for over 

50’000 to 60’000 years (Tanabe et al., 2010). P. vivax was recently suggested to be also of African 

origin (Liu et al., 2014). P. vivax infections generally cause less morbidity, but this parasite is more 

widespread and predominates malaria areas outside of Africa (Guerra et al., 2010). The other three 

species are found less frequently and occur sympatric with P. falciparum and/or P. vivax. P. 

knowlesi is a zoonotic malaria parasite and transmission is observed from Macaca monkeys to 

humans of Southeast Asia (Cox-Singh et al., 2008). P. knowlesi probably did not emerge only 

recently, but it likely was confounded with P. malariae in human infections until molecular methods 

became available (Singh et al., 2004).  
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Gametocytes and specific aspects of transmission of malaria 

The transmission of malaria depends on the presence of mature sexual stages, called 

gametocytes, in the human peripheral blood. P. falciparum gametocyte maturation in the human 

host is classified into five stages (I-V), with stage V being the infectious transmission-stage (Sinden 

and Smalley, 1979). Apart from morphological changes during gametocytogenesis, the parasite 

undergoes alterations on molecular level in preparation for rapid adaptation to the mosquito 

midgut. In P. falciparum, this involves 150 to 300 genes found to be up regulated (Lasonder et al., 

2002; Silvestrini et al., 2005; Young et al., 2005). The microscopic detection limit of gametocytes 

(or parasites) in blood smears is dependent on the number of fields examined and requires a 

density for reliable detection of at least 10 gametocytes/µl whole blood (WB) (Bejon et al., 2006). 

To detect lower gametocytaemia, molecular tools are necessary (Babiker and Schneider, 2008; 

Ouédraogo et al., 2009). The worldwide used marker for the detection of mature gametocyte is 

the 25 kDa ookinete surface antigen precursor (pfs25), which is highly expressed in female stage V 

P. falciparum gametocytes (Babiker et al., 1999; Schneider et al., 2004; Tao et al., 2014; Young et 

al., 2005). Quantitative nucleic acid sequence based amplification (QT-NASBA) assays and 

quantitative reverse transcriptase-PCR (qRT-PCR) techniques based on pfs25 enhance the 

detection and quantification of gametocytes to the order of 0.02-0.1 gametocyte/µl WB (Babiker 

and Schneider, 2008; Schneider et al., 2004).   

Studies on P. falciparum gametocytes showed their little sensitivity to many antimalarials (Baird, 

2009). Mature P. falciparum gametocytes were insensitive to common antimalarial drugs like 

Chloroquine (CQ) or non-Artemisinin-combination therapy drugs (non-ACT), whereas immature P. 

falciparum gametocytes are partially susceptible to these treatments (reviewed in (Bousema and 

Drakeley, 2011; White, 2008)). Artemisinin-combination therapy (ACT), e.g. Artemether-

Lumefantrine (AL), is highly active against immature gametocytes and generally lowers the rate of 

post-treatment gametocytaemia and malaria transmission. The 8-aminoquinoles, e.g. Primaquine 

(PQ), occupy a unique position, as they effectively kill mature sexual stages of P. falciparum and 

shorten post-treatment gametocytaemia (Eziefula et al., 2014; Pukrittayakamee et al., 2004; 

Shekalaghe et al., 2007a). Based on QT-NASBA as detection method, the mean circulation time of 

gametocytes after non-ACT treatment was around 55 days, ACT treatment reduced the duration 

fourfold to 13.4 days and PQ-ACT treatment reduced to another twofold to 6.3 days (Bousema et 

al., 2010). Despite good tolerability and safety of PQ in children (Betuela et al., 2012a), clinical use 

of PQ remains limited due to its hematotoxic effects in glucose-6-phosphate dehydrogenase 

(G6PD)-deficient patients (Alving et al., 1956). Recent studies are thus focusing in reducing the PQ 

dose for gametocyte clearance in P. falciparum malaria. They found that 0.4 mg/kg PQ had similar 

gametocidal efficacy compared to the reference 0.75 mg/kg (Eziefula et al., 2014). Since 2012, 

WHO guidelines recommend a single dose of 0.25 mg/kg for blocking transmission (WHO, 2012).  
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Submicroscopic gametocyte carriers are important for malaria transmission (Babiker et al., 1999; 

Ouédraogo et al., 2009). Schneider and co-workers reported that carriers with submicroscopic 

gametocyte densities efficiently infected mosquitoes in Kenya. They concluded that 

submicroscopic carriers constitute a reservoir of human malaria (Schneider et al., 2007). In an area 

of seasonal falciparum malaria from Burkina Faso, Ouédraogo and co-workers calculated the 

contribution of submicroscopic gametocyte carriage in asymptomatic children to the infectious 

reservoir to be 24% (Ouédraogo et al., 2009). The same study showed that mosquitoes were 

infected when fed on parasite positive blood with a P. falciparum gametocyte density below 1 

gametocyte/µl WB. Ouédragodo and co-workers concluded that the relative contribution of 

submicroscopic gametocyte carriers to transmission might be low, but their relative abundance in a 

population may counterbalance this. Submicroscopic gametocyte carriers are thus important 

contributors to malaria transmission (Ouédraogo et al., 2009).  

P. vivax gametocytes were observed within 3 days after the first asexual parasites were 

observed in the peripheral blood (McKenzie et al., 2007). In contrast to P. falciparum, all 

gametocyte stages of P. vivax circulated in the peripheral blood (Graves et al., 1988). Also 

gametocytes were more commonly observed by microscopy in P. vivax infections (57% of 

infections) than in P. falciparum infections (9% of infections)(Mckenzie et al., 2006). Gametocytes 

often comprise <15% of P. vivax and <5% of P. falciparum asexual parasites (Bousema and 

Drakeley, 2011; Huh et al., 2011). Nevertheless, gametocytes circulated for a maximum of 3 days 

in P. vivax infections, whereas the mean circulation time of P. falciparum gametocytes was over 6 

days (Bousema et al., 2010; Carter and Graves, 1988). In natural infections, 67% of P. vivax 18S 

rRNA positive samples contained gametocytes as determined by pvs25 QT-NASBA (Beurskens et 

al., 2009). However, most data available to date on P. vivax gametocytaemia are based on light 

microscopy, which is missing multiple submicroscopic gametocyte densities. Additional molecular 

studies on gametocyte dynamics in natural P. vivax infections, on contribution of relapses to 

gametocyte prevalence and on gametocyte drug sensitivity are needed to better understand the 

effects of interventions on transmission of P. vivax. 

Plasmodium vivax: a challenge in research and epidemiology 

P. vivax sporozoites can develop at lower temperatures than P. falciparum. This fact results in 

higher P. vivax prevalence in temperate zones compared to P. falciaprum. In contrast to P. 

falciparum, P. vivax parasites can persist over long periods as dormant liver stages called 

hypnozoites, the causative agents of relapses and thus a reservoir of infection (Imwong et al., 

2007). P. vivax merozoites show a preferential invasion of reticulocytes (Russell et al., 2011), which 

is thought to account for generally lower parasitaemia in P. vivax compared to P. falciparum 

infections. P. vivax invasion also depends mainly on the Duffy binding receptor (Hans et al., 2005). 

But repeatedly Duffy-negativity was recently found to not completely protect against vivax malaria 
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(Mendes et al., 2011; Ngassa Mbenda and Das, 2014). P. vivax asexual blood stages are thought to 

not sequester, but limited microvascular cytoadherence of P. vivax to lungs and spleen 

corresponding to 10% of the cytoadherence found in P. falciparum was reported (Anstey et al., 

2007; Carvalho et al., 2010). Less than 15% of blood stages develop into sexual gametocytes as 

detected by light microscopy (Huh et al., 2011). By a further mosquito bite, mature gametocytes 

are taken up with a blood meal. In the mosquito midgut sexual reproduction and recombination 

takes place.  

It was not yet possible to establish stable Plasmodium vivax erythrocyte cycle in continuous in 

vitro cultures (Galinski et al., 2013; Golenda et al., 1997). The limited material gained from patient 

samples constitute a major limitation for cell biology studies (reviewed in (Galinski et al., 2013)). 

Transcriptome data of stages of the asexual cycle of P. vivax was published in 2008 (Bozdech et al., 

2008), 5 years later than the transcriptome data of P. falciparum (Bozdech et al., 2003). The biology 

of the two species, P. falciparum and P. vivax, differs extremely and observations on protein 

function made on P. falciparum can often not be applied for P. vivax (Bozdech et al., 2008). The 

transcriptome of sexual stage has not yet been published, but this will immensely facilitate studies 

on P. vivax gametocyte. Furthermore, studies on the cell biology of P. vivax and on drug 

development, e.g. targeting the dormant liver stages, are limited to non-human primate models 

(Galinski et al., 2013), experimental infections in human volunteers (McCarthy et al., 2013) and 

cohort studies in endemic settings. The latter being the most widely used in the last decade.   

P. vivax is mainly affecting Asia, Central and South America and is thought to be responsible 

for 25-40% of annual infections of malaria worldwide (Hay et al., 2004; Mendis et al., 2001; Price et 

al., 2007). Guerra and co-workers mapped the global distribution of P. vivax (Guerra et al., 2010). 

According to their findings, up to 2.85 billion people are at risk of P. vivax infections. The total 

number of cases per year is estimated between 350-450 millions (Baird, 2007a; Price et al., 2007). 

The geographical distribution of endemic P. vivax malaria is wider than P. falciparum, while both 

species are co-endemic in most areas (Guerra et al., 2010). Only in sub-Saharan zones, where Duffy 

negativity is prevalent, P. vivax is rare compared to P. falciparum (Miller et al., 1976; WHO, 2014). 

P. vivax prevalence in co-endemic areas was frequently reported to be lower than that of P. 

falciparum. The lower observed prevalence might be explained by the tendency of P. vivax to 

maintain low-density parasitaemia compromising diagnostic sensitivity of light microscopy (Mueller 

et al., 2009). Higher and more precise prevalence data of P. vivax are obtained with PCR based 

detection methods (Rosanas-Urgell et al., 2010). 
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High malaria burden in Papua New Guinea 

Malaria prevalence in PNG ranges from very low endemic regions in highlands to highly 

endemic regions in the lowlands. WHO recently classified PNG among the countries controlling 

malaria; long-lasting insecticide-treated bed nets were delivered to 68% of the population living at 

high-risk of malaria (WHO, 2014). Despite the increased attempts to control malaria, it is still a 

major public health problem in PNG and is responsible for 10% of all deaths in children under 5 

years, thus being the fifth cause of death in young children (premature child delivery being the 

leading cause with 18%) (WHO, 2011).  

Four out of five Plasmodium spp. that infect humans are found in both lowland and highland 

areas of PNG (Genton et al., 2008; Mehlotra et al., 2000; Mueller et al., 2002). The predominant 

Plasmodium species of malaria in PNG are P. falciparum and P. vivax (Figure 1). P. malariae is 

unequally distributed among the major endemic areas of PNG (Mueller et al., 2003). Madang 

Province is the most highly malaria endemic region in PNG. A study conducted in 206 school 

children from Megiar and Mugil in Madang Province in 2004 showed that 83.7% of all Plasmodium 

infections were due to P. falciparum (41.2% Pf single-species infection), P. vivax was present in 

42.1% of infections (12.1% Pv single-species infection), P. malariae in 8.4% (1% Pm single-species 

infection) and P. ovale was present in 1.2% of infections (no Po single-species infection) (Michon et 

al., 2007). A more recent study reported the prevalence of Plasmodium species in 1-4 years old 

children from the East Sepik province, the second most highly malaria endemic region in PNG.  

Parasite detection by Ligase detection reaction-Fluorescent microsphere assay (post-PCR LDR-

FMA) indicated that in these young children P. vivax was the most prevalent species accounting for 

53.0% of infections, followed by P. falciparum (49.6% of infections) P. malariae and P. ovale (9.9% 

and 2.7% of infections, respectively) (Lin et al., 2010). More than 20% of all infections harbored 

mixed Plasmodia species (Lin et al., 2010; Mehlotra et al., 2000; Michon et al., 2007).  

A recent study in severe malaria cases from PNG showed that co-infections of P. falciparum 

and P. vivax (50 out of 340 severe malaria cases) were associated with more severe symptoms and 

more deaths than single infection of either species (Manning et al., 2011). Plasmodium species co-

infections and their association with clinical outcomes highlight the importance of understanding 

the dynamics of co-infection and their possible relevance for transmission.  

The distribution of Plasmodium spp. in PNG today is highly related to the history of control and 

eradication attempts (Mueller et al., 2003). Prior to vector control programs, mostly based on DDT 

spraying (1957), P. vivax generally has been the predominant parasite, followed by P. falciparum 

and P. malariae (Hairston et al., 1947). After abandoning the spraying program in 1970, a shift to P. 

falciparum predominance was observed (Mehlotra et al., 2000). Changes in patterns of drug use 

and the spread of drug resistance against CQ and Amodiaquine (AQ) might also have contributed 

to this shift (Desowitz and Spark, 1987; Mueller et al., 2003). The first cases of CQ resistant 
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Figure 1. Distribution of P. vivax (A) and P. falciparum (B) prevalence rates by LM in 2010, modified 
from (Gething et al., 2012). 

 
 
P. falciparum and P. vivax parasites were observed in 1976 and in 1989, respectively, leading to 

the introduction of combination therapy of CQ or AQ plus Sulfadoxine-Pyrimethamine (SP) in 2000 

(Mueller et al., 2003; Rieckmann et al., 1989). Six years later WHO recommended the use of ACT 

with Artemether-Lumefrantrine (AL) as first line treatment. At that time increasing numbers of 

treatment failures with non-ACT were reported (Marfurt et al., 2007). Although the effectiveness of 

AL under ideal trial conditions was very promising, some treatment failures against AL were 

observed in young PNG children in a non-clinical-trial setting (Schoepflin et al., 2010). Sub-optimal 

adherence to the recommended treatment and insufficient fat supplementation best explained the 

suboptimal effectiveness and highlighted potential problems with unsupervised usage of AL in 

routine treatment at the field site (Schoepflin et al., 2010). ACTs are highly effective against blood 

stages of P. vivax (Karunajeewa et al., 2008), but no combination is active against latent liver stages 
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causing relapses (Sinclair et al., 2009). To achieve radical cure from P. vivax, ACT treatment should 

be complemented with the standard PQ treatment (0.5mg/kg daily for 14 days)(WHO, 2010). In 

PNG, PQ treatment was not formally implemented as part of treatment guidelines until 2010 

(Betuela et al., 2012b). PQ is the only effective drug against P. vivax hypnozoites, the dormant liver 

stages. In samples from treatment-to-reinfection surveys relapses cannot be differentiated by 

genotyping from new infections, nor from treatment failures, because relapses can be homologous 

and heterologous to the initial infection. Thus, the contribution of reactivated dormant liver stages 

to recurrent P. vivax infections cannot be directly quantified (Baird, 2009).  

Betuela and co-workers estimated the proportion of relapses in a study design, where relapses 

were prevented in one of the treatment arms by adding PQ to the regimen (Betuela et al., 2012b). 

Relapses were responsible for about 50% of recurrent infections and for 60% of clinical illness 

within the first 3 months after treatment in children aged 1-5 years. Although the follow-up period 

lasted for over 9 months, no effect of PQ treatment was observed after the initial 3 months. This 

suggested a high prevalence of rapidly relapsing strains similar to the well-studied Chesson strain 

(Craige and Alving, 1947; White, 2011). Interestingly, PQ treatment did not prevent high-density 

clinical vivax infections during these first 3 months of follow-up. The authors argued that relapsing 

strains are genetically related to clones that caused the primary infections, due to sexual 

recombination between co-transmitted clones in the mosquito midgut. Following a primary 

infection, children would develop partial immunity against genetically related clones relapsing at a 

later stage and reaching only low parasite densities (Betuela et al., 2012b; Collins et al., 2004). The 

equal number of high-density clinical vivax infections observed in both treatment arms were 

therefore explained by new infections of none-related parasite clones, which could not be 

prevented by Primaquine treatment.   

In summary, PNG is one of the countries suffering most from the burden of P. vivax malaria 

(WHO, 2014). P. vivax prevalence is among the highest worldwide and is co-endemic with other 

three major Plasmodium species: P. falciparum, P. ovale and P. malariae (WHO, 2014). Mixed-

species infections are common and species interactions and within host competition can thus be 

studied. P. vivax strains in PNG relapse frequently and fast, hence one of the highest doses of PQ 

is necessary to reduce the relapse rate in this region (Baird, 2007b; Goller et al., 2007). Though the 

different aspects mentioned above make malaria research in PNG indeed attractive, they are a 

great challenge for malaria control in PNG.  
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Context of this PhD thesis 

Study site and Albinama cohort design 
This thesis is part of a larger study conducted by an international group of collaborators under 

the leadership of Papua New Guinea Institute of Medical Research (PNG IMR). The DNA and RNA 

samples analyzed in this thesis derive from a prospective longitudinal cohort study, which was 

conducted from September 2009 to June 2010 in the Albinama area, Maprik district, PNG. The 

aim of this study is to obtain a profound understanding of the effect of liver and blood-stage 

clearance on the incidence of malaria infections and disease in semi-immune children. The cohort 

included 504 children aged 5-10 years at enrolment, which were randomized to two treatment 

arms (Figure 2A):  

• 257 children receiving a treatment of Chloroquine (CQ), Artemether-Lumefantrine (AL), 
Primaquine (PQ arm) 

• 247 children receiving a treatment of Chloroquine (CQ), Artemether-Lumefantrine (AL), 
Placebo (placebo arm) 

For enrolment, children were screened for eligibility and underwent clinical examination to 

assess health status and medical history after written informed consent was obtained from parents 

or a legal guardian, and a unique identification number was assigned to each child. Treatment 

commenced two weeks after enrolment and consisted of a 3-day course of CQ (days 1-3), a 4-week 

course of PQ or Placebo (days 1-5, 8-12, 15-19 and 22-26) and a 3-day course of AL (days 15-

17)(Figure 2A). Effect of these drugs on the parasite stages are shown in Table 1.  

Succeeding treatment, the children were followed-up for 8 months (Figure 2B). They were clinically 

examined and a baseline 10ml venous blood sample was collected at three days after final DOT. 

Subsequent regular finger-prick blood samples were taken in two-week intervals for the first three 

months and monthly thereafter. Active follow-up included two-weekly morbidity control for febrile 

symptoms. Passive follow-up was performed continuously at Albinama health center. Upon febrile 

symptoms accompanied from malaria positive blood smear or positive rapid diagnostic test, 

children were treated according to national treatment guidelines using AL medication if available. 

DNA of each sample taken from regular bleeds, active and passive follow-up was extracted 

from 100-150µl blood pellet at PNG IMR. RNA was extracted from 50µl whole blood spotted on 

Whatman 3MM filter paper, stored for 2-4 weeks at room temperature, then transferred into TRIzol 

solution and stored long term at -80°C. 
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Figure 2. Schematic study design of the Albinama cohort. A. Baseline treatment of the two study arms. 
0.5mg/kg/daily Primaquine dose was administered over 20 days. CQ: 25mg/kg/total dose of 
Chloroquine. AL: 3 days regimen of Artemether-Lumefantrine. B. Schematic design of the follow-up 
period. A finger prick blood sample was taken at enrolment (white triangle) and a venous blood sample 
was taken after baseline treatment (black triangle). Two-weekly and later monthly finger prick blood 
samples were taken during the follow-up period (white triangle). Active case detection was two-weekly 
over the whole study period (white rectangle). Passive case detection at Albinama health centers was 
available over the whole study period (light grey rectangle). Symptomatic (fever >37.5°C) and LM or 
RDT positive children (episode) were treated with AL or similar antimalarial if available (dashed 
rectangle). 
 
 
 
 
Table 1. Drugs used in the present study and their effects on P. falciparum and P. vivax parasitic stages. 
The combination of all three drugs in the PQ arm is thought to lead to a radical cure.  

Drug 
Effect on 

References Asexual 
blood-stages 

Gametocytes vivax 
Hypnozoites immature mature 

CQ + (+) - - 
(Smalley and Sinden, 1977; White, 

2008) 

AL + + - - 
(Bousema et al., 2006; Okell et al., 

2008; White, 2008) 

PQ - - + + 
(Pukrittayakamee et al., 2004; 

Shekalaghe et al., 2007b) 
CQ: Chloroquine; PQ: Primaquine; AL: Artemether-Lumefantrine  
 
 

  

Primaquine*
(0.5mg/kg/daily)*

CQ*=*Chloroquine**
(25mg/kg/total*dose)*

AL*=*Arthemeter@*
Lumefantrin*

Baseline*
treatment*

• *Regular*spaced*bleeds*

**Primaquine* Primaquine* Primaquine* Primaquine*

CQ* AL*

1st*week* 2nd*week* 3rd*week* 4th*week*

***Placebo* Placebo* Placebo* Placebo*

CQ* AL*

Primaquine*

Placebo*

AL*

Episode*
• *AcLve*case*detecLon*

N=257*

N=247*

8*months*

A"

B"
AL*

Episode*
• *Passive*case*detecLon*
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Gametocyte detection and genotyping 
Gametocytes are the parasite stage that is transmitted from humans to mosquito. RNA-based 

detection of gametocytes was shown to be over 100x more sensitive than the routine light 

microscopy (Schneider et al., 2007). Extraction of parasite mRNA permits to amplify gametocyte-

specific transcripts by NASBA method, RT-PCR or qRT-PCR (Beurskens et al., 2009; Kuamsab et al., 

2012; Lima et al., 2012; Mlambo et al., 2008). However, RNA collection in epidemiological studies 

is a challenge, as adherence to storage time and temperature are often logistically demanding 

(Jones et al., 2012). RNA-stabilizing reagents considerably facilitate the handling of RNA in field 

settings. The target genes for gametocyte detection are the P. falciparum pfs25 and the P. vivax 

pvs25 gene. Pfs25 was highly expressed in female gametocytes (Tao et al., 2014; Young et al., 

2005) and similar high expression is expected for P. vivax. During the course of this thesis a 

quantitative real-time PCR (qRT-PCR) was developed to precisely amplify gametocyte-specific 

mRNA of the P. vivax pvs25 genes. This gene was observed to show little sequence polymorphism 

among isolates all over the world (Kang et al., 2013; Prajapati et al., 2011; Sattabongkot et al., 

2003; Zakeri et al., 2009). No male gametocyte specific qRT-PCR has yet been described nor been 

used in field studies (White et al., 2014).  

Genotyping of gametocytes is of a great interest to identify gametocyte-producing clones 

within multiple clone infections and to analyze transmission dynamics over time (Nakazawa et al., 

2011; Nwakanma et al., 2008). Pfs230 and pfg377 are both polymorphic P. falciparum gametocyte-

specific genes. Pfg377 is involved in osmiophilic body formation and egression of female gametes 

(de Koning-Ward et al., 2008). Pfs230 was shown to be involved to mediate cell-to-cell adherence 

in the mosquito midgut (Rupp et al., 2011). Genotyping studies have shown that some 

gametocytes were detectable several months during the dry season and were the most possible 

source of the next outbreak during the rainy season (Abdel-Wahab et al., 2002). 

Blood-stage genotyping 
Genotyping based on size polymorphic markers and capillary electrophoresis-based sizing of 

PCR products (PCR-CE) has become the method of choice for many epidemiological studies which 

need to differentiate co-infecting clones (Falk et al., 2006; Koepfli et al., 2011; Schoepflin et al., 

2009). PCR-CE can precisely discriminate alleles differing in size by few base pairs only. Accuracy 

of sizing is the major advantage of CE over earlier genotyping methods such as PCR-restriction 

fragment length polymorphism (PCR-RFLP). Although genotyping does not permit the 

differentiation between treatment failures, new infections and relapses in endemic areas (Bruce et 

al., 2000), genotyping of recurrent P. vivax infections after AL administration showed that the drug 

was more effective than estimated by microscopy-based positivity (Barnadas et al., 2011).  

Koepfli and co-workers evaluated and optimized CE-based genotyping assays for large field 

studies (Koepfli et al., 2011, 2009). The polymorphic fragment 3 of the gene encoding merozoite 

surface protein 1 (msp1F3) showed high diversity and robust PCR amplification.  



Chapter 1: Introduction 

	

11 

High diversity of a marker is likely maintained in a population by chance if a marker is neutral, 

e.g. non-coding microsatellites. Alternatively, density dependent selection can drive diversity of 

coding markers, e.g. surface antigens such as Pvmsp1, as they favor rare alleles. No trend of 

diversifying selection was observed for Pvmsp1 in PNG (Koepfli et al., 2009). However, Pvmsp1 is a 

potential vaccine candidate (reviewed in (Galinski and Barnwell, 2008)), thus shifts in the allelic 

diversity of Pvmsp1 might reflect rising antigen-immunity against specific alleles of msp1.  

Multiplicity of infection and molecular force of infection  
The two parameters Multiplicity of Infection (MOI) and molecular Force of Infection (molFOI) can 

be determined at high-resolution by genotyping using capillary electrophoresis for sizing of PCR 

fragments (Koepfli et al., 2011; Mueller et al., 2012; Schoepflin et al., 2009). MOI is defined as the 

number of parasite clones concurrently infecting one individual. MOI has been used as one of 

several parameters to monitor the impact of interventions (Kyabayinze et al., 2008). MOI in natural 

infections varies with malaria endemicity and age (Arnot, 1998; Mueller et al., 2012). MOI in P. 

falciparum has been found to increase during early childhood until the age of 10 and decrease 

thereafter (Falk et al., 2006; Mueller et al., 2012; Smith et al., 1999). MOI in P. vivax infections 

increased in young children up to 2 years and remained stable thereafter until the age of 4.5 years 

(Koepfli et al., 2011). MOI data of children aged 5 to 10 are still missing for P. vivax infections.  

molFOI describes the number of new clones acquired per person per year. Genotyping permits 

to distinguish new parasite clones from co-infecting clones and thus calculate molFOI. Mueller and 

co-workers showed that molFOI was highly associated with the incidence of clinical malaria (defined 

as >2500 parasites/µl) in P. falciparum infected 1-4 year old children from PNG (Mueller et al., 

2012). molFOI increased significantly with age, showed strong seasonality and was reduced by half 

in children using insecticide treated bed-nets. In consideration of relapses, estimates of molFOI for 

P. vivax comprise two sources of blood-stage infections: newly acquired infections (analogous to P. 

falciparum) and relapses from dormant liver stages. The term molecular force of blood-stage 

infections (molFOB) was therefore introduced for P. vivax (Koepfli et al., 2013). molFOB for P. vivax 

was also determined for the same cohort of 1-4 year old children (Koepfli et al., 2013). P. vivax 

molFOB was also significantly associated with clinical episodes (defined as >500 P. vivax 

parasites/µl) and showed high seasonality, but in contrast to P. falciparum molFOB of P. vivax was 

not age-dependent in this age group (Koepfli et al., 2013).  

The average molFOB in young children was shown to be 14.6 clones/child/year, more than twice 

as high as P. falciparum molFOI (5.9 clones/child/year) (Koepfli et al., 2013; Mueller et al., 2012). The 

incidence of clinical P. vivax illness was highest in very youngest children (<2 years). It was 

speculated that the high molFOB was driving the fast acquisition of P. vivax immunity in young 

children from PNG (Koepfli et al., 2013).  
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Aims and objectives of this Thesis 

The aims of this thesis were threefold: (i) assess P. vivax infection dynamics and transmission 

dynamics in semi-immune children and contribute to the understanding of the biology of relapses 

by comparing two treatment arms, (ii) identify the best RNA sampling strategy for field surveys and 

improve molecular detection and quantification of P. falciparum and P. vivax gametocytes in field 

samples, (iii) develop genotyping tools to better study the number of co-infecting clones 

simultaneously producing gametocytes and contributing to transmission, and the dynamics of 

gametocyte production in multi-clone infections in consecutive samples. 

The following objectives were accomplished: 

Objective I: RNA sampling method in the field 

• To determine the optimal strategy for gametocyte detection in field surveys.  

• To quantitatively evaluate the sensitivity of DNA-based and RNA-based detection of blood-
stages of the Plasmodium spp.  

• To test the stability of RNA in stored blood samples and that of extracted RNA over a two-
year interval.  

• To establish a P. falciparum gametocyte trend line in vitro cultures for quantification of P. 
falciparum gametocytes in field samples.  

Objective II: Novel molecular tools to study transmission dynamics of P. 
falciparum 

• To compile a list with the most polymorphic and highly expressed P. falciparum 
gametocyte genotyping markers from available transcriptome data and literature. 

• To improve the discriminatory power of known gametocyte-specific genotyping markers: 
pfg377 and pfs230. 

• To test the detection limit and sensitivity of gametocyte genotyping markers in vitro reared 
P. falciparum gametocytes. 

• To evaluate the diversity and thus the discriminatory power of each marker in field samples 
from PNG. 

• To investigate gametocyte-producing clones in paired DNA and RNA field samples from 
Burkina Faso. 

Objective III. The contribution of relapses to the burden of P. vivax malaria 

• To determine the individual co-infecting clones in over 1000 P. vivax-positive blood 
samples for the highly polymorphic marker msp1F3 in the Albinama cohort. 

• To estimate the contribution of relapses to the number of infections per child. 

• To identify the P. vivax gametocyte carriers by molecular methods and assess the 
contribution of relapses to transmission. 
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Objective IV. Infection dynamics of P. vivax  

• To estimate the detectability, the probability to detect a clone in a given sample, by 
applying a mathematical Bayesian approach to the genotyping data of the Albinama 
cohort. 

• To describe P. vivax duration of infection of new infections and relapses.  

• To evaluate the contribution of relapses to infections in areas of different transmission 
intensity by comparing P. vivax molFOB in two treatment arms. 

• To investigate age trends in P. vivax infection dynamics. 

Objective V. P. falciparum and P. vivax transmission-stage dynamics 

• To describe the submicroscopic reservoir and the number of asymptomatic infections 
contributing to transmission of P. vivax and P. falciparum malaria. 

• To compare the gametocytogenesis of P. falciparum and P. vivax in semi-immune children 
of the Albinama cohort. 

• To assess the differences in gametocytogenesis of P. vivax new infection and relapses by 
comparing two treatment arms.  

• To evaluate the contribution to transmission of P. vivax new infection and relapses by 
comparing the gametocyte densities in two treatment arms.  

• To investigate a long-term effect of PQ on the transmission dynamics of P. falciparum. 

Additional contributions to related research projects 
In the course of this thesis, I had the possibility to contribute to a wide range of projects. In 

one already published project, I contributed by: 

• Development of over 30 qPCR assays for the evaluation of the up-regulation in the early 
stage of commitment to P. falciparum gametocytogenesis. RNAs of an inducible P. 
falciparum Heterochromatin Protein 1 knockdown of P. falciparum 3D7 strain were 
extracted, reverse transcribed and tested for this project (Brancucci et al., 2014), see 
Appendixe A). 

In other projects that are currently in press or in preparation, I contributed by: 

• Collection of over 30 P. vivax field samples in the Amazon region of Brazil and subsequent 
on-field purification and enrichment of gametocytes. A part of these samples were used for 
the development of a dilution trend line of gametocytes to establish a reliable 
quantification of pvs25 transcripts (Koepfli et al., – in press). 

• Another part of these gametocyte samples is currently being analyzed in an international 
collaboration aiming at the first description of the transcriptome of sexual stages of P. vivax 
(in preparation). 
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Abstract

Carriage and density of gametocytes, the transmission stages of malaria parasites, are determined for predicting the
infectiousness of humans to mosquitoes. This measure is used for evaluating interventions that aim at reducing
malaria transmission. Gametocytes need to be detected by amplification of stage-specific transcripts, which requires
RNA-preserving blood sampling. For simultaneous, highly sensitive quantification of both, blood stages and
gametocytes, we have compared and optimized different strategies for field and laboratory procedures in a cross
sectional survey in 315 5-9 yr old children from Papua New Guinea. qRT-PCR was performed for gametocyte
markers pfs25 and pvs25, Plasmodium species prevalence was determined by targeting both, 18S rRNA genes and
transcripts. RNA-based parasite detection resulted in a P. falciparum positivity of 24.1%; of these 40.8% carried
gametocytes. P. vivax positivity was 38.4%, with 38.0% of these carrying gametocytes. Sensitivity of DNA-based
parasite detection was substantially lower with 14.1% for P. falciparum and 19.6% for P. vivax. Using the lower DNA-
based prevalence of asexual stages as a denominator increased the percentage of gametocyte-positive infections to
59.1% for P. falciparum and 52.4% for P. vivax. For studies requiring highly sensitive and simultaneous quantification
of sexual and asexual parasite stages, 18S rRNA transcript-based detection saves efforts and costs. RNA-based
positivity is considerably higher than other methods. On the other hand, DNA-based parasite quantification is robust
and permits comparison with other globally generated molecular prevalence data. Molecular monitoring of low
density asexual and sexual parasitaemia will support the evaluation of effects of up-scaled antimalarial intervention
programs and can also inform about small scale spatial variability in transmission intensity.
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Introduction

The importance of molecular monitoring of gametocytes of
Plasmodium parasites is increasingly acknowledged, because
it provides fast and sensitive quantification of the parasite stage
required for transmission from humans to mosquito vectors.
Molecular techniques detect particularly very low gametocyte
densities that escape detection by light microscopy (LM).
Gametocyte densities are an important measure for evaluating
effects of interventions that aim at reducing transmission, such
as specific drugs, vaccines or bednets [1–3]. Monitoring
gametocytes in population studies can inform about the human
infective reservoir and provides relevant data for transmission
models.

Mature stage V gametocytes circulate in the peripheral blood
of infected humans for a mean period of 6.4 days or a
maximum of 3 weeks, but often at sub-microscopic levels [2,4].
The proportion of gametocytes among total parasites per host
ranged from 0.2% in young children to 5.7% in adults [5]. By
molecular techniques gametocytes are differentiated from
concurrent asexual forms by targeting RNA transcripts of
gametocyte-specifically expressed genes. In the past, detection
of submicroscopic gametocytaemia of P. falciparum and P.
vivax was achieved by two non-quantitative methods, reverse
transcription-PCR (RT-PCR) and nucleic acid sequence based
amplification techniques (NASBA) [4,6–9]. Currently
quantitative NASBA techniques are applied increasingly for
gametocyte detection of both, P. falciparum [10] and P. vivax
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[11]. For this work we have developed and validated
quantitative qRT-PCR TaqMan probe-based assays for P.
falciparum and P. vivax gametocytes.

In view of large field studies planned to monitor effects of
antimalarial interventions, robust sampling strategies and
laboratory assays are needed. For the detection of
gametocytes of malaria parasites, we have evaluated and
compared several approaches adapted specifically to those
meso- to highly endemic settings where several Plasmodium
species occur together. Diagnosis of multiple species incurs
substantial costs for cross sectional surveys or surveillance,
when mostly uninfected individuals or asymptomatic parasite
carriers require testing. This issue was addressed by
introducing a generic screening assay to determine initially in a
single experiment all those samples positive for any
Plasmodium species. Only samples positive in the generic test
were carried forward to species-specific and gametocyte
assays. Our aim was to devise a parsimonious but sensitive
diagnostic approach, generating robust information on asexual
stage and gametocyte densities. These strategies should be
useful for investigating transmission dynamics in longitudinal
studies.

Prompted by previous reports of successful usage of finger
prick blood collected on various filter paper brands in the field
[6,7], we have compared the efficiency of sampling and storage
on filter paper versus in solution. Three different sampling
strategies were applied in the field: (i) whole blood stored in
RNAprotect® cell reagent, (ii) whole blood spotted onto
Whatman® 3MM filter paper, air dried and stored in TRIzol®
reagent thereafter, and (iii) Whatman FTA classic cards. The
focus of this study was on the practical field work in the
endemic settings with realistic time periods and limited access
to freezers. This adds to some recent comparisons of
laboratory cultured gametocytes under a variety of controlled
conditions and stored for a maximum period of 3 months until
processing of samples [8,12]. Both these studies provided a
good overview on various brands of filter papers. However,
under the specific conditions of malaria surveillance or
intervention programs, time intervals from sample collection to
processing in the molecular laboratory will likely extend beyond
3 months. Therefore we have investigated the stability of RNA
in stored blood samples and that of extracted RNA over a two
year interval.

High throughput of samples requiring RNA extraction for
gametocyte detection becomes a technical challenge in the
context of intensified malaria surveillance. RNA extraction from
filter papers is more tedious and contamination prone than
handling liquid samples in 96-well format. We have therefore
investigated the field applicability of RNAprotect solution
(Qiagen) which stabilizes RNA for short term storage and
transport at ambient temperature and permits RNA extraction
in 96 well plates. We made use of the availability of DNA and
RNA of each sample for evaluating the diagnostic sensitivity of
DNA-based versus RNA-based parasite detection in field
samples. Due to the high abundance of transcripts of our
molecular marker 18S rRNA we expected detection of very low
density infections, even below the detection limit of standard
PCR.

In Papua New Guinea (PNG) all four major Plasmodium spp.
infecting humans co-occur, whereby P. falciparum and P. vivax
are the predominant Plasmodium species with similar
frequency [13]. Malaria endemicity is geographically variable
throughout PNG with variations not only along broad
environmental gradients, but also between villages only a few
kilometers apart [14] and even between different clusters of
houses within the same villages [15,16]. In this work we have
compared several sampling methods and molecular diagnostic
approaches, the summary of which lead us to propose a
parsimonious strategy for high throughput molecular monitoring
in endemic areas with several sympatric Plasmodium species.

Materials and Methods

Study population and ethics
Samples were collected from February to March 2010 from

315 mostly asymptomatic children aged 5 to 9 years. This
cross-sectional survey formed part of a major cohort study
conducted in the Albinama region of Maprik District, East Sepik
Province, a malaria endemic area in PNG. Written informed
consent was obtained from parents or guardians of each child.
Ethical clearance for all molecular analyses was obtained from
the Medical Research Advisory Committee of the PNG Ministry
of Health (MRAC no. 1206) and from the Ethics Committee of
Basel (no. 237/11).

Blood collection and sample storage and transport
From each study participant approximately 250µl of blood

was collected in the village by finger prick into a BD
microtainer™ containing EDTA. Samples were stored by three
different methods: (i) 50 µl whole blood spotted on Whatman®
3MM filter paper directly after bleeding, air dried and stored for
2-4 weeks at +4 °C. Then each blood spot was cut into multiple
pieces, transferred into a microfuge tube containing 300 µl
TRIzol® reagent (Life Technologies, Zug, Switzerland) and
stored at -80°C until shipment on wet ice packs to the
molecular laboratory; upon arrival filter papers again were
stored at -80°C until RNA extraction. When handling filter
papers, RNase was eliminated by RNase away™ Reagent
(Ambion) (ii). 50 µl whole blood spotted on FTA classic cards
(Whatman, cat. number: WB120205) directly after bleeding, air-
dried completely, stored at +4°C and shipped with desiccant at
ambient temperature, then again stored at -20°C until RNA
extraction (iii). After transport to the field laboratory and within a
maximum of 4 hours following blood collection, 50 µl whole
blood was transferred from the microtainer into 250 µl
RNAprotect® cell reagent (Qiagen). The mixture was stored at
-20°C until transported with wet ice pack cooling to the
molecular laboratory. RNAprotect and FTA card samples were
stored for 5-8 months before nucleic acids were extracted.
Filter papers in TRIzol were stored for up to 1 year.

The sampling methods described should not be considered
optimized procedures, but rather reflect the best possible
option under the specific field conditions. Clearly, the shorter
the storage at ambient temperature and the time span to RNA
extraction, the better. But stricter protocols are often only
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realizable under trial conditions or when working with in vitro
cultured parasites or blood from travel clinics.

Extraction of nucleic acids
RNA extraction.  All three blood samples collected from 315

study participants were subject to different RNA extraction
protocols that had been optimized with P. falciparum 3D7 in
vitro culture.

(i) Whatman 3MM filter paper: RNA was extracted from
whole blood spotted on Whatman 3MM filter paper
(corresponding to 25µl whole blood) and stored in TRIzol. Filter
papers were transferred from TRIzol into 600 µl RLT lysis
buffer containing β-mercaptoethanol (Qiagen RNeasy® plus
mini kit) and incubated for 15 min at 30°C on a shaker at 1000
rpm. After centrifugation for 30 sec at 13000g the aqueous
phase was transferred to a gDNA eliminator column, a kit
component. From this step onwards, the instructions of the kit
supplier (Qiagen) were followed closely. The now following
procedure included an on-column DNase digest performed
after the first washing step with buffer RW1. 10 µl RNase-free
DNase (Qiagen) was mixed with 70 µl RDD buffer and added
to the membrane. DNA digestion was allowed to proceed for 15
min at room temperature and then terminated by a wash step
with buffer RW1 and the supplier’s protocol was continued.
Finally RNA was eluted in 50 µl RNase-free dH2O and stored
for short term at -20°C, for long term at -80°C.

(ii) Whatman® FTA classic cards: RNA was extracted from
FTA cards using the Qiagen RNeasy® plus mini kit protocol to
5 filter discs punched out from FTA cards impregnated with
whole blood using a Harris Micro-Punch (tip diameter 3.0 mm).
Discs were vortexed in buffer RLT Plus for 1 minute and the
incubated for 30 min at room temperature (24-27°C) followed
by a gDNA eliminator column and an on-column DNase
digestion (all Qiagen) according to the manufacturer’s
protocols. Yields at room temperature were higher than those
at incubation temperature of 50°C. We also tested an
alternative strategy for RNA extraction from FTA cards
following the Whatman FTA Protocol BR01 (http://
www.whatman.com/UserFiles/File/Protocols/Bioscience/BR01).
Substantial costs for the recommended RNA processing buffer
and our RNA yields severely compromised by the necessity for
DNase digestion of extracted RNA prompted us to discontinue
this approach.

