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Abstract 
 

 This thesis describes investigations of the relationships between the sequence 

of small peptides and their folding propensities and the conformational changes of 

membrane lipids upon interactions with proteins, within the context of varying 

membrane potentials. In addition, a novel conformational change of a membrane 

protein will be presented. 

 

  The determination of structures of folded proteins has progressed remarkably, 

notably due to outstanding techniques like crystallography, nuclear magnetic 

resonance or cryo-electron microscopy. However, proteins are highly dynamic and, 

under physiological conditions, their behavior depends on the chemical and physical 

environment. On the other hand, a better understanding of the intrinsically disordered 

proteins requires approaches, which consider their dynamical nature. All-atom 

molecular dynamics simulations constitute a tool of choice to capture the 

conformational changes of peptides as well as larger systems involving bilayers and 

membrane proteins. The first part of this thesis is dedicated to the structural 

propensities of peptides explored at the amino acid level. The investigations have 

shown how subtle interactions with the solvent affect their fate towards helical 

conformations. These findings are further validated through a procedure aimed at 

reducing the differences between predicted and experimental values while maximizing 

the entropy of the ensemble. The short-lived conformations found along transition 

paths are difficult to observe experimentally. Consequently, a statistical approach to 

investigate at the picosecond timescale the dynamics of the folding events in relation 

to the surrounding molecules is introduced and successfully tested on a β–hairpin of 

known structure. These successful results lead to a proposal of a systematic study to 

elucidate the sequence-conformation(s) relationships at a larger scale. 

 

 The second project describes the interactions between spider toxins, the cell 

membrane and a voltage sensor domain in the context of ion channel gating 

modification. Spider toxins have contributed substantially to the understanding of ion 

channels. Most of them are gating modifiers, thus affecting the energy level required 

by ion channels to open or close. Because these molecules are capable of fine-tuning 

the function of ion channels, they represent very attractive candidates in the field of 

drug discovery, and some successes have been achieved in this regard. The initial 

objective of the study was to explore whether the toxin-induced perturbation of the 
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membrane affect consequently the voltage-gated ion channels without any direct 

binding to the target. A demanding statistical approach was chosen, which takes the 

high specificity of spider toxins observed in vivo into account. Although the inserted 

toxins altered noticeably several membrane features, the results support the idea that 

an indirect, lipid-mediated mode of action of spider toxins on the voltage-sensor 

domain is not the main driver of the voltage-gated modifier mechanism. However, the 

investigations led to unexpected discoveries. The strategy employed to investigate an 

indirect mechanism of spider toxin involved more than 100 replicated simulations of 

independent bilayers and voltage-sensor domains exposed to a wide range of 

membrane potentials. The analyses showed surprisingly that the membrane 

perturbation, induced by the voltage sensor domain, is voltage-dependent. In addition, 

a novel conformational change of the voltage sensor upon polarization was observed, 

namely a kink in the S4 helix.  

 

 The results discussed here aim to contribute to a better understanding in three 

domains: 1) The interplay between water and the amino acid side chains during 

conformational changes, precisely the hydration fluctuations of just a few amide or 

carbonyl functional groups are shown to affect the helix formation propensities of a 

small peptide. 2) The lipid-mediated gating modifier mechanism is not supported by 

the simulations. 3) A novel conformational change of the voltage-sensor domain is 

described as a response to variation of the membrane potential. Precisely, a kink in 

the middle of the S4 helix occurs only upon polarization. This kink formation allows 

gating charges to move across the membrane without exposing any hydrophobic 

residues to the cytoplasm. 
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1 Introduction 

 Molecules of living organisms are marked by fluctuations and conformational 

changes over time. Under physiological conditions, linear small peptides, intrinsically 

disordered proteins and lipids in a bilayer sample a basin of relatively low energy 

conformations. The features of the conformational ensemble depend largely on the 

chemical and physical environment. The intrinsically disordered proteins (IDP) 

constitute an extreme example. IDPs are found extended in the cytoplasm but some 

are thought to fold into a proper 3D structure upon binding with their cognate target 

through an induced-fit mechanism (1). Alternatively, the IDPs interaction with their 

target was described in terms constantly changing conformations between a folded 

state and a plethora of unfolded states, whereas only the appropriately folded 

conformation binds to the cognate target. This second view is thus called 

conformational selection (2). It is also possible that the relative contribution of each 

mechanism varies for different IDPs. Clearly, a better understanding of the 

mechanisms related to the conformational changes of IDPs is required. Although 

ordered proteins generally do have a low energy, native structure, they also undergo 

conformational changes to exert their function. A few examples include the 

conformational changes occurring upon ligand binding, enzyme catalysis, transport of 

small molecules through membranes, or opening/closing/inactivation of an ion channel 

as response to a varying membrane potential. The structure of membrane lipids is 

also subject to fluctuations related to interacting molecules, or during phase transition 

upon temperature change. In this thesis, I discuss my strategies to decipher 

conformational propensities and structural changes of small peptides on the one hand 

and the modifications of a membrane structure upon interaction with toxins, which are 

typically extracellular peptides, on the other hand. In addition, novel conformational 

changes of transmembrane proteins triggered by the membrane electrostatic potential 

will be presented. Precisely, a kink formation in the longest helix of a voltage-sensor 

domain is described for the first time as a response to membrane polarization. 

Common to all these themes is the emphasis on the conformational changes of 

biological molecules and the resort to statistical analyses to discriminate significant, 

largely replicated, conformational changes, from rare observations. This chosen 

methodological approach has the advantage to clearly deliver reliable results, but the 

risk is to dismiss rarely occurring events. On the other hand, the analysis of replicated 

and independent simulations can provide estimates of accuracy. 

 This introduction outlines the protein folding and the intrinsically disordered 

proteins, both areas described from the point of view of systems with a continuum of 
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conformational changes. Then, the biological membrane, the voltage-sensor domain 

and the principles of gating modifiers, especially with focus on spider toxins, are 

introduced. The construct of systems with a wide range of membrane potential is 

described in the material and methods section 3.2, because it did not belong to the 

initial aims of the thesis. It was introduced as a “tool” to elucidate the lipid-mediated 

mechanism. Finally, in section 1.3, I will discuss the motivations for my research on 

the mechanisms inducing protein conformational changes and the methodology used 

to assess a lipid-mediated mechanism of voltage gating modifiers.  

 
 
1.1 The dynamics of proteins 
 
1.1.1 The protein folding problem 

 
 Proteins are chains of 20 different α-L-amino acids covalently linked by an 

amide bond, formed upon condensation of the carboxyl and amine functional groups. 

Synthesized by the ribosome, most proteins fold spontaneously into their native state, 

which is encoded by the sequence of residues, also called the primary structure of the 

proteins.  

