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Abstract. For the nucleosynthesis of heavy and superheavy nuclei fission becomes very
important when the r-process runs in a very high neutron density environment. In part, fission is
responsible for the formation of heavy nuclei due to the inclusion of fission products as new seed
nuclei (fission cycling). More than that, beta-delayed fission, along with spontaneous fission, is
responsible in the late stages of the r-process for the suppression of superheavy element yields.

For beta-delayed fission probability calculations a model description of the beta-strength-
functions is required. Extended theoretical predictions for astro-physical applications were
provided long ago, and new predictions also for superheavy nuclei with uptodate nuclear input
are needed. For the further extension of data to heavier transactinides the models of strength-
functions should be modified, taking into account more complicated level schemes. In our
present calculations the strength-function model is based on the quasi-particle approximation
of Finite Fermi Systems Theory.

The probabilities of beta-delayed fission and beta-delayed neutron emission are calculated
for some transfermium neutron-rich nuclei, and the influence of beta-delayed fission upon
superheavy element formation is discussed.

1. Introduction
In physical scenarios with long r-process duration fission plays an important role [1], [2]. Fission,
in part beta-delayed fission, effects strongly on formation of heavy and superheavy elements
and nuclei-cosmo-chronometers as well. Nuclei of all chemical elements, participating in the
nucleosynthesis under very high neutron density environment during multiple neutron captures
achieve an equilibrium among the isotopes of each heavy element and following beta-decay of
neutron-rich unstable isotope results in formation of new element. During beta-decay of such
neutron-rich nuclei, emission of delayed neutron occurs leading to broading path of the r-process.
In transuranium region in addition to beta-delayed neutron emission the beta-delayed fission
appeared, leading together with neutron-induced fission to termination of the nucleosynthesis
of more heavier nuclei during the r-process and (mainly) after neutron freeze-out. All these
beta-delayed processes [3, 4] influence on the formation of heavy (and superheavy) elements
yields. For a number of transactinide nuclei, participating in the r-process, neutron separation
energy is less than 3 MeV, and total beta-decay energy is about 10 MeV or even more. That is
why a real competition between beta-delayed neutron emission and beta-delayed fission exists,
depending on nuclear structure, fission barrier and neutron separation energy values and leads
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to big changes of their values. Though the number of extended calculations of beta-delayed
processes probabilities are exist up to Z=100 [2-5], the knowledge of these data also important
[6] for superheavy region (for nuclei with Z>100), as well as reevaluation of existed data.

2. Model and calculations
Part of the r-process nuclear stream can escape fission and reach the superheavy region
and the surviving of the formed superheavy elements, unstabale against beta-decay, depends
in part on beta-delayed fission rates, which strongly depend on the values of beta-delayed
fission probabilities Pβdf . For beta-delayed fission calculations, except a number of important
characteristics, such as nuclear masses and fission barriers, the beta strength-functions are
required. The beta-strength function Sβ(E) defines the probabilities of charge-exchanges
processes and beta-delayed processes as well [4,7,8]. The most important of beta-delayed
processes for very neutron rich nuclei are: probabilities of one, two and three neutron emission,
and for actinide region - beta-delayed fission. For these nuclei values of the probabilities can be
high and probably may reach 100% in total.

The main contribution in Sβ(E) belongs to transitions of Gamov-Teller (GT) type, including
Giant GT-resonance, ”pigmy”-resonances and other isobaric states (IS). The beta-strength
function is usually defined [9] as depending on average energy distribution of matrix elements
of excitation states Ei in daughter nucleus:

Sβ =
d
∑

M2(Ei)

dE

1

6260
, (1)

and is expressed usually as reduced transition probability BGT : BGT = D
g2V
g2A

· Sβ , where

dM2(Ei) is the averaged addition of matrix elements of all beta-transitions in range dE.
The beta-strength function Sβ has resonant structure which is strongly depends on the model

used. In present calculations the matrix elements values M2
i as well as energies of their states

were got in numerical solution of Finite Fermi Systems Theory (FFST) equations [10] when
quasi-classical approach to equations for effective nuclear field of GT-type was applied [7, 8].

