
Higher-Dimensional Potential Heuristics for Optimal Classical Planning

Florian Pommerening, Malte Helmert
University of Basel, Switzerland

{florian.pommerening, malte.helmert}@unibas.ch

Blai Bonet
Universidad Simón Bolívar, Venezuela

bonet@ldc.usb.ve

Abstract

Potential heuristics for state-space search are defined as
weighted sums over simple state features. Atomic features
consider the value of a single state variable in a factored state
representation, while binary features consider joint assign-
ments to two state variables. Previous work showed that the
set of all admissible and consistent potential heuristics us-
ing atomic features can be characterized by a compact set of
linear constraints. We generalize this result to binary fea-
tures and prove a hardness result for features of higher di-
mension. Furthermore, we prove a tractability result based on
the treewidth of a new graphical structure we call the context-
dependency graph. Finally, we study the relationship of po-
tential heuristics to transition cost partitioning. Experimental
results show that binary potential heuristics are significantly
more informative than the previously considered atomic ones.

Introduction

Potential heuristics (Pommerening et al. 2015) are a fam-
ily of declarative heuristic functions for state-space search.
They fix the form of the heuristic to be a weighted sum over a
set of features. Conditions on heuristic values such as admis-
sibility and consistency can then be expressed as constraints
on feature weights.

Previous work on admissible potential heuristics is lim-
ited to atomic features, which consider the value of a single
state variable in a factored state representation. Pommeren-
ing et al. (2015) show that admissible and consistent po-
tential heuristics over atomic features can be characterized
by a compact set of linear constraints. Seipp, Pommeren-
ing, and Helmert (2015) introduce several objective func-
tions to select the best potential heuristic according to differ-
ent criteria. They showed that a small collection of diverse
potential heuristics closely approximates the state equation
heuristic (SEQ) (van den Briel et al. 2007; Bonet 2013;
Bonet and van den Briel 2014). Since the quality of the SEQ
heuristic is an upper limit on the quality of any combination
of potential heuristics over atomic features (Pommerening et
al. 2015), more complex features are needed to significantly
improve heuristic quality of potential heuristics.

Additionally, theoretical analyses of common planning
benchmarks (Chen and Giménez 2007; 2009; Lipovetzky

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and Geffner 2012; Seipp et al. 2016) suggest that potential
heuristics for binary features (that consider the joint assign-
ment of two state variables rather than valuations over single
state variables as in the atomic case) could already lead to a
significant increase in accuracy in many planning domains.

In this paper we generalize known results about poten-
tial heuristics with atomic features to those with larger fea-
tures. After introducing some notation, we show that admis-
sible and consistent potential heuristics for binary features
are also characterized by a compact set of linear constraints.
We then prove that such a compact characterization is not
possible in the general case of features mentioning three or
more variables. However, we show that compact represen-
tations are still possible for “sparse” features, as measured
by the treewidth (Dechter 2003) of a new graphical structure
we call the context-dependency graph. Finally, we general-
ize a known relation between atomic potential heuristics and
optimal cost partitioning and show that potential heuristics
correspond to optimal transition cost partitionings (Keller et
al. 2016), i. e., cost partitionings that distribute the cost of
each transition instead of each operator.

Background

We consider SAS+ planning tasks (Bäckström and Nebel
1995) in transition normal form (TNF) (Pommerening and
Helmert 2015). A planning task is a tupleΠ = 〈V,O, sI, s�〉
with the following components. V is a finite set of variables
where each V ∈ V has a finite domain dom(V). A pair
〈V, v〉 of a variable V ∈ V and one of its values v ∈ dom(V)
is called a fact. Partial variable assignments p map a subset
of variables vars(p) ⊆ V to values in their domain. Where
convenient, we also treat them as sets of facts. A partial
variable assignment s with vars(s) = V is called a state
and S is the set of all states. The state sI is the initial state
of Π and the state s� is the goal state. (Note that in TNF,
there is a single goal state.) We call a partial variable as-
signment p consistent with a state s if s and p agree on
all variables in vars(p). The set O is a finite set of oper-
ators o, each with a precondition pre(o), an effect eff (o),
and a cost cost(o), where pre(o) and eff (o) are both partial
variable assignments and cost(o) is a non-negative integer.
The restriction to tasks in TNF means that we can assume
that vars(pre(o)) = vars(eff (o)). We denote this set of
variables by vars(o). Considering only tasks in TNF does

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

3636

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by edoc

https://core.ac.uk/display/84157257?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

not limit generality, since there is an efficient transforma-
tion from general SAS+ tasks into equivalent tasks in TNF
(Pommerening and Helmert 2015).
An operator o is applicable in state s if s is consis-

tent with pre(o). Applying o in s results in the state
s�o� with s�o�[V] = eff (o)[V] for all V ∈ vars(o) and
s�o�[V] = s[V] for all other variables. An operator se-
quence π = 〈o1, . . . , on〉 is applicable in state s if there
are states s = s0, . . . , sn such that oi is applicable in si−1

and si−1�oi� = si. We write s�π� for sn. If s�π� = s�, we
call π an s-plan. If s = sI, we call it a plan. The cost of
π under a cost function cost′ is

∑n
i=1 cost′(oi). An s-plan

π with minimal cost′(π) among all s-plans is called optimal
and we write its cost as h∗(s, cost′), or h∗(s) if cost′ = cost.
A heuristic function h maps states to values in R ∪

{−∞,∞}. It is admissible if h(s) ≤ h∗(s) for all s ∈ S ,
goal-aware if h(s�) ≤ 0, and consistent if h(s) ≤ cost(o)+
h(s�o�) for all s ∈ S and o ∈ O that are applicable in s.
A task Π induces a weighted, labeled transition system

TSΠ = 〈S, T , sI, {s�}〉 with the set of states S, the initial
state sI, the single goal state s� and set of transitions T : for
each s∈S and o∈O that is applicable in s, there is a tran-
sition s

o−→ s�o� labeled with o and weighted with cost(o).
Shortest paths in TSΠ correspond to optimal plans for Π.
A conjunction of facts is called a feature and the number

of conjuncts is called its size. Features of size 1 and 2 are
called unary and binary features. We say a feature f is true
in a state s (written as s � f) if all its facts are in s. A
weight function for features F is a function w : F → R.
The potential of a state s under a weight function w is

ϕ(s) =
∑

f∈F
w(f)[s � f],

where the bracket is an indicator function (Knuth 1992). We
call ϕ the potential heuristic for features F and weights w.
Its dimension is the size of a largest feature f ∈ F .