 Upon folding, two main elements of secondary structures will form: α-helices or 

β-sheets, both maintained by a typical pattern of intramolecular hydrogen bonds 

formed between their main-chain carbonyl and amide functional groups. In an α-helix, 

hydrogen bonds link carbonyls of residues i with the amides of residues i+4 in a right-

handed spiral. Other, less common, helices found in proteins are the 310-helix, where 

the hydrogen bonds link residues i with residues i+3, and the π-helix (i and i+5). In the 

310 - and π-helices, the hydrogen bonds are slightly weaker, partly because of a less 

favorable orientation. They are nevertheless often observed at the level of the terminal 

of an α-helix or they form short one-turn helices. β-sheets are formed by several 

strands, in a parallel or antiparallel manner, connected by hydrogen bonds between 

carbonyl and amide functional groups. The three-dimensional arrangement of 

secondary structures, connected by loops, forms the tertiary structure of proteins. In 

addition, the thiol functional groups of two cysteine residues can form a disulfide 

bridge upon oxidation. This additional covalent bond stabilizes further the tertiary 

structure. The quaternary structure is formed by the arrangement of several folded 

proteins in a complex.  
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 Two complementary experiments paved the way of the protein-folding 

problem. In their pioneering work, Anfinsen and colleagues (3) completely denatured a 

protein, ribonuclease A, by exposing it to urea and a strong reducing agent, 2-

mercaptoethanol, which broke the intramolecular disulfide bridges. They observed 

that, as soon as the denaturing conditions and the reducing agent were removed, the 

protein could spontaneously refold into a fully functional structure. This experiment 

highlights one fundamental principle of protein science, namely that the required 

information for folding to the native structure is encoded in the sequence itself. This 

experiment also showed that the chemical environment, in addition to the sequence, 

affects profoundly the behavior of the molecule. The second observation was purely 

statistical and based on many reasonable assumptions. Focusing on the dihedral 

angles governing the shape of the polypeptide, Levinthal (4) based his reasoning on a 

minimal number of degrees of freedom: 300 for a protein of 150 residues. Assuming 

that an accuracy of a tenth of a radian could suffice to reasonably describe the 

different structures, a single native state represents one out of 10300 possible 

conformations. Citing Levinthal: “We feel that protein folding is speeded and guided by 

the rapid formation of local interactions which then determine the further folding of the 

polypeptide”. This view can also be expressed in terms of a free energy landscape 

that would have a funnel shape, the minima corresponding to the lowest energy 

conformation, or native state. In this representation, one can easily imagine an 

ensemble in which some proteins are trapped in one or several local minima of 

“almost-folded”, yet not native states, and the changing physico-chemical environment 

around a protein would be described in terms of modulation of the energy surface.  

 Although all different aspects of protein structures, from secondary to 

quaternary, need to be explained in order to fully understand the mechanisms of 

protein folding, the folding nucleation, specifically the effect of a single amino acid 

substitution on the folding propensities of a small peptide, will be the subject of the 

peptide folding part of this thesis.  

 As stated above, a solution may generally contain folded and unfolded protein 

conformations forming an ensemble in a dynamic equilibrium. This means that a 

biologically relevant understanding of protein function considers, in addition to a 

description of the native state, the conformational changes of the molecules and the 

factors affecting the equilibrium between different states. For this reason, the aim of 

an investigation of protein folding from sequence is not only the prediction of the most 

energetically favorable state, or native state, but rather to capture the dynamics of the 

system. The experimental investigation of all the states occurring during folding is very 

challenging, especially transition states, because they are visited only transiently and 
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are sparsely populated. Generally, these very rare conformations have a negligible 

impact on averaged observables, making them experimentally almost invisible. In 

support to this description, a work published in April 2016 (5) used high-resolution 

force spectroscopy to specifically investigate transition paths of nucleic acids and 

proteins. Precisely, the folding-unfolding events of a DNA hairpin and a protein were 

extracted through measurements of the lengths of single molecules tethered to handle 

and beads. Using the lifetimes of such length measurements as reaction coordinates, 

the authors estimated that the transition state conformation of the DNA hairpin would 

represent roughly 0.001 of a trajectory. Unbiased classical molecular dynamics 

simulations, despite their limitations in terms of accuracy exposed in section 2.1.1, 

constitute a tool of choice in this context. There is no technical problem to isolate 

“rare” frames out of a complete trajectory.  

On the other hand, using all-atom molecular dynamics, one can explore the 

precise interactions between the molecules of interest and the solvent or other 

molecules, as developed in the sections 2.1 and 2.3.  

In a few words, while the beauty of folded proteins can be impressive, the 

roots of these organized structures are to be found in the unfolded and transition 

states.  

 
1.1.2  The intrinsically disordered proteins 

 
 The biological importance of intrinsically disordered proteins (IDP) and of 

disordered regions in otherwise fully folded proteins has been recognized only 

progressively and recently (6). During the 20th century, the paradigm sequence-

structure-function overshadowed largely the discovery of disordered proteins or 

disordered segments of proteins. For many years, “not so well” defined proteins, with 

non-classical conformational features were considered rare exceptions that contradict 

the paradigm mentioned above. IDPs are mainly found among signaling proteins, 

transcription and cell cycle control. In these classes of proteins, the conformation 

versatility increases the recognition possibilities without paying the entropic cost of 

folding. Often, the IDPs bound to their cognate ligand are found folded. Two views are 

generally exposed to explain the transition of IDPs from an unfolded to a folded 

conformation. One states that folding follows binding to the appropriate ligand, and is 

thus due to the complex formation. The other one was postulated by Pauling in 1940 

in the context of antibody-antigen recognition (7). This is a selection process within 

interconverting structures, whereas the cognate antigen would bind to the appropriate 
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one. However, in other cases, IDPs remain devoid of structure even if bound to the 

target (8, 9).  

 Whatever the process(es) underlying the conformational behavior of IDPs, we 

are far from being able to predict exactly which states will be populated under which 

conditions. For the same reasons as the ones exposed above for the protein folding 

study, all-atom molecular dynamics simulations, despite the current computational 

power limitations, constitute an appropriate tool to explore the principles underlying 

the conformational behavior of IDPs. Particularly, one would aim, not to identify a 

single, low energy native structure, but rather to know which physicochemical factors 

alter the ensemble distribution of conformations. The question of the role of cellular 

crowding, which has been proposed to increase the folding propensities of IDPs in the 

cytoplasm, is also relatively difficult to access experimentally, since many methods 

require the use of diluted solution containing an unique protein species (10). This 

question can also be explored through MD trajectory analyses.  