(iii) RNAprotect® cell reagent: RNA was extracted from 300
µl total volume (50µl whole blood plus 250µl RNAprotect
reagent) using the RNeasy® plus mini kit protocol for spin
column followed by on-column DNase digestion (all from
Qiagen). All procedures followed those described in (i) with
exception of the first step. This protocol starts with
centrifugation for 15 min at 14’000 g. If a pellet was visible, all
supernatant was removed and stored at -80°C for subsequent
RNA extractions. If no pellet was visible, the centrifugation was
repeated. If still no pellet was visible, 250 µl supernatant were
removed and to the remaining 50 µl left in the tube RLT lysis
buffer was added and RNA was extracted as described above
in procedure (i).

The outcome in common of all our attempts to optimize RNA
extraction points towards the use of on-column DNase
digestion for minimizing loss of RNA.

DNA extraction.  Parasite genomic DNA was extracted from
all 311 blood samples, from 4 study participants these samples
were missing. After removal of plasma and storage of blood
pellets at -20°C for a maximum of two years, 50-150 µl blood
pellet was used for DNA extraction (individual volumes were
recorded) using FavorPrep™ 96-well genomic DNA extraction
kit (Favorgen, Taiwan). DNA was eluted in 200 µl elution buffer
and stored at -20°C.

Molecular detection of Plasmodium parasites
The workflow in Figure 1 depicts the series of consecutive

assays performed with both RNA and DNA samples. The
infecting Plasmodium species was determined by quantitative
PCR (qPCR) using a gDNA template extracted from blood
pellets and in parallel also by quantitative reverse-transcription
PCR (qRT-PCR) using RNA obtained from the 3 different
sampling methods.

RNA-based Plasmodium species diagnosis.  After
extraction all RNA samples were tested by qPCR targeting
genes encoding 18S rRNA to confirm complete digestion of
gDNA in a StepOne Plus® Real-Time PCR system (Applied
Biosystems). This was followed by a generic qRT-PCR using
the same generic primers and probe but on RNA in a one-tube
reaction combining the reverse transcription and amplification
reaction. Primers and probes are listed in Table S1, reaction
mixes and PCR profiles are listed in Table S2. The RNA-based
P. falciparum assay targeted A-type 18S rRNA transcripts
expressed in asexual stages [17], whereas the generic assay
targeting conserved regions would amplify all 5 copies of 18S
rRNA genes in the genomes of P. falciparum and P. vivax [18].
All samples positive by the generic Plasmodium sp. assay were
further analyzed by species–specific qRT-PCR reactions in a
simplex reaction for P. falciparum and P. ovale, and as a
duplex reaction for P. vivax and P. malariae. Primers and
probes are listed in Table S1. Due to the generally higher
parasitaemia in P. falciparum than in P. vivax infections, 18S
rRNA transcripts in P. falciparum samples were highly
abundant compared to 18S rRNA of for P. vivax. During
extensive test evaluation we have observed a low level of
aerosol-derived contamination when introducing negative
controls, i.e. extraction of water. This low level of air-bourne
contamination found in some, but not all negative samples, was
corrected for by introducing a cut-off of 10 copies/µl extracted
RNA for P. falciparum 18S rRNA qRT-PCR; for P. vivax no cut
off was required. The cut off was identified in a plot of all
measured transcript copy numbers by the point from which
copy numbers rose above a steady baseline. By introducing a
cut-off for P. falciparum, 51 previously Pf qRT-PCR positive
samples were considered false positive. All except one sample
had been P. falciparum negative by qPCR. This finding gave
support to the choice of 10 copies/µl extracted RNA as our cut
off.

Each plate carried a dilution series of assay-specific control
plasmids with the respective template inserted at
concentrations of 106,104 and 102 copies of template/reaction in
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Figure 1.  Flow diagram of molecular analyses performed for detection of asexual and sexual parasite stages of P. vivax
and P. falciparum in field samples from PNG.  Red and blue frames indicate assays done on DNA and on RNA, respectively.
Orange and green boxes are P. falciparum and P. vivax-specific assays, respectively. P. malariae and P. ovale assays are not
included in the diagram.
doi: 10.1371/journal.pone.0076316.g001
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duplicates. For each plate standard curves were generated
from these values for quantification of copy numbers in test
samples.

DNA-based species diagnosis.  As depicted in Figure 1, all
DNA samples were first tested for positivity for any
Plasmodium parasite species by a generic assay. All samples
positive by generic assay were quantified by simplex qPCRs
for P. falciparum and P. vivax. P. malariae and P. ovale assays
were not performed on DNA level, only on RNA level.

Gametocyte-specific assays
For detection and quantification of P. falciparum and P. vivax

gametocytes qRT-PCRs targeting the two orthologues pfs25
and pvs25 transcripts (GenBank accession no: AF193769.1
and GU256271.1, respectively) were developed and validated.
These genes are the most frequently used markers for
gametocyte detection in NASBA. Pfs25 is highly expressed in
mature gametocytes [4]. Sequences of oligonucleotides are
given in Table S1, the composition of reaction mixes and
thermo profiles are shown in Table S2. Pfs25 and pvs25
primers as well as the pfs25 HEX-BHQ1-labeled and pvs25
FAM-BHQ1-labeled probes were selected within non-
polymorphic positions identified by alignment of all publicly
available nucleotide sequences. Of 138 P. vivax pvs25
sequences, none showed polymorphism at sequences targeted
by our assay, with the exception of a SNP observed in a single
isolate, however, this DNA was no more available from the
authors for confirmation of sequencing [19]. The region of
pfs25 targeted by our qRT-PCR assay is similar to that of the
pfs25 qNASBA assay of Schneider and coworkers [10], whose
molecular beacon overlaps with the forward primer of our qRT-
PCR assay. Pvs25 primers and probe target the gene region
also chosen by Beurskens and coworkers [11], whose
molecular beacon is identical with our probe.

Gametocyte trend line used for conversion of pfs25
transcript copy numbers into gametocyte counts

A synchronized (5% sorbitol) 3D7 ring culture of 8%
parasitaemia was induced to undergo gametocytogenesis at
day -2 by reducing the hematocrit and doubling the Albumax
concentration in the medium. At day -1, induced trophozoites
were diluted to 2% and a second stress medium was added. At
day 0, regular medium was added to the gametocytes
(modified after [20]). At day 1 and until day 9, 50mM N-
acetylglucosamine was added to the gametocytes to reduce
surviving of asexual stages [21]. At day 12, gametocytes were
purified by a percoll gradient [22] and counted in a Neubauer
Cell Count Chamber at 3 different concentrations. The purified
gametocytes were diluted in full medium to concentrations of
10’000, 1’000, 100, 50, 10, 5, 1, 0.5, 0.1, 0.05, 0.01, 0.005
gametocytes/µl in triplicates. 50 µl of gametocyte dilution was
added to 250 µl RNAprotect cell reagent (Qiagen) and frozen at
-20°C. RNA was extracted using the RNeasy plus 96well Kit
(Qiagen) with an additional on column DNase digestion step
and amplified on pfs25 qRT-PCR and QMAL qPCR. A linear
regression was applied on the log10 transformed copy numbers
of the gametocyte trend line by R version 2.14.0 [23]. The
regression coefficient (r2) was 0.95 (p<0.0001). The conversion

from transcript copy numbers to gametocytes was as follows:
gametocyte counts/µl whole blood = 10-1.6225 * (copy number
pfs25 transcripts/µl whole blood) 0.8518.

Light microscopy (LM)
Blood slides with thick and thin smears were collected in

duplicate for each patient and examined microscopically for
Plasmodium parasite density (asexual stages and
gametocytes) and species identification. Three reads were
done and densities counted over 200 white blood cells, which
were then converted into parasite s/µl by assuming 8000 white
blood cells/µl whole blood.

Statistical analysis
Parasite counts by LM were multiplied by 40 (200WBC ◊

8000WBC/µl blood) and log10 transformed. Template copy
number/µl whole blood obtained from qPCR and qRT-PCR
were log10 transformed. Only samples with positive cell counts
in both tests were considered. For comparing molecular and
microscopic parasite quantification methods, linear regression
was applied to the log-transformed densities and DNA or
transcript copy numbers. Correlation coefficients were
calculated with R [23]. F-statistic was applied to test whether
regressions (e.g., LM versus molecular detection) were
significant.

Results

Validation of assays and Limit of Detection (LOD) for
amplification of gDNA and cDNA

For each assay the respective PCR fragment was inserted
into a plasmid as described previously [24]. Serial dilutions of
these control plasmids were made in quintuplicates. LOD was
defined as the lowest concentration of control plasmid (in copy
number/µl) yielding positive results in >50% of parallel samples
tested. LOD and amplification efficiencies (calculated as
Efficiency = 10(-1/Slope) -1) of each assay is listed in Table S3.

Prevalence of Plasmodium sp. in study population by
RNA-based versus DNA-based detection

Detection of any Plasmodium species (generic assay) as
well as specific detection of P. falciparum or P. vivax was
performed in parallel on DNA and RNA for all samples. DNA-
based detection followed our previously described protocol
[24]. For RNA-based detection by qRT-PCR the same primers
and probes were utilized, except for the P. falciparum assay,
which on RNA level targets the A-type 18S rRNA instead of the
S-type gene as in qPCR [17]. The generic assays on RNA and
DNA level were carried out on all samples, whereas the
species-specific assays were only performed in samples
previously positive by the generic assay according to Figure 1.
Due to the low local prevalence of P. malariae and P. ovale,
both these species were only detected by RNA-based assays,
DNA-based assays were omitted. To reduce complexity in
Figure 1, the performed P. malariae and P. ovale assays were
not included.

Strategies for Gametocyte Detection

PLOS ONE | www.plosone.org 5 September 2013 | Volume 8 | Issue 9 | e76316



 Chapter 2: Strategies for Detection of Plasmodium species Gametocytes 26 

The initial analysis, carried out to screen for the presence of
any malaria parasite, detected 112/311 parasite positive DNA
samples, whereas RNA-based 169/315 samples were positive.
Such discrepancy in positivity mirrors the high sensitivity of
detection when targeting highly abundant 18S rRNA transcripts
(probably >106 per cell), as opposed to only 5 copies of the 18S
rRNA gene per genome [18].

All DNA or RNA samples positive by the generic assays
were further analyzed by species specific qPCR or qRT-PCR
assays, which also targeted 18S rRNA sequences, yet not the
conserved part, but stretches instead that differed between
Plasmodium species. We have compared parasite positivity
obtained by both qPCR and qRT-PCR and by light microscopy
in our samples (Table 1). P. falciparum prevalence was 14.1%
in DNA samples, but 24.1% in RNA samples. The discrepancy
was even larger for P. vivax, with 19.6% DNA-based and twice
as high RNA-based positivity (38.4%). As expected light
microscopy provided the lowest prevalence rate (6.6% for P.
falciparum and 13.3% for P. vivax). Because most parasite
carriers were asymptomatic, many of these infections likely
harbored low parasite densities around the detection limit of
microscopy.

Quantification of parasites
For most research questions quantitative parasitological data

is desirable. When introducing molecular measures for parasite
quantification, their performance with respect to the classical
techniques needs to be evaluated. We therefore compared
parasite counts by the different methods. Quantification of P.
vivax was expected to be particularly difficult for two reasons:
firstly, in our study area P. vivax densities are about 10 fold
lower than P. falciparum densities [25], thus detection by PCR
is more likely affected by the so called “Monte Carlo effect”,
i.e., the random presence or absence of template in a tested
DNA aliquot deriving from a blood sample of very low
parasitaemia. The additional detection of a large number of
scanty parasitaemias by the molecular assay of high sensitivity

Table 1. Prevalence of asexual and sexual stages of P.
falciparum and P. vivax detected by microscopy, qPCR or
qRT-PCR in samples from 315 children from PNG.

 Detection method of asexual Plasmodium stages

 Light microscopy
DNA-based
approach

RNA-based
approach

Sample size (N) 301 311 315

P. falciparum

prevalence
20/301 (6.6%) 44/311 (14.1%) 76/315 (24.1%)

Pf gametocyte carriers
in Pf pos.

7/20 (35.0%) 26/44 (59.1%) 31/76 (40.8%)

P. vivax prevalence 40/301 (13.3%) 61/311 (19.6%) 121/315 (38.4%)

Pv gametocyte
carriers in Pv pos.

23/40 (57.5%) 32/61 (52.4%) 46/121 (38.0%)

doi: 10.1371/journal.pone.0076316.t001

will lower the median parasite density compared to microscopy.
Secondly, due to the presence of P. vivax schizont stages in
the peripheral blood, a single parasite is not equivalent to one
genome, but could account for a per parasite >20 fold higher
copy number of the target gene.

To permit parasite quantification based on target gene or
transcript copy numbers detected by our 18S rRNA assays, we
have plotted densities by light microscopy (LM) versus DNA- or
RNA-based quantification (Figure 2). Only samples positive by
both compared tests were considered. For P. falciparum 17
LM/DNA, 20 LM/RNA and 42 DNA/RNA positive pairs were
available, for P. vivax these were 29 LM/DNA, 37 LM/RNA and
58 DNA/RNA pairs. For P. falciparum (upper panel Figure 2),
parasite quantification by LM and qPCR correlated well
(r2=0.81), when assuming presence of mainly ring/early
trophozoite stage parasites in peripheral blood samples (equal
to1 genome/parasite).

For P. vivax (lower panel Figure 2) LM parasite counts and
DNA copy numbers correlated less well (r2=0.35). Confidence
intervals wider than those for P. falciparum denote a less
robust quantification for P. vivax, likely due to the presence of
schizonts or the overall lower densities. For both parasite
species the correlation between the measurements for RNA
transcripts versus gene copies was around 50% (Figure 2,
panels on the right). In Figure 2 all regressions on the log-
transformed data were significant to a p-value less than 0.001.

Due to the lower sensitivity of LM compared to both
molecular methods, only a very limited number of samples was
available with data from all quantification methods, which does
not represent a robust basis for conversion of molecular data.
Nevertheless, we have explored this possibility for conversion
and calculated the median parasite densities quantified by
qPCR or qRT-PCR (Table S4) by using the algorithm
determined in the regression analyses (shown in Figure 2). As
expected, mean parasite densities by DNA based quantification
were lower than by LM, reflecting the contribution of the
additional samples sub-patent by LM and with presumably
lower parasite densities. RNA-based quantification was not
consistent between P. falciparum and P vivax.

Our efforts to generate molecularly determined parasite
counts provided preliminary evidence for a good predictive
relationship between DNA copy numbers and microscopic
parasite density, especially for P. falciparum. Yet, this
approach needs further validation by a larger sample set to
provide a solid mathematical function for this relationship.

Co-infections with multiple Plasmodium species
To determine the overall prevalence of any Plasmodium

species or of each specific species, we took into account all
positive test results from DNA- and RNA-based assays (Table
S5). Overall malaria parasite prevalence in the 315 children
was 54.3%. Of these, almost a quarter had P. falciparum/P.
vivax mixed infections (21.1%). Triple infections of P.
falciparum, P. vivax and either P. malariae or P. ovale were
seen in very few cases (0.6% and 3.5%). P. malariae single
infections were less than 1%; no P. ovale single infection was
observed.
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Gametocyte prevalence rates for P. falciparum and P.
vivax

In our hands RNA extraction from FTA classic cards did not
yield satisfactory results, despite efforts in optimizing the
extraction protocol with the Qiagen RNeasy Plus mini kit. In
contrast, gDNA could be extracted from these cards, but
positivity in the Plasmodium species assays was reduced
compared to results from the two alternative sampling methods
(data not shown). Storage time >3 months or another, by us
unnoticed problem during sampling, shipment or storage, all
could have compromised RNA integrity on FTA cards. Our
failure to detect gametocyte-specific RNA is in line with a
similar work on field samples from Brazil [26].

RNA was extracted successfully from all blood samples
collected by both strategies, RNAprotect® and filterpaper/
TRIzol®. Of 315 children tested by any sampling method, 32
and 46 carried P. falciparum and P. vivax gametocytes,
respectively (Table 1). To evaluate the differential performance
of the two sampling approaches, we have compared the
gametocyte positivity and transcripts numbers by either method
for P. falciparum and P. vivax (Figure 3). RNAprotect®
sampling yielded more P. falciparum positive samples than
filterpaper/TRIzol®. In samples positive by both methods,

transcript copy numbers were higher for RNAprotect® sampling
as shown in a comparison of paired results (Figure 3, bar
chart). For P. vivax, each of the methods missed about one
third of gametocyte positive samples as compared to the
summary result. The great fluctuation in P. vivax positivity and
quantification is likely due to the overall lower density of P.
vivax asexual stages and gametocytes. By LM no P. falciparum
or P. vivax gametocytes were observed, thus confirming the
well established superiority of molecular gametocytes
detection. We have assessed how far gametocyte prevalence
is associated with asexual densities (Figure S1). A positive
association of high 18S rRNA transcripts and gametocyte
prevalence was observed for P. vivax and P. falciparum. This
association was also seen for 18S rDNA copy numbers of P.
vivax, but not P. falciparum. The data available was rather
limited; a more robust investigation of these relationships would
require a larger sample set.

Evaluation of P. falciparum and P. vivax gametocyte
quantification assays

For quantification of gametocytes in a blood sample, the
number of detected transcripts per sample is not meaningful
without a standard curve that permits transforming copy

Figure 2.  DNA- versus RNA-based quantification of Plasmodium parasites by qPCR and qRT-PCR of 18S rRNA genes or
transcripts in comparison to light microscopy (LM).  P. falciparum (upper panel) and P. vivax (lower panel). Boxed values
indicate the correlation coefficient (r2) and the conversion functions extracted from these data. All correlation coefficients (r2) were
significant (p-value < 0.001).
doi: 10.1371/journal.pone.0076316.g002
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numbers into gametocyte counts. Therefore a gametocyte
trend line was generated from 3D7 in vitro culture by counting
gametocytes prior to harvesting RNA. Figure 4 presents the
standard curve used for estimating gametocyte loads in our
samples and for establishing the detection limit of our qRT-
PCR assays. According to the conversion factor obtained from
regression analysis (see method section), one P. falciparum
gametocyte corresponds to 87.05 pfs25 transcript copies (95%
CI: 65.55-115.60). This translates into a limit of detection (LOD)
of 0.02-0.05 gametocyte / µl blood when 50 µl blood or parasite
culture was subject to RNA extraction. If volumes larger than
50 µl of blood would be sampled, our pfs25 qRT-PCR would
even permit an almost 2-fold greater sensitivity (1 gametocyte /
100 µl blood). This example indicates that LOD based on
transcript copy numbers rather than gametocytes only
describes detection potential, whereas presence or absence of
gametocytes determines the effective sensitivity. Our LOD
compares to that published for qNASBA-based gametocyte
detection [27]. Due to the lack of P. vivax in vitro culture, we
had to use the P. falciparum based conversion factor for
calculating P. vivax gametocyte loads. Median gametocyte
numbers per µl blood were 0.99 (1st quartile, 3rd quartile: 0.27,
4.95) for P. falciparum and 0.34 (1st quartile, 3rd quartile: 0.11,
0.68) for P. vivax. So far we failed to establish gametocyte
assays for P. malariae and P. ovale due to yet little success to
find pfs25 orthologues in these species.

Effect of storage duration on stability of pfs25
transcripts

Two years after extraction of RNA from both types of
samples, RNAprotect® and filter paper/TRIzol®, we have
repeated pfs25 qRT-PCR of a subset of all samples
representing the full range of transcript copy numbers. Sample
pairs plotted side by side did not indicate compromised RNA
stability after 2 years of storage at -80°C (Figure 5). Other
protein coding transcripts were not tested and the stability of
pfs25 RNA may represent an exception rather than the rule.

Discussion

The difference in DNA- versus RNA-based Plasmodium
species determination derives from the dramatic difference in
the number of templates per parasite. Each Plasmodium
parasite harbors only 5 copies of the 18S rRNA gene, 3 S-type
(detected by our qPCR assay) and 2 A-type genes [18],
whereas many thousands or even some million copies of 18S
rRNA transcripts can be expected per cell. The use of these
extremely abundant transcripts for parasite detection warrants
great care during RNA extraction, a large number of negative
controls and precise definition of a cut-off to avoid false
positives through potential aerosols (low level of signal caused
by airborne templates). Depending on the research question,
outermost sensitivity may be desired, e.g. when searching for
very rare infections in a close to elimination setting. When

Figure 3.  Comparison of two blood sampling strategies for measuring gametocyte prevalence rates.  (A) P. falciparum, (B)
P. vivax. Gametocyte positivity (left panel) and transcript copy numbers (right panel) are shown for RNAprotect solution versus filter
paper soaked in TRIzol. Only samples were compared for which both measurements were available.
doi: 10.1371/journal.pone.0076316.g003
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pooling samples for massive parasitological screening, such
high sensitivity is a prerequisite. These issues might attract
further attention in the eliminations context when sensitive
diagnosis is required for detection of asymptomatic parasite
carriers with low density, as well as for tracking both asexual
and sexual stages in parallel [26].

Sensitivity of detection of blood-borne parasites is defined in
a major way by the volume of blood analyzed, which for very
low parasitaemias may or may not contain a parasite by
chance. In asymptomatic infections the probability of detection
of malaria parasites is hampered by generally low densities.
Accordingly, the chances of gametocyte detection are even
more limited. Our gametocyte assay was found to be

sufficiently sensitive to reproducibly detect a single gametocyte
in 50 µl whole blood. Because 1 gametocyte corresponded on
average to 87 pfs25 transcript copies, it seems likely that
extracting RNA from 100 µl whole blood could have improved
detection of scarce gametocytaemia. Generally the blood
volume collected in population studies is limited, as up to 250
µl of whole blood can be obtained by finger prick, the usual
sampling method for large-scale field surveys and cohort
studies. After setting aside aliquots for blood films, serology
and DNA extraction, starting material for gametocyte detection
is restricted, but should be maximized according to the above
results.

Figure 4.  Gametocyte trend line generated with 3D7 P. falciparum in vitro culture for converting pfs25 transcript copy
numbers into gametocyte counts.  Dashed lines indicate 95% confidence interval of intercept.
doi: 10.1371/journal.pone.0076316.g004
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When describing DNA- or RNA-based diagnostic assays, the
sensitivity of parasite detection is generally presented on the
basis of experiments with in vitro cultured parasites under
optimal laboratory conditions [28]. Yet, for P. vixax in vitro
culture is not available. The approach used in our study takes
into account the conditions under which field samples were
collected and shipped, mirroring the setting of routine
malariological surveillance. To permit direct comparison of P.
falciparum and P. vivax densities, parasites of both species
ideally should be quantified in the same way by extracting an
algorithm for converting template copy numbers detected in
each sample into parasite s/µl whole blood. We have
determined this relationship (Figure 2) and quantified the
median parasite densities for P. falciparum and P. vivax based
on the correlations observed (Table S4). For both species DNA
based quantification produced mean parasite densities lower
that those by LM, because the increased molecular detection
contributed primarily samples with parasite densities below the
detection limit of LM. RNA-based parasite densities revealed a
much greater variance than DNA-based quantification and thus
provided less precise estimates of parasite density. This likely
reflects small variations in sampling or processing, or could
derive from longer delays in reaching the molecular laboratory
for some of the samples. The generally adverse and variable

field conditions could differentially impair the RNA quality in
certain samples. Our data suggests that quantification based
on RNA needs further validation.

Our study aimed at improving blood-sampling techniques in
the field at remote sites. For this we have optimized
gametocyte detection and quantification and compared RNA
stability achieved by three sampling methods. We were only
able to extract RNA reliably from samples stored in TRIzol and
RNAprotect. Samples stored on FTA cards did not give
satisfactory results. In contrast, Pritsch and co-workers [12]
reported successful RNA extraction from Whatman FTA classic
cards. The comparability of these sampling procedures with our
results is limited, because our starting material consisted of low
density asymptomatic field samples that had been stored for 6
months, whereas storage time was not specified in the earlier
publication [12]. In a comprehensive comparison of several
filter papers for collecting low density gametocytes, Jones and
coworkers [8] reported a much lower amplification success of
pfs25 transcripts from FTA classic cards compared to
Whatman 3MM untreated filter paper. This is in line with our
observations. But also in that study filter papers were stored
only for up to 3 months. In our experience, samples from major
field surveys very often are stored for periods longer than 3
months and longer than originally anticipated. Storage periods

Figure 5.  Effect of extended storage time on pfs25 transcripts.  20 samples were chosen to represent a wide range of
transcript copy numbers at start of the 2 yr storage period. The initial copy numbers (black bars) are shown next to copy number
detected 2 yrs later in the same RNA sample (white bars).
doi: 10.1371/journal.pone.0076316.g005
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of 4 weeks of 3 months, which is normally evaluated in
comparative analysis of sampling materials, is very brief given
the average duration of large scale field studies. Particularly
cohort studies may well last over a year, e.g. to capture
seasonal changes. We therefore reported the sensitivity of
asexual stage and gametocyte detection after extended
storage periods of up to 1 year and confirmed the stability of
pfs25 transcripts even after long term storage of 2 years.

Whatman 3MM non-impregnated filter paper has been used
successfully in several recent studies [7,12,29], all reporting
good RNA yields from blood spotted on filter paper without
addition of any RNA-stabilizing reagent such as RNAprotect or
TRIzol, but storage duration in these studies was up to 3
months only. We have shown that even long term storage of
the blood impregnated 3MM filter paper in TRIzol is possible.

RNAprotect sampling showed best results, despite a delay of
several hours until whole blood samples were transferred from
EDTA microtainer into RNAprotect reagent. This contrasts with
conclusions of a previous study that suggested compromised
RNA stability after a 6 hrs delay prior to addition of RNAprotect
[7]. The optimal sampling of whole blood in a RNA stabilizing
agent would involve blood collection directly into tubes
containing RNAprotect. But skin contact to RNAprotect, an
irritant substance, should be avoided; thus finger prick blood is
first collected in microtainers prior to transferring a 50 µl or
larger aliquot into a tube pre-filled with 5 volumes RNAprotect
solution. In this field survey we attempted to limit the delay until
transfer in stabilizing agent to a maximum of 4 hours. A recent
major field study conducted in Burkina Faso has demonstrated
the feasibility of mixing whole blood with RNAprotect reagent
directly at the site of blood collection without any delay [30]. In
conclusion, for field settings far away from laboratory facilities,
the latter approach of transferring whole blood directly into
RNAprotect immediately after blood collection represents the
optimal strategy, which, however, requires thorough training of
field staff, e.g. on contamination-free pipetting of an aliquot
whole blood from a microtainer into the prepared RNAprotect
tube.

By detecting transcripts from late stage V gametocytes, we
targeted specifically the parasite population in the human host
most relevant for transmission. This depicts the impact of
transmission-reducing interventions more closely than markers
of earlier gametocyte stages, as not all committed rings might
successfully develop into mature gametocytes. The presence
of gametocytes is no evidence for subsequent transmission
success of gametocytes to the vector. The relationship of
gametocyte densities and successful infection of mosquitoes is
of great relevance for molecular monitoring of interventions, but
only recently first results were published on the prediction of
mosquito infection from gametocyte densities [3]. It remains to
be shown how molecular gametocyte counts in the host

compare to the classical measure of transmission, the
entomological inoculation rate [31]. We have evaluated
procedures for gametocyte detection and quantification.
Sampling strategy and molecular assays can be considered
robust tools for molecular epidemiological studies and might
prove valuable for estimating the impact of transmission-
reducing interventions, such as drugs, vaccines, or vector
control.
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Supplementary Figure S1  

 

Figure S1. Number of gametocyte carriers by Plasmodium species and detection method 
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Supplementary Table S1.  
Table S1. Primer and probe sequences.  
A. Generic qPCR and qRT-PCR assays (target: conserved regions in 18S rRNA)  
Species Primer Sequence (5’ -> 3’) 
Plasmodium sp. QMAL_fw TTA GAT TGC TTC CTT CAG TRC CTT ATG* 

QMAL_rev TGT TGA GTC AAA TTA AGC CGC AA 
QMAL_probe FAM-TCA ATT CTT TTA ACT TTC TCG CTT GCG 

CGA –BHQ 
B. Species-specific qPCRs and qRT-PCR assays 
Species Primer Sequence (5’ -> 3’) 
P. falciparum (DNA) Pf_S18S_fw TAT TGC TTT TGA GAG GTT TTG TTA CTT TG 

Pf_S18S_rev ACC TCT GAC ATC TGA ATA CGA ATG C 
Pf_S18S_probe FAM-ACG GGT AGT CAT GAT TGA GTT-MGB-BHQ 

P. falciparum (RNA) Pf_A18S_fw TCC GAT AAC GAA CGA GAT CTT AAC 
Pf_A18S_rev ATG TAT AGT TAC CTA TGT TCA ATT TCA 
PF_A18S_probe FAM-TAG CGG CGA GTA CAC TAT A-MGB-BHQ 

P. vivax (DNA & RNA) Pv_18S_fw GCT TTG TAA TTG GAA TGA TGG GAA T 
Pv_18S_rev ATG CGC ACA AAG TCG ATA CGA AG 
Pv_18S_probe HEX-AGC AAC GCT TCT AGC TTA -MGB-NFQ 

P. malariae (DNA & RNA)  same primers and probe as in ref. 24 
P. ovale (DNA & RNA) same primers and probe as in ref. 24  

C. Gametocyte-specific pfs25 and pvs25  qRT-PCR 
Species  Primer Sequence (5’>3’) 
P. falciparum 
 

pfs25_fw GAA ATC CCG TTT CAT ACG CTT G 
pfs25_rev AGT TTT AAC AGG ATT GCT TGT ATC TAA 
pfs25_probe HEX-TGT AAG AAT GTA ACT TGT GGT AAC 

GGT-BHQ1 
P. vivax pvs25_fw ACA CTT GTG TGC TTG ATG TAT GTC 

pvs25_rev ACT TTG CCA ATA GCA CAT GAG CAA 
pvs25_probe FAM-TGC ATT GTT GAG TAC CTC TCG GAA-

BHQ1 
* wobble R = A/G 
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Supplementary Table S2.  
Table S2. PCR profiles and reaction mixes.  
A. qPCR 
qPCR Reaction mix1     
Total volume  
12  μL                   

1X gene expression master mix2 
800 nM primer mix 
200 nM probe2 
2µl of RNA 

qPCR Thermo profile3 
Stage Step Temperature Time 
Holding UDG 50°C 2 minutes 
Holding Activation of AmpliTaq polymerase 95°C 10 minutes 
Cycling (45x) 
 

Denature 95°C 15 seconds 
Anneal/Extend 58°C 1 minute 

 
B. qRT-PCR: one-tube protocol using the TaqMan® RNA-to-CT™ 1-Step Kit2 

qRT-PCR Reaction mix 1 
Total volume 12.5  μL                   1X  RT-to-CT master mix2 

800 nM primer mix 
200 nM probe2 
2µl of RNA 
0.3 µl of Taqman RT enzyme mix (ArrayScript™ UP Reverse Transcriptase 
and  RNase Inhibitor) 

qRT-PCR Thermo profile3 
Stage Step Temperature Time 
Holding Reverse transcription 48°C 15 minutes 
Holding Activation of AmpliTaq polymerase 95°C 10 minutes 
Cycling (45x) Denature 95°C 15 seconds 

Anneal/Extend 58°C 1 minute 
1 Reaction mix was prepared on a template-free bench wiped with 2.5M hypochlorite solution. Prepared 
master mix was added to the reaction plate before transfer to PCR cabinet for template addition. 
Applied Biosystem’s MicroAmp® 0.1ml Fast Optical 96-Well Reaction Plate was used for both qPCR 
and qRT-PCR.  
2 Life Technologies Applied Biosystems, Zug, Switzerland  
3The GENEX standard thermo profile of StepOnePlus Real-Time PCR system (Applied Biosystems) was 
modified for both qPCR and qRT-PCR. A maximum of 45 cycles of amplification was set. And all 
samples with Ct value ≤45 were considered positive.  

Supplementary Table S3.  
Table S3. Limit of detection and amplification efficiencies of all molecular markers determined with 
control plasmids. 
Assay Limit of detection 

copy number /μl* 
Amplification 
efficiencies 

Generic 18S rRNA 1 96.5 
P. falciparum 18S rRNA (S-type) 1 82.5 
P. vivax 18S rRNA 3 82.2 
P. malariae 18S rRNA 1 99.9 
P.ovale 18S rRNA 1 92.8 
pfs25 1 95.2 
pvs25 0.5 92.0 
*determined by serial dilution in quintuplicate of control plasmids (PCR template = insert of control 
plasmid).  
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Supplementary Table S4.  
Table S4. Median density of P. falciparum and P. vivax parasites/μl detected by microscopy, qPCR or 
qRT-PCR in samples from 315 children from PNG. 
 Quantification method of asexual Plasmodium stages 

Light microscopy DNA-based approach RNA-based 
approach 

P. falciparum quantification  
median  [1st quartile, 3rd 
quartile  

1071	[285, 3839] 350	[24, 1898] 1297	[164, 
36904] 

P. vivax quantification median  
[1st quartile, 3rd quartile] 

106	[69, 330] 8	[6, 13] 98	[66, 160] 

Supplementary Table S5.  
Table S5. Overall parasite prevalence derived from combined results of DNA- and RNA-based 
detection methods in study population (n=315) and distribution of mixed species co-infections in 
parasite positive samples.  
Assay / marker gene Positivity1 
Plasmodium generic assay  171/315 (54.3%) 
Pf single infection 32/171 (18.7%) 
Pv single infection 79/171 (46.2%) 
Pm single infection 1/171 (0.6%) 
Po single infection 0/171 (0%) 
Pf + Pv infection 36/171 (21.1%) 

Pf + Pm infection 3/171 (1.8%) 
Pf + Po infection 0/171 (0%) 
 Pv + Pm infection 2/171 (1.2%) 
Pv + Po infection 0/171 (0%) 
Pf + Pv + Pm infection 1/171 (0.6%) 
Pf + Pv + Po infection 6/171 (3.5%) 

Pf + Pv + Pm + Po infection 0/171 (0%) 
missed species typing2 11/171 (6.4%) 
any Pf 78/171 (45.6%) 
any Pv 124/171 (72.5%) 
any Pm 7/171 (4.1%) 
any Po 6/171 (3.5%) 

1The slight discrepancy to those prevalence rates given in Table 1 derives from very few samples 
positive by DNA-based detection, but negative by RNA-based detection. Accordingly, the summary 
result given here shows a slightly higher positivity.  
2Eleven samples were positive for the Plasmodium genus-specific assay, but were negative in all 
species-specific assays. All but one of these 11 samples derived from RNA-based detection and were 
characterized by very low copy number (<10 transcripts). These samples must be considered false 
positive.  Due to highly abundant 18S rRNA transcripts in each cell, a low level of aerosol-derived 
contamination is possible. In principle, this issue can be addressed by introducing a cut-off (e.g. for P. 
falciparum 18S rRNA qRT-PCR we in fact applied a cut-off of 10 copies/µl extracted RNA). But our use of 
the generic assay for screening for all parasite species did not permit application of a stringent cut-off, 
which according to the occurrence of very high parasite densities would be oriented at P. falciparum. 
Cut off application to P. vivax would lead to exclusion of some very low-density infections. In 
consequence, the true parasite prevalence by our generic assay most probably is slightly lower, i.e. 
excluding the 11 potentially false positive samples and thus amounting to 160/315 (50.8%). 
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Novel Genotyping Tools for Investigating
Transmission Dynamics of Plasmodium
falciparum

Rahel Wampfler,1,2 Lincoln Timinao,1,2,3 Hans-Peter Beck,1,2 Issiaka Soulama,4 Alfred B. Tiono,4 Peter Siba,3 Ivo Mueller,5,6

and Ingrid Felger1,2
1Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 2University of Basel, Switzerland; 3Papua New Guinea Institute
of Medical Research, Goroka, Eastern Highland Province; 4Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso;
5Walter and Eliza Hall Institute, Parkville, Victoria, Australia; and 6Barcelona Centre for International Health Research (CRESIB), Spain

Background. Differentiation between gametocyte-producing Plasmodium falciparum clones depends on both
high levels of stage-specific transcripts and high genetic diversity of the selected genotyping marker obtained by a
high-resolution typing method. By analyzing consecutive samples of one host, the contribution of each infecting
clone to transmission and the dynamics of gametocyte production in multiclone infections can be studied.

Methods. We have evaluated capillary electrophoresis based differentiation of 6 length-polymorphic gametocyte
genes. RNA and DNA of 25 µL whole blood from 46 individuals from Burkina Faso were simultaneously genotyped.

Results. Highest discrimination power was achieved by pfs230 with 18 alleles, followed by pfg377 with 15 alleles.
When assays were performed in parallel on RNA and DNA, 85.7% of all pfs230 samples and 59.5% of all pfg377
samples contained at least one matching genotype in DNA and RNA.

Conclusions. The imperfect detection in both, DNA and RNA, was identified as major limitation for investigat-
ing transmission dynamics, owing primarily to the volume of blood processed and the incomplete representation of
all clones in the sample tested. Abundant low-density gametocyte carriers impede clone detectability, which may be
improved by analyzing larger volumes and detecting initially sequestered gametocyte clones in follow-up samples.

Keywords. Plasmodium falciparum; transmission dynamics; gametocytes; genotyping; capillary electrophoresis;
pfg377; pfs230.

Malaria infection and transmission dynamics both de-
scribe the appearance, loss or persistence of genotypes
of Plasmodium parasites in a given host. Although
infection dynamics describe longitudinal changes
among asexual parasite clones, the focus of transmis-
sion dynamics lies on the sexual stages, gametocytes.
To answer gaps in our knowledge on parasite reproduc-
tion and transmission, both the sexual and asexual

stages, concurrently present in a host, need to be ana-
lyzed by genotyping. Examples of specific research
questions are: Do all concurrent P. falciparum clones
contribute to gametocyte production? Do drug-
resistant clones contribute more to transmission?
Does within-host competition between clones or other
environmental factors affect the start and duration of
gametocyte production?

Superinfections of already infected hosts and a high
number of concurrent infections are common in areas
of high malaria transmission. Polymorphic molecular
markers are amplified to differentiate concurrent
clones. The number of clones per blood sample (multi-
plicity) varies according to the transmission intensity;
mean multiplicity of infection (MOI) was 2 in Papua
New Guinea (PNG) and almost twice as much in
Tanzania [1].MOI is age-dependent and peaks in high-
ly endemic settings in the age range of 5–9 year-olds [2].
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Human and rodent models suggested that clone multiplicity af-
fects transmission stages [3–5].Antimalarials also were found to
affect transmission. Residual submicroscopic parasitemia after
ACT treatment was associated with a higher transmission in
Kenyan children [4], but the individual clones within the infec-
tion were not differentiated in this study. A further determinant
of transmission is the quantity and duration of gametocyte pro-
duction. Asexual P. falciparum clones can persist in a host for
many months as asymptomatic infections [6]. From this obser-
vation the question arises whether gametocytes are produced
continuously by each clone, and whether gametocyte produc-
tion is up-regulated or suppressed by concurrent clones of the
same or other Plasmodium species.

Genotyping of gametocytes depends on high stage-specific
expression and high genetic diversity of the chosen genotyping
marker in the study area. Classical length-polymorphic markers
for differentiation of gametocytes are pfs230 and pfg377. Pfs230
was first observed as a potential transmission-blocking antigen
in 1988 and thereafter characterized by several immunological
studies [7–10]. Williamson and co-workers first described 2
polymorphic repeat regions in pfs230 by comparing 5 cultured
parasite lines [11]. A separate polymorphic, glutamate-rich re-
gion within pfs230 was described, but diversity was limited [12].

Another frequently used genotyping marker, pfg377, is spe-
cifically expressed in female gametocytes. Transcripts are de-
tectable from gametocyte stage III onward [13]. Menegon and
co-workers developed 4 pfg377 gametocyte genotyping assays
[14].The first longitudinal monitoring of gametocyte-producing
clones was conducted in samples from Sudan. Results indicated
that gametocytes were present for up to 8 months of dry season
and thus were considered the most probable source of malaria
outbreaks in the following rainy season [5, 15]. Gametocytes
from multiclone P. falciparum infections persisted 3 times lon-
ger than those from single-clone infections; thus multiplicity of
infection may promote either longer persistence or continuous
production of gametocytes [5]. Feeding experiments in the
Gambia confirmed that gametocytes from coinfecting clones
were simultaneously transmitted to mosquitoes [16]. Despite
a lower multiplicity of gametocyte clones compared to asexual
MOI, it was found that clones not detected on RNA level still
produced gametocytes and nevertheless contributed to trans-
mission [16]. Of all asexual clones detected in Thai patients,
25% had no corresponding pfg377 transcript and thus no mo-
lecularly detectable level of gametocytes [17].

These previous studies have provided relevant information
on malaria epidemiology and transmission dynamics but were
hampered by the limited resolution of the available gametocyte-
genotyping methods. Size-polymorphic diversity of molecular
markers used in these earlier studies was maximal 7 for
pfg377 and 4 for pfs230 [12, 16]. To improve the discriminatory
power of markers pfg377 and pfs230, we created amplicons
spanning several polymorphic domains of these genes and

increased accuracy of fragment sizing by replacing gel-based
sizing by capillary electrophoresis (CE). In addition, we
screened the gametocyte transcriptome [18] for tandem repeat-
containing genes expressed only in gametocytes and evaluated
these in search for novel high-resolution markers. Our assays
were applied to asexual parasites by targeting genomic DNA
(gDNA) from field samples and in parallel to gametocytes
from the same blood samples by targeting RNA. Our aim was
to employ high-resolution typing to gain a clearer picture on
how many coinfecting asexual clones simultaneously produce
gametocytes.

