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1 Introduction

The ability to observe is one of the most impressive attributes of a human brain. To
this end, we are gifted with senses to comprehend objects, distance, color and sound.
But human senses are prone to errors in perception rendering observations subjective
and qualitative. Consequently, a unanimous verdict over mechanisms of a physical
phenomenon is difficult to establish. Moreover, human senses are limited in magnitude
of detection. These are the reasons why scientific tools or detectors have been developed
to standardize measurements.

In the past decades, sophisticated detectors for heat, sound, charge, light have sur-
faced. Each better than their predecessors, these have gained in both speed and res-
olution. It is safe to say that the ever decreasing size, fabrication cost and increasing
performance is the main catalyst behind the surge of cameras, sensors and computers.
It has further enabled the discoveries of myriad of physical phenomena which were pre-
viously inaccessible due to the lack of technology to observe them. Needless to mention,
the next generation of detectors will continue to investigate next magnitudes of a phys-
ical quantity. Of course, the justification for observing new phenomena is on the basis
of scientific interest, the debate over “is all of that useful?” is expected to linger. In
this spirit of pure scientific interest, this thesis attempts to develop an efficient probe
for physical phenomena that yield very small electrical signals and their fluctuations:
for example, in nanostructures.

1.1. Mesoscopic transport

Amid rapid miniaturization of electrical devices, microchips are no longer state of the art
and an enormous progress has been made in fabricating, controlling and understanding
nanostructures. Studies of nanostructures benefit from the fact that in many scenarios
control over the size and shape becomes equivalent to controlling chemical and physical
properties. These properties, however, drastically differ from those of the 3D bulk and
can even become independent of the material composition [1]. The description of charge
transport thus lies somewhere in between the macroscopic and microscopic models and
is referred to as mesoscopic transport.

In a nutshell, mesoscopic phenomena capture the behaviour of electrons when only a
few of them are available for transport. Of particular importance is the size of the ma-
terial system, as the scale over wave nature of electrons dictated by quantum mechanics
and even the granularity of charges become apparent. As early as the 1980s, signatures
of quantum interference such as weak localization [2], Aharonov-Bohm oscillations [3]
and universal conductance fluctuations [4] were observed in disordered metallic systems.
Very soon, the observation of conductance steps [5] constituted a remarkable proof of
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quantum confinement and low dimensionality in mesoscopic systems.

Quantum dots (QDs), nanostrucures confined in all three directions, serve as an ex-
ceptional playground for designing quantum interactions on a chip. They are sometimes
referred to as artificial atoms [6] due to discrete energy levels that result from Coulomb
repulsion and quantum confinement. Many attributes of QDs such as the number of
charges on a dot or its coupling to another dot can be controlled via local gate volt-
ages. Moreover, these can be easily tunnel coupled to source/ drain leads allowing
studies of few electron systems in a field effect transistor (FET) geometry. Aside from
detecting charge currents in FET, energy spectroscopy can also reveal spin-spin inter-
actions such as exchange coupling [7], singlet-triplet transitions [8], Pauli blockade [9],
Kondo effect [10], and valley blockade effects [11, 12]. Moreover, by coupling the dots
to superconducting leads Andreev bound states [13], Cooper pair splitting [14, 15] and
Majorana bound states [16, 17] have been observed. The possibilities to access such
effects have stimulated a new era of solid state quantum computing, whose speed-up
and scaling transcends those of its classical counterpart [18].

1.2. Signal and noise

The conventional way to characterize charge transport is by measuring current or con-
ductance. Just like any other signal, these are subject to random fluctuations or noise,
obscuring the information contained within. Naturally, one would average the signal
as much as possible to reduce the noise. Especially for nano-structures, currents can
be tiny and thus a fast detector at our disposal can be quite handy. But every effect,
however unpleasant it may seem, has a cause. Unwanted sources of the noise are the
fluctuating environment and unstable instruments. On the other hand, fluctuations also
arise from scattering of charge carriers in the devices. Though random in time, these
are caused by a well defined probability distribution arising for example from thermal
motion or discrete nature of charges [19]. The aforementioned types of noise are referred
to as thermal and shot noise, respectively.

Already in 1928, equilibrium thermal agitation studied by Johnson [20] and Nyquist [21]
was shown to scale linearly with temperature. As a consequence, an alternative determi-
nation of the absolute zero of temperature and value of the Boltzmann constant became
possible. Thermal noise serves as a good calibration check for experiments now. The
shot noise was even proposed earlier, by Schottky in 1918, in connection with vacuum
tubes [22]. Its scaling with the unit of charge provided a good diagnostic on the doubled
charge of Cooper pairs [23] and fractional charges of Laughlin quasiparticles in context
of fractional quantum Hall effect [24, 25]. Studies of the current fluctuations have thus
become routine in understanding the mechanisms responsible for electrical transport
that are generally not provided by averaged signals [26].

A fast measurement of small currents and even smaller fluctuations in devices with
impedances of 100 k€2 is not trivial. Standard low frequency lock-in measurements suf-
fer from stray capacitance of the order of nF reducing the bandwidth to merely kHz and
a time resolution of ms. One approach of increasing the bandwidth is to connect the
high-impedance device next to a low input impedance amplifier [27, 28]. The signal is
however decreased by the ratio of the impedances of the device and the amplifier (50 €2),
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easily a factor of a thousand. Therefore, long averaging times are required to detect the
small signal. Moreover, 1/f noise still affects the measurements. The issues of small
bandwidth, impedance mismatch and 1/f noise can be simultaneously addressed using
resonant LC' circuits. Originally developed for metallic single electron transistors [29],
they have been already applied to other systems such as quantum point contacts [30—
32], quantum dots [33] and atomic point contacts [34]. The success of these impedance
transformers lies in replacing the slow operation of applying voltages and measuring
currents by applying fast radio frequency signals and measuring the reflectance. LC
circuits remain appealing because of a rather simple assembly. Nonetheless, the chal-
lenge to reproducibly achieve the resonance frequencies in gigahertz (GHz) range while
matching to high impedance still remains due to the large parallel stray capacitance of
the measurement setup.

1.3. Thesis outline

It is the goal of this thesis to develop GHz impedance matching circuits as a probe
of quantum transport in high impedance devices. Resonance frequency in GHz range
is desirable for two reasons. Firstly, measurements are faster and 1/f noise smaller.
Yet more importantly, one can profit from the wide range of measurement techniques
developed in the context of circuit quantum electrodynamics, such as FPGA based
hardware [35] and quantum limited Josephson parametric amplifiers [36]. The thesis is
structured as follows.

We start in Chapter 2 with a theoretical background of the material systems (such as
carbon nanotubes and semiconducting nanowires) on which quantum dots are formed.
This is followed by their electronic transport properties with ground and excited states
transitions. We also discuss the situations in which the Coulomb repulsive energy of
quantum dots competes with the attractive macroscopic correlations of the Kondo effect
and superconductivity. The chapter ends with a discussion on noise characterizations
arising from the statistical fluctuations of current in our devices.

Chapter 3 is dedicated to stub tuners - our approach to impedance matching. Using
numerical calculations, we show that from a design of a pair of shunted transmission
lines typical device impedance of ~ 100 k{2 can be transformed to the characteristic
value of 50 {2, maximizing the power transfer into and out of the device. We discuss
their response to complex device admittance and circuit losses and provide useful the-
oretical figures of merit in terms of measurement bandwidth and signal-to-noise ratios.
Chapter 4 deals with device fabrication and measurement techniques. In particular,
we discuss the adaptations needed for optimal performance of the circuit and the device
when integrated simultaneously on a chip.

In Chapter 5 we present reflectance results of locally tunable quantum dots coupled
to stub tuner circuits. We demonstrate matching at impedances higher than 150 k2
and circuit bandwidths in the MHz range. The complex reflectance response can be
measured with a large sensitivity even at very low powers, enabling non-invasive mea-
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surements of device properties. In particular, we study dephasing of charge qubits
formed in double quantum dots. Chapter 6 extends the measurement principle to
graphene devices where we show extraction of equilibrium density of states and associ-
ated dissipation, without needing any conventional contact electrodes.

Finally, we show the real strength of the stub tuner circuits in measuring the emissions
emanating from the quantum devices. Chapter 7 investigates shot noise measurements
of a single quantum dot with an average impedance larger than 150 k(2. Large collection
efficiency allows us to address the differences in the transition rates from leads to the
resonant dot states, both inside and outside the Coulomb diamonds. The latter is also
compared with a theoretical model based on full counting statistics. The devices in the
final Chapter 8 incorporates an additional complication as compared to the ones from
chapters 5 and 7. The normal contact leads are replaced by superconductors creating a
competition between single charging effects of quantum dots and the macroscopic con-
densate of Cooper pairs. New insights into quasiparticle coherence of Andreev processes
are provided. We also discuss the competition in the Kondo effect.



2 Theoretical background

In this introductory chapter, we provide a brief theoretical background of the experi-
mental results presented later. Firstly, the material systems are introduced and their
band structure explained with focus on spatial confinements. We then discuss the elec-
tronic transport properties, mainly in quantum dots, for two cases: the contact leads are
fermionic like in normal metals or bosonic as in supercondutors. These properties are
explained in terms of averaged measurable quantities such as current or conductance.
Finally, noise characteristics due to the random fluctuations of the electronic signals
are elucidated. The explanations below are condensed and a comprehensive literature
can be found in the references provided in each section.

The material systems studied in this thesis are graphene, carbon nanotubes and
InAs nanowires. Each system provides an excellent platform for charge transport with
large electron mobility. The latter has especially attracted a great deal of attention for
fabricating new generation of field effect transistors. However for scientific interest, the
main advantages of such low-dimensional systems are their easy fabrication and great
control of energy scales using local electrical fields. These advantages allow us to design,
control and study quantum interactions on a chip.

2.1. Graphene

Graphene has a two dimensional hexagonal lattice as shown in Fig 2.1(a) with a lattice
constant @ = 1.4 A. Tt is not a Bravais lattice but can be considered a triangular lattice
with 2-atom basis. The two carbon atoms A and B are chemically equivalent, all sp?
bonded, however different on symmetry. One can conventionally define the unit cell
vectors as follows

a; = 5(3, V3), ay = 5(3, —V3). (2.1)

Using the periodic boundary conditions, Bloch states can be characterized by the mo-
mentum vectors of the form ¢ = (my/Ny)b; + (ma/Na)by, where m; are integers from 0
to N; — 1 and N; is the number of unit cells. The reciprocal lattice also has a hexagonal
symmetry which is rotated by 90 degrees with respect to the direct lattice. Its vectors
b; shown in Fig. 2.1(b) are given by

- 27 - 27

b= (1, V3), b= e —V/3). (2.2)
The Hamiltonian of graphene, under the tight binding model considering only the near-

est neighbours, can then be written in the momentum space as follows [37]

H=—tY" [&atbs+ &aght ] (2.3)
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(b) (c)

Figure 2.1. Graphene band structure (a) The unit cell vectors a; of a hexagonal
graphene lattice. A and B denote two inequivalent atomic sites. The nearest neighbours
5:- for site A. (b) Reciprocal lattice vectors b: with high symmetry points K and K’ at the
corners of its Brillouin zone. (c¢) Energy dispersion calculated from tight binding model.
Conduction band and valence band meet each other at K and K’ corners. Around zero
energy, the dispersion is linear. Image adapted from [37].

where ag and a;f (bg and b:]f) are the annihilation and creation operators for the A(B)
sites, & = Y7 ¢/7% and ¢ the hopping (transfer) integral. Spin states here have been

omitted for simplicity. §; are vectors corresponding to three nearest neighbours shown
in the Fig. 2.1(a) which can be written as follows

5 = 3(1,\/3), 5y = %(1, —V3), b =a(-1,0). (2.4)

As seen in Eq. 2.3, under a transformation az; — aéﬁ and by — —b;f, the Hamiltonian
remains invariant. This means that for every electron state with energy e, there is a
hole state with energy —e. Solving the Hamiltonian considering 3 nearest neighbors
describes the dispersion relation given in Eq. 2.5 [37] and is shown in Fig. 2.1(c). The
conduction band and valence band here meet at high symmetry K and K’ points,
also called charge neutrality points, where charge density vanishes. Hence for pristine
graphene at zero temperature, the Fermi energy will exactly pass through these points.
Moreover, because of above properties, the system can be considered as a semi-metal or
a zero-bandgap semiconductor. Note that zero band gap is a consequence of symmetry
(A and B are equivalent) and not because of the 3 nearest neighbour approximation.

E(qu,q,) = +t l?) + 4 cos <\/§2an> cos (3612””&> +2cos (\/3%@)] 1/2 (2.5)

At low energies (e < 1 €V') near K points, this dispersion relation can be expanded as
7= K + k, with |k| < |K|, where K is the vector from I' point to K point, to yield
E = +h|klvg + O(K*/K?), (2.6)

with hvp = 3at/2, h the reduced Planck constant and vp ~ 10° m/s the Fermi ve-
locity [37]. Such linear dispersion can be seen in the cones near K and K’ points in
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Fig. 2.1(c). Due to the similarity with massless photons in the Dirac equation, the
charge neutrality points are known as the Dirac points. Taking into account the spin,
valley and angular degeneracy, the density of states per unit area gap(€) can be calcu-

lated as follows ok oE

T
dk = ———dF. 2.
(27)2 7(hog)? (27)

Additionally the carrier density n. for a degenerate system, pu > kgT, where p is the
electrochemical potential and kg the Boltzmann constant, can be given by

gop(E)dE =4

12

W(hUF)2 ’

Ne = /u gdeE = (28)
0

2.2. From graphene to carbon nanotubes

The graphene sheet can be simply rolled into a seamless cylinder to form carbon nan-
otubes (CNT). The manner of rolling is described by a chiral vector constructed with
real space vectors as ¢ = vd; +wdy and shown in Fig. 2.2(a). The vectors a; are defined
in Eq. 2.1 and the v, w are integers, such that v < w. The indices uniquely determine
the structure of the CNTs. For example, if v = 0 or w = 0, the chiral vector is parallel
to the A-B bonds and CNTs are called armchair. Those with v = w, the A-B bonds
remain perpendicular to the chiral vector and CNTs are called Zigzag. All other cases
are referred to as chiral CNTs.

Metallic (c) Semiconducting

E
\Z
E

P

Figure 2.2. CNT band structure (a) Hexagonal lattice of graphene rolled into a
CNT around a chiral vector ¢. Adapted from [38]. Periodic boundary condition around
the diameter of the CNT imposes quantization of k. A vertical slice of the graphene
cone at a fixed k£, results in the one-dimensional band structure of the CNT, which
could be (b) metallic if k; = 0 or (¢) semiconducting if k; # 0.

The zone folding approximation introduces an additional boundary condition on the
electronic wave function of graphene. While the parallel component of momentum k;
along the length of CN'T is not affected, the component in the circumferential direction
k1 becomes quantized and can only change in steps Ak, = 2w /7d, where d is the CNT
diameter. The periodicity of k£, results in many one dimensional sub-bands from the
Dirac cone whose energy can now be given as

E"(k)) = Lhopy/(k))? + (k7)?, (2.9)
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where index n denotes the sub-band number and k7 = k% + nAk,. Because of the
small diameters ~ 1 — 5 nm, the excitation energy of CNTs lies in the eV range and
only the lowest subband is occupied even at room temperature. Single wall CNTs are
hence truly a one-dimensional system.

Depending on the magnitude of k9, two kinds of CN'Ts occur. The band structure
realizations can be easily visualized by the vertical slices of the Dirac cones. As shown
in Fig. 2.2(b), if the slice crosses the Dirac point i.e. kY = 0, CNTs maintain the linear
dispersion of graphene and the semi-metallic nature. In contrast, CN'Ts are semicon-
ducting when a slice for finite k; # 0 misses the Dirac point with an energy bandgap
of Ey = 2vpkY. Interestingly, it has been shown that even nominally metallic tubes can
have small bandgaps due to strain, curvature, or electron-electron interactions [39, 40].

2.3. InAs nanowires

InAs is a semiconductor with a direct bandgap energy of 0.4 eV. The nanowires are
simply a 1D realization of the material which can be grown bottom-up by the vapor-
liquid-solid [41] method. These have gained much attention due to large electron mo-
bilities [42] owing to a small effective mass, m* = 0.02m,. The crystal structure of InAs
shown in Fig. 2.3(a) can adopt two configurations, Zincblende (ZB) or Wurtzite (WZ),
with slightly different bandgaps. The close packing follows a ABCABC... sequence for
ZB while it is ABAB... for Wurtzite. Due to similarity in the structure, the formation
energy of the two phases are very similar and sudden changes in the lattice, called
stacking faults, can occur during the growth. These can lead to unwanted potential
barriers and modify the transport properties.

Y e— I I
: 80
In@ ,T
0 3
D
As S\ H-80
I I H-160

Wurzite Zincblende

ne (10" cm®)

Figure 2.3. InAS nanowires (a) Two configurations of the crystal structure of hexag-
onal InAs nanowire. (b) Calculated electron density and conduction band energy for
electron doped case with a density of 10'® cm™ (solid) and the undoped case (dashed)
as a function of radial distance (r). Adapted from ref [43].

Due to large bulk bandgap, the nanowires are generally doped with carriers to have
finite carrier density near the Fermi level. A calculated conduction band energies E and
carrier densities n, for cases of doping and no doping [43] are presented in Fig. 2.3(b).
The quantities show non-uniform dependence against the radial distance r with screen-
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ing lengths ~ 10 nm. Moreover, large doping shifts the Fermi level deep into the
conduction band and hence transport through only electrons can be expected.
The band structure of a bulk semiconductor can be calculated by considering solutions
of the 3D Schrodinger equation for a confining potential U ~ 0, whose solutions are
R (k3 4k, + k2)

E=F ) 2.10
o+ 2m* ( )

The quasi-cylindrical symmetry and small diameters of the nanowires allow us to impose
radial confinement and expand the electronic wave function as

Y= eXp(jkzz) eXp(jl@)Xn,l<T)v (2'11)

where, z is the axial coordinate, ¢ the azimuthal angle. The first part of the wave
function is the plane wave description of free motion along z direction. The second part
describes angular dependence with quantum numbers [ = 0,+1,£2... describing the
number of nodes that the wave function makes in the circumferential direction. The
last part y,,(r) is the radial wave function with subband number n = 1,2,3.. which
depends on [ too. Due to strong spatial dependence of wave function and relative large
diameters ~ 50 — 100 nm in the nanowires, more than one subband can be occupied
even at zero energy. These are hence called quasi-1D systems.

2.4. Different transport regimes

While the magnitude of the Fermi wavelength Ap relative to the device dimension de-
termines the dimensionality of the system, the carrier transport is governed by the
scattering lengths. To this end, a mean free path [,, can be defined as the average
distance travelled by a charge carrier between scattering events. If the system length
L > [,,, the scattering happens several times along the device and the transport is called
diffusive. The scattering can happen at stationary crystal dislocations and impurities.
These kind generally conserve the energy of carriers and are called elastic scattering.
More importantly, ineleastic scattering can happen due to phonons and other surround-
ing carriers. The interaction of carriers with environment is parameterized by a diffusion
constant D which can be related to the Fermi velocity as

D = vpl,, /d, (2.12)

where d is the dimensionality of the transport. Additionally, the momentum scattering
time can be related as [,, = vpT,,. When the temperature of the system is lowered
to sub mK, the scattering from phonons can be drastically suppressed, and the [,, is
limited by the electronic interactions, crystal imperfections and impurity sites. Espe-
cially, for small device dimensions with defect-free crystals, a ballistic regime can be
reached, L < [,,, where carriers can move without scattering. Furthermore, when car-
riers preserve their phase during the time of flight across the device dimension, phase
coherent transport occurs. This leads to interference effects such as weak localization [2],
Aharonov-Bohm oscillations [3] and universal conductance fluctuations [4]. Observation
of these effects in electronic systems is a stepping stone in the establishment of quantum
mechanics within which particles can be described by waves with complex probability
amplitudes ).
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2.5. Quantum dots

Quantum dots (QD) are quasi-zero-dimensional islands. These are subject to the con-
dition that the A is longer than all three physical dimensions. As a consequence, the
wave function is confined in all directions giving rise to discrete energy spectra. QDs are
therefore called artificial atoms [6]. Unlike natural atoms, QDs can be easily tunnel cou-
pled to source, drain leads and capacitively coupled to gate electrodes to change the dot
potential allowing studies of charge transport in a field effect transistor (FET) geometry.
The manifestation of quantization however demands low temperatures ~ 10 mK to 10 K
due the bigger size compared to natural atoms. Moreover, the tunnelling resistances
must be larger than h/e? to obey the Heisenberg energy uncertainty.

Quantum dots have been realized in several materials. Notable systems are two di-
mensional electron gases in semiconductor heterostructures, semiconducting nanowires,
graphene and CNTs. Because of the small device size, self capacitance of the island be-
comes small and the resulting large charging energy provides strong Coulomb repulsion
for the added electrons. The resulting Coulomb blockade of electronic transport is a
universal property of quantum dots. In contrast, shell filling and spin orbit coupling is
dependent on the physics of the host material. In this thesis, CNTs and semiconducting
nanowires constitute the platform to create QDs.

2.5.1. Single quantum dots

To obtain the full energy spectrum of a QD, we need to consider the Coulomb interaction
as well as the quantum confinement. The latter imposes a spacing between the energy
levels 0 E' similar to a quantum mechanical particle in a box situation. For a metallic
CNT, which has a linear dispersion, 6 = hvp/2L. The shell filling of each level is
further governed by the spin degeneracy and the Pauli principle, similar to an atom.
For CNT, valley degeneracy introduces another factor of two.

Effects of Coulomb repulsion can be described within the constant interaction model
framework [6]. This leads to two simplifications. Firstly, the quantum dot can be
assigned a constant self capacitance. Secondly, quantum mechanical excitation energies
E,, are assumed to be unaffected by the electron-electron interaction.

Coulomb blockade

The FET schematic of the quantum dot with gate voltage Vi; and bias voltage Vsp is
shown in Fig. 2.5(a). In this model [44], the capacitive coupling of the dot to source,
drain and gate electrodes leads to a total capacitance C' = Cq + Cs + Cp. Total energy
of the dot with N electrons is therefore

2 N
1
Eioi(N) = 5 —le](N = No) + Y _CiVi| +> E,, (2.13)
7 n=1
with ¢ =G, S, D and N = Ny when all voltages are zero. The first term is the sum of
all electrostatic energies where N changes in discrete fashion and the voltage induced
charge C;V; varies continuously. The last term is the sum over occupied quantized energy
levels. For zero-bias transport properties (Vsp = 0), only ground state transitions need
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Figure 2.4. Coulomb blockade (a) A schematic of the quantum dot tunnel coupled
to source (S), drain (D) leads and capacitively coupled to gate (G) electrode. (b)
A ladder of electrochemical potential energies at zero bias and the dot containing N
electrons. (C) Conductance peaks due to resonant tunnelling at zero bias. The dashed
line represents the Coulomb blockade shown in the panel (b).

to be considered. The electrochemical potential energy of the dot with /N electrons can
be defined as pny = Fiot(N) — Eor(N — 1) which is simply the energy needed to add

the N*® electron to the dot and reads as

e? 1 e
x {N ~ Ny— 2} - |C|0Gvg. (2.14)

It is apparent the the gate electrode not only tunes the electrostatic potential of the
dot but also the electrochemical potential. The changes in V; consequently can modify
the ground state of the system by adding or removing electrons from the dot. The
Eq. 2.14 describes a ladder of electrochemical potentials shown in Fig. 2.4(b) which can
be pushed up or down linearly with V. This motivates us to define a gate lever-arm
given by ag = Au/le|AVyg = Cg/C. Furthermore, the electronic transport can only
happen when the electrochemical potentials of the dot are aligned with those of the
source, s, and drain, pp, contacts. This situation of resonant tunnelling is referred to
as Coulomb resonances shown as conductance peaks in Fig. 2.4(c). In other cases, the
system remains in the Coulomb blockade. The spacing between two Coulomb peaks is
given by the addition energy

pn = En +

2

e
Eadd = N1 — N = ot oF, (2.15)

where the first term is the charging energy E¢ and the second term the quantum me-
chanical level spacing between two energy levels. This means that for a level degeneracy
Jn, addition of first electron to an orbital shell requires both E¢ and d E' while the next
gn — 1 electrons require only the charging energy.

The linewidth of the Coulomb peaks arises from two main contributions. The first
one is the thermal broadening of the fermionic leads which can be suppressed at low
temperatures. The second contribution is an intrinsic broadening due to the Heisen-
berg uncertainty lifetime of the tunnel coupling energies of the source (I's) and drain
(I'p) leads. In the limit I's + I'p > kT, the conductance peaks take a Lorentzian
lineshape [45]

g I'sT'p

G
P (Ao + (Ts + Tp)2/4’

(2.16)

11



2. Theoretical background

where Ae = |e|agAVy is the detuning from the position of the Coulomb resonance.
Within this framework, the height of the Coulomb peaks also provides a direct evidence
of the asymmetry between I's and drain I'p.

Coulomb diamonds

Coulomb blockade is additionally lifted when applied Vsp is enough to contain one or
more QD levels within the bias window. Some of these situations are schematically
shown in Fig. 2.5(a~c) for a fixed positive Vsp or negative ug — pup. Charges can then
hop from one of the leads into the QD level and exit into the second lead. Electronic
transport in such finite bias regimes is therefore referred to as sequential tunnelling
where QD population fluctuates between N and N + 1. Moreover, if the bias is larger
than the additional energy, more than one channel can be available in the bias window
and a parallel transport can happen.
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Figure 2.5. Coulomb diamonds (a-c) Energy diagrams of a QD in CNT at finite
and fixed bias voltage. Arrows indicate the electronic transport. (d) Charge stability
diagram as a function of bias and gate voltages showing four-fold degeneracy. Shaded
areas represent the areas where Coulomb blockade is lifted. Red contours map the
points where either g or up is aligned with the dot electrochemical potential. Symbols
are explained in the text.

The interplay of bias and gate voltages is manifested by the Coulomb diamonds,
shown in Fig. 2.5(d) for a quantum dot in CNT. The four-fold shell filling is shown by
a big diamond followed by three small ones. This behaviour is also a direct evidence
for the simultaneous measurement of charging energy and quantum mechanical level
spacing. Furthermore, the horizontal size of the diamond can be used to calculate the
gate lever arm «¢. Inside the diamonds, charge number is fixed and the system stays
in Coulomb blockade. Outside the diamonds, at least one of the dot levels lies in the
bias window allowing charge transport.

Along the diamond contours, either g (positive slope)or up (negative slope) is aligned
with the electrochemical potential of the quantum dot, as shown by red solid lines in
Fig. 2.5(d). The slopes of these lines can be calculated by considering linear change of
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2.5. Quantum dots

QD levels from the applied voltages. The drain voltage can be conveniently kept at zero.
This leads for the negative slope a relation 0 = %?AVG + %AVSD which yields s~ =
—%‘S;. For the positive slope, QD level follows ug resulting in AVgp = %AVG + %AVSD
and yields sT = C(ii%s The slopes together with the lever arm are sufficient to calculate

individual capacitances.

Excited states and cotunnelling

So far the discussion was limited to ground state transitions. When a large bias is
applied, the transitions can occur between the ground states and the excited states. To
this end, we draw the energy diagram of the QD with the first excited state as dashed
lines in Fig. 2.6(a). The energy needed to add N*'*" electron can now be described as

1y = Bl (N) = Bioy(N — 1) (2.17)

where indices denote the ground states when [i,j] = 0 and the excited states when
[i,j] = 1. The excited states introduce extra conduction channels in the bias window
and may lead to enhanced current. The onset of this process can be seen as the dashed
lines in Fig. 2.6(b) that run parallel to the diamond edges, however stop when bias
drops below |eVsp| < |0E|. The transport process is schematically shown in Fig. 2.6(c)
where pup is aligned with zy’. We note that in this case only one channel at a time can
contribute to the transport, because the charging energy is still bigger than the bias.
In particular, the transition u(])\}arl, which takes the dot from an excited state (V) to a
ground state (IV + 1), is also possible. But the transition gets blocked as soon as the
dot relaxes to the ground state.

(@ ®) pp=py 100 @)
EC (N+1) y " u
o1 N ® J/m\ ~ /  |TTTo1" 00
ELON) (I AT N
o : i
tot OOA 10 >~ ~ MN }(’\ ___._}{ N
uo T 00 4
- - - - - - - - MN
Ne

E&(N"]) L L o S - M’?’YO = D

Figure 2.6. Excited states (a) Transitions between the ground state and excited
states of the QD for a fixed bias and gate voltages. (b) Charge stability diagram with
first excited state of the QD denoted by dashed lines. Darker gray areas represent higher
current. Orange areas denote the inelastic-cotunnelling. (c) Sequential tunnelling via
an excited state denoted by dashed line. (d) An inelastic cotunnelling event. Symbols
are explained in the text.

The preceding discussion described the first order process of the conductance in the
quantum dot. Irrespective of bias conditions, the Heisenberg uncertainty principle
however permits so-called cotunnelling where an electron can leave from the dot to
the drain lead and get repopulated from the source lead within a time ~ A/FEg. This
results in a small current even inside the Coulomb diamonds. If the state of the dot
does not change during the event, the cotunnelling is elastic. In this case the differential
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conductance turns out to be constant and scales as G o< I'sT'p/F2 [46]. In particular,
when the bias is larger than JF, inelastic cotunnelling events start to occur. As shown
in Fig. 2.6(d), the QD can switch from the ground to the excited state during the
cotunnelling event. If the excited state is long lived, it can support sequential tunnelling
till it is blocked again from a relaxation event, yielding a bunched charge transport.
The resulting conductance step can be seen at the border between white and orange
areas in Fig. 2.6(b).

2.5.2. Double quantum dots

If single dots resemble atoms, double quantum dots can be used to create artificial
molecules. Similar to the previous section, we model two charge islands with tunnel
and capacitive couplings to respective electrodes as shown in Fig. 2.7(a). The QD levels
can be tuned with their respective gates, Vg or Vg, bringing them in resonance with
electrochemical potential of the adjacent leads. For simplicity, we discuss only ground
state transitions at zero bias case and highlight the differences from those in the single
dot framework explained in the previous section.

The finite cross capacitances C5, C4 from the gate electrodes tilt the otherwise hor-
izontal and vertical charging diagram of a double dot. More importantly, owing to
the interdot capacitance, the electrochemical potential of the left dot is affected by the
occupation of the right dot and vice versa. Therefore adding an electron to each QD,
even when two dot levels are brought in resonance, cannot happen at fixed gate volt-
ages. These interactions result in a honeycomb pattern of the charge stability diagram
as shown by gray lines in Fig. 2.7(b). The charges on the dots are fixed inside the
hexagons. The crossings of charge configurations (n,m), (n,m + 1) and (n + 1, m) are
referred to as triple points.

In this non-interacting limit of the charge stability diagram shown in Fig. 2.7(c), the
strength of capacitive couplings can be calculated by the distance between the edges of
the hexagonal [47]. Tt is apparent that in the limit of C3 or Cy approaching zero, the
long edges of the hexagons become horizontal and vertical respectively. Moreover, the
separation between the triple points is determined by the C;. The horizontal and vertical
separations are also shown in Fig. 2.7(c) where Cyg) is the sum of all capacitances
attached to the left (right) dot i.e. Crry = Csm) + Ci(2) + Ct + Cua).