 

 

1.2 The bilayer: between toxins and the voltage-sensor 
domain 

 
1.2.1 The membrane bilayer 

 
 Cell and organelle membranes are among the essential structures of biological 

systems, playing important roles as interfaces between compartments of different 

contents, chemical or electrostatic potentials. Phospholipids, the primary molecules 

found in the plasma membrane, are characterized by their amphiphilic structure 

constituted of a hydrophilic head group and a hydrophobic acyl chain. The 

consequence of this amphiphilic character and of their rather cylindrical shape is the 

formation of a stable bilayer, where the head groups face the solvent and the 

hydrocarbon tails form a hydrophobic barrier. Since the interior of the membrane is 

highly hydrophobic, water, ions and other hydrophilic molecules are essentially 

prevented from leaking through, and the result is a chemically isolated environment 

inside the cytoplasm or in an organelle. This notably allows for the storage of energy 

in the form of an electrochemical gradient. 

 Biological membranes are extremely diverse, with various proportions of 

phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine, cholesterol, 
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sphingomyelin, glycolipids and others. Three of these lipids, namely 

phosphatidylserine, phosphatidylcholine and cholesterol are depicted in Figure 1.1. 

The mass percentage of phosphatidylcholine, for example, varies from 10% in myelin 

to 40% in endoplasmic reticulum (11). In a recent study, Quehenberger et al. (12) 

identified different lipid species in human plasma. They documented more than 500 

different lipid molecular species, while an even much higher diversity may be 

expected in cell membranes. This diversity of phospholipids arises from chemical 

modification of the acyl chain (length and degree of saturation) or modification of the 

head groups or glycerol linkage. Alterations of membrane lipid composition are related 

to pathogenic processes. For example, decreased levels of phosphatidylinositol and 

phosphatidylethalonamine are implicated in Alzheimer disease (13, 14). A very 

common feature of Golgi, endosomal and plasma membranes is the asymmetric 

distribution of phospholipids, where the majority of anionic lipids are found in the 

cytosolic leaflet. The functional importance of this asymmetry is evidenced by its 

active maintenance by phospholipid scramblases, ATP-binding cassette transporters 

and aminophopspholipid translocases (15). Membrane asymmetry may enhance 

mechanical stability and is involved in cell fusion and apoptotic stage recognition (15-

17). Nevertheless, due to experimental and computational limitations, most studies 

have generally concentrated on single lipid systems, whereas most of the principles 

arising from this lipid diversity and membrane asymmetry are still unknown. Current 

computational power and MD force field accuracy have reached the point where one 

can progressively construct more realistic membranes, with the aim to capture the 

consequences of the complexity of the biological systems. 

 

1.2.2 The voltage-sensor domain 
 

 The concentration and charge gradients between both sides of a membrane 

introduced above would be useless if they remained static. Indeed, this stored energy 

is further used by cells and organelles to do work or for information transfer. This is 

one of the main functions of membrane proteins, which mediate permeability or 

transport.  Embedded proteins, which represent about 50% of the membrane mass 

ratio (11), have one or more membrane spanning domains, generally α-helical, except 

for the β-barrel topology found in bacteria and mitochondria. Structurally, the surface 

of membrane proteins displays hydrophobic side chains in the middle of the bilayer, 

whereas aromatic residues are generally found at the membrane-water interface. It is 

thought that they serve as anchor for the appropriate orientation of the protein. This 
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rule of thumb does not imply that polar residues are completely absent, and indeed, 

polar residues constitute about 20% of the transmembrane helices (18).  

 Membrane proteins include transporters, receptors, which mediate 

communication between the cytoplasm and the extracellular compartments, enzymes, 

and proteins involved in cell junctions, which anchor the extracellular matrix to the 

intracellular cytoskeleton. As an example of a transporter, the sodium-potassium 

pump moves three sodium ions out of the cell, while importing two potassium ions. 

This active process involves the hydrolysis of Adenosine triphosphate (ATP). Thus, a 

unique mechanism maintains an electrochemical gradient. The potassium 

concentration is high inside of the cell, whereas sodium accumulates outside of the 

cell. In addition, calcium and chloride ions tend to be concentrated outside of the cell. 

Typical values for a neuron at rest are given in Table I. Passive transport of these 

ions, following their electrochemical gradient, occurs through ion selective channels. 

Approximately 400 genes encode human transmembrane ion channels, which can be 

roughly classified as either voltage or ligand gated, depending on the factors 

determining channel activation. Ligand gated channels are gated by second 

messengers, light, pressure or stretch, cyclic nucleotides or temperature (19-21). Ion 

channels are vital in the functioning of humans. Their dysfunction is implicated in 

various diseases, including multiple sclerosis, cardiac arrhythmia, hypertension and 

chronic pain, and thus they constitute major drug targets (22-24).  

 Voltage-gated potassium channels are tetramers that open and close as a 

function of the membrane electrostatic potential, and regulate action potential in 

nerve, muscle, and cardiomyocytes (25-27). Each subunit of a tetramer is composed 

of six transmembrane helices. Four helices (S1-S4) form an anti-parallel helical 

bundle and constitute the voltage-sensor domain (VSD), which is linked to the pore 

domain (S5-S6) by a short linker. A much-conserved structural feature of the voltage-

sensor domains is that the S4 helix contains four to six basic residues (generally Arg), 

each followed by two hydrophobic residues. The voltage-sensing properties are 

attributed to these positively charged residues, which move in response to variation of 

the membrane potential (Vm). The resulting current is called gating charge transport, 

or gating current (28-30). In 2003, the full length structure of the KvAP channel from 

Aeropyrum pernix was resolved at atomic resolution (31).  

Isolated voltage-sensor domains are independent functional units, as 

evidenced by several findings. First, it was discovered that other proteins than 

voltage-gated ion channels contain voltage-sensor domains. The voltage-sensing 

phosphatase, for example, contains a VSD, which activates the phosphatase activity 

upon membrane depolarization (32). Moreover, in 2001, Lu et al. (33) attached a VSD 
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to a voltage-insensitive channel. As a result, the channel became responsive to 

membrane potential fluctuations. Finally, voltage-dependent proton currents were 

measured in 1982 (34), and the relevant channel was sequenced in 2006 (35). A 

particularity of the voltage-gated proton channels is their responsiveness to the trans-

membrane pH gradient. Specifically, the trans-membrane pH gradient modifies the 

gating properties of the VSD. Whereas the onset of outward currents lies at 

approximately 20 mV in the absence of any trans-membrane pH gradient, the onset is 

shifted by about -20 mV upon intracellular acidification by half of a pH unit (35, 36) 

(Figure 1.3B). The next section will describe other instances of gating modifications, 

which were investigated in this work. 