Two-Dimensional Potential Heuristics

Two-dimensional potential heuristics only consider atomic
and binary features. We use that consistent heuristics are ad-
missible iff they are goal-aware (Russell and Norvig 1995).
LetΠ = 〈V,O, sI, s�, cost〉 be a planning task in TNF and

TSΠ = 〈S, T , sI, {s�}〉 its transition system. A potential
heuristic ϕ over features F is goal-aware and consistent iff
it satisfies the following constraints:

ϕ(s�) ≤ 0, (1)

ϕ(s)− ϕ(s′) ≤ cost(o) for s o−→ s′ ∈ T . (2)

This set of constraints has exponential size as there is one
constraint for each transition s

o−→ s′ in T .
Constraint (1) is a linear constraint over the weights,

which is easy to see since ϕ(s�) =
∑

f∈F w(f)[s� � f].
Next, let o ∈ O be a fixed operator and consider con-

straint (2). Replacing ϕ(s) and ϕ(s′) by their definitions,
we get the equivalent constraint

∑

f∈F
w(f)([s � f]− [s′ � f]) ≤ cost(o) (3)

for all transitions s o−→ s′ ∈ T . We abbreviate the change of
a feature’s truth value ([s � f]− [s�o� � f]) as Δo(f, s).

We partition the set of features into three subsets: irrele-
vant featuresF irr have no variables in common with vars(o),
context-independent features F ind mention only variables in
vars(o), and the remaining context-dependent features F ctx

mention one variable from vars(o) and another variable not
in vars(o). We write Δirr

o (s) for
∑

f∈F irr w(f)Δo(f, s) and
analogously Δind

o (s) and Δctx
o (s).

The truth value of an irrelevant feature never changes by
applying o in some state. Thus, Δirr

o (s) = 0 for all states s.
For a context-independent feature f , the effect of applying

o in s is completely determined by o: f holds in s iff f is
entailed by the precondition, and in s�o� iff it is entailed by
the effect. Thus, Δo(f, s) = [pre(o) � f] − [eff (o) � f]
for every state s in which o is applicable. Clearly, Δo(f, s)
and Δind

o (s) do not depend on the state s for f ∈ F ind and
we write Δo(f) and Δind

o .
A feature f ∈ F ctx is a conjunction f = fo ∧ fō where

fo is a fact over a variable in vars(o) and fō is a fact over
a variable in Vō = V \ vars(o). If o is applied in a state s
with s � fō, then s � f and s�o� � f , so Δo(f, s) = 0. For
the remaining features, we know that fō is present in both s
and s�o� and the truth value of fo is solely determined by o.
Thus Δo(f, s) = Δo(fo)[s � fō]. If o is applicable in s,

Δctx
o (s) =

∑

V ∈Vō

∑

f∈F ctx

f=fo∧fō
vars(fō)={V }

w(f)Δo(f, s) (4)

=
∑

V ∈Vō

∑

f∈F ctx

f=fo∧fō

w(f)Δo(fo)[fō=〈V, s[V]〉] (5)

≤
∑

V ∈Vō

∑

f∈F ctx

f=fo∧fō

w(f)Δo(fo)[fō=〈V, v∗V]〉] (6)

where

v∗V = argmax
v∈dom(V)

∑

f∈F ctx

f=fo∧fō

w(f)Δo(fo)[fō = 〈V, v〉].

If we denote the inner sum in (6) with boV , then

ϕ(s)− ϕ(s′) ≤ Δind
o +

∑

V ∈Vō

boV (7)

for all transitions s
o−→ s′ ∈ T . Therefore, if Δind

o +∑
V ∈Vō

boV ≤ cost(o) for all operators o, then ϕ is consis-
tent. Conversely, if ϕ is consistent, then ϕ(s) − ϕ(s�o�) ≤
cost(o) for operator o and the states s in which o is applica-
ble. In particular, for states s∗ such that s∗[V] = pre(o)[V]
for V ∈ vars(o), and s∗[V] = v∗V otherwise. It is then not
difficult to check that the inequality in (7) is tight for such
states s∗. Hence, ϕ is consistent iff Δind

o +
∑

V ∈Vō
boV ≤

cost(o) for all operators o.
Putting everything together, we see that the constraint (3)

for a fixed operator o is equivalent to the constraints

Δind
o +

∑

V ∈Vō

zoV ≤ cost(o), (8)

3637

zoV ≥
∑

f∈F ctx

f=fo∧〈V,v〉

w(f)Δo(fo) for V ∈Vō, v∈dom(V) (9)

where zoV is a new variable that upper bounds boV . This set
of constraints has O(|V|d) constraints where d bounds the
size of the variable domains, while each constraint has size
O(|F| + |V|). The set of constraints is over the variables
{w(f) : f ∈ F} ∪ {zoV : o ∈ O, V ∈ Vō}.
Theorem 1. Let F be a set of features of size at most 2 for a
planning task Π. The set of solutions to the constraints (1),
and (8)–(9) for each operator, projected to w, corresponds
to the set of weight functions of admissible and consistent
potential heuristics for Π over F . The total number of con-
straints is O(|O||V|d), where d bounds the size of variable
domains, while each constraint has size O(|F|+ |V|).