In addition to the interdot capacitance, a finite tunnel coupling t¢ can exist between
the dots. This allows de-localization of charges from one QD to another. The effect
becomes stronger especially if the resonant level of one dot is in close proximity to the
other, for example near the triple points. The non-interacting eigenstates ¢, and ¢r
thus hybridize to create bonding and anti-bonding molecular orbitals

’(,Dj: = G¢L + bgbR, (218)

where a and b are the respective weights of the superposition. This results in the
smoothing of the triple points as shown by black solid lines in Fig. 2.7(d). The strength
of the avoided crossing tc can be furthermore seen as the separation of the smooth
triple point from the non-interacting case. In case of very strong tc, the charges are
completely delocalized over two dots and honeycomb pattern evolves into set of parallel
lines corresponding to a large QD tuned by two gates.
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(n+1, m+1)
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Figure 2.7. Double quantum dots (a) Capacitive model of two tunnel coupled QDs
in series. (b) Honeycomb charge stability diagram in a weak coupling limit as a function
of left and right gate voltages. The numbers (n,m) denote the electronic occupation
of left and right QD. (c) Strength of capacitive couplings estimated from the distance
between the edges of the hexagon. (d) Close-up of one of the honeycomb short edge
for large (black) and small coupling (gray) strengths. Insets show energy diagrams at
various points of the honeycomb.

The first order transport can happen only near the triple points, where the electro-
chemical potentials of the dots and the leads are aligned, see the inset of Fig. 2.7(d).
In all other cases, the system remains in Coulomb blockade. However, similar to a
single dot system, cotunnelling processes can contribute to the conductance. These
show up as long edges of the honeycomb, where one of the dot levels is aligned with
the adjacent lead potential. The situation is quite different for measurements of QDs
with microwave resonator where interdot and dot-lead transitions of charges lead can
be detected through capacitance changes ([48], [49], chapter 5).

2.6. Quantum dots coupled to superconductors

Coupling quantum dots to a superconducting reservoir creates a direct conflict between
two very distinct phenomena. Quantum dots as discussed in the previous section,
because of the large charging energy, allow electrons to pass one by one. In contrast,
superconductivity arises from a macroscopic condensation of electrons bound as Cooper
pairs. The difficult marriage of attractive and repulsive interactions have nonetheless
enabled interesting studies of Josephson effect [50], Andreev bound states [13] in the
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previous decade and recently Cooper pair splitting [14] and Majorana bound states [16].
The interplay can be further complicated with Kondo correlations or spin-orbit coupling.
In this section, we review basic properties of S-QD-S systems within a framework of
quantum transport of Cooper pairs under applied bias voltage.

The microscopic model of superconductivity is well understood by the Bardeen,
Cooper, and Schrieffer (BCS) theory. Within this model, the electrons owing to in-
direct attractive electron-lattice interactions overcome the Coulomb repulsion and form
Cooper pairs of opposite spins. At sufficiently low temperatures, the pairs have a high
degree of wave function overlap producing a collective Bose-Einstein condensate at the
Fermi level. In this condensed state, Cooper pairs defy perturbations that are smaller
than the pairing energy. The latter is the energy needed to break a Cooper pair, which
is twice the superconducting gap 2A. The gap further ensures a high cost of momen-
tum scattering and consequently facilitates a dissipation-free flow of current through
the superconductor, also called supercurrent.

At finite temperature or large bias, excitations can be created in the superconductors.
It turns out that the nature of the excitations in the superconductor is the same as the
one in normal metals [51]. Accordingly one has for the density of states gs(E)dE =
gn(x)dx. The only difference is in their energies which are modified to £ = x? + A?
because of the pairing gap. Moreover, every unpaired electron in the superconductor
is equivalent to a missing electron from a Cooper pair. The quasiparticles are hence
described as a superposition of an electron and a hole. Using the two identities described
above, we get

E
gN(O)j/EL,IAQdE’ |E| > A (219)

E)dE =
gs(E) {07 E| < A

where we approximate the normal metal density of states gn(x) ~ gn(0) to be a
constant within few meV around the Fermi energy. In this formulation the excitations
below the gap are simply pushed to the gap edge conserving the total number of states.
Additionally, the gap of the superconductor scales with the temperature T as A(T') =

A(0)y/1 — T'/T. This expression is valid only near T, the critical temperature of the
superconductor at which it turns into the normal state.

2.6.1. Andreev transport

We consider a S-QD-S system and focus on the off-resonant levels of a QD through
which finite-bias tunnelling of quasiparticles is mediated via the I" broadened tails. The
difference of transport from a normal metal case is imposed by the gapped density of
states in the superconductor. The first order transport processes happen only if the bias
|Vsp| > 2A/e, which aligns the filled quasiparticle band of source with the empty one
of the drain lead as shown in Fig. 2.8(a). Such transport leads to conductance peaks
at Vsp = £2A/e. This behaviour including the ones at lower bias, discussed below, is
independent of gate voltage in the regime away from the QD resonance.

At a bias voltage smaller than the pairing energy, higher order processes can con-
tribute to the subgap conductance. So-called Andreev reflection is shown in Fig. 2.8(b)
where an electron like quasiparticle emerging from source is reflected as a hole-like
quasiparticle with negative energy at the drain lead. Consequently, a Cooper pair is
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Figure 2.8. Quasiparticle transport in S-QD-S system Source and drain leads
with BCS density of states are coupled to a quantum dot in off-resonant but large lead
coupling limit to allow transport from the I' broadened tails, shown by the red area.
Lowest order tunnelling processes for (a) bias voltage |eVsp| > 2A, (b) 2A > |eVsp| > A
and (¢) A > |eVsp| > 2A/3. Subgap tunnelling is facilitated by Andreev reflection
wherein an electron or a hole impinging on the superconducting lead is reflected as a
hole or an electron with relative negative or positive energy respectively. These are
shown by green arrows in panel (b) and (c).

transferred to the drain lead at the Fermi level and the reflected hole is relaxed in the
quasiparticle band of the source. In the collective process, charge and energy are con-
served. If the eVgp is smaller than A, the second-order process described earlier cannot
happen anymore. The quasiparticles now need to reflect at least twice to reach the quasi-
particle band. This is shown in Fig. 2.8(c) with the first Andreev reflection creating a
Cooper pair and the second reflection removing a Cooper pair. On decreasing Vsp even
further, fourth, fifth etc. become the lowest order tunnelling process. In general, the
lowest order n of multiple Andreev reflections (MAR) occurs at a bias of Vop = 2A /ne,
n is an integer. The probability for experimental observation of higher order MAR is
however reduced due to the increasing number of tunnelling events needed. Moreover,
the conductance becomes increasingly smaller at larger n owing to a decreasing effective
transmission Tog = T, where T is the single channel transmission in the normal state
of the leads.

Near the QD resonance, behavior of the MAR peaks becomes rather complex [52, 53].
We consider two scenarios. The first regime corresponds to charging energy Ec > A >
I where MAR processes are strongly suppressed[54]. In the second regime Eq ~ A ~ T,
Coulomb effects can be neglected and the system behaves as if the BCS spectral density
of the leads is coupled to a spin-degenerate resonance [52, 55]. In this formalism, MAR
trajectories which connect the resonant dot-level to the superconducting quasiparticle
states can tremendously enhance specific MAR process [53]. To cite an example, if
the resonance level sits precisely in the middle of the chemical potential of the leads,
odd MAR processes, for example the one shown in Fig 2.8(c), benefit from the large
transmission of the central passage. The even processes are not affected and happen in
the same way as for the off-resonance case. Since the dot level is generally gate-tunable,
additional conductance peaks arise near the QD resonance when either the dot level
stays aligned with the Fermi level of the leads or follows the BCS gap edge as an initial
or final state of the Andreev reflection process [53, 55].
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2.6.2. Josephson effect

At zero bias, the Fermi level of two superconducting leads is aligned and transport
via Cooper pairs can happen. So-called supercurrent was first predicted by Josephson
and can be derived from the boundary conditions of the macroscopic Ginzburg-Landau
theory [51]. In contrast to a bulk description of BCS theory, the latter employs spatial
variation of a complex order parameter ¢(r) = [1)(r)|e?®("). In this formalism, |¢)(r)|? is
related to the density of Cooper pairs. Furthermore, the extent of the wave function is
parameterized by the coherence length &. In a compromise with BCS theory, & can be
thought of as the size of a Cooper pair. The Josephson effect demands that the wave
functions of source and lead overlap significantly. The length L of the junction thus
must be much smaller than . This is schematically shown in Fig. 2.9(a). The normal
region in this case is called a weak link, which can also be just a thin tunnel barrier or
a constriction of a normal metal system. Furthermore, two identical superconductors
in Fig. 2.9(a) have the phase difference ¢ = ¢ — ¢, which is zero in case of a perfect
coupling, but can differ for a partial coupling.
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Figure 2.9. Josephson junctions (a) Overlap of Ginzburg-Landau order parameter
near the weak link in a effecting a finite cooper pair density in the normal section. The
magnitude of the supercurrent depends on the relative phase difference. (b) Formation
of supercurrent carrying ABS from the interference of MAR cycles of an electron or
hole excitation in the weak link. (c) Energy of two ABS for different transmission
probabilities of the Josephson junction.

To calculate the magnitude of the supercurrent, we follow a microscopic theory of
MAR [56] for a single channel. We consider a situation shown in Fig. 2.9(b), where
an electronic excitation in the normal region moving from left to right reflects into a
hole upon an Andreev reflection. The hole travels to the left and reflects again into an
electron completing a transfer of a Cooper pair in one cycle. Due to the interference of
infinite cycles, standing wave patterns are formed leading to so-called Andreev bound
states. These are localized in the weak link. The phase acquired in a cycle of single
Cooper pair transport, depicted in Fig. 2.9(b), is given by [56]

Agy =2cos (E/A) — ¢, (2.20)

where E is the energy of the bound state. We have ignored the dynamical phase for
short junctions L < £. There can also exist a process where the electrons travel from
right to left such that Cooper pairs are transferred to the left superconductor. In this
case the phase acquired in one cycle reads as

Agy =2cos (E/A) + ¢. (2.21)
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To satisfy the bound states, A¢; » must be a multiple of 27r. Using the identities above
for the case of perfect transmission, we get the ABS energies for left- and right-moving
supercurrent as F. = +Acos(¢/2). For a general transmission 7 < 1 accounting for
scattering at the two S-N interfaces, the energies are modified to [57]

E: = +A[1 — 7sin?(¢/2)]"/%. (2.22)

These are plotted in Fig. 2.9(c) for different values of 7. It is apparent that at low 7,
two states lie close to the superconducting gap. The supercurrent can be evaluated by
treating charge and phase as conjugate variables [51] to yield

. 2e 8Ei(gb) E:t
= zij . tanh (QkBT) : (2.23)

where the "tanh" factor describes the thermal population of the left and the right moving
supercurrent. At small temperatures and in absence of quasiparticle exchange between
the superconductor and two sub-gap ABS, only the lower-lying branch FE_ carries the
supercurrent. The current further simplifies in the tunnelling limit 7 < 1 into a simple
sinusoidal form

[5 = [C sin(¢), (224)

where I = eA7/2h is the maximum or the critical current of the junction. The phase
difference can be simply tuned by an external magnetic field. The gauge invariance of
the phase difference further requires that [51]

@_26

— 2.2
i (2.25)

where V' is the voltage across the junction. Equations 2.24 and 2.25 are known as the
DC and AC Josephson effects.

In our case, a QD constitutes the weak link which leads to several transport regimes.
If the lead couplings I' > FE¢, A, there is negligible Coulomb blockade and the system
effectively transforms to a S-N-S junction. In the other extreme limit I' < Eg, A,
the system remains in strong Coulomb blockade, no supercurrent can therefore flow.
However at the QD resonance, a coherent tunnelling of Cooper pairs can happen, leading
to supercurrent [58, 59]. In the intermediate regime, I' & Ec &~ A, the system has
enough charging energy to produce blockade, large couplings though can still lead to
cotunnelling processes in the blockade, see section 2.5. Moreover, because two electrons
are needed to sequentially transfer across the dot, the supercurrent is subject to the
parity of the dot occupation [60].

2.6.3. Competing Kondo effect

Just like superconductivity, the Kondo effect is a manifestation of many-body physics.
In a quantum dot, an unpaired electron hybridizes with the strongly coupled Fermi leads
to create a global singlet. Consequently, an additional channel for electron transport is
created via a spin-flip cotunnelling process depicted in Fig. 2.10(a). We stress that the
collective process is coherent and resulting conductance can reach g,e?/h for a dot level
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Figure 2.10. Kondo effect in QDs (a) Spin-exchange assisted cotunnelling event
due to the Kondo effect in the case of normal leads. (b) Zero-bias conductance peaks for
the odd occupancy of the dot. (c) Density of states of superconducting leads together
with Kondo resonance in its normal state. Solid and dashed lines correspond to large
and small Kondo temperatures respectively. Adapted from ref. [62].

with degeneracy of g,. At finite bias, the chemical potentials of the leads are no longer
aligned and the conductance drops. The effect is therefore manifested by a conductance
ridge at zero bias shown in Fig. 2.10(b) for odd occupancy of the dot. The half width of
the resonance at zero temperature is roughly given by the so-called Kondo temperature
Tx. Its analogy to temperature is made to describe a minimum above which Kondo
correlations can no longer occur. Tk can be furthermore related to the charging energy
and total lead coupling as [61].

s
Tx = \/Ecl'/2exp [_SECF‘Eé — 46| (2.26)

where € is the detuning of the resonant level measured from the centre of the Kondo
ridge. Thus, Tk is minimum in the middle of the ridge at ¢ = 0 and maximum at the
crossing of the diamonds at € = E¢ /2.

The situation becomes far more complex when the leads are superconducting. While
the Kondo effect does provide a perfectly transmitting channel for odd occupation for
normal leads, there are in principle no conduction electrons available for screening,
due to the gap, in the superconducting leads. We can distinguish two regimes. In the
limit kgTk < A, Kondo correlations cannot develop suppressing any co-tunnelling, and
thus supercurrent is negligible. For the other extreme kgTk = A, quasiparticle density
of states of the superconductors overlaps with that of the Kondo resonance as shown
in Fig. 2.10(c). The two phenomena now can not only exist simultaneously but also
enhance the supercurrent [50].

2.7. Noise characterisation

So far we focused on the quantum transport in terms of an averaged quantity such
as the mean current or conductance. It turns out that the same underlying physical
process can also generate noise on top of the flowing current and may even provide more
insights [26] that are otherwise not present in the averaged signal. In this section, we
review basic electrical noise characteristics of two-terminal mesoscopic systems [19, 44]
relevant for the experimental results obtained in this thesis.
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Figure 2.11. Current fluctuations (a) A typical variation of experimentally mea-
sured electrical current signal in time. The dashed line marks the mean value (I). (b)
Equilibrium fluctuations of charge carriers in a two-terminal mesoscopic 1D conductor
at a bath temperature 7. A thermal noise is generated despite a zero net current. (c)
Non-equilibrium charge pulses flowing through an opaque tunnel barrier producing shot
noise. Fach pulse represents transmission of a unit charge.

A typical electrical signal varying in time is shown in Fig. 2.11(a). The fluctuations
around the average measured quantity (I) are then AI(t) = I(t) — (I). The noise is
characterized by the current-current correlator given by

O(r) = (AI()AI(t+ 7)) (2.27)

The formalism can be understood in two extreme limits. When the time difference 7 is
small, the auto-correlation reduces to

C(0) = (AI*(t)) > 0, (2.28)

which is simply the variance of the current fluctuations. On the other hand, when 7
is very large, the function converges to zero. This is to say that current fluctuations
at an instant are completely uncorrelated to the fluctuations far ahead or back in
time. The decay of correlation function can be approximated with an exponential
decay C(1) = C(0) exp(—7/7.), where 7. is the decay constant [44].

Given the limited bandwidth of any detector, it is desirable to express such fluctu-
ations by a distribution of frequency components. To this end, the current spectral
density can be defined as

Si(w) = [ o; C(r)e " dr. (2.29)

The frequency in the Fourier transform can be both negative and positive and can be
understood as the emission and absorption spectrum of the system. At relatively low
frequencies |fw| < kT, eVsp, these two processes become indistinguishable, that is
Sr(w) = S;(—w). The total current spectral density S;(w) is defined as

Si(w) = Si(w) + Si(—w) = 2/0:0 C(0)e ™/ Te T dr = W

(2.30)
It is apparent from the expression that S;(w) in the limit of w < 1/7¢ has negligible
dependence on the frequency. The so-called white noise is the regime explored in this
thesis. In the other limit hw > kgT, eVsp it is referred to as the quantum noise. This
is dominated by zero point fluctuations of the electromagnetic environment and thus
low bias dynamics of the system cannot be learned [63].
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2.7.1. Thermal noise

At zero bias, there is no drift of charge carriers through a mesoscopic conductor. There
are still thermal fluctuations of the occupation numbers in the reservoir inducing move-
ment of charges in random directions. Though these always cancel each other on average
producing zero net current, on short time intervals, there could always be more charges
moving in one direction than in the other. So-called thermal noise stems from the
statistical fluctuations of such short interval current (AT%(t)).

The spectral density of equilibrium noise is also called Johnson-Nyquist noise whose
general dependence is given by [64]

! +1 (2.31)
exp(hw/kgT) —1 2| '

Sr(w) = 4hwG

For the low frequency limit fiw < kgT', the noise is described by S;(w) ~ 4kgTG. In
contrast for hw > kgT', the expression simplifies to 2hwG. The latter is a result of the
zero-point fluctuations of the environment, which can be qualitatively understood by
replacing kg7 with Aw/2 in the expression for low frequency limit.

2.7.2. Shot noise

At an applied bias, the mesoscopic conductors are driven out of equilibrium. Because of
the discrete nature of the charge carriers, charges either pass through or get reflected,
producing bursts of random current pulses. What results in the system is so-called shot
noise.

For a quantitative derivation of shot noise, we consider a single channel tunnel barrier
through which a mean current (I) flows at a fixed bias Vsp. This is shown in Fig. 2.11(c)
and can be described by

I(t) =Y ed(t —t;), (2.32)

7

assuming random charge pulses at time ¢;. The noise correlation can be calculated from
Eq. 2.27 and reads in a low transmission limit or the case of infrequent charge pulses [44]
as follows

C(r) = e(I)5(r). (2.33)

The expression can now be plugged into Eq. 2.29 resulting in a zero frequency current
spectral density of
S1(0) = 2e|(1)], (2.34)

which is also called the Schottky formula. The factor of two again stems from the
summation over negative and positive frequencies. The formula is valid for completely
random tunnelling events described by Poissonian statistics. To address the deviations
from these, the Fano factor is defined as

F = S;/2¢|1]. (2.35)

In this formalism, the shot noise for F' > 1 is referred to as super-Poissonian while
it is sub-Poissonian for F© < 1. A generalized response of current spectral density
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2.7. Noise characterisation

for a coherent conductor can be obtained by the Landauer-Biittiker formalism [19].
It is assumed that the conductor can support N transverse modes each with energy-
independent transmission probability 7; in a two-terminal conductor. For fermionic
channels with the maximum conductance of 2¢?/h, the resulting S; reads

. 262 €VSD

N N
S1(0) = =~ |4kpT Y T2 + 2eVip coth (2kBT> STL(1 - Tn)] , (2.36)

where Vgp is again the applied bias voltage across the two terminal conductor. It is
apparent that in the limit eVgp < kT, the coth-term can be expanded as coth(z) ~ 1/z
and the result simplifies to the thermal noise at zero frequency. We generally work at
low temperatures such that eVsp > kgT'. In this regime the coth-term ~ 1 and the
noise is dominated by the shot-noise contribution given by

262 N

S[(O) = QGVSDT ZTn<1 — Tn>. (237)

This suggests that the system produces no shot noise if either all transmission coef-
ficients are one, as in case of ballistic transport or zero, as in the case of no current.
Both cases are intuitive since no randomness is involved in the current. The maximum
shot noise is produced if 7,, = 1/2. Such dependence of shot noise on transmission has
been experimentally confirmed in quantum point contacts [65, 66]. Furthermore if we
assume that T, < 1, a case for a tunnel barrier, the shot noise recovers to the Schottky
formula derived in Eq. 2.35 where we have implicitly replaced the average current by

<[> =~ VSD(2€2/h) ZTn

Information in shot noise

Unlike thermal noise, shot noise provides complementary information to bare conduc-
tance measurements of a mesoscopic conductor as mentioned below. These are hence
also called excess noise. Some of these are also discussed at length in the chapters 7
and 8 in the context of the measurements.

e The shot noise contains information about the charge of particles that contribute
to the current. For example in a S-N junction with a bias voltage smaller than
superconducting gap, the current is carried by Cooper pairs so e* = 2e [23] (chap-
ter 8). Moreover, fractional charge of Laughlin quasiparticles has been confirmed
experimentally [24, 25].

e The shot noise can reveal whether the statistics by the charge carriers are governed
by Fermi-Dirac or Bose-Einstein. If one would measure the cross-correlation of
a beam split current, it will be negative for fermionic electrons and positive for
Cooper pairs which are bosons [67].

e The shot noise can distinguish whether charge transport is diffusive, ballistic or
carried by hot electrons. A metallic 1D wire depending on its length can be in the
hot-electron regime (chapter 7) which exhibits a Fano factor F' = 1/3/4 [68] while
it is 1/3 for diffusive regime [69]. In addition, one can tell if the charge scattering
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2. Theoretical background

is deterministic as in the case of the particle-picture or stochastic as in the case
of the wave-picture [70].

e The shot noise has information about electron-electron interactions. In presence of
Coulomb blockade, for example, charges move in a sequential fashion. Depending
on the number of available channels and transition rates between those, the noise
can be larger or smaller than the Schottky value (chapter 7).

2.7.3. Flicker noise

Another type of current noise is flicker or 1/f noise, the name originating from the
1/ f-dependent spectral density. It is also a non-equilibrium phenomenon and requires
a mean current to flow through a conductor. Though the origin of such noise is debat-
able [71], it is believed to be stemming from charging and discharging of traps in the
current path. The individual traps translate into several noise sources with their own
characteristic correlation decay time 7. defined earlier.

Flicker noise is generally present in carbon resistors or in commercially available
silicon transistors and are only relevant below 10 kHz. Since we measure at 3 GHz,
these are greatly overshadowed by white contributions from the thermal and the shot
noise. 1/f noise, nonetheless, is one of the main limitations behind the small coherence
times of charge qubits.
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3 Impedance Matching

Impedance of a system describes an opposition to the propagation of energy. Every
physical property, whether acoustic, thermal or electromagnetic has its own intrinsic
impedance, limiting the power transferred to a desired target. For example, we consider
a standard voltage source connected to a load, shown in Fig. 3.1. The power dissipated
across the load given by Z1,[Vs/(Zs+ Z1,))? is maximal only when Zy, = Z§ and otherwise
reduced. The asterisk denotes the complex conjugate. It is, however in practice, not
common to have similar values of Z;, and Zs. A detector in the microwave regime
has a characteristic impedance of Z; = 50 ) while the nanodevices in the context
of mesoscopic transport have ~ 100 k2. The mismatch causes a reduction in the
transferred power by ~ (Z,/Zs)?, justifying a need for impedance matching.

The job of an impedance matching is to transform the output (input) impedance
Zout (Zin) seen by (into) the source to Zs (Zp), see fig. 3.1. The condition, for example,
can be met when the intermediate impedance is a geometric mean of the load and
source impedances, Z™ = \/ZsZ, [72]. One possibility is to implement lumped element

resonant LC' circuits where Z™ = /L /C can be arbitrarily tuned. Moreover, the easy
assembly makes them very appealing. However, at the desired operating frequency of
3 GHz and impedance of 100 k{2, matching requires a large inductance L = 120 nH
and a rather small capacitance C' = 24 fF. The latter is extremely challenging to realize
reproducibly due to significant parasitic capacitances from the experimental setup.

Our approach to matching circuits is based on a pair of terminated transmission
lines, called stub tuners [72-74]. In a nutshell, the length of the lines determines the
operating frequency while their difference the matched load. Integration of the devices
on chip further allows the matched loads to be in M{2 range even at GHz frequencies.
Here, a comprehensive theoretical aspects of stub tuners is presented. We first discuss
transmission line, the building block of stub tuners, and its practical realization in a
planar geometry. Few characterization measurements are also provided.

(@) 1 (b) 1
Z()ut_>

Zs Zs Impedance

Z o matching Zy Vo

circuit

m

Figure 3.1. Power transfer (a) Schematic of a voltage source Vs with its intrinsic
impedance Zg attached to a load impedance Z;,. Voltage across load is reduced from Vg
depending on the ratio of two impedances. (b) Use of an impedance matching circuit
to transform the effective impedance of the load to the value of source.
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3. Impedance Matching

3.1. Transmission line theory

A transmission line (TL) is an arrangement of inner and outer conductors to carry
high frequency signals, schematically shown in Fig. 3.2(a). Its uniform cross sectional
dimensions provide a constant impedance and facilitate a guided wave propagation with
minimal reflections. Since their lengths are comparable to the wavelength, the voltages
and currents vary over the distance and a global lumped element description cannot
be applied. The line can however be divided into infinitesimal lengths dx over which
signals can be assumed to be constant. To this end, a lumped element section shown in
Fig. 3.2(b) can be modelled with four parameters R, £, G and C. All quantities are per
unit length. Series resistor R and inductor £ capture the resistivity and self-inductance
of two conductors. The capacitance between two conductors is represented by a shunt
capacitor C while losses from the dielectric separating the conductors are accounted by
the shunt conductance G.

Using the model described above, a standard circuit theory can be applied to derive
the voltage and current distributions along a TL [72]. In Fig. 3.2(b), we define a space
and time varying voltage V(z,t) and current I(z,t) across the infinitesimal segment.
Kirchhoff’s voltage and current laws then lead to circuit relations

dl(x,t)
dt - (3.1)

I(z,t) — I(z + dv,t) = GdzV (z + dz, t) +(3de

V(z,t) — V(x +dx,t) = Rdxl(z,t) + Ldx

In the limit of dx — 0, one arrives at a set of linear differential equations, called
Telegraph equations, that read as

dVC(Zi,t) C RI(nt)— £df(dzi, t)’
(3.2)

dl(z,t) dV(z,t)

e -GV (z,1) _Cidt .

A particular solution can be formed in the lossless case R = G = 0, which is standard
plane wave with time evolution given by e/*!. Here, w is the angular frequency. The
solution can be extended to a general lossy case by separating time and space variations
as V(z,t) = V(z)e’t and I(x,t) = I(x)e’'. These transformations lead to a set of
Helmholtz equations

Vi) — V() =0
1‘82 (3.3)
—1(@) = 7I(x) =0,

where the frequency dependence is absorbed in the complex propagation constant

v =R+ jwl)(G + juC) = a+ jb. (3.4)

The attenuation constant a accounts for an effective loss of the signal while the phase
constant § = 2w/ captures the spatial periodicity with a wavelength . General
solutions of Eq. 3.3 can be formed with a superposition of left (minus superscript) and
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3.1. Transmission line theory

— 1 (x,1) .
@ Outer conductor (b) - YN =I(era’x,z)
| Rede  Ldx
Inner conductor . v

Figure 3.2. Transmission lines (a) A schematic of a transmission line consisting
of an inner conductor separated from an outer conductor by a dielectric. (b) Lumped
element equivalent circuit for an infinitesimal segment dx. Symbols are explained in
the text.

right (plus superscript) moving waves with voltage and current amplitudes denoted by
Vit and I3, respectively, so that

Viz) =V, e " + Ve,
(z) 0 0 (3.5)
I(z) =1e " + Iye”.

Finally a relation between current and voltage amplitudes can be derived with the help

of Eq. 3.2
~

T Rt iwl

This equation allows us to deduce the characteristic impedance Zj of the transmission
line. When comparing with Eq. 3.5, the ratio of voltage and current amplitudes results
in a position independent Z, given as

Vit Vo [R+iwl
Z = — = —— = _— .
T Iy G +iwC (3.7)

For a low loss circuit, which can be achieved with superconductors, the result simplifies

I(z) {VOJFG_W — Ve, (3.6)

to a frequency independent Zy =~ /L/C.

3.1.1. Terminated transmission lines

Effective total impedance of a transmission line terminated with a load with impedance
Zy, can be derived from the boundary conditions of Eqgs. 3.5 and 3.7. We construct a
TL with length d such that the load is located at x = 0. An input impedance Z;, seeing
into the load at x = —d is then given as

V(=d) Vit 4+ Ve
In= i) = P o Ve (3.8)

Additionally, the load sets a boundary condition ensuring

Vol + Vo

Zy, = =7, .
L 0%+—%_

(3.9)
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3. Impedance Matching

Rearranging the two equations, one arrives at

Z1, + Zy tanh(yd)

Zin(d) = .
(4) "Zo + 7y, tanh(vd)

(3.10)

The periodic nature of Z;, in d and w can be understood by the fact that the unmatched
load causes reflection of the propagating wave which then interferes with the incident
part to create standing waves. Z;, for special cases of open and a shorted TL can be
derived by setting Z;, = oo and Z;, = 0 respectively as

Zopen = Zy coth(yd)

3.11
Zshort = Zo tanh(yd). (3.11)

Above derivations show that the impedance of a load can be transformed using a
segment of transmission lines. This property makes the basis for the engineering of our
impedance matching circuits, stub tuners. These are discussed in section 3.3. Addition-
ally, an unmatched load introduce reflections in the system. We can define a voltage
reflection coefficient 'y, as the ratio of reflected amplitude with the incident part

Voo ZL— 2o
FV = ¥ = =
Vo ZL+ 2o

The equation above is a general expression, and not just limited to transmission lines.

In particular, Iy allows a quantitative determination of load mismatches from the
standing wave ratios.

(3.12)

3.2. Coplanar transmission lines

A familiar example of transmission lines is the coaxial cable plugged in the receiver
jack of our television sets. Coplanar transmission lines (CTL) or coplanar waveguides
are a planar analogue of the same. Such circuits are made of a central conductor
separated by semi-infinite ground planes as shown in Fig. 3.3. Because all planar
conductors lie on the same substrate, only a single patterning step is needed in their
fabrication. Due to the large ground planes in proximity, CTLs are well-isolated and the
close packing avoids parasitic capacitances or inductances. In our case, the substrate
consists of undoped silicon with a thin layer of thermally oxidized SiO5 while the metal
conductor is from a thin layer of superconductor. The superconducting film is essential
to minimize conductor losses. Moreover, undoped silicon prevents free charge carriers
to shunt microwaves and minimize the dielectric losses. The role of SiO, is to help the
fabrication process and is explained in the chapter 4.

CTLs are thoroughly described in the reference [75, 76]. All CTL parameters are
functions of the central conductor width S, gap width W and metallization thickness
t. They support quasi-TEM (transverse electric and magnetic) modes i.e. both electric
E and magnetic fields B are perpendicular to the direction of wave propagation. The
currents flow at the edges of the central conductor and ground planes. When the
returning currents in either ground planes are in phase, the mode is even. For odd
modes, the potential of the central conductor does not change while it fluctuates for the
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3.2. Coplanar transmission lines

(a) WS W (b) . H// \\H Vacuum

t film

GP CcC GP B

Dielectric substrate

Figure 3.3. Coplanar transmission lines (a) A top view schematic of a CTL with
a central conductor (CC) and ground planes(GP). The width of the central conductor
and the gaps are W and W, respectively. (b) A cross section profile of electric and
magnetic field of an even mode in the CTL. The thickness of the conductor is ¢.

ground planes [76]. We focus on the transmission line characteristics of even modes.
Experimentally, the parasitic odd mode can be avoided by keeping the ground planes
at the same potential via numerous wire bonds.

As shown in Fig. 3.3(b) roughly half of the field lines lie in vacuum while the other half
in the dielectric substrate. The effective dielectric constant €.z hence can be approxi-
mated by (1+€,)/2, where €, is the dielectric constant of the substrate. All parameters of
CTL can be rigorously derived using conformal mapping [75]. The resulting geometrical
inductance and capacitance per unit length are given by

L, = ’“jl‘)];(((z)) (3.13)
Cs = 460685[—’((((1{]{;)), (3.14)

where €y and pg are the vacuum permittivity and permeability constants, respectively,
and K the complete elliptical integrals of the first kind with k& = S/(S + 2W) and
k? + k" = 1. Moreover, the characteristic impedance can be calculated as

po K(K') 30w K(K)
cocer 4K (k) Jeer K (k)
Since Z, depends on fixed parameters, a standard TL impedance of 50 {2 can be easily

planned. Moreover, CTLs can be widened into a larger launcher pads without changing
the impedance, allowing easy connections with wire bonds.