These observations indicating that VSD are independent functional units show 

that ion channels are composed of clearly separated modules: the pore domain and 

the voltage-sensor domain. A useful consequence is that investigation of voltage 

sensing can be performed on a voltage-sensor domain alone, reducing the 

computational costs. Consequently, a voltage-sensor domain alone was introduced in 

the simulated systems, instead of a whole tetramer.  
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Figure 1.1. Lipids involved in this study 
Molecular representations of POPC and POPS, adapted from (37) and cholesterol 
(downloaded from http://www.chemspider.com/Chemical-Structure.5775.html 
CSID:5775, , 2016). For the phospholipids, the figure also shows the orientation of the 
P-N vector with respect to the normal.  
 

Table I: Neuron ion concentrations at resting potential, adapted from (38). 

Ion [ion] intracellular (mM) [ion] extracellular (mM) Vmion (mV) 

K+             96               4           -85 

Na+             10           145           +71 

Ca2+               0.070               2         +137 

Cl-               7           145            -80 

pHa               7.2               7.4            -13 
a For the hydronium ion, the pH values are given, instead of the concentration.  

 

 



  10 

 
Figure 1.2. KvAP voltage-sensor domain highlighting the four helices and the 
Arg residues. 
The protein is shown in cartoon representation, the Arg residues are shown as licorice 
colored according to the helix they belong to: S1: red, S2: magenta, S3a and S3b: 
cyan, S4: blue.  

 
Figure 1.3. Voltage gating modulation.  
A) Upon interaction with 4 µM Vstx1 (green), the voltage-current response curve of 
the Kv2.1/KvAP chimera is shifted to the right (data taken from (39)). B) In a voltage-
gated proton channel, a transmembrane pH gradient change from -0.5 (black) to 0.0 
(blue) induces a left shift of the voltage-current response curve (data taken from (35)). 
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1.2.3 The spider toxins  
 

 Animal toxins have been fine-tuned through millions of years of evolution for 

specific purposes, like immobilization of a prey. For this task, most of them affect ion 

channel functions. The target and functional diversity of animal toxins led several 

authors to advocate a likely therapeutic usage of these molecules (40, 41). Some 

successes have already been achieved. For example, as a consequence of its high 

specificity for particular potassium channels, a slightly engineered version of a sea 

anemone toxin, ShK, has entered Phase Ia of clinical trials in 2011 (42). Another toxin, 

MVIIA, produced by a cone snail species, was approved in 2004 by the U. S. Food 

and Drug Administration for the treatment of chronic pain. On the other hand, animal 

toxins have been invaluable tools in the study of ion channels. Investigation of 

scorpion and spider toxins led to the discovery of ion channel subunit stoichiometry 

(43) or to the identification of diverse receptor sites in ion channels (44). However, a 

precise understanding of their mechanisms of action on ion channels is still lacking.  

 Spiders are, with more than 42,000 described species, among the most 

successful groups of animals. The 400 million years of improvements in term of 

venom diversity and specificity have contributed to this success. However, only about 

100 species have been studied for their venom (45). The function of venom spans 

from killing to paralyzing a prey, or is directed against aggressors. Venoms can be 

sorted in two broad categories: necrotic or neurotoxic. Necrotic substances contain 

phospholipases, proteases and lytic factors, which induce tissue necrosis or hemolytic 

effects. Neurotoxic peptides are typically fast acting. They target nerve tissue and 

neurotransmitters, either through degradation of neurotransmitters or by interfering 

directly with voltage-gated ion channels (VGIC). Most neurotoxins affect potassium or 

sodium channels, and they can be, again, broadly sorted into two groups. First, 

channel blockers, which bind to the outer part of the conduction pore and stop ion flow 

(46). Second, gating modifiers, for which the mechanism is not well understood. 

Similarly to the pH induced gating of the proton channel, as introduced in the section 

1.2.2, the gating modification outcome is the channel requirement of either a higher or 

a smaller depolarization to open, depending on the specific channel-toxin interaction 

pair. If the channel requires a higher depolarization upon interaction with the toxin, the 

voltage-current response curve of the channel is shifted to the right (Figure 1.3A).  

 A common feature of most spider toxin structures is the folding into a so-called 

inhibitor cystine knot (ICK), characterized by two or three beta-strands, and in which 

three disulfide bridges are arranged in order to form a “knot”, where a ring formed by 
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two disulfide bonds is penetrated by a third disulfide bond (Figure 1.4). This structure 

enhances significantly the stability of these 30-40 AA long peptides. Another feature of 

several ICK spider toxins resides in a hydrophobic prominent cluster, mostly with four 

to seven aromatic residues, surrounded by polar and charged residues. This 

arrangement leads to a precise insertion depth and orientation within the membrane, 

in which the hydrophobic cluster lies at the level of the hydrocarbon chains and the 

polar and charged residues interact with the lipid head groups (47). Another 

conserved characteristic of the ICK toxins is a global positive charge (+2 to +4). The 

chemical diversity of spider venoms is impressive: several hundreds of different ICK 

peptides were isolated from a single venom (45). As of March 2016, for the spider 

species Chilian rose tarantula (Grammostola rosea), 60 toxins are deposited in the 

ArachnoServer database (48), of which 37 contain three disulfide bridges, and thus 

are expected to fold into an ICK. In this list, four have bona fide deposited PDB 

structures: GsMTx4, Hanatoxin-1, Vstx1, and ω-grammotoxin SIA. These four 

sequences contain a large proportion of aromatic amino acids and carry a positive 

charge between +2 and +4 (Table II) and all peptides form an ICK, with a hydrophobic 

cluster surrounded by polar residues (Figure 1.4).  

 

Figure 1.4. The ICK motif exemplified in the case of Hanatoxin.  
Above: two molecular representations of the toxin are shown in ribbons, with the Cys 
residues labeled and the S atoms colored in yellow. Below: the lines show the 
arrangement of disulfide bonds resulting in a knot motif. 
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Table II: Structurally solved inhibitory cystin knot toxins from Chilian rose 
Tarantula. Basic, acidic and aromatic residues are shown in blue, red, and green. 

Toxin Sequence Charge 

GsMTx4 GCLEFWWKCNPNDDKCCRPKLKCSKLFKLCNFSF 4 

ω-grSIA DCVRFWGKCSQTSDCCPHLACKSKWPRNICVWDGSV 2 

Hanatoxin-1 ECRYLFGGCKTTSDCCKHLGCKFRDKYCAWDFTFS 2 

Vstx1 ECGKFMWKCKNSNDCCKDLVCSSRWKWCVLASPF 3 

 

Figure 1.5. Molecular representations of toxins highlighting the hydrophobic 
cluster and the charged residues.  
GsMTx4, ω-grSIA, Hanatoxin and Vstx1. are shown with beta-strands in yellow, turns 
in cyan, loops in silver, acidic residues in red, basic residues in blue, hydrophobic 
residues in green and disulfide bridges in yellow. 