High-Dimensional Potential Heuristics

In this section we show that a general result like Theorem 1
is not possible, unless NP equals P, for sets of features of
dimension 3 or more, but we identify classes of problems on
which potential heuristics can be characterized compactly.

Intractability

Theorem 1 allows one to answer many interesting questions
in polynomial time about potential heuristics of dimension
2. In particular, by solving a single LP one can test whether
a given potential heuristic is consistent and/or goal-aware.
We use this idea to show that no general result like Theo-
rem 1 is possible for potential heuristics of dimension 3, by
making a reduction of non-3-colorability (a decision prob-
lem that is complete for coNP (Garey and Johnson 1979))
into the problem of testing whether a potential heuristic of
dimension 3 is consistent.
Let G = 〈V,E〉 be an undirected graph. We first

construct, in polynomial time, a planning task Π =
〈V,O, sI, s�〉 in TNF and a potential heuristic ϕ of dimen-
sion 3 such that G is not 3-colorable iff ϕ is consistent. The
task Π has |V | + 1 variables: one variable Cv for the color
of each vertex v ∈ V that can be either red, blue, or green,
and one “master” binary variable denoted by M .
For every vertex v ∈ V and pair of different colors c, c′ ∈

dom(Cv), there is a unique operator ov,c,c′ of zero cost that
changes Cv from c to c′ when M = 0. For the variable M ,
there is a unique operator oM , also of zero cost, that changes
M from 0 to 1. These are all the operators in the task Π.
Each state s ∈ S encodes a coloring ofG, where the color

of vertex v is the value s[Cv] of the state variable Cv . The
initial state sI is set to an arbitrary coloring but with the mas-
ter variable set to 0; e. g., sI[M] = 0 and sI[Cv] = red for
every vertex v ∈ V . The goal state s� is also set to an ar-
bitrary coloring but with s�[M] = 1; e. g., s�[M] = 1 and
s�[Cv] = red for every vertex v ∈ V .
The potential heuristic ϕ of dimension 3 is constructed

as follows. For features f with vars(f) = {M,Cu, Cv}
such that {u, v} ∈ E is an edge in the graph, let its weight
w(f) = −1 when f [M] = 1 and f [Cu] �= f [Cv], and

w(f) = 0 otherwise. For the feature fM = 〈M, 1〉 of di-
mension 1, let w(fM) = |E| − 1. The weight w(f) for all
other features f is set to 0.
Let us now reason about the states of the task Π and the

values assigned to them by the heuristic. Let s be a state for
Π. If s[M] = 0, then ϕ(s) = 0. If s[M] = 1, then no oper-
ator is applicable at s and ϕ(s) ≥ −1, with ϕ(s) = −1 iff
s encodes a 3-coloring of G, as the feature fM contributes a
value of |E|−1 to ϕ(s), while the features corresponding to
edges contribute a value of−|E| when s encodes a coloring.

Let us consider a transition s
o−→ s′ ∈ T . Clearly,

s[M] ≤ s′[M] as no operator decreases the value of M .
If s[M] = s′[M] = 0, then ϕ(s) = ϕ(s′) = 0. If s[M] = 0
and s′[M] = 1, then ϕ(s) ≤ ϕ(s′) iff s′ does not encode a
3-coloring of G. The case s[M] = s′[M] = 1 is not pos-
sible as no operator is applicable in states with s[M] = 1.
Therefore, since all operator costs are equal to zero, ϕ is
consistent iff there is no transition s

o−→ s′ with s[M] = 0,
s′[M] = 1 and s′ encoding a 3-coloring of G, and the latter
iff the graph G is not 3-colorable.
Finally, observe that testing whether a potential function

ϕ is inconsistent can be done in non-deterministic polyno-
mial time: guess a state s and an operator o, and check
whether ϕ(s) > ϕ(s�o�) + cost(o).

Theorem 2. Let F be a set of features for a planning task
Π, and let ϕ be a potential heuristic over F . Testing whether
ϕ is consistent is coNP-complete.

Parametrized Tractability

We first give an algorithm for maximizing a sum of functions
using linear programming, and then apply it to characterize
high-dimensional potential heuristics.

Maximizing a Sum of Functions. Let X be a set of finite-
domain variables. We extend the notation dom(X) to mean
the set of variable assignments over X . For an assignment
ν ∈ dom(X) and a scope S ⊆ X , we use ν|S to describe
the restriction of ν to S. Let Ψ be a set of scoped functions
〈S, ψ〉 with S ⊆ X and ψ : S → V for a set of values
V. For now, think of V as the real numbers R, but we will
later generalize this. We only require that maximization and
addition is defined on values in V, that both operations are
commutative and associative, and thatmax {a+ c, b+ c} ≡
c + max {a, b} for all a, b, c ∈ V. We are interested in the
value Max(Ψ) = maxν∈dom(X)

∑
〈S,ψ〉∈Ψ ψ(ν|S).

Computing Max(Ψ) is the goal of constraint optimization
for extensional constraints, an important problem in AI. It
is challenging because the number of valuations in dom(X)
is exponential in the number |X | of variables. Bucket elim-
ination (Dechter 2003) is a well-known algorithm to com-
pute Max(Ψ). For reasons that will become clear later in
this section, we describe the bucket elimination algorithm
in a slightly unusual way: in our formulation, the algorithm
generates a system of equations, and its output can be ex-
tracted from the (uniquely defined) solution to these equa-
tions. The system of equations makes use of auxiliary vari-
ables Aux1, . . . ,Auxm that take values from V. The gener-
ated equations have the form Auxi = maxj∈{1,...,ki} ei,j ,

3638

where ei,j is a sum that contains only values from V or
the variables Aux1, . . . ,Auxi−1. Solutions to the system of
equations guarantee that Auxm ≡ Max(Ψ).