Zo = (3.15)

3.2.1. Kinetic inductance

Geometric inductance of CTLs accounts for the energy stored in the magnetic field
created by the propagating current. Besides, energy can also be stored in the kinetic
energy of charge carriers in conductors. This leads to a kinetic inductance term, Ly
in series with the geometric value. A significant £y arises when inelastic scattering
time is much longer than the inverse of signal frequency. For normal metals at mi-
crowave frequencies, charges collide frequently; therefore the effect is very small. For
superconducting CTLs, magnitude of £y is derived in the reference [77]

110}

b= 9y

(3.16)
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3. Impedance Matching

where Ay, is the London penetration depth and g, is the geometric factor given by

1 L t +2(S+W)1n W
T T oleR2(ky | 4SSt oW 4(S+2W) | S+2W - Stow

(3.17)

The derivation assumes a uniform current flow in the conductor. Since Ap, implicitly
determines the skin depth over which supercurrent can flow, the formula above is valid
only for ¢t < 2\;,. Because of the strong temperature dependence of the penetration
depth, Lk is also modified. It can be explicitly written as

ggﬂo)\g

B0 = in - @y 1)
where )\ is the penetration depth at 0 K and T, the critical temperature of the su-
perconductor. Surprisingly, the equation suggests the kinetic inductance to increase
at increasing temperature where one would naively guess a smaller kinetic energy due
to decreasing Cooper pair density. The reason lies in the velocity which needs to be
higher to maintain the same current density in case of low number of Cooper pairs. The
characteristics impedance is now modified to

Ly + Ly (T)

Jo =

(3.19)

3.2.2. Superconducting resonators

An open or a short end in transmission lines acts like mirrors causing perfect reflection
of an incident wave. Using two of such discontinuities, a transmission line analogue
of a Fabry-Perot cavity can be constructed. The shortest version of TL resonator
can be formed with the first mirror from open while the other one from short end. The
arrangement forces two boundary conditions. Firstly, voltage (current) amplitudes must
be zero at the short (open) ends. Secondly, the anti-nodes of voltage (current) must be

e ' mm '
Feedline . :

CIT Cli T

Launcher

|Sz[* (0I
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3.096  3.098 3.1
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Figure 3.4. CTL hanger resonators (a) Optical pictures of one of many quar-
terwave resonators, patterned on Nb, capacitively coupled to a common feedline. The
schematic illustrates transmission line representation of the resonators with variable
lengths [; and coupling capacitances C; with a two port feedline. (c¢) A transmission
resonance measurement with a fit to Eq. 3.21 for a Nb hanger.
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3.2. Coplanar transmission lines

fixed at the open (short) end. These lead to resonance harmonics at [ = (2n + 1)\/4,
where n is a positive integer and [ is the length of the resonator. Our motivation for
fabricating and measuring A/4 resonators lies in extraction of attenuation constant «
of CTLs. As explained in section. 3.3, loss plays a crucial role in the performance of
the stub tuner. Other relevant parameters Z; and €.z can be merely calculated from
the formulae provided in the section 3.2.

An optical picture of a quarter wave resonator patterned on Nb is shown in Fig. 3.4(a).
The resonators are meandered to fit their long lengths. Moreover, the distance between
the adjacent CTL is kept at least 7 times than its width (S + 2WW) in order to reduce
parasitic coupling [78]. Because of the characteristic shape, these resonators are also
referred as hangers. The main advantage of this design is the common feedline which al-
lows variable capacitive couplings (at open ends) of many hangers with variable lengths
to allow statistics. The impedance of such transmission line resonators with length [
can be written as

ANES j(jC + ZTLR, (3.20)
where C' is the coupling capacitance and Zr g = Zytanh(yl) for the shorted termina-
tion. The voltage transmission coefficient of the wave travelling from port 1 to 2 can
be quantified with scattering parameter Sy; and is given by 2/(2 + Zy/Zi,) [72]. Using
[ = A\/4 for the fundamental mode, Eq. 3.20 can be Taylor expanded around the reso-
nance frequency fy. The latter contains the dependence on effective dielectric constant
and kinetic inductance. Keeping the first order terms only, So; simplifies to [78]

5"+ 2
1+ j2Qi%

(3.21)

21 =

where §f = f — fo is the frequency detuning , SH" = Q./(Q; + Q.) the depth of
the resonance with internal quality factor @; = (/2«, coupling quality factor Q. =
1/[87(Zy f:C)?] and loaded quality factor Q = QiQ./(Q; + Q.). Depending on the
magnitude of internal and coupling quality factors, two working regimes can be reached.
For Q; > @, system is overcoupled and extraction of @); from fitting is unreliable. We
therefore operate in an undercoupled regime where Q; < Q.. The coupling capacitance
can be numerically simulated using Sonnet, a commercial finite element software, that
solves Maxwell’s equations for planar structures.

Measurements at 4.2 K

We now discuss measurements of such Nb hangers at a temperature of 4.2 K. The circuit
after fabrication and wirebonding can be simply dunked in a helium dewar allowing fast
characterizations, see section 4.5.3. Figure 3.4(b) presents the transmission spectrum
of a fundamental resonance. Using the fit to the Eq. 3.21, we can extract @; = 8000
and Q. = 27000 for the resonator length [ ~ 10 mm. The characterization of low loss
serves a confirmation of good superconducting film, on which one can continue to make
the main circuit, stub tuner, and integrate quantum devices. We however find that the
internal quality factors vary quite a lot from one superconducting film to another and
sometimes even within the same film.
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Figure 3.5. INbN resonators (a) A transmission measurement of a resonance with a
fit to Eq. 3.21. (b) Temperature dependence of the resonance frequency. The solid line
is a fit to Eq. 3.22 which implicitly contains temperature dependence of the London
penetration depth. (c¢) Temperature dependence of the internal quality factor. The
solid line is a guide to the eye.

To establish a good choice of superconductor for our stub tuner circuits, we also
measure resonators from niobium nitride. Transmission spectrum for a NbN hanger
is shown in Fig. 3.5(a). The fit in this case yields @; = 4500 and Q. = 4000. From
statistics, we do not find a clear improvement of (); of NbN over the ones of Nb. The
measurements, however, give more insights into the properties of the NbN CTLs. The
same length of 10 mm of the hanger resonator for NbN yields a f, = 1.8 GHz against
3 GHz for Nb. The down shift is because of a significant kinetic inductance present in
NbN thin films. The temperature dependence of the fundamental resonance frequency
is then given as

11 1
24l [1L, + L(T)IC,

fo(T) (3.22)

and can be seen in Fig. 3.5(b). From the fit to Eq. 3.22, we extract A\ = 550 nm and
a kinetic inductance fraction ar,(0) = £4(0)/(Lx(0) + L) = 0.81. Where we have used
Egs. 3.13 to obtain £, = 411 nH m™! and C; = 175 pF m™' for the CTL geometry
S =12 pym, W = 6.5 um and ¢t = 100 nm. For the same geometry and thickness, we find
Nb films to have much smaller London penetration depth A, = 60 nm and ar,(0) = 0.1.
Kinetic inductance can have a twofold advantage for our circuits. Firstly, a relatively
smaller length is needed to achieve the same desired operating frequency of 3 GHz.
Secondly, higher characteristic impedance leads to a larger measurement bandwidth of
the stub tuner, see section 3.3.4.

3.2.3. Microwave losses in superconducting resonators

Already discussed in the section 3.1, the microwave losses in transmission lines can be
described by a series resistor R and a shunt conductance G. These parameters are
dependent on the choice of superconducting materials and the dielectric substrates.
Though the microscopic origin of these losses is, in general, very challenging to identify,
we can still try to understand their behaviour in different regimes of our measurement
control-parameters, such as temperature and RF input power.
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3.3. Stub tuner

For a NbN hanger, temperature dependence of J; is shown in the Fig. 3.5(c). We
observe almost an exponential decrease of (); in this temperature regime for the most
of our resonators. The thermally excited quasiparticles are, therefore, the main cause
of losses since their population is proportional to exp(—1.767./T) [51]. Coexistence
of normal and superconducting electrons is well explained by a two-fluid model [51].
Below the critical temperature, a direct current flows with no resistance since the current
always takes the lower ohmic channel out of the two. The situation differs for an AC
excitation where normal electrons experience acceleration effecting ohmic losses.

Cooling down the superconducting circuits to 20 mK does not result in an indefinite
increase of the quality factor. The bottleneck is caused by the dielectric losses from
the substrate. These have been shown to result from two level states (TLSs) that sit in
the defect sites of the substrate, and at the interfaces of the metal-air and the metal-
substrate [79]. We see their manifestation in the power dependence of the quality factor.
Because excitation of TLSs tend to get saturated at high input power, internal quality
factor increases with power, against the general trend of power broadening.

Sapphire [80] and high resistive silicon [81] have been widely used as the favourite
choices for the dielectric substrates. Sapphire, more so, because of its superior heat
conductivity [82] allows good thermalisation of devices. Fabrication of quantum de-
vices on sapphire is, however, problematic due to electrostatic discharges. Undoped
silicon is better in this respect because it can still have a residual conductivity at room
temperature. silicon dioxide on top introduces more losses, but a thin film can be useful
for device fabrication.

Various superconductors have been employed in the community for the fabrication of
high quality microwave resonators. The noted choices are aluminium [79], niobium [83],
niobium titanium nitride [84, 85] and molybdenum rhenium [81]. While kinetic induc-
tance in Al and Nb are negligible at 20 mK, it can be comparable to the geometric coun-
terpart for NbTiN and MoRe. In terms of internal quality factor, none present a clear
case of superiority. The choice thus has been mostly determined by their availability
and fabrication needs. For example, MoRe films show better adhesion to graphene [86].
Nb and NbN films are sputtered with our in-house sputtering system. Though NbN
can be useful for its large Lk, we could not get controlled resonance frequencies and
we observe a large spread of aj, between 0.5 and 0.9. The complication arises from a
strong sensitivity of ap, to the film thickness and the sputtering conditions. All circuits
in this thesis are therefore patterned on Nb where a thickness larger than Ap, ensures a
low Ly and reproducible resonance frequencies.

3.3. Stub tuner

Having discussed transmission lines and its realization in a coplanar geometry, we now
turn to the main circuit, stub tuner, employed in this thesis. As shown in Fig. 3.6, it
consists of two terminated transmission lines in parallel with lengths D; and Dy. One
line is shunted by a device of interest with load impedance Zy, while the other is kept
open. The matching operation of the circuit can be explained with a simple analogy to
optics. The T-junction acts as a beam splitter for the incident wave. The split waves
undergo reflections at the line-ends such that for a specific Z;, = Zyjaten, these interfere
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Figure 3.6. Stub tuner (a) Design of stub tuner from two terminated coplanar
transmission lines, one ending with the device and the other with open. Two lengths
merge at the T-junction. (b) The equivalent transmission line schematics of the same.

destructively, back at the junction. This results in a complete transfer of the signal
power to the device even when 2y, > Z,.

3.3.1. Impedance matching for lossless case

For a rigorous quantitative analysis of the circuit, a lossless case is described first. In
this case, analytical solutions of lengths can be obtained for a desired frequency and
matched load. The derivations capture essential properties of the circuit design which
can be then generalized for the lossy case.

Input admittance of the circuit is calculated as the sum of two branches, Yy, = 1/7;, =
1/Zp1 + 1/Zpa, where Zp; can be obtained from Eq. 3.10 for corresponding Z7,. For a
load with explicit real and imaginary contributions Z;, = R+ j X, the impedance of the
load branch Zp; reads as

20, — ZO(R —|—]"X) +‘?ZO tan(ﬁDl), (3.23)
Zo+ j(R+ jX)tan(5D1)

where we have used the propagation constant v = j/3. The admittance of the load
branch can be further separated as 1/Zp; = G1 + jB; where

B R[1 + tan?(8D;)]
- R2+[X + Zytan(BDy))?’

1 R*tan(8D;) — [Zo — X tan(8Dy)][X + Zy tan(5D;)]
Zo R?2 + [X + Zytan?(8D;)] '
For the second branch terminated in open, R can be set to infinite, yielding purely
imaginary impedance

Gy
(3.24)

By =

ZDQ = Zo COt(ﬁDQ) = ]_/BQ (325)

Imposing the impedance matching means Z;, = Z;. This results in the two conditions
for the real and imaginary parts

G1 = 1/Z0 and Bl = —BQ. (326)

The first constraint results in a quadratic equation in tanh(5D1) whose analytic solu-
tions are given as

X £/R[(Z — R)* + X2 / Z,
R — Z

tan(3D1) = — ¢(R, X). (3.27)
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Figure 3.7. Input impedance of a lossless stub tuner (a) The lengths needed to
match at a frequency of 3 GHz. An effective dielectric constant of 6 is assumed. The
arrow denotes the lengths needed for matching 100 k2. (b) Input impedance for a large
frequency range. Dashed lines represent the roll-off points. (¢) Input impedance near
the matching frequency.

The previous equation allows to calculate D; for matching at a desired load Z;, and
frequency fy as

D, tan"*((), ¢>0. (3.28)

C
27 fo\/€oCert

Similarly, using the second constraint Dy can be calculated as

C

Dy=——————tan (B Z). 3.29

If one of the lengths turns out to be negative, for example when ( is negative, \o/2 has
to be added. The general results presented above get simplified if the matched load are
real valued, X = 0. The two principal solutions for R > Z, are then given as

Dl (DQ) = &tanfl E
i” \ Zo e (3.30)
DQ (Dl) = 20 —Otan_l 0

2 2m vV RZO ’

where )¢ is the wavelength at the matching frequency fy. The tangent terms cause
periodicity in matching at length intervals of Ag/2. For a load much larger than Zy, the
two lengths approach \g/4 with one of them slightly longer and the other shorter, as
seen in Fig. 3.7(a). At a desired matching load of 100 k2 and matching frequency of
3 GHz, two lengths turn out to be D; = 10.05 mm, Dy = 10.35 mm. The fabrication
challenge clearly lies in matching large resistances where the length difference becomes
really small. The lengths obtained experimentally can differ from the planned geometric
value due to parasitic effects compensating asymmetrically for two branches. Such
differences in lengths can, for example, arise if the metallic links, from circuit to the
load, deviate from the characteristic impedance Zy. It is hence important that devices
are integrated as close as possible to the circuit.

The input impedance of the circuit can be described by a general expression which

35



3. Impedance Matching

is also valid for the lossy case and arbitrary load conditions

-1

Zy + Zy, tanh(yDy)
ZL + ZQ tanh(le)

Zin = ZO tanh(ng) + (331)

The absolute value of Z;, is plotted in Fig. 3.7(b). In the zero-frequency limit, the
input impedance is the same as the load impedance. The overall response can be
qualitatively understood from a RC filter effect where the roll-off point increases in
frequency with decreasing load. This behaviour is justified since the impedance due to
the series inductance jwl is much smaller than R. In contrast, at large frequencies,
Zin becomes a short causing perfect reflection of input signals. Around the matched
frequency, a band pass filter effect is observed. At the resonance frequency and load
of 100 k€2, Z;, is exactly Zy as expected for full matching. For R below matching it is
always smaller than Z; while for R greater than the matched load, Z;, is larger than
Zy around the resonance frequency.

3.3.2. Reflectance response

Input impedance is a not an experimentally measured quantity. To characterize the
stub tuner circuit, the response to the input signal is recorded in its reflected signal.
The power reflectance is calculated as

Zin_ZO 2
Doy, = (22— 20 3.32
fub (Zm+20> (3.32)

where Zj, is explicitly given by Eq. 3.31. We first discuss the frequency response of [Tsyup|
at different real-valued impedances as plotted in Fig. 3.8(a). The lengths are chosen to
provide impedance matching at a conductance value of Gypaten = 10 pS at 3 GHz, as
explained in the previous section. There are two important observations. Firstly, the
depth of resonance changes significantly for different loads. This is implicitly related to

(b) (c)
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Figure 3.8. Reflectance response to real impedances (a) Resonance spectra of a
lossless stub tuner for different values of load conductance. (b) Calculated variation of
the depth at the resonance frequency against the load conductance. (c¢) The frequency
response of the reflected phase for different loads. The phase at resonance is changed
by 7 across the matched value.
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3.3. Stub tuner

variations in input impedance shown in Fig. 3.7(c). Secondly, the width of the resonance
increases with increasing conductance. For a lossless circuit (1/Q; = 0), total @ is given
by the external quality factor. The load in our case hence acts like a mirror of a Fabry-
Perot cavity with tunable transmission such that the signal loss is proportional to the
conductance. We can moreover calculate the depth of the resonance AI' against the
load conductance at the resonance frequency. A non-monotonic behaviour can be seen
in Fig. 3.8(b). The reflectance reaches unity for either case of very large impedance and
low impedances.

The corresponding phase response for different load conductance is plotted in Fig. 3.8(c).
At 3 GHz, phases are a multiple of m which is consistent with the fact that imaginary
part of Z;, becomes zero at the resonance. Interestingly, the phase jumps by m when
G crosses the matched value. This is because (Z;, — Zy) changes sign depending on
whether the load is below or above matched value. The unique response of reflected
phase together with the amplitude establishes a one to one correspondence between the
magnitude of the load and the complex reflection coefficient.

We now consider the case where the load impedance has imaginary contributions
too. This is relevant for our devices where quantum capacitance and inductance arise
from a finite density of states. For a series RLC' load, the total impedance is given by
R+j(wL—1/wC). The effect of pure imaginary impedance (R = 0) is manifested in the
shifts of the resonance frequency fy. The positive or negative shift furthermore can be
related to the load being inductive or capacitive. The response however can also change
in the resonance depths and widths if the magnitude of the real part is comparable to
that of the imaginary part.

(b)

|AL'[ (dB)

0 10 20

Figure 3.9. Response to complex impedances and losses (a) Resonance spectra
of a lossless stub tuner for different values of load resistance and a fixed capacitance of
20 fF. Dashed line marks the middle of two extreme resonance frequencies. (b) Depth
of resonance against real impedances at different internal losses of the circuit. Markers
represent the same curve in black but offset in GG. Inset shows a circuit equivalent of
the load including losses.

We again consider the case with matching at 100 k2. Figure 3.9(a) shows frequency
response to different complex impedances where load capacitance is fixed at 20 fF. For
3 GHz this translates into a negative imaginary impedance of 1/wC = 2652 Q. We
observe a complex behaviour of resonance frequency, width and depth. Two extreme
cases can be easily visualized. If R > 1/wC| response is dominated by the real part
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3. Impedance Matching

and produces very small frequency shifts. For increasing conductance, the width of the
resonance gets larger while its depth decreases similar to Fig. 3.8(b). In contrast for
R <« 1/wC, the load becomes largely imaginary producing a new resonance frequency.
The width of the resonance in this case becomes smaller at increasing conductance.
At intermediate load conditions, matching is affected equally by real and imaginary
contributions. Two regimes can be qualitatively separated as shown by a dashed line in
Fig. 3.9(a) which also marks the middle of the two extreme resonance frequencies. The
dashed line is also consistent with the resonance response for R = 2 k) where real and
imaginary contributions are almost equal.

3.3.3. Effect of losses

When taking losses into account, one cannot get analytical solutions of lengths to
Eq. 3.31 any more. We hence rely on numerical calculations and minimization functions
to obtain parameters needed for matching at a desired frequency and load.

We calculate the resonance depth from Eq. 3.31 while keeping the lengths D; fixed.
The response to losses for three values of a = (0,0.01,0.03) m~! is shown in Fig. 3.9(b).
We find that responses including losses are merely shifted in G axis relative to the one
with no loss. The shift is confirmed for the case of & = 0.01 m~! by black circles,
representing the same black curve, but with a relative positive offset of 4.1 uS. This
motivates us to define a new quantity Geg = Gress + G such that Gpoe is proportional
to a. The proportionality constant depends on lengths and matching frequency and is
hard to describe analytically. Moreover, for large losses a = 0.03 m~!, full matching is
precluded. This is referred to as the loss dominated regime.

The circuit for lossy case can hence be transformed to a lossless case by simply
replacing the device conductance G' with Geg. In a schematic, this can be viewed as
a loss conductance in parallel with the load. The Fig. 3.9(b) also confirms that full
matching is always possible if the losses are compensated by the difference of lengths
to push up the matching conductance. However, losses also reduce the measurement
sensitivity of the load providing external coupling. This is because the internal quality
factor starts to dominate the loaded quality factor.

3.3.4. Measurement bandwidth

In previous sections we see how the reflectance response can be used to deduce the
complex-impedance of a device. The maximum measurement speed of such measure-
ments is determined by the bandwidth BW of the circuit. To this end, an approximate
expression for the stub tuner’s BW is derived. For simple analytical analysis, we con-
sider the case of a lossless circuit. GG can be simply replaced with Geg for lossy case.
The stub tuner input impedance for = 0 is now expanded as

Rcot(BDy) cot(BDs) + jZo(8D3)
°Zo(BD1)(BD2) + jR(BDy) + jR(BDs) — Zy

Zin = (3.33)

The cotangent terms can be rewritten in terms of the relative frequency Af = f — fy
and D; = \g/4 £ AD, with +(—) sign for the larger (smaller) length. After expanding
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3.3. Stub tuner

for small arguments we get

N T 7 (+AD Af

cot(BD;) ~ cot [2 T 2 ( No/4 - fo)] (3.34)
7w (£AD  Af |
~‘2<A0/4 +fo>'

Inserting Eq. 3.34 into 3.33 and imposing Af = 0 and Z;,, = Z; at the matching
frequency, the length difference can be approximated in the limit R > Z, as

™ ADZ ZO
— R = 3.35
20/4 VR (3:35)

This is in agreement with the solutions derived for the general case in Eqgs. 3.30. The
cotangent terms can be now explicitly expanded in terms of load impedance and match-

ing frequency as
Z A
cot(BD;) ~ £/ EO — ;Tf(;f (3.36)

The approximation of cotangent can be now plugged into the input impedance of stub
tuner. Ignoring higher order terms due to small R/Z, and Af/fy, we arrive at

(M)Z _ 4% _ ;2Z0Af

~ fo TR T R fo

Zin R Zo="—@— —1AF — (3.37)
TR 7 fo

The resulting expression describes an amplitude Lorentzian whose full width half max-
imum (FWHM) is given by Afy = fo%%. The power bandwidth of the stub tuner can
be obtained by simply multiplying A fy with a factor two

4
A fspup = fO;ZOG. (3.38)

The FWHM simply describes an external quality factor of the circuit (4ZyG/7)~! which
is inversely proportional to the conductance, as expected. Moreover, it scales with the
characteristic impedance which can be increased for superconducting circuits with large
kinetic inductance, see section 3.2.1.

3.3.5. Output impedance

So far we have discussed the circuit characteristics from looking into the device. Such
properties are described in the reflectance signals. To understand the characteristics of
signals emerging from the device itself, we look at the transmission properties of the
circuit. To this end, we define Z,,; as the impedance seen by the device towards the
detector, as shown in Fig. 3.10. Using the impedance of a terminated transmission line
from Eq. 3.10, the output impedance can be calculated as

ZT + ]ZO tan(le)

Zou =7 - )
¢ OZ() +]ZT tan(le)

(3.39)
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3. Impedance Matching

where Zr is the output impedance at the T-junction given as

Ze—7 cot(yDs)

B 3.40
1 + cot(vDy) (340)

For the lossless case and real impedances, one can utilize the analytic solutions of
lengths given in Eq. 3.30 to reach at Z,,; = R at matching. To put it all together, at
matching the stub tuner transforms the input impedance to the characteristic Z; and
output impedance to load Z,.

The matching symmetry mentioned earlier is lost in the case of lossy circuits. Full
matching is however always possible from both sides by compensating the losses in the
stub tuner lengths. In the end, the relevant quantity is the power reaching the detector.
Therefore even in the case, Z,,; = R, a lot of signal can be lost due to losses in the
transmission lines.

3.3.6. Transmission function

In this section, an expression for the transmission function of the stub tuner circuit is
derived. To avoid the confusion, the load resistance is now referred as the source. We
again consider the schematic shown in Fig. 3.10 where a voltage source Vg with a real
source impedance R is attached at the end of a stub tuner length. What remains is to
find the voltage drop V(D;) across the detector’s resistor, Z; in this instance.

The wave propagation in transmission lines is derived in section 3.1 and described
by V(x) = Vife ™ + Vi e?® and I(x) = Ife7® + I; e, where voltage and current
amplitudes are related by Z, = Vit/If. The coefficients are subject to the following
boundary conditions

V(0) = Vs — RI(0),
V(Dy — 6x) = V(D1 + 6z) = V(Dy),

D 3.41
I(D1—5a:):I(D1+5x)+V(Z 1), (3:41)
0
I(Dy + Ds) =0,
r L a i

Source Detector

Figure 3.10. Stub tuner transmission A schematic of the stub tuner circuit to
illustrate the voltage transmission from a voltage source with a real impedance R. The
x axis defines the relative positions of the stub tuner lengths with respect to the source
and the detector. Symbols are explained in the text.
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where the positions D; £+ dx denote the immediate left and right of the T-junction.
After a lengthy calculation, one arrives at the voltage coefficients given as

Zy 1
Vi

SR+ ZyTyL + e2Ds [1+ 2coth(yDy)]’ (3.42)
Vot = =V e [1 + 2coth(vDy)],

‘/()_:

where I', = (R — Zy) /(R + Zy) is the reflection coefficient at = 0, when looking into
the source. The voltage transmission function can now be defined as

V(D)  Vite Pr 4 vert
Vs Vs
. 220 eVDl COth(’}/D2>
R+ Zy T + D1 [1 + 2coth(yDs)]

tV(f? R) =
(3.43)

The preceding result is a general expression and valid for lossy cases too. This can
be simplified for a lossless case and a matched source impedance R > Z,. Following a
similar approach of cotangent expansion shown in section 3.3.4, the power transmission
function is approximated as

Zo 1
([P~ H5———. (3.44)

The simplified expression describes a Lorentzian, and provides two useful information.
Firstly, the transmission bandwidth at matching given by the FWHM = 4f,Z, /7R is
the same as the one derived in the case of reflectance, see section 3.3.4. Secondly, the
maximum power density measured by the detector at the resonance frequency is Sy /4R,
where Sy is the voltage spectral density of the source. The same value is achieved if
one gets rid of the matching circuit and changes the impedance of the detector from
Zy to R, a case of simple electrical impedance matching. The case of no impedance
matching can be obtained by setting D; to zero in the Eq. 3.43. The resulting power

(a) 10° (b) ——
2L R (kQ) |
| —200
— s — 100
c 10° S r_ .
= k3 %
N o 1+ E
10"+ . - .
1 1 1 1 1 0 1
1 3 5 2.99 3 3.01
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Figure 3.11. Transmission response to real impedances (a) Output impedance
seen by the device towards the detector. (b) Frequency dependence of the voltage
transmission function for different device resistance.

41



3. Impedance Matching

transmission is then given as ~ (Z,/R)?. The stub tuner hence provides a transmission
enhancement up to a factor of ~ R/Z; within its bandwidth.

For numerical calculations, we again consider a lossless case where stub tuner is
matched to 100 k2. The output impedance described by Eq. 3.39 is plotted in Fig. 3.11(a).
As expected, Z,y transforms to 100 k) at the resonance frequency. On either side of
the resonance, the impedance decreases non-monotonically and reaches a value of Z.
Higher harmonics of stub tuner show the same behaviour, though the maximum value
of Z,,+ monotonically decreases when going away from the matched fundamental mode.
The transmission response is plotted in Fig. 3.11(b). It is apparent that the heights and
the linewidths are both proportional to 1/R. The transmission peak for the matched
case is an upper bound for any matching circuit and irrespective of the matching fre-
quency. Experimentally, one measures power by integrating the spectral density around
a bandwidth. Naturally, the amount of signal absorbed by any detector is critically de-
pendent on its bandwidth.

3.3.7. Figure of merit

As seen in the previous section, the transmission bandwidth (BW) of the stub tuner is
of the order of few MHz for device resistance of 100 k(2. For the case of no impedance
matching, the power spectral density is greatly reduced but a much larger bandwidth
can be integrated over to enhance the signal. One can wonder if there is any benefit of
the stub tuner or any matching circuit with limited BW over a wide band detection.
We attempt to answer this question quantitatively.

The signal power detected over Z, after symmetrically integrating over a total band-
width BW can be expressed as

V(D;)? V2 BW/2
Pow = / (D 4 Vs ity |2 df (3.45)
BW 4y Zy J-BW/2

For a lossless stub tuner with a matched load R > Z;, Eq. 3.44 can be analytically
integrated to arrive at the total power

VZfoZ, _ TR
Paus|Bw = irj;gz ® tan~! (BW ) : (3.46)

If one chooses the FWHM of the transmission response as the bandwidth, 4 fyZy /7R,
the detected signal power at full matching reads as
foVEZ

Pstub|FWHM - Z R2 .

(3.47)

For no impedance matching, the transmission function is ty ~ Zy/R. The detected
power over the bandwidth BW is then simply

VEZ,

Pwideband = BW R2

(3.48)

It seems that the stub tuner provides an improvement in detected power only if f,/4 >
BW. However, a real strength of a successful measurement is captured in the signal

42



3.3. Stub tuner

to background noise ratio (SNR). In our case the amplifiers, needed to overcome the
detection limit of small emission signals, are the main source of the background noise
Sa. SNR can be generally expressed as

SNR =

PBW 1 ng /BW/Z 9
= -5 tv|? df. 3.49
S\BW — S\BW Z, 7BW/2’ vibdf (349)

The BW dependence of the SNR for stub tuner and no matching can now be calculated
with help of Eq. 3.46 and 3.48. While SNR is independent of BWW in case of a wideband
detection, it peaks at zero BW for stub tuner. But the signal always increases with the
BW . To capture the interplay of two quantities, we define a product which in case of
stub tuner reads as

1 V2 7 R 2
SNRstub : Pstub = SABW [ ifgz 0 tan_l (BW i )] . (350)

The product can be maximized by setting its derivative to zero resulting in an optimal

integration bandwidth
4 7,

optimal __
BW = 1'39f07r R (3.51)
Since the bandwidth is always changing with R, fixing this to be the FWHM for the
matched value is always a good rule of thumb.
The efficiency of the stub tuner for different matching conditions can now be compared

with the wideband detection. To this end, we introduce a figure of merit gsng =
SNR matching/ SNRuwideband- The resulting ratio at full matching for BW = FWHM is

T R

E— .02
JSNR 16 Zo (35 )

Stub tuner clearly provides a great increase in the performance of emission measure-
ments since the load resistance R in our devices is much larger than Z,. It can be
shown that the same figure of merit is achieved with an LC circuit [87], however the

bandwidth in this case scales as /Zy/R. The latter can tremendously speed up data
acquisition needed for time-resolved measurements.

3.3.8. Open stub tuner measurements

We now discuss measurements performed on an open stub tuner, Z;, = oco. The CTL
widths of the central conductor and the gap are 12 ym and 6.5 pum, respectively. For
this geometry and substrate properties, Sonnet simulations estimate the line impedance
of Zy ~ 50 Q. The Reflected power at two different temperatures for the circuit are
shown in Fig. 3.12(a). From fitting the resonance curves using Eq. 3.32, we extract
D; ~ 10 mm, Dy &~ 10.2 mm and e.g = 6.3. The small deviations from the geometric
lengths 10 mm, 10.3 mm can be due to a slightly different characteristic impedance Z,
from 50 €. The corresponding losses are found to be o = 0.008 m~! and 0.016 m™*
for T'= 20 mK and 1.2 K respectively. The observed frequency shift is because of the
larger kinetic inductance at higher temperature, see section 3.2.1.
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Figure 3.12. Stub tuner measurements (a) Reflectance power response at two
different temperatures of the same circuit. Solid lines are the best fits to Eq. 3.32. (b)
Corresponding measurements of phase response. (c¢) Calculated depth of the resonance
using the parameters extracted from the fitting in panel (a). Circular markers denote
the respective Gog for two temperatures.