METHODS

Study Population and Ethics
The diversity of genotyping markers was determined in 111 ar-
chived anonymized DNA samples collected in Madang prov-
ince, PNG, from April 2004 to February 2005 [19]. Scientific
approval and ethical clearance was obtained from the Medical
Research and Advisory Committee of the Ministry of Health
in PNG (MRAC no. 09.24). Informed consent was obtained
from parents or legal guardians prior to sampling. In addition,
46 archived anonymous RNA samples collected in the course
of a cluster-randomized trial in Saponé, Burkina Faso
[NCT01256658] [20] were used for evaluation of gametocyte
detection assays. Ethical clearance was obtained from the Na-
tional Ethical Committee for Health Research of Burkina Faso
(no. 2013-3-019).

Nucleic Acid Extraction
DNA samples from PNG, stored at −20°C, had been extracted
previously using QIAamp DNA Blood Kit (Qiagen) [19]. Total
RNA of Burkina Faso samples was extracted from 25 µL whole
blood stored with 125 µL RNAprotect Cell reagent (Qiagen).
RNeasy Plus 96 kit (Qiagen) was used as previously described
[21]. RNA was eluted in 50 µL water. The gDNA was eluted si-
multaneously from the gDNA elimination column (provided by
the kit) using the QIAamp 96 Blood DNA Kit (Qiagen) proto-
col from the column washing step onwards. The gDNA was
eluted twice in 50 µL of 40°C prewarmed AE elution buffer
(Qiagen) following 30 minutes incubation. RNA and gDNA
samples were stored at −20°C.

Validation of Genotyping Assays and Determination of Allelic
Diversity of Markers
Diversity of 6 genotyping markers was determined in 111
gDNA samples from PNG. Primer sequences for pfg377
(PF3D7_1250100), pfs230 (PF3D7_0209000), pf11.1 (PF3D7_
1038400), PF11_0214 (PF3D7_1120700), PFI1210w (PF3D7_
0924600), and PFL0545w (PF3D7_1211000) are given in
Table 1. Composition of reaction mixes and thermo profiles
are shown in Supplementary Table 1. For CE sizing the
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products were diluted in water according to their agarose gel
band intensity. Samples were analyzed by ABI3130xl using
GS500LIZ as size standard. Electropherograms were analyzed
using GeneMapper Software version 3.7. A cutoff set at 250
fluorescence units (FU) defined the minimal required peak
height. In samples containing dominant peaks of >10 000 FU,
the cutoff was increased to 500 FU. Stutter peaks (defined by
accompanying peaks with a regular pattern of >6 bp and
heights <20% of the main peak) were censored. A bin width of
3 bp was defined for each allele to accommodate small variations
in fragment sizing. To test whether a size standard containing
larger fragments would provide more accurate CE sizing, a sub-
set of 13 pfg377 fragments were simultaneously sized by CE
using GS1200LIZ (Applied Biosystems). The expected heterozy-
gosity (HE) was calculated as published elsewhere [22].

Sequencing of PCR Fragments of Single Clone Infections for
Evaluating Fragment Sizing
Nucleotide sequences of 12 pfg377 and 10 pfs230 nested poly-
merase chain reaction (nPCR) fragments from single clone in-
fections were determined in both directions for pfg377 and in
one direction for pfs230 by direct Sanger sequencing. Sequences
were analyzed with BioEdit version 7.3.2, and alignments were
performed with T-Coffee multiple alignment server and Box-
Shade server version 3.21. Sequences were submitted to Gen-
Bank [KJ566743-KJ566764].

Evaluation of Sensitivity of Reverse Transcription (RT)-PCR
The detection limits of all nested RT-PCR assays were
evaluated on a trendline of stage IV/V gametocyte in vitro cul-
ture of P. falciparum 3D7 as previously described [21]. RT of

Table 1. Primary and Nested Primer Sequences for Gametocyte Genotyping Markers

Marker Primer Sequences (5′->3′)

Pfs230
Primary Pfs230_PF AAG ACA TGT CGC CCA GGG ATA

Pfs230_PR TTC TTC TTC ATC ACC AAA TGG ATA T
Nested Pfs230_NF VIC - CAG GGA TAA TTT TGT AAT RGA TGA TGa

Pfs230_NR ACC TTG CCT TTC TTT TTC ATC TAC A - tail
Pfg377
Primary Pfg377_PF CAC AAC GAA GGT TAT ATA CCT CAT AC

Pfg377_PR TCC ATT CTT CTT TAA GGT TCG CTT C
Nested Pfg377_NF 6FAM - GAA GAT GAC GAA GGG GAT GAA G

Pfg377_NR CTG TAA GAA TTG GTT ATT ACT TTT GTG G - tail
PF11.1
Primary Pf11.1_PF1b GAT ATA TTC TAA TAA T|TG TTC CAA TGG

Pf11.1_PF2 AAG TGC AGG GGA TAG TGC AG
Pf11.1_PR CGG TAA TAC CAT AAG CTC CTC CT

Nested Pf11.1_NF 6FAM - GGA ATA AGG ATG ATG ATG ACG AA
Pf11.1_NR AAC CTT CAA ATT CTT TGT CTC TTT C - tail

PF11_0214
Primary PF11_0214_PF TCG AGA CAA ATT GAA AAG TTA TGG

PF11_0214_PR TTA GTG GAT AAA TGA ATA TCT ACC G
Nested PF11_0214_NF 6FAM - AAT GAT ACA GAT TGT GAA GAA TGG T

PF11_0214_NR TGA GGA ATA TCG TTT TGT ATA AAT GTT - tail
PFI1210w
Primary PFI1210w_PF TTG ATA AGG GAT ATA TAC ACA ACC ATA

PFI1210w_PR TTC CCG TTG TGT ATT TAA GTA GAA T
Nested PFI1210w_NF 6FAM - TGT TTC AAT TTA CCA TCT TTC TTT TC

PFI1210w_NR GTT TTT CAA TTT TTA TGT TGT TCT CCA - tail
PFL0545w
Primary PFL0545w_PF GGA AGG AAA CGA AGA AGA AAC A

PFL0545w_PR AAA GAT TGA AAT GGA GAT TCA CCT
Nested PFL0545w_NF VIC - TGA CAA AGG GCA CTT TAT TAT TT

PFL0545w_NR TTT CTT CAA CAG CAT TTT GCA T – tail

a Primer sequence contains a wobble: R = A/G.
b Pf11.1_PF1 is spanning an intron boundary indicated by “|”.
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gene-specific complementary DNA (cDNA) was performed in a
multiplex reaction using pfg377 and pfs230 primary reverse
primers, 15 µL RNA and Superscript II (Invitrogen) according
to the manufacturer’s protocol. In a second multiplex RT reac-
tion cDNA was reverse transcribed for pf11.1, PF10_0214,
PFI1210w, and PFL0545w using the primary reverse primers
(Table 1). In total, 4 µL of cDNA were added to the primary
PCR (pPCR) mix and 2 µL of primary product to nPCR. The
composition of reaction mixes and thermo profiles are shown
in Supplementary Table 1. The nPCR products were run on a
2% agarose gel. The detection limit of each marker was com-
pared to that of pfs25 qRT-PCR, which is highly sensitive and
widely used [21].

Effects of DNase Treatment on RNA Quality
For marker pf11.1 an additional forward PCR primer was de-
signed to span an exon-intron boundary (Table 1). Including
this primer-binding site into an amplicon covering the poly-
morphic region of pf11.1 resulted in a 680 bp longer fragment.
The sensitivity of both pf11.1 assays was assessed with 2 game-
tocyte trendlines that differed by omitting the DNase digest for
the intron-spanning assay [21]. Assay conditions were identical
except for a higher annealing temperature (58°C) for pPCR with
the intron-spanning primer.

Evaluation of Gametocyte Genotyping Markers in Field Samples
The discrimination power for gametocyte clones in field sam-
ples was assessed for the 2 most diverse markers using 46
RNAs from Burkina Faso. Alleles detected on RNA level were
compared to those found in gDNA of the same sample. In
total, 5 µL RNA, equivalent to 2.5 µL whole blood, were re-
verse-transcribed and amplified for pfs230 and pfg377 by Affi-
nityScript One-Step RT-PCR kit (Agilent Technologies) in
simplex reactions. The nPCR was performed using 1 µL of pri-
mary product. Composition of reaction mixes and thermo pro-
files are shown in Supplementary Table 1. Reaction conditions
were modified because the SuperScript II protocol (Invitrogen)
used for work on parasite culture performed less well in field
samples (data not shown).

The gDNA coextracted from the same blood samples was
amplified for pfg377 and pfs230 as described above with the
following modifications: an increased amount of 5 µL
gDNA, equivalent to 1.25 µL whole blood, was added into a
30 µL reaction. Numbers of gametocytes originally present in
whole blood samples were calculated by a conversion factor
of 10−1.6225 × (copy number pfs25 transcripts/µL whole
blood)0.8518 as described elsewhere [21]. Correlation between
gametocyte density (pfs25 transcripts) and asexual density
(S-type 18SrRNA copy numbers) with DNA or RNA-derived
MOI was analyzed by Kendall rank correlation τ for nonpara-
metric data.

RESULTS

High Allelic Diversity of Gametocyte Genotyping Markers in
PNG
New length polymorphic and gametocyte specifically expressed
genes were selected by screening publically available gametocyte
transcriptome data [18] followed by tandem repeat detection
using Tandem Repeats Finder [23]. Primers were designed to
maximize size variation in amplified fragments. For pfg377 we
combined polymorphic regions 2 and 3 described by Menegon
into one larger amplicon [14]. Similarly, also our pfs230 ampli-
con spans 2 polymorphic regions (Figure 1A). Diversity of both
markers in 111 gDNAs from PNG was highest with 18 pfs230
alleles (HE = 0.92) and 15 pfg377 alleles (HE = 0.81). The detec-
tion limit of each assay and parameters describing the genetic
diversity and resolution of each marker are listed in Table 2. Al-
lelic frequencies of the 6 gametocyte markers showed equal dis-
tribution for most of the pfs230 alleles, but for pfg377 a
predominant allele (39%; Figure 1B). Sequence alignments of
12 pfg377 and 10 pfs230 nPCR products (Supplementary Fig-
ure 1) served for validating CE fragment sizing. Sizing of
pfs230 fragments was more accurate than that of the larger
pfg377 fragments. Comparison of 38 amplicons sized in parallel
with GS500LIZ and GS1200LIZ size standards indicated that
GS1200LIZ yielded better resolution for pfg377 with amplicon
sizes >700 bp (Supplementary Figure 2). GS500LIZ worked well
for pfs230 with amplicons <600 bp.

Detection Limits of Gametocyte Assays Assessed With a
Trendline of Cultured Gametocytes
The limit of detection (LOD) of our gametocyte typing assays
ranged from 1 (pfg377 and pf11.1 without DNase digestion)
to 5 (pf11.1 with DNase digestion) and 10 gametocytes/µL cul-
ture (pfs230, PF11_0214, PFI1201w and PFL0545w; Table 2).
These LODs were 50–500 times less sensitive than that of
pfs25, a qRT-PCR assay able to detect 0.02 gametocytes/µL
blood [21, 24]. Our pfg377 LOD was in line with earlier reports
[14].

Quantifying the Gain in Sensitivity After Bypassing DNase
Digestion
Using an intron-spanning marker permits omitting DNase di-
gestion prior to reverse transcription but also increases ampli-
con length. By using alternative primers for marker pf11.1 we
analyzed whether bypassing digestion would exceed the benefit
of a smaller amplicon. Sensitivity was 5-fold higher for the 680 bp
longer fragment not requiring DNase digestion (Table 2).

Evaluation of Gametocyte Typing Markers in Field Samples
Markers pfs230 and pfg377 were genotyped in parallel in paired
DNA/RNA samples coextracted from 46 blood samples from
Burkina Faso, all of which had been gametocyte-positive by
pfs25 qRT-PCR. RT-PCR was successful in 42/46 field samples
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for pfs230 and in 37/46 samples for pfg377. For pfs230 18 alleles
were detected and 19 for pfg377. For each blood sample, geno-
types detected in gDNA were compared with genotypes ampli-
fied from gametocyte transcripts. A higher concordance
between DNA- and RNA-derived genotypes was observed for
pfs230 (Figure 2). From the total of 93 pfs230 PCR fragments
amplified from all DNA samples, 41 (44.1%) were not observed
in the corresponding RNA fraction. These clones either did not
produce gametocytes or were below the detection limit of RT-
PCR. For pfg377 61.5% (48/78) of fragments were missed on
RNA level (Table 3). Similarly, MOI on DNA level (MOIDNA)
was higher for pfs230 with a mean of 2.21 [range 1–5] infections
per carrier in contrast to 2.11 [range 1–4] for pfg377, also argu-
ing for pfs230 as the more sensitive marker. When combining

all DNA- and RNA-derived genotypes per sample, mean
MOI of pfs230 and pfg377 increased to 3.14 [range 1–6] and
3.08 [range 1–5], respectively (Table 3). This combined MOI
(MOIcombined) represents a more realistic, though still underes-
timated number of any stage of all coinfecting clones per sam-
ple. No correlation between MOIRNA, MOIDNA, MOIcombined,
and gametocyte or asexual densities was found (Kendall rank
correlation, all τ’s > 0, all P-values > .07).

DISCUSSION

Gametocyte typing depends on detection of transcripts from
genes exclusively transcribed in gametocytes. In addition, exten-
sive length polymorphism is required to permit tracking of

Figure 1. Location of repeat regions within pfs230 and pfg377 amplicons and allelic diversity of 6 gametocyte markers. A, Markers pfs230 and pfg377 both
span 2 distinct repeat regions. Individual repeat units are in shades of grey. Protein sequences of Plasmodium falciparum strain 3D7 were derived from Plas-
moDB: PF3D7_0209000 (pfs230 ) and PF3D7_1250100 (pfg377 ). B, Allelic frequencies of 6 molecular markers for genotyping gametocytes determined in 111
cross-sectional samples from Papua New Guinea. Highest diversity was found for pfs230 (18 alleles) and pfg377 (15 alleles). The rounded average allele size is
indicated for each allele in addition to the frequencies of the most frequent alleles of each marker in the study population. Abbreviations: NF, nested PCR
forward primer; NR, nested PCR reverse primer; PCR, polymerase chain reaction; PF, primary PCR forward primer; PR, primary PCR reverse primer.
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gametocytes from multiclone infections. Multiple P. falciparum
infections can coexist over weeks or months, but the variation
in their relative densities and contribution to transmission over
time has not yet been adequately quantified. The available data
on gametocytes production of individual co-infecting clones
were compromised by limited size-polymorphism in marker
pfg377-R3 [5, 15–17, 25]. High-endemic settings are characterized
by high MOI, where a limited marker resolution of ≥7 alleles will
not adequately discriminate gametocytes of all clones present in a

sample. By combining 2 repeat regions into 1 amplicon, we sub-
stantially improved the discriminatory power of both major
markers. In 46 samples from Burkina Faso we detected 19 pfg377
and 18 pfs230 alleles by CE. A comparable diversity was observed
in samples from PNG indicating that these markers may have suf-
ficiently high diversity for genotyping in both African and non-
African populations with different transmission intensity.

High MOI in the Burkina Faso study area [26] can contribute
to discrepant results between RNA- and DNA-derived MOI.

Table 2. Resolution of 6 Polymorphic Gametocyte Markers in Comparison to Asexual Marker Msp2 in 111 P. falciparum Positive Cross-
Sectional Samples From PNG

Marker
Positive
Samples

No. of
Clones

No. of
Alleles

CE-Product
Size Range Mean MOI HE

In Vitro Detection Limit
(Gametocyte/µL 3D7 Culture)

Msp2a 111/111 . . . . . . . . . 1.56 . . . . . .
Pfs230 95/111 124 18 463–614 1.31 0.923 10
Pfg377 97/111 117 15 521–695 1.21 0.816 1
Pf11.1 100/111 125 10 143–327 1.25 0.734 1 if intron boundary

5 if no intron boundary
PF11_0214 100/111 104 4 355–376 1.04 0.293 10
PFI1210w 90/111 110 5 442–551 1.22 0.527 10
PFL0545w 95/111 113 7 453–519 1.19 0.546 10

Abbreviations: HE, heterozygosity; MOI, multiplicity of infection; Msp2, merozoite surface protein 2.
a Results from [19].

Figure 2. Schematic of analytical procedures (right panel) and overlap of genotypes detected simultaneously in RNA and DNA by blood sample (left
panel). A, Pfs230, 42 paired RNA/DNA samples. B, Pfg377, 37 paired RNA/DNA samples. Abbreviation: MOI, multiplicity of infection.
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High MOI implies high clone competition in the host, resulting
in turn in fluctuations in clone densities [27]. During PCR the
presence of several templates of various concentrations may
lead to template competition. Both effects of high MOI result
in imperfect detectability [28]. This effect of competing tem-
plates, leading to lack of detection of genotypes either in
DNA- or RNA-based detection, is enhanced by applying a cut-
off for peak height in CE to separate background noise from real
signals (Figure 3). In view of these inherent shortfalls, it seems
essential to optimize sampling and preservation of both DNA and
RNA to maximize the volume of template in PCR and RT-PCR
in order to minimize the failures to detect all alleles present.

When comparing paired RNA- and DNA-derived fragments,
3 scenarios are expected: (I) RNA- and DNA-derived alleles
match; here asexual stages and gametocytes of a clone are con-
currently present in the blood sample, or DNA- and RNA- al-
leles both derive from gametocytes only. Yet, in multiclone
infections a perfect match might be rare because the ratio of
asexual vs sexual stages of each clone could differ considerably.
(II) DNA-derived alleles exceed those obtained from RNA of
the same sample. This is intuitively expected, because only
some of the concurrent clones might produce gametocytes, as
suggested by the frequent absence of gametocytes in some of

the P. falciparum-positive blood samples despite molecular de-
tection. (III) RNA-derived alleles are detected despite their ab-
sence on DNA level. This could occur when a gametocyte clone
is still circulating while its asexual stages are already cleared by
the immune system or below the detection limit. The gameto-
cytes’ nuclear DNA in this scenario remains below the detection
limit of PCR or suffers from competition in multiclone
infections.

In our study all 3 scenarios were seen, with scenario I pre-
dominant for pfs230 and scenario II for pfg377. An explanation
for this discrepancy is offered by the differential performance of
our 2 markers, which differed in their ability to detect a clone on
both DNA- plus RNA level: pfs230 detected at least one match-
ing genotype in >80% of samples, in contrast to only 60% for
pfg377. Similarly, more RNA clones were missed by pfg377
(60%) than by pfs230 (45%). This argues for a higher sensitivity
of pfs230 compared to pfg377 RT-PCR.

The imperfect detectability observed in asexual clones [6, 28]
is aggravated in gametocyte detection, because gametocytes
occur in densities about 100-fold lower than asexual stages
[29]. Detection of gametocytes depends greatly on the blood
volume processed, whereby a rare gametocyte clone might be
present or absent by chance in the limited volume of blood pro-
cessed. An additional limitation specific for Pfg377 consists in
its expression restricted to female gametocytes. Our RT-PCR as-
says amplified gametocyte-specific transcripts in field samples
that contained as little as 2 gametocytes/µL whole blood, as indi-
cated by the LOD for pfs230 and is thus in the range of previously
published assays [14, 30]. Even though this LOD permits detec-
tion of submicroscopic gametocytes, it does not reach the up to
100-fold higher sensitivity of pfs25 qRT-PCR [21].This difference
is mainly due to a lower expression rate of pfs230 compared to
pfs25. Amplicon size and differential stability of the RNA may
play an additional role as previously suggested [21].

We propose another strategy to address the problem of im-
perfect detectability of gametocyte clones: a longitudinal study
design would permit to detect a particular genotype on RNA-
level in a subsequent blood samples harboring higher gameto-
cyte density. It is possible that sexual and asexual densities do
not peak at the same time due to a 10 days maturation period of
gametocytes. Therefore, a better match may be achieved by
comparing results from consecutive bleeds. A gametocyte
clone missed at an earlier sampling date might appear in the fol-
lowing sample. This approach parallels our strategy adapted to
track asexual clones also fluctuating in their densities over time
[28, 31, 32]. Nevertheless, even a longitudinal approach to ga-
metocyte tracking will not overcome the imperfect detection
of a gametocytemia that is persistently very low.

No other candidate of higher diversity and sensitivity than
our CE-based pfg377 and pfs230 assays was found. Thus, length
polymorphism of intragenic repeat regions in gametocyte-
expressed genes seems to be less extensive than in genes

Table 3. Discrimination Power and Test Sensitivity of
Gametocyte Typing Markers pfs230 and pfg377 in 46 Blood
Samples From Burkina Faso

Marker pfs230 pfg377

No. of successful amplified
samples

42/46 37/46

Detection limit in field
samplesa

2 gametocyte/µL
WB

3.5 gametocyte/
µL WB

Median gametocyte
counta

17.0 gametocyte/
µL WB

17.9 gametocyte/
µL WB

No. of different alleles 18 19
DNA/RNA sample pairs
with at least 1 matching
PCR fragment

38/42 (85.7%) 22/37 (59.5%)

Total no. of PCR fragments
detected (DNA and RNA
combined)

132 114

Proportion of DNA
fragments not found on
RNA level

41/93 (44.1%) 48/78 (61.5%)

Proportion of RNA
fragments not found on
DNA level

39/91 (42.9%) 36/66 (54.5%)

Combined mean MOI
(DNA and RNA)

3.14 [range 1–6] 3.08 [range 1–5]

Mean MOI (DNA) 2.21 [range 1–5] 2.11 [range 1–4]
Mean MOI (RNA) 2.17 [range 1–5] 1.78 [range 1–4]

Abbreviations: MOI, Multiplicity of infection; PCR, polymerase chain reaction;
WB, whole blood.
a Determined by a conversion factor based on pfs25 transcripts copies/µL RNA
[21].
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expressed in asexual stages. For improving discrimination
power beyond 18 alleles by pfs23-CE, alternative approaches
could be investigated in, for example, future detection of
single nucleotide polymorphisms by targeted next generation
sequencing. However, the major challenges will likely persist,
e.g. imperfect clone detectability in a limited blood volume
from the field, expression levels of polymorphic gametocyte-
specific genes, and assay sensitivity impaired by long amplicons.

A major gap in our knowledge of P. falciparum transmission
dynamics is the onset and duration of gametocytogenesis of
each asexual clone in relation to coinfecting clones and the con-
tribution of resistant clones to transmission. We envisage that
the molecular description of clone transmission dynamics

may yield molecular gametocyte-specific parameters similar
to those used in the description of infection dynamics and com-
plementing these, for example, the duration of gametocyte pro-
duction or multiplicity of gametocyte clones. This will open up
new investigations of clone interaction, within-host competition,
and clonal fitness. So far, very little is known on gametocyte dy-
namics in natural infections, where concurrent clonal infections
might contribute to transmission equally or in competition with
each other. This determines parasite recombination inmosquitoes,
which in turn has major consequences for development of mul-
tilocus drug resistance phenotypes or antigenic diversity.

In summary, we improved the resolution of existing markers
for discriminating gametocyte clones, but were unable to find

Figure 3. Electropherograms of pfg377 fragments amplified by nested PCR from gDNA and nested RT-PCR from RNA coextracted from the same sample.
Arrows indicate minority peaks, which had fallen below the cutoff, whereas matching fragments of significant peak height were present in the correspond-
ing sample. Abbreviation: RT-PCR, reverse transcription polymerase chain reaction.
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alternative polymorphic markers of higher diversity. Pfs230
emerged as the most sensitive and diverse marker. Detectability
of minority clones was identified as a major problem for match-
ing asexual clones with their gametocytes. The loss of minority
clones seemed strongest in the high transmission setting with
high mean MOI where about half of all clones were missed in
either of the paired samples. Longitudinal analyses are needed
to permit temporally staggered alignment of fragments to com-
pensate imperfect detectability. This calls for longitudinal stud-
ies with short-term sampling intervals specifically designed for
genotyping DNA and RNA targets in parallel.

Supplementary Data
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Supplementary File S1 

 
Figure S1. Alignments of 10 pfs230 and 12 pfg377 protein sequences obtained by PCR amplification of 
the respective genes from single-clone infected PNG field isolates. Sequencing by direct Sanger 
sequencing in one direction with nested PCR reverse primer of pfs230 and in both directions with 
nested PCR forward and reverse primers of pfg377. Pfs230 nested PCR forward primer was found to be 
not suitable for sequencing. A. Protein sequence alignments of pfs230 (left panel) and pfg377 (right 
panel). Combination of two polymorphic regions resulted in increased marker diversity. 3D7 strain 
protein sequences derive from PlasmoDB: pfs230, PF3D7_0209000 and pfg377, PF3D7_1250100. B. 
Comparison of fragment sizes measured by capillary electrophoresis with sizes obtained by Sanger 
sequencing, which would be explained by the fact that the sized fragments were larger than the largest 
fragment (500 bp) of the GS500LIZ size standard (Applied Biosystems). The underestimation was less 
pronounced for pfs230 due to smaller PCR fragments.    
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G16   61 NHEEENVPLNHEEENVPLNHEEENVPLNHEEENVPLNHEEENYNSFLSYQKYDERDISPH 

G17   61 NHEEENVPLNHEEENVPLNHEEENVPLNHEEENVPLNHEEENYNSFLSYQKYDERDISPH 

 

3D7   94 NVNQHKKEIFHHRNITPYHVNHHNQHMDQHDHHIDHHN-------HHIDHHNHHIDHHNH 

G19   85 NVNQHKKEIFHHRNITPYHVNHHNQHMDQHDHHIDHHN----------------------  

G5   103 NVNQHKKEIFHHRNITPYHVNHHNQHMDQHDHHIDHHN---------------------- 

G7    85 NVNQHKKEIFHHRNITPYHVNHHNQHMDQHDHHIDHHN--------------HHIDHHNH 

G1    94 NVNQHKKEIFHHRNITPYHVNHHNQHMDQHDHHIDHHN---------------------H 

G9   103 NVNQHKKEIFHHRNITPYHVNHHNQHMDQHDHHIDHHN----------------------  

G2    94 NVNQHKKEIFHHRNITPYHVNHHNQHMDQHDHHIDHHN--------------HHIDHHNH 

G11  103 NVNQHKKEIFHHRNITPYHVNHHNQHMDQHDHHIDHHN---------------------H 

G4   103 NVNQHKKEIFHHRNITPYHVNHHNQHMDQHDHHIDHHNQHMDQHD--------------H 

G14  112 NVNQHKKEIFHHRNITPYHVNHHNQHMDQHDHHIDHHN--------------HHIDHHNH 

G15  112 NVNQHKKEIFHHRNITPYHVNHHNQHMDQHDHHIDHHN-------HHIDHHNHHIDHHNH 

G16  121 NVNQHKKEIFHHRNITPYHVNHHNQHMDQHDHHIDHHN--------------HHIDHHNH 

G17  121 NVNQHKKEIFHHRNITPYHVNHHNQHMDQHDHHIDHHN-------HHIDHHNHHIDHHNH 

 

3D7  147 HIDHHNHHIDHQDHHIDHHNHHIDHHNHHIDHHDHHIDHHDHHIDHHNHHIDHKSNNQFLQ  207 

G19  123 ------HHIDHHNHHIDHHDHHIDHHNHHIDHHDHHIDHHDHHIDHHNHHIDHKSNNQFLQ  176 

G5   141 --------------------HHIDHHNHHIDHHDHHIDHHDHHIDHHNHHIDHKSNNQFLQ  181 

G7   131 HIDHHNHHIDHQDHHIDHHNHHIDHHNHHIDHHDHHIDHHDHHIDHHNHHIDHKSNNQFLQ  190 

G1   133 HIDHHNHHIDHHNHHIDHQDHHIDHHNHHIDHHDHHIDHHDHHIDHHNHHIDHKSNNQFLQ  193 

G9   141 ------HHIDHHNHHIDHQDHHIDHHNHHIDHHDHHIDHHDHHIDHHNHHIDHKSNNQFLQ  194 

G2   140 HIDHHNHHIDHQDHHIDHHNHHIDHHNHHIDHHDHHIDHHDHHIDHHNHHIDHKSNNQFLQ  199 

G11  142 HIDHHNHHIDHHNHHIDHQDHHIDHHNHHIDHHDHHIDHHDHHIDHHNHHIDHKSNNQFLQ  201 

G4   149 HIDHHNHHIDHHNHHIDHQDHHIDHHNHHIDHHNHHIDHHDHHIDHHNHHIDHKSNNQFLQ  209 

G14  158 HIDHHNHHIDHHNHHIDHQDHHIDHHNHHIDHHDHHIDHHDHHIDHHNHHIDHKSNNQFLQ  217 

G15  165 HIDHHNHHIDHQDHHIDHHNHHIDHHNHHIDHHDHHIDHHDHHIDHHNHHIDHKSNNQFLQ  225 

G16  167 HIDHHNHHIDHQDHHIDHHNHHIDHHNHHIDHHDHHIDHHDHHIDHHNHHIDHKSNNQFLQ  227 

G17  174 HIDHHNHHIDHQDHHIDHHNHHIDHHNHHIDHHDHHIDHHDHHIDHHNHHIDHKSNNQFLQ  233 
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pfs230 – protein alignment pfg377 – protein alignment 

pfs230 – nucleotide sequence size pfg377 – nucleotide sequence size 
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Figure S2. Comparison of fragments sizes obtained by using two different capillary electrophoresis (CE) 
size standards applied to 38 pfg377 amplicons detected in 13 blood samples. To investigate whether a 
size standard containing fragments up to 1200 bp would provide more accurate pfg377 fragments 
sizing, a subset of 13 samples was simultaneously sized by CE for pfg377 using either the GS500LIZ or 
the GS1200LIZ (Applied Biosystems). A. Distribution of amplicon sizes by using GS500LIZ (left panel) or 
GS1200LIZ (right panel). Better resolution, especially in the size range over 600bp, was obtained for 
GS1200LIZ. B. Difference of sizes by GS500LIZ minus sizes by GS1200LIZ plotted over the amplicon size 
of GS500LIZ. Curve shows a polynomic equation: y= -5E-06x3 + 0.0083x2 + 689.48. A non-linear 
overestimation of size by GS500LIZ was found. This leads to the conclusion that GS500LIZ size standard 
is sufficient for pfs230, as amplicons are <600bp. For pfg377 with amplicons >700 bp the GS1200LIZ 
size standard provides improved sizing.   
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Supplementary Table S2.  
Table S2. (RT)-PCR mixes and thermo profiles.  

A) PCR for genotyping DNA field samples 
Primary (3 
duplex 
reactions) 
reaction mix and 
thermo profilea 

Reagents Concentration Volume Temperature Time Cycles 

ddH2O  11µl 94°C 15sec 1x 

Solis Buffer B 10x 2µl 94°C 15sec 

25x dNTPs  2mM 2.8µl 57°Cb 30sec 

MgCl2 25mM 1.6µl 72°C 40sec 

Primer mix PF+PR of 1st marker 10µM each 0.5µl 72°C 5min 1x 

Primer mix PF+PR of 2nd marker   10µM each 0.5µl    

Solis Taq Polymerase 500u/µl 0.6µl    

DNA   1µl    

Totat volume   20µl       

Nested (simplex) 
reaction mix and 
thermo profile 

Reagents Concentration Volume Temperature Time Cycles 

ddH2O  12.6µl 94°C 15sec 1x 

Solis Buffer B 10x 2µl 94°C 15sec 

30x dNTPs  2mM 2µl 58°Cc 30sec 

MgCl2 25mM 1.6µl 72°C 40sec 

Primer mix NF+NR -labelled   10µM each 0.5µl 72°C 5min 1x 

Solis Taq Polymerase 500u/µl 0.3µl    

Primary PCR product   1µl    

Totat volume   20µl       

B) SuperScript II RT-PCR for 3D7 in vitro gametocyte culture 
Superscript II RT 
(duplex and 
multiplex 
reactions) 
reaction mix and 
thermo profiled 

Reagents Concentration Volume Temperature Time Cycles 

RNA  15µl 65°C 5min 1x 

ddH2O  1.95µl 42°C 1min 1x 
dNTPs 25mM 0.75µl 42°C 50min 1x 

Riverse primer mixd 10µM each 0.3µl 70°C 15min 1x 
Buffer Superscript 1st Strand  5x 6µl 

   DTT   0.1 M 3µl   

 RNaseOUT 40u/µl 1.5µl    

Superscript II RTase 200u/µl 1.5µl 

   Totat volume   30µl       
Primary (simplex) 
reaction mix and 
thermo profile 

Reagents Concentration Volume Temperature Time Cycles 

ddH2O  14µl 94°C 15sec 1x 

Phusion Buffer HF  5x 6µl 94°C 15sec 

20x dNTPs  2mM 4.2µl 57°Cc,f 30sec 

Primer mix PF+PRe 10µM each 0.5µl 72°C 40sec 

Phusion High-Fidelity 
Polymerase 

2u/µl 0.3µl 72°C 5min 1x 

Primary PCR product   1µl    

Totat volume   20µl       
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Nested (simplex) 
reaction mix and 
thermo profile 

Reagents Concentration Volume Temperature Time Cycles 

ddH2O  11.1µl 94°C 15sec 1x 

Solis Buffer B 10x 2µl 94°C 15sec 

30x dNTPs  2mM 2µl 58°Cc 30sec 

MgCl2 25mM 1.6µl 72°C 40sec 

Primer mix NF+NR:   10µM each 1µl 72°C 5min 1x 

Solis Taq Polymerase 500u/µl 0.3µl    

Primary PCR product   2µl    

Totat volume  20µl    

C) AffinityScript RT-PCR for genotyping field samples  
cDNA Affinity 
One-step 
primary 
(simplex) 
reaction mix and 
thermo profile 

Reagents (prepared on ice) Concentration Volume Temperature Time Cycles 

RNase-free Water  17.5µl 45°C 30min 1x 

Hercules MasterMix  2x 25µl 92°C 2min 1x 

Primer mix PF+PR: Pfg377 or 
Pfs230 

10µM each 1.5µl 92°C 20sec 

30x AffinityScript RT-enzyme 500u/µl 1µl 57°C 20sec 

RNA   5µl 68°C 45sec 

Total volume   50µl 68°C 5min 1x 

Nested (simplex) 
reaction mix and 
thermo profile 

Reagents Concentration Volume Temperature Time Cycles 

ddH2O  11.4µl 94°C 15sec 1x 

Solis Buffer B 10x 2µl 94°C 15sec 

30x dNTPs  2mM 2µl 58°C 30sec 

MgCl2 25mM 1.6 72°C 40sec 

Primer mix NF+NR -labelled:  
Pfg377 or Pfs230  

10µM each 1µl 72°C 5min 1x 

Solis Taq Polymerase 500u/µl 1µl    

Primary PCR product   1µl    

Totat volume   20µl       

Abbreviations: NF, nested PCR forward primer; NR, nested PCR reverse primer; PF, primary PCR 
forward primer; PR, primary PCR reverse primer. 
aDuplex reactions: 1. pfg377/pfs230; 2. Pf11.1 (no intron boundary)/PF11_0214 and 3. 
PFI1205w/PFL0545w. 
bAnnealing temperature for the duplex PFI1210w/PFL0545w was 50°C. 
cAnnealing temperature for the simple reactions PFI1210w and PFL0545w was 50°C. 
dPrimers used for duplex reaction: Pfg377_PR and Pfs230_PR; for multiplex reaction: Pf11.1_PR, 
PF11_0214_PR, PFI1205w_PR and PFL0545w_PR. 
fAnnealing temperature of Pf11.1 assay spanning intron boundary was 58°C. 
ePf11.1 primary primers for intron spanning assay were: Pf11.1_PF1 + Pf11.1_PR. Primers for short 
fragment were: Pf11.1_PF2 + Pf11.1_PR 
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Abstract  

Background:  
The undetectable hypnozoite reservoir for relapsing Plasmodium vivax and ovale malarias 

presents a major challenge for malaria control and elimination in endemic countries.  This study 

aims to directly determine the contribution of relapses to the burden of P. vivax and P. ovale 

infection, illness and transmission in Papua New Guinean (PNG) children. 

Methods and Findings:  
524 children aged 5-10 years were enrolled into a randomized placebo-controlled double-

blind trial of blood- plus liver-stage (chloroquine (CQ,3d), artemether-lumefantrine (AL,3d) and 

primaquine (PQ,20d, 10mg/kg total dose)) or blood-stage drugs only (CQ, AL plus placebo (20d)) 

and followed actively for 9-months. A basic stochastic transmission model was developed to 

estimate the potential effect of mass-drug administration (MDA) for the prevention of recurrent P. 

vivax infections. Targeting hypnozoites through PQ treatment reduced the risk of having at least 

one PCR-detectable P. vivax or P. ovale infection during 8-months of follow-up by 82% (95% CI 

[75, 86], p<0.001) and 69% (95% CI [23, 87], p=0.011) respectively, and the risk of having at least 

one clinical P. vivax episode by 75% (95% CI [39, 89], p=0.002). PQ also reduced the molecular 

force of blood-stage P. vivax infection in the first 3 months of follow-up by 79% (95% CI [72, 85], 

p<0.001). Children who received PQ had a 73% lower risk of carrying P. vivax gametocytes (95% CI 

[62, 81], p<0.001). PQ had a comparable effect irrespective of the presence of P. vivax blood-stage 

infections at the time of treatment (p = 0.14). Modelling revealed MSAT with highly sensitive 

qPCR, or MDA with blood-stage treatment alone, would have only a transient effect on P. vivax 

transmission levels, while MDA that includes liver-stage treatment is predicted to be a highly 

effective strategy for P. vivax elimination.  

Conclusions:  
Relapses cause ~4/5 P. vivax infections and at least 3/5 P. ovale infections in PNG children and 

are important in sustaining transmission. MDA campaigns combining blood- and liver-stage 

treatment are highly efficacious interventions for reducing P. vivax and P. ovale transmission. 
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Introduction  

Renewed intensification of global malaria control efforts over the last 15 years have been 

successful in significantly reducing the global burden of malaria, with many countries in the Asia-

Pacific and the Americas seeing a reduction of >90% in the number of clinical cases [1]. As a 

consequence 34 countries are actively attempting to eliminate malaria and many others are 

considering to do so in near future [2] In 2013, the political leaders of Central American and East 

Asian countries, representing >60% of the global population, have declared their intention to 

eliminate malaria for their regions by 2020 and 2030, respectively [3,4]. In parallel to this reduction 

in overall incidence, a pronounced shift in species composition has been observed with P. vivax 

now the predominant Plasmodium spp. in the vast majority of countries outside Africa [2], 

accounting for 90-100% of clinical cases in countries such as Guatemala, Brazil, Solomon Islands 

and Vanuatu [1]. 

Despite a significant reduction in P. vivax malaria in the last 20 years, P. vivax has several 

biological characteristics that enable it to evade existing control and elimination efforts, which are 

mainly directed against P. falciparum blood stages [5,6]. First and foremost is the ability of P. vivax 

to relapse weeks, months and years after a primary infection, via a poorly understood reactivation 

of dormant hypnozoite stages in the liver [7]. These stages cannot be detected with currently 

available diagnostic tools and are not cleared upon treatment with routinely administered anti-

malarial drugs, unless primaquine, a drug that requires at least a 7-14 day administration and can 

cause severe haemolysis in people with glucose-6-phosphate dehydrogenase (G6PD) deficiency, is 

added to the treatment [8]. 

In P. vivax endemic regions, hypnozoites constitute a reservoir of diverse P. vivax strains that 

will cause blood stage infections at a later point in time [9,10]. They are therefore likely to not only 

account for a high number of P. vivax blood stage infections but also contribute a high number of 

concurrently circulating parasite clones in the blood. Despite recent advances in molecular 

detection and genotyping of P. vivax parasites [11], it is not yet possible to determine if an 

infection detected in the blood of an individual originated from a new sporozoite inoculation or is 

a relapse from a hypnozoite.  P. vivax produces gametocytes rapidly and continuously over the 

course of an infection [10] and even low-density infections are thus potentially infectious. If all 

clones, relapse-derived or newly acquired, produce gametocytes concurrently, these infections can 

potentially be transmitted together and the chance for sexual recombination in the mosquito is 

greatly increased, thus contributing to the maintenance of a high genetic diversity even at low 

transmission levels [12–14]. 

P. vivax is thus considered one of the major challenges for elimination of malaria outside Africa 

[15]. Better data and tools are urgently required to estimate the P. vivax hypnozoite reservoir, 

quantify relapse burden, better understand potential relapse triggers and develop the most 

appropriate public health intervention strategies [15–17]. 
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In malaria-endemic areas of Papua New Guinea (PNG), where all four human Plasmodium 

species co-exist, infection and illness from P. vivax predominates in young children [18,19] and is 

gradually replaced by P. falciparum as the main cause of disease in older children and adults [20], 

although P. vivax infections remain common throughout childhood and into adulthood, ranging 

from 13-36% in cross-sectional surveys conducted in PNG between 2005 and 2010 [21–24]. P. 

ovale and P. malariae are much less common, with a 2010 survey revealing a prevalence of 0.1% 

and 1.3% respectively (by quantitative real-time polymerase chain reaction (qPCR)), and are mostly 

observed in mixed-species infections [22, (Koepfli, Robinson et al., PLoS One, in revision]. PNG 

standard anti-malarial treatment is artemether-lumefantrine, which acts against the blood-stage of 

the parasite but does not eliminate hypnozoites. In the absence of a nation-wide cost-effective 

strategy of screening for G6PD, primaquine treatment for clearing liver stages, although 

recommended for G6PD normal patients, is rarely given. Consequently, relapses are expected to 

contribute significantly to the high burden and limited seasonality of P. vivax in PNG children 

[18,26]. A previous study in PNG children aged 1-5 years observed that presumptive artesunate 

(7d) and primaquine (14, partially supervised) mass-treatment to clear hypnozoites reduced the risk 

of P. vivax clinical episodes by 28% (p= 0.042) and 33% (p= 0.015) compared to only blood-stage 

treatment and no treatment, respectively [27]. Although the study used a sub-optimal treatment 

regimen, and thus substantially underestimated the hypnozoite burden, it did highlight the 

significant challenge relapses pose to successful control and eventual elimination of P. vivax 

malaria in PNG and provide strong rationale for conducting a more comprehensive clinical trial 

with an in-depth molecular diagnostics component.  