Bucket Elimination We now describe the general al-
gorithm and state its correctness (without proof due to
lack of space). Its execution depends on an order σ =
〈X1, . . . , Xn〉 of the variables in X . The algorithm oper-
ates in stages which are enumerated in a decreasing manner,
starting at stage n+ 1 and ending at stage 0:

• Stage n + 1 (Initialization). Start with a set {Bi}ni=0 of
empty buckets. Place each 〈S, ψ〉 ∈ Ψ into the bucket Bi

if Xi is the largest variable in S, according to σ, or into
the bucket B0 if S = ∅.

• Stages i = n, . . . , 1 (Elimination). Let 〈Sj , ψj〉 for j ∈
{1, . . . , ki} be the scoped functions currently in bucket
Bi. Construct the scope SXi = (

⋃
j∈{1,...,ki} Sj) \ {Xi}

and the function ψXi : SXi → V that represents the con-
tribution of all functions that depend on Xi. The defi-
nition of ψXi

is added to the generated system of equa-
tions by adding one auxiliary variable AuxXi,ν for every
ν ∈ dom(SXi

) which represents the value ψXi
(ν):

AuxXi,ν = max
xi∈dom(Xi)

∑

j∈{1,...,ki}
ψj(νxi

|Sj
)

where νxi
= ν ∪ {Xi �→ xi} extends the variable as-

signment ν with Xi �→ xi. If ψj is a function in Ψ, then
ψj(νxi |Sj) is an element of V. Otherwise ψj is a previ-
ously defined function ψXi′ for i′ > i and its value for
ν′ = νxi |Sj is represented by AuxXi′ ,ν′ .
The newly defined function ψXi

no longer depends on
Xi but depends on all variables in SXi

, so 〈SXi
, ψXi

〉 is
added to bucket Bj if Xj is the largest variable in SXi

according to σ or to B0 if SXi
= ∅. Observe that j < i

because SXi
only contains variables from scopes where

Xi is the largest variable and SXi does not contain Xi.

• Stage 0 (Termination). Let 〈Sj , ψj〉 for j ∈ {1, . . . , k}
be the scoped functions currently in bucket B0. Add
the auxiliary variable AuxΨ and the equation AuxΨ =∑

j∈{1,...,k} ψj analogously to the elimination step. (All
Sj are empty and the maximum is over dom(∅) = {∅}.)

Example. Consider Ψ = {〈{X}, f〉, 〈{X,Y }, g〉} over the
binary variablesX = {X,Y }. Bucket elimination generates
the following system of equations for the variable order σ =
〈X,Y 〉.

Aux1 = AuxY,{X �→0} = max
y∈{0,1}

g(0, y)

= max {g(0, 0), g(0, 1)}
Aux2 = AuxY,{X �→1} = max

y∈{0,1}
g(1, y)

= max {g(1, 0), g(1, 1)}
Aux3 = AuxX,∅ = max

x∈{0,1}
(f(x) + AuxY,{X �→x})

= max {f(0) + Aux1, f(1) + Aux2}
Aux4 = AuxΨ = AuxX,∅ = Aux3

Bucket Elimination for Linear Expressions As a gener-
alization of the bucket elimination algorithm, consider V to
be the following set E of mathematical expressions over a
set of variable symbols Y . For every Y ∈ Y and r ∈ R,
the expressions Y , r, and rY are in E. If a and b are ele-
ments of E, then the expressions (a+ b) andmax {a, b} are
elements of E. There are no additional elements in E. An
assignment f : Y → R that maps variables to values can be
extended to E in the straight-forward way. Two expressions
a, b ∈ E are equivalent if f(a) = f(b) for all assignments
f . An expression is linear if it does not mention max.
Clearly, maximization and addition are commutative, as-

sociative and satisfy max {a + c, b + c} ≡ c + max {a, b}
for all expressions a, b, c ∈ E. Bucket elimination therefore
generates a system of equations Auxi = maxj∈{1,...,ki} ei,j ,
where all ei,j are sums over expressions and variables Auxi′
with i′ < i. Since a variable is a mathematical expres-
sion, the whole result can be seen as a system of equations
over the variables Y ∪{Aux1, . . . ,Auxm}. If additionally all
functions in Ψ only produce linear expressions over Y , then
in the resulting system all ei,j are linear expressions over
Y ∪ {Aux1, . . . ,Auxm}.
Consider the example problem again. We define f and g

so they map to linear expressions over Y = {a, b}:
f(x) x = 0 x = 1

3a− 2b 4a+ 2b
g(x, y) x = 0 x = 1
y = 0 8a −3b
y = 1 7b 0

In the resulting system of equations all elements in
the maxima are linear expressions over the variables
{a, b,Aux1,Aux2,Aux3,Aux4}:

Aux1 = max {8a, 7b}
Aux2 = max {−3b, 0}
Aux3 = max {3a− 2b+ Aux1, 4a+ 2b+ Aux2}
Aux4 = Aux3

Bucket elimination guarantees that Aux4 ≡ Max(Ψ) for any
value of a and b in E. We argue that this system of equations
can be solved by an LP solver.
Theorem 3. Let Y and {Aux1, . . .Auxm} be disjoint sets
of variables. Let Pmax be the system of equations Auxi =
maxj∈{1,...,ki} ei,j for i ∈ {1, . . . ,m}, where ei,j is a
linear expression over variables Y ∪ {Aux1, . . . ,Auxi−1}.
Let PLP be the set of linear constraints Auxi ≥ ei,j for
i ∈ {1, . . . ,m} and j ∈ {1, . . . , ki}.

Every solution of Pmax is a solution of PLP and for every
solution f of PLP there is a solution f ′ of Pmax with f ′(Y) =
f(Y) for all Y ∈ Y and f ′(Aux) ≤ f(Aux) for all Aux /∈ Y .