Coincidentally the depth of the resonance is the same for two temperature values,
however the linewidth different with a bigger value at the higher T'. Moreover, the phase
response nearly changes by A¢ ~ 7 around the resonance frequencies. The fitting of
the phase response is tedious because of the need to calibrate the phase evolution in
the coax cables. We therefore rely on fitting the power spectra where background losses
from cables can be easily subtracted by a frequency independent baseline.

The behaviour of phase change by 7 is expected if the load changes its impedance
across the matching point, see Fig. 3.8(c). Since there is no load attached, an analogous
picture can be formed with an effective conductance G.g = G + Gros Which has been
explained in the section 3.3.3. For G = 0, the Gg is purely originating from the losses
of the stub tuner. Using the parameters such as lengths Dy, D, and the dielectric
constant €., the depth of the resonance can be calculated using Eq. 3.32 against Geg
axis. This is plotted in Fig. 3.12(c) which can be used now to find Geg = 3.2 uS and
6.4 S for 20 mK and 1.2 K respectively. The proportionality of Gp.s with internal
losses « further justifies a model where losses can be treated as a shunt conductance
parallel to the device load, see the inset of the Fig. 3.9(b).

3.3.9. Why 50 Q7

There are two criteria that determine the performance of the coax cables - loss and
peak power handling. It turns out that both quantities are dependent on the line
impedance. For air filled coaxes, minimum insertion loss happens at 77 {2 while the
peak power handling, limited by the electric voltage breakdown, occurs at 30 Q [72].
Thus, choice of 50 €2 acts as a good compromise between two criteria. Furthermore to
avoid reflections, most of the instruments and microwave components are also planned
to have the same input or output impedance.
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Device fabrication, measurement
and characterization techniques

Important benchmarks for any device are its exceptional performance, high yield pro-
duction and reproducibility. With nanodevices, imperfect substrate and resist residues
from processing can act as external perturbations and affect all the above. It is hence
imperative that choice of resists for lithography, chemicals for etching and metals for
contacting are carefully made. Moreover, one has to achieve compatibility of one step
of the fabrication with the next such that none of the desired functionalities of the
elements involved are compromised.

We aim to combine stub tuner circuits made of niobium with quantum devices from
carbon nanotubes, InAs nanowires and graphene. For optimal performance of the mi-
crowave circuits, two requirements must be met. Firstly, the loss of the circuit should
be as low as possible to enable load-dominated impedance matching at high resistance,
and to facilitate efficient collection of emission signals. Secondly, the distance between
the stub tuner and the device needs to kept short to avoid RC low-pass filtering ef-
fect from stray capacitance of the link between stub tuner and the device, and high
impedance of the device. In this chapter, we discuss the relevant fabrication methods
to realize hybrid devices that meet the above requirements. We also briefly discuss the
measurement setup. A thorough recipe of individual fabrication steps and details of the
setup can be found in appendices A and B respectively.

4.1. Nb stub tuner

The fabrication of all hybrid devices discussed in this thesis starts with stub tuner.
An undoped silicon substrate with 170 nm of thermally oxidized SiO, on top is first
cleaned extensively with acetone, isopropanol, deionized water and piranha etch (mix
of sulphuric acid and hydrogen peroxide) to get rid of any organic and inorganic dirt.
Undoped substrate is important to minimize microwave losses. The role of SiO, is
explained further below. We then sputter a film of Nb of thickness 100 — 150 nm at a
rate of ~ 1 A/s in an ultra high vacuum (UHV) system with a background pressures
below 107 mbar. We find that films sputtered at lower rates have relatively lower
internal quality factors.

For patterning coplanar transmission lines, gaps need to be etched in the Nb film. UV
mask lithography is employed (unless stated) because of the mm-long stubs involved
and relatively small write-field of our ebeam writer. An important requisite that etching
must meet, is to have smooth and chemically inert surface so that devices do not suffer
from surface defects and roughness. We find that inductively coupled plasma (ICP)
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from Ar/Cly reproducibly produces good physical surfaces of SiOy. After Nb etching,
we briefly etch with Ar and then Oy to get rid of top SiO, surface that could be
chemically different from the pristine one. Ar/Cly etching is however problematic for Si
surfaces because of its three times higher etching rate compared to Nb. Any Nb residues
hence act like a mask for Si, creating pillar like structures. Because of inclusion of Ar
that tends to isotropically etch the resist, the wall profile of Nb is not strictly vertical.
The slanted wall profile is, however, useful for contacting with smaller thickness in the
subsequent evaporation step. Details of design and experimental characterizations of
the stub tuner circuits are provided in the chapter 3.

4.2. CNT devices

CNT growth poses a significant challenge for integration of devices with niobium cir-
cuits. A growth-first approach followed by multiple lithography steps induce a lot of
resist residues and imperfect interface contact. Moreover, the amorphous carbon de-
posited during the growth drastically reduces the quality factor of the stub tuner. A
growth-last approach can lead to clean CNT spectra [88], however high temperatures
~ 900°C involved strongly prohibit the choice of contacting metals and even degrade
the superconducting properties of Nb. We overcome both problems by transferring the
CNTs from the growth substrate to the target substrate on which niobium circuit is
already fabricated.

We describe two methods for the CNT transfer. In so-called deterministic stamp-
ing [89], CNTs are transferred in the last step on a prefabricated chip containing gates,
contacts and circuits. The method allows us to check whether the CN'Ts are metallic or
semiconducting before the completion of the device. Since such transfers are performed
in the ambient conditions, we adopt a second method [87, 90] for contacting materials
such as aluminium that oxidise in air. Here, CNTs are first transferred on the target
substrate and subsequently contacted using standard lithography. We refer to this as a
probabilistic stamping method.

4.2.1. Deterministic CNT device

We first create a pillar structure shown in Fig. 4.1(a,b) to host gates lines and source/drain
contacts. The chip is then wirebonded on a PCB and CNTs are mechanically trans-
ferred using a micro manipulator setup. The process can be monitored with voltage
measurements and repeated until a desired CNT is transferred. The transfer method
thus precludes a fresh start of the lengthy device fabrication process if CNTs are de-
stroyed, for example due to electrostatic discharges.

Bottom gates and contacts

In absence of a global backgate due to the requirement of an undoped substrate, local
gates are needed for tuning the Fermi level. We aim to define narrow gates with small
separation from each other and from the CNT to achieve strong lever arms and sharp
confinement. A SEM image of bottom gates is shown in Fig. 4.1(c) with the cross
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Press down

fork with CNT
pushed down

Figure 4.1. Deterministic transfer of CNTs (a) A SEM image of the final pillar
structure with all relevant contacts. (b) A cross section schematic showing relative
positions of the contacts and gates. (¢) A SEM image of the bottom gates buried in
Si04.(d) Schematics of forks pressing down on and retracting from contacts. (e) Optical
image of the forks aligned and pressed over source drain contacts during the transfer
process. Pillar structure in the recess with source (S), drain (D) and three bottom gates
can also be seen. (f) SEM images of the silicon forks with CNT grown on it. (g) SEM
image of a transferred CN'T on the source drain contacts. CNTs are marked by the
solid arrows.

section in panel (b). The evaporated gates from Ti (5 nm)/Au (35 nm) are recessed
(depth ~ 100 nm) to avoid direct electrical contacts with suspended CNT5.

Recess is produced by a combination of anisotropic reactive ion etching (RIE) from
CF, and isotropic wet etching with hydrofluoric (HF) acid. The isotropic etching pro-
duces slanted profiles, and helps to avoid metal deposition on the walls from the evap-
oration. Wet etching is kept to an essential minimum because it limits the separation
between the gates, especially if the adhesion of the resist is not good with the substrate.
HF can then creep under, and cause a collapse of the resist-bridge between the recess.
Bad adhesion can happen, for example, because of chemical and physical modification
of the SiO, surface from RIE etching. An alternative to HF to is to use CHF3/Os for
isotropic dry etching. We are able to achieve a linewidth of ~ 50 nm and separation of
~ 200 nm. We find that gates with width narrower than 30 nm tend to be destroyed due
to electrostatic discharges and electro-migration. After gate fabrication, source/drain
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contacts are evaporated close to the gate lines. We use Pd of thickness 90 nm as the
choice of metal because of high success with CNT transfer compared to Ti/Au. The
contacts are shown in false colored SEM (blue) in Fig. 4.1(a).

Pillar

Pillars are created by etching the substrate around the active area using RIE. For silicon
etching, a mixture of SFg and Oy is used. SiO, is however etched with CHF3 because
of much slower etching with SFg. Etching can create different wall profiles depending
on the oxygen amount [91]. Higher oxygen ratio increases the etching rate of both the
resist mask and silicon, however reduces the anisotropy. We are able to achieve a pillar
depth of 4 um from a PMMA resist thickness of 1.2 pm.

Growth substrate

CNTs are grown on polycrystalline silicon fork-like structures using iron-loaded ferritin
proteins as catalysts [92]. The poly-Si arms are 2 pm wide and the gap spanned by
the CNTs ~ 8 pum. Growth is done in a chemical vapor deposition (CVD) chamber
maintained at CHy + Hy (155 mbar + 65 mbar) atmosphere and 850 °C for 15 min-
utes. Reference forks with CNTs are imaged under SEM to assess the density of the
tubes and subsequently optimize the catalyst concentration. A low density is needed
to ideally have one nanotube per fork. Growth characterizations on forks are done by
Dr. Matthias Muoth at ETH Zurich.

Transfer process

The steps of the transfer are schematically presented in the Fig. 4.1(d). Just before
transfer, a weak Ar plasma is used to clean the patterned structures to get rid of any
residual organic dirt on contacts. The forks with pristine CNTs, not exposed to any
electron beam or post-processing, are then mounted on a clamp and aligned with the
source-drain contacts using the optical microscope of a micro-manipulator setup as
shown in Fig. 4.1(e). This is followed by pressing the CNT onto the contacts using
three-axis piezo control. The height of the pillar structure determines how much one
can lower down the forks. We find 4 pum to be sufficient to perform the transfer.

CNT preselection

After completion of stub tuner and contacts fabrication, the chip can be already bonded
on a printed circuit board (PCB). This allows successful CNT transfers to be real-time
monitored through voltage biased (200 mV) resistance measurements. Voltages are
then applied to the gates to determine the metallic or semiconducting nature of the
tube. The forks are carefully retracted leaving the nanotube held on the source drain
contact due to van der Waals force. We aim at good transparent contacts, meaning
a low resistance. However, during the transfer the resistance is sometimes too low
indicating that two or more CNTs have been transferred. One can simply apply a large
bias voltage to remove all CN'Ts at once and try again. The assembly hence allows the
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Figure 4.2. CNT preselection during mechanical transfer (a) Conductance as
a function of gate voltage measured in ambient conditions showing features of a narrow
bandgap semiconducting CNT. (b) Evolution of Coulomb resonances for electrons and
holes at at bias voltage of 5 mV in the same device at 20 mK. Note that gate voltage
range is different for two plots.

reuse of the same circuit with different tubes. We obtained 20% yield of transferring a
single tube, with contact resistance generally more than 100 k2 [93].

An example of room temperature characterization for CNT selection is shown in
Fig. 4.2(a). It shows the measured conductance against a central gate voltage. The
conductance dip around zero gate voltage is a feature of a semiconducting CNT [38].
The fact that the dip is rather shallow and does not go to zero, points at a narrow
bandgap. A temperature of 295 K can thus thermally excite charge carriers above
the bandgap. This is further confirmed when the device is cooled down to 20 mK.
The device conductance now exhibits two series of Coulomb peaks separated by a zero
current area due to the bandgap. Left peaks are due to holes, Fermi level in valence
band while right ones are from electrons, Fermi level in conduction band. Asymmetry in
current between two charge states are due to residual doping from the contacts, n-type
in this case. The bandgap fixes a zero charge state on the quantum dot, therefore, exact
occupation of dots can be assigned from counting Coulomb peaks on either side. Using
the lever arm from the Coulomb diamond measurements, the bandgap is estimated to
be around ~ 30 meV which is comparable to the room temperature thermal energy of
kgT = 25 meV, where kg is the Boltzmann constant.

4.2.2. Probabilistic CNT device

The target substrate is prepared by evaporating Ti/Au markers on a SiOy area with
dimensions 200 pm x 200 pum at the end of length D; of the stub tuner [the blue
square at bottom in Fig. 4.3(a)]. The area is created already during Nb etching of
the stub tuner. The markers are patterned with standard ebeam lithography using
ZEP resist to minimize resist residues [94]. This is followed by preparing a stamp
substrate on which CNTs are grown. The stamp substrate is now pressed on top of the
target substrate with help of a mask aligner, resulting in CNT transfer. The device is
completed by evaporating contacts and gates in subsequent lithography steps. Since
we cannot check before the completion, whether devices are working, or if CNTs are
metallic or semiconducting, this stamping method is probabilistic.
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(@)

Figure 4.3. Probablisitic stamping of CNTs (a) A cartoon depicting the stamping
process with the growth substrate on top and the target substrate at bottom. (b) A
SEM image of top view of one of the stamp pillars, red square with edge length 50 pm,
showing a high density growth of CNTs. (¢) An SEM image of a stamped CNT on the
target substrate with markers.

Stamp substrate

The stamp substrate is obtained by creating pillars of 50 ym x 50 pm in area and
4 pum height on the substrate. This is done by first wet etching SiO, from HF and then
etching Si using RIE from SFg and O,. Pillars are separated from each other 50 ym in
a grid of 2 mm x 2 mm area. Highly concentrated Fe/Mo catalysts are spun on the
substrate, and repeated at least five times to have a high coverage. CNTs are Grown
in a CVD chamber with a flow maintained at CHy + Hy (1000 sccm + 500 scem) and
temperature 950 °C for 10 minutes [95]. The recipe results in a high density growth of
CNTs as shown in Fig. 4.3(b).

Stamping process

Stamp substrate is first fixed on a transparent glass plate using a soft glue (undiluted
PMMA 950K) and mounted in the mask-slot of a UV mask aligner. It is then aligned
with the stamping area and pressed together. It is important that the time between
gluing and stamping is kept short so that the glue does not become hard, and horizontal
surfaces could be maintained during the press down. Figure 4.3(c) shows an SEM image
of a stamped CNT. On average, we find 5 straight CNTs of usable length within the
stamping area. This is enough since we can connect only one to the stub tuner. Though
the stamp substrate is opaque, its larger size compared to stamping area accounts
for any misalignment. Few CNTs and catalyst particles can therefore be accidentally
transferred directly to the transmission lines. These however do not create any shorts
because of the oxidized surface of Nb. Alternatively, one can also use transparent quartz
substrate for CNT stamps that could allow better alignment [90]. The pillar etching
process in this case however is more tedious.

The yield of CNT transfer goes drastically down if the stamps are used a second
time. We etch 25 nm of the top SiOs from the stamp substrate using HF and spin new
catalyst for a fresh CNT growth. This way, stamp pillars with clean surfaces can be
reused at least 5 more times till silicon oxide is completely gone. Careful cleaning of
pillars before growth is needed in general to avoid particles that could act as spacers
during stamping and prevent CNT transfer. For the same reason, the catalyst particles
are sonicated for 2 hours to avoid large clusters before spinning.
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4.2. CNT devices

CNT localization and metallization

Individual CNTs are imaged using SEM and located relative to the evaporated markers
in the stamping area as shown in Fig. 4.3(c). To enhance the imaging sensitivity to
the surface, we shoot electron beams with relatively low acceleration voltage ~ 1 keV.
Furthermore, an in-lens detector is used. It is not possible to guess from the image
contrast whether CNTs are single- or multi- wall, metallic or semiconducting, full of
defects or pristine. The nanotubes are hence chosen randomly though we always go
for straight ones which are shorter than 10 ym and appear relatively thinner under the
same imaging conditions.
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Figure 4.4. CNT metallization and quantum dot formation (a) A SEM image
of a probabilistically stamped CNT with source (D), drain (D) contacts and a local gate
(G) electrode. (b) Charge stability diagram of the device measured at 20 mK showing
regular Coulomb diamonds.

After localization, we use standard ebeam lithography to pattern contacts on the
CNT. An example of a CNT device is shown in Fig. 4.4(a) where source and drain
contacts are separated by 300 nm. A side gate of width ~ 50 nm fabricated in the same
lithography step is separated by ~ 150 nm from the CNT. In absence of a global gate,
we rely on the single local gate to tune the dot occupation. Charge stability diagram
for the same device is presented in Fig. 4.4(b). We can see sequential filling of dots
and a regular pattern of Coulomb diamonds. For similar geometries, we find charging
energies in the range of 10 — 20 meV.

The exact occupation of the dot in the absence of a semiconducting gap, however,
cannot be determined. While for semiconducting CNTs, Schottky barriers and their
bandgap [96] help in creating confinements of the quantum dots, it is usually not possible
to know the location of the dots in a metallic CNT. In several devices, with a three
terminal geometry and two CN'T sections, we find only a single dot, tunable with both
side gates. This suggests that the CNT is weakly coupled to the contacts and its orbitals
are not limited to a CNT section but rather spread under the contacts.

4.2.3. Superconducting contacts

We choose aluminium as the choice of superconducting contacts because of its large
coherence length required for Josephson and Andreev processes. In comparison with
normal contacts, superconducting contacts are found to be extremely sensitive to pro-
cessing resist type and steps of fabrication. Moreover, argon-mill cleaning before metal
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evaporation cannot be done because of high risk of destroying the exposed CNT section.
To have good wetting with CN'Ts, we evaporate a thin layer of Pd of ~ 5 nm before Al
The thickness acts as a good compromise between wetting the nanotube and keeping
the Pd proximitized from the superconductor.

We first fabricate a batch of devices where both markers and contacts on stamped
CNTs are processed using PMMA resist. We find that only two out of ten devices show
contact resistance smaller than 500 k{2 at room temperature. We therefore switch to
a cleaner ZEP resist [94] with which the contact yield boosts upto ~ 70%. Moreover,
we find that the resistance of contacts dramatically increase (50 k2 to 1 M) if an
additional lithography step is carried out after Al evaporation. This is probably due
to oxidation of Al during the baking of resist at elevated temperature ~ 180 degrees.
The resistance however does not change for additional lithography steps hinting at a
saturation of oxide formation. We hence perform the Al evaporation in the last step of
the device fabrication and use ZEP to minimize the resist residues.
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Figure 4.5. CNT coupled to superconducting leads (a) Shrinking of the super-
conducting gap in presence of a perpendicular magnetic field, increasing from top to
bottom. Curves have offsets for clarity. (b) Presence of strongly coupled Kondo peaks in
odd (O) and the bare superconducting gap in even (E) charge states. (c¢) Conductance
in the superconducting state divided by the value in the normal state.

For a S-CNT-S device, normalized conductances G/Gy at different perpendicular
magnetic fields are shown in Fig. 4.5(a). Here Gy is the conductance in the normal
state of the Al leads. Quenching of the superconducting gap of 150 peV at 10 mT
is observed in all devices. The gap is smaller than the bulk value of Al ~ 180 peV,
probably due to the inclusion of the wetting layer [97]. A soft gap can result from a
strong tunnel coupling. This is confirmed in the charge stability diagram presented in
Fig. 4.5(b) where Kondo peaks with G ~ 4e*/h appear at the odd occupancy of the QD.
To extract the role of superconductivity alone we divide G in the superconducting state
by its value Gy in the normal state at 10 mT. As shown in Fig. 4.5(c), conductance is
suppressed at zero bias in the even charge state while it is enhanced for the odd case [98].
The competing effect of Kondo and superconductivity is explained in section 2.6.3.

Out of four S-CNT-S devices fabricated with Pd/Al, we find three showing large
lead coupling compared to the superconducting gap. This smears the subgap features.
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However, large coupling is still interesting to study interplay of the Kondo effect and
superconductivity through the shot noise measurements, see chapter 8.

4.3. InAs-Al nanowire devices

Our motivation to using InAs-Al nanowires is threefold. Firstly, these are strictly semi-
conducting, unlike CNTs, which allows for gate controlled quantum-dot confinement,
and provides transmission-control of Josephson junctions. More importantly, their
in-situ epitaxial growth results in a domain-matched and impurity free semiconduc-
tor/superconductor interface [99] which is hard to achieve with CNTs and evaporated
Al contacts. Moreover, in the absence of a wetting layer, larger proximity supercon-
ducting gaps can be achieved.

We receive nanowires from the group of Jesper Nygard. These are grown in the
wurzite [001] direction on an InAs (111) substrate by employing molecular beam epitaxy
(MBE). Gold nanoparticles of diameter 70 nm are used as catalysts [100] for its great
alloying capability and inertness to oxidation. After the nanowires reach a usable length
of 5 — 10 um, growth is stopped by quenching the flux of the precursors and lowering
the temperature to deactivate the catalysts. Without breaking the vacuum of the MBE
chamber, Al is now grown at a low temperature by angled deposition till it reaches
a thickness of 30 nm. A full-shell nanowires with epitaxial interfaces on all facets is
achieved by rotating the growth substrate during Al growth.

4.3.1. Nanowire deposition and localization

The precise orientation and placement of nanowires requires a micro-manipulator setup
with a far-field microscope. Since we aim at a gate tunable Josephson junction with a
simple device geometry, the nanowires are transferred in a easier way as explained below.
The substrate is prepared with markers in the same way as in the case of probabilistic
CNT stamping. We then spin a resist on the substrate and open a window using ebeam

Figure 4.6. Nanowire deposition (a) A schematic showing nanowire dispersion
using a cleanroom wipe (white) in a desired area marked by white dashed lines. (b)
Contrast inverted SEM image of the transferred nanowires, pointed by the solid arrows,
within the area. (c) Localization of the nanowires relative to the markers. (d) A false
coloured SEM image at high acceleration voltage of 10 keV distinguishing the InAS core
~ 70 nm, in green, from the Al shell ~ 30 nm, in red.
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lithography to receive nanowires. Nanowires are first picked up by bringing a piece
of cleanroom wipe close to the growth substrate [101]. The attraction results from
inherent differences in electrostatic charges and van der Waals forces. The wipe held
with tweezers is then blindly rubbed over the resist window and the substrate inspected
under an optical microscope to locate the nanowires. The process can be repeated till
a desired number of nanowires is transferred to the active area. A schematic of the
transfer is shown in Fig. 4.6(a).

After stripping the resist, the transferred nanowires are localized using SEM. An im-
age in Fig. 4.6(b) shows all the nanowires placed within the white dashed square, where
the resist window was created earlier. The transfer method thus avoids unnecessary
nanowires on signal lines without needing any alignment. It is possible to distinguish
the InAs core from the Al shell in the deposited nanowires under high acceleration
voltage of ebeam ~ 10 keV, as shown in Fig. 4.6(d).

4.3.2. NW etching and metallization

To create S-NW-S devices, the Al section needs to be removed isotropically. We litho-
graphically define a mask and wet etch using Transene type D. The rate of etching
is temperature controlled to achieve reproducibility. After etching, samples are vigor-
ously rinsed with deionized water to prevent capillary etching effect along the length
of the nanowire. We find that palladium has a catalytic effect on Transene and entire
nanowire including the core can be etched in a short time in its presence. It is hence
important that contacts are evaporated after Al etching. A SEM image of a typical
nanowire device is shown in Fig. 4.7(a). An etched linewidth ~ 100 nm is readily
achieved. Nanowires are cleaned with in-situ argon milling to get rid of native Al oxide
before contacts from Pd of thickness 130 nm are evaporated. The milling also helps to
get rid of any resist residues and surface defects.

A transport measurement at a bias voltage larger than superconducting gap is shown
in Fig. 4.7(b). The nanowire can be tuned to have electrons with Fermi level in the
conduction band to an insulating state (Fermi level in the band gap). Due to a large
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Figure 4.7. NW device fabrication and characterizations (a) A SEM image
of a NW device fabricated by etching Al junction and evaporating Pd contacts and a
local gate. (b) Gate dependence of current revealing transport only in the conduction
band. (c) Bias dependence in a depleted NW regime showing a hard superconducting
gap. Both measurements are done at the base temperature T'= 20 mK.
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4.4. Graphene devices

band gap regime, a much higher negative gate voltage is needed to reach the hole regime
and hence transport via valence band is not observed. Near the nanowire depletion, a
bias dependence of conductance is shown in Fig. 4.7(c). The transport shows a BCS
type of density of states with a superconducting gap ~ 180 ueV. The reason for the
presence of the hard gap is a combination of defect free interface [102] and a good tunnel
barrier between the superconductors, which provided by a pinched off density of states
in the nanowire.

4.4. Graphene devices

We aim at capacitive coupling of graphene devices with the stub tuner circuit. After
fabricating the stub tuner, a hexagonal boron nitride (hBN)/Graphene/hBN stack is
simply placed at one of the open ends. The transfer method is adopted from the
references [103, 104] with slight modifications. Since the device does not need any
contacts, different stacks can be placed on the same stub tuner circuit. Firstly, a
4 x 4 x 1 mm? polydimethylsiloxane (PDMS) layer is placed on a glass slide. On
this, we prepare a thin layer of polycarbonate (PC) using pipette drips pressed with
another slide. After PC hardens in air, the sacrificial slide is carefully removed. hBN
is mechanically exfoliated on a substrate, aligned with the PDMS of the glass slide and
pressed together till hBN is transferred. The new slide shown in Fig. 4.8(a) can now be
used to pickup other graphene and hBN crystals.

Graphene intended for pickup is now exfoliated on different SiO, substrate and lo-
calized using optical microscope. This is fixed on a chuck and aligned with respect to
hBN of the newly made slide in a transfer microscope. After bringing them in contact,
the chuck is heated to a temperature of 80°C. The heating further increases the contact
between PC and the substrate. Heater is then switched off causing PC film to slowly
retract from the substrate while graphene is picked up in the process. In a similar
way, a second hBN layer is picked up forming a hBN-graphene-hBN stack hanging from
the PC film, see Fig. 4.8. The success of the method lies in the fact that the van der
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Figure 4.8. Graphene stack tansfer (a) A schematic of graphene pick up from a
substrate using glass slide with facing down hBN crystal, which is exfloliated on a PC
layer in an earlier step. (b) Stack release on the target substrate heated to an elevated
temperature. (c) False colored SEM image of a hBN-graphene-hBN stack near the high
impedance end of a stub tuner after the transfer. Note that the sequence of the pickup
is reversed on the transferred stack.
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Waals force between the atomically flat hBN and graphene is stronger than between
the graphene or the hBN and the rough SiO, substrate.

In the next step, the stub tuner substrate is fixed on the chuck and the deposition of
the stack done. Here again, the stack is brought in contact with the substrate and the
chuck is now heated to 150°C. High temperature melts the PC and PC-stack is released
on the substrate. PC is removed by dissolving it in chloroform. We found 50 % success
of stack transfer on Nb as opposed to almost 100 % on SiO, substrate. This is expected
because of a larger roughness of Nb film. The final stack can be etched with SFg/Ar/Ox
to create well defined shapes. All stack-transfers have been done by graduate student
Simon Zihlmann from our group.

4.5. Measurement setup

A requisite of measurements with superconductors and quantum dots is to cool down
the devices to milli-Kelvin temperatures. This ensures small thermal energies so that
charges stay in their ground state at equilibrium. In our case, T. of Nb and Al is
~ 9 K and ~ 1 K respectively, while addition energy of quantum dots ~ 15 meV. With
help of a dilution refrigerator we can reach temperature of 20 mK which is two orders
of magnitude lower than the smallest energy scale, the gap of Al. However, smaller
phonon-electron coupling at lower temperatures prevents cooling of electronic devices
to the base temperature. Special arrangements are therefore made in the filtering and
thermalisation of electronic and microwave components.

4.5.1. Dilution refrigerator

We customize a cryogen-free dilution refrigerator from Oxford Instruments to facili-
tate measurements of microwave reflectometry, emission noise and direct current. The
fridge offers plenty of space at cold plates to accommodate bulky RF components. Im-
portantly, a closed *He circuit precludes regular filling and provides precooling of the
fridge in place of a conventional liquid bath. Its bottom loading option is furthermore
useful in sample exchanges without the need for a full warm up and shields removal.
The fridge is equipped with a vector magnet with fields reaching 1 T in all three di-
rections. We find that a field strength of 150 mT is already enough to quench the
superconducting state of Al even when applied parallel to the film while not causing
too much the losses in the stub tuner.

A photograph of the cryostat without shields and magnets is shown in Fig. 4.9(a).
There are five different stages namely PT1, PT2, still, cold plate (CP) and mixing cham-
ber (MC). Each stage is thermodynamically controlled to have distinct temperatures
which decreases from top to bottom. Moreover, metallic shields attached to each stage
prevent heat radiations and vacuum suppresses heat exchange. The fridge operates in
two closed cooling circuits. The precooling is done by a pulse tube and an exchange
gas from helium brings all the stages to an intermediate temperature of ~ 10 K. In the
second part, a mixture of *He and “He is condensed into a pot at MC and continuously
circulated using a pump. Endothermic movement of *He through a phase boundary
created with “He cools the fridge down to 20 mK.
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Figure 4.9. Oxford Triton dilution refrigerator (a) The bottom loading cryostat
without any shields and magnets. There are five cooling stages. Arrow denotes the
docking station where the sample puck is mounted. (b) The sample puck with DC and
RF cables leading to the sample holder. (c¢) Side view of the puck with the metal shield.
Part on the left with SMP and DC nano connectors connect to the docking station with
counter connectors (not shown). (d) A sample holder PCB with a wire bonded device.
Images are adapted from reference [87].

The devices are wire bonded on a PCB containing SMP and nanoconnectors as shown
in Fig. 4.9(d). This is then mounted inside a puck and closed with a metal shield. The
puck is plugged into the docking station of the cryostat which has counter connectors
leading to the top of the fridge via DC loom and RF coaxes. The bottom loading of
puck can be done after closing all the shields and even with a running precooling circuit
of the fridge. Average cool down time of the fridge with (without) magnet is 24 (48)
hours. The sample exchange takes roughly 12 hours mostly because of the need to
collect the helium mixture before the transfer and condense it back afterwards.

4.5.2. Fridge wiring

A comprehensive fridge wiring is shown in Fig. 4.10. Input RF signal from a vec-
tor network analyzer (VNA) travels through a series of attenuators at each stage of
the cryostat before reaching the sample. Attenuators serve three important purposes.
Firstly, black body radiation leaking from high temperature to the low-temperature
side is damped. Secondly, a galvanic connection between the inner and outer connector
provides a thermalisation of the inner conductor. Thirdly, these provide impedance
matching and prevent standing waves. Stainless steel coax cables are used to connect
components from one stage to the next because of its small heat conductivity.
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At MC stage, a directional coupler further attenuates the input signal by 20 dB and
creates a separate path for the reflected signal. From the directional coupler to the
sample, both lying on the MC stage, copper coax cables are used for its exceptional
thermal conductivity. Together with losses from coax cables (~ 2 m long), the input
signal is roughly attenuated by ~ 72 dB from the value at top of the fridge. The
reflected RF signal then passes through a couple of circulators before reaching the
cryogenic amplifier sitting at 4 K. Circulators prevent the noise of the amplifier from
reaching the sample. Their third ports are terminated by cryogenic 50 () resistors.
Presence of the first circulator at MC stage is important to ensure that the thermal
noise sent down to the sample by the 50 {2 resistor is minimal.
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Figure 4.10. Fridge wiring A sketch of components utilized in device measurements
of RF signals and direct current. For reflectometry measurements, a vector network
analyser records the reflected power and phase. For noise measurements, input line is
not connected and output power measured using a spectrum analyser.
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The cryogenic amplifier has a gain of 35 dB and a noise temperature of 5 K at 3 GHz.
The output signal is then multiplied with the input by VNA to perform a homodyne
detection of the reflectance. Noise measurements on the other hand do not need any
input RF signal. Output power is then measured as the power dissipated across a 50 2
resistor by a spectrum analyser. Simultaneous DC measurement is facilitated by a bias
tee placed at the MC stage of the cryostat. Source/drain biasing is provided via the
offset voltage of an I/V converter and current measured with a digital multimeter. DC
loom connects to the source of the devices while drain is connected to the ground plane
of the transmission lines to effect immediate RF grounding of the device. However,
the difference in the material of the lines through which electrical current flows and
returns, results in a Seebeck voltage of 6.9 meV. All measurements presented in following
chapters have been corrected for this offset. Moreover, we find that applying a low-
frequency excitation to the I/V converter and recording the voltage with a lock-in
produces extremely noisy results, probably due to ill defined DC ground. One way to
circumvent aforementioned issue is to use a second bias tee on chip next to drain. This
way, RF is still grounded via a large capacitance while DC part can be fed into the
same loom cancelling any thermal voltage and creating a well defined current path.