Intensified national control efforts have seen the prevalence of light-microscopy detectable 

P. vivax malaria parasites in the general population decrease from 17% in 2006, to 8% in 2010 

[Koepfli, Robinson et al., PLoS One, in revision], to 0.5% in 2014 [28]. Despite these gains, a large 

reservoir of individuals infected with submicroscopic P. vivax persists. In a 2010 survey, P. vivax 

prevalence by qPCR was 12.8%. Of these infections, 89.6% were asymptomatic, 53.8% 

submicroscopic and 48.9% carried P. vivax gametocytes (Koepfli, Robinson et al., submitted PLoS 

One). Similarly high rates of persistent asymptomatic P. vivax infections and gametocyte carriage 

were also found in surveys in Thailand [29,30] and Brazil [31] that have seen substantial recent 

reductions in transmission.  

Mass screening and treatment (MSAT) and mass drug administration (MDA) with Artemisinin-

based combination therapies (ACTs) have been advocated as important tools to reduce the 

asymptomatic P. falciparum reservoir [32,33]. These interventions are also likely to be of great 

importance for P. vivax elimination. Significant questions remain, however, none greater than how 

to best attack with the undetectable hypnozoite reservoir. 

To address these critical questions we have conducted a randomised double-blind placebo-

controlled trial of a highly efficacious primaquine treatment regimen in PNG children aged 5-10 

years, using detailed molecular diagnostics to directly measure the contribution of relapses to the 
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burden of P. vivax and P. ovale infection, disease and transmission. By using this data in 

mathematical models, we further estimate the potential effect of MDA with treatment regimens 

that are part of first-line policy or regimens currently under investigation in clinical trials [34,35], for 

the prevention of recurrent P. vivax infections, providing critical evidence-based recommendations 

for policy makers.  

Materials and methods  

Study site, design and participants 
The study was conducted from 17 August 2009 to 20 May 2010 in 5 village clusters (13 

hamlets) of the Albinama and Balif areas of Maprik District, East Sepik Province, where both P. 

falciparum and P. vivax are hyperendemic and P. vivax is responsible for the majority of malaria 

infection and disease in the first 3 years of life [18,22,36]. Malaria transmission is moderately 

seasonal, peaking in the early wet season from December to March [26]. Health services for the 

area are provided by Albinama health sub-centre, Balif aid post and a system of village health 

volunteers operating in all study villages. 

Between August and September 2009, 529 children aged 5 to 10 years, whose parents 

provided written informed consent to their participation were screened for inclusion into this 

parallel double-blind placebo-controlled trial. Children were enrolled if they fulfilled the following 

criteria: (i) aged 5-10 years (±3 months in children without known date of birth, (ii) enrolled at 

selected elementary schools and permanent residents of the area, (iii) no disability, (iv) no chronic 

illness, (v) no known allergy to study drugs, (vi) Hb >5 g/dL, (vii) no severe malnutrition (defined by 

the PNG national guidelines as weight-for-age nutritional Z score [WAZ] <60th percentile), and (viii) 

no G6PD deficiency. The inclusion criteria were amended during the study to allow children aged 

5-6 years but who were not yet enrolled at elementary school to participate in the study. This was 

necessary to ensure we adequately covered the desired 5-10 year age range and reached the 

required sample size of 525 without expanding the geographical area. Five children were excluded 

on the basis of G6PD deficiency and 524 were block randomised using a 1:1 allocation ratio to 

receive 20 days of directly observed treatment (DOT) over 4 weeks (26 days) of either: chloroquine 

(CQ, DOT1-3), artemether-lumefantrine (Coartem®) (AL, DOT11-13) and primaquine (PQ, DOT1-20; 

0.5mg/kg); or CQ (DOT1-3), AL (DOT11-13) and placebo (DOT1-20) (PL/CQ/AL) (Figure S1). This 

treatment regimen was deliberately chosen to maximise efficacy and the dose of each drug timed 

such that there would be minimal residual drug by Day 0 of the follow-up. In order to achieve this, 

a 4 week wash out period was required for CQ and the 20 days of PQ DOTs were scheduled 

Monday to Friday of these 4 weeks (Figure S1), for ease of direct supervision of every dose. AL was 

administered due to the fact that there is documented CQ resistance in PNG and the PNG 

National Treatment Guidelines for P. vivax are AL plus PQ. The administration of AL on DOTs 11-

13 (Days 15-17) was deliberate so that it wouldn’t interfere with CQ and drug levels would have 
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reduced to zero by baseline. The intention was not to trial this unconventional drug regimen as a 

treatment for implementation, but rather as a maximally effective treatment to ensure radical cure 

in half of the cohort and thus allow a detailed investigation of relapses. Participants, field teams 

and investigators were all blinded with respect to treatment allocation.  

The study received ethical clearance from the PNG IMR Institutional Review Board (0908), the 

PNG Medical Advisory Committee (09.11), the Ethics Committee of Basel 237/11 and was 

conducted in full accordance with the Declaration of Helsinki. The study was retrospectively 

registered on ClinicalTrials.gov (NCT02143934) on 20 May 2014. All authors affirm that other trials 

involving primaquine they are involved in are registered on ClinicalTrials.gov (NCT01837992; 

NCT02364583). 

Inclusion criteria, randomisation, blinding, and treatment allocation  
After enrollment, children were randomly allocated to the PQ/CQ/AL or PL/CQ/AL treatment 

group using a pre-assigned list. Randomisation lists were prepared by independent statistician 

using Microsoft Excel and consisted of ID assignments in blocks of 6, each block comprising a list 

of the same 6 letters in random order. The independent statistician assigned 3 randomly selected 

letters to the PQ drug containers and the 3 other letters to the PL drug containers. The coding 

document was held by the statistician until completion of the trial. PQ and PL were identical in size, 

shape and color. The entire study team and principal investigators remained fully blinded for the 

entire study period. 

Clinical procedures and follow-up 
Clinical assessment at enrolment included screening for symptoms of febrile illness, a detailed 

history of bednet use and recent illness/anti-malarial treatment and collection of a finger-prick 

blood sample for assessment of G6PD deficiency using the visual, tube-based G6PD assay 

(Dojindo Laboratories, Japan), haemoglobin measurement and later immunological and molecular 

studies. Children who were febrile were tested using a malaria rapid diagnostic test (RDT; 

CareStartTM Malaria pLDH/HRP2 Combo; AccessBio, USA) and if positive treated with AL during 

DOT1-3. DOT1 was administered at the end of the enrolment visit, with the subsequent 19 DOTs 

administered daily from Monday-Friday over the subsequent 4 weeks (Figure S1). All DOTs were 

supervised by a member of the clinical field team and were co-administered with food and well 

tolerated [37]. 

Three days after final DOT (i.e., 4 weeks after enrolment), a venous sample was collected and 

defined as Baseline: (timepoint ‘Day 0’ of study). Children were then actively monitored for the 

presence of febrile symptoms every fortnight for 8 months, with passive surveillance measures 

implemented at local health centres, aid posts and via the village health worker network. In all 

symptomatic children, Plasmodium spp. infection was initially confirmed using RDT and a 250µL 

finger-prick blood sample was collected for confirmation of infection by light microscopy (LM) and 
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quantitative real-time PCR (qPCR). Only symptomatic children who tested positive by RDT and/or 

LM were treated with AL. PQ was not re-administered for RDT and/or LM confirmed P. vivax 

malaria episodes during follow-up. All other illness episodes detected were referred to the local 

health centre and treated in accordance with PNG treatment guidelines. Finger-prick blood 

samples were also collected from all children every 2 weeks for the first 12 weeks and every 4 

weeks thereafter during the follow-up period (Figure S2). Children were considered lost to follow-

up if they permanently relocated outside of the study area or withdrew from the study. 

Laboratory Methods 
All blood samples collected during active and passive surveillance were examined by LM and 

qPCR. Blood films were examined independently by two skilled microscopists, blind to allocated 

treatment for 200 thick-film fields (1000X magnification) before being declared Plasmodium-

negative. Parasite density was calculated from the number of parasites per 200-500 leucocytes 

(depending on parasite density) and an assumed leucocyte density of 8,000/μL (WHO Malaria 

Microscopy Training Guide). Slides discrepant for positivity/negativity, speciation or density (>2 

log difference) were adjudicated by a WHO certified Level 1 (expert) microscopist. Slides were 

scored as LM-positive for an individual Plasmodium species, if the species was detected 

independently by at least 2 microscopists and/or subsequent qPCR diagnosis confirmed the 

presence of the species. Densities were calculated as the geometric mean densities of all positive 

reads. 

Venous blood samples were separated into plasma, peripheral blood mononuclear cells 

(PBMCs) and red cell pellets and stored at -80 and -20°C respectively. Finger-prick blood samples 

were separated into plasma and red cell pellets and stored at -80 and -20°C respectively. DNA was 

extracted using the FavorPrep™ 96-well genomic DNA extraction kit (Favorgen, Ping-Tung, 

Taiwan) from the red cell pellet fraction of all samples. Plasmodium spp. infections were detected 

using a generic qPCR to detect all four species, after which species-specific (P. falciparum, P. vivax, 

P. malariae and P. ovale) qPCRs were performed on Plasmodium positive samples [38,39]. The P. 

ovale PCR detects both P. ovale curtisi and P. ovale wallikeri. In addition, samples positive for P. 

vivax by qPCR were tested for gametocytes by Pvs25 quantitative reverse transcription (qRT-)PCR 

[38] and individual P. vivax clones genotyped by capillary electrophoresis using the molecular 

marker msp1F3 [40] to determine the number of genetically distinct P. vivax blood-stage clones 

acquired per individual per year-at-risk, i.e., the molecular force of blood-stage infections (molFOB) 

[41]. 

Statistical Analysis and Modelling 
For analysis purposes, a clinical episode of P. vivax or P. falciparum malaria was defined as 

febrile illness (current or previous 48 hours) plus the presence of P. vivax or P. falciparum parasites 

by LM (any density). The primary trial endpoint was defined as time-to-first P. vivax infection by 
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qPCR. Secondary endpoints included time-to-first P. vivax infection by light microscopy, time-to-

first P. vivax clinical episode, incidence rate of clinical P. vivax episodes, incidence of genetically 

distinct P. vivax infections (molFOB), time-to-first P. falciparum, P. malariae and P. ovale infection by 

qPCR, time-to-first P. falciparum clinical episode. A sample size of 250 children per arm was 

calculated using hazard-rate based calculations (log-rank tests) based on the effects (30% reduction 

in PQ group) observed in [27] with a α–error of 5% and a power of 80% and assuming a 30% 

increase in time-to-first infections following additional distributions of long-lasting insecticide 

treated nets. Sample sizes were increased by 5% to account for children receiving less than 14 

doses of primaquine or placebo. 

Time-to-first Plasmodium infection or episode and its association with treatment and covariates 

were modelled using Cox regression and the proportional-hazards assumption was checked using 

the test based on the Schoenfeld residuals. For these analyses, time at risk was censored on the 

last day before the first of two consecutively missed active follow-up visits. Kaplan-Meier estimates 

were computed for each endpoint by Plasmodium species and method of Plasmodium diagnosis. 

The log-rank test was used to test for differences between survival curves. In all survival analyses, 

children were considered ‘at risk’ until they reached the endpoint of interest, withdrew, were lost 

to follow-up, censored or completed the study. Village membership was fitted as a fixed effect in 

the Cox proportional hazards model using the equation: h(t)=h_0 (t)  exp(β_1 x_1+ β_2 x_2+β_3 

x_3+ β_4 x_4); where  x_1= treatment, x_2  = age, x_3 = village, and x_4 = infection status by the 

same Plasmodium species at enrolment. 

 Negative binomial regression models were used to calculate incidence rate of clinical 

episodes, molFOB and P. vivax gametocyte positivity. In these models, time at risk was calculated 

for individual children based on the number of attended versus missed visits. If a child was not 

seen for a consecutive time period of 108 days during the follow up period, time at risk was 

censored at the last attended active or passive visit. In addition, for the molecular analyses, time at 

risk was reduced for children who were not seen for consecutive intervals of 42 days by subtracting 

the days of the missed intervals from the overall individual time at risk. As	 per	 PNG	 treatment	

guidelines,	 treatment	during	the	follow-up	period	was	only	given	if	a	clinical	episode	was	detected.	A	
potential	competing	risk	scenario	would	therefore	only	happen	is	if	treatment	was	administered	for	a	
clinical	 episode	 with	 one	 species	 before	 the	 first	 event	 for	 a	 heterologous	 species	 endpoint	 had	
occurred.	However,	since	incidence	rate	of	clinical	episodes	was	very	low,	this	occurred	very	rarely.	It	
should	also	be	noted	that	the	times	at	risk	for	the	analyses	of	different	endpoints	were	not	adjusted	for	
the	 post-treatment	 prophylactic	 effects	 of	 the	 aforementioned	 treatments.	Clinical malaria episode 

incidence rate ratios were derived from models adjusted for treatment, age and P. vivax positivity 

by PCR at enrolment, while the models for molFOB and P. vivax gametocyte positivity were further 

adjusted for village of residence.  Differences between treatment groups at enrolment were 

investigated using chi-square and Fisher’s exact tests for categorical characteristics and Student’s 

t-test for normally-distributed continuous variables. All tests were two-tailed and the confidence 

level was set at 95%. All analyses were performed using R version 3.0.3. [42] and/or Stata 12 [43].  
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The effects of mass drug administration (MDA) and mass screen and treat (MSAT) programmes 

with anti-malarial drugs currently recommended as first-line treatment policy on the dynamics of P. 

vivax and P. falciparum transmission were investigated using mathematical models. The model 

simulated the impact of a 3 day course of either dihydroartemisinin-piperaquine (DHA-PIP) or 

chloroquine (CQ) to clear blood-stages [44], and a 14 day primaquine regimen to clear liver-stages. 

The model also simulated the impact of tafenoquine plus CQ treatment, a highly promising, short-

course anti-relapse therapy, which is currently undergoing phase 3 clinical trials [34]. A classical 

Ross-Macdonald model [45,46] was used to describe the qualitative dynamics of P. falciparum 

following treatment of ‘at risk’ populations with drugs for clearing blood-stage infections. This 

model was extended to incorporate relapse infections of P. vivax, and the effects of primaquine 

treatment for the clearance of liver-stage hypnozoites [47]. In brief, individuals in a population can 

be susceptible to blood-stage infections with no liver-stage hypnozoites (S0), infected with blood-

stage parasites but no hypnozoites (I0), susceptible to blood-stage infection but carrying 

hypnozoites (SL), and infected with both blood-stage parasites and hypnozoites (IL). Full details of 

the deterministic differential equations describing the mathematical models and parameter 

definitions are provided in the Supplementary Information Text 1. The model was also 

implemented in a stochastic framework with population size 5,000 to capture stochastic variation 

and the potential for the elimination of transmission. 

Results 

Enrolment and baseline characteristics of children 
Of the 524 G6PD-normal children that were randomised to receive Primaquine(PQ)/ 

Chloroquine(CQ)/Artemether-lumefantrine(AL) or Placebo(PL)/CQ/AL a total of 504 children 4.8-

10.5 years completed at least 14 days of DOT PQ/PL treatment and were followed actively and 

passively for 32 weeks post-baseline (Figure 1).  

No significant differences in demographic characteristics and infection status were observed at 

enrolment between treatment groups (Table 1). At baseline (~ 4 weeks after enrolment and 

commencement of drug treatment), 4 children were P. vivax positive by qPCR (2 each in the PL and 

PQ arms), 2 children in the PL arm were P. falciparum positive and 1 of these was also P. vivax 

positive. These children were exempted from the respective analyses of time-to-first infection. No 

Plasmodium infections were detected by LM at baseline. During follow-up, an average of 82% (IQR 

[67-92]) of children were seen at each active case detection time-point. The average number of 

study contacts during follow-up did not differ between treatment arms (PL: 14.0, PQ: 14.4; p=0.25; 

Student’s t-test).  
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Table 1. Demographic and clinical characteristics of the cohort at enrolment, classified by allocated 
treatment. Data are percentages or mean±SD.  
 Placebo Primaquine P-value 
N 257 247  
Male sex (%) 49.8 48.6 0.78 
Age (years) 7.7 ±1.5 7.5 ±1.6 0.40 

Weight (kg) 19.7±3.2 19.8±3.6 0.82 

Village (%)    
  Albinama 23.0 22.7 

0.57 
 Amahup 27.3 24.7 
 Balanga 12.5 9.3 
 Balif 24.5 26.7 
 Bolumita 12.8 16.6 
Bed net use (%) 93.4 93.1 0.91 
Infection by PCR (%*)    
 P. vivax  44.8 50.2 0.22 
 P. falciparum 	 23.7 23.9 0.97 
 P. ovale  1.9 4.9 0.07 
 P. malariae  13.2 15.4 0.49 
 Non-P. vivax 14.0 11.7 0.45 
Fever (%) 15.2 14.6 0.85 
Haemoglobin (g/dL) 10.9 ±1.3 10.8 ±1.3 0.78 

* Prevalence includes single and mixed-species infections. 
 
 
 
 

 
 
Figure 1. Consort diagram: study design, randomisation and retention of study participants during 
follow-up. Children were censored on the last day before the first of two consecutive missed clinical 
visits.  
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Risk of P. vivax infection during follow-up 
The time to first or only P. vivax blood-stage infection (as detected by qPCR) differed 

significantly between the two treatment arms: only 25.5% (63/247) of children who received PQ 

experienced at least one new P. vivax infection compared to 65.0% (167/257) in the PL arm (p< 

0.0001; Table 2; Fig. 2A). qPCR-positive, recurrent P. vivax blood-stage infections were detected 

rapidly in the PL arm, with 31.5% (80/254) of children infected by day 42 compared to only 8.2% 

(20/245) in the PQ arm (Fig. 2A). As expected, LM-positive infections were less common in both 

arms and were observed later during follow-up (Figure 2B).  

Clearance of liver-stages through PQ treatment resulted in an 82-84% reduction in the risk of 

recurrent P. vivax blood-stage infections diagnosed by qPCR (HR=0.18, 95% CI [0.14, 0.25], 

p<0.001) and LM (HR=0.16, 95% CI [0.11, 0.24], p<0.001), respectively compared to PL (Table 2). 

This increased to an 83-88% reduction in risk when only the first 3 months of follow-up were 

considered (qPCR: HR=0.17, 95% CI [0.12, 0.24] p<0.001; LM: HR=0.12, 95% CI [0.07, 0.19] 

p<0.001; Table 2).  

There is considerable heterogeneity in the prevalence and risk of P. vivax infection across the 

study villages. The risk of first P. vivax infection (by qPCR and LM) differed significantly among 

children living in different villages, with the highest risk in Bolumita (qPCR HR=4.70, 95% CI [3.14, 

7.02], p<0.0001; LM HR=4.62, 95% CI [2.92, 7.30], p<0.0001) and Balanga (qPCR HR=2.33, 95% 

CI [1.53, 3.55], p<0.0001; LM HR=1.70, 95% CI [1.03, 2.81], p=0.04). There is however no 

interaction between village and treatment effect. The risk of first P. vivax blood-stage infection 

diagnosed by qPCR after treatment was not significantly associated with age (qPCR HR=0.95, 95% 

CI [0.87, 1.03] p=0.19), however there was a 15% reduction in risk of having at least one LM-patent 

P. vivax infection with each additional year of life (LM HR=0.85, 95% CI [0.77, 0.95], p = 0.003). As 

with village, there was no interaction between age and treatment effect.  

When all P. vivax infections in a child were genotyped to identify new infections in the context 

of ongoing multiple clone infections, PQ treatment was associated with a 77% reduction in the 

incidence of genetically distinct P. vivax bloodstage clones (molFOB) (PQ arm: molFOB = 1.62/year; 

PL arm: molFOB = 4.74/year, IRR = 0.23, 95% CI [0.18, 0.31], p<0.001; Table 3). The effect of the 

PQ treatment on molFOB was significantly larger in the first 3 months (IRR = 0.21, 95% CI [0.15, 

0.28], p<0.001) than in months 4-8 (IRR = 0.34, 95% CI [0.24, 0.48], p<0.001; Table 3).  

In addition, PQ treatment was associated with a 75% reduction in the hazard of becoming 

positive for P. vivax gametocytes by Pvs25 qRT-PCR (HR=0.25, 95% CI [0.17, 0.37], p<0.001; Table 

2). The incidence rate of P. vivax gametocytes (defined as the number of Pvs25 qRT-PCR positive 

samples during follow-up) was more strongly reduced in the first 3 months (IRR = 0.18, 95% CI 

[0.11,0.30]) than in the subsequent 5 months (months 4-8: IRR 0.37, 95% CI [0.24,0.57]; Table 3). 
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Figure 2. Kaplan-Meier plots showing the time to first (or only) (A) P. vivax infection by PCR, (B) P. vivax 
infection by light microscopy, (C) P. vivax clinical episode by light microscopy, (D) P. falciparum 
infection by PCR, (E) P. malariae infection by PCR and (F) P. ovale infection by PCR, in the two 
treatment arms. Dashed lines represent the respective 95% confidence intervals.  

 

Irrespective of treatment group, clinical P. vivax malaria episodes were rare, with only 28 

children experiencing at least 1 clinical P. vivax episode during the 32-week follow-up period 

(incidence risk: 0.19/child/year in PL and 0.06/child/year in PQ arm, Table 2). The clearance of 

hypnozoites by PQ treatment was associated with an 81% reduction in the hazard of experiencing 

a P. vivax clinical episode of any density in the first 3 months of follow-up (HR=0.19, 95% CI [0.06, 

0.58], p=0.004; Table 2; Fig. 2C) and a 75% reduction in the entire follow-up period (HR=0.25, 

95% CI [0.11, 0.61], p=0.002; Table 2). 

Risk of non-P. vivax malaria infection during follow-up 
Although the number of P. ovale infections diagnosed by PCR in either arm was low, PQ 

treatment was associated with a 92% reduction in the risk of P. ovale blood-stage infections 

diagnosed by qPCR in the first 3 months of follow-up (HR=0.08, 95% CI [0.01, 0.67], p=0.019) and 

a 69% reduction in the entire 8 months of follow-up (HR= 0.31, 95% CI [0.13, 0.77] p=0.011), 

compared to PL (Figure 2F; Table 2).  
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There was no significant association between PQ treatment and time to first (or only) P. 

falciparum blood-stage infection by qPCR (p=0.104, Figure 2D; Table 4) or LM (p=0.706; Table 4), 

and no effect of PQ treatment on time to first (or only) P. falciparum clinical episode during the 8 

months of follow-up (p=0.333; Table 4). Although there was no significant association between PQ 

treatment and time to first (or only) P. malariae blood-stage infection by qPCR during the entire 

follow-up period (HR = 0.53, 95% CI [0.23, 1.23], p = 0.139, Figure 2E; Table 4), there was a trend 

towards an association in the first 3 months of follow-up (HR = 0.36, 95% CI [0.13, 1.02], p=0.055. 

Implications for malaria control and elimination strategies 
Any MSAT intervention will only target individuals with detectable blood-stage parasitaemia. In 

the current cohort, 47.4% (239/504) of children had a P. vivax infection (single or mixed-species) at 

enrolment and another 12.9% (65/504) were positive with non-P. vivax blood-stage infections 

(Table 1). In the absence of PQ treatment, children with no patent infections at enrolment were 

significantly less rapidly re-infected with P. vivax (55.2% (58/105) became infected during 8 months 

of follow-up) than those that had patent P. vivax (70.5% (79/112)) and P. falciparum/P. malariae/P. 

ovale infections (81.1% (30/37), log-rank test: p < 0.001, Figure 3, Table S1). In the PQ group, 

children with no patent infections were also less likely to be re-infected (17.9% (17/95)) than those 

in the other two groups (Pv: 31.7% (39/123), non-Pv: 25.9% (7/27), log-rank test: p = 0.0412, 

Figure 3, Table S1), indicating that these children were more likely to live in low transmission areas. 

PQ treatment was therefore equally efficient in preventing recurrent P. vivax infections in children 

with P. vivax, non-vivax or no blood-stage infection at enrolment (Cox regression, adjusted for age 

and village of residence: LR = 3.87 df = 2, p = 0.14 for treatment-by-infection status interaction). 

 
 
Figure 3. Kaplan-Meier plots showing the time to first (or only) P. vivax infection by PCR in the Placebo 
and Primaquine arms, stratified by Plasmodium infection status. 
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The potential effect of MDA and MSAT with either blood-stage only or blood- plus liver-stage 

drugs on the population prevalence of P. vivax and P. falciparum infections was further 

investigated using a basic stochastic transmission model. Administration of blood-stage drugs 

(DHA-PIP or CQ) was assumed to clear existing blood stage infections and provide a 4 week 

period of prophylactic protection against new infections, tafenoquine plus CQ was assumed to 

clear blood and liver-stage infections and provide 8 weeks of causal prophylactic protection (for 

full model details please refer to Supplementary Information Text 1). Figure 4 illustrates the 

predicted qualitative dynamics of P. falciparum and P. vivax transmission following two rounds of 

MDA (Panels A and B) and MSAT (Panels C and D) interventions with 80% coverage, separated by 

6 months. The interventions are predicted to cause a sharp decline in prevalence, followed by a 

gradual return to pre-intervention levels. 

 
 
Figure 4. Comparison of two rounds of MDA (Panels A and B) and MSAT (Panels C and D) at 80% 
coverage 6 months apart with anti-malarial drugs on P. vivax (Panels A and C) and P. falciparum (Panels 
B and D) blood-stage parasite prevalence, as predicted by a stochastic model in a human population of 
size 5,000. The solid lines represent the mean of 1,000 repeat simulations and the shaded areas 
represent the envelopes containing 95% of stochastic simulations. The grey bars denote the time of 
each treatment round and the duration of prophylactic protection. Dihydroartemisinin-piperaquine 
(DHA-PIP) or chloroquine (CQ) were assumed to be administered as part of a 3 day regimen providing 
prophylaxis for one month. Primaquine (PQ) was assumed to be administered as part of a 14 day 
regimen providing prophylaxis for 15 days. Tafenoquine (TQ) was assumed to be administered via a 
single dose providing prophylaxis for two months. 
 

MDA is predicted to achieve much larger prevalence reductions than MSAT, mostly due to the 

proportion of infections missed by the MSAT programme due to imperfect diagnostic sensitivity, 

but also because of the prophylactic protection in treated but uninfected individuals under the 

MDA programme.  
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The initial reductions achieved by each of the interventions against P. falciparum and P. vivax 

are the same, however, when only blood-stage drugs are administered, a rapid rebound in P. vivax 

prevalence is predicted due to the hypnozoite reservoir which is left unaffected by the treatment. 

Notably, P. vivax levels are predicted to return to pre-intervention levels within 6 months post 

intervention for both the MDA and MSAT interventions (blue curves in Panels A and C, 

respectively). The MDA programme is especially effective for P. falciparum, with prevalence 

predicted to remain below 20% of the pre-intervention levels for the modelled 16 months after the 

programme (Panel B). 

Only the addition of 8-aminoquinolines to a regimen of blood-stage drugs targets the 

hypnozoite reservoir and prevents the rapid resurgence of P. vivax blood-stage infections caused 

by relapses. Consequently, interventions with primaquine are shown to result in a sustained 

reduction of the P. vivax burden (red curves in Panels A and C). Especially in the case of MDA (red 

curve, Panel A), P. vivax parasite prevalence is predicted to remain very low (<10%) during the 

modelled 16 months post intervention. Tafenoquine is estimated to be more effective than 

primaquine at reducing prevalence due to the higher levels of efficacy and the longer duration of 

causal prophylaxis [34]. 

Discussion  

By selectively removing hypnozoites from half the children in the cohort, this study confirms 

that relapses from long-lasting liver-stages account for 4 out of 5 P. vivax infections and and 3 out 

of 5 P. ovale infections in Papua New Guinean children aged 5-10 years living in an area with 

hyperendemic transmission. 

The risk of having at least one PCR-detectable P. vivax infection during 8-months of follow-up 

was reduced by 82% by PQ treatment. This is substantially higher than the 44% reduction 

observed in our earlier study [48] that used a 30% lower dose of primaquine combined with 7 days 

of artesunate, confirming that this earlier treatment regimen was not fully effective in preventing 

relapses. PQ also reduced the incidence of genetically distinct blood-stage infections (molFOB) [41] 

in the first 3 months of follow-up by a similar amount (79%), indicating that relapses accounted for 

~4/5 of all P. vivax infections in PNG children. Although the effect of the PQ treatment decreased 

with time since treatment, the incidence of new infections in the PQ arm was nevertheless still 

reduced by more than half (66%) after 3 months of follow–up. This ‘wash-out’ of the PQ effect is 

likely due both to the fact that relapses are thought to activate rapidly in PNG [7] and the 

replenishment of the hypnozoite ‘reservoir’ through continued exposure to new infected mosquito 

bites. The relatively sustained effect of the PQ treatment does however indicate that even in 

tropical P. vivax strains a substantial proportion of hypnozoites remain dormant for 3 or more 

months. 
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Children that were not PQ treated were also approximately 4-times more often positive for P. 

vivax gametocytes. Since even low density P. vivax infections can infect mosquitoes [49–51], it is 

thus likely that relapsing infections are the primary source of P. vivax transmission. 

PNG children acquire immunity to P. vivax rapidly [18] and, as shown in earlier studies in the 

same age group [20], clinical P. vivax episodes are rare. Nevertheless, PQ reduced the incidence of 

clinical P. vivax episodes by 69% in the first 3 months after treatment indicating that relapses can 

cause clinical episodes even in individuals with moderate levels of acquired immunity. Several 

studies have shown that relapses are often genetically distinct from the initial clinical episode 

[52,53]. These genetically diverse relapses may either be meiotic siblings [54] or originate from a 

previous (mosquito) bite and are likely to result in a higher risk of clinical illness in relapsing 

infection compared to that seen in malaria therapy patients infected twice with the same strain 

[10]. 

Primaquine treatment reduced the risk of PCR-detectable P. ovale infections by 92% in the first 

3 months of follow-up and 69% in the entire follow-up period. This confirms that relapses account 

for a considerable portion of infections from this less prevalent species of relapsing malaria, and 

likely also sustain P. ovale transmission. This is relevant not only in PNG, but also in Sub-Saharan 

Africa where P. ovale prevalence can reach 4-10% (by LM) in areas of West and Central Africa [25]. 

We observed no significant association of PQ with risk of PCR-detectable infections from the non-

relapsing species of P. falciparum.  However, a trend towards a reduced risk of P. malariae 

infections in the first 3 months of follow-up was observed in the primaquine arm despite overall 

low numbers (p=0.055). Although P. malariae is not thought to form hypnozoites in the liver, 

chronic or relapsing infections of P. malariae up to 20 years after a person has left an endemic area 

have been documented [55,56]. Although it is currently not known how and where P. malariae 

infections can remain dormant for such extensive periods of time, our data suggest that such 

longer-lived P. malariae stages may be susceptible to PQ treatment. Larger clinical trials involving 

both symptomatic and asymptomatic P. malariae infections would be required to confirm the 

prevention of recurrent P. malariae infections by PQ treatment. 

Given the very large contribution of relapses to the burden of P. vivax and P. ovale infection, 

illness and transmission it is essential that all P. vivax and P. ovale-infected individuals receive both 

an effective anti-blood-stage and anti-relapse therapy. PNG National Standard Treatment 

Guidelines recommend treating P. vivax or P. ovale confirmed cases with 0.25mg/kg primaquine 

for 14 days, however this is not being consistently implemented due to lack of access to point-of-

care tests to screen for G6PD deficiency. 

Interestingly, PQ was not only effective in preventing recurrent P. vivax infection in children 

that had PCR-detectable P. vivax infections but was equally effective in children with non-vivax 

infections and even those without any Plasmodium spp. infections at enrolment. All currently 

available malaria diagnostic tests only identify active blood-stage infections. They can thus not 
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identify people who have P. vivax hypnozoites in their livers but are free of blood-stage infection. 

The rapid appearance of P. vivax infections and significant reduction in rates of recurrent infections 

in PQ treated qPCR negative children indicates that there are a comparable number of PNG 

children without blood-stage infections who carry P. vivax hypnozoites as there are children with P. 

vivax infections. The presence of active P. vivax blood-stage infection is thus a poor predictor for 

the risk of P. vivax relapses.  

The rapid recurrence of P. vivax infections after treatment of P. falciparum infections has been 

observed in numerous P. falciparum in-vivo drug efficacy trials, both in PNG [44,57] and elsewhere 

[58]. It has therefore been argued that anti-relapse therapy should be administered for all patients 

with malaria in regions of P. vivax co-endemicity [58]. Our results clearly support this 

recommendation and also extend it to asymptomatic parasite carriers. 

With the renewed drive to eliminate malaria, the role of asymptomatic and/or sub-microscopic 

infections in sustaining malaria transmission has become a major focus [15,59,60]. An increasing 

number of studies show that these infections contribute significantly to both P. falciparum and P. 

vivax transmission at all levels of endemicity [49–51,61,62]. As first noted by Robert Koch in 1900 

during studies in German New Guinea, the control of these infections is essential if elimination is to 

be achieved rapidly [63]. 

Mass screening and treatment (MSAT) and mass drug administration (MDA) with Artemisinin-

based combination therapies (ACTs) are two interventions aimed at reducing the asymptomatic 

reservoir [32,64,65]. Although the modelling conducted in the present study indicates that an 

MSAT programme with a highly sensitive diagnostic test such as qPCR can effectively reduce P. 

falciparum transmission, field trials have shown that MSAT with a less sensitive diagnostic such as 

an RDT has limited or no effect on transmission [66–68]. As mass-screening by PCR is difficult to 

implement, focalised MDA may be a more practical approach [69]. 

Our modelling predicted that MSAT will have only limited effectiveness for P. vivax even if 

conducted with a sensitive molecular diagnostic test and including an anti-liver-stage treatment 

since it will not target the blood-stage negative population harbouring hypnozoites. MDA, on the 

other hand, is predicted to be highly effective in reducing the burden of future P. vivax infections 

but only if conducted with anti-blood- and anti-liver-stage treatment. Thus, effective control of P. 

vivax with anti-malarial drugs will require the inclusion of a treatment to attack the hypnozoite 

reservoir, and mass administration regardless of the presence of blood-stage infections to target 

the undetectable parasite reservoir. 

Currently, PQ is the only licensed drug with activity on the hypnozoite stage capable of 

preventing relapses [70]. However due to its association with haemolysis in individuals with 

glucose-6-phosphate dehydrogenase (G6PD) deficiency [70,71] and its long dosing schedule (up 

to 14 days), this drug is not in widespread use in many endemic areas and WHO currently advises 

against PQ treatment without prior G6PD deficiency testing. In the absence of a reliable and 
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affordable point-of-care G6PD test, the routine implementation of PQ for treatment thus remains a 

challenge in many endemic regions. The challenges of implementing MDA with primaquine are 

even larger, although not insurmountable [72]. A new generation of G6PD tests are being 

developed [73,74] and the arrival of tafenoquine, a long acting 8-aminoquinoline that can be given 

as a single dose [34,74] will  not only make MDA logistically simpler, our modeling also predicts 

that MDA with tafenoquine will be more effective that regimens using primaquine. Nevertheless, 

the development of alternative anti-hypnozoite treatments remains an important research priority 

for the elimination of P.  vivax [16]. 

In conclusion, this study demonstrates that relapsing infections are the overwhelming source 

(i.e.  ~80%) of not only P. vivax blood-stage infections in children, but also clinical episodes and 

contribute substantially to maintaining transmission. Given the very ambitious timelines set by 

political leaders of vivax-endemic regions and limited funding, it is essential that scarce resources 

available for both P. vivax research and elimination be optimally allocated. The development of 

novel anti-hypnozoite drugs and interventions that can specifically target the hypnozoite reservoir 

are of highest priority. However, by predicting that MSAT programs will not be effective in 

reducing the burden of P. vivax in affected populations, the models presented here also suggest 

that it is neither worthwhile investigating nor implementing MSAT programs in P. vivax endemic 

countries. Instead the efforts should now be directed towards the development of approaches for 

MDA programs targeting areas and risk groups with confirmed local transmission. 
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Supplementary Figures S1 and S2 
 

Figure S1. Drug administration schedule. The drug regimen for the primaquine (PQ) and placebo (PL) 
treatment arms was administered with direct observation on 20 days (Monday to Friday) over a 4 week 
(26 day) period. 

 

 
Figure S2. Study design and follow-up schedule. 
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Supplementary Information Text 1 

Detailed description of P. vivax transmission model 
Malaria control strategies based on the treatment of at-risk populations will not only protect 

treated individuals, but also the wider community due to the population-level reduction in malaria 

transmission. Accounting for this community-level protection requires an understanding of malaria 

transmission dynamics. The dynamics of P. falciparum transmission have been well-described using 

classical Ross-MacDonald compartmental deterministic models [1, 2]. Here, this approach is 

extended to incorporate relapse infections characteristic of P. vivax.  

Figure S3 shows a schematic representation of a compartmental model of P. vivax transmission 

and the associated system of differential equations. Humans can be in one of four states: S0, fully 

susceptible; I0, infected with blood-stage parasites; IL, infected with blood-stage and liver-stage 

parasites; and SL, infected with liver-stage parasites. Mosquitoes can be in one of two states: SM, 

not infectious (i.e. sporozoite negative); and IM, infectious (i.e. sporozoite positive). Full definitions 

of all parameters are given in Table S1. Individuals will be exposed to new infectious bites at a rate 

λ=mabIM which will cause new blood-stage infections (if not already infected) and new liver-stage 

infections (if not already carrying hypnozoites). Individuals carrying hypnozoites can relapse at rate 

f and naturally clear the hypnozoite reservoir at rate γ (e.g. due to the death of hepatocytes).  

 
Figure S3. Schematic representation of the P. vivax transmission model and the associated system of 
differential equations. S0 denotes fully susceptible humans, I0 denotes blood-stage infection, SL denotes 
liver-stage infection with hypnozoites, and IL denotes blood-stage infection and liver-stage infection with 
hypnozoites. 
 

Although the model described in Figure S3 captures the key drivers of the dynamics of P. vivax 

transmission, it is a simplified representation subject to a number of limiting assumptions. Most 

notably, there is no heterogeneity or seasonality in transmission, no super-infection, no age 
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structure and no acquisition of natural immunity. Incorporation of these factors would change the 

quantitative predictions of the model, but not its qualitative behaviour. The model can be 

simplified by removing the compartments for infection with liver-stage hypnozoites (SL and IL) and 

hence capture the dynamics of P. falciparum transmission [2]. In addition P. vivax or P. falciparum 

gametocytes are not explicitly accounted for. It is assumed that individuals infected with either 

asexual P. vivax or P. falciparum parasites are capable of transmitting to mosquitoes. Furthermore, 

we do not account for the effects of primaquine on clearance of gametocytes 

Interventions 

A potential strategy for malaria control is to administer combinations of anti-malarial drugs to 

entire populations. Schizonticidal drugs such as chloroquine (CQ), artemether-lumefantrine or 

dihydroartemisinin-piperaquine (DHA-PIP) can be used to clear P. falciparum or P. vivax blood-

stage infections. P. vivax liver-stage infection with hypnozoites can only be cleared with an 8-

aminoquinolines such as primaquine or tafenoquine (TQ). In addition to clearing parasites, drugs 

can provide a period of prophylactic protection where new infections are prevented. Primaquine 

and tafenoquine cannot be given to G6PD-deficient people[3]. Both are pro-drugs that need to be 

metabolised by the cytochrome P450 (CYP) 2D6 enzyme to be effective [4, 5]and people with low 

2D6 activity will fail primaquine treatment. In PNG ~5% of people expected to be moderately to 

highly deficient (<40% activity [6]) and <5% low CYP 2D6 metabolisers [7].  

Two delivery strategies are considered:  

• Mass drug administration (MDA):  individuals in a population are treated 

regardless of infection status. The proportion of individuals treated is referred to as the 

coverage. 

• Mass screen and treat (MSAT):  individuals in a population are tested for the 

presence of blood-stage parasites with an appropriate diagnostic and treated only if 

they test positive. The proportion of individuals tested is referred to as the coverage. 