In constructing of Sβ(E)-function we took into account the fragmentation of the high-lying IS,
and their consequent broadening as it was done in [11]. According to [10] the serial expansion of
the width is: Γ(E) = αE2+βE3+. . .. In calculation of Sβ(E) it suffices to use only the first term
of Γ(E) serial expansion, which effectively takes into account three-quasiparticle configurations.
The value α ≈ ε−1

F and in present calculations α =0.018 MeV−1 , obtained from the averaged
experimental widths of GTR, was used.

The probabilities of beta-delayed processes were derived according to formulae

Pβdf (Z,A) =

∫ Qβ

Sn+δ

∑
i

Si
β(E) · f(Qβ − E) · Γf

Γtot
dE/

∫ Qβ

0

∑
i

Si
β(E) · f(Qβ − E)dE . (2)

where f(Z, Qb - E) is the Fermi function and Γf is the fission partial width. When E −Bf > δ
we can let Γn ≫ Γf and δ is equal ≈50 KeV according to [12].

The comparison of calculated probabilities of beta-delayed fission Pβdf , based on different
strength-function models, show that Pβdf -values approximately in factor 2 lower when the
proposed model of Sβ(E) was used instead of the old one [5]. In present calculations as in
previous works for calculations of different rates for the r-process [2, 14], the predictions of
masses and fission barriers, based on ETFSI model [13], were used.

For the very neutron rich isotopes of Fermium and heavier elements the fission barriers
increase when N approaches 184, that is reflected in strong decrease of Pβdf values for the nuclei
with N ≈ 184 ( Fig.1).
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Fig. 1. Upper panel: the neutron beta-delayed emission probabilities Pβdn (dashed line),
beta-delayed fission probabilities Pβdf (line) and number of delayed neutrons per one decay
(in percents) In (dotted line) for isotopes of Dubnium (Z=105); down panel: total energy of
beta-decay Qβ (line), neutron separation energy Sn (dashed line) and fission barriers (bold line)
for the same isotopes (in MeV).
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At the upper plot of Fig.1 the present calculations of Pβdf for different isotopes of Dubnium
are presented, as well as Pβdn-values and number of emitted neutrons during each beta-decay.
Strong odd-even effect is explained by the structure of strength function and strong dependence
of neutron separation energy on the number of neutrons, which in turn leads to strong variations
of the energy window Sn − Bf and changes of ”pigmy”-resonances contributions into Pβdf and
Pβdn.

3. Conclusions
Calculations of beta-strength function Sβ(E) for neutron-rich nuclei is complicated task because
high-energy charge-exchange excitations in continuum should be taken into account. This task
is under consideration and can be solved with arbitrary good accuracy in the framework of
approach, based on FFST. In this work the previously developed approach [15] for calculation
of beta-delayed processes based on quasi-classical approximation for beta-decay field [6] was
used. For the consistency with previously produced nuclear data, beta-strength-functions
and probabilities of delayed processes were derived with the same nuclear mass and fission
barrier predictions [13] as previously calculated neutron-induced rates [14], used in astrophysical
nucleosynthesis modelling.

Preliminary calculations of Pβdf , presented in this report, pointed out the less role of delayed
fission, and results in that data produced during last decades [2, 3] were overestimated, that
is confirm the old predictions of beta-decay fission probabilities made on the basis of simple
physical evaluations [16].

The extended calculations of Pβdf and Pβdn, made simultaneously on the basis of the same
approach can change the character of the r-process passage in the transactinide region, and may
be interesting for experiments of synthesis of superheavy elements [17]. These results are needed
either for different modelling of astrophysical nucleosynthsis of heavy and superheavy nuclei and
neutron impulse nucleosynthsis at experimental istallations as well [18, 19]. The derived results
can be improved after further development of strength function model and utilization of nuclear
deformations as well.

This work was supported by SNF grant IZ73Z0 152485 SCOPES, Russian Foundation for
Basic Research Grants RFBR 13-02-12106 ofi-m, 14-22-03040 ofi-m
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