As a corollary, we can use this result to represent a “sym-
bolic” version of the bucket elimination algorithm with un-
knowns Y as an LP. (Note that the constraints generated by
the bucket elimination algorithm have exactly the form re-
quired by the theorem if functions in Ψ produce linear ex-
pressions.) This LP has the property that for every assign-
ment to the unknowns Y there exists a feasible solution, and
the values of Auxm in these feasible solutions are exactly the
set of numbers greater or equal to Max(Ψ) for the given as-
signment to Y . (For simplicity, it would be preferable if only

3639

Max(Ψ) itself resulted in a feasible assignment to Auxm, but
we will see that the weaker property where Auxm may over-
estimate Max(Ψ) is sufficient for our purposes.)

We denote the set of constraints for this LP by PLP(Ψ,σ).
This LP can be solved in time that is polynomial in the size
of PLP(Ψ,σ), so to bound the complexity, we have to consider
the number and size of the constraints in PLP(Ψ,σ).
Dechter (2003) defines the dependency graph of a prob-

lem Ψ over variables X as the undirected graph G(Ψ) =
〈X , E〉 with set of vertices given by the variables X and an
edge 〈X,X ′〉 ∈ E iff X �= X ′ and there is a scoped func-
tion 〈S, ψ〉 in Ψ with {X,X ′} ⊆ S. Given an undirected
graph G and an order of its nodes σ, a parent of a node n
is a neighbor of n that precedes n in σ. Dechter defines
the induced graph of G along σ as the result of processing
each node of G in descending order of σ and for each node
connecting each pair of its parents if they are not already
connected. The induced width ofG along σ then is the max-
imal number of parents of a node in the induced graph of G
along σ.
If there are n variables in X and each of their domains is

bounded by d, then eliminating variable Xi adds one equa-
tion AuxXi,ν = maxj∈dom(Xi) ei,j for each valuation ν of
the scope SXi

(variables relevant for Xi). The size of this
scope is limited by the induced width w(σ), so the number
of valuations is limited by dw(σ). As there are n buckets to
eliminate, the number of auxiliary variables in the LP can
thus be bounded by O(ndw(σ)). Each such variable occurs
in |dom(Xi)| ≤ d constraints of the form AuxXi,ν ≥ ei,j in
PLP(Ψ,σ), so there are O(ndw(σ)+1) constraints.
Theorem 4. Let Ψ be a set of scoped functions over the
variables in X that map to linear expressions over Y . Let σ
be an ordering for X .

Then PLP(Ψ,σ) has O(|Y| + |X |dw(σ)) variables and
O(|X |dw(σ)+1) constraints, where d = maxX∈X |dom(X)|
and w(σ) is the induced width of G(Ψ).
The smallest possible induced width of G(Ψ) along any

order σ is called the induced width of G(Ψ) and equals
the treewidth of G(Ψ) (Dechter 2003). Unfortunately, find-
ing the induced width or a minimizing order is NP-hard.
However, it is fixed-parameter tractable (Downey and Fel-
lows 1999) with the treewidth as the parameter (Bodlaender
1996).

High-Dimensional Potential Functions. Of the two con-
ditions that characterize goal-aware and consistent potential
heuristics, constraint (2) is the most challenging to test as it
really denotes an exponential number of constraints, one per
state. The constraint is equivalent to

cost(o) ≥ max
s�pre(o)

(ϕ(s)− ϕ(s�o�))

= max
s�pre(o)

∑

f∈F
w(f)Δo(f, s)

= max
ν∈dom(Vō)

∑

f∈F
w(f)Δo(f, so,ν)

for all operators o ∈ O where the state so,ν is so,ν =
pre(o) ∪ ν.

As done before, for a fixed operator o ∈ O, we partitionF
as F = F irr∪F ind∪F ctx and consider the functionsΔirr

o (s),
Δind

o (s) and Δctx
o (s) for states s on which the operator o is

applicable. We have Δirr
o (s) = 0 and Δind

o (s) = Δind
o as the

value of the latter is independent of the state s. Therefore,
the constraint (2) is equivalent to

cost(o) ≥ Δind
o + max

ν∈dom(Vō)
Δctx

o (so,ν) (10)

where Δctx
o (so,ν) =

∑
f∈F ctx w(f)Δo(f, so,ν). Observe

that for f ∈ F ctx, the value of Δo(f, so,ν) is equal to

[pre(o) ∪ so,ν |Vf\Vo
� f]− [eff (o) ∪ so,ν�o�|Vf\Vo

� f].

Let us define the functions ψf
o that maps partial assignments

ν ∈ dom(Vf \ Vo) to expressions in {0, w(f),−w(f)} as
ψf
o (ν) = w(f)([pre(o) ∪ ν � f]− [eff (o) ∪ ν � f]).

For operator o ∈ O, we defineΨo = {ψf
o : f ∈ F ctx}. Then

max
ν∈dom(Vō)

Δctx
o (so,ν) = max

ν∈dom(Vō)

∑

f∈F ctx

ψf
o (so,ν |Vf\Vo

)

= Max(Ψo).

Constraint (10) is then equivalent to

cost(o) ≥ Δind
o + Max(Ψo).

Applying Theorem 4 to Ψo along an ordering σo for the
variables V in Π, we obtain a set of constraints PLP(Ψo,σo)

that characterize Max(Ψo). We can replace the above con-
straint by cost(o) ≥ Δind

o + AuxΨo
and the constraints in

PLP(Ψo,σo). The constraints PLP(Ψo,σo) allow setting AuxΨo

higher than necessary, but this is never beneficial as long as
AuxΨo

does not occur in the objective.
Theorem 5. Let F be a set of features for a planning task Π,
and let {σo}o∈O be an indexed collection of orderings of the
variables in Π (one ordering σo for each operator o ∈ O).
Then, the set of solutions to

ϕ(s�) ≤ 0, (11)

Δind
o + AuxΨo ≤ cost(o), for each operator o ∈ O, (12)

PLP(Ψo,σo) for each operator o ∈ O (13)