 

For both of these strategies we assume two treatment rounds (each covering 80% of the 

population) spaced 6 months apart. Importantly, we assume no correlation of coverage between 

treatment rounds, i.e. the probability of being treated in round 2 is independent of treatment 

status in round 1. Figure S4 shows the prevalence of blood-stage P. vivax and P. falciparum 

parasites following two rounds of either MDA or MSAT predicted by the deterministic transmission 

model. 
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Figure S4. Comparison of two rounds of MDA and MSAT with anti-malarial drugs on P. vivax and P. 
falciparum blood-stage parasite prevalence, as predicted by the deterministic model. The grey bars 
denote the time of each treatment round and the duration of prophylactic protection. 
Dihydroartemisinin-piperaquine (DHA-PIP) or chloroquine (CQ) were assumed to be administered as 
part of a 3 day regimen providing prophylaxis for one month. Primaquine (PQ) was assumed to be 
administered as part of a 14 day regimen providing prophylaxis for 15 days. Tafenoquine (TQ) was 
assumed to be administered via a single dose providing prophylaxis for two months. 
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Table S2. Description of parameters for malaria transmission model. aEstimated numbers of mosquitoes 
per human predicted to give an equilibrium parasite prevalence of 20% in the deterministic (stochastic) 
model. bProphylactic prevention of new blood-stage infections. cProphylactic prevention of new blood-
stage and liver-stage infections.  
 
parameter description value reference 
Mosquitoes 
a mosquito biting frequency ( a = Q/δ ) 0.21 day-1 calculated 
Q human blood index (An. farauti) 0.64 [8] 
δ length of gonotrophic cycle 3 days [9] 
n duration of sporogony in mosquito 12 days [10] 
g mosquito death rate ó 1/mosquito life expectancy 0.1 day-1 [10] 
c transmission probability: human to mosquito (An. 

darlingi) 
0.23 [11] 

m number of mosquitoes per human (P. vivax)  0.56 (0.511)a calculated 
m number of mosquitoes per human (P. falciparum) 1.45 (1.362) a calculated 
    
Humans 
b transmission probability: mosquito to human 0.5 [12] 
r rate of clearance of blood-stage infections 1/60 day-1 [13] 
f relapse frequency (~ time to first relapse) 1/125 day-1  
h expected number of relapses 4  
γ rate of hypnozoite clearance ( γ = f/h ) 1/500 day-1  
    
Treatment   
 coverage (5% pregnant women, 15% missed or 

refused) 
80%  

 diagnostic sensitivity (molecular PCR) 80%  
 diagnostic specificity 95%  
 duration of prophylactic protection (DHA-

PIP/chloroquine)b 

30 days [14] 

 duration of causal prophylactic protection (14 day PQ 
regimen)c 

15 days  

 duration of prophylactic protection (tafenoquine)c 60 days [15] 
 primaquine effectiveness (5% G6PD deficient, 20% 

failure including 5% CYP 2D6 low metaboliser) 
75% [15] 

 tafenoquine effectiveness (5% G6PD deficient, 5% 
failure including CYP 2D6 low metaboliser) 

90% [15] 
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Stochastic implementation 

The model described by the equations in Figure S3 can be implemented in a stochastic 

framework to capture the natural variation that may occur in finite populations due to the chance 

nature of infectious events., and the possibility of elimination.At time t the number of humans and 

mosquitoes in each compartment is{ }0 0, , , , ,t t t t t t
L L M MS I I S S I . During time step Δt stochastic 

transitions of individuals between compartments will result in an updated state of the system at 

time t + Δt:{ }0 0, , , , ,t t t t t t t t t t t t
L L M MS I I S S I+Δ +Δ +Δ +Δ +Δ +Δ .  

Consider individuals moving in and out of the 0I  compartment. Individuals recover from 0I  to

0S  at rate r, and move from 0I  to LI  through infection at rate λ. The total number of individuals 

leaving compartment 0I  at time t will be given by a Binomial distribution ( )0 0, ( r)tI B I tλ− = + Δ
. 

The 0I
−

individuals moving out of 0I will move to 0S  or LI  according to competing hazards 

determined by a Binomial distribution as follows:
{ } { }( )0 0 0 0, , ,r

L r rI S I I B I λ
λ λ

−
+ +→ → =

. The 

number of individuals in compartment 0I  at time t + Δt is then given  

by ( )0 0 0 0
t t t

LI I I I I+Δ −= − + →
. The stochastic transitions between other compartments are 

similarly defined. 
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– This manuscript will be submitted after further revisions –  

Abstract 

Background 
Primaquine treatment for radical cure of Plasmodium vivax is a key intervention for preventing 

relapses and reducing transmission. Primaquine treated children were compared with placebo 

recipients to analyze the infection dynamics and duration of natural P. vivax infections and 

determine the contribution of relapses to parasite clones circulating in the blood.  

Methods 
A cohort of 504 children aged 5-10 years from Papua New Guinea was randomized into two 

arms. Treatment at baseline was either blood-stage anti-malarials alone or an additional course of 

Primaquine. Over 8 months, P. vivax positive blood samples were genotyped for marker msp1F3. 

The duration of individual infecting clones and the number of new clones per person and year-at-

risk (force of blood-stage infection, molFOB) were compared between treatment arms.  

Results 
The estimated duration of infection was similar in both arms of the trial (PQ: 60 [95% credible 

interval: 25, 891] days, placebo: 45 [28, 111] days, p=0.3). Durations increased by age (p= 0.008) 

with a range of 26 [18, 52] days in the youngest age group to 154 [44, 3458] in the oldest children. 

Over the 8 months follow up, molFOB was 3.5 [95% CI: 2.7, 4.3] in the PQ-arm compared to 9.9 

[8.8, 11.3] in the placebo arm (p<0.001). The mean number of relapses per new infection 

(estimated from the difference of molFOB between treatment arms over molFOB in PQ arm) was 

highest in the first 3 months after PQ treatment (2.4 [1.3, 4.0]) and lower thereafter (1.4 [0.6, 2.8]). 

Children were recruited from five villages differing in	transmission intensity. At all of these sites the 

mean number of relapses per new infection was similar, thus, the higher the prevalence is in a 

village, the larger the hypnozoite reservoir in that community. 

Conclusion  
Good agreement in the PQ and Placebo arms for the duration of P. vivax infections, parasite 

densities and detectability suggested that the immune pressure is similar for relapses and new 

infections in semi-immune children. The relative contribution of relapses and primary infections to 

force of infection was independent of transmission intensity and age. A lower level of individual 

exposure of an individual will translate proportionally into a decreased relapse burden. 
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Introduction 

Dormant liver stages, called hypnozoites, contribute significantly to transmission of 

Plasmodium vivax malaria in endemic regions of Southeast Asia and South America (White, 2011; 

Betuela et al., 2012). Hypnozoites can relapse weeks to months after the initial infection depending 

on the geographical area (Battle et al., 2014). In Papua New Guinea (PNG), relapses generally 

appear within 3-5 weeks after antimalarial treatment of the initial infection (Craige and Alving, 

1947; Townell et al., 2012). Nevertheless, in some instances long dormancy periods of over one 

year have been observed with the fast relapsing Papua New Guinean Chesson strain (Jeffery, 

1956).   

Primaquine (PQ) is the only registered drug to reduce relapse rates by clearing latent 

hypnozoites. The efficacy of PQ in preventing relapses is depending on the total dose of drug 

received (Bunnag et al., 1994; Duarte et al., 2001; Galappaththy et al., 2007; Leslie et al., 2008). 

PQ is given at 0.5 mg/kg daily for 14 days to achieve presumptive radical cure (Hill et al., 2006; 

Krudsood et al., 2008). 

The contribution of P. vivax relapses to the infectious reservoir of P. vivax in highly endemic 

areas is difficult to define. In these settings, super-infections are common and the contribution of 

re-infections, relapses, and persistent blood-stage infections are unclear (Karunajeewa et al., 2008). 

Prevention of relapses in a subset of children in a longitudinal cohort and subsequent comparison 

between treatment arms has been proven to be a valuable study design to measure the 

contribution of relapses to the burden of P. vivax malaria (Betuela et al., 2012; Robinson et al., – in 

preparation). In a previous study conducted in 1-5 years old children from PNG, treatment with 

Artesunate-Primaquine reduced the risk of P. vivax infections by 44% compared to an Artesunate 

only treatment (Betuela et al., 2012).   

Genotyping in cohort studies provide the opportunity to measure the individual exposure by 

calculating the number of concurrently infecting genotypes (multiplicity of infection, MOI) and the 

number of newly acquired genotypes per person and time-at-risk (molecular force of infection, 

molFOI, Box 1) (Smith et al., 1999; Koepfli et al., 2013; Mueller et al., 2012; Robinson et al., – in 

preparation). Tracking individual genotypes in consecutive blood samples of the same individual 

permits to estimate the persistence of each parasite clone in a host (Bretscher et al., 2011; Bruce et 

al., 2000; Smith et al., 1999). The clearance rate can be estimated from the probability at which a 

genotype persists in consecutive samples. 

Parasite densities fluctuate during the course of an infection. This results in imperfect detection 

of parasite clones in some of the blood samples of a host (Koepfli et al., 2011b; Smith et al., 1999). 

Both, persistence and clearance rates are thus subject to biases arising from the failure to detect all 

the genotypes present in the host at any time (Bruce et al., 2000; Smith et al., 1999).  
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P. vivax poses an additional challenge because genotyping cannot distinguish relapses from 

new infections (Bright et al., 2014; Bruce et al., 2000). Estimates of force of infection for P. vivax 

therefore comprise two sources of blood-stage infections: newly acquired infections (analogous to 

P. falciparum) and relapses from dormant liver stages. In consideration of relapses, the term 

molecular force of blood-stage infections (molFOB, Box 1) was introduced for P. vivax and 

corresponds to molFOI for P. falciparum (Koepfli et al., 2013).  

The present study estimates molFOB and duration of infection for P. vivax from repeated blood 

sampling in a setting with frequent super-infection, using a method that allows for the effects of 

imperfect detection. This approach makes use of a mathematical model previously designed for 

calculating clone detectability (probability of detection of a clone in a given sample) and durations 

of P. falciparum infections (Smith et al., 1999). Samples genotyped derived from a recently 

described randomized treatment to re-infection study in children aged 5-10 years old from PNG 

(Robinson et al., – in preparation). Children received either antimalarial treatment consisting of PQ- 

Chloroquine (CQ)- Artemether-Lumefantrine (AL) or of CQ-AL only at baseline. At regular visits 

blood samples were collected from each participant during 8 months (Robinson et al., – in 

preparation).  

The aim of this study was to assess the infection dynamics of new P. vivax infections and 

relapses by comparing two trial arms that differ by administration of either PQ or Placebo at 

baseline. The following parameters were estimated: multiplicity of infection, parasite density, 

duration of naturally clearing infections, detectability of blood-stage clones and the fraction of 

blood stage infections that can be attributed to relapses.  
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BOX 1 – DEFINITIONS 

New infection New infections are caused by sporozoite inoculation by a mosquito bite.  

Relapse Reactivated latent hypnozoite causing infection. 

MOI Multiplicity of infection is the number of genotypes concurrently present in a blood 
sample. 

molFOI Molecular force of infection denotes the number of newly acquired genotypes per 
person and year-at-risk. It is commonly used for estimation individual exposure in 
P. falciparum endemic settings (Mueller et al., 2012; Smith et al., 1999). 

molFOB Molecular force of blood-stage infections per person and year-at-risk. Blood-stage 
infections of P. vivax derive from two sources: (i) from new infections emerging 
from the liver several days after an infectious mosquito bite (equivalent to molFOI for 
P. falciparum) and (ii) from relapses emerging from dormant liver stages weeks or 
months after the infectious bite. To emphasize these two sources of P. vivax clones 
circulating in the blood, the term molFOB was introduced for P. vivax and is used 
instead of molFOI (Koepfli et al., 2013). 

PQ-cleared 
fraction of 

molFOB 

Primaquine-cleared fraction of the force of blood stage infection denotes the 
number of infections deriving from hypnozoites. In the Primaquine arm this fraction 
of clones was cleared at baseline. This fraction can serve as an approximation of 
the contribution of relapses to molFOB (Figure 1). 

Mean number of 
relapses per new 

infection 

The mean number of relapses expected per each new infection observed. In the 
context of this study, we estimated this number by taking the ratio of the PQ-
cleared fraction of molFOB over molFOB of PQ arm. 

Detectability The probability of detection of a clone in a given sample. Imperfect detection of 
some or all clones in a blood sample is a consequence of fluctuating parasite 
densities in the course of an infection (Koepfli et al., 2013; Smith et al., 1999).  

Clearance rate The probability that a clone is cleared between two consecutive samples.  

Duration of 
infection 

The duration of naturally clearing infection. It is estimated from 1/clearance rate 
(Smith et al., 1999)   
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Methods 

Study population & ethics 
The randomized treatment to re-infection cohort study was carried out in a rural area of Maprik 

district, East Sepik Province, PNG where P. falciparum and P. vivax are co-endemic (Hofmann et al., 

– in preparation; Lin et al., 2010). From August 2009 to July 2010, 524 children aged 5-10 years 

were randomized to receive 20 days of directly observed treatment (DOT) of either: 3 days CQ, 3 

days AL and 20 days PQ (0.5 mg/kg) or 3 days CQ, 3 days AL and 20 days of placebo. Thereafter 

participants were followed up for 8 months. At initially fortnightly and later monthly visits blood 

samples and malariological data were collected. Throughout the entire study period, active case 

detection (ACD) visits were scheduled every two weeks and passive surveillance (PCD) was 

implemented at the local health centers and aid posts. At each febrile episode, a blood sample 

was collected from the participants, a rapid diagnostic test (RDT) was performed and a blood slide 

examined by light microscopy (LM). Each thick film was examined for up to 200-500 fields by two 

independent microscopists. AL treatment was administered upon a positive RDT or LM result. 

Details of the study are published elsewhere (Hofmann et al., – in preparation; Robinson et al., – in 

preparation). Each participant contributed up to 13 regular samples, one at enrolment and 12 

during follow up. Ethical clearance for molecular analyses was obtained from the PNG IMR 

Institutional Review Board (no.0908), the PNG Medical Advisory Committee (no. 09.11), the 

Ethikkomission beider Basel (no. 237/11) and was registered on ClinicalTrial.gov (NCT02143934). 

DNA extraction, qPCR and genotyping 
DNA was extracted using a FavorPrepTM 96-well genomic DNA extraction kit (Favorgen, Ping-

Tung, Taiwan) according to the manufacturer’s instructions. All samples were run on a generic 

Plasmodium spp. qPCR assay prior to P. falciparum and P. vivax species-specific 18S rRNA qPCR 

assays for molecular species detection and quantification. qPCR assays were previously published 

and validated (Rosanas-Urgell et al., 2010; Wampfler et al., 2013). All samples positive for P. vivax 

by qPCR were genotyped for marker msp1F3. PCR fragments were sized by capillary 

electrophoresis (CE) for precise longitudinal tracking of individual clones. Genotyping assay 

conditions were identical to those described elsewhere (Koepfli et al., 2011a) except for a higher 

number of PCR cycles (30 in primary and 35 in nested PCR). For CE-sizing, products were diluted in 

water according to their agarose gel band intensity. Samples were analyzed by ABI3130xl using 

GS500LIZ as size standard (Applied Biosystems, Germany). Electropherograms were analyzed 

using GeneMapper Software version 3.7 (Applied Biosystems). A cut-off set at 500 fluorescence 

units (FU) defined the minimal required peak height. Stutter peaks (defined by accompanying 

peaks with a regular pattern of <6 bp or a height of <20% of the main peak) were censored. 

Further stutter peaks nor matching these requirements but repeatedly observed to accompany 

strong peaks of over 5000 FU were defined as artifact peaks and censored. A bin width of 3 bp was 

defined for each allele to accommodate small variations in fragment sizing.  
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Statistical analysis of the study cohort  
Difference of prevalence by treatment arm was tested by Pearson X2 and by Kruskal-Wallis X2 

for prevalence by villages and age categories. Geometric mean of pv18S rRNA copies/µl and 

pvs25 transcripts/µl and were used as surrogate for asexual densities. Differences of geometric 

mean of parasite densities by treatment arm were tested by Welch’s Two-sample t-test. Correlation 

of parasite densities with continuous age was tested by Pearson’s correlation r2. ANOVA was used 

to test differences of parasite densities between villages or age categories. Association of MOI and 

asexual density at baseline and during follow up was tested by log-transformed regression using a 

Poisson distribution. The statistical tests were calculated by R version 3.1.1.  

Estimation of force of infection, duration and detectability 
molFOI was estimated separately for each arm of the trial, for each age category, and for each 

village, by counting of all newly acquired genotypes over the time at risk (Koepfli et al., 2013; 

Mueller et al., 2012; Smith et al., 1999). Detectability of clones in consecutive samples from a host 

and duration of infections were based on the “triplet” model (Smith et al., 1999), which represents 

a sliding window over the follow up period of each individual and counts the different patterns of 

appearance and disappearance of clones in three successive samples, starting with each positive 

sample, assuming a Markov process for clearance and independent detection of an infecting 

genotype in successive samples (Smith et al., 1999). This approach naturally addresses missing 

data, in contrast to alternative methods that depend on complete data (Sama et al., 2005; Smith 

and Vounatsou, 2003), and provides an algorithm for adjusting the molFOI estimates to allow for 

imperfect detection bias. The original implementation of the model (Smith et al., 1999) was 

adapted i) for the unequal spacing of our regular bleed intervals (6 time two-weekly and 5 times 

monthly intervals), and ii) for allowing for many missed visits. Detailed description of the extended 

triplet model can be found in the Supplementary Methods S1.   

The model was first run on a data set comprising only regular bleeds of children who didn’t 

experience any antimalarial treatment during follow up, to assess the clearance rate per interval (M) 

and the detectability (S) by Bayesian inference. Subsequently, overall M and S values were 

estimated for an enhanced dataset containing data from active and passive case detection samples 

in addition to routine visits. In this dataset, following each AL treatment a period of 14 days was 

considered as interval-censored and removed from the days-at-risk to capture the post-treatment 

protective effect of AL (Salman et al., 2011). A bootstrap approach was used for assessing 

confidence intervals of molFOB. The PQ-cleared fraction of molFOB is the difference of FOBPlacebo 

minus FOBPQ and is used as surrogate for the contribution of relapses to infection (Figure 1A). The 

mean number of relapses per new infection is the ratio between PQ-cleared fraction of molFOB over 

FOBPQ. The correlation of prevalence and FOBPQ by villages was calculated with Spearman’s rank 

correlation ρ.  
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Results  

During the follow up period of 8 months 2526 blood samples were collected from 247 children 

in the PQ arm and 2588 blood samples from 257 children in the placebo arm. 4928 of these 

samples were collected during regular follow up visits, 57 samples derived from passive case 

detection at the local health facility and 129 samples from active case detection. On average 12 

[IQR: 10, 13] blood samples per child were obtained in both arms. By qPCR 962 samples were 

positive for P. vivax. 

The study participants originated from five villages, which differed substantially in their P. vivax 

prevalence at enrolment (Table 1). Highest P. vivax prevalence was found in Bolumita (66%), lowest 

prevalence in Amahup (38%). This significant difference among the five villages persisted during 

follow up (p<0.001). No significant difference of P. vivax prevalence was observed among age 

categories (Table 1). Owing to the PQ effect against relapses, major differences in P. vivax 

prevalence were evident between treatment arms during follow up (Table 2). The effect of PQ was 

greater in the first 3 months than in later months (Table 2) suggesting that the drug effect of PQ 

vanished during the follow up period.  

 

Table 1. Mean prevalence, mean MOI and geometric mean pv18S rRNA copies/µl WB at enrolment 

At enrolment Prevalence [95 CI]a Mean MOI [95 CI]b Geometric mean of pv18S rRNA 
copies/µl WB [95 CI]c 

Treatment   
 

 PQ 0.48 [0.39, 0.51] 2.18 [1.91, 2.44] 4.79 [2.88, 8.51] 
 Placebo 0.51 [0.44, 0.57] 2.01 [1.72, 2.30] 1.66 [0.95, 2.95] 
 p-value 0.3 0.4 0.006* 
Villages    

 Albinama 0.53 [0.44, 0.62] 1.82 [1.52, 2.12] 3.80 [1.86, 7.76] 
 Amahup 0.38 [0.30, 0.47] 2.12 [1.75, 2.49] 3.09 [1.41, 6.61] 
 Balanga 0.43 [0.30, 0.57] 1.96 [1.37, 2.55] 1.78 [0.34, 9.12] 
 Balif 0.43 [0.34, 0.52] 1.74 [1.38, 2.09] 2.14 [0.95, 4.79] 
 Bolumita 0.66 [0.54, 0.77] 2.94 [2.32, 3.55] 3.31 [1.32, 8.51] 
 p-value <0.001* 0.003* 0.8 
Ages  

 
 

 4-6.67 years 0.52 [0.44, 0.60] 2.18 [1.87, 2.50] 6.03 [3.39, 10.72] 
 6.67-8.5 years 0.48 [0.41, 0.56] 1.91 [1.63, 2.20] 2.57 [1.35, 5.01] 
 8.5-11 years 0.42 [0.34, 0.50] 2.20 [1.77, 2.63] 1.32 [0.63, 2.69] 
 p-value 0.15 0.6 0.006* 

a Differences in proportions were tested by Pearson X2.  
b Differences in mean MOI were assessed by Wilcoxon rank sum tests (by treatment arms) and Kruskal-
Wallis rank sum tests (villages and age categories). 
c Differences in mean log10 transformed pv18S rRNA copies were calculated by Welch two sample T-test 
(by treatment arms) and ANOVA (villages and age categories). 
*p-values <0.05 
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Parasite densities were measured by qPCR and expressed in pv18S rRNA copies/µl whole 

blood (WB). Geometric mean density was similar between villages and correlated negatively with 

age (Table 1; r2=0.038 at enrolment, p=0.001; r2=0.008 during follow up, p<0.001). The geometric 

mean density at enrolment dropped by 17.6% [-28.3, -6.9] per one year of age, as expected for 

children acquiring immunity as a consequence of exposure. At enrolment density was significantly 

lower in the placebo arm (Table 1), but during follow up no difference between treatment arms 

was observed (Table 2). Thus we concluded that parasitaemia at enrolment did not determine 

parasitaemia during follow up.   

 

	
Table 2. Mean prevalence, mean MOI, geometric mean pv18S rRNA copies/µl WB, detectability and 
duration of infection by treatment arms over the entire follow up period or separately over the first 3 
months and the last 5 months  
Over study period PQ Placebo p-valuea 

Mean Prevalence [95 CI]b    
 Entire follow up period 0.05 [0.05, 0.06]  0.16 [0.15, 0.18] <0.001 

 First 3 months 0.05 [0.04, 0.06] 0.20 [0.18, 0.22] <0.001 

 Last 5 months 0.06 [0.05, 0.07] 0.13 [0.12, 0.15] <0.001 

Mean MOI [95 CI]c    
 Entire follow up period 1.66 [1.49, 1.83] 1.78 [1.68, 1.87] 0.08 
 First 3 months 1.82 [1.54, 2.11] 1.88 [1.74, 2.01] 0.6 
 Last 5 months 1.55 [1.32, 1.78] 1.64 [1.50, 1.77] 0.2 
Geometric mean of pv18S rRNA copies/µl WB [95 CI]d   
 Entire follow up period 12.9 [10.2, 16.2] 12.6 [11.0, 14.5] 0.9 
 First 3 months 17.4 [12.3, 24.0] 19.1 [15.8, 22.9] 0.6 
 Last 5 months 9.8 [7.1, 13.2] 7.1 [5.9, 8.7] 0.1 
Detectability [95 CI]e    
 Entire follow up period 0.27 [0.15, 0.50] 0.30 [0.20, 0.42] 0.4 
 First 3 months 0.25 [0.10, 0.64] 0.27 [0.19, 0.42] 0.4 
 Last 5 months 0.30 [0.14, 0.65] 0.50 [0.22, 0.83] 0.2 
Median duration of infection [95 CI]e    
 Entire follow up period 60 days [25, 891] 45 days [28, 111] 0.3 
 First 3 months 32 days [11, 630] 67 days [27, 933] 0.3 
 Last 5 months 68 days [26, 1129] 29 days [19, 73] 0.1 
aPrevalence differences between treatment arms were tested by Pearson X2 tests. MOI differences 
between treatment arms were tested by Wilcoxon rank sum test. Mean log10 pv18S rRNA copies 
differences between treatment arms were tested by Welch’s Two-sample t-tests. Detectability and 
1/duration difference between treatment arms were tested by Welch’s Two-sample t-tests.  
b Confidence intervals of prevalence come from X2 distribution. 
c Confidence intervals of MOI come from T distribution. 
d Confidence intervals of log10 pv18S copies/µl come from T distribution.  
e Credible intervals of detectability and of median duration of infection come from Bayesian 2.5 and 
97.5 quantiles. 
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890 of the 962 (92.5%) P. vivax positive samples by qPCR were also positive by nested PCR for 

genotyping marker P. vivax msp1F3. A total of 50 msp1F3 genotypes were observed, of these 

three genotypes were detected only at enrolment and 12 only during follow up. The most frequent 

msp1F3 genotype represented 21.6% (105/485) of all fragments at enrolment, and 19.7% 

(150/761) of fragments during follow up (genotypes were counted only once per child).  

PQ treatment failures were suspected in 19/115 P. vivax positive children because the same 

genotype was observed at enrolment and in a follow up sample. The majority of these were of the 

most frequent genotype M262.9. Therefore these 19 samples were typed for two additional 

markers, MS2 and pv3.27. The identical genotypes by all three markers was observed for 4/115 

(3.5%) children. These must be considered treatment failures as all these children adhered to the 

treatment schedule. This finding of a residual PQ failure despite direct observed treatment is in 

line with previous reports (Bennett et al., 2013) and may reflect the poor quality of Primaquine in 

PNG (Hetzel et al., 2014).  

MOI is the number of genotypes detected simultaneously in a sample. MOI differed 

significantly by villages at enrolment (Table 1) and during follow up (p=0.008). No significant 

association was observed between MOI and prevalence (Spearman r2=0.04, p=0.7). MOI was 

similar between treatment arms and age categories at enrolment (Table 1; Table 2) and during 

follow up (p=0.6). Geometric mean of parasite density increased by 31% with every additional 

infecting clone at enrolment (coefficient: 0.31 [95 CI: 0.21, 0.41], r2=0.13, p<0.001). Thus it seems 

that P. vivax MOI in 4-11 years old children in PNG is not determined by the substantial differences 

in transmission level between home villages of the children, nor by the age of a child nor PQ 

treatment.  

Detectability of P. vivax clones  
Fluctuations in P. vivax parasite densities frequently result in genotypes falling below the 

detection limit of PCR. Detectability of individual genotypes was estimated from the records in the 

longitudinal genotyping data set by applying the triplet model (Supplementary methods S1). The 

data set used for estimating detectability included only regular follow up bleeds. 130 children who 

received antimalarial treatment during follow up were excluded, because any treatment, even if 

caused by P. falciparum, shortens the duration of an infection. 

Detectability of P. vivax genotypes in the PQ and placebo arm showed similar trends in the 

effects of age, village and follow up interval (Table 2). Detectability in both arms was highest in the 

youngest children <6.67 years and dropped with older age (<6.67y=0.48 [95% credible interval: 

0.28, 0.71], 6.67-8.5y=0.34 [0.20, 0.53] and >8.5y=0.18 [0.13, 0.29]); this corresponded well to the 

observed trend in densities and confirms that genotypes more frequently remain undetected in 

samples of lower parasite density. Detectability was highest in Albinama and Amahup village, but 

differences were not statistically significant (Albinama=0.42 [95% credible interval: 0.22, 0.68], 

Amahup=0.37 [0.12, 0.78], Balanga=0.23 [0.14, 0.43], Balif=0.27 [0.16, 0.46] and Bolumita=0.30 
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[0.15, 0.53]). Because differences between villages and age groups were not statistically significant, 

all further analyses of infection dynamics used a summary measurement of detectability of 0.29 

[95% credible interval: 0.20, 0.39].  

Duration of infection 
The duration, defined as 1/daily clearance rate, was estimated by the triplet model. The 

average duration of infection was 60 [95% credible interval: 25, 891] days in the PQ arm and 45 

[28, 111] days in the placebo arm (Table 2). Durations in older children >8.5 years were longer with 

154 [44, 3458] days compared to 40 [24, 144] days in children 6.67-8.5 years and 26 [18, 52] days 

in the youngest children <6.67 years (p=0.008). Older children also carried lower parasite densities 

than younger children, suggesting that acquired immunity in older children controls densities to 

lower levels and at the same time tolerates longer duration. The duration of infection did not differ 

by village, suggesting that age is a major determinant, not transmission intensity (as measured by 

prevalence).  

PQ-cleared fraction of relapses and mean number of relapses per new infection 
The number of new P. vivax blood-stage clones per child per year (molFOB) (Koepfli et al., 2013) 

was assessed on all samples collected from the cohort including regular bleeds plus the samples 

from active and passive case detection (ACD and PCD). The latter two sources contributed 

22/1137 clones. For estimating molFOB by treatment arm, the overall detectability of 0.29 was 

used. This value and the clearance rate were both obtained from genotyping data including only 

samples from regular follow up bleeds (see sections above). molFOB was significantly different 

between treatment arms in most age categories and villages (Table 3).  

We assumed that the difference in molFOB between PQ and placebo arms represents an 

approximation of the contribution of relapses to the number of new clones detected in a blood 

sample. However, an added complication derives from the fact that new infections from 

mosquitoes also give rise to hypnozoites in PQ treated individuals after waning of the drug effect. 

These additional relapses in PQ arm are not captured when determining the fraction of relapses 

among all clones. Therefore the fraction of relapse-derived genotypes and the estimated mean 

number of relapses per new infection will be underestimated by our approach. “PQ-cleared 

fraction of molFOB” can be viewed as the difference in force of infection between treatment arms. 

The ratio between the PQ-cleared fraction of molFOB over molFOB of PQ arm (FOBPQ) estimates the 

mean number of relapses per new infection in our cohort (Figure 2A).  

The PQ-cleared fraction of molFOB was significantly larger in the first three months compared to 

the period thereafter (Figure 2A, p=0.04). The mean number of relapses per new infection was 2.4 

[1.3, 4.0] in the first three months and 1.4 [0.6, 2.8] in the later 5 months (Figure 2A). The PQ-

cleared fraction of molFOB differed significantly between villages (Figure 2C). No significant 

difference by age category was observed (Figure 2B). The mean number of relapses per new 
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infection was similar over all villages and age categories. This suggests that the number of 

hypnozoites cleared by PQ is proportional to the number of new infections observed in the 

corresponding village or age category.  

We hypothesize that molFOB in the PQ arm may represent an approximation of a child’s 

individual exposure to infected mosquito bites. Support for this assumption derives from a good 

correlation between FOBPQ and the parasite prevalence in all 5 villages (Figure 2D, p=0.09). 

Children from Bolumita, the village with the highest prevalence, were most exposed, as measured 

by FOBPQ. As predicted, Bolumita also showed the largest difference between molFOB in the two 

treatment arms. In contrast, molFOB and prevalence in Amahup indicated low exposure and indeed 

showed a smaller difference between treatment arms. This is in line with the intuitive expectation 

that higher transmission intensity corresponds to a larger hypnozoite reservoir in the liver. These 

observations also highlight the substantial heterogeneity in malaria transmission among 

neighboring villages in PNG. 

Discussion  

The contribution of relapses to the dynamics of P. vivax infections and the duration of 

infections in semi-immune hosts are key elements of P. vivax epidemiology. Here we demonstrated 

for the first time that the appearance and clearance of P. vivax clones can be described, despite 

the major complication caused by relapses, by applying a mathematical model to cope with 

imperfect detectability of clones and by radical cure in one of two compared arms of a trial. 

Methods to estimate theses parameters might prove very useful for evaluating the effect of 

interventions against malaria in clinical trials, e.g. in trials of experimental vaccines or new drugs. 

Applying the triplet approach to P. vivax data demonstrated that clone detectability, mean 

parasite densities and the estimated duration of infection were all similar in both treatment arms. 

These findings were surprising, because antigens of relapsing clones likely gave rise to a very 

recent immune response, thus relapses should persist for a shorter period of time. We speculate 

that the age of our study participants accounts for these findings. This study was conducted in 

schoolchildren of a mean age of 7.6 years. It is probable that semi-immunity against P. vivax 

malaria may have been fully established in our participants as suggested by the low number of 

their clinical P. vivax episodes (Hofmann et al., – in preparation). Immunity against P. vivax 

developing early in life could explain why no strong age effects on detectability, duration of 

infection and MOI were observed. Indeed, our earlier work also suggested that the high number of 

P. vivax infections acquired in the first four years of life is a significant contributor to the rapid 

acquisition of immunity (Koepfli et al., 2013). On the other hand, the longest duration of infection 

in our study was observed in the oldest children. This age trend corresponds well to our earlier  
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Figure 2. Force of blood-stage infection by treatment arm and mean number of relapses per new 
infection. molFOB per person and year-at-risk (pyr) was calculated from a data set including regular 
bleeds, ACD and PCD with 14 days censored after antimalarial treatment during follow up. aRatio is 
expressing the mean number of relapses per new infection. It was calculated by dividing the PQ-cleared 
portion of molFOB over molFOB in PQ arm. A. molFOB by treatment arms and mean number of relapses 
per new infection calculated over entire follow up, over the first three months or the last 5 months. B. 
molFOB by treatment arms and mean number of relapses per new infection by age categories. C. molFOB 
by treatment arms and mean number of relapses per new infection by villages. D. molFOB of PQ arm and 
prevalence at enrolment for each village. Error bars of molFOB values indicate empirical 95% confidence 
interval of 100 runs of Bootstrap of infection counts. Error bars of prevalence indicate 95% confidence 
interval of X2-distribution. Bootstrap of Amahup of PQ arm failed because there were too few infections 
in this subset.  
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findings in P. falciparum showing a peak in duration of infections in 5-9 years old Ghanaean 

children. Our data gained from a small age range only is consistent with an in increasing 

tolerability for low density P. vivax infections leading to longer durations as children grow older 

and immunity increases. Further studies on duration of infection in adults and younger children 

would be important to better understand the role of immunity in P. vivax malaria.  

The estimated average persistence of P. vivax clones in both treatment arms was shorter than 

the durations of relapses observed of historical P. vivax infection experiments, which gave 

estimates of about 80 days of relapse duration (Ross et al. – personal communication). Durations of 

untreated relapses in human volunteers became shorter as more attacks were experienced 

(Coatney et al., 1950). Our data suggested that on average all untreated P. vivax infections, 

irrespective of the source from hypnozoite or primary infection, persist equally long in a host. This 

broad consistency of our estimated durations with the persistence of relapses in experimental 

human infection implies that our study participant from PNG aged 5-10 years had acquired a level 

of semi-immunity against new infections and relapses, which was similar to that raised against 

multiple homologous relapses in the historical artificial infections. This raises the interesting 

question whether relapses detected in PNG children were homologous or heterologous with 

respect to the preceding infection. We indeed observed that not only the duration of infection in 

both treatment arms was very similar, but also the mean parasite densities were concordant in 

both arms.  

Two scenarios could explain the similar durations and densities of relapses and new infections 

in our cohort: (i) most of the relapses observed in our study cohort were heterologous. Then 

relapses would be antigenically different and experience a similar immune pressure, just like new 

infections. (ii) The acquired semi-immunity against multiple strains experienced by our study 

participants in the past confers some protection against new infections. Then new infections and 

relapse are alike in being controlled by acquired immunity. In this scenario homologous or 

heterologous relapses would be equally well controlled. Most likely both scenarios are represented 

in our cohort. Studies on relapses observed in newborns and their mother showed that the first 

relapses experienced by the newborns were homologous to their first infection (Imwong et al., 

2012). Relapses experienced later in life might rise from activation of latent hypnozoites from 

previous inoculations (Imwong et al., 2012; Kim et al., 2012). A recently published case report 

revealed that relapses were meiotic siblings (Bright et al., 2014). Meiotic siblings are heterologous 

in some genetic traits only if hybridization of two genetically distinct gametes in the mosquito 

proceeded. Genetic diversity of P. vivax is high in PNG (Koepfli et al., 2011a), arguing for 

concurrent transmission of multiple clones to mosquitoes, but no evidence from epidemiological 

data is yet available. In historical experimental data partial immunity against heterologous strains 

was observed (Whorton and Pullman, 1947). We argue that the similar duration of infection 

observed in relapses and new infections in our cohort might be accounted for by the infection 

history of these older children leading to semi-immunity against heterologous or homologous 
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relapses and new infections, and by a large number of antigenically diverse hypnozoites, the 

relapses of which stimulate cross-reactive immune responses.  

The overall short duration of infection in P. vivax compared to P. falciparum is a remarkable 

feature of P. vivax infection dynamics already observed in an earlier study in PNG (Bruce et al., 

2000). Short duration of P. vivax infections is expected because antigenic variation, the major 

factor contributing to immune evasion and very long durations in P. falciparum, is developed only 

rudimentary in P. vivax (Jemmely et al., 2010). We observed in both treatment arms an equally 

high number of infections that occurred only at one time point, suggesting a rapid turnover of 

clones in P. vivax. Indeed, the observed lack of difference in mean MOI between treatment arms, 

despite an over twice as high molFOB in placebo arm, is also arguing for infections of short 

durations with little overlap.   

Overall the mathematical methods applied here provided valid estimates of the duration of 

both, relapses and primary blood stage infections. Owing to the wide intervals between blood 

sampling in our study, short lasting relapses would have escaped detection and we cannot exclude 

selection bias towards longer persisting relapses. This also implies that the molFOB in both arms 

may be widely underestimated. An alternative simpler estimation of molFOB for this cohort had 

shown 1.35 new infections per person-year-at-risk in the PQ arm and over three times as much, 

4.43 new infections, in placebo recipients (Robinson et al. – in preparation). The triplet model 

estimates for molFOB were more than twice as high for each of the treatment arms. This difference 

between molFOB estimates obtained by the two approaches derived from the correction for 

detectability in the triplet model. Detectability of P. vivax genotypes generally was low, 

presumably owing to a 10 times lower parasite density in P. vivax compared to P. falciparum. The 

triplet approach-derived detectability indicated that 71% of the genotypes present in the 

participants were missed by our genotyping method. Thus the earlier analysis of Robinson and 

colleagues (– in preparation) has likely underestimated the true number of clones coming in or 

being cleared. 

On average 1.8 relapses were observed per newly acquired genotype. As expected from the 

waning PQ drug effect, this number was larger in the first 3 months of follow up (2.4 relapses/new 

infection) compared to the later 5 months (1.4 relapses/new infection). Data from 15 experimental 

sporozoite-induced human infections with P. vivax Chesson strain (one mosquito bite per man) of 

the late 1940s suggested that 3 [IQR 3-5] relapses per individual occurred after the single 

mosquito bite (Coatney et al., 1950). Later re-exposure of these volunteers to an infectious bite 

showed a drop in the number of (microscopic) relapses experienced. The authors suggested that 

the number of relapses per new infection decreased with acquired immunity (Coatney et al., 1950). 

However, no age effect on the number of relapses per new infection was observed in our cohort. 

Analysis of molecular data of similar cohorts conducted in younger children, e.g. from Betuela et al 

(Betuela et al., 2012), will reveal valuable information on a possible age trend and as consequence 

on the role of acquired immunity. 
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Ross et al. analyzed genotyping data from an earlier cohort of children aged <4.5 years from 

the same study area (Ross et al., – in preparation). They found that the seasonality of primary 

infections and relapses differs, and so the ratio of relapses to primary infections changes 

throughout the year. Our study began in August 2009. Assuming the same seasonal pattern as the 

study reported by Ross et al., our study would have started at the time with the highest ratio of 

relapses to primary infections (Ross et al., – in preparation).  

Under the assumption that molFOB of the PQ arm represents the exposure of study participants, 

we were able to describe the transmission intensity in 5 study villages. The contribution of relapses 

relative to primary infections seemed to be independent of transmission intensity, i.e. highly 

exposed children experienced proportionally more relapses than less exposed children. Allelic 

diversity and heterozygosity were observed to be similar in all villages (Supplementary figure S2), 

and are therefore unlikely contributing to inter-village differences in transmission intensity. 

Conclusion  
The triplet approach, previously developed for P. falciparum, was applied to estimate for the 

first time the duration of P. vivax infections in naturally exposed individuals. Our study design with 

two treatment arms made it possible to estimate the natural force of infection and to estimate the 

mean number of relapses per new infection in semi-immune children from a highly endemic area. 

We observed that increasing individual exposure of participants translated proportionally into an 

increased relapse burden. Approaches to monitor efficacies of interventions in the field should 

therefore stratify for transmission intensity.  

A key finding of our investigation of P. vivax infection dynamics was that relapses and new 

infections are presumably under the same immune pressure in semi-immune children as indicated 

by a similar duration, parasite density and detectability in both treatment arms. This result points to 

the basic research question on genetic similarity of relapses and may provide a rationale for a 

future investigation of the genetic variability of relapses compared to their preceding blood-stage 

genotypes, i.e. relapses being meiotic siblings (Bright et al., 2014) in order to survive the acquired 

immune response triggered by the initial inoculation.  

The mathematical model applied to genotyping data from the two treatment arms proved very 

useful to evaluate the infection dynamics of P. vivax in semi-immune children. This was achieved 

despite a major complication of P. vivax molecular epidemiology, namely the unknown history of 

infections in our participants before baseline, but still giving rise to relapses in our participants. 

This study design and the analytical approach presented here might be valuable for evaluating the 

effect of interventions in drug or vaccine trials against P. vivax malaria.  
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Supplementary Methods S1  

Estimation of force of infection and clearance rates allowing 
for detectability 

Analysis of the genotypes of malaria parasites in sequential blood samples collected several 

weeks apart from the same infected hosts, can be used to estimate the force of infection of the 

parasite. Such data can also be used to estimate how long parasites persist if they are not treated. 

A significant complication is that even PCR does not detect all infections (Bretscher et al., 2010). 

This means that, when serial samples from the same host are considered, disappearance of a 

specific genotype in the second sample of a pair (a “loss” corresponding to a (+ −) pattern) can be 

either the result of imperfect detection of a persisting clone, or of clearance. Similarly, a “gain” (− 

+) can be the result of acquisition of parasites of the specific genotype, or of imperfect detection in 

the first sample of the pair.  

The mathematics is best illustrated by the case of exchangeable genotypes, i.e. the rates of 

clearance of each genotype are the same and each genotype is equally detectible. In applications 

where this assumption does not hold, analyses can be carried out stratified by genotype or host 

characteristics. To estimate the rates of clearance allowing for the proportion of clones that are 

detected, sequences of at least three samples need to be considered. The following text is an 

expanded version of the original exposition of this method (Smith et al., 1999). 