Filtering of high temperature radiation for DC lines are done at two stages. Already
at room temperature, commercially available pi-filters provide a low pass filtering above
10 MHz. More importantly, at the MC plate, each line is connected to a silver epoxy
filter rod. This consists of a copper core of diameter 3 mm around which one meter of an
isolated Cu wire is wound around and then covered with silver epoxy [105]. Inductance
of the coil together with the stray capacitance ~ 2 pF lead to an LC filtering effect
with a 3 dB point at 6 MHz. Small skin depth at high frequencies reduces the current
cross-section and further contributes to the filtering. High surface area of the filter and
good thermal conductivity of silver also provides a thermalisation of the DC lines. This
is confirmed using a Coulomb blockade thermometer, from Aivon, containing 33 tunnel
junctions in series. Here the temperature can be deduced from the width of the conduc-
tance dip in Coulomb blockade [106]. We obtain an electronic temperature of 30 mK
at the base temperature of the cryostat. The epoxy filters are made by Dr. Thomas
Hasler. The author contributed to its installation and experimental characterizations.

4.5.3. RF dipstick

For faster characterizations such as critical temperature and quality factors of our cir-
cuits from niobium film, measurements can be performed using a dipstick. Moreover,
cryogenic properties of microwave components can be checked before its installation in
the dilution refrigerator. A photograph of the dipstick is shown in Fig. 4.11(a). It is a
hollow stainless steel tube, housing two rigid steel coax cables and DC lines leading till
its head. Each RF line provides an attenuation of ~ 12 dB at 3 GHz. At the bottom,
the sample box is mounted to the steel lines with SMA connectors of hand formable
coax cables. The sample box can be covered with a lid and also enclosed in a copper
can to prevent its direct contact with liquid helium.

To cool down, the dipstick is simply lowered into a *He Dewar. The sliding seal around
the steel tube prevents rapid fall of the dipstick into the Dewar and allows a slow cool-
down, important for a low consumption of He. It takes approximately 30 minutes to
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Figure 4.11. RF dipstick (a) A photograph of the dipstick. The dashed red box on
right shows the sample housing with a copper can while the left part, head, contains
two RF and several DC connectors in yellow case. (b) The sample housing showing a
sample box connected to two SMA connectors. (c¢) The sample box after removing the
lid showing wirebonded hanger resonators.

reach the base temperature of 4 K. The temperature can be further monitored using
the thermometer installed next to the sample box. Though there is no heater, the
temperature of the sample can be increased by lifting the dipstick upwards. In the end,
a temperature of 4 K is well below the critical temperature of Nb to allow measurements
of A/4 hanger resonances (see chapter 3) or spurious modes in the spectrum. This is
important for preselecting the Nb film or the circuit design before a complete device is
fabricated using them and measured in the dilution refrigerator.

Reflectance and transmission measurements of RF circuits are performed using a
VNA without any amplifier. In absence of circulators and attenuators, reflectance
signals suffer from a background of standing waves. This can be calibrated by replacing
the sample with 50 €2, short and open terminations at room temperature. Fortunately,
the setup properties do not change a lot upon cooling down to 4 K and the calibration
works well at low temperatures too.
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5 Reflectometry of CNT Quantum
Dots using GHz matching circuits

Coupling mesoscopic devices to microwave circuits offers a significant increase in band-
width and signal-to-noise ratio. These facilitate fast non-invasive readouts important
for quantum information processing, shot noise and correlation measurements. In par-
ticular, carbon nanotubes (CNT) have recently demonstrated their potential as low
disorder one-dimensional electron systems [11, 93], which have been used to probe the
physics of spin-orbit [107] and electron-phonon coupling [108] as well as to perform ini-
tialization and manipulation of spin qubits [12]. Carbon nanotubes suspended over local
gates not only offer a decoupling from the surface but also mechanical resonances with
high quality factors [109], creation of arbitrary local potentials and tight confinement
with charging energies in excess of 50 meV [110].

In this chapter, we demonstrate the coupling of locally tunable CNT quantum de-
vices to an impedance-matching circuits based on superconducting transmission lines.
Different to previous works [111-114] where half wave resonators are employed for dis-
persive and a minimally invasive measurement, our circuit is aimed at providing an
efficient channel to transfer (collect) microwave radiation into (from) a quantum de-
vice. Additionally, the circuit offers bandwidths (BW) in the MHz range even for
device impedances on the order of M{2. These features, on one hand, allow us to per-
form high BW measurements for deducing both conductance and susceptance changes
in the quantum device at GHz frequencies, and on another hand, provide near unity
collection of emitted radiation power for fast shot noise measurements. We start with
basic reflectometry characterizations of the stub tuner resonances. Two working regimes
of the stub tuner, namely load-dominated and loss-dominated are elucidated. Reflec-

VNA

Figure 5.1. Measurement setup for reflectometry SEM image of a CNT device
fabricated using probabilistic stamping and subsequent evaporation of contacts and a
side gate. The device is coupled to a stub tuner with transmission line lengths D; and
D,. Reflectance amplitude and phase are recorded by a vector network analyser. A
bias tee facilitates simultaneous DC measurements.
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5. Reflectometry of CNT Quantum Dots using GHz matching circuits

tometry measurements are then presented on single, double and triple quantum dots.
All devices presented here are fabricated using stamping techniques explained in the
chapter 4. In particular, double and triple dots are realized on a device obtained from
deterministic stamping. All circuits are patterned on a 150 nm thick Nb film, sputtered
on an undoped Si substrate with 170 nm of SiO, on top, using photolithography and
subsequent dry etching. The central conductor of the transmission line is 12 pym wide,
while the gaps are 6.5 pm wide. For this geometry, Sonnet simulations yield the line
impedance of Zy ~ 50 2 and effective dielectric constant of €. ~ 6. Spurious microwave
modes due to the T-junction are suppressed using on-chip wire bonds.

5.1. Matching at high impedance

The measurement setup for reflectometry is presented in Fig. 5.1. The source contact of
the CNT is connected to the central conductor of length D; while the length D5 ends in
open. The drain contact is contacted to the ground plane of the circuit. Simultaneous
RF and DC measurements are enabled by a bias tee. Reflectance spectra for different
Gont are plotted in Fig. 5.2(a). For increasing Genr, the depth of the resonance
increases and goes down to —30 dB for Genr = 6 uS signifying a complete transmission
of the applied input power. Alternatively, at this conductance the circuit effectively
transforms the impedance of the CNT device close to 50 2. An interesting feature
to note is the change in the reflectance spectrum when Gent is negative. Here the
depth and bandwidth of the resonance decrease. This behaviour of negative differential
conductance imitates an effective smaller microwave loss of the circuit.

We describe the reflectance T' = [(Zi,e/? — Z4) /(Zin€’® — Zy)]?, where the phase ¢
accounts for standing waves from the measurement setup and the input impedance Z;,
derived in chapter 3 reads as

ZO + ZCNT tanh(’yDl)>1 (5 1)

Zin = Zy | tanh(yD
0 < anh(yDs) + Zont + Zo tanh(yDy)

with v = a + i/ the propagation constant, o the attenuation constant, 8 = /eg2nf/c
the phase constant and ¢ the speed of light. We first fit the resonance in the Coulomb
blockade by setting Geont = 0, yielding Dy = 10.16 mm, Dy = 10.52 mm, o = 0.019 m ™!
and €. = 5.9. These parameters are now fixed and resonance spectra outside the
blockade fit to extract Genr. This is shown in Fig. 5.2(a) for Genr = 6 pS validating the
preciseness of the extracted quantities. Using the extracted parameters, the resonance
depth can be calculated as a function of Geg and Gont as shown in Fig. 5.2(b). The
calculations yield a Gyfaten &= 15 pS with Gent = 7 1S and the rest of Geg contained in
losses GLoss. The theoretical resonance bandwidth given by (4/7) f; ZoGyaten =~ 2.8 MHz
is also in agreement with the measured full linewidth at half maxima of 2.6 MHz near
matching. Frequency shifts of the order of 100 kHz corresponding to 100 aF can be
attributed to the quantum capacitance of the CNT [115].

Figure 5.2(b) also captures the effect of microwave losses on the stub tuner response.
Especially, if Gl is larger than Gypaien, full matching cannot be achieved at any
positive Genr. This is called the loss-dominated regime. We observed several samples
to display such behavior. An example is shown in Fig. 5.2(c) where the resonance depth
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Figure 5.2. Impedance matching in CNT devices (a,c) Measured reflectance
response versus frequency in quantum dots formed in CNT for two different hybrid
devices. Solid curves are least square fits to Eq. 5.1. (b,d) Numerically calculated
reflectance at corresponding resonance frequencies using the stub tuner parameters ex-
tracted in blockade. Plots in panels (b) and (d) correspond to load- and loss- dominated
working regimes of the stub tuner.

strictly decreases upon increasing Gent. By performing a similar fitting in blockade,
we extract D; = 10.56 mm, Dy = 10.44 mm, o = 0.008 m~!. Despite a lower loss
compared to Fig. 5.2(a), the sample is in the loss dominated regime due to a lower
GMaten = 1.6 puS compared to Gpess = 3.2 pS which is set by the length difference of
D; and Dy. We note that the designed length difference for this case is 300 um. We
attribute the differences between the designed and extracted quantities to the deviation
of characteristic impedance from 50 €2. The latter happens at the links of source/drain
contacts to the RF lines changing the effective length of the transmission lines and can
be compensated for in the design.

5.2. Single quantum dot regime

We now perform simultaneous measurement of direct current and reflectometry at a
fixed frequency near the resonance. Such measurement namely dispersive readout is
often employed in circuit quantum electrodynamics (cQED) [112] relying on frequency
shift of the resonance. In our case there is an important difference for the phase mea-
surements which cannot be directly related to frequency shifts. This is because a change
in conductance alone can produce a different effective input impedance seen at the T-
junction and produce phase changes, see the section 3.3.2 for more details.

Figure 5.3 shows simultaneous measurement of direct current I, change in reflectance
amplitude I' and phase ¢. Series of Coulomb diamonds can be recognized in each
map. The charging energy of 10 meV is typically found in several samples with similar
geometry. The difference of the reflectance plots with respect to the current plot is due
to the fact that reflectometry probes differential conductance. One can alternatively
think of this as a lock-in measurement done at GHz frequency done with relatively small
power, -110 dBm (corresponding to an AC bias of 0.7 xV), while still maintaining a
good signal to noise ratio. We observed signs of photon assisted tunneling in current at
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Figure 5.3. Charge stability and RF reflectometry of single quantum dots
Vi and Vsp color maps of simultaneously measured (a) direct current (b) reflectance
amplitude and (c) phase near the resonance frequency. RF input power of -110 dBm is
applied. The qualitative differences in reflectance plots with the DC plot is due to the
fact that RF probes differential conductance.

RF input power larger than —90 dBm [113]. Here, a large oscillating bias can facilitate
a resonant tunneling of charges across tunnel barriers [116]. The possibility to measure
at low power is an important requisite in the context of quantum electrodynamics.

While the stub tuner is designed to match at a single conductance value, the re-
flectance plot of the single dot shows good RF sensitivity to a range of G values. In
particular, low current features such as excited states and inelastic cotunnelling are
clearly visible in both amplitude and phase plots. This is despite the fact that the stub
tuner operates in a loss dominated regime with maximum depth of the resonance in
the Coulomb blockade. Since reflectance can be performed with a larger bandwidth,
we gain a faster readout method to characterize our devices.

5.2.1. High frequency conductance

The maximum speed at which conductance can be measured is set by its RC' time
constant. For a typical R of 100 k2 and stray cable capacitance of 1 nF, the cut off
frequency f. = 1/(2rRC') comes to be few kHz. We saw in the section 5.1 that use of
stub tuner can push the measurement bandwidth to MHz. In the following, we show
how the reflectance amplitudes can be directly converted into conductance values using
the relevant parameters of the stub tuner. One, however, needs to be careful that the
frequency shifts are negligible to validate the assumption of changes in |I'| coming solely
from conductance changes. Moreover, one can see from Fig. 5.2(b) that the same depth
of resonance can correspond to two different conductance values, one before and one
after the matching. In this case, the distinction between the two values is made using
the unique phase response, see section 3.3.8.

We first fit a resonance spectrum in the Coulomb blockade [Inset of Fig. 5.4(a)] to
get the relevant parameters Dy, Dy, €c, . We can then calculate changes in |AL'| at the
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Figure 5.4. DC and RF conductance (a) Inset: Fit of a reflectance response in
the Coulomb blockade. Dashed line shows a background slope. Main panel: Calculated
reflectance amplitude versus Gont at the resonance frequency. (b) Grayscale plots of
conductance extracted from panel (a) and directly deduced from the numerical deriva-
tive of direct current. (c) and (d) Cuts of G in panel (b) marked by dash lines show
an excellent comparison between high frequency and low frequency extractions of the
differential conductance.

resonance frequency as a function of Genr, as shown in Fig. 5.4(a). Note that a slope
resulting from standing waves in the setup needs to be taken into account as well. We
then back-convert |AT'| in Fig. 5.3(b) to a conductance map shown in Fig. 5.4(b). The
numerical derivative dI/dV is also plotted side by side to show a direct comparison of
features. One can qualitatively observe similar contours of Coulomb diamonds, excited
states and inelastic cotunnelling. We further take cuts from two conductance maps at
fixed source drain and gate voltage. These are plotted in panel (c) and (d) showing
an excellent overlap. Such reliable high-bandwidth extraction of G at GHz frequencies
holds promises for probing quantum charge-relaxation resistance, which can deviate
from its usual DC counterpart described by the Landauer formula [117, 118].

The high bandwidth of gigahertz resonant circuits has been exploited to perform fast
readout of double-dot stability diagrams. Using a Josephson parametric amplifier, a
team from Jason Petta group in Princeton could perform such measurements in just
20 ms [119]. In our group, we have not completely utilized the large bandwidth so
far. This is because of lack of equipments such as a fast analog-to-digital converter
and buffered readout with gigasamples per second. The high frequency extraction
of GG nonetheless provides a good check for the validity of the stub tuner parameters
needed in the calibration of noise spectral densities, see Chapter 7. In addition, internal
charge relaxation resistance can be deduced without needing to pass any DC currents
or needing contact electrodes, see Chapter 6.
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5. Reflectometry of CNT Quantum Dots using GHz matching circuits

5.3. Double quantum dot regime

Room temperature characterization during deterministic CN'T stamping allows us to
perform several CNT mechanical transfer trials on the same device and choose nan-
otubes based on their gate dependence, see section 4.2.1. In particular for semiconduct-
ing nanotubes, we can use the gates to locally shift the Fermi level above or below the
valence and conduction bands of the nanotube. The semiconducting nature and mut-
liple bottom gates further allow for creating gate-defined confinement potentials along
the nanotube and for tuning the location, size and number of quantum dots [93]. Below,
we present measurements of a device with three bottom gates, shown in Fig. 4.1(a).
In this case, polymer-free CNT is suspended on the source/drain contacts suppressing
perturbations from the substrate.

With no RF power applied to the stub tuner and the middle gate Vjyig = 0 V, we
measure the charge stability diagram of the CNT device. A gate sweep using left (Vi,g)
and right gates (Vrg) at Vsp = 10 mV is shown in the Fig. 5.5(a). The current re-
sponse clearly displays an ambipolar behavior of QDs around a semiconducting gap of
~ 30 meV with V¢ and Vgg tuning the CNT into n-n, n-p, p-n and p-p double dots.
Here we have used a gate lever arm of ~ 0.2 meV/mV extracted from the Coulomb
diamond measurements. In addition, we observe the exact charge occupation of elec-
trons and holes at corresponding gate voltages [11]. Starting from the bandgap edge,
electrons or holes are added one by one to the dots if the gate voltages are increased
or decreased. The high conductance in the n-n regime is possibly due to n-doping near
the source/drain contacts. We also found p-doping for many samples for the same Pd
contacts and do not exactly understand the nature of the observation.

The frequency response of the reflectance for this device is already presented in the
Fig. 5.2(c), that shows the stub tuner to operate in a loss dominated regime. We
now perform simultaneous DC and RF measurements in the p-p regime. Figure 5.5(b)
shows a qualitatively similar honeycomb charge stability diagram in current, amplitude
and phase responses taken at Vop = —10 mV bias. We clearly observe cotunneling
lines [48, 112], long edges of the honeycomb, in all plots. Here, the charge transport
happens owing to a second order tunneling, when one dot is resonant with its respective
lead. We also note an important distinction of the stub tuner. For half wave resonators,
the RF signal of cotunneling lines strongly depend on the strength of capacitive cou-
pling to the respective lead-dot transitions and their rates with respect to the resonance
frequency [49]. A DC coupled stub tuner in contrast always responds through conduc-
tance changes that provide an external coupling by shunting microwaves via the drain
contact into the ground plane. This is further seen in Fig. 5.5(b) where larger current
results in larger reflectance difference |AT|.

In addition, we also observe hybridized double dots at degeneracy, the boundary of
two honeycombs at the two smaller edges, marked by dashed circles in Fig. 5.5(b), in
the phase and amplitude plots. The signal results from the susceptance changes caused
by dipole coupling of the hybridized charge states to the microwave resonator. Since
this process does not involve transfer of charges between the leads, no direct current
is produced. The reflectance responses at different charge degeneracy is different due
to the distinct dot coupling energies ¢t. which are affected by all gate voltages in our
multi-gated device.
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Figure 5.5. Charge stability and RF reflectometry of CNT double quantum
dots (a) DC measurements at Vsp = 10 mV and Vyg = 0 show a semiconducting
gap and the formation of bipolar double dots around it when Vi,¢ and Vg are swept.
We observe the addition of electrons and holes in each regime starting from complete
depletion in the bandgap. n-n double dots show relatively large conductance due to
n-doping of the contacts. Schematics show different confinement configurations of the
double dots. (b) Simultaneous measurements of current, reflected amplitude and phase
at the resonance frequency in the p-p double dot region at —10 mV bias. Cotunnelling
lines are clearly visible in all the plots. Inter-dot coupling lines not present in DC plot
are visible in the amplitude and phase response due to frequency shifts at gate voltages
marked by dashed circles. The arrow points at spurious gate-tunable lines most likely
resulting from charge traps which do not necessarily contribute to the current but do
change the susceptance.
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5. Reflectometry of CN'T' Quantum Dots using GHz matching circuits

5.3.1. Inter-dot coupling

The confinement potential of the double quantum dots can further be tuned through
the middle gate voltage Viyig. In this case, we go to the p-p double dot regime and
increase Vg to positive values to raise the tunnel barrier between hole dots. In the DC
measurements, the strength of the tunnel coupling can be visualized by the separation
between the charge triple points with the larger value corresponding to a stronger
coupling or weaker barrier. In terms of dot wave functions, charges are highly delocalized
in a strongly coupled regime, effectively forming a single dot, and vice-versa. These are
shown in Fig. 5.6 for different values of V.
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Figure 5.6. Tuning inter-dot coupling between the double quantum dots DC
measurement of a p-p double dot regime for different values of Vyiq at Vsp = —5 mV.
Increasing the middle gate voltage Vi1 to positive values increases the barrier strength
between the dots thereby decreasing the tunnel coupling. Note that the corresponding
gate voltages for charge triple points are different in each plot due to confinement
potential being affected by all gates.

In our device, the confinement potential is affected by all the local gates. Conse-
quently, a change in Vg also shifts the charge triple points corresponding to a specific
dot state. For example, in the measurements shown in Fig. 5.6, both V¢ and Vyg shift
to more negative voltages on increasing the Vjq. Quantitatively, a change in Vg by
100 mV causes both V¢ and Vrg to shift by approximately 60 mV each.

Despite the visible changes in the separation between the triple point, extraction of
inter dot coupling energy is difficult from a DC plot. The main cause of this is the
inter-dot capacitance C; which alone can cause the separation of the triple points due
to electrochemical shift of one dot due the charge state of the other. This is as if the
left dot is gating the right dot and vice versa. Moreover, C} is strongly dependent
on the size and distance between the two dots which can change at different voltage
configurations. The RF measurement however is able to probe signals across the energy
detuning axis € which is perpendicular to the line connecting two triple dots. This axis
is not influenced by the inter-dot capacitance and hence enables extraction of inter-dot
coupling energies as explained below.
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5.3. Double quantum dot regime

5.3.2. Dipole coupling of hybridized double dots to a resonator

For a quantitative analysis of inter-dot coupling, the phase response of the stub tuner
can be measured using a weak probe power (-130 dBm) near the hybridization of two
charge states (m,n+1) and (m+1,n). We operate in the zero-bias regime, allowing the
dots to stay in equilibrium and rule out any conductance changes (Gont =~ 0) which
could affect the phase response. Such a phase shift is shown in Fig. 5.7(b) close to (2,2)
to (1,3) hole transition. We infer the frequency shifts Af from the phase variations
which are almost linearly correlated near resonance frequency [see Fig. 5.7(c), error
< 10% in our case].

We model the system similar to a standard microwave resonator capacitively coupled
to a qubit formed by two charge states on a (nanotube) double quantum dot, see
Fig. 5.7(a). The Hamiltonian of this system is a variant of the well-known Jaynes-
Cummings model

Hy = wala +west6™ +ga'o™ +as™) (5.2)

where the qubit energy is wq = /€2 + 4t2, the resonator-qubit coupling is g = gosin ¥,

and the mixing angle is sind = 2t./wq. In these expressions, h is set to unity, € the

detuning between the two relevant charge states and ¢. the tunnelling amplitude.
Including the microwave drive and in the rotating frame of the drive the Hamiltonian

reads
H=-Ad'a—Ago%6~ +g(ale™ +a6™) + Qa+al) (5.3)
where we introduced the driving strength ) and the detuning of the microwave drive
from the resonator A, = wqrive — wr and the qubit Ay = Warive — Wy-
Additionally, we take into account resonator (k) and qubit relaxation () as well as
qubit dephasing (I'y) rates. These can be described with a Markovian master equation
approach with

o= ilH, o] + xDlalo + ~*Dlo:]o (54)
+7(nn +1)D[67Je +ynuD[6 e (5.5)

where D[A] = ApAt —{ A1 A, o} /2 is the Lindblad dissipator and average photon number
at temperature 7' given by nyg, = [ea/(+8T) — 1]=1 This gives rise to the following
equations of motion

(@) = +iA (@) — g<a> — i — ig(67) (5.6)
(67) = +idg(67) — (; + r¢> (67 +ig(as.). (5.7)

In a semiclassical decoupling approximation, i.e. assuming (ad,) ~ (a)(6,), we can
solve for the steady state

G — 18)(7:) (5.8)
5 .
(5 + F¢> — ZAd
and we then obtain 0
. —1
<G/>SS = % — ’LAr — 92(5.) (59)

(3+0y) it
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Figure 5.7. Reflectometry response of inter-dot coupling (a) Energy levels of
a double quantum dot with an inter-dot hybridization energy of t., forming a two level
system with energy wq. (b) The phase response measured at the resonance frequency as
a function of Vi, and Vg yields a pronounced inter-dot transition due to hybridization
of the charge states (2,2) and (1,3). (c¢) The stub tuner phase response at Vji¢ = 130 mV
around the dot degeneracy (open circles) and uncoupled dots (solid circles) marked by
points 2 and 1 in panel (b) respectively.

where we implicitly assumed that the coupling to the driven resonator does not change
the qubit polarization (6,), i.e. the qubit remains in thermal equilibrium with the
electronic bath and (6,) = so we have the thermal qubit polarization as (6,) =

_ _hwg
tanh T

If the system remains in the weak coupling limit, ¢ < =, this expression is well
approximated by

_ =L
2nth+1

—if)
()ss = : — 5.10
@) 5 — 1A +ix(02) (5.10)
where we have introduced the susceptibility
2 2
J ~ J (5.11)

X:+i<%+F¢)—iAd - —i(%+F¢)+(wd—wr).

Its real and imaginary parts lead to qubit-dependent shifts of the resonator frequency
w, and the resonator linewidth s
2 A
R 9" A(62)
Awpr = R L) = Y>——— 5.12
o = Relx)(7.) = 5= (5.12)

N —2921—‘0 a'z
Ak = —2Im[x](5.) = T Az j_th )
tot

(5.13)
where we have introduced the full linewidth I'io; = % +I'y and the detuning between
qubit and the resonator frequencies A = wq — w,. We easily see that the frequency
shifts and linewidth changes are very small when A > I\, g. Moreover, the sign of
the frequency shift is positive if wq < w, and negative when wq < w,. The linewidth is,
however, always larger than that of the the bare resonator.
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5.3. Double quantum dot regime

5.3.3. Dephasing of hybridized double dots

Using the semi-classical approach described in the previous section, we can now extract
the charge qubit energy in the CNT double-dot system and its dephasing. We use
the Eq. 5.12 to first extract gy in a regime where ¢. is large (Vg is small) so that
wq > 2te > wy, I'ior. This yields a dependence of the frequency shift Af proportional
to 4g2t2/(e? + 4t2)%/2, now independent of T',;. A fit with this equation to the data at
Vae = 130 mV is shown in Fig. 5.8(a), yielding go/2m = 37 MHz. We find the same
go for Viyig = 110 mV supporting the assumption that [’y is relatively small in this
regime. We could not determine the electronic temperature from Coulomb peaks and
hence take T" = 0 for all the fits.
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Figure 5.8. Dephasing of hybridized double dots (a) A cut indicated by the
dashed arrow in Fig. 5.8(b) with a fit to eq. 5.12 to extract the inter-dot coupling energy
te and go . (b,c) Extracted t. and I'yy as a function of Vyq for (2,2) to (1,3) and (2,1)
to (1,2) hole transitions. Error bars represent uncertainties in the least square fitting.
(d,e) Amplitude and phase response at Viyug = 260 mV. (f) The reflected power response
at Vig = 260 mV displays near-resonant absorption despite negligible dispersion. Solid
lines are the fits to Eq. 5.1. Symbols have the same meaning as in Fig. 5.7(c).

We now fit the phase responses at other Vyq after fixing the extracted go and plot
the extracted t. and T'y in Fig. 5.8(b,c) across two dot degeneracy. For both cases,
we observe a reduction of t. on increasing Vyig, reflecting a reduction in the tunnel
coupling strength between the dots. For simplicity, we have further assumed a constant
['iot at a fixed Vyig. In reality, this should also vary when qubit energy changes with e
or V1. The phase response starts to be suppressed for Vyg larger than 200 mV due to
increasingly fast double dot dephasing, yielding 'y, > t..
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5. Reflectometry of CNT Quantum Dots using GHz matching circuits

The inverse dependence of I', on ¢, has been seen in similar systems [114, 120] and
could be due to the 1/f charge noise environment [121] of the nanotube. The sign
of the frequency shift always remains negative, further signifying that the resonator
energy is always smaller than 2¢.. Increasing Vg to more than 250 mV, we do not
notice any dispersion because of the large I'y,;. However, the hybridized dots still show
a response in the reflectance amplitude, see Fig. 5.8(d,e). For Vg = 260 mV across
(2,1) to (1,2) hole transition, the stub tuner response for coupled and uncoupled dots
regimes is presented in Fig. 5.8(f). The fit to the resonance at the double dot degeneracy
(open circles) shows a smaller depth and o = 0.0086 m~! compared to the one in the
uncoupled regime (solid circles) with a = 0.0082 m~!. This behavior is a result of an
added loss channel i.e. absorption from the two-level hybridized dots when 2t. becomes
comparable to w,, which is also consistent with the change in the resonance depth due
to the conductance increase for our device operating in loss dominated regime. This
can be also understood using Eq. 5.12 and Eq. 5.13, where in the regime of large 'y,
frequency shift becomes quite small while the change in the resonator linewidth can
still be noticeable.

5.4. Triple quantum dot regime

We use the same device which is discussed in the previous section. The middle gate is
now tuned to a larger positive voltage Vg = 1 V while left and right gates are swept
in the negative values. This gate configuration results in a p-n-p triple quantum dot in
series, illustrated by a schematic in Fig. 5.9(a). It is not the aim of this section to analyse
the measurements in detail. We simply highlight twofold advantages of our device, first
in the RF measurements and second in the control over the local confinement potential
along the length of the CNT.

We again perform simultaneous measurements of DC current and reflectance at Vgp =
—10 mV. Charge stability diagram displays three clear slopes, expected for three QDs
connected in series. These are shown by solid lines in Fig. 5.9(b). Blue and red lines are
the same slopes observed in the double dot diagram of Fig. 5.5 dictating filling of left
and right dots, while the green slope determines the occupation of the middle dot. The
fact that the green slope is roughly in the middle of the blue and red slopes, means that
occupation of the middle dot is equally affected by the left and right gates. A schematic
of the dot filling is presented in Fig. 5.9(c). The occupation of left/middle/right QDs
changes by one if crossing the blue/green/red lines. Note that at increasing negative
gate voltages, electrons in the middle dot starts to empty while left and right dots
increase in hole numbers.

The RF measurements in Fig. 5.9(b) unlock signals that are not present in the DC
plot. Moreover, signal strengths, at places, are relatively larger compared to the DC
plot. These RF signals again are due to the frequency shift in resonance caused by
charge hopping. Nearest neighbour charge hopping can be recognized, as shown in
Fig. 5.9(d). We can classify them into two categories. First one is inter-dot tunnelling
where the total number of charges on QDs stays conserved e.g. (m, n, p) to (m, n+
1, p+1). Here m, p are hole occupation of the left and right dots, and n is the electron
occupation of the middle dot. Second case is the charge hopping from leads onto
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Figure 5.9. Charge stability and RF reflectometry of triple quantum dots
(a) Middle gate is fixed at 1 V while left and right gates are tuned to negative voltages
to create p-n-p dots. (b) Simultaneous DC and RF measurements of I, T' and ¢ near
the resonance frequency at Vsp = —10 mV. Lines and arrows represent the slopes and
directions of respective dot filling. (c) Lines same as the dashed lines in panel (b)to
illustrate the dot filling. (d) Different nearest-neighbour charge hopping.

dots. These fluctuate dot occupation by one, as shown by the leftmost and rightmost
double arrows in Fig. 5.9(d). None of processes produces any net current, however, do
change the effective susceptance seen by the microwave resonator. Naively, one would
expect the relative strength of such signals to depend on the detuning of the resonance
frequency with respect to the hopping frequency and its dipole coupling strength, similar
to Eq. 5.12.

5.5. Summary and discussion

In summary, we have operated RF superconducting impedance-matching circuits to
measure quantum dots fabricated using stamping of CNTs. The circuit is a simple
planar fabrication of a pair of shunted transmission lines. The matched conductance,
as expected, is found to be dependent on the length difference and microwave losses of
the transmission lines. We have shown that one can quantitatively deduce admittance
changes in uS resolution by measuring the complex reflectance I'. This sensitivity can
be used to deduce basic parameters of a CN'T double-dot operating as a charge qubit,
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5. Reflectometry of CN'T' Quantum Dots using GHz matching circuits

such as the inter-dot tunnel coupling strength and the dephasing rate. More impor-
tantly, conductance can be deduced using a simple analytic formula with measurement
bandwidth reaching few MHz even for device impedance of 1 M(2.

The measurements leave an important open question about the source of dephasing
of the hybridized double dot. Why is I', so large ~ GHz despite the fact that the
CNT is suspended? One reason could be the high electronic temperature of our device.
The main limitation often discussed is the charge noise of the environment. A recent
work on a CNT double dot system has attempted to suppress the effect of the noise
by strongly decreasing the charging energy E¢. The latter is designed to be very small
~ 2 meV, and I'y found to be as low as 4 MHz [122]. The behavior can be understood
in analogy with superconducting Transmon qubits [123] where small E¢, due to large
microscopic capacitor pads, has been instrumental in boosting the coherence times. On
contrary, the E¢ in our double dot device is quite large ~ 20 meV.