(projected on the feature weights) corresponds to the set
of weight functions of admissible and consistent potential
heuristics for Π over F .
We finish the section by bounding the number and size

of the constraints in PLP(Ψo,σo). We define the context-
dependency graph G(Π,F , o) for a planning task Π, fea-
tures F and an operator o as follows: the vertices are the
variables of Π and there is an edge between V and V ′ with
V �= V ′ iff there is a feature f ∈ F with vars(f)∩vars(o) �=
∅ and {V, V ′} ⊆ vars(f) \ vars(o).
Theorem 6. Let F be a set of features for a planning task
Π, let o be an operator of Π, and let σo an ordering on the
variables in Π. The number of constraints in PLP(Ψo,σo) is
O(ndw(σo)+1) where n is the number of variables, d bounds
the size of the variable domains, and w(σo) is the induced
width of G(Π,F , o) along the ordering σo. The number of
variables in PLP(Ψo,σo) is O(|F|+ ndw(σo)).

3640

By combining the constraints from the different operators
according to Theorem 5, we thus obtain the following fixed-
parameter tractability result.
Corollary 1. Let F be a set of features for a planning task
Π. Define w∗ as the maximum treewidth of all context-
dependency graphs for Π and F , and define d as the maxi-
mum domain size of all variables of Π.

Computing a set of linear constraints that characterize
the admissible and consistent potential heuristics with fea-
tures F for Π is fixed-parameter tractable with parameter
max(w∗, d).
We remark that the general result (again) implies a poly-

nomial characterization of potential heuristics where all fea-
tures have dimension at most 2. In this case, no feature can
simultaneously include a variable mentioned in a given op-
erator o and two further variables not mentioned in o, and
hence all context-dependency graphs are devoid of edges.
In edge-free graphs, all orderings have width 0, and hence
for each operator o, PLP(Ψo,σo) has O(nd) constraints and
O(|F|+ n) variables. The parameter w∗ is 0 in this case.

Relation to Cost Partitioning
Operator cost partitioning (Katz and Domshlak 2007; Yang
et al. 2008; Katz and Domshlak 2010) is a technique to
make the sum of several heuristics admissible by distributing
the cost of each operator between them. Katz and Domsh-
lak (2010) show how the optimal operator cost partition-
ing (OCP) can be computed in polynomial time for a large
family of abstraction heuristics. Pommerening et al. (2015)
show that an admissible and consistent potential heuristic
over all atomic features that achieves the maximal initial
heuristic value corresponds to an OCP over atomic projec-
tion heuristics. Here, we extend this result to all potential
heuristics that use the abstract states of a set of abstractions
as features. To that end, we first discuss a generalization
of OCP, which we call optimal transition cost partitioning
(TCP) (Keller et al. 2016)1.
Definition 1. Let Π be a planning task with cost function
cost and transitions T . A set of transition cost functions
costi : T → R, 1 ≤ i ≤ n, is a transition cost partitioning if

n∑

i=1

costi(s
o−→ s′) ≤ cost(o) for all s o−→ s′ ∈ T .

To use transition cost partitioning, the notion of operator
cost functions must be extended to transition cost functions
with possibly negative values. For example, the cost of an
s-plan π = 〈o1, . . . , on〉 under transition cost function cost′

is
∑n

i=1 cost′(si−1
oi−→ si), where s = s0, . . . , sn = s�π�

are the states visited by the plan π. The cheapest plan cost
under cost′ can now be negative or even −∞ (in the case of
negative cost cycles).
Proposition 1 (Keller et al. (2016)). Let Π be a planning
task, P = 〈cost1, . . . , costn〉 be a transition cost partition-
ing for Π, and h1, . . . , hn be admissible heuristics for Π.
The heuristic hP (s) =

∑n
i=1 hi(s, costi) is admissible.

1Keller et al. use state-dependent cost partitioning, which may
be confused with partitionings that are re-optimized for each state.

Definition 2. Let Π be a planning task, h1, . . . , hn be ad-
missible heuristics for Π, and P be the set of all transition
cost partitionings. The optimal transition cost partitioning
heuristic hTCP is hTCP(s) = maxP∈P hP (s).

Operator cost partitionings and the OCP heuristic are
special cases where all cost functions satisfy cost(t1) =
cost(t2) for all pairs of transitions t1, t2 labeled with the
same operator. The TCP heuristic thus dominates the OCP
heuristic. The paper by Keller et al. contains examples
where this dominance is strict.
The linear program defined by Katz and Domshlak (2010)

to compute an optimal OCP for a set of abstraction heuristics
can be extended to transition cost partitionings.
Formally, an abstraction heuristic is based on a homomor-

phic mapping α : S → Sα that maps states of a planning
task Π to abstract states of an abstract transition system
TSα = 〈Sα, T α, α(sI), {α(s�)}〉, such that for every transi-
tion s

o−→ s′ of Π, T α contains the transition α(s)
o−→ α(s′)

with the same weight. For a collectionA of abstractions, the
optimal TCP can be encoded using two kinds of variables.
The variable h(s) represents the goal distance for each ab-
stract state s ∈ Sα of each α ∈ A (we assume the states are
uniquely named). The variable cα(t) represents the cost of
a transition t ∈ T that is attributed to abstraction α. Using
linear constraints over these variables, we can express that
the variables h(s) do not exceed the true goal distance under
the cost function encoded in cα and that the cost functions
respect the cost partitioning property:

h(α(s�)) = 0 for α ∈ A (14)

h(α(s))− h(α(s′)) ≤ cα(s
o−→ s′) for α ∈ A

and s o−→ s′ ∈ T (15)
∑

α∈A
cα(s

o−→ s′) ≤ cost(o) for s o−→ s′ ∈ T (16)

For a set of abstractions A, we define the set FA =⋃
α∈A Sα of features for A with the interpretation that a

state s has the feature s′ ∈ Sα iff α(s) = s′. In the spe-
cial case where α is a projection to k variables, the features
Sα correspond to conjunctions of k facts. We want to show
that TCP heuristics over A and admissible and consistent
potential heuristics over features FA have the same maxi-
mal heuristic value.