Clearance and detectability 
To estimate the clearance rates and the detectability, a simple analytical approach is to group 

the data into “triplets” comprising sequences of three samples starting with each one that typed 

positive for each specific genotype, so that the total number of triplets is equal to the sum over all 

genotypes of the positive typings. These are then categorized according to the typing result and 

the presence of data for the second and third samples into categories (Figure S1 and Table S1). 

The analysis estimates both the detectability and the probability that an infection existing at 

the start is cleared during the interval between the first sample (t=1) and the second sample (t=2). 

Assuming a Markov process for clearance (Smith et al., 1999), and assuming the probability of 

reinfection within the same interval to be close to zero. The typing results at t=2 depend on 

probability, (M) , of clearance of an infection during any single interval and on the proportion of 

true infections detected in any given sample (S), as indicated in Table S1. In the case that the 

sample at t=2 is negative, the samples at t=3 are informative about whether a negative sample at 

t=2 was a true, or false negative. This method classifies pairs or triplets commencing with a 

positive sample into four categories (numbered 1-4 in Table S1 and Figure S1a), depending on the 

existence of data from samples at time t=2 and t=3. The likelihood of each of these 4 patterns, 

equivalent to the probability that it will be observed, conditional on the availability of the required 
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typing data, is given in Table S1. 	

The	original	method	(Smith	et	al.,	1999)	(Figure	S1a)	analyses	only	the	minimal	dataset	required	to	make	

the	problem	identifiable,	counting only the pairs or triplets where samples are available at t=2, and 

distinguishing between cases where only pairs of samples (t=1 and t=2) are available from those 

where full triplets are available (t=1, t=2 and t=3). When the second sample is positive, the status 

at t=3 is not considered. The approach can be extended to incorporate information from all triplets 

with data from t=3, or from more complicated sample sets, including sequences of 4 or more 

samples and sequences with missing data. One such example is the case when the data at t=2 is 

missing (Figure S1b), but a sample at t=3 has been typed. Positivity at t=3 is then also indicative of 

persistence, and thus the t=3 provides some additional information about M and S. In the case 

that complete data are available from longer sample sets, the method is equivalent to that of Sama 

(Sama et al., 2005). The challenge of extending the methodology to analysis of longer series with 

complex patterns of missing data remains to be addressed.  

Table S1. Patterns of infection detected by genotyping in sequences starting with positive samples, and 
their likelihoods 
K First sample Second sample Third sample Likelihood 
1 + + -, +, or missing 𝐿! = 1 −𝑀 𝑆 
2 + - + 𝐿! = 1 −𝑀 ! 1 − 𝑆 𝑆 
3 + - - 𝐿! = 1 −  𝐿! − 𝐿! 
4 + - Missing 𝐿! = 1 −  𝐿! 
5 + Missing + 𝐿! = 1 −𝑀 !𝑆 
6 + Missing - 𝐿! = 1 −  𝐿! 

 

The values of M and S can be estimated by maximum likelihood from the overall likelihood 

constructed by multiplying the likelihoods for all the observed triplets, or equivalently from the log 

likelihood:  

𝑙𝑛𝐿 = 𝑛!𝑙𝑛𝐿!

!

!!!

 

where 𝑛! is the frequency of triplet pattern k (Table S1) . Alternatively, a Bayesian Markov chain 

Monte Carlo (MCMC) algorithm can be employed using WinBugs or JAGS software assigning 

uniform priors to both M and S (see Appendix below). The decision points in Figure S1, then 

correspond to stochastic nodes with the probabilities for each branch proportional to the 

likelihoods from Table S1. The MCMC approach has the advantage of providing interval estimates 

for the parameters, and also allows the uncertainty in the estimation of M and S to be propagated 

in further calculations (e.g. bias-adjustments in estimates of the force of infection, see below). 
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Infection/Acquisition probability 
The acquisition probability for each genotype is estimated from the data of sequential pairs of 

samples, where the sequence starts with a sample that typed negative. The naïve estimate of the 

average number of infections acquired in each interval for genotype, i, is then: 

Λ′! =
𝑛! !

𝑛! !  +  𝑛! !
 

where 𝑛! ! is the total number of “gains” (− +) divided by the total intervals at risk, which is 

computed from sum of the number of “gains”, 𝑛! ! , and 𝑛! ! , the number of (− −) pairs for the 

genotype. This is a biased estimate of the true probability that there is a new infection during the 

interval, Λ!, because of imperfect detection, which might affect either the first or second sample of 

the pair. The bias depends on M, S, and also on 𝑝! , the true point prevalence of the genotype (i.e. 

the proportion of hosts infected by it on average at a single time point) (Table S2). 

The overall probability that the observed pattern for genotype i in any sequential pair of 

samples is (- -) is obtained as: 

𝑃𝑟 −  − = 𝑃𝑟 T 𝑃𝑟 −  − ¦T = k  

i.e. 

𝑃𝑟 −  − = 1 − 𝑝! 1 − Λ! + 1 − 𝑆 1 − 𝑝! 𝛬! + 1 − 𝑆 𝑝!𝑀 + 𝑝! 1 −𝑀 1 − 𝑆 !, 

and the overall probability that the observed pattern is (- +) is: 

𝑃𝑟 −  + = 𝑃𝑟 T 𝑃𝑟 −  + ¦T = k 	

i.e. 

𝑃𝑟 −  + = 𝑆 1 − 𝑝! 𝛬! + 𝑝! 1 −𝑀 (1 − 𝑆)𝑆.	

In the large sample case, the observed proportion of intervals during which an infection 

appears to be acquired is then the ratio: 

Λ′! =
𝑃𝑟 −  +

𝑃𝑟 −  − + 𝑃𝑟 −  +
 

which is therefore equivalent to: 

Λ′! =
𝑆𝛬! − 𝑆𝑝! 𝛬! − 1 − 𝑆 1 −𝑀

1 − 𝑆𝑝!
 

and, 

Λ′! =
𝑆𝛬! − 𝑝′! 𝛬! − 1 − 𝑆 1 −𝑀

1 − 𝑝′!
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where: 𝑝′! = 𝑆𝑝!, is the point prediction of the observed prevalence which is estimated by: 

𝑝′! =
𝑛!

𝑛!  +  𝑛!
 

𝑛! is the total number of samples testing negative for the genotype, and 𝑛! is the total testing 

positive.  

Solving for Λ! and substituting the field-based estimates, provides a formula for the bias 

adjusted estimate of Λ! as a function of 𝑝′! and of the estimated detectability, 𝑆, and clearance 

probability, 𝑀 .  

𝛬! =
Λ!! − 𝑝′! Λ!! + 1 − 𝑆 1 −𝑀

𝑆 − 𝑝′!
 

This is a correction to the formula originally published in 1999 (Smith et al., 1999). 

The ratio, 𝛬! Λ!! which measures the bias in the crude estimate of the number of new 

infections, is highly sensitive to 𝑆. If detection is perfect, it has a value of 1.0, corresponding to no 

bias. At low values of 𝑆, 𝛬! can be substantially higher than Λ!!  especially if 𝑀 is high, 

corresponding to long survey intervals or rapid turnover of infections (Figure S2). Figure S2 At 

values of 𝑀 < 0.2 (within the ranges observed in field studies in Tanzania and Ghana (Sama et al., 

2005; Smith et al., 1999) the ratio of 𝛬! Λ!! is a non-monotonic function of 𝑆 but remains fairly 

close to unity (implying only modest levels of bias). The bias is very insensitive to 𝑝′! over a wide 

range of prevalence values. In general, since the analysis is applied to genotype specific data, 𝑝′! is 

expected to be low. 

 

                                   𝑀 = 0.5 

  

                    𝛬! Λ!!            𝑀 = 0.2 

 

                                    𝑀 = 0.1  

                                    𝑀 = 0.05  

 
 
 
Figure S2. Bias in estimated force of infection. The quantity plotted is the ratio of the true value to the 
unadjusted estimate in each case for 𝑝′! = 0.002 . The horizontal dashed line corresponds to the case of 
no bias.  
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Conversion to rates 
 

𝑀 and 𝛬! are estimates of transition probabilities, and are therefore specific for the interval length 

used in any specific study. These must be converted to rates in continuous time if they are to be 

compared across studies with different interval durations. The continuous time analogues 

correspond to the reversible catalytic model (Bekessy et al., 1976; Muench, 1959). This provides 

expressions for transition probabilities as functions of the rates:   

𝛬! =
𝜆!

𝜆! + 𝜇!
1 − 𝑒𝑥𝑝 − 𝜆! + 𝜇! 𝑡  

and:	

 𝑀 =
𝜇!

𝜆! + 𝜇!
1 − 𝑒𝑥𝑝 − 𝜆! + 𝜇! 𝑡  

where t is the duration of the inter-survey interval, 𝜇 is the estimate of the clearance rate, and 𝜆!is 

the estimate of the genotype specific force of infection. Rearrangement of these formulae and 

solving for 𝜇! and 𝜆! gives: 

𝜇! =
−𝑀𝑙𝑛 1 − 𝛬! +𝑀

𝛬! +𝑀 𝑡 
 

 

and:  

𝜆! =
𝛬!
𝑀
𝜇! 

The overall force of infection is estimated as the sum of the individual 𝜆!  values. Although we 

use a common value of 𝑀 across all genotypes, this analysis leads to slightly different values of 𝜇!. 

The mean of these calculated allele-specific values is reported as the clearance rate, 𝜇. The 

reported average duration of infection in days is then proportional to the reciprocal of this value, 

1/𝜇.  

Interval estimation  
Estimation of force of infection, clearance rates, and detectability can be carried out by 

Maximum Likelihood, or alternatively by Bayesian MCMC. The latter has the advantage that it 

provides sampling-based interval estimates for all the parameters, potentially allowing for the 

uncertainties at each stage of the algorithm. Code for MCMC estimation is appended.  
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Discussion and application of this approach to the study cohort 
Adaptation of the triplet approach to P. vivax was a major challenge in part because our study 

design included initially two-weekly and later monthly intervals, but mainly because the approach 

takes into account a window of 3 consecutive samples independent of the exact time interval 

between sampling. This is a shortfall of the triplet approach, because a genotype that appeared 

once, remained undetectable for the next 2 time points and reappeared thereafter would be 

considered as two new infections. This scenario was observed 52 times, 10 times in PQ arm and 42 

times in placebo arm. As a consequence the durations in the placebo arm might have been 

underestimated. Therefore the PQ-cleared portion of molFOB may have been overrated by 

underestimating the duration of infection in placebo arm. However, also the opposite trend could 

be true: the duration of infection in the placebo arm may be composed of several short-term 

relapses of identical genotype. Thus, the real duration of relapsing infections would be shorter, but 

owing to short intervals between relapsing infections, the model regards relapses as a continuous 

infection. Relapses are only taken as new infections if relapses of identical genotype have a latency 

period as long as at least 28 days in early phase of cohort (corresponding to two intervals of 14 

days) and 60 days in last five months of the follow up period (2 monthly intervals). If the latency 

period of relapses were shorter, they would be considered as continuous infection with a missed 

detection in one follow up sample. This possibility poses a threat for the triplet approach, as short 

lasting relapses may be common in tropical areas and were reported to have a latency period of 

three weeks if short-eliminating antimalarials were given (Battle et al., 2014; White, 2011).   
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WinBugs/JAGS code for estimating 𝑀, S, 𝜆! , 𝜇!. 
	
#	 IMPLEMENTATION	 OF	 THE	 MODEL	 OF	 FIGURE	 S1A	 WITH	 DETERMINISTIC	 ESTIMATION	 OF	 THE	 FORCE	 OF	

INFECTION	
	
model	{			
#ESTIMATION	OF	M	AND	S	
		L1<-	(1-M)*S	
		L2<-	(1-M)*(1-M)*(1-S)*S		
		L3<-	1	-	L1-	L2	
		L4<-	1	-	L1	
	
#			
		pr2<-	L2/(L2+L3)	
		s1total	<-	n11+n101+n100+n10	
		s2total	<-	n101+n100	
	
#	binomial	sampling	of	stochastic	nodes	1,	2	
		n11		~	dbin(L1,s1total)	
		n101	~	dbin(pr2,s2total)	
	
#	uniform	prior	for	M	and	S		
		M	~	dunif(0,1)		
		S	~	dunif(0,1)		
	
#ESTIMATION	OF	FORCE	OF	INFECTION	AND	BIAS	ADJUSTMENT		
	for	(i	in	1:NumberOfGenotypes)	
			{	
			L[i]	<-	(lambdaPrime[i]	-	p[i]*(lambdaPrime[i]	+	(1-M)*(1-S)))/(S	-	p[i])	
			p[i]	<-	n1[i]/n[i]		
			lambdaPrime[i]	<-	n01[i]/n0[i]	
	
#	transform	to	continuous	time	
			muDaily[i]<-	-M*log(1-(L[i]+	M))/((L[i]+M)*t)	
			lambdaDaily[i]<-	-L[i]*log(1	-	(L[i]+M))/((L[i]+M)*t)	
	}	
	
#summaries	over	all	genotypes	
ClearanceDaily<-mean(muDaily[])	
FOIDaily<-sum(lambdaDaily[])	
}	
	
	
#	TEST	DATA	
	
list(NumberOfGenotypes=7,	n11=211,	n101=61,	n100=209,n10=71,t=14)	
	
n0[]		n01[]	 n[]	 n1[]	
560	 11	 3000	 53	
560	 18	 3000	 57	
560	 10	 3000	 43	
560	 9	 3000	 23	
560	 11	 3000	 56	
560	 15	 3000	 72	
560	 5	 3000	 15	
END	
	
#	EXAMPLE	INITIAL	VALUES	(1	CHAIN)	
list(	
M	=	0.1440881879701678,	
S	=	0.4112187770372916,	
logitlambdaPrime	=	c(	
-4.207892579282936,-4.168605593430168,-3.965568672495186,-4.388163834738868,-3.892549139358283,	
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-3.908037902822194,-5.066532048318275),	
logitlambdaPrimebar	=	-3.823480945836294,	
logitp	=	c(	
-4.086307570550217,-4.004132629521775,-4.390522771059175,-4.994397880509394,-3.750283683731104,	
-3.892052972624451,-5.191441694450187),	
logitpbar	=	-4.172449215059147,	
tau	=	2.818547930754359,	
taup	=	2.08985431148514)	
	
#	IMPLEMENTATION	OF	THE	MODEL	OF	FIGURE	S1B	WITH	STOCHASTIC	ESTIMATION	OF	THE	FORCE	OF	INFECTION	

model	{			
#ESTIMATION	OF	M	AND	S	
		L1<-	(1-M)*S	
		L2<-	(1-M)*(1-M)*(1-S)*S		
		L3<-	1	-	L1-	L2	
		L4<-	1	-	L1	
		L5<-	(1-M)*(1-M)*S	
		L6<-	1	-	L5	
#			
		pr2<-	L2/(L2+L3)	
		pr3<-	L5/(L5+L6)	
		s1total	<-	n11+n101+n100+n10	
		s2total	<-	n101+n100	
		s3total	<-	n1_1+n1_0	
	
#	binomial	sampling	of	stochastic	nodes	1,	2	and	3	
		n11		~	dbin(L1,s1total)	
		n101	~	dbin(pr2,s2total)	
		n1_1	~	dbin(pr3,s3total)	
	
#	uniform	prior	for	M	and	S		
		M	~	dunif(0,1)		
		S	~	dunif(0,1)		
	
#ESTIMATION	OF	FORCE	OF	INFECTION	AND	BIAS	ADJUSTMENT		
	for	(i	in	1:NumberOfGenotypes)	
			{	
			L[i]<-	(lambdaPrime[i]	-	p[i]*(lambdaPrime[i]	+	(1-M)*(1-S)))/(S	-	p[i])	
			n1[i]~dbin(p[i],n[i])		
			n01[i]~dbin(lambdaPrime[i],n0[i])		
	
#	random	effects	for	genotype	specific	prevalence	and	incidence	
			lambdaPrime[i]<-	1/(1+exp(-logitlambdaPrime[i]))	
			logitlambdaPrime[i]~dnorm(logitlambdaPrimebar,tau)	
			p[i]<-	1/(1+exp(-logitp[i]))	
			logitp[i]~dnorm(logitpbar,taup)	
	
#	transform	to	continuous	time	
			muDaily[i]<-	-M*log(1-(L[i]+	M))/((L[i]+M)*t)	
			lambdaDaily[i]<-	-L[i]*log(1	-	(L[i]+M))/((L[i]+M)*t)	
	}	
	
#priors	for	metaparameters	of	random	effects	
logitlambdaPrimebar~dnorm(0,1.0E-2)	
tau~dunif(0,10)	
logitpbar~dnorm(0,1.0E-2)	
taup~dunif(0,10)	
	
#summaries	over	all	genotypes	
ClearanceDaily<-mean(muDaily[])	
FOIDaily<-sum(lambdaDaily[])	
}	
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#	TEST	DATA	
	
list(NumberOfGenotypes=7,	n11=211,	n101=61,	n100=209,n10=71,n1_0=30,n1_1=10,t=14)	
	
n0[]		n01[]	 n[]	 n1[]	
560	 11	 3000	 53	
560	 18	 3000	 57	
560	 10	 3000	 43	
560	 9	 3000	 23	
560	 11	 3000	 56	
560	 15	 3000	 72	
560	 5	 3000	 15	
END	
	
#	EXAMPLE	INITIAL	VALUES	(1	CHAIN)	
	
list(	
M	=	0.2938271930359447,	
S	=	0.5093814682038473,	
logitlambdaPrime	=	c(	
-3.562748062328747,-3.678312884623953,-3.841609547868719,-4.561559522968858,-3.54204822963872,	
-3.543603660614651,-4.123941440039693),	
logitlambdaPrimebar	=	-3.637727825838637,	
logitp	=	c(	
-4.164460955662759,-4.017057261011612,-4.191668882209104,-4.558031283327824,-3.778424732596439,	
-3.785125363187561,-4.934854572547822),	
logitpbar	=	-4.653282454126015,	
tau	=	2.097024953285597,	
taup	=	2.599193884837493)	
	
	
#	M,S,	ClearanceDaily	and	FOIDaily	are	the	main	parameters	of	interest.	
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Supplementary Figure S2 

A	

	

B	

	

Figure S1. Allelic diversity and heterozygosity by village. A. At enrolment. Alleles with prevalence 
above 0.03 were labeled. Expected heterozygosity (HE) was calculated according to Koepfli and co-
workers (Koeplfi 2011). B. During follow up. Each allele was counted only once per child.  
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Abstract 

Background 
Primaquine (PQ) is the only currently licensed antimalarial that eliminates Plasmodium vivax (Pv) 

hypnozoites. It also clears mature P. falciparum (Pf) gametocytes, thereby reducing post-treatment 

transmission. Randomized PQ treatment in a treatment-to-reinfection cohort in Papua New 

Guinean children permitted to study Pv and Pf gametocyte carriage after radical cure and to 

investigate the contribution of Pv relapses. 

Methods 
Children received radical cure with Chloroquine, Artemether-Lumefantrine plus either PQ or 

placebo. Blood samples were subsequently collected in 2-to 4-weekly intervals over 8 months. 

Gametocytes were detected by quantitative reverse transcription-PCR targeting pvs25 and pfs25. 

Results 
PQ treatment reduced the incidence of Pv gametocytes by 73%, which was comparable to the 

effect of PQ on incidence of blood-stage infections. 92% of Pv and 79% of Pf gametocyte-positive 

infections were asymptomatic. Pv and to a lesser extent Pf gametocyte positivity and density were 

associated with high blood-stage parasite densities. Multivariate analysis revealed that the odds of 

gametocytes were significantly reduced in mixed-species infections compared to single-species 

infections for both species (ORPv=0.39 [95% CI 0.25-0.62], ORPf=0.33 [95% CI 0.18-0.60 ], p<0.001). 

No difference between the PQ and placebo treatment arms was observed in density of Pv 

gametocytes or in the proportion of Pv infections that carried gametocytes. First infections after 

blood-stage and placebo treatment, likely caused by a relapsing hypnozoite, were equally likely to 

carry gametocytes than first infections after PQ treatment, likely caused by an infective mosquito 

bite.  

Conclusion 
Pv relapses and new infections are associated with similar levels of gametocytaemia. Relapses 

thus contribute considerably to the P. vivax transmission reservoir highlighting the importance of 

effective anti-hypnozoite treatment for efficient control of Pv.  

	

	

Key words: Plasmodium vivax, Plasmodium falciparum, gametocytes, relapses, hypnozoites, pvs25, 
pfs25, Primaquine, Artemether-Lumefantrine, Chloroquine, mixed-species infection 
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Introduction 

Primaquine (PQ) is the only currently licensed drug for clearance of Plasmodium vivax (Pv) 

hypnozoites in the liver (John et al., 2012), and also the only effective drug against mature 

gametocytes of P. falciparum (Pf) (Eziefula et al., 2014; Shekalaghe et al., 2007). Since 2012, the 

World Health Organization recommends a single dose of PQ for treatment of Pf infections with the 

aim to reduce post-treatment Pf gametocyte carriage and thus the potential for onward malaria 

transmission (WHO, 2012).  

Gametocyte development as well as morphology differs considerably between Pv and Pf 

(Bousema and Drakeley, 2011). Pv gametocytes mature rapidly and are detectable in the 

peripheral blood as early as two or three days following detection of blood-stage parasites by 

qPCR or light microscopy (LM), respectively (McCarthy et al., 2013; McKenzie et al., 2007). In 

contrast, Pf gametocytes sequester for 7-10 days in the bone marrow before being released into 

the blood circulation (Aguilar et al., 2014), where they are observed by LM 10-15 days after the 

first detection of asexual parasites (Eichner et al., 2001). Gametocytes were observed in 

symptomatic Pv episodes at higher frequency compared to Pf episodes, despite 10-fold lower 

blood-stage Pv densities compared to Pf (Mckenzie et al., 2006). After drug treatment, Pv 

gametocytes are cleared within days after clearance of blood-stage infections in contrast to Pf 

gametocytes, which circulate over 3 weeks following successful blood-stage clearance (Bousema et 

al., 2010; Eichner et al., 2001; McCarthy et al., 2013; Pukrittayakamee et al., 2008). Altogether the 

published data suggests that Pv infections produce proportionally higher gametocyte densities 

than Pf infections (at the same levels of asexual parasitaemia), and that Pv gametocytes mature 

more rapidly (Eichner et al., 2001; Nacher et al., 2004; Pukrittayakamee et al., 2008; Taylor and 

Read, 1997).  

Not much is known on gametocyte production in primary Pv infections versus relapses from 

activated hypnozoites, mainly because in endemic settings it is impossible to distinguish both 

sources of infection. Our previous work in Papua New Guinea (PNG) showed that relapsing Pv 

infections contributed 73% of the gametocyte carriage (Robinson et al., 2015). A study in Thailand 

and Indonesia reported that densities by LM of Pv blood-stage parasites and gametocytes were 

similar in new infections and relapses (Douglas et al., 2013). Both studies indicated the need for 

efficient treatment of the hypnozoite reservoir for reducing Pv transmission (Douglas et al., 2013; 

Robinson et al., 2015). 

A challenge in studying the investment of Pv infections in gametocytogenesis is the generally 

low and often submicroscopic density of asexual parasites and gametocytes. In addition, scarce Pv 

gametocytes can easily be misclassified by LM due to their resemblance to late trophozoites 

(WHO, 2010). Investigating gametocyte production of Pv infections hence requires sensitive 

molecular methods. For Pf, studying gametocytes by LM is more feasible because of the distinct 

crescent-shaped morphology of gametocytes and generally higher parasite densities; however also 
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for Pf, molecular methods are crucial for studying gametocytes in low-density Pf infections. 

Molecular detection of gametocytes usually targets transcripts of the Pf or Pv 25 kDa ookinete 

surface antigen precursor (pfs25 or pvs25, respectively) (Schneider et al., 2004; Wampfler et al., 

2013), which are highly expressed in mature gametocytes (Bozdech et al., 2008; Young et al., 

2005).  Both pfs25 and pvs25 quantitative reverse transcription PCR (qRT-PCR) or nucleic acid 

sequence-based amplification (NASBA) can detect as few as 1 Pf gametocyte or 10 Pv 

gametocytes per 50 µl blood and are therefore up to 50x more sensitive than LM (Koepfli et al., 

2015; Schneider et al., 2004; Wampfler et al., 2013).  

This study investigated gametocyte dynamics of Pf and Pv infections in school-aged PNG 

children after randomized treatment with blood-stage antimalarials plus PQ or placebo. This trial 

design permitted to quantify the contribution of hypnozoites to parasitological parameters 

assessed during follow-up by comparing treatment arms (Robinson et al., 2015). The present study 

aimed to extend in greater detail our previous analysis of gametocyte carriage in these children by 

addressing the following questions: (i), what are risk factors for Pf and Pv gametocyte carriage? (ii), 

does gametocytaemia differ between Pv new infections and relapses? And (iii), does PQ treatment 

exert a long-term effect on Pf and Pv gametocytaemia?  

Methods 

Study design 
The study was conducted in 2009 to 2010 in the Albinama area, East Sepik province, in PNG. A 

detailed study protocol has been published previously (Robinson et al., 2015). 504 children aged 5 

to 10 years were randomized to two treatment arms and completed directly observed treatment 

(DOT) with a 3-day dose of Chloroquine (CQ), a 3-day dose of Artemether-Lumefantrine (AL) and 

either 20 doses of PQ (per day: 0.5 mg/kg) or placebo over four weeks. Venous blood samples 

were collected at enrolment (prior to treatment) and 3 days after the final dose of DOT. The latter 

date represented day 0 of follow-up. Finger-prick samples were taken every two weeks for the first 

3 months and monthly for the remaining 5 months of follow-up. Symptomatic children detected 

during follow-up were treated with a 3-day course of AL after confirming Plasmodium infection by 

rapid diagnostic test (RDT, CareStartTMMalaria pLDH/HRP2 Combo, AccessBio, USA). The study 

received ethical clearance by the PNG Institute of Medical Research (IMR) Institutional Review 

Board (0908), the PNG Medical Advisory Committee (09.11), the Ethikkommission beider Basel 

(237/11) and was registered on ClinicalTrial.gov (NCT02143934).  

Detection of blood-stage parasites and gametocytes 
All blood samples collected were examined by LM and quantitative PCR (qPCR). Blood slides 

were examined by at least two independent microscopists and declared parasite negative only 

after examination of 200 thick-film fields (Robinson et al., 2015). Parasite DNA was extracted from 
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100-150 µl blood cell pellet using the FavorPrep™ 96-well genomic DNA extraction kit (Favorgen, 

Taiwan) and analyzed for Pf and Pv positivity by 18S rRNA qPCR (Wampfler et al., 2013). All Pv and 

Pf qPCR positive samples were genotyped using markers Pv-msp1F3 and Pf-msp2, respectively, 

following previously published protocols (Koepfli et al., 2011; Schoepflin et al., 2009).   

RNA was extracted from all samples positive in Pf or Pv qPCR. RNA was extracted using the 

RNEasy 96 kit (Qiagen, Switzerland) as described previously (Wampfler et al., 2013) from 50µl 

whole blood spotted on filter papers that had been air-dried and stored in TRIzol reagent (Life 

Technologies, Switzerland). Gametocyte-specific transcripts were detected by pfs25 or pvs25 qRT-

PCR (Wampfler et al., 2013) in all RNA samples for which the corresponding DNA sample had 

been positive by species-specific qPCR.   

Statistical analysis 
Children were censored on the last visit before two consecutively missed scheduled follow-up 

visits (Robinson et al., 2015). Comparison of LM-positive versus submicroscopic infections, and 

symptomatic versus asymptomatic infections was performed with 5019 samples from the follow-up 

period for which LM data was available. A symptomatic malaria episode was defined as fever 

(axillary temperature >37.5°C and/or fever reported in previous 2 days) and the presence of 

Plasmodium spp. parasites by LM.  

Differences in proportions were tested for statistical significance using X2 test with continuity 

correction. To achieve normal distribution, qPCR densities were expressed as log10-transformed 

18S rRNA genomic copies/µl blood for asexual parasites, and log10-transformed pfs25 or pvs25 

transcripts/µl blood for gametocytes. Geometric means of densities were calculated. Differences in 

densities of asexual or sexual-stage parasites were tested for statistical significance using Welch’s 

Two-sample t-test.  

Negative binomial regression models were used to calculate the incidence rate of Pv and Pf 

gametocyte positivity as previously described (Robinson et al., 2015). Gametocyte positivity during 

follow-up was modeled using binomial generalized estimating equations (GEE) with logit link using 

an exchangeable correlation matrix. Log10-transformed blood-stage parasite density and 

gametocyte density during follow-up were modeled using Gaussian GEEs with log link using an 

exchangeable correlation matrix. Linear fit for log10-transformed blood-stage parasite density was 

previously analyzed and considered adequate for both species (Supplementary Document S1). All 

Models were back selected. Statistical analyses were conducted using R version 3.1.1 (R Core 

Team, 2014) or STATA version 14.  
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Results 

Gametocyte positivity and density in submicroscopic infections  
Molecular methods were superior to LM especially for detection of gametocytes but also for 

blood-stage parasites (Figure 1). By LM Pv gametocytes were detected in only 44 out of 366 Pv 

positive samples (12%), whereas by molecular detection 265 out of 705 Pv samples (38%, p<0.001) 

were gametocyte-positive. Pf gametocyte rates by LM were 21% (52/237) and by qRT-PCR 25% 

(107/426). 84% [CI95: 79-88%] and 53% [CI95: 43-63%] gametocytaemia was submicroscopic, for  Pv 

and Pf respectively (Figure 1A and 1D). In three samples gametocytes were detected by LM but 

not by qRT-PCR, indicating RNA degradation. Due to the low sensitivity of LM in gametocyte 

detection, all further results presented here derive from molecular gametocyte detection. 

 
Figure 1. Pv (top) and Pf (bottom) gametocyte positivity among 5019 follow-up samples. (A, D) 
Detection of blood stage parasites and gametocytes by LM and molecular methods, using pv18S or 
pf18S rRNA qPCR for detection of blood-stage parasites and pvs25 or pfs25 qRT-PCR for detection of 
gametocytes. Black: gametocyte positive samples. White: parasite positive samples without 
gametocytes. (B, E) Proportion of gametocytes positives (by molecular methods) in submicroscopic and 
LM-positive samples. (C, F) Proportion of gametocyte positives (by molecular methods) in symptomatic 
and asymptomatic infections. Error bars indicate 95% confidence intervals by X2 distribution.  
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Significantly more Pv infections carried qRT-PCR detectable gametocytes compared to Pf (38% 

vs. 25%, p<0.001). Microscopically patent infections of both species carried gametocytes more 

often than submicroscopic infections (Pv: 48% vs. 27%, Pf: 35% vs. 13%, p<0.001, Figure 1B and 

1E). Similarly, gametocyte-specific transcript numbers were significantly higher in LM-positive than 

LM-negative samples for both species (Supplementary Document S2). 

Gametocyte positivity and density in symptomatic versus asymptomatic 
infections  

During the follow-up period, 34 Pv episodes and 68 Pf clinical episodes were observed. The 

proportion of gametocyte carriers was 22% higher in symptomatic infections compared to 

asymptomatic P. vivax infections (59% vs. 37%, p=0.014, Figure 1C). For P. falciparum, a similar 

trend was observed but did not reach statistical significance (34% vs. 23%, p=0.098, Figure 1F). 

However, due to a much higher number of asymptomatic than symptomatic infections, the 

overwhelming majority of Pv and Pf gametocyte carriage  (92% [CI95: 88-95%] and 79% [CI95: 69-

86%]) occurred in asymptomatic children. Pv gametocyte densities mirrored asexual densities well 

in both symptomatic and asymptomatic infections, but this was not the case for Pf (Supplementary 

Document S3).    

The effect of PQ treatment on gametocytaemia during follow-up 
Pv gametocyte prevalence increased steadily throughout the follow-up period and was on 

average almost 3-fold higher in the placebo arm than in the PQ arm, similar to patterns observed 

in Pv blood-stage parasite prevalence (Pv gametocytes median fold difference PL>PQ: 2.9 [IQR:  

2.0-3.8], Pv blood-stages median fold difference PL>PQ: 2.8 [IQR:  2.2-4.2], Figure 2A). No 

difference in Pf gametocyte prevalence was observed between study arms (Pf gametocytes median 

fold difference PL>PQ 1.0 [IQR:  0.7-1.4], Pf blood-stages median fold difference PL>PQ:  1.1 [IQR:  

0.9-1.3], Figure 2B).    

	

	
Figure 2. Prevalence of blood-stage parasites and gametocytes of Pv (A) and Pf (B) during follow-up by 
treatment arm.  
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To assess in detail Pv gametocyte production in primary infections versus relapses, we 

compared gametocyte positivity and density in first infections after blood-stage plus placebo (first 

Pv infection either from relapse (80%) or infective bite (20%) or blood-stage plus PQ treatment (first 

Pv infection always from infective bite) (Robinson et al., 2015). We also assessed subsequent Pv 

infections, i.e. all but the first parasite-positive sample per child, which in both arms can result from 

an ongoing infection, a relapsing hypnozoite or a new infection from a mosquito. First Pv re-

infections after baseline treatment were equally likely to carry gametocytes in both treatment arms 

(PQ: 29% vs. Placebo: 31%, Figure 3A), and the same was observed for subsequent infections (PQ: 

42% [CI95: 32-52%] vs. Placebo: 41% [CI95: 36-47%], p=1). To investigate whether gametocyte 

densities were simply following the asexual densities or if other factors play a role, we compared 

absolute as well as normalized gametocyte densities. Gametocyte densities were normalized by  

 

Figure 3. Gametocyte positivity and density in first Pv (top) and Pf (bottom) infections after treatment 
with blood-stage antimalarials alone (placebo) or blood-stage antimalarials plus PQ (PQ). A. and D. 
Proportion of Pv and Pf gametocyte carriers among first infections by treatment arm. Figures within the 
bars indicate absolute numbers of gametocyte-positive first infections following treatment. Error bars 
indicate 95% confidence intervals by X2 distribution. B. and E. Normalized Pv and Pf gametocyte 
densities in first infections by treatment arm. Densities were normalized by dividing pvs25 or pfs25 
transcript numbers/µl by Pv- or Pf-18S rRNA copy numbers/µl. C. and F. Absolute Pv and Pf gametocyte 
densities in first infections by treatment arm. Densities are expressed as log10 of pvs25 and pfs25 
transcripts/µl. 
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dividing pvs25 or pfs25 transcript numbers/µl by Pv- or Pf-18S rRNA copy numbers/µl. Absolute 

and normalized Pv gametocyte densities did not differ between treatment arms in first infections 

(Figure 3B and 3C) nor in subsequent infections (Supplementary Document S4).  

We also investigated Pf gametocyte carriage by comparing Pf gametocyte positivity and 

density in first Pf infections after treatment. Significantly more Pf gametocyte carriers were 

observed among first infections in the PQ-arm compared to the placebo arm (PQ: 26% vs. 

Placebo: 10%, Figure 3D).  No significant difference between trial arms was observed in 

subsequent samples (PQ: 30% [CI95 22-39%] vs. Placebo: 31% [CI95 23-40%], p=0.961). Pf absolute 

and normalized gametocyte densities did not differ significantly between the treatment arms 

(Figure 3E and 3F, Supplementary Document S4).  

Risk factors for gametocytes positivity and density 
Pv gametocytes were detected more frequently (Table 1, OR for 1-log increase of 

density=1.95, p<0.001) and in higher densities (Table 2, p<0.001) with increasing blood-stage 

parasite density. Apart from reducing the number of Pv positive samples during follow-up 

(Supplementary Document S5), PQ treatment had no further effect on Pv gametocyte positivity 

(Table 1).  

In Pv positive samples, the odds of Pv gametocytes were 60% reduced and gametocyte 

densities were 30% lower in mixed Pf/Pv infections compared to single-species Pv infections (Table 

1, p<0.001; Table 2 p=0.003). The odds for Pv gametocyte carriage increased significantly over the 

whole follow-up period (Table 1 and Figure 2, p<0.001), and a 36% reduction on the odds of 

being gametocyte positive was observed in first Pv infections compared to subsequent infections 

(Table 1, p=0.040). No other factors were associated with the odds for Pv gametocyte carriage 

during follow-up (Table 1). Pv gametocyte density, but not positivity, decreased with age (Table 2, 

p=0.017) following the age trend in asexual parasites (Table 3, (Hofmann et al., in preparation)).  

As for Pv gametocytes, the odds for Pf gametocytes were 70% reduced in mixed Pf/Pv 

infections compared to single-species Pf infections (Table 1, p<0.001). As an effect of delayed Pf 

gametocyte maturation, gametocyte positivity was 55% lower in first Pf infections compared to 

subsequent infections (Table 1, p=0.007). Other risk factors for Pf gametocytes were investigated, 

but none of the parameters tested was significant. The Pf gametocyte positivity was slightly higher 

in samples with high asexual densities, yet this association did not reach the 5% significance level 

(Table 1, OR for 1-log increase of density=1.23, p=0.059). In contrast to Pv, Pf gametocyte 

densities were not associated with any of the factors assessed (Supplementary Document S1). 

Fever was strongly associated with increasing blood-stage Pf parasitaemia (Table 3, OR=2.41, 

p<0.001), but had no effect on gametocyte density.  

Analysis of only subsequent infections showed similar results to the analysis of the entire 

follow-up period (Supplementary Document S6). Considering subsequent infections only, Pv 
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gametocytes were reduced by 47% [13-68%] and Pf gametocytes were reduced by 63% [26-82%] 

in mixed-species infections compared to single-species infections (Pv p-value: 0.013, Pf p-value: 

0.006, Supplementary Document S6). The effect of mixed-species co-infection on gametocyte 

carriage in first positive samples following treatment was not possible to be analyzed because of 

too small sample size for either species.   

Table 1. Multivariable predictors of Pv and Pf gametocyte positivity during follow-up. 

 
Pv gametocyte positive Pf gametocyte positive 

 
OR 95% CI p-value OR 95% CI p-value 

Blood-stage density (by 
qPCR), per 10x increase 

1.95 1.47 2.58 <0.001 1.23 0.99 1.51 0.059 

PQ treatment 1.03 0.68 1.58 0.878 1.21 0.78 1.90 0.395 
Mixed Pf/Pv (by qPCR) 0.39 0.25 0.62 <0.001 0.33 0.18 0.60 <0.001 
First infection 0.64 0.42 0.98 0.040 0.45 0.25 0.81 0.007 
Days after DOT (ref:0-60) 

        
 61-120 0.59 0.39 0.89 

 
1.31 0.62 2.76 

 
 121-180 1.48 0.91 2.42 <0.001 1.32 0.63 2.75 0.266 
 >180 2.54 1.47 4.39 

 
0.73 0.32 1.67 

 
Constant 0.36 0.22 0.59 <0.001 0.29 0.11 0.77 <0.013 

OR, odds ratio, DOT, directly observed treatment. ORs were obtained using binomial generalized 
estimating equations with logit-link allowing for repeated visits by back-selection from the full model. 
The full model included fever, infection status at enrolment by qPCR (Pf or Pv positive), LLIN use (less 
than 100%), sex, village of residence, hemoglobin at baseline (>9 g/dl), age. No significant interaction 
of PQ treatment with days post DOT was detected.   
 
Table 2. Multivariable predictors of Pv and Pf gametocyte density during follow-up. 

 

Pv gametocyte density 

 
exp(β) 95% CI p-value 

Blood-stage density (by 
qPCR) per 10x increase 

1.37 1.20 1.56 <0.001 

PQ treatment 0.97 0.80 1.18 0.765 
Mixed Pf/Pv (by qPCR) 0.73 0.59 0.90 0.003 
Age 0.94 0.89 0.99 0.017 
Days after DOT (ref: 0-60) 

    
 61-120 1.08 0.86 1.35  
 121-180 1.15 0.90 1.47 0.163 
 >180 1.30 1.03 1.64  
Constant 1.11 0.69 1.81 0.661 

β, regression coefficient. Coefficients were obtained using Gaussian generalized estimating equations 
with log-link by allowing for repeated visits and by back-selection from the full model. The full model 
included fever, infection status at enrolment by qPCR (Pf or Pv positive), LLIN use (less than 100%), sex, 
village of residence, hemoglobin at baseline (>9 g/dl), first infection. No predictors were associated with 
Pf gametocyte densities (Supplementary Document S1). No significant interaction of PQ treatment with 
days post DOT was detected. 
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Table 3. Multivariate predictors Pv and Pf blood-stage parasite density during follow-up. 

 

Pv blood-stage density Pf blood-stage density 

 
exp(β) 95% CI p-value exp(β) 95% CI p-value 

PQ treatment 1.04 0.93 1.15 0.505 0.85 0.68 1.06 0.143 
Mixed Pf/Pv (by qPCR) - - - - 0.79 0.63 1.00 0.048 
Fever - - - - 2.41 1.82 3.19 <0.001 
Age 0.96 0.92 0.99 0.014 - - - - 
Days after DOT (ref: 0-60) 

       
 61-120 0.94 0.83 1.07 

 
0.93 0.69 1.25 

 
 121-180 0.72 0.62 0.83 <0.001 0.89 0.62 1.25 <0.001 
 >180 0.51 0.44 0.59 

 
0.59 0.43 0.80 

 
Constant 5.13 3.83 6.87 <0.001 16.37 12.37 21.66 <0.001 
β, regression coefficient. Coefficients were obtained using Gaussian generalized estimating equations 
with log-link by allowing for repeated visits and by back-selection from the full model. The full model 
included fever, infection status at enrolment by qPCR (f. or v. positive), LLIN use (less than 100%), sex, 
village of residence, hemoglobin at baseline (>9 g/dl), first infection. Non-associated predictors were 
shown by “-“ in the respective line. No significant interaction of PQ treatment with days post DOT was 
detected.   