To conclude, we have demonstrated impedance matching with a tremendous mi-
crowave coupling in the measured quantum dot devices. For example, we see from
Fig. 5.2(a,b) that we achieve |I'| & —40 dB at Genr =~ 7 pS. This relates to a re-
flectance probability of ~ 0%, hence 100% is transmitted into the matching circuit and
CNT device. Taking into account the internal loss described by Gress = 7 pS yields a
substantial power transmission of ~ 50% from a 150 k€2 device to a 50 ) transmission
line. This is beneficial for high throughput detection of emitted noise from the quantum
device defined in the CNT wire and shot noise measurements. The latter are discussed
in chapters 7 and 8.
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6 Quantum Capacitance and
Dissipation in Graphene p-n
junctions

In the past decade, extensive studies on graphene have unraveled interesting physics
of Dirac particles on chip [37, 124]. Up to now, the main technique to investigate
the electronic properties has been low frequency lock-in where contact metallization is
needed to pass a current and measure the resulting voltage drop. The key drawbacks
of contact electrodes are highly doped regions in the vicinity of the contacts resulting
in unwanted p-n junctions [125] and scattering [126] of charge carriers. In addition,
leftover resist residues from lithography can degrade the metal-graphene interfacial
properties [127] or even the overall device quality. An important example is graphene
spintronics [128], where device performance is often limited by contacts causing spin-
relaxation and decrease in spin-lifetime [129]. Therefore contact-less characterization
from, for example, microwave absorption [130] can open up new ways to probe inherent
electrical properties of the studied system.

In this chapter, we present results of graphene devices capacitively coupled to gi-
gahertz resonant circuits made from stub tuner. From the response of a microwave
resonance, we are able to extract quantum capacitance in agreement with graphene
density of states. Moreover, the intrinsic charge relaxation resistances are deduced in
the absence of any contacts. The graphene encapsulation in a hexagonal boron nitride
sandwich [131] further separates the bulk from the external perturbations, and allows
studies of graphene p-n junctions, a potential building block of electronic lenses [132],
beam splitters [133] and Fabry-Perot interferometers [134, 135].

6.1. Device layout

Figure 6.1(a) shows the layout of a typical device. The stub tuner circuit based on
transmission lines with two lengths Dy and D, is patterned using ebeam lithography.
The ground plane near D; end is separated by a slit from the central conductor as
shown in Fig. 6.1(b) where we have placed a graphene flake encapsulated in hexagonal
boron nitride (hBN). The hBN/graphene/hBN stack is prepared using the dry transfer
method described in ref. [104]. The stack is positioned in the middle of the slit such
that parts of the flake lie on both the signal plane (area A;) and on the ground plane
(area Ay). We then etch the stack with SFg in a reactive ion etcher to create a well
defined rectangular geometry. Some bubbles resulting from the transfer can also be
seen in Fig. 6.1(c). Raman spectra have been taken to confirm the monolayer graphene
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Figure 6.1. Device layout. (a) An optical picture of the stub tuner with two arm
lengths D; and D,. Central conductor and gap widths of the transmission lines are
15 pm and 6 pm respectively. (b) An SEM image near the D; end showing a narrow
slit between the signal line and the ground plane (¢) An SEM image of a hBN-Graphene-
hBN sandwich for device B placed over the slit. Areas A; and A, correspond to the
parts of graphene lying on the signal line and the ground plane, respectively. (e) A
Raman spectrum of the stack showing peaks related to hBN and graphene. Solid blue
line is the least squared fit to single Lorentzian. (e) An equivalent circuit with lumped
capacitance and resistance elements. Symbols are explained in the text.
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flakes as shown in Fig. 6.1(d).

Since there are no contacts on the graphene, the same circuit can be employed for
different stack geometries. We first fabricate the hybrid device with a stack dimensions
W x L of 6.5 um x 13 pm (device A), where W and L respectively denote the width and
length of rectangular graphene. After measurements on device A, the stack is etched
into new dimension of 6.5 pm x 7.2 um (device B). For both devices, a graphene area
of 6.5 pm x 3.4 pum stays on the signal/gate line, see Fig. 6.1(c). On ground plane
lies graphene areas of 6.5 um x 9.6 um for device A, while this is 6.5 ym x 3.8 pum
for device B. Device A is hence asymmetric while B is quasi symmetric around the
slit. More importantly, two devices on the same circuit with the same graphene flake
but different geometry provide consistency checks. A third symmetric device C of
dimensions 5 pm X 12 pm with a separate resonator circuit and a separate graphene
stack is also measured. Slit width for device C is 250 nm compared to 400 nm as in the
case for devices A and B.

6.1.1. Measurement principle

We extract the graphene properties by measuring the complex reflection coefficient
from the stub-tuner which is dependent on the radio frequency (RF) admittance of
a load [136]. The reflected part of the RF probe signal (fed into the launcher port
of the circuit) is measured using a vector network analyzer. To tune the Fermi level
of the graphene, a DC voltage Vg is applied to the launcher port with the help of a
bias tee, as shown in Fig. 6.1(a). The gate voltage changes the carrier density and
hence the quantum capacitance. By analysing the response of the circuit, changes in
differential capacitance, related to quantum capacitance Cq and in dissipation, related
to the charge relaxation resistance R can be inferred. All reflectance measurements are
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6.1. Device layout

performed at an input power of —110 dBm and the base temperature 20 mK of our
dilution refrigerator. The power corresponds to an AC excitation amplitude of 0.7 uV
which is much smaller than what is used in transport measurements.

To understand the effect of gating, we divide the graphene into two areas denoted
by A; and A, in Fig. 6.1(c). A gate voltage on the signal line induces charges on the
part of graphene flake lying above it. Since the total number of charge in graphene
in absence of a contact cannot change, charge on one part must be taken from the
other. For a pristine graphene (Fermi level at charge neutrality without gating), this
results in the formation of a p-n junction near the slit at each gate voltage. However,
when a finite offset doping is present, an offset voltage has to be applied to reach the
charge neutrality (CNP). The CNP is reached twice, once for each part of graphene.
At voltages higher than the offset voltages, a p-n junction is present in the graphene.
The charge density changes rapidly close to the slit, but it is constant far away. The
voltage drop across the part 1 (2) is furthermore given by the weighted average of the

total as Vi) = Vg ( A’?iﬁg). This translates to a different gating of two graphene parts
resulting in different charge densities ny (V) and n2(Ve). The total charge on the two
sides nonetheless are equal and opposite in sign.

In transmission line geometry, the RF electric field emerges from the signal plane
and terminate on the ground plane (see section 3.2). While the field lines are quasi-
perpendicular to the graphene surface on the planes, these near the slit are parallel and
relatively stronger in magnitude. The field distribution hence probes both the properties
of the bulk graphene (homogeneous charge distribution) and the junction graphene
(inhomogeneous charge distribution). For simplicity, we model the graphene as lumped
one dimensional elements of capacitance and resistance as shown in Fig. 6.1(e). The
graphene impedance can thus be simply given as Zg ~ R+ 1/(jwC') with the total
series capacitance C' and resistance R as

l - 1 n 1 N 1 n 1
C Cu CQl Caz CQ27
R =Ry + Ris + Rs, (6.2)

(6.1)

where w = 27 f is the angular frequency. Thus Cq = Cq1Cq2/(Cq1 + Cq2) and Cg =
Cc1Cq2/(Ca1+ Cg2) are the total quantum and geometric capacitances of the graphene
device. We have assumed that the junction capacitance C1, is relatively small so that the
junction resistance Ry < 1/(wC42). Moreover, we ignore the parallel slit capacitance
Cqir which is relatively small and gate independent. Together with the load Zg, the
reflectance response I' of the stub tuner can now be described by [(Zin — Z0)/(Zin + Z))?
where the input impedance Z;, is given as

(6.3)

Zo + Zg tanh(yDy)\ ™
Zin = Zo (tanh(7D2)+ 0 + Zg tanh(y 1)) |

Za + Zy tanh(yDy)

with Zy ~ 50 Q the characteristic impedance of the transmission line, v = a + ¢ the
propagation constant, o the attenuation constant, 3 = /egw/c the phase constant,
€. the effective dielectric constant and ¢ the speed of light. The derivation of Z;, is
provided in the chapter 3.
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6. Quantum Capacitance and Dissipation in Graphene p-n junctions

6.2. Reflectance results

Figure 6.2(a) shows a color map of frequency and gate voltage response of the reflected
signal for device B. Large frequency shifts at two gate voltages can be observed near
Ve = 0. These can be identified as points where either part of the graphene flake is
driven into the charge neutrality. At higher gate voltages, p-n junctions are formed in
between the unipolar regimes. The behaviour is observed in all our devices, suggesting
the presence of an offset doping in the system. From the vertical cuts of the map shown
in Fig. 6.2(b), changes in the resonance-depth, -width and -frequency are apparent.
Naively, a pure capacitive load should shift the resonance frequency while a pure resistive
load changes dissipation of the system. The frequency response to complex impedance
has been numerically calculated and presented in section 3.3.2.
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Figure 6.2. Reflectance response of the stub tuner (a) A color map of the
measured reflectance power near the resonance frequency versus different gate voltages.
Arrows denote the charge neutrality points. (b) Main panel: Cuts of the reflectance
curves at two different gate voltages with fits to the Eq. 6.3. Inset: The reflectance
response of the same circuit but without any graphene stack. The input RF power is
—110 dBm which corresponds to an AC excitation amplitude of 0.7 ;/V. Note that the
range of frequency is different in the inset.

To quantitatively extract the complex impedance of graphene Zg, we first need to
extract the stub tuner parameters [, d, a and €. from the reflectance measurements of
the same circuit but without any graphene stack. The frequency response is shown in
the inset of Fig. 6.2(b) which is fit to Eq. 6.3 with Zg = co. We extract Dy ~ 10.57 mm
and Dy ~ 10.39 mm, o ~ 0.0025 m~! and the effective dielectric constant e.g =~ 6.1. The
loss constant corresponds to an internal quality factor of 25,000. The extracted lengths
are within 1% of the designed geometric lengths. Moreover, the resonance frequency
of the open stub tuner (2.886 GHz) is larger than the values observed in Fig. 6.2(a),
confirming the capacitive nature of the load. We now fix the extracted parameters from
open circuit, and fit the resonance spectra to deduce R and C. As shown in the main
panel of Fig. 6.2(b), the fitting to Eq. 6.3 yields R =118 Q, C = 182 fF for Vg = -2V
and R = 328 Q2 and C' = 17.2 {fF for Vg = 1 V. Similar fitting routine is performed at
all gate voltages for different devices and deduced C, R plotted in Fig. 6.3 and 6.4 and
discussed below.
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6.2. Reflectance results

6.2.1. Quantum capacitance

As shown in Fig. 6.3, we observe for all devices a double dip feature of extracted
capacitance near Vg = 0 and its saturation at higher voltages. While the double dips
have similar widths for device B and C, these are quite different for device A. This
originates again from the asymmetric gating of two areas of graphene. To understand
the general dependence, we look back at the individual capacitance contributions in
Eq. 6.1. Geometric capacitance Cq; with i = 1,2 is simply given by A;eqepn/d, where €y
is the vacuum permittivity, egn the dielectric constant, and d = 21.5 nm the thickness
of the bottom hBN estimated from AFM measurements. Additionally, the quantum
capacitance can be derived from the density of states (DoS) as Cq = e*DoS. The
dependence of Cq in graphene with gate voltage V' is explicitly given as [137-140]

CoplV) = Ai};):(j/?/ni(V), (6.4)

with ¢ = 1,2 and vg the Fermi velocity and h the Planck’s constant. The gate induced
carrier density is n;(V) = (V; — V9)Cqi/(Aie), where V;* accounts for the offset in
CNP from zero and Vio) = Vi < A?iﬁg) accounts for different carrier densities on two
graphene parts due to their different areas. Using Eq. 6.1 and 6.4, we see that the C'
is dominated by the Cg at large gate voltages causing the saturation. The saturation
values are different for different devices because of different flake areas and/or hbN

thickness yielding different C(.
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Figure 6.3. Quantum capacitance of graphene The extracted capacitance from
the fitting to color maps of reflectance response for three devices. Error bars are smaller
than the symbol size. Solid lines are the best fits to Eq. 6.1.

In contrast, near charge neutrality, Cq < Cg, and the quantum capacitance starts to
dominate. The fact that C' does not approach zero can be attributed to the impurity
induced doping (n,,;), with i = 1,2, resulting from charge puddles [141]. To this
end, we replace n;(V) with a total carrier density \/n?(V) + niQmp,i' The knowledge of
most of the relevant parameters allows us to fit the C' curves with egn, nimp and vg.
This is shown by solid curves in Fig. 6.3. The excellent fits capture both the depth
and width near the Dirac charge neutrality points and justify the series model of the
graphene impedance with C' arising from the total graphene area. For device A(B),
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6. Quantum Capacitance and Dissipation in Graphene p-n junctions

we extract epy &~ 4(4), vp ~ 1.05(0.95) x 10% m/s and nimp1 & 5(7) x 10'° cm™2 and
Nimp2 = 1(6) X 10'% em=2. The low impurity carrier concentration is consistent with
transport measurements in graphene devices encapsulated with hBN [141].

6.2.2. Renormalization of Fermi velocity

For device C, which has a different stub tuner circuit and a different hBN-graphene-
hBN stack, we fit the total capacitance again using Eq. 6.1 and extract egny =~ 4.25,
vp &~ 1.54x10° m/s and niyp1 = 4 10 and niyp o ~ 3.5 x10? em ™2, where we have used
the thickness ~ 26.5 nm of the lower hBN. Variations of egy from one flake to another
is readily observed in the transport measurements done in our group. A striking feature
of device C is the presence of much lower impurity density and a higher Fermi velocity.
Low nimp is also confirmed when looking the relative height of the dips in Fig. 6.3. From
device C to A to B, depth becomes shallower and extracted niyp increases. Low njy,, has
an important consequence for the band structure of graphene which starts to deviate
from its linear dispersion [142]. This is because the charge density near CNP starts
to vanish and electronic-electronic Coulomb interaction starts to play a significant role.
The phenomenon accounted by the renormalized Fermi velocity has been observed both
in capacitance [140] and transport measurements [142-144] in graphene.

6.2.3. Charge relaxation resistance

We now discuss the real part of the graphene impedance which relates to the dissipation
of the microwave resonance. The extracted R for two devices fabricated from the same
hBN-graphene-hBN stack are plotted in Fig. 6.4(a). Two peaks are visible again, which
are similar to the charge neutrality points in transport measurements. The position of
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Figure 6.4. Dissipation in graphene (a) The extracted charge relaxation resistance
for devices A and B fabricated on the same hBN-graphene-hBN stack. The same loss
constant is used in fitting the reflectance map. (b) The extracted R for device C with a
different stack and a different circuit. (c¢) The extracted charge relaxation resistance as a
function of inverse quantum capacitance, obtained by subtracting geometric capacitance
from the simultaneously measured total capacitance. Solid lines both passing through
zero are guide to the eye.
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the peaks coincide with the minima of the extracted capacitance. Especially at large
gate voltages where residual impurities play negligible role, the resistances start to
saturate around similar values despite the fact that the device A is twice longer than
the device B. In absence of contacts, this points to the direction that the resistance
dominated by the p-n junction at high doping. A similar behaviour is seen in the device
C. Close to the charge neutrality, resistance arising from the bulk graphene becomes
larger than that of the p-n junction.

The bulk carrier transport in graphene can be further characterized by the diffusion
constant. Since the doping profile in our devices is not homogeneous, we can only give
an estimate for the diffusion constant D. For this, we analyse the symmetric devices B
and C where equal and opposite charge densities appear on two parts of graphene. To
obtain D, we can use the Einstein relation (¢ = €? - DoS - D), which can be rearranged
with known quantities into

o L2y

RCq

where o is the conductivity. In Fig. 6.4(c) we plot the inverse of the measured quantum
capacitance, obtained by subtracting the geometric contribution Cg from the total C'
against the simultaneously measured resistance. We have removed the points between
the two CNP where no p-n interace is present. In both devices, we observe almost linear
dependence especially at large resistance values. Similar behavior has been reported in
reference [145] suggesting an energy independent D or energy independent scattering
time, as can be seen in Fig. 6.4(c). At lower resistances, occurring at large gate voltages,
deviations from linear behaviour are apparent. Whereas at high doping the two sides of
the graphene have similar doping concentration, at low gate voltages, the difference in
the doping (hence R and Cq) becomes more pronounced, and deviation from Eq. 6.5 can
be expected. From the slopes we furthermore extract D = 0.29 (0.51) x 10* cm?/s for
device B (C). The mean free path can be calculated as [, = 2D /vp to yield 0.6 (1) pm
for device B (C), which are reasonable values reported in transport measurements.
The larger mean free path for device C is also consistent with lower impurity density
compared to that of device B.

(6.5)

6.3. Summary and discussions

In summary, we have capacitively coupled encapsulated graphene devices to microwave
resonators and observed clear changes in the resonance-linewidth and -frequency. We
show a reliable extraction of capacitance in good agreement with the density of states
of graphene. Moreover, the charge relaxation resistance is simultaneously inferred from
the resonance response and a lower bound of diffusion constant estimated. The results
highlight fast characterizations of the graphene devices without requiring any contacts
which could compromise the device quality.

An uncertainty of given measurements lies in the extracted R due to the loss constant
of the circuit which can vary from one cool-down of the device to the next. From fitting
the reflectance response with a different o, we find that the extracted R at different
circuit losses are merely offset to each other. The extracted C' however is not affected.
The behaviour can be understood by replacing the loss constant with a resistor Ry
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in series with the graphene resistor R. This behaviour is explained through numerical
calculations in the section 3.3.3. a can be, however, accurately separated in the quantum
Hall regime which can be realized with copper resonators [146]. The presented ability
to measure contact-free can be useful to study band modification of graphene due
to proximity spin orbital effects [147] or Moire superlattices [148]. The method can
furthermore be useful for other material systems on which ohmic contacts are difficult
to obtain.
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7 Quantum dot spectroscopy
through shot noise

Typical impedance of a quantum dot of R ~ 100 k{2 causes emission signal to reduce
by a factor ~ (Zy/R)? ~ 1077 at the detector, where Z; = 50  is the standard input
impedance of the detector. A way to enhance the collection efficiency is to employ a
wide bandwidth (BW) detector such as a rectifying diode [65]. The key drawback lies in
the voltage amplifiers which are needed to measure the signal within the detection limit
of an instrument, but also end up adding a background amplifier noise, proportional to
the BW, to the desired emission signal. To this end, a quantum limited amplifier such
as Josephson parametric amplifier (JPA) can dramatically suppress the background
noise and improve the signal to noise ratio. However, the limited bandwidth of few
MHz of presently existing JPA [36] hinders the wide-band detection.

In this chapter, we use a resonant superconducting stub tuner operating at GHz
frequency to measure classical shot noise from a quantum dot confined in a CNT [149].
The stub tuner provides a high transmission window owing to impedance matching
within a BW of a few MHz. Despite the smaller BWW compared to the one of a diode,
a large signal to noise ratio is achieved in the end due to the smaller background noise
from the amplifiers. The chapter starts with the detection scheme and our method to
calibrate the measured noise. We then present shot noise results and draw comparisons
with the corresponding Schottky value. We see clear changes in the noise spectrum when
transport channels are added or removed from the bias window. A theoretical model
based on master equations is also provided that qualitatively captures the observed
noise suppressions and enhancements both outside and inside the Coulomb diamonds
of the charge stability diagram.

7.1. Noise detection scheme

The experimental setup for the noise measurements can be seen in Fig. 4.10. The stub
tuner and other components such as circulators, directional couplers and microwave
amplifiers are designed to operate around 3 GHz. This choice of resonant frequency
ensures that 1/ f flicker noise is negligible. Moreover, at a bias voltage Vsp of 15 ©V, the
system emits classically and an electronic temperature of 100 mK typically achievable
is also close to 3 GHz. We thus measure only white noise. For hf > kgT,eVsp, the
system emits in the quantum regime where vacuum fluctuations of the electromagnetic
environment start to matter. SIS junctions from Al with probe frequency of f ~ 80 GHz
have been, for example, used to observe quantum noise in mesoscopic systems [150].
We are interested in the classical shot-noise emerging from the quantization of charges.
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7. Quantum dot spectroscopy through shot noise

In Fig. 7.1 we outline the essential components which affect the signal transmission
and detection. A device such as a quantum dot with resistance R can be thought of
as connected in parallel to a current noise source with a spectral density S;. This
produces a voltage spectral density of Sy = R2S; across the device. The signal then
passes through the stub tuner. Due to the band pass filter effect, the white noise now
looks like a Lorentzian set by the voltage transmission coefficient ¢y, of the stub tuner.
This produces a signal (R2S;)|ty|? at the Zy end of the stub tuner. We note that ¢y
depends both on the probe frequency and the resistance of the device.
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Figure 7.1. Noise detection scheme The noise generated at the device is filtered by
the stub tuner with a high transmission around the resonance frequency. Amplifiers in
addition to amplifying the signal also add background amplifier noise due to inherent
voltage and current noise sources. The final signal is then measured as the power
dissipated across a 50 €2 resistor built in a power spectrum analyzer. Symbols are
explained in the text. Adapted from reference [87].

The signal is now amplified by a chain of cold and room temperature amplifiers. More
importantly, amplifier adds a background voltage noise Sa to the desired signal due to
inherent current (Spa) and voltage noise sources (Sya) at their inputs. The amplifier’s
current noise can be effectively converted into a voltage noise by the impedance it sees
towards the sample. In our case, the low ohmic 50 ohm termination of the circulator
ensures a R—independent and low contribution of Sia to Sa. Since the gain of all our
amplifiers are comparable, only the first amplifier in the measurement chain contributes
considerable to Sx. In our case, the cold amplifier sitting at the 4 K stage of the fridge
is the first amplifier, with a noise temperature of ~ 5 K. The signal is then fed into a
power spectrum analyser where it is measured as the power dissipated across a standard
Zy. The voltage fluctuations are hence converted into in a power spectral density Sp
as follows 5 R2g R

Sy, 1) = 52 S LR
0
where ¢ is the effective gain of the signal due to amplifiers and cable losses. The
measured power (P) at the spectrum analyzer can then be described by integrating Sp
over the high transmission BW of the stub tuner. This results in
2

()= (Pho+ 6) = (Pl 3 () [tk 72

(7.1)

84



7.1. Noise detection scheme

Here, we utilize the frequency independent S; for shot noise at GHz frequencies. (P)g
is the effective background noise power in the integration BW. After rearranging the
terms, one arrives at the following equation to calibrate the current spectral density Sy
produced by the device with corresponding conductance G.

(P) = (P

S; = G?Z,—~—L 10
! Og fBW |tV|2df

(7.3)

7.1.1. Gain extraction

The importance of knowing the gain g precisely can be understood by the fact that an
error of 3 dB leads to a 100% error in the Fano factor F' = S;/2el. To this end, shot
noise of a diffusive metallic wire is measured for which Fano factors are reliably known.
One can also use a single tunnel barrier with /' = 1, however its large resistance
necessitates impedance matching. The latter additionally adds uncertainties to gain
extraction due to the calibration of the transmission function of the matching circuit.
With a metallic wire, the resistance can be planned close to 50 €2 so that no impedance
matching is needed for optimizing signal collection.

Figure 7.2(a) shows different length L regimes of theoretically predicted Fano factors
of a metallic wire [151]. In case of L shorter than the mean free path [, charges move in a
ballistic fashion with unity transmission. The absence of randomness produces no noise
and F' = 0. For lengths larger than [ but shorter than the electron-electron scattering
length /., the wire stays in the phase coherent regime and exhibits F' = 1/3 [69, 152].
On further increasing the length, the system then enters the hot electron regime. Here
electrons under a bias voltage accelerate through the wire and create a new equilibrium
energy distribution due to electron-electron scattering. The latter results in an elevated
wire temperature relative to the reservoir. These hot electrons then diffuse to the cold
reservoirs creating a bellshaped temperature profile along the length of the wire. It turns
out that Sy in this regime stays proportional to the current with F' = v/3/4 [68, 153]. For
L larger than electron-phonon scattering length l_y, the wire is in a macroscopic limit.
Here individually fluctuating domains sum up in an uncorrelated way and average to
zero. We choose to stay in the hot electron regime where wire lengths of tens of microns
can be easily fabricated to produce residual resistances close to 50 (2.

A SEM image of the calibration device is presented in Fig. 7.2(b). A gold wire
of length 50 pm, width 680 nm and thickness 30 nm is evaporated on an undoped
silicon substrate. We find the resistance of the wire Ry to reduce with temperature
starting from 90 €2 at room temperature and saturating at 39 (2 below 10 K. The wire is
connected to large copper pads of area 300x 300 ym? and thickness 500 nm which act like
heat sinks. Using the literature [154, 155] for our wire parameters, we find l,_, = 20 um
and le_p, = 600 pm at a reservoir temperature 7" = 0.1 K. This places the wire length
clearly in the hot electron regime. The wire device is fabricated by Dr. Thomas Hasler
from our group. The author of this thesis performed the measurements and analysis.

We current-bias the wire and measure the noise spectral density Sp using a spectrum
analyzer (SSA) at 3 GHz. These are plotted in Fig. 7.2(c) for different base temper-
atures T of the fridge. For bias currents I up to 5 pA, noise densities exhibit linear
behavior. At larger currents phonons start to compete and the curves start to flatten
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Figure 7.2. Gain calibration of the setup (a) Length dependence of the Fano
factor for a metallic wire. Adapted from the reference [68]. (b) A SEM picture of
the gold wire with copper pads. The wire is current biased and the noise is measured
directly using a spectrum analyzer SSA. (c) Power spectral densities of the wire for
different base temperatures of our fridge. From top to bottom in mK: 820, 450, 340,
250, 180, 110, 20. (d,e) Calibrated current noise densities for two temperatures. Solid
lines are the least square fits to Eq. 7.4.

out. Additionally, with increasing temperature the zero-current baseline and the cur-
vature around it increase. The former can be attributed to the thermal noise given by
4kgT. / Ryire, where kg is the Boltzmann constant and 7T, the electronic temperature. Sp
is converted to Sy x g using Eq. 7.1 with the voltage transmission ty = Zy/(Zo + Ruwire)-
We take Sp(I = 0) as the background containing S4 and thermal noise. S; for such
wire in the hot electron regime is given by [68]

S = ngTe {1 + (u + 11/> tan_ly] : (7.4)
where v = v/3el Ryire /2mkgT,. We first fit the calibrated noise at a higher temperature
where T, can be assumed to be the same as the fridge temperature T. At lower tem-
peratures, a smaller phonon-electron coupling prevents cooling of the electronic devices
to the fridge temperature. Figure 7.2(d) shows such a fit, after subtracting the thermal
contribution, at 110 mK to extract the gain g = 94.6 0.1 dB. The gain ¢ is reasonable
considering roughly 35 dB gain of three amplifiers in series and roughly 10 dB losses
from coaxes. We get the same g from fitting the data at 250 mK. Next the data at
T = 20 mK is fitted by fixing the gain. This gives an upper bound on the 7T of 50 mK.
We further use the gain to estimate the background amplifier noise. From the data
sheet, noise temperature of the amplifier is ~ 5 K. This should produce a background
of 10xlog(kgT x 1000) + g = -97 dBm/Hz. Deviation of 8 dB from the observed value
of -89 dBm/Hz is due to cable losses between the device and the amplifier.
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7.2. Shot noise in single quantum dot regime

7.2. Shot noise in single quantum dot regime

We now discuss shot noise measurements in a single quantum dot formed in a CNT.
As explained in the chapter 2, electronic interactions play an important role in deter-
mining the statistics of electronic noise in mesoscopic systems. In particular for a QD
system, the Coulomb charging energy (E¢) imposes a sequential tunnelling of electrons.
Local electrodes further tune the electrochemical potential of the dot and allow one or
more channels in the bias window thereby modifying the electronic transitions. The
interactions can be further modified by the energy dependence of the tunnelling- in and
out-rates of the dot. The QDs thus provide a rich playground for noise studies.

7.2.1. Sample layout

A SEM image of the device measured is shown in Fig. 7.3(a). A Nb stub tuner is
fabricated in the first step. The CNT is then probabilistically stamped and the source,
drain contacts evaporated from Pd (4.5 nm)/Al (75 nm) separated by 300 nm. A side
gate ~ 100 nm in width and ~ 200 nm away from the CNT tunes the dot occupation.
Since we work in high bias regime Vgp > 200 peV, the effect of superconductivity
from Al can be ignored. Reflectometry spectra for this sample are already provided in
Fig. 5.2(a,b). The latter provides useful extraction of stub tuner parameters such as
the lengths Dy, Dy and the loss constant a.
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Figure 7.3. Device characterization (a) SEM picture of the measured CNT device
with source, drain and a side gate contact. The source (S) is connected to the stub
tuner (not shown) while drain (D) is grounded. Dot occupation is tuned by a side gate
Va. (b) Conductance map extracted from reflectance at 3 GHz. Red points display
positive conductance while blue points negative. (c¢) Cuts of the conductance map at
the gate voltage marked by the arrow in panel (b), extracted from the reflectance (high
frequency) and the numerical derivative of the direct current (low frequency).

The circuit operates in the load dominated regime reaching impedance matching near
G =7 uS. To characterize the quantum dot transport, series of Coulomb diamonds are
mapped. This is shown in Fig. 7.3(b) extracted from the reflectance amplitude, see
section 5.2.1 for the extraction method. Clear excited states outside the Coulomb
diamond and cotunnelling features inside the diamond can be observed. Moreover,
negative conductance values are also seen. To validate the stub tuner parameters,
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7. Quantum dot spectroscopy through shot noise

this GG is compared with the one from the numerical derivative of the simultaneously
measured direct current at low frequency [136, 149]. We find an excellent agreement
between the two, as shown in Fig. 7.3(c).

7.2.2. Stub transmission function

After the reliable extraction of stub tuner parameters from the reflectance spectra, we
now calculate its voltage transmission function |ty/| seen by the device. This is needed to
calibrate the noise densities as seen from the Eq. 7.3. To this end, we use the following
equation derived in section 3.3.6 (symbols are explained in chapter 3)

2%, e?P1 . coth(yDy)
" R+Zy TI'p+exDi.[1+ 2coth(yDy)]’

tv(f, R) (7.5)

where I', = (R — Zy) /(R + Zp) is the reflection coefficient seen directly at the device
end before the matching circuit. Figure 7.4(a) shows the calculated voltage transmis-
sion response for different conductance values using the stub tuner parameters. As
expected, the bandpass filter effect of the circuit is also present in transmission, similar
to reflection. For the circuit loss of the device o = 0.019 m~!, the transmission maxi-
mum at G =4 uS is [t &~ 1.6 - 107°. For a lossless case o = 0, this reaches twice
as much ~ 3.8 - 107° for the same conductance. Within a bandwidth BW = 5 MHz
(shaded in orange) the circuit hence provides more than two orders of magnitude larger
transmission than the case with no matching &~ (Zy/R)? =4 -1075.