 

GsMTx4  ω-grSIA  

Hanatoxin Vstx1 
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1.2.4 A lipid hypothesis of voltage-gating modifiers 
 

 Several previous experiments demonstrated that charged molecules affect 

specific features of a lipid bilayer, particularly the orientation of the head group dipoles 

(49, 50). It was also shown that the insertion of electric dipoles at the membrane-water 

interface suffices to reorient the lipid head groups (51). These works showed that 

several different types of molecules, like metals, local anesthetics in the charged form, 

salts, or charged amphiphiles had similar effects. In the presence of positively charged 

species located at the level of the (negatively charged) phosphate groups, the 

positively choline groups are repelled toward the water phase, reducing the value of 

the angle formed by the phosphocholine segments and the membrane normal. The 

hypothesis exposes that, since the phospholipids themselves have a dipole moment, 

their reorientation should consequently affect the membrane surface potential. Seelig 

et al (50) calculated that a reorientation of all the phosphocholine groups in a 

membrane by about 20° would modify the overall membrane surface potential by ≈ 90 

mV, which is obviously large enough to modify the gating of a voltage-sensor domain 

(to be compared to Figure 1.3). Since gating modifiers are amphiphilic charged 

molecules (section 1.2.3), this hypothesis could explain, in principle, their effect on 

voltage-sensor domains. 

 On the other hand, the conformational changes of any transmembrane 

proteins require work to be performed within the membrane. Consequently, a lateral 

pressure increase, due to the insertion of several amphiphilic molecules in the bilayer 

surrounding a target protein, could favor a given conformation. Applying this idea to 

the case of voltage-gated ion channels, gating modifiers could affect the 

opening/closing dynamics through modification of the mechanical properties of the 

bilayer.    

 In the same line of arguments, there is increasing evidence that the structures 

or functions of membrane proteins can be modulated by the lipid environment (52) 

and this has notably been shown for several members of the ion channel family (53). 

This means that the lipid environment per se plays an important role in the structural 

conformations and the dynamics of voltage-gated ion channels. Enzymatic removal of 

the phospholipid head groups was shown to restrain movements of the embedded 

Kv2.1 channel, making the channel totally irresponsive to Vm changes. Reconstitution 

of KvAP channels in artificial membranes exhibiting various types of lipid head groups 

showed that the proper functioning of the channel requires phosphodiester (54, 55). 
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Such experiments suggest that the interactions between the basic residues of the 

VSD and the head groups play essential roles in voltage-dependent ion channels.  

 On the other hand, several spider toxins were shown experimentally to interact 

strongly with the membrane, opening the way to the idea of a membrane-access 

mechanism of gating modification (56).  

 All these observations together lead to ask the question whether ICK spider 

toxins, which, like the salts and metals investigated by Seelig and colleagues, carry an 

electric charge and interact strongly with the membrane, may consequently affect the 

gating of target channels through a lipid-mediated mechanism.   

 

 

1.3 Motivations of my dissertation 
 

 When I started working with the peptides of sequence EGAAXAASS, all that 

was known about them, was a hypothesized tendency to form a kink when a Trp or 

Tyr residue was substituted at position X in the sequence. The other 12 

experimentally tested substitutions were thought to produce rather extended peptides 

(57). I elucidated the conformational propensities of four of these short peptides and 

the results are described in section 2.1 of this thesis. The simulations per se did not 

reveal the conformations of the aromatics containing peptides, because they never 

converged to a stable structure, and because the ensemble average did not 

reproduce adequately the experimental data. However, the comparison between 

predicted and experimental values combined to statistical tools demonstrated that the 

substitution of X by Trp or Tyr induced the folding of the short peptide into a turn or a 

one-turn helix. A significant amount of time of the thesis was dedicated to ascertain 

this conclusion. A second point of interest was the exploration of the underlying 

mechanism. Why do bulky side chains increase the folding propensities of this 

peptide? The computation of the hydration of specific atomic groups in extended, 

disordered structures, provided an answer to this question and the results are also 

exposed in section 2.1. Although the importance of hydration in protein folding has 

been recognized for a long time (58), its exact function remains unresolved. The 

question whether hydration levels fluctuate before or after folding (59, 60) is still under 

debate. In section 2.3, a statistical method to test the order of these events is 

introduced. First, the folding of the fully extended peptide into its native β–hairpin 

structure within 600 ns is validated. On this basis, a cross-correlation function analysis 
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is then performed between folding events and hydration level fluctuations. The results 

suggest that the hydration fluctuations occur before the protein conformational 

changes. All these results lead to the proposal, in section 2.4, of a large-scale project, 

aimed at a better understanding of the mechanisms underlying intrinsically disordered 

protein conformational changes and the prediction of structural ensembles from 

sequence.  

 The initial purpose of the second project was to investigate the interactions 

between charged molecules known to affect the gating of ion channels and a lipid 

bilayer. To be more precise, the question whether these molecules would modify the 

gating indirectly, without binding to the target (as explained more in details in section 

1.2.4), but through a lipid-mediated mechanism, had to be elucidated. This lipid-

mediated effect could take the form of a modification of the global properties of the 

membrane around the toxin, like the acyl chain ordering, the orientation of the head 

groups or the membrane thickness, and these modified properties would affect the 

functioning of the VSD. This indirect effect could also affect locally the VSD interaction 

pattern required by the voltage-sensor for proper functioning. Several spider toxins are 

known to modify the gating of ion channels, so that we decided to study members of 

this family of peptides. The principle of voltage-gating modification is introduced in 

Figure 1.3, and the spider toxins in section 1.2.3. However, the following rationales 

have led to extend the number of variables and replications. First, to increase the level 

of confidence, a voltage-sensor domain was added to the systems. Theoretically, one 

could imagine that a modification of the membrane, even if it is clearly documented in 

a system without any membrane protein, does not finally affect significantly the 

mechanism of a VSD per se. The addition of a voltage-sensor domain imposes strong 

constraints, since one must observe membrane structural changes and additionally 

their correlated effect on the VSD. On the other hand, the problem of the specificity of 

spider toxins is exposed in section 3.1. Concisely, there is experimental evidence that 

some toxins are effective against a given ion channel, while other toxins are not. 

Consequently, two different toxins were chosen, which have different known 

experimental outcomes when tested on the specific VSD, one being active and the 

other not. The toxin known to be ineffective thus serves as a negative control. The 

constraints become then stronger: the induced perturbation of the membrane due to a 

toxin must lead to measurable effects on the VSD with one of the two toxins, but not 

with the other one. 

 After having first validated the mode of insertion of the toxins in light of 

experimental results (section 3.3.1.1), the following sections show that both toxins 

modified notably several structural features of the membrane. However, the similarity 
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between their effects on the membrane and the absence of any correlated effect on 

the VSD do not support an indirect mechanism of action of gating modifiers. 