Proposition 2. Let s be a state of a planning task Π and A
be a set of abstractions of Π. The set of solutions for con-
straints (14)–(16) that maximize

∑
α∈A h(α(s)) (projected

to h) is equal to the set of solutions for constraints (1)–(2)
for FA that maximize ϕ(s).

Proof: The important observation for this proof is that
we can write ϕ(s) =

∑
f∈FA w(f)[s � f] as ϕ(s) =∑

α∈A w(α(s)).
Assume we have an optimal solution to constraints (14)–

(16) and set w = h. Obviously, constraint (14) implies
constraint (1): if all features that are present in the goal
state have a weight of 0, then ϕ(s�) = 0. Summing con-
straint (15) over all abstractions for a given transition, re-
sults in

∑
α∈A h(α(s)) − h(α(s′)) ≤

∑
α∈A cα(s

o−→ s′).
Together with constraint (16) this implies constraint (2).

3641

0 20 40
0

20

40

hpot
2 (sI)

h
∗ (
s I
)

0 20 40
0

20

40

hpot
1 (sI)

h
p
o
t

2
(s

I)

100 102 104 106

100

102

104

106

uns.

unsolved

hpot
1

h
p
o
t

2

Figure 1: Initial heuristic values below 50 of hpot
1 , hpot

2 , and h∗. The final plot shows the number of expansions in an A∗ search
with hpot

1 and hpot
2 (without expansions in the last f -layer).

For the other direction, assume we have an optimal solu-
tion to constraints (1)–(2), i. e., that ϕ is an admissible and
consistent potential heuristic with weight function w. Set
h = w and cα(s

o−→ s′) = w(α(s))− w(α(s′)).
We also assume that w(α(s�)) = 0 for all α ∈ A. If

this is not the case, consider the weight function w′ with
w′(α(s)) = w(α(s)) − w(α(s�)) for all α ∈ A and
s ∈ S . Let ϕ′ be the induced potential function with
ϕ′(s) =

∑
α∈A w′(α(s)) = ϕ(s) − ϕ(s�) We know from

constraint (1) that ϕ(s�) ≤ 0, so ϕ′ dominates ϕ. It also still
satisfies constraints (1) and (2), so ϕ′ must be an optimal so-
lution that we can use instead of ϕ. Thus, constraint (14) is
satisfied.
Constraint (15) is trivially satisfied. Constraint (16) is also

satisfied, which can be seen by replacing cα(s
o−→ s′) by

its definition: the inequality
∑

α∈A w(α(s)) − w(α(s′)) =
ϕ(s)− ϕ(s′) ≤ cost(o) is identical to constraint (2). �
Theorem 7. Let Π be a planning task and A a set of ab-
stractions for Π. For every state s of Π, let hpot

FA,max s be an
admissible and consistent potential function with maximal
value for s. Then hpot

FA,max s(s) = hTCP
A (s).

Evaluation

We implemented one- and two-dimensional admissible po-
tential heuristics (called hpot

1 and hpot
2 in the following) in the

Fast Downward planning system (Helmert 2006) and evalu-
ated them on the tasks from the optimal tracks of IPC 1998–
2014 using limits of 2GB and 24 hours for memory and
run time. We use this fairly high time limit, as we are fo-
cusing on heuristic quality, not evaluation time. The linear
programs for hpot

2 can become quite big, but we are confident
that approximations with smaller representations exist.
Our first concern is heuristic accuracy in the initial state.

In 437 out of 696 cases (63%) where we could determine
both hpot

2 (sI) and h∗(sI), the h
pot
2 value is perfect. These per-

fect values occur in 42 of the 51 domains. The first plot in
Figure 1 shows initial heuristic values for hpot

2 (sI) vs. h∗.
There are still some heuristic values that are far from the op-
timum, suggesting that using features of size three or larger
might be necessary in some domains.
The second plot in Figure 1 compares initial heuristic val-

ues of hpot
1 and hpot

2 . As expected, larger features frequently
achieve higher heuristic values and the initial heuristic value
is perfect less frequently. Out of the 696 tasks mentioned
above, only 110 (16%) have a perfect hpot

1 value. There are
also several cases in which hpot

1 (sI) is 0, while hpot
2 reports

values as high as 48. The last plot shows the number of ex-
pansions in an A∗ search. Using hpot

2 almost always leads to
fewer expansions than hpot

1 . The exceptions are mostly from
the domain Blocksworld. The tasks on the x-axis of the plot
are those where hpot

2 is perfect.
Theorem 7 shows that hpot

2 computes a TCP that is opti-
mal in the initial state. We know that there are tasks where
the optimal TCP results in a higher heuristic value than the
optimal OCP. But does this also occur often in practice? To
answer this question, we implemented optimal cost parti-
tioning for projections and ran it for the set of abstractions
that contains all projections to one and two variables; the re-
sulting heuristic is denoted by hOCP

2 . Out of the 724 cases
where we can compute both hpot

2 (sI) and hOCP
2 (sI), h

pot
2 (sI)

is higher than hOCP
2 (sI) in 312 cases (43%). In 329 of the re-

maining cases (46%) hOCP
2 (sI) is already perfect, so h

pot
2 can-

not be higher. The advantage of TCP over OCP thus seems
to be ubiquitous in practice.
Comparing an A∗ search using hOCP

2 to one using hpot
2 we

notice two conflicting effects. First, as we have seen, the
potential heuristic is perfect for more instances and even if
it is not, its value often exceeds the value of hOCP

2 . Second,
the linear program of hpot

2 is evaluated only once, while the
optimal OCP is re-computed in every state. The latter is
beneficial in some cases (hpot

2 is guaranteed to be no worse
than hOCP

2 only at the initial state), but this re-computation
takes too much time in practice. Diversification approaches
(Seipp et al. 2016) can be used to boost the value of potential
heuristics on states other than the initial state.

