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Bounding quantum-gravity-inspired decoherence using atom interferometry
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Hypothetical models have been proposed in which explicit collapse mechanisms prevent the superposition
principle from holding at large scales. In particular, the model introduced by Ellis et al. [J. Ellis et al., Phys. Lett.
B 221, 113 (1989)] suggests that quantum gravity might be responsible for the collapse of the wave function of
massive objects in spatial superpositions. We consider here a recent experiment reporting on interferometry with
atoms delocalized over half a meter for a time scale of 1 s [T. Kovachy et al., Nature (London) 528, 530 (2015)]
and show that the corresponding data strongly bound quantum-gravity-induced decoherence and rule it out in the
parameter regime considered originally.
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I. INTRODUCTION

While the structure of space-time at the Planck scale
is not known in detail, one expects that it is a subject to
quantum fluctuations. It has been suggested that the departure
from flat space-time on short distances can degrade the
spatial coherences of massive systems. In particular, Ellis
et al. have proposed that nontrivial configurations of space-
time—wormholes—might lead to the decoherence of spatial
superpositions of massive objects (see the model presented in
Ref. [1] and further elaborated in Ref. [2]). The basic idea is
that a massive object initially prepared in a superposition of
two different locations entangles with degrees of freedom of
the wormholes, which would leave the object in a classical
mixture once the wormholes are traced out. It provides
an explicit mechanism for a quantum-classical crossover.
It is also an example of a phenomenological approach
in which falsifiable predictions might provide hints about
quantum gravity [see, e.g., [3,4] for string-theory-inspired
models (or [5] for a review of various phenomenological
models)].

We note that while Coleman suggested the wormhole
theory as a possible solution to the cosmological constant
problem [6], it was argued soon after that the theory would
lead to a wormhole-dominated universe [7–10]. Despite such
an argument (see also [11,12] for other arguments and [13]
for historical overview and discussion), the model of Ellis
et al. has been considered in many proposals for testing
quantum-gravity-induced decoherence including particle de-
cay experiments [14,15], superconducting devices [16,17],
atomic and photon interferometry [18–23], cavity quantum
optomechanics with nano- and micromechanical oscillators
[24–32], or using dielectric nanospheres [33–35]. While
challenging experiments are being set up to implement these
proposals, some of them forcing experimentalists to envision
experiments in space [36], we have pointed out in [37]
that simple techniques with single atoms trapped in optical
lattices could be used to test efficiently the model of Ref. [2].
In particular, we have shown that quantum-gravity-induced
decoherence can have a significant effect on the state of a
single atom if the latter is delocalized on centimeter scales for
a time of the order of a few seconds.

With this in mind, we welcome the experimental results
presented recently in Ref. [38], where a quantum superposition
of rubidium atoms at the half-meter scale was achieved
using light-pulse interferometry. Here we show that the
corresponding data set strong bounds on the model of Ref. [2]
and rule it out in the parameter regime that was considered
originally.

II. PRINCIPLE

In this section we summarize the principle of quantum-
gravity-induced decoherence, arising from a phenomeno-
logical treatment [1,2] of the interaction of matter with
a dilute-gas wormhole background. We consider a system
with mass m, described initially by the state ρ0. In the
model of Ref. [2], an unperturbed wormhole is described
by a state ρw = |ψw〉 〈ψw|, which is assumed to be pure
and have a Gaussian wave function in the momentum space
|ψw〉 = ∫

d3p ψ(p) |p〉, where ψ(p) ∝ e−p2/(2σ )2
. It has zero

mean momentum and a spread σ ∼ cm2
0/�mPl ∼ 10−3m−1,

where m0 is the mass of the nucleon, mPl the Planck mass,
c the speed of light, and � the reduced Planck constant.
The interaction between the wormhole and the system is
treated in the input-output S-matrix formalism and is assumed
to result in the elastic scattering of the wormholes on the
system. Concretely, at any time there is a small probability
amplitude that a wormhole scatters according to |p〉 →
i
∫

d3p′ei(p′−p)·Xδ(|p| − |p′|)F (p′)
|p′| |p′〉, which entangles it with

system’s position given by the operator X. Here F (p) are
the dimensionless scattering amplitudes. Accordingly, once
the wormhole is traced out, the effect of such a scattering
event on the system is a decay of coherence terms |x′〉〈x| →
r |x′〉〈x| by some factor r that depends on the spatial spread
x − x′. As long as the typical wavelength of wormholes
1
σ

� |x − x′| dominates the system spatial spread, the decay
grows quadratically with the spatial spread r ∝ |x − x′|2. This
dependence follows from the Taylor expansion of ei(p′−p)·X
[2]. It can be intuitively understood as r is given by the
overlap of two scattered modes centered at x and x′, which
carry the information about the system position. In fact, in the
other extreme 1

σ
	 |x − x′| the localization rate resulting from
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scattering becomes independent of the spread and saturates to
a constant value [39,40]. While such a possibility might be
accounted for in the study of the decoherence mechanism,
for the remainder of this work we focus on the former case
1
σ

� |x − x′| corresponding to the original considerations
of Ref. [2] and spatial separations of the order of a meter
achievable in today’s atomic interferometry.