 Yet, a lucky choice, leading to unexpected discoveries, was to perform a large 

number of independent simulations in which the systems were exposed to a wide 

spectrum of membrane potentials. In section 3.3.2.2, it is not only shown that the VSD 

affects the membrane, but that this VSD induced modification depends on the sign of 

the membrane potential. Finally, in section 3.3.2.4, a kink in the S4 helix of the VSD is 

described for the first time as a response to membrane polarization. It is further shown 

that some hints of this kink in the S4 helix have been mentioned in previous 

experimental works. The novelty here is to link this conformational change with the 

membrane polarization. 

A common methodological theme of both projects is the effort to use an approach 

in which several independent simulations of similar systems are analyzed with the aim 

of identifying features linked to reproducible observations. It is hoped that with the 

increasing computing capacities, it will become possible to progressively conduct the 

MD simulations more “test-tube”-like, extracting averages or other descriptors out of a 

representative molecular ensemble. The modest attempt performed here in this 

direction, with a little bit more than 100 replicated systems in the second project, led to 

the identification of unexpected relationships between the membrane potential, the 

bilayer and the voltage-sensor domain. 
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2 Driving force of peptide folding nucleation  
 
2.1 Backbone hydration determines the folding signature 

of amino acid residues 
2.1.1 Introduction 
 

 In the course of evolution, proteins have become a very versatile class of 

biomolecules, playing a central role in biological processes. The properties of proteins 

are related to their three-dimensional structure. Protein conformational changes are 

involved in biological function, and defects in folding are associated to severe 

disorders, like Creutzfeld-Jacob disease, type II diabetes, Alzheimer’s, Parkinson’s 

and Huntington’s diseases (61, 62). Several investigations on the relation between 

protein sequence and their conformational tendencies have been developed (6, 63, 

64). Nevertheless, the fundamental principles that underlie the folding of proteins 

remain poorly understood (3, 65, 66). The detailed mechanism driving the protein 

folding process is unknown, and notably its dependency on amino acid side chains 

(62). 

 As of May 2016, more than 118,000 protein structures are available in the 

RSCB Protein Data Bank (PDB) (http://www.rcsb.org/) (67). While our understanding 

of the folded state of ordered proteins has largely increased, the structural 

propensities of intrinsically disordered proteins, introduced in the section 1.1.2, remain 

largely unknown. Intrinsically disordered proteins are fully functional, and play 

indispensable biological roles, despite lacking a stable three-dimensional structure 

(10). Folding is not a permanent condition. In solution, even folded proteins are in a 

dynamic equilibrium with unfolded or partially unfolded conformations. This equilibrium 

depends on a delicate balance of weak, non-covalent and competing interactions 

involving the peptide chain as well as the surrounding molecules, solvent and ligands. 

In the case of unbound intrinsically disordered proteins, this balance disfavors a single 

folded state. However, in order to understand the relation between the sequence and 

this equilibrium, a better understanding of the mechanisms by which individual amino 

acid side chains impact the conformational dynamics of the protein is particularly 

required (62, 68). 

 Experimental and computational techniques provide high-resolution three-

dimensional structure of folded proteins. Protein crystallography produces atomic 

resolution structures, even for large systems. Nuclear Magnetic Resonance (NMR) 
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spectroscopy, which investigates the molecules in solution, is not restricted to folded 

proteins but provides access to information about dynamical molecules, intrinsically 

disordered proteins included. Cryo-electron microscopy requires relatively small 

amounts of material, and has recently proven to be very accurate, with a structure 

solved at 2.2 Å (69). Homology modeling, or template-based modeling, uses an 

experimentally determined structure as template. In addition, the rational assumes 

that evolutionary related proteins will fold into similar structures, if they also share 

similar amino acid sequences. All-atom molecular dynamics (MD) simulations 

complement these methods because they provide the most detailed computational 

description of peptide structural dynamics with high spatial and temporal resolution. 

Recent works show that simulations of 500 ns or more can trace the complete folding 

of fast-folding proteins up to 80 amino acids long (70) or reproduce NMR parameters 

of folded proteins, like residual dipolar couplings (RDC) (61). Despite these 

successes, it is important to remember that MD simulations have limited accuracy, 

which is due, for example, to the approximations needed to perform classical physics 

computations at the atomic level. For this reason, making longer trajectories may not 

necessarily provide more accurate results. As stated above, other methods, 

experimental and even computational, perform better in the identification of the native 

state of folded proteins. One of the domains in which MD fully complete these tools is 

in the investigation of conformational changes and interactions between the molecules 

of interest and their chemical and physical environment. In this context, analysis of 

MD trajectories can provide new insights in the understanding of the mechanisms at 

play. Particularly, intrinsically disordered proteins, because they populate a large 

number of conformations, with fluctuations involving the formation and release of local 

secondary structures, cannot be described by a single, low energy state, but rather by 

an heterogeneous conformational ensemble (63). Also, in order to decipher the 

relevant mechanisms and driving forces of protein folding, an investigation of 

conformations situated at or close to a folding transition state is needed (71). 
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2.1.2 Methods 
 

 In order to investigate the role of individual amino acids on the conformational 

propensities of a peptide, peptides of sequence EGAAXAASS were investigated in 

explicit solvent, where residue X was mutated with residues Gly, Ile, Tyr or Trp and 

the trajectories were validated through comparison with data from NMR experiments. 

As stated above, NMR is adapted for the study of unstructured proteins in solution, 

because even for disordered states, resonance is still measurable. While most NMR 

derived constraints provide short-range information, residual dipolar couplings 

(RDCs), which result from partial alignment of molecules with respect to the magnetic 

field, provide a quantitative, long range information about a dipole orientation with 

respect to the magnetic field. The RDCs of 14 peptides of the sequence mentioned 

above were previously published (57). This particular sequence was designed with 

hydrophilic ends to ensure solubility, with a neutral N terminus to avoid strong 

Coulomb interactions between the termini, and a neutral environment around residue 

X provided by nonpolar residues. Whereas most substituted peptides produced a 

relatively flat 1DCαHα and 1DNH RDC pattern, the substitutions with the aromatic amino 

acids Tyr and Trp resulted in a considerably contrasted pattern, suggesting the 

presence of a kink in the structure (57). The analysis of MD data was performed 

through systematic comparison between simulated and experimental parameters: 

RDCs, but also secondary chemical shifts, 3jHN-HA, 3jHA-N couplings and the χ1 dihedral 

angle of Trp as extracted from JHN-CG and JCO-CG values. The most informative 

parameters proved to be the RDCs. However, as mentioned in section 1.3, the 

averaged values of the predicted RDCs from peptides with an aromatic residue at 

position X did not reproduce exactly the experimental pattern, and the fluctuations did 

not show any hint of convergence. Therefore, a principal component analysis (PCA) 

involving the radius of gyration, the distances between the termini, the coulomb and 

Lennard-Jones interactions and the total number of hydrogen bonds within the peptide 

and between the peptide and the solvent was performed using the R environment. 