Discussion 

This study represents a first detailed investigation of the contribution of Pv relapses to the 

infectious reservoir. The transmission potential attributable to relapses was estimated by 

comparing gametocyte positivity and density in children that had received either PQ or placebo 

treatment. A major finding was that Pv gametocytes were detected in equal proportions and equal 

density in Pv positive samples of both trial arms. In the PQ arm, the majority of Pv infections 

derived from new mosquito bites, while in the placebo arm 80% of infections were caused by 

relapsing hypnozoites (Robinson et al., 2015). Gametocyte densities as well as the proportion of 

gametocyte carriers concurred in both arms, thus indicating that new and relapsing infections 

produce gametocytes at equal rates. Similar conclusions were drawn from a study in south-east 

Asia, where Pv gametocyte densities and positivity had closely mirrored parasitaemia in both, 

clinical primary and recurrent infections (Douglas et al., 2013). Gametocyte production in relapses 

thus seems indistinguishable from that in new infections. This finding highlights the importance of 

hypnocidal drugs to prevent relapses for an effective interruption of Pv transmission.   

Sample storage in this cohort was not optimal for RNA preservation. Blood was spotted onto 

Whatman 3MM filter paper in the field, and stored at room temperature for up to 5 weeks until 

transferred into TRIzol reagent. This procedure was suboptimal compared to sampling in RNA-

stabilizing reagents (Wampfler et al., 2013). A more recent cross-sectional study in PNG employed 

sampling in RNAprotect Cell Reagent (Qiagen, Switzerland) and found gametocytes in 78% and 

60% of Pf and Pv qPCR-positive samples in children aged 6-9 years (Koepfli et al., 2015). Almost 

universal Pv gametocyte prevalence (95%) was found in Brazilian samples stored in liquid nitrogen 
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(Lima et al., 2012).  The relatively low gametocyte positivity in this cohort was indicative of poor 

RNA quality, which likely resulted in a substantial underestimation of gametocyte rates. The 

gametocyte rate in the present study thus reflects a minimum prevalence.  Because RNA quality 

and sample volume did not vary within the study, the comparative analyses of treatment arms and 

risk factors remain unaffected, even if these results need to be regarded as referring to infections 

with moderately high gametocyte densities. 

The vast majority (>80%) of gametocyte carriers were asymptomatic for both species, and over 

20%	 of	 Pv	 and	 over	 30%	 of Pf gametocyte positive samples were submicroscopic. Although 

gametocyte densities were lower in submicroscopic infections compared to LM-positive infections 

for both species, they may nonetheless be potentially infective to mosquitoes. Mosquito feeding 

experiments have demonstrated that submicroscopic infections can infect mosquitoes, albeit at 

lower rates than microscopically patent infections, and thus contribute to onward transmission 

(Alves et al., 2005; Bousema et al., 2012; Churcher et al., 2013; Ouédraogo et al., 2009; Vallejo et 

al., 2016). Our results highlight the importance of treating all malaria infections in the community, 

as asymptomatic individuals will not report themselves to health facilities and thus generally remain 

untreated.  

Co-infections with both species are common in PNG (Mehlotra et al., 2000; Mueller et al., 

2009) including in this cohort. A negative correlation between Pf and Pv infections and a cross-

protection of asymptomatic Pv infections against Pf episodes have been proposed (Bruce et al., 

2000; Smith et al., 2001; Hofmann et al., in preparation). It seems plausible that also competition 

for transmission success, i.e. gametocyte densities, may occur between co-infecting species. Our 

results suggest that Pf and Pv infections may suppress gametocytes of the opposite species when 

occurring in mixed infections. Yet these findings are only first indications that require confirmation 

in a similar cohort study with sympatric parasite species.  

In the first post-treatment Pf infections gametocytes  were more frequently detected in the PQ 

arm than in the placebo arm. This is likely explained by the slower acquisition of new Pv infections 

in hypnozoite-cleared individuals, compared to a fast relapse rate in individuals retaining 

hypnozoites in the liver. Indeed, in the placebo arm 52% of first Pf infections carried a Pv co-

infection as opposed to only 21% in the PQ arm. Accordingly, the multivariate analysis showed 

reduced odds of Pf as well as Pv gametocytes in mixed-species infections compared to single-

species infections. In addition, a Pf co-infection reduced Pv gametocyte densities by half. A study 

in 0.5 to 5 year old PNG children with uncomplicated malaria confirmed that Pv gametocytaemia in 

Pf/Pv mixed infections was reduced compared to Pv single infections (Karl et al., 2016). Moreover, 

a community study in PNG showed a lower proportion of Pf gametocyte carriers in Pf/Pv mixed 

infections compared to Pf single-species infections (Koepfli et al., 2015). Similar findings had been 

reported from Thailand (Price et al., 1999). More longitudinal studies designed specifically to 
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address gametocyte dynamics in mono- and mixed-species infections are needed to confirm 

potential cross-species interaction and its effect on sexual stage development. 

Conclusion 
Onset and rate of Pv gametocyte production did not differ between relapses and primary 

infections. This is a strong argument for treatment policies and elimination strategies that support 

PQ treatment of all Pv infections. The vast majority of gametocyte carriers in this study were 

detected in asymptomatic infections, which suggests that sensitive detection and early treatment 

of asymptomatic and submicroscopic Plasmodium spp. infections may be crucial for an effective 

control of transmission. PQ treatment cleared hypnozoites and thus reduced Pv gametocyte 

carriage by 73%. These and other Plasmodium species interactions that can substantially affect 

gametocyte production warrant further investigation.  
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A B  
Figure S1.1 Density distribution of P. vivax. (A) Pv blood-stage densities by genomic 18S rRNA 
copies/µl (log10). (B) Pv gametocytes densities by pvs25 transcript copies/µl (log10). Log10 transformations 
of copies/µl show normal distribution.  
 
 

A B  
Figure S1.2 Density distribution of P. facliparum. (A) Pf blood-stage densities by genomic 18S rRNA 
copies/µl (log10). (B) Pf gametocytes densities by pfs25 transcript copies/µl (log10). Log10 transformations 
of copies/µl show almost normal distribution.  
 

A B  
Figure S1.3 Scatterplot of Pv (A) and Pf (B) blood-stage vs. gametocyte density (log10). 
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Table S1.1 GEE Models for P. vivax gametocyte positivity with categorical (red) Pv blood-stage 
densities (genomic 18S rRNA copies/µl).  NOTE:  Association of categorical Pv densities with Pv 
gametocyte positivity is almost linear.  

Pv gametocyte positivity – 
categorical Pv density OR 95% CI p-value 

Pv density (ref: log10 density <0) 
  

0-0.5 2.12 0.90 4.98 

<0.001 

0.5-1 2.73 1.25 5.93 

1-1.5 3.01 1.43 6.34 

1.5-2 4.09 1.83 9.15 

>2 10.48 4.22 26.06 

PQ treatment 1.03 0.67 1.57 0.905 

Mixed Pf/Pv 0.40 0.25 0.63 <0.001 

First Pv infection 0.63 0.41 0.96 0.031 

Days post treatment (ref: 0-60) 
  

61-120 0.58 0.39 0.87 

<0.001 121-180 1.46 0.89 2.38 

>180 2.42 1.38 4.23 

Constant 0.25 0.11 0.57 0.001 

 
Table S1.2 Category counts of the GEE Models for P. vivax gametocyte positivity with categorical Pv 
blood-stage densities (genomic 18S rRNA copies/µl). NOTE:  The increase of Pv gametocyte positivity 
with increasing Pv asexual density is almost linear.  

Category counts Pv gametocyte positivity  
Pv density category  
log10(18S rRNA copyno) 

0 1 Total 

<0 74 36 110 

0-0.5 59 38 97 

0.5-1 140 95 235 

1-1.5 183 134 317 

1.5-2 58 61 119 

>2 28 52 80 

Total 542 416 958 

 
 
Table S1.3 GEE Models for P. vivax gametocyte density (pvs25 transcripts/µl) with categorical (red) Pv 
blood-stage densities (genomic 18S rRNA copies/µl). NOTE: Association of categorical Pv densities with 
Pv gametocyte densities is almost linear.  

Pv gametocyte density 
– categorical Pv density OR 95% CI p-value 

Pv density (ref: log10 density <0) 
 

0-0.5 1.56 1.01 2.41 

<0.001 

0.5-1 1.49 0.92 2.40 

1-1.5 1.43 0.93 2.19 

1.5-2 2.35 1.43 3.86 

>2 2.50 1.54 4.04 

PQ treatment 0.95 0.79 1.16 0.648 

Mixed Pf/Pv 0.72 0.58 0.90 0.003 

Age 0.94 0.90 0.99 0.031 
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Days post treatment (ref: 0-60) 
  

61-120 1.05 0.84 1.31 

0.272 121-180 1.12 0.89 1.40 

>180 1.24 0.99 1.54 

Constant 0.97 0.54 1.73 0.909 

 
Table S1.4 GEE Models for P. falciparum gametocyte positivity with categorical (red) Pf blood-stage 
densities (genomic 18S rRNA copies/µl).  NOTE:  Association of categorical Pf densities with Pf 
gametocyte positivity is not very linear, but Pf density is anyways not significant neither as linear nor 
categorical. For simplicity, linear was chosen. 

Pf gametocyte positivity – 
categorical Pf density OR 95% CI p-value 

Pf density (ref: log10 density <1) 
  

1-2 0.35 0.13 0.94 

0.089 
2-3 0.88 0.37 2.08 

3-4 0.90 0.39 2.12 

>4 1.09 0.42 2.87 

PQ treatment 1.16 0.73 1.83 0.526 

Mixed Pf/Pv 0.32 0.17 0.58 <0.001 

First Pf infection 0.45 0.25 0.81 0.007 

Days post treatment (ref: 0-60) 
  

61-120 1.33 0.63 2.81 

0.299 121-180 1.40 0.67 2.94 

>180 0.79 0.35 1.78 

Constant 0.65 0.23 1.83 0.417 

 
Table S1.5 Category counts of the GEE Models for P. falciparum gametocyte positivity with categorical 
Pf blood-stage densities (genomic 18S rRNA copies/µl). NOTE:  The increase of Pf gametocyte positivity 
with increasing Pf asexual density is not very linear because of the initial decrease from the reference 
category to categories 1-2, 3-4 and >4.  

Category counts Pf gametocyte positivity  
Pf density category  
log10(copyno) 

0 1 Total 

<1 40 17 57 

1-2 114 32 146 

2-3 106 55 161 

3-4 69 51 120 

>4 47 24 71 

Total 376 179 555 
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Table S1.6 GEE Models for P. falciparum gametocyte density (pfs25 transcripts/µl) with categorical (red) 
Pf blood-stage densities (genomic 18S rRNA copies/µl). NOTE: Association of categorical Pf densities 
with Pf gametocyte densities is not very linear, but Pf density is anyways not at all significant neither as 
linear nor categorical. For simplicity, linear was chosen. 

Pf gametocyte density – 
categorical Pf density OR 95% CI  p-value 

Pf density (ref: log10 density <1) 
  

1-2 0.77 0.48 1.24 

0.145 
2-3 0.65 0.41 1.04 

3-4 0.88 0.56 1.39 

>4 0.58 0.34 1.01 

PQ treatment 0.84 0.66 1.08 0.176 

First Pf infection 0.96 0.68 1.36 0.825 

Mixed Pf/Pv 0.76 0.53 1.08 0.13 

Fever 0.76 0.49 1.17 0.211 

Days post treatment (ref: 0-60) 
  

61-120 0.78 0.48 1.28 0.597 

121-180 0.74 0.44 1.24 
 

>180 0.74 0.47 1.16 
 

Constant 4.13 2.60 6.58 <0.001 
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Supplementary Figure S2 

 
Figure S2.Gametocyte and overall parasite density in submicroscopic and LM-positive Pv (top) and Pf 
(bottom) infections. A. and D. Pv  and Pf gametocyte densities were expressed as log10 of pvs25 and 
pfs25 transcripts/µl.  B. and C. Pv and Pf parasite densities were expressed as log10 of pv18S rRNA and 
pf18S rRNA gene copies/µl . D. and F. Pv and Pf normalized gametocyte densities. Densities were 
normalized by division of pvs25 and pfs25 transcripts/µl by pv18S rRNA or Pf18S rRNA genomic 
copies/µl, respectively. 
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Supplementary Document S3 

Figure S3.Gametocyte and parasite density in symptomatic and asymptomatic Pv (top) and Pf (bottom) 
infections. A. and D. Pv  and Pf gametocyte densities were expressed as log10 of pvs25 and pfs25 
transcripts/µl.  B. and E. Pv and Pf parasite densities were expressed as log10 of pv18S rRNA and pf18S 
rRNA gene copies/µl . E. and F. Pv and Pf normalized gametocyte densities. Densities were normalized 
by division of pvs25 and pfs25 transcripts/µl by pv18S rRNA or Pf18S rRNA genomic copies/µl, 
respectively. 
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Figure S4. Gametocyte positivity and density in subsequent (i.e. not first) P. vivax (top) and P. 
falciparum (bottom) infections after treatment with blood-stage antimalarials alone (Placebo) or blood-
stage antimalarials plus Primaquine (PQ). A. and D. Proportion of P. vivax and P. falciparum gametocyte 
carriers among subsequent infections by treatment arm. Figures within the bars indicate absolute 
numbers of gametocyte-positive subsequent infections following treatment. Error bars indicate 95% 
confidence intervals by X2 distribution. B. and E. Normalized P. vivax and P. falciparum gametocyte 
densities in subsequent infections by treatment arm. Normalization was done by dividing pvs25 or pfs25 
transcript numbers/µl by Pv- or Pf-18S rRNA copy numbers/µl. C. and F. Absolute P. vivax and P. 
falciparum gametocyte densities in subsequent infections by treatment arm. Densities are expressed as 
log10 of pvs25 and pfs25 transcripts/µl. 
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Supplementary Document S5 
Table S5. Multivariate risk factors of P. vivax and P. falciparum asexual parasite positivity during follow-
up. Positivity was assessed by Pv- or Pf-18S rRNA qPCR.   

 P. vivax parasite positive P. falciparum parasite positive 

 OR 95% CI p-value OR 95% CI p-value 
PQ	treatment	 0.14	 0.09	 0.22	 <0.001	 0.90	 0.61	 1.32	 0.591	
Mixed	P.f./P.v.	(by	qPCR)	 1.82	 1.33	 2.49	 <0.001	 1.83	 1.38	 2.42	 <0.001	
Fever	 0.69	 0.51	 0.93	 0.016	 3.69	 2.63	 5.17	 <0.001	
Infection	at	enrolment	(same	
species,	qPCR)	

1.38	 1.05	 1.81	 0.023	 1.93	 1.25	 3.00	 0.003	

Village	
	 	 	 	 	 	 	 	

	 Albinama	 1	 	 	

<0.001	

1	 	 	

<0.001	

	 Amahup	 0.29	 0.18	 0.47	 0.65	 0.31	 1.34	
	 Balanga	 1.43	 0.91	 2.24	 2.05	 1.03	 4.05	
	 Balif	 0.72	 0.47	 1.11	 0.89	 0.46	 1.73	
	 Bolumita	 2.30	 1.53	 3.48	 9.40	 4.97	 17.80	
	 Numangu	 0.56	 0.30	 1.04	 3.44	 1.81	 6.55	
Age	 	 	 	 	 	 	 	 	
	 <6y	 1	

	 	

0.246	

1	
	 	

0.018	
	 6-7.5y	 1.07	 0.72	 1.58	 1.46	 0.85	 2.51	
	 7.6-9y	 0.91	 0.60	 1.38	 1.97	 1.15	 3.40	
	 >9y	 0.73	 0.47	 1.14	 2.18	 1.28	 3.72	
Days	after	DOT	 	 	 	 	 	 	 	 	
	 0-60	 1	

	 	

<0.001	

1	
	 	

<0.001	
	 61-120	 1.89	 1.46	 2.44	 1.91	 1.37	 2.67	
	 121-180	 1.48	 1.09	 2.01	 2.39	 1.66	 3.44	
	 >180	 1.20	 0.89	 1.62	 2.43	 1.70	 3.48	
Interaction	Days	after	DOT	x	PQ	treatment	 	 	 	 	 	
	 0-60	x	PQ	 1	 	 	 	 	 	 	 	
	 61-120	x	PQ	 1.47	 0.84	 2.55	 0.175	

not	significant		 121-180	x	PQ	 2.61	 1.44	 4.75	 0.002	
	 >180	x	PQ	 2.04	 1.07	 3.91	 0.031	

OR, odds ratio, DOT, directly observed treatment. ORs were obtained using binomial generalized 
estimating equations with logit-link allowing for repeated visits by backselection from the full model. 
The full model included fever, infection status at enrolment by qPCR (P.f. or P.v. positive), LLIN use (less 
than 100%), sex, village of residence, hemoglobin at baseline (>9 g/dl). No significant interaction of PQ 
treatment with days post DOT was detected for P. falciparum.   
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Supplementary Document S6 
Table S6.1 Multivariate risk factors of P. vivax gametocyte carriage in subsequent infections during 
follow-up. Positivity was assessed by pvs25 rRNA qPCR.   

Pv gametocyte positivity OR 95% CI p-value 
Pv	density	(10x	increase)	 1.88	 1.32	 2.68	 <0.001	

PQ	treatment	 0.94	 0.56	 1.56	 0.797	
Mixed	Pf/Pv	 0.53	 0.32	 0.87	 0.013	

Days	post	treatment	(ref:	0-60)	 	 	
	 61-120	 0.65	 0.38	 1.14	

<0.001		 121-180	 1.51	 0.82	 2.80	
	 >180	 2.58	 1.40	 4.76	

Constant	 0.35	 0.19	 0.62	 <0.001	
β, regression coefficient. Coefficients were obtained using Gaussian generalized estimating equations 
with log-link allowing for repeated visits by back-selection from the full model. The full model included 
fever, infection status at enrolment by qPCR (Pf or Pv positive), LLIN use (less than 100%), sex, village of 
residence, hemoglobin at baseline (>9 g/dl), fever, age. No significant interaction of PQ treatment with 
days post DOT was detected. 
 
Table S6.2 Multivariate risk factors of P. falciparum gametocyte carriage in subsequent infections during 
follow-up. Positivity was assessed by pfs25 rRNA qPCR.   

Pf gametocyte positivity OR 95% CI p-value 
Pf	density	(10x	increase)	 1.40	 1.07	 1.84	 0.016	

PQ	treatment	 0.90	 0.49	 1.63	 0.721	
Mixed	Pf/Pv	 0.37	 0.18	 0.74	 0.006	
Days	post	treatment	(ref:	0-60)	

	 	
	 61-120	 1.25	 0.42	 3.74	

0.031		 121-180	 1.06	 0.37	 3.05	

	 >180	 0.42	 0.14	 1.30	
Constant	 0.28	 0.08	 1.03	 0.056	

β, regression coefficient. Coefficients were obtained using Gaussian generalized estimating equations 
with log-link allowing for repeated visits by back-selection from the full model. The full model included 
fever, infection status at enrolment by qPCR (Pf or Pv positive), LLIN use (less than 100%), sex, village of 
residence, hemoglobin at baseline (>9 g/dl), fever, age. No significant interaction of PQ treatment with 
days post DOT was detected. 
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Chapter 7: General Discussion 

Strategies for malaria control and elimination require novel tools to identify reservoirs of 

malaria transmission in endemic settings. Data on the infectious reservoir of P. vivax are scarce, first 

and foremost because of the most striking difference to P. falciparum: the P. vivax hypnozoite 

reservoir in the liver. These dormant stages may be reactivated weeks or months after the first 

infection and contribute subsequently to onwards transmission. Studies on submicroscopic P. vivax 

gametocytes and their infectiveness are urgently needed to gain knowledge about the frequency 

and epidemiology of P. vivax gametocyte carriage in different transmission settings, to identify 

possible risk factors and to evaluate transmission blocking interventions.  

This chapter discusses the relevance of transmission-stages and the complex biology of P. 

vivax relapses, summarizes results and contributions, examines the challenges of mass drug 

administration (MDA) aimed to reduce transmission of P. vivax, and provides direction for future 

work.  

This thesis was nested in a major treatment-to-reinfection cohort study conducted in PNG by 

members of the PNG Institute of Medical Research in Madang in 2009 and 2010. At one of the 

follow-up bleeds alternative sampling methods were tested and were summarized in a cross-

sectional study.  

The importance of transmission-stages in malaria elimination 

Gametocytes are the sexual parasite stage transmitted from human to mosquito. Different 

strategies for sample collection and subsequent detection of gametocytes in field settings were 

validated during the course of this thesis (chapter 2). In the 315 samples analyzed in the cross-

sectional study, light microscopy (LM) missed 73% of P. falciparum gametocyte carriers and 100% 

of P. vivax gametocyte carriers in comparison to qPCR (chapter 2). Similarly, among the 6607 

longitudinal samples, 72% P. falciparum gametocyte positive samples and 95% P. vivax 
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gametocyte positive samples were missed by light microscopy (chapter 6). Significantly more P. 

vivax gametocyte-positive samples were missed compared to P. falciparum. Two reasons can 

explain the poor P. vivax gametocyte detection by light microscopy in these samples: (i) due to the 

very similar morphology of P. vivax gametocytes and P. vivax trophozoites, gametocytes might be 

misclassified as trophozoites and therefore missed during routine microscopy (Karl et al., 2014), 

and (ii) owing to the preference of P. vivax to infect reticulocytes, overall parasite densities are 10 

times lower for P. vivax than for P. falciparum (Triglia et al., 2001) and often fall below the limit of 

detection of light microscopy, leading to many missed infections.  

In view of the superior sensitivity of molecular methods over light microscopy, should 

molecular methods be applied in all epidemiological studies to screen for gametocyte carriers? 

Molecular detection and genotyping of gametocytes, as presented in this thesis, are imperfect 

surrogate markers for transmission potential, although commonly used in studies aiming to 

evaluate the effects of transmission-reducing interventions such as specific drugs and vaccines 

(Churcher et al., 2013; Ouédraogo et al., 2009). Direct assessment of the human-to-mosquito 

infection potential is only possible by laborious experimental direct skin feeding or membrane 

feeding of mosquitos (White et al., 2014), but studies on infectivity of gametocytes to mosquitoes 

are scarce.  

While individuals with higher gametocyte density are generally more infectious to mosquitoes 

than those with lower P. falciparum and P. vivax gametocyte density (Bousema et al., 2012; Carter 

and Graves, 1988; Sattabongkot et al., 1991), asexual parasite density, sex ratio of gametocytes, 

fever and naturally acquired immunity were also suggested to play a role in the infectivity to 

mosquitoes (Bousema et al., 2012; Carter and Graves, 1988; Churcher et al., 2013; Sattabongkot 

et al., 2003). Submicroscopic P. falciparum gametocyte carriers successfully infected mosquitoes in 

several African countries mosquito (Bousema et al., 2012; Ouédraogo et al., 2009; Schneider et al., 

2007). Although twofold lower proportion of mosquitoes are infected by submicroscopic P. 

falciparum gametocyte densities (Schneider et al., 2007), this low infection rate is counterbalanced 

by the abundance of submicroscopic infections in the population. Because submicroscopic 

gametocyte densities in PNG are 2 to 9 times more prevalent than microscopic-positive 

gametocyte densities, these infections are likely to be the major source of Plasmodium spp. 

mosquito infections in PNG.  

What is thus the best strategy to target the submicroscopic gametocyte reservoir and reduce 

transmission? In this thesis, two thirds of submicroscopic gametocyte densities harbored 

microscopic-positive blood-stage densities for both species and overall 49% P. vivax and 47% P. 

falciparum submicroscopic blood-stage infections were detected (chapter 6). The non-negligible 

contribution of submicroscopic blood-stage infections to P. falciparum transmission has been 

shown by failure of Mass Screen and Treatment interventions in Burkina Faso and Zanzibar, in 

which diagnosis was based on rapid diagnostic tests (RDT) or LM alone (Cook et al., 2014; Tiono et 

al., 2013). Authors agreed that more sensitive point-of-care diagnostic tools, such as Loop-
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Mediated-Isothermal-Amplification (LAMP) or highly sensitive RDTs are desired for the detection of 

asexual P. falciparum parasites in the context of MSAT (Cook et al., 2014; Tiono et al., 2013). The 

use of low-dose PQ for clearing P. falciparum gametocytes and thus blocking transmission of P. 

falciparum an additional valuable tool to stop P. falciparum transmission in all endemic settings 

(Eziefula et al., 2014; Lubell et al., 2014; White et al., 2014). In this survey, more sensitive point-of-

care diagnostic tools were beneficial in the context of MSAT to reduce the infectious reservoir of P. 

falciparum (chapter 4), however these tools would miss an important infectious reservoir in P. vivax 

infections: the hypnozoites.  

No diagnostic method that can discriminate hypnozoite carriers from individuals without liver-

stage parasites has been discovered so far. Gametocyte positivity data generated during the 

course of this thesis were used to highlight that hypnozoites were the largest contributor to P. 

vivax transmission in PNG, as suggested by a >70% reduced risk for gametocyte carriage after PQ 

treatment (chapter 4). Remarkably, PQ treatment had the same effect in children with or without 

PCR-detectable P. vivax infection at enrolment. This argues for a massive reservoir of undetectable 

dormant liver stages in these children. 

Molecular analysis of gametocyte positivity, conversion rates and densities in both trial arms 

pointed out that relapses and new infections are undistinguishable in their contribution to 

transmission in semi-immune individuals (chapter 6). Similar findings, although based on light 

microscopy, were found in semi-immune individuals from Thailand and Indonesia (Douglas et al., 

2013), supporting the conclusion that relapses contribute equally to transmission as new infections. 

Prevention of relapses is thus the most efficient strategy to reduce the infectious reservoir of P. 

vivax malaria in semi-immune children in PNG.  

The complex molecular epidemiology of relapsing infections 

The ability of P. vivax to produce latent hypnozoites with varying periods of dormancy is a 

major challenge for malaria control and elimination strategies. Most knowledge on P. vivax 

infection and relapse was gained from experimental human infection trials in US penitentiaries in 

the late 1940s to 1950s (Coatney et al., 1950), treatment of neurosyphilis patients by infection with 

P. vivax (reviewed in (McKenzie et al., 2002)) and from soldiers and travelers returning from P. vivax 

endemic countries (Sutanto et al., 2013). This thesis aimed at filling the gap in the understanding 

of P. vivax infection dynamics in semi-immune individuals with a long history of infections.  

For this, a mathematical approach – the triplet model – that allows for correction for 

detectability (probability of a clone to be detected in a given sample) was applied for the first time 

to investigate the infection dynamics of relapses and new infections (Smith et al., 1999). This model 

was previously designed for P. falciparum infections and was now successfully applied to study P. 

vivax duration of infections and molecular force of blood-stage infections (molFOB).  
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Although this model is a powerful tool to study infection dynamics in Plasmodium spp. 

infections, differences apply for the fast-relapsing tropical P. vivax strains, the most important one 

probably being the assumption of the model that the probability of reinfection within the interval 

of three consecutive samples is close to zero. If the latency period of relapses is shorter than the 

time span between these three bleeds (i.e. 28 days in the first 3 months and 60 days in the last 5 

months of the present survey), homologous relapses are regarded as a continuous infection with a 

missed detection between these bleeds. This is a possible limitation of the presented results, 

because P. vivax strains in PNG are known to have latency periods as short as three weeks if short-

eliminating antimalarials were given (Battle et al., 2014; White, 2011). As a consequence, duration 

of infection could be overestimated and detectability could be underestimated in the placebo arm 

of the trial, where the most relapses were observed. Nevertheless, good association of parasite 

density and detectability in both trial arms is suggesting that there is no major bias of the results 

due to this assumption.   

In the past the fast-relapsing P. vivax Chesson strain isolated from Papua New Guinea was well-

studied (Ehrman et al., 1945). Key observations gained from the available data on P. vivax relapses 

are: 

• Relapses were observed earlier and more frequently when higher sporozoite loads 
were inoculated (Craige and Alving, 1947) 

• Overall parasite density decreased with each relapse (Coatney et al., 1950).  
• The duration of blood-stage infection decreased with each relapse (Coatney et al., 

1950) 
• Reinfection with the same strain resulted in fewer fever episodes accompanied with 

lower temperatures (Whorton and Pullman, 1947) 
• Parasite densities and symptoms of reinfection with a parasite strain different from the 

first infection resembled the primary infection in some cases, while symptoms were 
markedly reduced in other cases (Whorton and Pullman, 1947). 

• Long dormancy periods of over 200 days were observed for the Chesson strain despite 
the fact that it is generally characterized as fast-relapsing (Jeffery, 1956). 

 

These findings highlight the complexity of relapse biology especially of tropical-zone strains 

such as found in PNG, as well as the central role of acquired immunity in the control of P. vivax 

relapses.  

In PNG, previous studies in children showed that clinical immunity against P. vivax is acquired 

in early childhood due to the high number of infections experienced in these young children 

(Koepfli et al., 2013; Lin et al., 2010). On average, a child was infected with over 14 P. vivax clones 

per year (Koepfli et al., 2013). The number of infections acquired per time (FOI, force of infection) 

did not change with age in 1-5 years old children, suggesting that the decrease in P. vivax clinical 

incidence is a result of acquired immunity (Koepfli et al., 2013). FOI in this present study was lower 

with estimated 10 infections per year in semi-immune children treated with blood-stage 

antimalarials only, owing most probably to reduced parasite prevalence observed in PNG between 
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these two surveys (Hofmann et al., – in preparation; Lin et al., 2010). In line with the earlier survey, 

no age trend in the number of infections experienced was observed in these semi-immune 

children. However, durations of infection increased with age when densities and detectability 

decreased. Although the age-range analyzed was tide, acquired immunity in this cohort appeared 

to increase the tolerability for longer durations of low-density infections (chapter 5). Future 

investigations on infection dynamics in adults and younger children are thus desired to elucidate 

these findings.  

The design of the present survey permitted the comparison of infection dynamics between 

relapses and new infections. On average two relapses were observed per each new infection 

experienced by these semi-immune children (chapter 5). Comparisons between trial arms revealed 

that relapses and new infections are presumably under the same immune pressure as 

demonstrated by similar parasite density, duration of infection and clone detectability in both trial 

arms (chapter 5). Also no apparent difference in investment in gametocytogenesis between 

relapses and new infections was observed. Therefore in semi-immune children of an endemic area, 

transmission dynamics of relapses are related to the history of infections as much as are those from 

newly incoming infections.  

The similar infection dynamics between relapses and new infections argue for the hypothesis 

that relapses found in these semi-immune children were heterologous to the first infection. A 

possible explanation for the heterologous relapses was recently published by Bright et al., who 

sequenced consecutive relapses of a single patient and they found that these were likely meiotic 

siblings (Bright et al., 2014). Meiotic siblings are heterologous in some genetic traits if 

hybridization of two genetically distinct gametes occurred in the mosquito. Genetic diversity and 

multiplicity of P. vivax infections was high in our cohort and most probably promoted multiple-

clone infections and hence recombination in the mosquito, although direct entomological 

evidence is missing. Imwong et al. studied mixed P. falciparum and P. vivax infections in PNG 

mosquitoes, revealing that mixed-species infections were significantly more common than 

expected (Imwong et al., 2011). This argues also for a high proportion of multiple-clone infections 

in PNG mosquitoes, suggesting high rates of hybridization. The resulting partly related relapses 

would have a better chance to escape the immune system, and, as consequence, “behave” like 

new infections as observed in our cohort.  

Overall, evidence gained from these findings on infection dynamics of relapses and new 

infections urges the implementation of interventions targeting the hypnozoite reservoir. One of the 

possible interventions is mass drug administration of PQ as discussed in the following paragraph. 
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Mass drug administration to control P. vivax  

Genotyping and gametocytes data generated during the course of this thesis was used to 

highlight the large contribution of hypnozoites to the infectious reservoir. The lack of a biomarker 

for predicting the dormant parasite reservoir in an individual’s liver argues for MDA in endemic 

settings. Although Mass screen and treatment (MSAT) with molecular methods would target also 

submicroscopic infections, individuals with dormant hypnozoites but no apparent blood-stage 

parasitaemia would remain undetected. This is a major difference to P. falciparum, where the 

implementation of MSAT and MDA into control programs are highly debated (Griffin et al., 2010; 

Halliday et al., 2014; Okell et al., 2011; Tiono et al., 2013).  

However, recent reports from areas where vivax malaria burden was successfully reduced or 

even eliminated by MDA with PQ (Hsiang et al., 2013; Kondrashin et al., 2014) support the 

implementation of MDA with PQ to combat P. vivax malaria, at least in temperate zones with 

seasonal transmission. In one study, MDA with PQ significantly reduced and subsequently 

eliminated P. vivax malaria in China despite low coverage (Hsiang et al., 2013), while other reports 

highlight the necessity of a high coverage (85-95%) to achieve a sustained effect (Kondrashin et al., 

2014).  

In the present survey, PQ was not only effective in reducing the risk of infection with P. vivax in 

children that were PCR-positive for P. vivax at enrolment, but equally reduced the risk in children 

with non-vivax infections (either P. falciparum, P. ovale or P. malariae) and even in those negative 

for any Plasmodium spp. Although children parasite-free at enrolment were less likely to be re-

infected during follow-up compared to those positive for any Plasmodium spp. irrespective of 

treatment arm. These results indicate that more than half of these children harboured hypnozoites. 

Analysis of infection dynamics confirms that at higher transmission intensity, contribution of P. vivax 

relapses to the infectious reservoir increased (chapter 4).  

Data of this thesis was also used for mathematical modelling of the long-term impact of MSAT 

and MDA. Findings showed that MSAT using a molecular detection method and including a 

hypnocidal drug would have only limited effect owing to this undetected hypnozoite reservoir. 

Instead, the model predicted that a MDA including a hypnocidal drug is highly effective to reduce 

P. vivax malaria infections.  

Mathematical modelling is highly useful for predicting the effect of malaria interventions on the 

burden of disease. Ishikawa et al. proposed a mathematical model for studying the impact of MDA 

and various vector control measures on the burden of P. vivax infections in the Solomon Islands 

(Ishikawa et al., 2003). They highlighted that 1-2 rounds of MDA, accompanied by effective 

mosquito control thereafter, are needed for reducing P. vivax prevalence below 1% in the long 

term. The mathematical model used for this present survey did not include any vector control 

measures but also highlighted the striking effect of 2 rounds of MDA with PQ and 80% coverage 
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on P. vivax transmission. Once malaria endemicity is reduced to few hotspots, selective or focal 

MDA targeting households or villages around an indicator case might suffice to fully eliminate P. 

vivax malaria, like done in China (Hsiang et al., 2013).  

However, following limitations in the use of PQ in MDA shall be considered: 

First, PQ causes acute hemolysis in Glucose-6-Phosphate-Dehydrogenase deficient individuals. 

Currently, G6PD deficiency testing is often impracticable for routine care and as consequence PQ 

is frequently not administered in many endemic countries such as in PNG (Howes et al., 2012). 

New generation of G6PD rapid tests is presently being tested (Kim et al., 2011), but their 

specificity and sensitivity need further improvement before they can safely be used to assess the 

risk of PQ treatment in large interventions (Howes et al., 2012). 

Second, poor compliance with the long course of PQ treatment – e.g. 14 days in East Asia and 

Oceania - is a major challenge. The arrival of Tafenoquine (TQ), a long acting 8-aminoquinoline 

that can be given as a single dose (Kim et al., 2011; Llanos-Cuentas et al., 2014) will make 

hyponozoite-targeting MDA more feasible.  

Third, 8-aminoquinolines are the only available drug category to efficiently eliminate 

hypnozoites. Resistance to this class would be a striking drawback in the elimination of P. vivax. 

Numerous PQ treatment failures were reported, most of them due to lack of compliance, host 

genetic factors and/or parasite geographic origin (Townell et al., 2012). Host genetic factors that 

influence PQ activity generally affect one of two Cytochrome P450 enzymes (2D6 and MAO-A) that 

play a major role in the breakdown of PQ into its active metabolites (Pybus et al., 2012).  

Overall, evidence for the success of MDA in the context of P. vivax control and elimination was 

shown in temperate zones with seasonal transmission, yet, more evidence from MDA in tropical 

zones is needed. Data from this thesis was used to clearly demonstrate that MDA with PQ is a 

valuable tool in the fight against P. vivax malaria in PNG, but also highlighted the possible 

drawbacks and concerns about G6PD deficiency testing and compliance.  

Open questions and directions for future work 

• The comparison of LM, DNA and RNA-based detection methods and the low 

detectability observed in the trial suggest that numerous P. vivax infections are missed 

even by molecular methods. However, even the most sensitive detection method will 

miss the infectious reservoir of blood-stage negative individuals carrying P. vivax 

hypnozoites. A biomarker for latent liver stages would be promising, especially in 

regions where MSAT against P. vivax is considered.  
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• For the first time, the triplet model approach was applied to assess P. vivax infection 

dynamics parameters. The application of a mathematical method previously designed 

for P. falciparum on P. vivax was a major challenge. Although the correction of duration 

and force of blood-stage infection for detectability is a smart strategy to cope with 

missed infectious clones due to low parasite density, shorter spacing between bleeds 

in our cohort might have been of great advantage. The duration of a P. vivax infection, 

despite being considerably shorter than reported for P. falciparum, might be 

overestimated in our cohort because of misinterpretation of short-lasting homologous 

relapses as a continuous infection. Computationally more intensive models for 

calculating infection dynamics were designed for P. falciparum (Felger et al., 2012), 

e.g. the immigration-death model. This model might prove more appropriate once 

applied on the genotyping data of this cohort. 

• The RNA sampling strategy applied in the longitudinal cohort did not benefit from the 

results obtained from the analysis of the cross-sectional survey presented in the first 

chapter of this thesis. RNAprotect proved to be the most sensitive and reliable strategy 

for detecting gametocytes in field surveys, yet blood in this trial was sampled on filter 

paper and stored in TRIzol for RNA extraction. Albeit samples from both trial arms 

were subject to the same suboptimal sampling strategy and thus remain comparable 

with each other, comparison of gametocyte data from this study to results from future 

cohort studies using better RNA sampling methods should be done with great caution. 

Numerous recent surveys have already used RNAprotect-based sampling strategy 

(Mwingira et al., 2014; Tiono et al., 2013). Quantification of P. vivax gametocytes 

based on pvs25 transcripts in RNAprotect was also recently assessed (Koepfli et al., – 

in press). Results from this thesis highly recommend the use of RNAprotect for all 

future surveys with the aim of monitoring gametocytes. 
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Conclusion 

This thesis has for the first time assessed infection and transmission dynamics of P. vivax 

relapses and new infections in a cohort of semi-immune children living in an endemic area in PNG. 

This was possible by detecting gametocytes and genotyping asexual parasites in blood samples 

collected in a cohort study, in which relapses were prevented in a subset of children. The high 

contribution of relapses to the burden of P. vivax clinical malaria and blood-stage infections 

emphasized the importance of relapses for sustaining P. vivax transmission. Effective control of P. 

vivax with anti-malarial drugs will thus require the inclusion of a treatment that attacks the 

hypnozoite reservoir. The data generated in the course of this thesis demonstrates that MDA with 

PQ might be a valuable tool to target this undetectable parasite reservoir. 

Comparison of infection dynamics between the treatment arms revealed that relapses and new 

infections are presumably under the same immune pressure in semi-immune children. We 

observed similar duration, parasite density, detectability and investment in gametocytogenesis in 

both treatment arms. P. vivax molecular force of blood-stage infections in the placebo arm was 2-3 

times higher than in the PQ arm. The increased individual exposure of participants translated 

proportionally into an increased relapse burden and contribution to transmission. Approaches to 

monitor efficacies of interventions in the field should therefore stratify for transmission intensity. 

During the course of this thesis, we also investigated the best strategy for RNA sampling in 

field surveys, validated molecular detection of P. vivax gametocytes by targeting pvs25 transcripts, 

and established P. falciparum gametocyte genotyping assays. Although it was not possible to 

apply all of these in our longitudinal cohort, these tools have shown great potential for future 

investigations of transmission dynamics. 
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Appendix 

During the course of this PhD thesis contributions were made to the following project entitled: 

“Heterochromatin protein 1 secures survival and transmission of malaria parasites” published in 

Cell Host Microbe. It exhibits the key role of the Heterochromatin Protein 1 (HP1) in silencing the 

ApAP2-G locus, a transcription factor required for gametocyte conversion.  

This publication is not directly linked to this thesis, however the contributed work consisted in 

RNA extraction of in vitro reared gametocytes, design and analysis of multiple real-time assays. 
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SUMMARY

Clonally variant expressionof surfaceantigensallows
themalaria parasitePlasmodium falciparum to evade
immune recognition during blood stage infection
and secure malaria transmission. We demonstrate
that heterochromatin protein 1 (HP1), an evolutionary
conserved regulator of heritable gene silencing, con-
trols expression of numerous P. falciparum virulence
genes as well as differentiation into the sexual forms
that transmit to mosquitoes. Conditional depletion of
P. falciparum HP1 (PfHP1) prevents mitotic prolifera-
tion of blood stage parasites and disrupts mutually
exclusive expression and antigenic variation of the
major virulence factor PfEMP1. Additionally, PfHP1-
dependent regulation ofPfAP2-G, a transcription fac-
tor required for gametocyte conversion, controls the
switch from asexual proliferation to sexual differenti-
ation, providing insight into the epigenetic mecha-
nisms underlying gametocyte commitment. These
findings show that PfHP1 is centrally involved in clon-
ally variant gene expression and sexual differentia-
tion in P. falciparum and have major implications for
developing antidisease and transmission-blocking
interventions against malaria.