Since the scattering events have a low probability and
happen randomly, the interaction of the system with a dilute-
gas of wormholes results in the addition of a time-independent
localization term to the master equation

ρ̇ = i[ρ,H0] − 1

2

∫
d3x d3x′γQG|x − x′|2 |x〉〈x| ρ |x′〉〈x′|,

(1)

where H0 stands for the unitary evolution of the system and it is
assumed that the characteristic interaction time of a wormhole
with the system is much smaller than the time scales of H0.
The resulting localization rate coefficient γQG depends on the
wormhole momentum spread σ ; the scattering amplitudes
F (p), which are functions of the system mass m; and the
density of wormholes, which is assumed to be O(1) per Planck
volume by Ellis et al. and is given by [2]

γQG = (cm0)4m2

(�mPl)3
. (2)

While the modification (1) is appealing as an attempt to explain
the absence of coherence of macroscopic objects, we argue in
the next section that the experimental results of Ref. [38] are
in contradiction with the model of Ref. [2], at least for the
parameter regime presented in Ref. [2].

III. EXPERIMENT

Here we briefly describe the experiment reported in Ref.
[38]. Kovachy et al. start by launching a Bose-Einstein conden-
sate made with about 105 87Rb atoms in a 10-m-high atomic
fountain. Once launched, a sequence of pulses is applied to
control the atom momenta so that the wave packet of each
atom is split and recombined coherently to form the analog of
a Mach-Zehnder interferometer. In the experiment presented
in Ref. [38], the atomic wave packets get separated during a
drift time T = 1.04 s, after which they reach their maximum
separation dmax. They are then recombined to spatially overlap
after another drift interval T = 1.04 s. The spatial separation
dmax = n(�k/m)T depends on the laser pulse wave number k,
the number of photon recoils at the first atom splitter n�k, and
the atomic mass m. In Ref. [38], an atom splitter transferring up
to 90�k photon recoils is obtained using 2�k Bragg transitions
[41], which results in a distance dmax = 54 cm. The contrast
of the interference is determined by measuring the variation of
the normalized number of atoms in one of the two outputs of
the interferometer. For dmax = 54 cm, the measured contrast
is of 28%. Here the loss of coherence is in agreement with the
measured atom loss in the interferometer (see Fig. 4b in [38]).

IV. BOUNDING QUANTUM-GRAVITY-INDUCED
DECOHERENCE

Let d(t) be the time-dependent function describing the de-
localization of a single 87Rb atom. According to Eq. (1), the co-
herence term of the delocalized atom evolves as 〈x|ρ(t)|x′〉 =
exp[−γQG

∫ 2T

0 d2(t)dt]〈x|ρ0|x′〉. Assuming d(t) = dmax +
dmax
T

( T
2π

sin 2π |t−T |
T

− |t − T |) [42], we have 〈x|ρ(t)|x′〉 ≈
e−0.8γQGd2

maxT 〈x|ρ0|x′〉 and the contrast of the corresponding
interference is

C ≈ 2〈x|ρ0|x′〉e−0.8γQGd2
maxT . (3)

It is interesting to analyze the implications of experimental
results reported in [38] on the localization rate coefficient γQG.
The reduction of the observed contrast is attributed to the
atom loss in the interferometer, which is obtained using an
independent measurement. The mechanism of Ref. [2] must
thus be compatible with the error bars reported in Fig. 4b
of [38], which are of the order of 1%. Lets thus assume
that the wormholes are responsible for a 1% decrease in the
contrast, C = 0.99. Replacing γQG in Eq. (3) by γ ′

QG, we
find that γ ′

QG = 0.04 s−1 m−2. This contrasts with the value
γQG = 106 s−1 m−2 [given by Eq. (2) with m the 87Rb mass].
Equivalently, using γQG in Eq. (3) yields C ≈ 10−11. Even if
the trajectory of the atoms can be different from the one that
we have considered, realistic deviations cannot account for
such large discrepancy between the observed results and the
predictions of the model of Ref. [2]. This suggests that either
the model of Ref. [2] has to be ruled out or the parameter regime
originally considered has to be revisited, e.g., by assuming
much lower wormhole densities.

V. CONCLUSION

Ellis et al. have suggested more than 20 years ago that
a hypothetical space-time configuration can degrade the
coherence of spatial superposition states. We have shown that
recently published data from atom interferometry rule out
this model in the parameter regime originally proposed. The
fact that the quantum-gravity-inspired model [2] can be ruled
out by an interference experiment with 87Rb atoms (rather
light objects) might seem surprising at first sight. This can be
understood, however, from the localization rate proportional
to γQGd2 of the model of Ref. [2], which depends quadratically
on the mass of the system m, but also on the spatial separation
d between the two arms of the interferometer. Remarkably,
the d2 dependence of the localization rate is not unique to
the model of Ref. [2] and holds whenever the separation
d 	 λ is much smaller than the characteristic wavelength
of the hypothetical field that induces the decoherence, be
it wormholes, dark matter [43,44], or dark energy, such as
chameleon fields [45–47]. This makes atom interferometry a
very promising technique to probe these models. As future
work, it might be interesting to see how the results of Ref. [38]
bound other collapse models [48] in the spirit of what has been
done in Refs. [49,50], for example.
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