This analysis highlighted the number of intramolecular hydrogen bond as a key 

parameter to describe the most populated conformations reproducing the 

experimental RDC pattern. Consequently, the multifactorial linear regression analyses 

performed after this PCA addressed specifically the intramolecular hydrogen bonds. 
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2.1.3 Results 
 

 The main achievements of these investigations are summarized in the 

publication reproduced in the section 2.1.5. Briefly, it was found that the substitution of 

residue X with a Tyr or Trp significantly increased the folding propensities of these 

peptides into a turn or a one-turn α-helix. Additionally, the peptides with the Gly, Ile, 

Tyr, and Trp substitutions could be sorted as a function of their folding propensity: the 

peptide with Trp at position X being the most folded. This finding is in line with 

statistical studies of IDPs compared to ordered globular proteins and proteins found in 

the Swiss-Prot database (6, 10, 72, 73). This comparison showed that folded proteins 

are particularly enriched in specific amino acids, and the four above-mentioned amino 

acids were sorted in the same order as in the MD trajectory analyses. Other 

bioinformatics investigations led authors to propose to call Trp, Cys, Phe, Ile, Tyr, Val, 

and Leu “order-promoting” amino acids. Interestingly, in both bioinformatics studies as 

well as in the simulations, Trp is expected to have the strongest folding promoting 

effect. 

 On the other hand, the investigations showed that the lack of hydration of the 

carbonyl and amide groups on either side of the bulky hydrophobic side chain was a 

key driving force increasing the folding propensity of peptides containing aromatic 

residues arises. These observations imply that the well-known fundamental function of 

the solvent, in terms of folding rate or stabilization of the folded conformations, may 

exert its effect in the immediate proximity of a single residue. These local interactions 

help reduce the size of conformational search space, thus speeding up protein folding. 
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2.1.4 Statement of contribution 
 

 I performed the simulations and designed the statistical approaches. I 

performed all the data analyses. The minimization and clustering were performed 

also, in addition, by Dr. Hoi Tik Alvin Leung.  

 I wrote a complete draft of the manuscript. 

 

2.1.5 Original publication 
 

Olivier Bignucolo, H.T. Alvin Leung, Stephan Grzesiek and Simon Bernèche 

 

Backbone hydration determines the folding signature 
of amino acid residues 

 
Journal of the American Chemical Society 2015 vol. 137 (13) pp. 4300-4303 
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ABSTRACT: The relation between the sequence of a
protein and its three-dimensional structure remains largely
unknown. A lasting dream is to elucidate the side-chain-
dependent driving forces that govern the folding process.
Different structural data suggest that aromatic amino acids
play a particular role in the stabilization of protein
structures. To better understand the underlying mecha-
nism, we studied peptides of the sequence EGAAXAASS
(X = Gly, Ile, Tyr, Trp) through comparison of molecular
dynamics (MD) trajectories and NMR residual dipolar
coupling (RDC) measurements. The RDC data for
aromatic substitutions provide evidence for a kink in the
peptide backbone. Analysis of the MD simulations shows
that the formation of internal hydrogen bonds underlying
a helical turn is key to reproduce the experimental RDC
values. The simulations further reveal that the driving force
leading to such helical-turn conformations arises from the
lack of hydration of the peptide chain on either side of the
bulky aromatic side chain, which can potentially act as a
nucleation point initiating the folding process.

The prediction of the structural properties of a protein from
its amino acid sequence remains a major challenge.1−3

The detailed mechanism driving the protein folding process is
unknown, and specifically its dependence on amino acid side
chains.4 The functional importance of intrinsically disordered
proteins has stimulated investigation of the relation between
their sequence and their conformational tendency.5,6 In order
to improve predictions about the structure of proteins (folded
or disordered), a better understanding of the mechanisms by
which individual amino acid side chains impact the conforma-
tional dynamics of the protein is required.4,7

NMR spectroscopy is particularly appropriate to investigate
the structural dynamics of peptides in disordered and folded
states.8 Particularly, residual dipolar couplings (RDCs), which
arise when molecules are dissolved in anisotropic liquid
phases,9 provide local as well as long-range quantitative
structural information on individual chemical bonds.10−12 The
RDC between two nuclei is proportional to the ensemble and
time average ⟨(3 cos2 θ − 1)/2⟩, where θ is the instantaneous
angle between the internuclear vector and the magnetic field.
In order to investigate the role of individual amino acids on

the conformational propensities of a peptide, Dames et al.13

engineered a series of 14 peptides of sequence EGAAXAASS.
The hydrophilic ends ensured solubility, while the nonpolar
adjacent residues provided a neutral environment for the

systematically single-mutated residue X. They recorded 1DCαHα
and 1DNH RDCs of these peptides, performing the alignment
measurement with polyacrylamide gels.14 Most peptides (with
X = G, I, V, L, N, Q, T, D, E, or K) produced a relatively flat
pattern consistent with a rather extended average conformation
with little specific local structure. However, the substitutions
with the aromatic amino acids Tyr and Trp resulted in a strong
reduction of the RDCs or even changes in their signs at the
center of the peptide (black lines in Figure S1 in the Supporting
Information (SI)), suggesting the presence of a kink at this
position.
All-atom molecular dynamics (MD) simulations provide the

most detailed description of peptide structural dynamics with
high spatial and temporal resolution. The NMR data can be
used to validate the MD simulation trajectories, which can
potentially reveal the mechanistic specificity of aromatic amino
acids. Here we show through a systematic comparison between
simulated and experimental RDCs that the conformations that
best reproduce the experimental data correspond to dynamical
ensembles of short helices or turns stabilized by backbone
hydrogen bonds. We find that one key driving force that
increases the folding propensity of peptides containing aromatic
residues arises from the lack of hydration of the carbonyl and
amide groups on either side of the bulky hydrophobic side
chain.
We performed MD simulations in explicit solvent to

reproduce previously measured residual dipolar couplings and
chemical shifts of peptides of sequence EGAAXAASS.13 In
order to produce adequate sampling, we carried out 7−12
replicated simulations per investigated peptide, each lasting 100
ns. We calculated the 1DCαHα and 1DNH RDCs as well as the
1HN chemical shifts from the coordinates (see Methods in the
SI). Figure S1 compares the 1DCαHα and

1DNH RDCs, averaged
over all of the replicated simulations, and the experimental
values published previously. The predicted RDC patterns of the
peptide with X = Gly or Ile are relatively flat, accurately
reproducing the experimental values, whereas the profiles
obtained for X = Tyr or Trp only partially show the RDC
variations along the peptide sequence that are observed
experimentally. Both the 1DCαHα and 1DNH RDCs of the
peptides with X = Tyr and Trp fluctuate a lot between the
replicated simulations as well as within a given simulation,
reflecting the fact that the peptides adopt an ensemble of
conformations.
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We took advantage of these conformational variations to
investigate the relations between structural order parameters
and the RDCs. Time series analysis over 700 ns (seven 100 ns
simulations) showed that the conformations of the X = Trp
peptide that best reproduced the experimental RDC profile are
characterized by a rather compact conformation, as evidenced
by structural parameters such as the radius of gyration and the
number of intramolecular hydrogen bonds (Figures 1 and S2).