INTRODUCTION

The protozoan parasite Plasmodium falciparum elicits the most
severe form of malaria in humans and causes several hundred
million clinical cases and 700,000 deaths annually (World Health
Organisation, 2013). Malaria morbidity and mortality occur due
to the massive expansion of the parasite population during
blood-stage infection. Here, parasites mature intracellularly
through the ring and trophozoite stages, before successive S/
M phases produce a multinucleated schizont that releases up
to 32 merozoites ready to invade new red blood cells (RBCs).
In order to secure survival and establish chronic blood-stage
infection,P. falciparum employs clonally variant gene expression
(CVGE) as a means to adapt to environmental challenges in the

human host, in particular those imposed by the immune system
(Rovira-Graells et al., 2012; Cortés et al., 2012).
The most striking example of CVGE is erythrocyte membrane

protein 1 (PfEMP1), the major antigen and prime immune target
on the surface of infected RBCs (iRBCs) (Scherf et al., 2008).
PfEMP1 is encoded by the 60-member var gene family (Su
et al., 1995; Baruch et al., 1995) and mediates cytoadherence
of iRBCs to microvascular endothelium, which prevents parasite
clearance in the spleen and causes pathology that contributes
substantially to severe malaria outcomes (Kyes et al., 2001).
var transcription conforms to the concept of singular gene
choice (or mutual exclusion); in each parasite only a single var
gene is active, while all other members remain silenced (Scherf
et al., 1998). Transcriptional switches in var gene expression
result in CVGE and consequently antigenic variation of PfEMP1
and immune evasion (Smith et al., 1995; Scherf et al., 1998).
Importantly, this survival strategy is directly linked to malaria
transmission; during each replicative cycle a small number of
parasites commit to sexual development and differentiate into
mature stage V gametocytes, the only stage capable of transmit-
ting the infection to the mosquito vector (Baker, 2010).
Singular var gene choice is regulated by a poorly understood

interplay between transcriptional and epigenetic control mecha-
nisms (Guizetti and Scherf, 2013). Particularly striking is the
observation that var genes are associated with histone 3 lysine
9 trimethylation (H3K9me3) and heterochromatin protein 1
(HP1) (Salcedo-Amaya et al., 2009; Lopez-Rubio et al., 2009;
Flueck et al., 2009; Pérez-Toledo et al., 2009; Chookajorn
et al., 2007; Lopez-Rubio et al., 2007). HP1 is an evolutionarily
conserved regulator of heterochromatin formation and herita-
ble gene silencing and was originally described in Drosophila
melanogaster as a suppressor of position effect variegation (Eis-
senberg et al., 1990). HP1 binds to H3K9me2/H3K9me3, the
hallmark histone modification of heterochromatin, and recruits
H3K9-specific methyltransferases (HKMTs) that modify adjacent
nucleosomes (Lomberk et al., 2006). As a result, HP1 sustains a
self-perpetuating mechanism for heterochromatin spreading
and heritable gene silencing. In addition, HP1 also regulates
euchromatic genes and is involved in other chromatin-related
processes, including cohesion, telomere maintenance, or DNA
replication and repair (Kwon and Workman, 2008). This func-
tional versatility is linked to the evolution of HP1 paralogs, partic-
ularly in metazoans, and the ability of HP1 to recruit functionally
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diverse proteins (Lomberk et al., 2006; Kwon and Workman,
2008).

P. falciparum contains only a single HP1 protein that localizes
primarily to H3K9me3-enriched heterochromatic regions. These
chromosomal domains incorporate all var genes and hundreds
of other clonally variant genes (such as rif, stevor, and pfmc-
2tm) encoding species-specific blood-stage antigens. At the
same time, PfHP1 is also found at a small number of euchromatic
loci (Flueck et al., 2009; Pérez-Toledo et al., 2009). PfHP1 over-
expression leads to increased silencing of some heterochromat-
ic genes (Flueck et al., 2009), and the presence or absence of
PfHP1 is linked to the silenced or active state of var genes,
respectively (Pérez-Toledo et al., 2009). Together, these obser-
vations suggest key functions for PfHP1 in heritable silencing
and phenotypic variation of a large set of factors implicated in
host-parasite interactions and immune evasion. However, if
and to what extent PfHP1 is indeed required for mutually exclu-
sive var expression and/or for CVGE in general is unknown.
Moreover, since the pfhp1 locus is refractory to genetic deletion
(Flueck et al., 2009; Pérez-Toledo et al., 2009), additional un-
known HP1-dependent pathways essential for parasite prolifer-
ation are likely to exist in P. falciparum.

Here, we conducted a comprehensive functional analysis
of PfHP1 by generating a conditional PfHP1 loss-of-function
mutant. We show that PfHP1 is indispensable for the heritable
silencing of heterochromatic genes in general and in particular
for the maintenance of singular var gene choice and antigenic
variation of PfEMP1. In addition, PfHP1 is required at the G1/S
transition phase for mitotic proliferation of blood-stage para-
sites. Intriguingly, we also discovered that PfHP1 controls sexual
commitment by regulating the bistable expression of single
euchromatic locus encoding an ApiAP2 transcription factor.

RESULTS

PfHP1 Is Indispensable for Mitotic Proliferation of
Blood-Stage Parasites
We applied the FKBP destabilization domain (DD) technique that
allowsmodulating expression levels through the stabilizing com-
pound Shield-1 (Banaszynski et al., 2006; Armstrong and Gold-
berg, 2007) and generated a clonal parasite line expressing
endogenous PfHP1 as a C-terminally tagged GFP-DD fusion
(3D7/HP1ON) (Figure S1, available online). In the presence of
Shield-1, 3D7/HP1ON parasites exhibited no growth phenotype
(Figure 1A) and multiplied at a rate within a single asexual repli-
cation cycle (3.8-fold ± 0.6 SD) similar to that of 3D7/HP1ctrl

parasites in which PfHP1 is tagged with GFP only (4.4-fold ±
0.4 SD). When Shield-1 was withdrawn at 4–12 hr postinvasion
(hpi), 3D7/HP1OFF parasites completed the current intraery-
throcytic developmental cycle (IDC) and subsequent ring-stage
development with normal kinetics. Strikingly, however, these
parasites arrested prior to schizogony in generation 2 (Figure 1A),
and all efforts to select for proliferating subpopulations were
unsuccessful.

Live-cell imaging revealed the expected perinuclear localiza-
tion of tagged PfHP1 in 3D7/HP1ON and 3D7/HP1ctrl parasites
throughout the IDC, whereas in 3D7/HP1OFF parasites PfHP1
was undetectable 12 hr after Shield-1 withdrawal (Figure 1B). A
more direct assessment by parallel western blot and immunoflu-

orescence assays (IFA) showed that after Shield-1 removal at 4–
12 hpi, PfHP1 was still detectable but reduced in late ring stages
(16–24 hpi) and early schizonts (32–40 hpi) and localized diffusely
to the nucleoplasm and cytoplasm (Figure 1C). After reinvasion,
PfHP1 was undetectable in 3D7/HP1OFF parasites by both
methods. Similarly, targeted chromatin immunoprecipitation
(ChIP-qPCR) showed that PfHP1 occupancy at subtelomeric
(PF3D7_0426000) and chromosome-internal (PF3D7_0412400)
var loci was unchanged in late ring stages but substantially
reduced in schizonts and subsequent generation 2 ring stages
(Figure 1D).
We next analyzed parasite viability using isothermal microcal-

orimetry (Wenzler et al., 2012). In generation 1, 3D7/HP1ON and
3D7/HP1OFF populations both displayed a typical heat emission
profile marked by increased heat flow in trophozoites and schiz-
onts (Figure 1E). In generation 2, however, the metabolic activity
in PfHP1-depleted parasites changed dramatically, and heat
emission remained low over the entire 48 hr period of measure-
ment. Importantly, these parasites were still viable since they
emitted heat at a rate significantly higher than that of uninfected
RBCs.

PfHP1 Controls Sexual Differentiation
Intriguingly, prolonged microscopic observation revealed that
PfHP1-depleted parasites consisted of a mixture of growth-ar-
rested trophozoites and sexual forms undergoing gametocyte
development (Figure 2A). Note that sexual conversion occurs
through an unknown mechanism during the cell cycle prior to
gametocyte development and that all daughter parasites
released from a committed schizont undergo sexual differentia-
tion (Bruce et al., 1990). To discriminate quantitatively between
growth-arrested and sexual forms, we visualized the gameto-
cyte-specific marker Pfs16 (Bruce et al., 1994) and knob-associ-
ated histidine-rich protein (KAHRP) (a marker for iRBCs) (Taylor
et al., 1987) by indirect IFA. Remarkably, 52.7% (±3.1 SD) of
3D7/HP1OFF parasites expressed Pfs16 in generation 2,
compared to only 2.3% (±1.2 SD) of background conversion in
the 3D7/HP1ON population (Figure 2B). Overview images of a
Giemsa-stained blood smear (6 days postinvasion) and an
a-Pfs16 IFA experiment (32–40 hpi) provide visual confirmation
of this phenotype showing a high proportion of stage II/III and
stage I gametocytes, respectively, in 3D7/HP1OFF parasites (Fig-
ures 2C and 2D). Notably, PfHP1-depleted gametocytes
completed sexual development within 8–10 days, similar to con-
trol gametocytes (Figure S2). Hence, PfHP1 depletion triggers
the synchronous hyperinduction of viable gametocytes, which
demonstrates that sexual commitment in malaria parasites is
epigenetically regulated.

PfHP1-Depleted Asexual Parasites Enter a Reversible
Cell-Cycle Arrest
To investigate at which stage of the cell cycle the nongametocyte
subpopulation of 3D7/HP1OFF parasites arrested, we performed
single-cell DNA content analysis by flow cytometry. This re-
vealed that in contrast to 3D7/HP1ON parasites, virtually all par-
asites in the 3D7/HP1OFF population failed to replicate their
genome in generation 2 (Figure 3A). While this is expected for
nonproliferative gametocytes, this result demonstrates that the
population of asexual parasites arrested prior to or during the
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first S phase of schizogony. Interestingly, this cell-cycle defect
was reversible since PfHP1-depleted trophozoites reentered S
phase and mitotic proliferation when Shield-1 was added back
to the culture medium (Figure 3B). Even after 12 days in the
absence of Shield-1, rescued trophozoites reaccumulated peri-
nuclear PfHP1 and progressed through schizogony (Figure 3C).
This was not due to a genetic reversion, as rescued parasites
entered developmental arrest and gametocyte hyperconversion
when Shield-1 was withdrawn for a second time (data not

shown). With prolonged time in the absence of Shield-1, how-
ever, the parasitemia decreased, and the time required for
growth resumption after Shield-1 replenishment increased,
showing that a subset of PfHP1-depleted parasites died over
time (Figures 3B and 3D). Together, these data corroborate the
essential function of PfHP1 in mitotic proliferation and show
that a subset of PfHP1-depleted trophozoites remained in a state
of dormancy capable of reentering the cell cycle if PfHP1 expres-
sion was restored.

Figure 1. Growth Phenotype of a Conditional PfHP1 Loss-of-Function Mutant and Kinetics of PfHP1 Depletion
(A) Giemsa-stained blood smears showing development of 3D7/HP1ON and 3D7/HP1OFF parasites over two generations (96 hr). See also Figure S1.

(B) Expression and localization of PfHP1 in 3D7/HP1ON, 3D7/HP1OFF, and 3D7/HP1ctrl parasites by live fluorescence microscopy (images taken 12 hr after

removal of Shield-1).

(C) Expression and localization of PfHP1 in 3D7/HP1ON and 3D7/HP1OFF parasites by IFA and western blot (Shield-1 removal at 4–12 hpi). The production and

specificity of affinity-purified polyclonal a-PfHP1 antibodies is described in Figure S1 and the Supplemental Experimental Procedures.

(D) PfHP1 occupancy at two heterochromatic var and two euchromatic control loci in 3D7/HP1ON and 3D7/HP1OFF parasites was determined by ChIP-qPCR

(Shield-1 removal at 4–12 hpi). See also Figure S6.

(E) Heat emission as determined by isothermal microcalorimetry in two 3D7/HP1 clones (Cl.2 and Cl.3) grown in the presence or absence of Shield-1. uRBC,

uninfected RBCs.
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Lack of S/M Phase Entry Correlates with Decelerated
Transcriptome Progression in G1 Phase
We next conducted genome-wide transcriptional profiling of
paired synchronous 3D7/HP1ON and 3D7/HP1OFF cultures at
11 consecutive time points (TPs) spanning generations 1 and 2
to (i) study the effect of PfHP1 on heritable gene silencing and
(ii) identify the PfHP1-dependent pathway responsible for game-
tocyte conversion (Figure 4A and Table S1). Until 16–24 hpi in
generation 2, the corresponding transcriptomes were highly
comparable between both populations (Figure 4A) and pro-
gressed with similar kinetics through the first IDC and second-
generation ring-stage development (TPs 2–9) (Figures 4B and
4C). In contrast, at 24–48 hr after reinvasion (TPs 10–12), when
3D7/HP1ON parasites went through schizogony and the 3D7/
HP1OFF population consisted of a mixture of early gametocytes
and arrested trophozoites, the transcriptomes correlated poorly
(Figure 4A), and parasites failed to launch a schizont-specific
transcription profile (Figures 4B and 4C). This slowdown in tran-
scriptome development reflects a substantial deceleration in G1
progression and failure to enter S phase in generation 2, which is
consistent with the growth phenotype observed for 3D7/HP1OFF

parasites.

PfHP1 Silences Heterochromatic Genes and Is Essential
for the Maintenance of Singular Var Gene Choice
To identify genes differentially expressed in direct response to
PfHP1 depletion, we focused our analysis on the comparable
growth phase ranging from generation 1 trophozoites to late
ring stages in generation 2 (TPs 4–9). Consistent with the

Figure 2. PfHP1Depletion InducesGameto-
cyte Conversion
(A) 3D7/HP1OFF and 3D7/HP1ctrl gametocytes and

cell-cycle-arrested 3D7/HP1OFF trophozoites. dpi,

days postreinvasion.

(B) Distinction between 3D7/HP1OFF early game-

tocytes and arrested trophozoites by IFA (left) and

proportion of Pfs16/KAHRP-positive parasites in

3D7/HP1ON and 3D7/HP1OFF (right). Values show

the mean ± SD of three biological replicates (100

KAHRP-pos. iRBCs were scored per experiment).

(C) Giemsa-stained blood smear of a 3D7/HP1OFF

parasite culture (Shield-1 removal at 4–12 hpi) at

6 days postreinvasion (dpi) (image taken at 603

magnification). The gametocyte hyperinduction

phenotype is highlighted by the high proportion of

stage II/III gametocytes among all iRBCs.

(D) a-Pfs16 IFA of a 3D7/HP1OFF parasite culture

(Shield-1 removal at 4–12 hpi) at 32–40 hr post-

reinvasion (image taken at 403 magnification).

The gametocyte hyperinduction phenotype is

highlighted by the high proportion of Pfs16-posi-

tive stage I gametocytes among all DAPI-positive

iRBCs. See also Figure S2.

conserved role for HP1 in heritable gene
silencing, we observed a general dere-
pression of heterochromatic genes in
3D7/HP1OFF parasites, and 113 PfHP1-
associated genes (31.2%) displayed a
significant increase in mean expression

(>1.5-fold, false discovery rate [FDR] < 0.1) compared to 3D7/
HP1ON parasites (Figure 5A and Table S1). In contrast, only 16
euchromatic genes (0.34%) were differentially expressed, of
which four upregulated genes had previously been associated
with early gametocyte development: PF3D7_1102500 (phistb;
GEXP02), PF3D7_1335000 (msrp1), PF3D7_1472200 (class II
histone deacetylase [HDAC]), and PF3D7_1473700 (nup116)
(Silvestrini et al., 2010; Eksi et al., 2012) (Figure 5B and Table
S1). Strikingly, the strongest derepression was observed for
the var gene family; 52 out of 60 members were significantly
and highly upregulated in PfHP1-depleted parasites. In addition,
many rif and pfmc-2tm genes and several members of other sub-
telomeric gene families were significantly induced, and even
among the nonsignificantly deregulated heterochromatic genes,
the majority was still upregulated in the absence of PfHP1 (Fig-
ures 5A and S3).
We next investigated the prevailing role of PfHP1 in var gene

silencing in more detail. Removal of Shield-1 at 4–12 hpi had
no immediate effect on var transcription in generation 1 (Fig-
ure 6A), which is explained by the persistent binding of PfHP1
to chromatin shortly after Shield-1 withdrawal (Figure 1D). var
transcription was also unchanged in schizonts, demonstrating
that var promoters retain their ring-stage-specific activation pro-
file even in the absence of PfHP1. By contrast, almost all var
genes were massively upregulated after reinvasion, and individ-
ual genes showed expression levels up to 30-fold higher
(Figure 6A). Importantly, however, the few var genes already
dominantly expressed in 3D7/HP1ON parasites, most notably
var2csa (PF3D7_1200600) (Salanti et al., 2003), were not or
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only slightly induced (Figures 6A and S4). This proves that var
activation was not due to transcriptional switches but that all
var genes were active simultaneously in 3D7/HP1OFF parasites.
Consistent with these findings, PfHP1-depleted parasites coex-
pressed several PfEMP1 variants of different sizes, whereas
3D7/HP1ON parasites predominantly expressed a single protein
consistent with the size of VAR2CSA (Figure 6B). IFAs further
corroborated hyperexpression of PfEMP1 in 3D7/HP1OFF para-
sites at the single-cell level and indicated correct trafficking of
PfEMP1 to the iRBC surface (Figure 6C).

Sexual Differentiation Is Linked to the
PfHP1-Dependent Derepression of the ApiAP2
Transcription Factor PfAP2-G
Interestingly, a single member of the apiap2 family of genes en-
coding phylum-specific transcription factors (TFs) (Balaji et al.,
2005) was also significantly derepressed in 3D7/HP1OFF para-
sites (Figure 5A). This apiap2 gene (PF3D7_1222600) represents
the only PfHP1-associated member of the family (Flueck et al.,
2009) and encodes the TF AP2-G that is essential for gametocyte
conversion in P. falciparum and P. berghei (Kafsack et al., 2014;
Sinhaet al., 2014).Moreover, amongall deregulatedPfHP1-asso-
ciated loci,pfap2-gwas theonly gene that doesnot encodea sur-
face antigen or exported protein (Table S1). We observed that
pfap2-gderepressionwas already initiated in 3D7/HP1OFF gener-
ation 1 schizonts (32–40 hpi), coincident with the dissociation of
PfHP1 from the pfap2-g locus (Figure 7A). Importantly, when
3D7/HP1OFF parasiteswere allowed to reaccumulate PfHP1prior
to schizogony (28–36 hpi), gametocyte hyperconversion was
prevented (Figures 7B and S5). Restoring PfHP1 expression at
34–42 hpi was only moderately effective in preventing sexual
commitment, and parasites rescued at 40–48 hpi or after reinva-
sion showed a hyperconversion phenotype similar to that of
nonrescued parasites. The temporal correlation between dere-
pression of pfap2-g and gametocyte commitment during schi-
zogony, together with the fact that both processes are strictly
PfHP1 dependent, identifies the targeted activation of PfAP2-G
as the key mechanism responsible for sexual conversion.

PfHP1Depletion Results in Reduced H3K9me3 Levels at
Heterochromatic Loci
HP1-dependent recruitment of SU(VAR)3-9-type HKMTs is
essential for the spreading and inheritance of H3K9me3 marks
in model eukaryotes (Grewal and Jia, 2007). We therefore tested
if the local depletion of PfHP1 caused a reduction of H3K9me3
levels. Indeed, ChIP-qPCR experiments demonstrated that
H3K9me3 occupancy was substantially reduced at var genes
and the pfap2-g locus in 3D7/HP1OFF parasites, in both genera-
tion 1 schizonts and generation 2 ring stages (Figure S6).
Notably, the drop in H3K9me3 enrichment at individual loci
was pronounced to a degree equal to that of the depletion of
PfHP1 itself. As expected, PfHP1 and H3K9me3 were not asso-
ciated with the early gametocyte marker pfs16 in both cultures at
both TPs, which confirms that upregulation of pfs16 in early ga-
metocytes is PfHP1 independent and rather occurs as a result of

Figure 3. PfHP1 Depletion Causes Reversible Cell-Cycle Arrest at
the G1/S Transition Phase
(A) Flow cytometry analysis of genomic DNA content in 3D7/HP1ON and 3D7/

HP1OFF parasites at five consecutive time points in generation 2. The per-

centage of iRBCs with R2 genomes is indicated. Prior to S phase (gray), this

value corresponds to RBCs infected with R2 parasites (confirmed by micro-

scopy). n, number of gated iRBCs.

(B) Cell-cycle-arrested 3D7/HP1OFF parasites reestablish asexual growth after

adding back Shield-1 at 24 or 72 hr postreinvasion (arrows). Values show the

mean of three biological replicates ± SD.

(C) Growth-arrested 3D7/HP1OFF parasites reenter mitotic proliferation after

Shield-1 replenishment. dpi, days postreinvasion.

(D) Synchronous 3D7/HP1ON cultures (!0.1% parasitemia) were split at

0–8 hpi and cultured in either the presence or absence of Shield-1. Shield-1

was added back to 3D7/HP1OFF cultures at nine consecutive TPs. Cultures

were smeared daily and analyzed by Giemsa staining until they reached a

parasitemia of >1%. Values show the mean of three biological replicates ± SD.
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Figure 4. PfHP1 Depletion Leads to a Marked Slowdown in Transcriptome Progression
(A) 3D7/HP1ON and 3D7/HP1OFF parasites were sampled for comparative transcriptome analysis. Pairwise correlation between transcriptomes of corresponding

TPs is indicated by Pearson correlation coefficient r (asterisk).

(B) Mapping of experimental transcriptomes to a high-resolution reference data set (Mok et al., 2011). Blue and red boxes identify the best-fit TP (hpi) in a high-

resolution reference data set for each 3D7/HP1ON and 3D7/HP1OFF transcriptome, respectively. Spearman rank coefficients (r) are provided. See also

Supplemental Experimental Procedures.

(C) Comparison of global temporal expression profiles in generations 1 and 2. Heatmaps are ordered according to the phase calculated for 3D7/HP1ON parasites

(TPs 7–12, starting at!p/2) and display relative gene expression levels (red/green) and fold changes (FCs) in gene expression (yellow/blue). See also Table S1 and

Supplemental Experimental Procedures.
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a gametocyte-specific transcriptional program. Together, these
findings show that, in analogy to other eukaryotes, PfHP1 is
required for the local deposition and inheritance of H3K9me3
marks on newly replicated chromatin. This is likely mediated
by the PfHP1-dependent recruitment of a H3K9-specific HKMT
(probably PfSET3; Volz et al., 2010; Lopez-Rubio et al., 2009).
However, confirmation of PfSET3 as a functional SU(VAR)3-9 ho-
molog aswell as a possible physical interaction of this factor with
PfHP1 remains to be determined.

Identification of Genes Associated With Early
Gametocyte Development
Our experimental setup combined with the high rate of synchro-
nous gametocyte induction in PfHP1-depleted parasites allowed
us to identify transcriptional events linked to gametocyte conver-
sion in real time and based on comparison of two isogenic
clones. Following derepression of pfap2-g in generation 1,
known markers of early sexual development were upregulated
only after reinvasion (Table S1), and this was confirmed by quan-
titative RT-PCR (qRT-PCR) (Figure 7C). We therefore queried our
data set to identify genes induced upon gametocyte conversion
and identified 29 additional early gametocyte candidate genes
(Figure 7D and Table S1). Notably, 17 (58.6%) of these genes
have been linked to early sexual development in previous high-
throughput studies (Silvestrini et al., 2005, 2010; Eksi et al.,
2012; Young et al., 2005), which underpins the high accuracy
and stringency of our search. qRT-PCR confirmed upregulation
of these genes in 3D7/HP1OFF parasites and showed that apart
from pfap2-g, only one additional gene (PF3D7_0832300;
phista-like) was upregulated already during the commitment
phase. In contrast, induction of all other genes was delayed until
the sexual ring stage and increased further during stage I game-
tocyte development (24–40 hpi) (Figures 7D and S7). Finally, we
tested if these candidate genes are also upregulated in naturally
induced gametocytes by comparing their transcription between
3D7 wild-type parasites and a gametocyte-deficient clone of
3D7 (F12) (Alano et al., 1995). Indeed, all predicted genes
showed consistently higher transcription levels in 3D7 compared
to F12, which ultimately confirms that their activation is related to
early gametocyte differentiation (Figure S7).

DISCUSSION

Our study shows that PfHP1 is strictly required to propagate
nonpermissive heterochromatin to daughter cells in order to
silence a vast antigenic repertoire and, in particular, to perpet-

uate mutually exclusive var transcription. Since the landmark
discovery of the var gene family (Su et al., 1995; Baruch et al.,
1995; Smith et al., 1995), a large number of studies firmly estab-
lished that antigenic variation in P. falciparum is controlled by a
complex epigenetic strategy involving reversible histone modifi-
cations, chromatin remodeling, and locus repositioning (Lopez-
Rubio et al., 2007, 2009; Jiang et al., 2013; Freitas-Junior
et al., 2005; Tonkin et al., 2009; Duraisingh et al., 2005; Petter
et al., 2011; Voss et al., 2006; Ralph et al., 2005). Together, these
findings support a model in which singular var gene choice is
achieved by restricting transcription of a single locus to an
elusive perinuclear var expression site (VES) and where switch-
ing occurs through competitive replacement of the active gene
with a previously silenced member. How these different pro-
cesses and layers of regulation are interconnected to control
antigenic variation, however, is only poorly understood.
Here, we demonstrate that depletion of PfHP1 during schi-

zogony leads to the simultaneous activation of all var genes
and concomitant hyperexpression of PfEMP1 in daughter para-
sites. This shows that PfHP1 is required to protect var genes
from activation outside the VES, which is further supported by
the fact that var promoter fragments activate stage-specific tran-
scription by default when placed upstream of the transcriptional
start site of a euchromatic gene (Brancucci et al., 2012). Hence,
unlike in African trypanosomes (Navarro and Gull, 2001), the
functional principle of the VES is not based on the sequestration
of exclusive transcription machinery but rather depends on
histone modifying and remodeling activities capable of disas-
sembling heterochromatin at a single locus. This concept is
consistent with the recent description of the H3K4me-specific
methyltransferase (HKMT) PfSET10 that localizes exclusively to
the VES (Volz et al., 2012). Note that mutually exclusive var tran-
scription is also disrupted in parasites lacking expression of the
H3K36-specific HKMT PfSET2 (also known as PfSETvs) (Jiang
et al., 2013). Interestingly, Jiang et al. (2013) observed a reduc-
tion in H3K36me3 as well as H3K9me3 occupancy at active
var loci in DPfSET2 parasites, suggesting functional interdepen-
dence of different epigenetic control processes in regulating
antigenic variation. Taken together, these results fill an important
gap in our understanding of the regulatory mechanisms underly-
ing mutually exclusive var gene transcription and antigenic vari-
ation of PfEMP1 andwill be instrumental for the further functional
dissection of this important immune evasion strategy. Moreover,
the PfEMP1 hyperexpression phenotype reported here will serve
as a useful tool to study PfEMP1-based pathogenesis and immu-
nity and may provide opportunities for the development of a

Figure 5. PfHP1 Depletion Leads to Dere-
pression of PfHP1-Associated Genes
(A) Scatter plot comparing mean relative expres-

sion values of all 362 PfHP1-associated genes.

Significantly deregulated genes are indicated by

circles (>1.5-fold; FDR < 0.1). See also Figure S3

and Table S1.

(B) Scatter plot comparing mean relative expres-

sion values of all 4,771 euchromatic genes.

Significantly deregulated genes are indicated by

circles (>1.5-fold; FDR < 0.1). See also Table S1.
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malaria vaccine. Notably, in an analogous system, immuniza-
tion with mutant Giardia lamblia parasites coexpressing many
variant-specific surface proteins has successfully been applied
to induce strain-transcendent protective immunity in an experi-
mental infection model (Rivero et al., 2010).

In addition to virulence gene silencing, we also identified an
essential role for PfHP1 in mitotic proliferation. In the absence
of PfHP1, asexual trophozoites fail to proliferate and enter a state
of cell-cycle arrest that is reversible in a PfHP1-dependent
manner. Although the exact pathway in which PfHP1 is required
for cell-cycle progression remains unknown, the lack of signifi-
cant levels of DNA synthesis in PfHP1-depleted trophozoites is
indicative of defects in S phase entry or progression. Indeed,
HP1 directly interacts with several factors involved in prereplica-
tive complex assembly and replication initiation or elongation
(e.g., CDC18/CDC6, ORCs, MCMs, CAF1) in model eukaryotes
(Kwon and Workman, 2008; Christensen and Tye, 2003; Li
et al., 2011). Moreover, loss of HP1 function causes delayed
replication timing and/or S phase progression defects in
S. pombe, D. melanogaster, and mouse cells (Hayashi et al.,
2009; Schwaiger et al., 2010; Quivy et al., 2008). Hence, it is
conceivable that PfHP1 may be essential for DNA replication in
P. falciparum, and further experiments are now required to test
this intriguing hypothesis in more detail.

Remarkably, we demonstrate that PfHP1’s capacity to regu-
late the bistable transcription of a single euchromatic gene bal-
ances mitotic proliferation and sexual differentiation of malaria
blood-stage parasites. In this context, it is notable that silencing
of heterochromatic genes in P. falciparum is functionally depen-
dent on the sirtuin HDACs PfSIR2A/PfSIR2B (Tonkin et al., 2009;
Duraisingh et al., 2005), PfSET2 (Jiang et al., 2013), and the
class II HDAC PfHDA2 (Coleman et al., 2014). Of these his-
tone-modifying enzymes, however, only PfHDA2 also controls
pfap2-g expression, suggesting that PfHP1 and PfHDA2 coop-
erate in a distinct silencing pathway to also regulate euchro-
matic genes. It will therefore be interesting to test if PfHP1
and PfHDA2 occur together in a specific silencing complex.
Indeed, several class II HDACs interact directly with HP1 and

are important for HP1-dependent gene silencing in model eu-
karyotes (Yamada et al., 2005; Zhang et al., 2002). We propose
that epigenetic silencing of pfap2-g promotes continuous
mitotic proliferation and antagonizes sexual conversion, while
local dissociation of PfHP1 from the pfap2-g locus activates
PfAP2-G expression and triggers sexual conversion and game-
tocyte differentiation. In analogy to the essential role of ApiAP2
TFs in stage-specific gene expression and parasite develop-
ment in other life cycle stages (Yuda et al., 2009, 2010; Iwanaga
et al., 2012), PfAP2-G likely regulates a transcriptional response
effecting gametocyte development and cell-cycle exit. In both
P. falciparum and P. berghei, PfAP2-G binding motifs were
indeed found enriched in the upstream region of genes associ-
ated with sexual differentiation, and the occurrence of the
respective target sites upstream of pfap2-g itself further indi-
cates that PfAP2-G may establish an autoregulatory feedback
loop (Kafsack et al., 2014; Sinha et al., 2014). Interestingly, we
demonstrate that transcriptional changes associated with the
early phase of differentiation are limited to a small number of
genes but become more pronounced once gametocytes enter
stage I development. We explain this by the fact that both
asexual and sexually committed schizonts need to produce
invasive merozoites capable of establishing RBC infection. In
fact, many of the early gametocyte genes predicted here and
elsewhere (Eksi et al., 2005; Silvestrini et al., 2010) code for pro-
teins implicated in host cell remodeling, which is indicative for
the requirement of gametocyte-specific host cell modifications.
While it is possible that PfAP2-G regulates some or all of these
genes directly, genome-wide ChIP approaches will be neces-
sary for a comprehensive identification of PfAP2-G target genes
and understanding of PfAP2-G function.
Our results reveal important mechanistic insight into the

pathway underlying sexual commitment and identify PfHP1 as
a crucial factor in controlling cell-fate decision in P. falciparum.
Interestingly, the blood stage of infection is the only phase of
the entire life cycle where parasites have a choice to enter either
one of two developmental pathways. It thus appears likely that
the epigenetic basis for this switch evolved to adapt sexual

Figure 6. PfHP1 Is Required for Heritable var Gene Silencing and Maintenance of Singular var Gene Choice
(A) Temporal progression of relative abundance (red/green) and fold change (FC) in expression (yellow/blue) for all var genes in 3D7/HP1ON and 3D7/HP1OFF

parasites across all 11 TPs analyzed. Asterisk, var2csa. See also Figure S4 and Table S1.

(B) PfEMP1 expression in 3D7/HP1ON, 3D7/HP1OFF, and 3D7/HP1ctrl parasites at 16–24 hpi in generation 2. Equal cell numbers were analyzed in each lane. The

pan-specific a-PfEMP1 antibody (mAb 6H1) was raised against a part of the C-terminal acidic terminal segment (ATS) domain that is conserved among PfEMP1

variants (Duffy et al., 2002). uRBC, uninfected RBCs (note that a-PfEMP1 antibodies cross-react with human spectrin).

(C) a-PfHP1/a-PfEMP1 (mAb 6H1) IFAs of 3D7/HP1ON and 3D7/HP1OFF parasites at 16–24 hpi in generation 2.
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conversion rates for optimal transmission during the course of
infection. Indeed, gametocyte conversion rates are highly vari-
able between different isolates and clones and influenced by a
broad spectrum of environmental conditions (Baker, 2010; Alano
and Carter, 1990). Although the molecular factor(s) triggering
gametocyte conversion have not been identified, two recent
studies reported that cell-cell communication via exosomes/
microvesicles causes a dramatic increase in gametocyte con-
version (Regev-Rudzki et al., 2013; Mantel et al., 2013). It is
therefore tempting to speculate that cargo delivered by these
vesicles may trigger a signaling cascade that ultimately evicts
PfHP1 from the pfap2-g locus.
In conclusion, we identified PfHP1 as an essential factor in

mitotic proliferation and as a key mediator of two systems of
CVGE that secure the survival and transmission of malaria
blood-stage parasites, respectively. Our data provide important
mechanistic insight into the regulatory processes underlying
antigenic variation and sexual conversion and generate knowl-
edge relevant for investigating conceptually similar systems in
other eukaryotes. Importantly, we established that gametocyte
commitment is epigenetically regulated. This significant dis-
covery will facilitate the targeted dissection of the molecular
pathway triggering sexual conversion and has major implica-
tions for the identification of approaches to prevent malaria
transmission.

EXPERIMENTAL PROCEDURES

Parasite Culture and Transfection
P. falciparum 3D7 cell culture and transfection was performed as described

(Trager and Jenson, 1978; Lambros and Vanderberg, 1979; Voss et al.,

2006). Transfection constructs are described in the Supplemental Experi-

mental Procedures and in Figure S1. Parasites were grown in the presence

of the indicated combinations of 4 nM WR99210 (WR) and 625 nM Shield-1.

3D7/HP1ON clones were obtained by limiting dilution.

Western Blot Analysis
Nuclei were isolated as described (Voss et al., 2003) and lysed in 2% SDS,

10 mM Tris, 1 mM dithiothreitol (pH 8.0). Proteins were detected using rabbit

a-PfHP1 1:5,000 (Figure S1 and Supplemental Experimental Procedures)

and a-H4 1:10,000 (Abcam ab10158). PfEMP1 was extracted as described

(Van Schravendijk et al., 1993) and detected using the pan-specific a-PfEMP1

mouse monoclonal antibody (mAb) 1B/6H-1 (1:500) (Duffy et al., 2002).

Fluorescence Microscopy
Live-cell fluorescence microscopy and IFAs were performed as described

(Witmer et al., 2012). IFAs were performed on methanol-fixed cells using

mouse immunoglobulin G2a (IgG2a) mAb a-HRP1 (a-KAHRP) (kind gift

from D. Taylor), 1:500; mouse IgG1 mAb a-Pfs16 (kind gift from Robert

W. Sauerwein), 1:250; mouse IgG1 mAb a-PfEMP1 (1B/6H-1) (Duffy et al.,

2002), 1:150; and rabbit a-PfHP1, 1:100. Secondary antibody dilutions

were as follows: Alexa Fluor 568-conjugated a-rabbit IgG (Molecular

Probes), 1:250; Alexa Fluor 568-conjugated a-mouse IgG2a (Molecular Pro-

bes), 1:250; Alexa Fluor 488-conjugated a-mouse IgG1 (Molecular Probes),

Figure 7. Gametocyte Differentiation Is Linked to the PfHP1-Dependent Activation of pfap2-g
(A) Temporal expression profile (Cy5/Cy3 log2 ratios) of pfap2-g (top) and ChIP-qPCR results showing PfHP1 occupancy at the pfap2-g locus (bottom). The

sexual commitment phase is highlighted in purple. See also Figure S6 and Table S1.

(B) Proportion of Pfs16/KAHRP-positive parasites in 3D7/HP1OFF populations rescued at different TPs in generation 1 (x axis) as determined by IFA at 32–40 hr

post reinvasion in generation 2. Values show the mean ± SD of three biological replicates. See also Figure S5.

(C) Induction of pfap2-g and the three early gametocyte markers pfs16 (PF3D7_0406200) (Bruce et al., 1994), pfg27 (PF3D7_1302100) (Alano et al., 1991), and

pfg14_748 (PF3D7_1477700) (Eksi et al., 2005) in 3D7/HP1OFF compared to 3D7/HP1ON parasites as determined by qRT-PCR on biological replicate samples.

Negative control genes are in gray. n.d., not determined.

(D) Temporal progression of fold changes in expression of known (upper heatmap) and predicted (lower heatmap) early gametocyte genes in 3D7/HP1OFF

compared to 3D7/HP1ON parasites. Early gametocyte genes identified in previous studies are highlighted in purple. See also Figure S7, Table S1, and Sup-

plemental Experimental Procedures.
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1:250; and FITC-conjugated a-mouse IgG (Kirkegaard Perry Laboratories),

1:250. Images were taken at 96-fold magnification on a Leica DM 5000B

microscope with a Leica DFC 300 FX camera, acquired via the Leica IM

1000 software, and processed using Adobe Photoshop CS6. For each

experiment, images were acquired and processed with identical settings.

Isothermal Microcalorimetry
Isothermal microcalorimetry measures the heat flow produced by a biological

sample over time. Isothermal microcalorimetry experiments and data analysis

were performed as described using a Thermal Activity Monitor (Model 3102

TAM III, TA Instruments) with minor modifications (Wenzler et al., 2012) (see

Supplemental Experimental Procedures).

qRT-PCR
3D7/HP1ON parasites were synchronized twice 16 hr apart to obtain an 8 hr

growth window and then split into two populations at 4–12 hpi and cultured

in either the presence or absence of Shield-1. 3D7/HP1ON and 3D7/HP1OFF

parasites were harvested at 40–48 hpi in generation 1 and at three consecutive

time points in generation 2 (4–12 hpi, 24–32 hpi, and 32–40 hpi). 3D7 and F12

populations were synchronized identically, and time points were harvested at

4–12 hpi, 24–32 hpi, and 40–48 hpi. Isolation and processing of total RNA

and qRT-PCR were conducted as described with minor modifications (Witmer

et al., 2012) (see Supplemental Experimental Procedures). Primer sequences

are listed in Table S2.

Targeted Chromatin Immunoprecipitation
3D7/HP1ON parasites were synchronized twice 16 hr apart to obtain an 8 hr

growth window and then split into two populations, one of which was taken

off Shield-1 at 4–12 hpi. Sample pairs were harvested at 16–24 hpi and

40–48 hpi in generation 1 and at 16–24 hpi in generation 2. Isolation of formal-

dehyde-crosslinked chromatin and ChIP-qPCR analysis were performed as

described with minor modifications (Flueck et al., 2009) using 0.6 mg affinity-

purified a-PfHP1, 5 mg a-H3K9me3 (Millipore 07_442), or 5 mg rabbit IgG nega-

tive control antibodies (Millipore 12–370) (see Supplemental Experimental Pro-

cedures). Primer sequences are listed in Table S2.

Flow Cytometry
Tightly synchronized 3D7/HP1ON parasites were split at 0–4 hpi and cultured in

either the presence or absence of Shield-1. At 20–24 hpi after reinvasion, the

3D7/HP1ON and 3D7/HP1OFF populations were synchronized again to obtain a

4 hr growth window. DNA content analysis was carried out on five consecutive

TPs in generation 2, starting at 24–28 hpi. Packed RBCs (100 ml) were fixed in

4% formaldehyde/0.015% glutaraldehyde; washed three times in RPMI-

HEPES; incubated in 1 ml RPMI-HEPES, 0.1%Triton X-100, 0.1 mg/ml RNase

A, and 20 mM FxCycle Far Red stain (Molecular Probes) for 30 min in the dark;

and analyzed using an AccuriC6 instrument (BD Biosciences). A minimum of

4,000 gated iRBCs weremeasured (excitation 640 nm; 30mWdiode; emission

detection FL4 675 nm± 12.5 nm). Acquired data were processed using FlowJo

software (Version 10.0.5).

Microarray Experiments and Data Analysis
RNA extraction and cDNA synthesis were carried out as described (Bozdech

et al., 2003). Cy5-labeled test cDNAs were hybridized against a Cy3-labeled

3D7 cDNA reference pool that was made by combining total RNA isolated

from five consecutive time points across the IDC. Equal amounts of Cy5- and

Cy3-labeled samples were hybridized on a P. falciparum glass slide microarray

containing 10,416 70-mer open reading frame probes (Hu et al., 2007). Hybridi-

zation was carried out at 65!C in a MAUI automated hybridization station for at

least 12 hr (Bozdech et al., 2003). Slides were washed twice in 0.53 saline-so-

diumcitrate (SSC)/0.02%SDS,once in0.053SSC, spundry, andscannedusing

the GenePix scanner 4000B and GenePix pro 6.0 software (Axon Laboratory).

Detailed protocols describing microarray reannotation, data processing, and

analysis are provided in the Supplemental Experimental Procedures section.
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