Conclusion

We have shown that highly accurate potential heuristics of
dimension 2 can be computed in polynomial time. Opti-
mized in each state, these heuristics correspond to an opti-
mal TCP over atomic and binary projections, which dom-
inates the optimal OCP. Generating admissible potential

3642

heuristics of higher dimension is not tractable in general, but
possible if the variables are not too interdependent.
To make higher-dimensional potential heuristics more

practically relevant, methods to cheaply approximate the op-
timal TCP are needed. One promising direction is to look
into a way of identifying a good subset of features, because
usually not all features are necessary to maximize the heuris-
tic value. Features could be statically selected, or learned
dynamically during the search. Using diversification tech-
niques to select a set of multiple admissible potential heuris-
tics also sounds promising.

Acknowledgments

This work was supported by the European Research Council
as part of the project “State Space Exploration: Principles,
Algorithms and Applications”.

References

Bäckström, C., and Nebel, B. 1995. Complexity results
for SAS+ planning. Computational Intelligence 11(4):625–
655.
Bodlaender, H. L. 1996. A linear-time algorithm for finding
tree-decompositions of small treewidth. SIAM Journal on
Computing 25(6):1305–1317.
Bonet, B., and van den Briel, M. 2014. Flow-based heuris-
tics for optimal planning: Landmarks and merges. In Pro-
ceedings of the Twenty-Fourth International Conference on
Automated Planning and Scheduling (ICAPS 2014), 47–55.
AAAI Press.
Bonet, B. 2013. An admissible heuristic for SAS+ planning
obtained from the state equation. In Rossi, F., ed., Proceed-
ings of the 23rd International Joint Conference on Artificial
Intelligence (IJCAI 2013), 2268–2274.
Chen, H., and Giménez, O. 2007. Act local, think global:
Width notions for tractable planning. In Boddy, M.; Fox, M.;
and Thiébaux, S., eds., Proceedings of the Seventeenth Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS 2007), 73–80. AAAI Press.
Chen, H., and Giménez, O. 2009. On-the-fly macros.
In Logic, Language, Information and Computation, vol-
ume 5514 of Lecture Notes in Computer Science, 155–169.
Springer-Verlag.
Dechter, R. 2003. Constraint Processing. Morgan Kauf-
mann.
Downey, R. G., and Fellows, M. R. 1999. Parameterized
Complexity. Springer.
Garey, M. R., and Johnson, D. S. 1979. Computers and
Intractability — A Guide to the Theory of NP-Completeness.
Freeman.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Katz, M., and Domshlak, C. 2007. Structural patterns
heuristics: Basic idea and concrete instance. In ICAPS 2007
Workshop on Heuristics for Domain-Independent Planning:
Progress, Ideas, Limitations, Challenges.

Katz, M., and Domshlak, C. 2010. Optimal admissible
composition of abstraction heuristics. Artificial Intelligence
174(12–13):767–798.
Keller, T.; Pommerening, F.; Seipp, J.; Geißer, F.; and
Mattmüller, R. 2016. State-dependent cost partitionings
for cartesian abstractions in classical planning. In Kamb-
hampati, S., ed., Proceedings of the 25th International Joint
Conference on Artificial Intelligence (IJCAI 2016), 3161–
3169.
Knuth, D. E. 1992. Two notes on notation. American Math-
ematical Monthly 99(5):403–422.
Lipovetzky, N., and Geffner, H. 2012. Width and serial-
ization of classical planning problems. In De Raedt, L.;
Bessiere, C.; Dubois, D.; Doherty, P.; Frasconi, P.; Heintz,
F.; and Lucas, P., eds., Proceedings of the 20th European
Conference on Artificial Intelligence (ECAI 2012), 540–545.
IOS Press.
Pommerening, F., and Helmert, M. 2015. A normal form
for classical planning tasks. In Brafman, R.; Domshlak,
C.; Haslum, P.; and Zilberstein, S., eds., Proceedings of the
Twenty-Fifth International Conference on Automated Plan-
ning and Scheduling (ICAPS 2015), 188–192. AAAI Press.
Pommerening, F.; Helmert, M.; Röger, G.; and Seipp, J.
2015. From non-negative to general operator cost partition-
ing. In Proceedings of the Twenty-Ninth AAAI Conference
on Artificial Intelligence (AAAI 2015), 3335–3341. AAAI
Press.
Russell, S., and Norvig, P. 1995. Artificial Intelligence — A
Modern Approach. Prentice Hall.
Seipp, J.; Pommerening, F.; Röger, G.; and Helmert, M.
2016. Correlation complexity of classical planning domains.
In Kambhampati, S., ed., Proceedings of the 25th Inter-
national Joint Conference on Artificial Intelligence (IJCAI
2016), 3242–3250.
Seipp, J.; Pommerening, F.; and Helmert, M. 2015. New op-
timization functions for potential heuristics. In Brafman, R.;
Domshlak, C.; Haslum, P.; and Zilberstein, S., eds., Pro-
ceedings of the Twenty-Fifth International Conference on
Automated Planning and Scheduling (ICAPS 2015), 193–
201. AAAI Press.
van den Briel, M.; Benton, J.; Kambhampati, S.; and Vossen,
T. 2007. An LP-based heuristic for optimal planning. In
Bessiere, C., ed., Proceedings of the Thirteenth Interna-
tional Conference on Principles and Practice of Constraint
Programming (CP 2007), volume 4741 of Lecture Notes in
Computer Science, 651–665. Springer-Verlag.
Yang, F.; Culberson, J.; Holte, R.; Zahavi, U.; and Felner, A.
2008. A general theory of additive state space abstractions.
Journal of Artificial Intelligence Research 32:631–662.

3643