Experimentally measured power spectral densities Sp in and out of Coulomb blockade
are shown in Fig. 7.4(c). For blockade, G = 0, the measured Sp does not change versus
frequency. In absence of current and thermal noise, S; = 0. The measured quantity
hence effectively reflects the amplifier background noise of the setup, as evident from
Eq. 7.1. In contrast, Sp for conducting regime, in this case Vg = —9.2 V, Vgp = 23 mV,
and G = 5 uS, shows a Lorentzian lineshape as predicted from Eq. 7.5. Both curves
with 1001 points are measured in a time period of 6 ms implying a 6 us acquisition time
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Figure 7.4. Stub tuner transmission (a) Calculated power transmission response
for several G (= 1/R) values. (b) Comparison of the transmission function for matching
with and without losses and for case of no matching at G = 4 uS. (¢) Experimentally
measured power spectral density in and out of Coulomb blockade near the resonance
frequency of the stub tuner.
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7.2. Shot noise in single quantum dot regime

for single point. Additionally, the signal to noise ratio (SNR) acquired at the resonance
frequency is ~ 3 dB. These features demonstrate the importance of a stub tuner for
fast readout of small signals with significant SNR. We clarify again that by signal here
we mean the desired emission to be measured, while the noise or the signal spread, of
+0.12 dB here, accounts for the uncertainties in the amplifier gain and the amplifier
background noise.

To get the noise power, we simply integrate the noise spectral density around a
bandwidth BW. As shown in the section 3.3.7, the optimal integration bandwidth for
maximal signal to noise ratio is achieved when BW ~ 1.4 - FWHM, with FWHM the full
width half maxima. However, we note that the FWHM is conductance dependent and
thus a compromise has to be made while fixing the BW. The FWHM for the concerned
stub tuner circuit near matching is ~ 3 MHz, see Fig. 5.2(a). We thus choose a BW
of 5 MHz and average the noise power (P) 100 times. With a resolution bandwidth of
100 kHz of our spectrum analyser, it takes roughly 0.6 second of measurement time for
each bias-gate voltage setting.

Grayscale maps of (P) and I are simultaneously measured for the same Vi and Vsp
range as in Fig. 7.3(b). Raw noise power is shown in Fig. 7.5(a) with the Coulomb
diamond contours taken from the G' map. The finite noise power ~ —22 dBm inside
the Coulomb diamonds is again the amplifier background noise. With the knowledge of
gain g and transmission function ¢y (f, G), we now calibrate (P) using Eq. 7.3 to arrive
at the noise current density Sy for each bias and gate voltages. Since there can be a drift
in the amplifier noise, (P) at Vgp = 0 is taken as the (P), for individual vertical scans
of Fig. 7.5(a). Moreover, the contribution of thermal noise at an electronic temperature
of =~ 50 mK is negligible for our bias voltage range.
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Figure 7.5. Noise calibration (a) Measured grayscale map of noise power integrated
over a bandwidth of 5 MHz around the resonance frequency of the stub tuner. (b)
Calibrated noise current density together with uncalibrated noise power at the gate
voltage shown by the arrow in panel (a). (¢) Corresponding conductance and current
measurements.

A cut of calibrated S; together with raw value (P) at Vg = —9.08 V is shown in
Fig. 7.5(b). We see a qualitative similarity of the two curves despite dramatic changes
in conductance [see Fig. 7.5(c)] for the same range. This can be understood when one
looks at Eq. 7.5 for R > Z,. In this case, I'y, &~ 1, and |ty|*> becomes proportional to
G?. Inserting this in Eq. 7.3, S; calibration does not depend on G any more. The raw
data therefore already provides a good visualization of noise properties.
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7. Quantum dot spectroscopy through shot noise

7.2.3. Shot noise results

We now present a grayscale map of calibrated Sy for the entire gate voltage range. Since
the bias voltage range Vsp > kgT', the measured quantities are classical shot noise. This
is shown in Fig. 7.6 together with the Schottky noise given by 2e|I|. The latter is the
current noise density for the case with constant Fano factor F' = S;/2e|I| = 1 every-
where. Grayscale range is kept the same for both maps to provide a direct comparison.
To quantitatively deduce the differences, we plot S; — 2e|l|, namely excess Poissonian
noise SEY. Enhanced noise compared to Schottky value called super-Poissonian is vis-
ible in blue while reduced noise in red. White regions have F' = 1. Interestingly, the
regions enclosed by contours taken from the conductance map display clear super or
sub Poissonian noise bands. Enhanced and suppressed noise bands are also visible in
the Fano factor map shown in Fig. 7.6(d). These observations suggest that the number
of transport channels strongly affect the current fluctuations. In the following sections
we discuss several transport regimes.

26 2 0 1 2 26 52 0 1 2 EP 27 a2 40438
S, (107°A/Hz) —m 2el|l| (10°°A/Hz) ——mmi S (107°A/Hz) i——=mim

(a) T]ﬁn—i | (b) W'_v_'_r (c) 7 I? o |
20 N S . . , Y / // e |

] ? ’1 R \\ // 4 \\ \‘ /

el - ‘\ N // \ ‘/\/

; 10 +— 1 [ | ‘//\\ /’ \( T
\ ) L

E ok . - . ¥ pd
8 / \\ L8y
> /. ) / 7\

§ B /A K
20 o v 1B R / \
- i j'_ L . \ \ =

S " I .\! Y

92 90 -88 86 -92 90 -88 -86
V4 (V) Vs (V)

0 4 8
Si/ 2e|l| ==l
B \F

(d) 20 T ] i I_ (e) A rs
E

10
>
éo 0
> 10 E Source

-20 N L] Y o— | 0 | | I

92 90 -88 -86 w(N-1) 10 5 0 5 10
Vs (V) Vo (MV)

Figure 7.6. Shot noise of the quantum dot (a) Calibrated current noise density as
a function of bias and gate voltages. (b) Corresponding Schottky noise obtained from
the measured current. (c) Excess Poissonian noise obtained by subtracting panel (b)
from (a). Super-Poissonian noise is presented in blue while sub-Poissonian in red. (d)
Fano factor F' grayscale map obtained by dividing panel (a) by (b). Coloured areas
denote the points where the division is unreliable due to the small current in Coulomb
blockade. (e) Sequential tunnelling in low bias regime strictly allows one-channel charge
transport. (f) Cuts of F' at constant gate voltages marked by dashed lines in panel (d).
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7.2. Shot noise in single quantum dot regime

7.2.4. Noise suppression in single channel regime

If the bias |eVgp| is smaller than the level spacing §F, the charge transport happens
strictly via a single channel and through two tunnel barriers with rates I's,I'p, see
Fig. 7.6(e). For a non-interacting system, the Fano factor is simply given by the weights
of two tunnelling rates (T2 +T1%)/(I's+I'p)? [19]. Two extreme cases can be formulated.
When the tunnelling rates are asymmetric i.e. one is much larger than the other, we
get I ~ 1. Physically, the transparent barrier quickly fills or empties the dot while the
opaque barrier produces fluctuations of the transport. This situation thus boils down
to having a single tunnel barrier where F' = 1. For the other case of the tunnelling rates
being symmetric I's = I'p, the Fano factor is 1/2. This can be naively understood as
follows. When a charge from the inner-circuit +e tunnels into the dot, equal screening
charges —e/2 appear on source and drain contacts. Upon a second tunnelling event from
the dot, the net transfer of charge felt by the outer circuit hence is only +e/2 while the
other half seems to be reflected back to the inner circuit in form of a screening charge.

From the conductance map, a level spacing 0 E' of the order of ~ 5 meV can be seen.
For smaller bias voltages therefore single channel charge transport can be assumed. The
G values of the order of 10 uS < e?/h seen in Fig. 7.3(b) suggest highly asymmetric
tunnel resistance of the barriers and should yield F' = 1. In contrast, cuts of F' near
diamond crossings at low bias in Fig. 7.6(f) show non-constant values that roughly lie
between 1 and 1/2. This means that a non-interacting picture of two tunnel barriers
in series does not hold in this case. Moreover, it has been shown by Hershfield et
al [156] that tunnelling rates in presence of Coulomb blockade are not simply given
by tunnelling resistances but rather depend on Gibb’s free energy. The latter is the
difference between the charging energy of the quantum dot and work done by the bias
voltage source. Consequently, asymmetries in the tunnel resistance can be compensated
by asymmetries in the energy gain and tunnelling rates could become similar. A special
consequence of energy dependent tunnelling rates has been seen for Coulomb staircase
to cause periodic suppression of F' from 1 to 1/2 between the plateaus [157].

7.2.5. Inelastic cotunnelling assisted sequential tunnelling

As explained in section 2.5.1, currents can flow even inside Coulomb blockade due to
second order tunnelling process called cotunneling. Elastic cotunnelling (EC) happens
irrespective of the bias voltage and does not change the ground state of the dot. How-
ever, if |eVsp| > 0F, an excited state can be available in the bias window. During
cotunnelling there is hence a finite possibility that the system changes from ground
state to the excited state, referred to as inelastic cotunnelling(IEC). If the dot relax-
ation rate is relatively small, tunnelling events via the excited state as shown in Fig. 7.7
can take place. This sequential charge transfer keeps happening until the system relaxes
to its original ground state and current is blocked. Since cotunnelling rates are much
lower than the sequential processes, the outer circuit of the dot experiences a bunched
charge transfer during an IEC event. The resulting shot noise hence can be larger than
its Schottky value even though the actual currents are small [158-162].

Figure 7.7(c) shows a dependence of S;/2¢|I| in the IEC regimes. We see Fano factors
larger than 1 and its enhancement up to 5 in the positive bias and 3 in the negative bias
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Figure 7.7. Shot noise for the inelastic co-tunnelling (a) Energy level diagrams
to illustrate sequential tunnelling via first excited state following an event of inelastic
contunnelling. (a) Green dashed Coulomb diamonds contours with shaded regions where
[EC is experimentally observed.(c) A cut of experimentally measured F' in IEC regimes
denoted by a solid line in the panel (b). At low bias, current from elastic cotunnelling
is too small to perform a numerical division.

regime. At bias voltages closer to £JF /e, F' values are close to 1. This suggests that the
dot relaxes to its ground state faster than the charge can tunnel out from the excited
state. The process becomes equivalent to an EC event which produces uncorrelated
tunnelling events similar to Schottky noise and hence F' = 1. At bias voltages reaching
the top or bottom edge of the Coulomb diamond, F' drops towards 1 as well. Strong
variation of F' observed here again suggests an energy dependence of tunnelling and
relaxation rates in the quantum dots.

7.2.6. Excited blocking states

At large bias Vgp though smaller than E¢, more than one orbital state can become
available in the bias window. Let us take a two channel situation without any dot
relaxation as shown in Fig. 7.8(a). Parallel charge transport from both channels is
not allowed because of the charging energy. Charges hence must tunnel either via the
ground state or the excited state. If both channels are equally coupled to the leads,
currents are statistically equally divided between the two. The situation is equivalent to
having a single channel transport. Consequently, the Fano factor lies between 1/2 and 1
as described earlier. An interesting case arises when the coupling of the two channels are
very different. The charge transport can thus be blocked at times through the opaque
channel. This produces a bunching of charges similar to the inelastic cotunnelling
assisted sequential tunnelling discussed in the previous section.

We observe super-Poissonian noise in several regions in the gate/bias voltage map
for the many-channel case. Two examples are highlighted by the shaded bands in
Fig. 7.8(b). For both cases, a transition from the sub-Poissonian regime of single channel
transport to the super-Poissonian case can be seen from the green contour dashed lines
in Fig. 7.6(c). In particular, the bottom-left shaded region presents an interesting case,
where the excited state displays negative conductance of about —10 uS visible as blue
data points in Fig. 7.3(b). This already suggests that the new channel added to the
transport is a blocking state [163] producing smaller currents at increasing bias. The
corresponding shot noise per unit current is however not small. This is confirmed in the
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Figure 7.8. Shot noise for many channel transport (a) Energy level diagram
showing two channels involved in the transport. Dashed arrows show weaker tunnel
coupling while solid arrows stronger coupling. (b) Green dashed Coulomb diamonds
contours with shaded regions where super-Poissonian noise is observed for multi-channel
charge transport. (c¢) Experimentally measured F' for a blocking state at a fixed gate
voltage, denoted by the vertical solid line in the panel (b).

measured Fano factor plotted in Fig. 7.8(c) where we see F' enhancement up to 3.5. In
contrast, for the top-left shaded band, the conductance is always positive. This hints
that the newly added channel, though a blocking state, is not long lived and therefore
a fast relaxation makes sure that most of the transport happens via the ground state.

7.3. Theoretical Model

Having discussed the shot noise measurements in several regimes of charge transport
we now turn to a theoretical model, in an aim to understand the noise enhancement at
specific dot configurations. The latter is based on full counting statistics (FCS) master
equation, originally developed in the reference [163] and only briefly explained below.
The MATLAB code for numerical calculations is written by Dr. Gergd Fiilop.

The FCS is based on a Markovian master equation within a T-matrix model and valid
as long as kT, eVsp,0FE > I', where ' = I's+1I'p. In this approach, the master equation
is limited to the occupation probabilities p, for the quantum dot states labelled by a
(collective) index k. In our case, we restrict the spinless model to four configurations,
namely the dot being empty (k = 1) or in ground state (k = 2) or excited state (k = 3)
or doubly occupied (k = 4). Their general time evolution

d
D _ =i Y T + Y el (7.6)

dt k' #k k' #k

can be simply arranged in a matrix equation dp/dt = Mp, where M is a 4 x 4 matrix
for four dot configurations. The transition rates ['y are obtained from the Fermi’s
golden rule and depend on the tunnel coupling strengths of the leads. The first sum-
mation of the equation generates the diagonal terms of the matrix M while the second
summation off-diagonal terms. For sequential tunnelling, the transitions simply connect
the neighbouring charge states. Including the leads, a/8 = S/D, rates for adding an
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electron on the dot are given by
Crw = Y Dol Mg | fal(e), (7.7)

where k' =2,3if k =1and k' =4 if k = 2,3, and f,(¢) is the Fermi Dirac distribution
accounting for the bias dependence. Mg, = (Mf,)* are the transition elements connect-
ing the dot configurations, which are treated as tunable parameters in our calculations.
Similarly, rates for removing an electron from the dot are

Fw—ZF Mg l*[1 = fa(e)]. (7.8)

For example, if the dot is empty (k = 1), an electron can be added to either the ground
state (k = 2) with a transition rate I'y; or to the excited state (k = 3) with a transition
rate I's ;. The transition rates for the second order cotunnelling processes however
involve tunnelling in and out of two leads that may excite the dot but leaves the charge
state intact. The rates Fkk, thus contain a product of left and right lead couplings
and product of matrix elements. Moreover the relaxation from the excited state to the
ground state also changes the occupation probability and can be incorporated via an
additional parameter 7., which is independent of tunnel coupling strengths.

In FCS we generally describe the probability P(n, At) of n electrons traversing across
the dot in a measurement time At. For numerical calculations, it is more convenient to
work with S(y, At), the cumulant generating function (CGF), defined as

eSO6AY ZP n, At)el"™x (7.9)

where y is the counting ﬁeld In this formalism the average current can be obtamed by
the first derivative Aet 8(Jx |x—>0 and noise from the second derivative < At 3 ]X)2 lx—0- The
counting probability P(n, At) can be further resolved by summation over all dot con-

figurations and then Fourier transformed, resulting in a counting-field master equation
dp(x, At)
dt

In the Markovian approximation, the stationary solution to this equation can be ob-
tained from the eigenvalue A of M(y) with the smallest real part [164] as

= M(x)p(x, At). (7.10)

S(x, At) = AtAin(X). (7.11)

All that remains to calculate current and noise is to construct xy dependent matrix
and solve for at least three small values of xy = (0.001,0,-0.001) to get x dependent
eigenvalues, which are then used to approximate the derivatives of S(x) with finite
differences. It turns out that y dependent transition rates for sequential tunnelling can
be simply expressed as [164]

o () = Thl e, (7.12)
where + signs account for processes into/out of the counting lead a. For the cotunnelling
case [163] the rates are given in terms of Kronecker delta as

T30 (X) = TP (0ap + 0asdspe’™ + dandsse ™). (7.13)
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7.3. Theoretical Model

The complex matrix elements of M (x) can now be created at each gate and bias voltage
points. By default, parameters such as charging energy is set to 1 meV and dot-lead
transition elements My, = 1. Moreover we choose quantum mechanical excitation
energy 0F = 0.25 meV and symmetric lead coupling energies of 1072 meV which is
much smaller than other energy scales to neglect broadening effects. Moreover, the
transition rates for adding or removing electrons are symmetrical i.e. Mg, = Mg,
which we choose to be real valued.

We first generate a stability diagram in Fig. 7.9(a,b) for the case where both source
and drain contacts are strongly coupled to two transitions - we choose Mg, = My'; = 2.
Next, we choose the relaxation rate to be fast for panel (a), 1 = 1 and a much slower
Yrel = 1073 for panel (b). A transport via excited sates are easily visible in both panels
(a,b) of conductance plots where four excited state lines emerge outside the diamond
edges. Faint line near the vertices is merely the continuation of the excited states from
the opposite bias direction. A slow relaxation leads to cotunnelling assisted sequential
tunnelling [165] causing F' enhancement inside the diamond [163], shown in panel (b).
For the case of fast relaxation, the second transport pathway is eliminated, and F' =1
is recovered, characteristic for elastic cotunnelling.
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Figure 7.9. Calculated stability diagrams of G and F (a,b) The ground and
excited state have the same transition elements M), in calculations. Inside the dia-
monds, cotunnelling assisted sequential tunnelling leads to noise enhancements, when
the relaxation is slow [panel (b)] or produces Poissonian noise for fast relaxation [panel
(a)]. Dashed line highlights the continuation of an excited state towards the opposite
diamond edge. (c) Excited blocking state has a smaller weight M45:3 = 0.1 in calcula-
tions. An enhanced noise band coincides with the contour of the negative differential
conductance. Thermal noise is subtracted from both Fano factor calculations.

We start fresh again with default settings of My, = 1. The lead coupling is now
reduced to a specific transition such that Mf?) = 0.1 while keeping the relaxation
rate quite low 7. = 107°. What results is a blocking state with negative differential
conductance shown by blue in Fig. 7.9(c). This again leads to F' enhancement in a band
where two dot transitions coexist in the bias window. In all grayscale plots of Fig. 7.9,
F is 1/2 for strictly single channel transport and 1 for elastic cotunnelling.

Despite the tunnel coupling energies and relaxation rates being energy independent,
the simple rate equations help us to reproduce most of the experimental features. Espe-
cially near the vertices inside the diamonds in Fig. 7.9(b), the Fano factor is relatively
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7. Quantum dot spectroscopy through shot noise

larger, which is also observed in our measurements, see Fig. 7.6(d). Moreover, the con-
sequence of long lived excited state is more pronounced in the Fano factor plot and
the conductance plots do not yield such information in Fig. 7.9(a,b). Besides, a block-
ing state could be explicitly introduced in the calculations and is shown to produce
enhanced noise, also consistent with the measurements.

7.4. Summary and discussion

We have employed a GHz stub tuner to measure shot noise from a QD confined in
a CNT which has an average resistance of the order of 150 k2. The simple planar
structure of the circuit from coplanar transmission lines is easy to design and fabricate
with standard lithography. We demonstrate quantitative parameter extraction of the
stub tuner circuit to enable simple calibration of the noise signals. More importantly,
the large transmission achieved in bandwidths on the order of a few MHz is utilized to
perform fast measurements of small signals with significant signal to noise ratio. We see
selective enhancement and reduction of the current noise densities from their Schottky
value depending on the type and number of transport channels involved. The noise
features match well with the existing experimental and theoretical studies on QDs.

To quantify the advantage of a stub tuner over wide bandwidth detection, we define
a figure of merit gsng = SNRiatching/ SNRuomatching. Here SNR is the ratio of desired
noise signal with the background amplifier noise, given as (JP)/(P), from the Eq. 7.2.
The case of nomatching is obtained by setting D; and Ds to zero in the equation. A
derivation of gsygr is provided in the section 3.3.7. It turns out that the upper bound
for the lossless case with FWHM taken as the bandwidth is

max __ iRMatch
9sNRr 16 Z,

(7.14)

This is = 500 for our case of matching at G = 7 uS. Even after including losses of
the stub tuner, this value can be calculated by integration of transmission function in
Eq. 3.49 and is &~ 200 at the same conductance. The figure of merit is exactly the
same for an LC' circuit [149] even when it has a larger FWHM for the same Gyagen-
This can be qualitatively understood as following. At full matching, irrespective of the
circuit, |ty|* is given by 1/4 - Zy/R to allow maximum power collection, which is 1/4
of the generated value. Only the integration bandwidth is different for two cases. But
again, increase in BW also leads to an enhanced background noise so the ratio remains
the same. Larger BW of the LC circuit is however desirable for a faster time-resolved
read-out.

An alternative way to improve SNR is to minimize the background amplifier noise.
This can be achieved with Josephson parametric amplifiers where g of 30 dB is readily
achievable. The noise added in this case is just the vacuum fluctuations of the elec-
tromagnetic environment with energy ~ hw for each mode with frequency w. A JPA
for example has been employed to measure emission noise from double dots in InAs
nanowires [166] and GaAs two-dimensional gas [167]. In our group, we are working
on combining a lumped LC' circuit with Josephson junctions to simultaneously achieve
impedance matching and parametric amplification.
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8 Shot noise of quantum dots
coupled to superconducting leads

Compared to normal leads, superconductors contain Cooper pairs which are protected
by an energy gap A from the quasiparticle states. The charging energy of the quantum
dots, to the first order, however restricts electrons to pass one by one. Coupling quantum
dots to superconductors hence creates a direct conflict of two phenomena. Interest in
such competing effects have thus gained attention not only for fundamental studies of
Andreev bound states [13], Majorana bound states [16, 168], Josephson effect [50] but
also for its potential applications in supercurrent transistors [169], nano-SQUIDs [170,
171] and entangled Cooper-pair based quantum computing [14, 15]. Most of these
phenomena have been studied through averaged current or conductance.

In this Chapter, we study the competing effects of quantum dots (QD) and supercon-
ductors (S) through shot noise measurements. Two devices are presented, one fabricated
on an InAs nanowire and another on a carbon nanotube. Both devices are contacted
with Al leads and integrated on chip with stub tuner circuits. The devices operate in
the large lead coupling regime to allow second order cotunnelling processes. The latter
enables us to study behaviours in the off-resonant and resonant cases using the same
device. In the first device, we address multiple charge transfers resulting from Andreev
reflection and associated shot noise. More importantly, measurements of supercurrent
emissions at zero bias are presented. In the second device, effects of Kondo correlations
are also included. Circuit and gain calibration techniques of the devices have been
already provided in Chapter 7 and not repeated here.

8.1. Andreev transport in few transport channels

What happens to the electrical transport when a superconductor is connected to a
normal metal (N) is best described by Andreev reflections, i.e. when an electron or a
hole in the normal region hits the superconductor, a hole or an electron is reflected with
the same energy and constitutes a transfer of a Cooper pair into the superconductor.
In the case of coherent S-N-S junctions, even higher order multiple Andreev (MAR)
reflections can contribute to the current (see Chapter 2). In the following, we address
the case where the normal region is made from a quantum dot.

An SEM image of the device discussed in this section is presented in Fig. 4.7. A
InAs junction of width 150 nm is proximitized with an epitaxial Al shell which also
serves as the contact electrode. The lateral local gate placed 100 nm away tunes the
electrochemical potential of the bare nanowire. The source electrode is connected to
one of the ends of a stub tuner and the drain to the ground plane. At negative gate
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8. Shot noise of quantum dots coupled to superconducting leads

voltages, the nanowire is completely depleted. We characterize the resonance response
of the stub tuner circuit in this regime and extract the two lengths D; = 10.42 mm and
Dy = 10.24 mm, effective dielectric constant e = 6.2 and loss factor o = 0.065 m™*
Unfortunately, large « forces the circuit in the loss-dominated regime and more impor-
tantly reduces the collection efficiency of the noise signals. The electronic temperature
of 50 mK is estimated from shot noise from a diffusive metallic wire, see section 7.1.1.
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Figure 8.1. Andreev transport in a superconducting junction (a) Differential
conductance of an Al-InAs-Al junction as a function of gate and bias voltages. The
junction is depleted at negative gate voltages. At positive voltages, sub gap features
resulting from high order quasiparticle transport can be seen.(b) A vertical cut of the
conductance denoted by dashed line in the panel (a) shows a hard superconducting gap
of 4A ~ 0.72 meV. (c¢) The zero bias conductance traces in the superconducting and
the normal state of the leads.

To characterize the transport through the junction, the differential conductance
G is inferred from the reflectance measurements (see section 5.2.1 for the extraction
method). The corresponding color map is plotted in Fig. 8.1(a). At negative voltages,
the nanowire is completely depleted. In this regime, the nanowire acts as a good tunnel
barrier and the resulting conductance shown in Fig. 8.1(b) displays sharp quasiparticle
peaks with a hard gap [102]. The superconducting gap A is found to be around 180 peV,
consistent with the bulk gap of aluminium. At first sight, the general behaviour of the
color map at positive voltages is rather complex. There are fixed conductance ridges at
Vsp = £2A due to the singular quasiparticle density of states at the edge of the super-
conducting gap. In addition, there are ridges at Vsp = +A that bend, for example near
gate voltages Vg = [0, 0.5, 1, 1.3] V, but are otherwise constant in energy against gate
voltages. The sub-gap conductance of a voltage biased junction arises from multiple
Andreev reflection (MAR), as explained in Chapter 2. The zero bias conductance is
shown in Fig. 8.1(c) for the superconducting and the normal state achieved by applying
100 mT of parallel magnetic field B);. Conductance values larger than 2e?/h suggest
that there is more than one sub-band occupied in the InAs nanowire. Moreover, there
is a weak gate dependence for |Vsp| > 2A.

The poor visibility of the Coulomb blockade in Fig. 8.1(a) and the large G values
are due to the lead couplings I' being comparable to the charging energy. Large I' and
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8.1. Andreev transport in few transport channels

smaller charging energy however enhances the probability to observe MAR processes
that are suppressed in the opposite limit [172]. This brings us to the near-resonant
behaviour in Fig. 8.1(a), the bending of subharmonic G peaks at +A towards zero bias.
A similar behaviour was observed in the references [55, 97] in an Al-CNT-Al system.
It turns out that those MAR trajectories which connect the resonant dot-level to the
superconducting leads” BCS spectral density can dramatically enhance the current. The
enhanced conductance peaks thus arise when either the dot level stays aligned with the
Fermi level of the leads or follows the gap edge as an initial or final state of the Andreev
process [52, 53, 55]. In simple words, the dot level serves as a gate tunable transparency
of the superconducting junction. Tuning of transparency has also been realized with
atomic arrangements of Al break junctions where the subgap current becomes significant
due to higher order MAR processes at increasing transmission and a conductance peak
emerges at zero bias [54].

8.1.1. Shot noise results

Now we turn to the shot noise measurements and analyse the off-resonant case. In
this low-transmission regime, the probability of nth-order MAR process is diminished
by a factor 7. Especially, when 7 < 1, effective charge defined as S;/2el becomes
quantized [173, 174] due to coherent transfer of charges across the junction. At low
transmission, however, the current and resulting noise become too small challenging
the measurement sensitivity of the setup.

We focus on the I — V' characteristics near Vi = 0.3 V as shown in Fig. 8.2(a). To
estimate the transmission and number of channels, we fit the non-linear curve using
the complete MAR theory developed in reference [173]. Black curve is for single chan-
nel while the red curve assumes two channels. We find that two channel case fits the
data better than the single channel case. However, the current is mostly carried by
one channel ~ 41 % than the other ~ 5 %. Corresponding calibrated current spec-
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Figure 8.2. Multiple charge transfer (a) Non linear [ — V' characteristics at Vg =
0.3 V obtained from the numerical integration of conductance. Solid lines are fits from
the MAR theory [173] for single and double channel cases. (b) Corresponding calibrated
noise and fits to MAR theory. (c) Increasing effective charge with reducing bias voltage.
Note that the bias voltage axis is normalized by the superconducting gap A = 190 peV
which is deduced from the I — V fit.
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8. Shot noise of quantum dots coupled to superconducting leads

tral density is plotted in Fig. 8.2(b). The non-linearity in current is also evident in
the noise curve. Solid lines are calculated theoretical curves and match the data well
within 10% accuracy of the transmission values extracted from the I — V plot. Fi-
nally, the effective charge plotted in Fig. 8.2(c) increases with decreasing bias voltage
- a hallmark of multiple Andreev reflections. Dashed line corresponds to the expected
staircase behaviour when 7 < 1. For rather large transmissions, as in our case, higher
order MAR processes can interfere, thus washing out the staircase. The noise data at
arbitrary transmission can nonetheless be compared to the theory [173] and is plotted
as a solid line. The deviations from theory at low bias are probably due to the channel
transmissions being energy dependent and uncertainties in the extracted amplifier gain
and the superconducting gap.

8.1.2. Supercurrent: noisy or silent?

In addition to the non-equilibrium noise stemming from MAR, a finite equilibrium
noise peak can be observed in Fig. 8.2(b) at zero bias voltage. While inelastic Andreev
scattering may lead to partial reflection of electrons at small bias voltages Vsp < A, the
resulting classical shot noise is very small [175]. Moreover at exactly zero bias, barring
the inherent fluctuations of the voltage sources, one would intuitively expect a coherent
dissipation-less transfer of Cooper pairs across a weak-link, that is the supercurrent
from the Josephson effect.

The presence of large equilibrium noise due to the supercurrent was addressed through
Green’s function calculations of a QPC junction in reference [176]. The microscopic
theory treats supercurrent to be carried by subgap states, called Andreev bound states
(ABS), which are localized in the point contact. For a single transverse channel, the
energy of ABS branches for a arbitrary transmission 7 is given by [57]

+ By = +A[l — 7sin*(¢/2)]Y/2. (8.1)

where ¢ is the superconducting phase difference of two electrodes. It was shown that
the supercurrent noise arises from an interplay between quasiparticles and supercur-
rent coherence. In their formalism, the flow of DC supercurrent can be considered
stochastic, that is, quasiparticle exchange between the leads and ABS cause the super-
current to switch between two values. The resulting spectral density at low frequencies
and small relaxation rates from the excited quasiparticle states to the ground state, is
approximated by an intuitive Lorentzian [176]

_ 1 Is(¢) * Y
Siw) = 2 (cosh(gA/ZkBT)> w? + 2’ 8.2)

where kg is the Boltzmann constant, 7' the temperature, Is(¢) the phase and trans-
mission dependent supercurrent given as Ig(¢) = (eA7/2h)sin(¢)/[1 — 7sin?(¢/2)]'/?
and v the rate of quasiparticle exchange. The latter is roughly proportional to the sub-
gap density of states in the superconducting leads and should vanish for the ideal BCS
case [177]. The equation shows that the noise can be quite large at zero frequency even
at very low temperatures because of the decrease of v. The theory was furthermore ex-
tended for finite bias voltages Vsp < A where the phase difference continuously evolves
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8.1. Andreev transport in few transport channels

d¢/dt = 2eVsp/h due to the AC Josephson effect. It was shown that S; monotonically
decreases with bias voltage and has 1/V dependence in the limit eVgp > hy. The
same has been experimentally confirmed in reference [178], though in a case of diffusive
metallic weak link.

Unlike metallic weak links, we can study the supercurrent noise for different gate
voltage settings near the quantum dot resonance. Three conductance traces are shown
in Fig. 8.3(b) which are vertical cuts from the color map presented in the panel (a).
Black and cyan curves are off-resonance cases showing a gap-like feature at zero bias.
In contrast, the red curve is for the on-resonance case showing a conductance peak due
to the large transmission. The corresponding noise is plotted in the panel (c). For a
faithful calibration of zero-bias signals, we measure the amplifier background noise at a
frequency different from the stub tuner resonance. When the QD is off-resonant, we see
large noise peaks at zero bias reaching 2.5 x 10726 A%/Hz corresponding to a thermal
noise temperature of 10 K for G ~ e?/h. Moreover the full width at half maxima of the
peaks is roughly 0.08 meV, corresponding to 19 GHz. The latter is much larger than
both the linewidth of the stub tuner circuit (~ 3 MHz) and the resonance frequency
itself (3 GHz). Thus, it is safe to say that we are not measuring any coherent AC
Josephson emission [179, 180] from oscillating currents.
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Figure 8.3. Noise near QD resonance (a) A zoom-in of the measured differential
conductance presented in Fig. 8.1. (b) Vertical cuts of the conductance at three gate
voltages denoted by dashed lines in panel (a). The red curve corresponds to the QD
resonant case while the rest are for off-resonance scenarios. (c¢) The corresponding
current spectral density plotted against the bias voltage. Large noise peaks are present
at zero bias for the off-resonance cases, but absent for on-resonance case.

Surprisingly, the noise peak for the cyan curve is larger than that of the black curve in
Fig. 8.3 despite the former having smaller G at Vsp = 0. But the most striking feature is
for the on-resonance or the largest transmission case. The noise at zero bias completely
disappears. We now investigate the noise response at other QD resonances. A color map
of the noise power together with the corresponding G is plotted in Fig. 8.4(a). The QD
resonances are marked with vertical dashed lines. We see again that the corresponding
noise power near the QD resonances is suppressed at zero bias. This behaviour is more
understandable in a shot noise regime at large transmission of a QPC. Since the observed
equilibrium noise peaks are much larger in magnitude than the expected classical shot
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Figure 8.4. Periodic suppression and revival of equilibrium noise (a) Color
maps of conductance and the corresponding noise power. Zero bias noise is suppressed
at the voltages highlighted by the dashed lines while QD resonances are observed in the
conductance plots. (b) Transitions between different ABS excitations due to quasiparti-
cle exchange causing changes in their population and stochastic supercurrent. Symbols
are explained in the text.

noise [175], a different phenomenon must play a part in its suppression. In the following
section, we attempt to understand the observation in terms of quasiparticle relaxation.

8.1.3. Quasiparticle relaxation

Equation 8.2 is simple yet powerful enough to capture the noise stemming from thermal-
ization of supercurrent between the quasiparticle excitations of the ABS. This two-level
noise model however makes an important assumption that the quasiparticle relaxation
rates are energy independent which in principle should be strongly dependent on the
phononic and photonic environment [181]. To understand the dynamics of the quasi-
particles, we review the processes affecting their population in the weak link, depicted
in Fig. 8.4(b). The ABS is spin-degenerate and can host n = 0, 1, 2 quasiparticles.
The resulting supercurrent is given by Ig(1 — n), where Is = (2¢/h)(0Ex/0¢). Thus,
the supercurrent is zero when a single quasiparticle is trapped in the weak link and
negative or exactly opposite to the one in ground state when doubly occupied.

Three principal processes can change their relative populations. An ionization process
with a rate 77, excites the quasiparticles into the delocalized energy continuum E > A
of the leads. The opposite process is the refill (yg), where a quasiparticle is re-trapped
in the ABS. At sufficiently low temperature, the number of quasiparticles occupying
the continuum is extremely small, suppressing vg. Another process involves breaking a
Cooper pair into a quasiparticle and exciting the other one into the continuum. This is
also slow. Lastly, a doubly excited singlet can be annihilated to reach the ground state
with a relaxation rate 4.

All of the aforementioned rates are generally slow ~ kHz [181] and depend on the
bound state energy E4 rather than the phase difference or the transmission across the
junction. Several cases can be formulated depending of the relative rates. Generally
va is quite strong [182, 183] thus the excited singlet is rarely occupied. This means,
that the ground state supercurrent stochastically drops to zero when one quasiparticle
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8.2. Kondo effect in QD with superconducting leads

is trapped. Again, if v; > g, ABS is always emptied by the ionization. This situation
was observed in the reference [184] where the relaxation of quasiparticles was shown to
have two orders of larger magnitude for Ex > 0.5A due to a stronger ionization induced
by an environmental photonic mode hf, ~ 0.5A [181]. The photonic environment in
our case is a stub tuner which is not driven for noise measurements and its operating
frequency 3 GHz is much smaller than A/h. Even from higher harmonics of the stub
resonance, a photon mode cannot explain the noise observed in Fig. 8.4(a). In contrast
to reference [184], quasiparticles in our case seem to live longer in regimes that have
low transmission or large bound state energy Ejy.

We note that the previous works have been centred around phase biased junctions
and at present none, to the best of our knowledge, addresses the relaxation mechanisms
in voltage biased junctions. The latter is a challenging problem because of strongly
correlated electrons in MAR. Moreover, the ABS can evolve adiabatically or undergo
Landau-Zener transition at ¢ = 7 for a continuously evolving phase difference. Owing to
such complications together with the environment, we have not been able to understand
the noise suppression at QD resonance.

8.2. Kondo effect in QD with superconducting leads

We now turn to a second device where the quantum dot, in addition to coupling to
superconducting leads, also exhibits the Kondo effect [185]. A competition in such a
system arises because of the fact that the magnetic exchange of an unpaired electron on
the QD needs to be screened by the leads to sustain Kondo correlations. Superconduc-
tors on the other hand have a spin-singlet ground state. In the following, we address
such interplay through differential conductance and shot noise measurements.

The QD is formed in a carbon nanotube (CNT), and tuned by a side gate, as shown
in Fig. 5.1. Source and drain contacts are made from Pd/Al (4.5 nm/70 nm) and
separated by 300 nm. A side gate tunes the dot occupation. Integration of the niobium
stub tuner circuit and CNT device is achieved using probabilistic CNT stamping. We
first characterize the circuit by measuring a reflectance resonance in Coulomb blockade
(Chapter 5). The fit extracts lengths Dy = 10.46 mm and Dy = 10.26 mm, effective
dielectric constant e. = 6 and loss factor o = 0.054 m~'. The latter corresponds to
a quality factor @ of 1200. While it does not change up to a temperature of 1 K, this
drops to 1000 at a parallel magnetic field By = 150 mT. The stub tuner circuit with
resonance frequency at 3 GHz also operates in the loss dominated regime.

The conductance response to sweeping source-drain voltage and a side gate voltage
is shown in Fig. 8.5. Kondo ridges at zero bias for odd charge occupation are apparent.
In addition, for the even dot occupation, a narrow strip of suppressed G' due to the
superconducting gap can also be seen. This goes away at B = 150 mT confirming
the destruction of the superconducting state. A vertical cut at Vg = 3.3 V is shown in
the panel (b) estimating the gap A to be 125 peV, significantly smaller than the bulk
gap of 180 pueV. The latter is probably due to the wetting layer of Pd. Moreover, the
superconducting gap is rather soft and no subgap MAR features are observed. Both
observations are consistent with large lead couplings I' ~ 0.8 meV > A extracted from
fits to Breit-Wigner function [45] of a Coulomb resonance at large negative voltages,
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Figure 8.5. Kondo effect in QD with superconducting leads (a) Appearance
of Kondo ridges for odd occupancy in absence of any magnetic field and at the base
temperature. (b) A vertical cut in panel (a) at Vg = 3.3 V showing suppressed con-
ductance due to the superconducting gap. (c) Zero bias conductance traces for two
magnetic fields. Dashed arrows labelled R1 and R2 represent two Kondo ridges.

where the Kondo effect is absent and blockade is strong.

The fact that superconducting gap ridges do not appear for all dot occupations hints
at strong Kondo correlations kgTx > A in the system, where Tk is the Kondo temper-
ature. To isolate the influence of the superconducting leads on the Kondo resonances
we compare the zero bias G with that from the normal state shown in Fig. 8.5(c). In
particular, we find the Kondo ridge R1 to show enhancement in G from 1.2¢2/h up
to 1.6e%/h. This suggests kgTk being larger than A [98]. To confirm this we did two
checks. A temperature dependence of the Kondo resonance (not shown) in the normal
lead state shows the peak height to merely change from 1.2¢/h at 20 mK to 1.1e?/h
at 1 K. We further fit a Lorentzian to the normal state Kondo resonance at 20 mK and
extract the half-width at half-maxima of ~ 0.4 meV. In contrast for Kondo ridge R2,
G does not increase or decrease in the superconducting state suggesting A ~ kpTk.

8.2.1. Shot noise results

We focus on the ridge R1 for the noise measurements. Colour maps of conductance and
noise power are shown in Fig 8.6(a,b). Unlike the device shown in the previous section,
we do not see any hints of zero-bias noise neither in the resonant or the off-resonant
cases. A likely cause could be the bad coherence of Cooper pairs in the longer junction
~ 300 nm. This is supported by the absence of any MAR peaks in both conductance
and noise measurements. Unfortunately, the electronic temperature 7' ~ 150 mK is
also found to be higher in this case '. Nonetheless, the differences of the shot noise in
comparison to the case when contact leads are normal can be interesting.

Vi is now fixed in the middle of the Kondo ridge R1 and traces of current / and
noise power are simultaneously measured. Figure 8.6(c) shows I and respective G at
two parallel magnetic fields of 0 mT and 150 mT. To separate the shot noise from the

'We also observed DC currents near QD resonances at zero bias suggesting a hotter source than the
drain contact. A new directional coupler and cryogenic terminators were installed in the setup
later. The nanowire device was measured in the improved setup.
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Figure 8.6. Shot noise in Kondo regime. (a) Differential conductance of Kondo
ridge R1 and (b) corresponding raw noise power. Red and blue represent higher and
lower magnitudes respectively. (c) Direct current and corresponding (d) differential
conductance of a Kondo resonance at the gate voltage denoted by the dashed line in
panel (a). G is enhanced only within the superconducting gap. (e) Calibrated excess
noise Seye for —2A < Vgp < 2A for Kondo ridges R1 (top) and R2 (bottom). Solid
lines are predictions using Eq. 8.4 assuming an electronic temperature of 150 mK.

thermal contributions, excess noise Sey is further defined as
Sexe = S; — 4kgT.G, (8.3)

where S is the calibrated current noise density after subtracting the amplifier back-
ground noise. The calibrated Sex. for R1 at two field values are now plotted in Fig. 8.6(e)
for —2A < eVsp < 2A. A relatively large noise power is observed in the superconduct-
ing state compared to that of the normal case. Unfortunately, very few theoretical and
experimental works have addressed shot noise in such regimes. A lone work in refer-
ence [186] suggests that for large Ti, the Kondo resonance effectively makes the junction
behave like a highly transparent non-interacting weak link. Since G does not exceed
(Gq in our measurements, we choose to perform an effective charge analysis where the
shot noise for a single channel with transmission 7 is given by

Sexe = 2" VspGqT(1 — 7)[coth(v) — 1/v], (8.4)

where e* is the effective charge and v = e*Vsp/2kgT.. In a small bias window, 7 is
assumed to be a constant given by G(Vsp = 0)/Gq. We have also included the electronic
temperature 7T, and described the current as I = VspGq7. We note that the formalism
is to only account for differences in the enhanced noise and does not claim coherent
multiple charge transfer like in section 8.1.1. We plot such predictions as solid lines in
Fig. 8.6(e). For the ridge R1 with leads in the superconducting state, e*/e = 2.2 fits
the data well while the effective charge drops to e*/e = 1 in its normal state. For R2
excess noise can be well explained by e*/e = 1. To summarize, Kondo resonances with
kgTk > A are enhanced in both the conductance and in the shot noise [186].

Whether shot noise in the Kondo regime can be treated by a non-interacting pic-
ture has been a subject of debate [19]. Recently, in both theoretical [187, 188] and
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8. Shot noise of quantum dots coupled to superconducting leads

experimental [189, 190] efforts, it has been argued that two-particle scattering can en-
hance the shot noise above the non-interacting case and has striking differences between
different SU(N) symmetries. In particular, the Fano factor increases with decreasing
temperature despite the fact that Kondo resonance becomes more transmissive. This
motivates us to analyze the data also for the case where leads are normal i.e. bias
voltages e|Vsp| > 2A. We extract the lead couplings I's and I'p using the Breit-Wigner
formula for the SU(2) Kondo case in the normal state
Q— 262 Fer

n h (evsD)2 + (Fs + FD)2/4.
A fit for ridge R1 is shown by the dashed curve in Fig. 8.6(d) yielding I's;p = 0.8
meV, I'p/g = 0.08 meV in the normal state. For a non-interacting case of a resonant
state coupled to two tunnel barriers [19], the Fano factor is simply given as F = (T'3 +
I%)/(Ts + I'p)? = 0.84. For comparison, we extract F' = Se./2el at Vsp = £1 V to
be 0.8, the same for both magnetic fields. The excellent comparison suggests that the
non-interacting picture holds in the tails of the Kondo resonance. The small deviation
can be attributed to uncertainty in amplifier gain.

(8.5)
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Figure 8.7. Temperature dependence of shot noise. (a) Differential conduc-
tance for different fridge temperatures for Kondo ridge R1. Wiggles are artefacts from
the measurement setup. (b) Corresponding calibrated current noise. For small bias,
crossover from shot noise to thermal noise can be seen. (c¢) Corresponding Fano factor
F = Sexe/2el. Dashed line is the value predicted from the non-interacting case.

To address the low bias regimes, we also study the temperature dependence of the
Kondo ridge R1. Increasing the temperature not only causes the suppression of the
superconducting properties but also of the Kondo correlations. G at different fridge
temperatures is plotted in Fig. 8.7(a). A monotonic decline in G at zero bias for
increasing 1" is observed. We further take current noise measurements as shown in
Fig. 8.7(b). Especially at small bias, a clear crossover of shot-noise to thermal noise can
be seen. We now plot the Fano factors in Fig. 8.7(c). While at high bias, F' tends to the
zero temperature non-interacting value of 0.84, it increases with decreasing temperature
at lower bias, even for energies e|Vgp| > 2A. It is safe to say that Kondo correlations
are noisy even though a perfect transmission can be achieved in the electronic transport
in quantum dots.

2Four-fold shell filling is not observed.
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8.3. Summary and discussions

In summary, we have measured differential conductance and shot noise in quantum dots
coupled to superconducting leads. In the first part, we observe crossovers of multiple
charge transfers associated with multiple Andreev reflections. Specifically, thermal noise
associated with supercurrent is found to be sensitive to the position of the QD level with
respect to the leads i.e. the noise is much larger in off-resonant cases but gets suppressed
on resonance. In the second part, we observe enhancement of the Kondo effect when the
Kondo temperature is larger than the superconducting gap. The associated shot noise
is also found to be larger due to larger effective charge transfer despite the increasing
transmission.

The shot-noise response in S-QD-S systems is clearly interesting, though a complete
understanding of underlying physics requires more work. A good follow-up device would
be one where junctions are phase biased and inductively coupled to the microwave res-
onator near its low impedance end. A frequency dependence of the noise is also desir-
able, though it is a subject to wideband detection. Especially for Kondo interactions,
quantitative dependence of enhanced noise against Tk and lead symmetry can be useful,
which could not done in our device due to device limitations. The presented results
are of great importance in establishing the quasiparticle dynamics in superconducting
junctions at different environmental conditions.
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This thesis aimed at developing a gigahertz impedance matching circuit to perform
sensitive measurements of admittance and shot noise in high impedance devices. For
this purpose, a stub tuner based on transmission lines was designed, fabricated and
integrated with mesoscopic devices. Owing to the simple design, we could predict the
frequency response of a stub tuner in terms of the standard circuit model. We initi-
ated certain necessary fabrication adaptations to achieve integration of niobium circuits
with devices. In particular, a reliable stamping of carbon nanotubes from the growth
substrate to the target substrate was accomplished, improving both the device quality
and yield. All along, a dedicated setup for simultaneous DC and RF measurements was
built and constantly improved. Below we review the main results of the thesis.

Impedance matching in quantum dots Reflectance measurements of quantum dots
formed in carbon nanotubes were presented. We showed that the matched value is sim-
ply dependent on the length difference and microwave losses of the transmission lines.
All stub tuner parameters could be reliably extracted and utilized to deduce differential
conductance from the reflected signals. In particular, the circuit allows the measurement
bandwidth to extend to a few MHz even at the impedance value of ~ M. Typically
for low frequency DC measurements it is of the order of ~ kHz. In another experiment,
double quantum dots were tunnel coupled to create charge qubits. The reflectance in
such systems unlocked signals which could not be observed in DC measurements. Using
the phase response of the circuit, qubit energy and dephasing rates were extracted. We
found an increase in the dephasing rate at decreasing qubit frequencies, probably due
to the residual 1/f charge noise in the environment.

Quantum capacitance of graphene We extended the measurement principle of the
stub tuner to graphene devices where we eliminated any contact electrodes. We showed
that the microwave response could provide quantitative information about the equilib-
rium density of states as well as internal scattering mechanisms of p-n junctions. In
particular, residual doping was shown to affect not only the mean free path but also the
Fermi velocity. We saw that at small doping ~ 10 cm~2 electron-electron interactions
could modify the Fermi velocity and that the dispersion relation could deviate from
linearity.

Shot noise of quantum dots The main advantage of the stub tuner was tested in the
noise measurements of highly resistive quantum dots. We showed a simple quantitative
calibration of raw noise power through a circuit model. The large bandwidth and signal
to noise ratio (SNR) enabled us to measure extremely clean noise power densities at
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high speed and draw comparisons with the corresponding average current. We intro-
duced a figure of merit gsnr, a ratio between the SNR for matching and no matching,
and found it to be as high as 200 at a resistance of 150 k€2. Besides, clear changes in the
noise spectrum were seen when a transport channel was added or removed from the bias
window. In particular, we observed noise enhancement outside the Coulomb diamonds
due to blocking states. The explanations of noise enhancement were backed up by the
theoretical framework of full counting statistics where slow relaxation of excited dot
states was shown to play the key role.

Shot noise of Andreev processes We investigated noise properties of quantum dots
when leads are superconducting. In the limit of large tunnel coupling, noise measure-
ments were performed in both the blockade and at the dot resonance. Distinct charge
transfers due to multiple Andreev reflections were visible in the shot noise. The main
finding, however, was the thermal noise at zero bias. We observed its periodic suppres-
sion and emergence across the quantum dot resonance. The microscopic mechanism is
not yet understood. In another device, shot noise due to the Kondo effect was found
to be enhanced in the superconducting state when the Kondo temperature exceeds the
value of the superconducting gap.

9.1. Future directions

Further improvements are sought after in the performance of the stub tuner circuit.
An in-situ tuning of frequency could be useful in achieving matching at a range of
impedances rather than at a fixed value. This can be achieved, for example, with
SQUIDs. The latter also provide an opportunity to integrate a quantum limited para-
metric amplifier [191] on a chip. Moreover, high magnetic field operation of the circuit
is not possible because of niobium substrates. To this end, fabrication and character-
ization of copper resonators [146], at the expense of relatively large microwave losses,
are currently being pursued in our group. This will enable microwave detection of spin
related phenomena and quantum Hall effect.

To achieve larger measurement bandwidths to enable faster detection than that by
the stub tuner, the development of LC circuits is also in progress. The main challenge is
to understand and mitigate the sources of parasitic capacitances. Even so, performance
of the stub tuner detection can already be improved by installing a cryogenic HEMT
amplifier with a much lower noise temperature. At the moment, it is ~ 5 K at 3 GHz.
If one could reduce it to 1 K the averaging time could be easily reduced by a factor
of 5. Moreover, replacing the HEMT with a quantum limited parametric amplifier on
chip can lead to a tremendous improvement of the background noise.

0.1.1. Admittance measurements

The thesis presents proof of principle experiments to demonstrate high sensitivity of RF
admittance measurements in quantum dots. A quantity not addressed in this thesis is
the kinetic inductance of the CNT or nanowires, important in the context of a collective
plasmonic excitation. One-dimensional carriers, in contrast to those in metallic wires,
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have a much lower density, yielding a large kinetic energy stored in the current flow.
Though this effect will co-exist with quantum capacitance, it can be easily separated
since the resulting frequency shifts of the microwave resonance will be positive for
inductive, and negative for capacitive, loads.

Especially with graphene devices, we showed that there is no need for source/drain
electrodes and that all relevant quantities such as conductance and density of states
can be inferred from the resonance response. This ability can be used to probe the spin
physics in graphene where the spin-life times have been predicted to be quite long [192],
but are generally reduced by several orders of magnitude due to the contacts [129].
Moreover, band structure modifications due to ad-atoms, induced spin orbit couplings
and super-lattice effects can be investigated without any invasion from the contacts.

Measurements without source/drain contacts can be further useful for probing an
Andreev molecule [193] in a Cooper pair splitting geometry [14], where coupling to
normal leads needs to be very small. In this case, the split Cooper pairs on two quantum
dots can hybridize due to its exchange with the superconductor, leading to a novel two-
level transition. A good material candidate is a strongly proximitized InAs nanowire
with epitaxial Al shell [99], which was also employed in Chapter 8. In absence of DC
currents, RF measurements can still probe the charge fluctuations on the dots.

0.1.2. Noise measurements

We demonstrated the potential of a GHz impedance matching circuit in the shot noise
detection of highly resistive quantum dots. The sensitivity of the circuit can be utilized
in studies of other high impedance systems which have remained unexplored so far.
One example is the resonant two particle tunnelling and inelastic Andreev tunnelling
in S-QD-N systems [194]. Shot noise measurements in these regimes can provide more
information on scattering and relaxation mechanisms and highlight the differences be-
tween sub-gap resonant and inelastic transport. Moreover, large bandwidths can be
exploited to perform full counting statistics of the charge transport.

Another possible direction could be to continue the efforts of Chapter 8 to study
the role of strongly coupled quantum dot resonance in the supercurrent noise. For
this purpose, a new device geometry is needed where Josephson junctions from InAs
nanowires are phase biased and inductively coupled to a microwave resonator. The
fixed phase bias could shed more light into the quasiparticle relaxation. Especially with
a fast-flux line, a control over adiabatic phase evolution and Landau-Zener transitions
between the Andreev bound states can be implemented.

Phase biased Josephson junctions from InAS nanowires can be, furthermore, em-
ployed to realize topological Majorana bound states (MBS) on which noise studies are
still lacking. Such studies could benefit from the fact that current phase relationship in
the trivial regime is 27 periodic while it is 47 periodic in the topological regime [195].
If the SQUID is, therefore, biased at a phase difference A¢ = 7, noise will be zero for
the trivial junction for any transmission 7 < 1, while it should remain large for the
topological case. So far only zero-bias conductance peaks [16] have been attributed to
the emergence of the MBS and therefore independent noise studies could constitute the
next validation. Needless to mention, such studies involving superconductors will be
subject to the dynamics of quasiparticles.
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A Fabrication Recipes

Already in the chapter 4, fabrication techniques for devices on carbon nanotubes, InAs
nanowires and graphene are discussed. The aim of this appendix is to provide details
of the fabrication recipes. For all devices, stub tuner is fabricated in the first step.

Device substrate

Dice an undoped Si wafer (p > 5000 Qcm) with 170 nm of thermal oxide on top
into a usable size 10 cm x 10 cm.

Sonicate for 10 minutes each in acetone, IPA and DI water and blow dry.
Bake at 110°C for 2 minutes.
Clean in the Piranha-etch 1:3 mix of HyO5 and HySO, for 15 minutes.

Rinse in DI water for 2 minutes and blow dry.

Stub tuner

Sputter a 100 — 150 nm thick Nb film at a rate 1 A/s using Ar gas at a flow of
40 sccm, background pressure of 4 mTorr and RF power 160 W in AJA magnetron
sputtering system.

Spin coat a sacrificial photo resist AZ1512 and dice into small chip sizes.
Clean with NMP, acetone and IPA in an ultrasonic bath and blow dry.
Spin coat 1 pum thick resist AZ1512 HS and bake at 100° for 1 minute.

UV exposure in Stiss MicroTec mask aligner at a wavelength 365 nm, power 280 W
and intensity 32 mW /cm? for 1.2 s.

Develop for 17 s in MIF 726, stop in DI water for 30 s and blow dry.

Nb etching in Sentech ICP machine with Ar/Cly at flow of 25/40 scem, background
pressure 1 Pa, DC power 100 W and RF power 125 W producing an etch rate of
~ 4 nm/s.

Follow with etching few nanometers of SiO, surface with Ar and then O, without
breaking the vacuum of ICP.

Strip the resist in hot NMP at 70°C and hot acetone at 50°C for 30 minutes each.
Clean in ultrasonic bath and blow dry.
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A. Fabrication Recipes

Bottom gates

Pillar

Spin coat 300 nm of PMMA, bake at 180°C for 10 minutes.

Ebeam lithography at acceleration voltage of 20 kV and a line dose of 2500 pC/cm.
Cold develop at 5°C for one minute in a 1:3 mix of MIBK and IPA and stop in
IPA for 10 s.

40 nm of anisotropic etching of SiOy with CF,4 in ICP at RF power 45 W, DC
power 50 W, flow 40 sccm and pressure 0.8 Pa. Follow with 30 nm of isotropic
etching in HF. Rinse vigorously in DI Water for 1 minute.

Evaporate Ti(5 nm)/Au(35 nm) in Sharon evaporator.

Lift-off in hot acetone and IPA and clean in ultrasonic bath.

After fabrication of bottom gates and source drain contacts, expose rectangular
areas around these using eBeam lithography at acceleration voltage of 20 kV and
area dose of 220 C/cm? on a 1.2um thick PMMA.

Etch SiOy with CHF3 at 50 mTorr, 200 W, 8 scem in Oxford reactive ion etcher
producing a rate of 50 nm/min.

Without breaking the vacuum, etch Si with SFg/O9 at 12.5/5 sccm, 75 mTorr,
100 W producing a rate of 1 ym/min.

Leave in hot acetone for one hour and clean in ultrasonic bath. Blow dry.

Argon/Oxygen plasma, if needed, to get rid of resist residues.

Deterministic CNT stamping
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Wire bond the stub tuner circuit with the pillar structure housing source drain
contacts and bottom gates.

Clean the device and PCB with Ar plasma in Oxford RIE machine for 20 s at
flow of 50 sccm, background pressure 50 mTorr and DC power 200 W.

Mount the PCB in the micro-manipulator setup and place the probe needles on
the bond pads.

Mount the CNT forks on a separate arm and align with the pillar using the optical
microscope.

Apply voltages to the source drain contacts and monitor the current while lowering
the forks on the pillar. If no current recorded, proceed to the next fork.

To remove the unwanted tubes, simply apply a large bias voltage till no current
is recorded.



Markers

Spin coat 300 nm of ZEP resist, bake at 180°C for 3 mins.
Ebeam lithography: 20 kV, 68 uC/cm?.

Develop in Pentyl acetate for one minute and stop in 9:1 mix of MIBK and IPA
and rinse in IPA for 10 s.

Evaporate Ti(5 nm)/Au(45 nm) and lift-off in hot acetone.

Stamp substrate

Spin coat a double layer of PMMA(300 nm, bake 180°C) and negative resist
HSQ(1 pm, bake at 90°C)

Ebeam lithography with area dose 200 uC/cm?.

Develop in TMAH (25% solution) for 25 s and stop in DI water and IPA.
PMMA removal with O, etching in RIE: 16 sccm, 250 mTorr, 100 W.
SiOy removal with HF etching

Si etching in the same way as for the pillars.

Wafer cleaving to have one stamp area 2 mm X 2 mm per piece.

CNT growth using the recipe from ref. [196].

Probabilistic CNT stamping

Place the device substrate on the mask aligner stage.

Mount a transparent glass plate in the mask slot and glue the stamp substrate in
the middle using undiluted PMMA.

Align two substrates using the optical microscope. This needs to be done sooner
to avoid the glue getting harder.

Perform the WEC alignment. Once it beeps "OK", make 6 complete turns on the
knob to increase contact force.

Al contacts on CNT

eBeam lithography with 300 nm thick ZEP: 10 kV, Area dose 34 uC/cm?, line
dose 240 pC/cm.

Thermal evaporation in Bestec machine: chamber cooled to -180°C and head
cooled to -30°C.

First Ti (4.5 nm) and then Al (75 nm).

Standard lift-off in hot acetone.
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A. Fabrication Recipes

Nanowire transfer

Expose a rectangular area using standard ebeam lithography over the stub tuner
region to receive nanowires and subsequently develop.

Hold a cleanroom wipe cut in shape of a flag, and bring it close the nanowire
substrate.

Rub the wipe on the exposed area and inspect under optical microscope to check
the transferred nanowires. Repeat if necessary.

Strip the resist in hot acetone. Avoid ultrasonic cleaning.

Nanowire etching

Spin coat 200 nm thick PMMA. Ebeam exposure: 300 puC/cm?, 3000 pC/cm at
20 kV. Standard development in MIBK:IPA.

Etch 30 nm of Al in transene type D at 50°C for 12 s followed by rigorous rinsing
in DI water for 30 s.

Transfer to IPA and blow dry.

Strip the resist in hot acetone and IPA. Blow dry.

Contacts to Nb

Standard eBeam lithography with 400 nm thick PMMA and resist development
in MIBK:IPA.

Ar milling of Nb surfaces for 30 s, recipe number 2 at acceleration voltage of 500 V
in Balzers evaporation system.

Evaporate 70(100) nm of Pd for contacting Nb with thickness of 100(150) nm.

Standard lift off in hot acetone.

Graphene transfer
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Place a 4 x 4 x 1 mm® PDMS layer on a glass slide. Cover the entire slide with
polycarbonate layer.

Mechanically exfoliate hBN and graphene on two separate substrates.

Place the glass slide on a chuck and align the substrate with respect to the PDMS.
Pickup hBN by bringing then in contact and heating the chuck to 80°C.

Repeat for the graphene flake while aligning then in the microscope.
To release the stack, heat the target substrate to 150°C.

Etch the stack in RIE with SFg/Ar/Os: Flow 20/5/5 scem, pressure 60 mTorr,
Power 50 W.



B List of Setup Components

A detailed wiring of the Triton cryostat is presented in Fig. 4.10. Below, we provide
technical specifications of the respective components, taken from [87].

Type Brand and part number | Specifications

Cryostat Oxford Triton 200 cryo- Base temperature 20 mK
free dilution refrigerator

Magnet Oxford 3D vector magnet Maximum field strength in

IPS power supply

- x-direction: 1 T
- y-direction: 1 T

- z-direction: 6 T

Directional coupler

Fairview microwave

Frequency range 1 — 4 GHz

MC 2104-20
Bias tee Mini-Circuits Original frequency range
ZFBT-6GW+ 0.1 — 6 GHz, capacitance
lowered to 22 pF
Clirculator QuinStar CTD0304KC Frequency range

2.75 — 3.25 GHz

Low-pass filter on the
DC side of the bias tee

Mini-Circuits VLFX-80

Pass-band DC - 80 MHz

Low-temperature

amplifier

Low Noise Factory
LNF-LNC1_12A

Frequency range
1 —12 GHz, gain ~ 35 dB

First room-

temperature amplifier

Miteq
AMF-3F-01000400-08-10P

Frequency range
1 — 4 GHz, gain ~ 35 dB

Second room-

temperature amplifier

Miteq NSP1000-NVG

Frequency range
0.1 — 10 GHz, gain ~ 35 dB

Pi-filters in

break-out box

Tusonix 4201-001LF

Pass-band DC - 10 MHz

DC wires

Constantan loom

24 x 2 wires (twisted pairs)

Coazial cable
down to MC plate

UT85

Centre and outer conductors
stainless steel, operating

frequency < 18 GHz
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B. List of Setup Components

Type Brand and part number | Specifications
Coaxial cable from UT85 Centre and outer conductors
MC plate to puck copper, operating
frequency < 18 GHz
Coazial cable Huber+Suhner Operating frequency

inside puck

EZ 47 TP_MI17

< 100 GHz

Sample holder PCB

Designed with Design-
Spark PCB, ordered
from Probst Hightech

Substrate: Rogers RO4003C
metals: Cu 40 — 43 pm,
Ni 3 — 6 pm, Au 50-100 nm

PCB mount SMP Rosenberger Material brass (gold plated),
connectors 19K101-270L5 male

PCB mount DC Omnetics A42046-001 25 pins, male

connectors (MNPO-25-DD-C-

(Nano-connector)

ETH-M)

Measurement instruments

Vector network R&S ZNBS8 Frequency range
analyser 0.1 — 8.5 GHz
Signal and R&S FSWS8 Frequency range
spectrum analyser 2 Hz — 8 GHz

Digital multimeter

Agilent 34410A

For DC measurements

I/ V-converter SP 938 Feedback resistance 107 or
108 Q, home-made by the
electronics workshop

Voltage DAC SP 927 8 channel voltage source,

home-made by the

electronics workshop
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