We performed a stepwise regression analysis (see Methods) to
identify which hydrogen bonds are statistically relevant. The
analysis showed that the conformations that better reproduce
the experimental RDC profile involve hydrogen bonds typical
of a helix or a turn in the middle of the chain. Precisely, the
structurally relevant atomic pairs involve hydrogen bonds
between backbone carbonyls of Ala3 or Ala4 and amide groups
of residue Ala6, Ala7, or Ser8 (Table S1 in the SI). Analysis of
the backbone dihedral angles showed that residues 4 and 5
mainly occupy conformations around ψ = 150° or −30°, the
latter corresponding to a turn or an α-helical conformation.
Clustering of the conformations on the basis of the (ϕ, ψ)
dihedral angles revealed that about one-third of all simulation
frames contain a short α-helix centered on the X = Trp residue
and form the main cluster (Figure S3). The RDC values of this
cluster reproduce the characteristics of the experimental profile,
as illustrated in Figure S1. The next three clusters account
together for about one-third of all conformations and contain
β-turns, notably of types I and VIII. Reweighting of the
individual conformations to reproduce the RDC and additional
J-coupling data13 while maximizing the entropy (see Methods)
confirmed that the first cluster is the most prominent one
(Figure S4). Only small readjustments of the cluster population
(maximal change per cluster is 4% of the total population) were
necessary to reproduce the experimental data within their
experimental error, suggesting the overall good accuracy of the
MD sampling.
Taken together, these results are consistent with the idea that

the conformations of the X = Trp peptide that best reproduce
the experimental RDC profile correspond to a turn or a short

helix toward the middle of the chain. An analogous analysis of
the peptide with X = Tyr showed that this substitution also
favors similar conformations, although to a slightly lesser extent
than X = Trp (Table S2 and Figures S5 and S6).
We clustered the simulated conformations of the four

peptides according to their numbers of intramolecular back-
bone hydrogen bonds. The left panels of Figure 2 show that the

number of hydrogen bonds determines the peptide’s RDC
profile. Although the averaged values obtained for the peptides
with X = Gly or Ile produce rather flat RDC profiles,
corresponding to extended peptides with little local structural
preference, the conformations that have two or three hydrogen
bonds reproduce the distinct dips in the center of the 1DCαHα
and 1DNH RDC patterns. On the other hand, the conformations
of peptides with X = Tyr or Trp that have only one or no
hydrogen bonds produce flat RDC patterns. These different
conformations are dynamically visited by the peptides, and thus
it is important to consider their probability distribution. On the
right side of Figure 2 are shown histograms of the numbers of
backbone hydrogen bonds averaged over intervals of 1 ns. The
peptides with X = Tyr or Trp both present a maximum around
1.8 bonds (Hartigan’s dip test for unimodality, p(Tyr) < 0.01
and p(Trp) < 0.001). The X = Ile peptide also shows some
conformations containing more than one hydrogen bond, but
with a lower probability than for X = Tyr and Trp. The peptide
with X = Gly adopts a non-negligible number of conformations
with one hydrogen bond, but the probability of observing more
bonds is small. These observations echo the facts that hydrogen
bonds become more stable and backbone dihedral fluctuations
decrease along the following order of substitutions: Gly → Ile
→ Tyr → Trp (Figures S7 and S8). The peptides containing

Figure 1. Correlation between different structural parameters and the
root-mean-square deviation (RMSD) with respect to experimental
RDCs with X = Trp. The RMSD is correlated to (A) the radius of
gyration, (B) the formation of intramolecular hydrogen bonds, (C) the
ψ angle of residues 4 and 5, and (D) the pseudodihedral angle formed
by the Cα atoms of residues 3−6. Each point represents the average
over one simulation of 100 ns. Figure 2. The RDC pattern depends on intramolecular backbone

hydrogen bonds. The left panels show for the different peptides the
experimental 1DCαHα RDCs (black) and the predicted RDCs for
clusters of conformations containing different numbers of backbone
hydrogen bonds: 0 (orange), 1 (yellow), 2 (green), 3 (blue). On the
right is shown the conformational probability distribution for each
peptide as a function of the number of backbone hydrogen bonds
(averaged over intervals of 1 ns).
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an aromatic residue adopt significantly fewer conformations
with no hydrogen bond in comparison with the Gly and Ile
peptides. Similar conformations are visited by all of the
peptides, but there is a higher probability of observing more
than one hydrogen bond in the peptides containing an aromatic
residue and, to some extent, an isoleucine.
The all-atom MD simulations provide a detailed description

of the structural dynamics of the peptide and thus allow us to
investigate the mechanism by which aromatic residues initiate
the folding process. We postulate that their bulky side chains
limit the access of water molecules to nearby carbonyl and
amide groups. As a consequence, in line with the general
understanding of the formation of secondary structure
elements,15 it would be energetically preferable for these
backbone functional groups to interact with each other, forming
intramolecular hydrogen bonds and favoring peptide folding.
To test this hypothesis, we computed the number of water
molecules coordinating the carbonyl and amide groups of
residues in the middle of the chain. To show that the observed
difference in hydration is a potential driving force and not only
a consequence of a folded conformation, we compared folded
and extended conformations of the Tyr or Trp peptides to
conformations of the Gly peptide, which is generally extended.
For both the Tyr and Trp peptides, the folded and extended
pools respectively contain the conformations corresponding to
the 20% lowest and 20% highest RMSDs with respect to the
experimental RDC values. Figure 3 shows that the backbone of
the X = Trp peptide is significantly less hydrated than that of
the peptide with X = Gly, even in its fully extended
conformations. The strongest effect is observed for the amide
groups of residues 5 and 6. Similar results were obtained for X
= Tyr, but the dehydration of the backbone polar groups is
significantly less.
Proteins undergoing folding and intrinsically disordered

proteins are typically characterized by dynamical ensembles of
conformations, with fluctuations involving the formation and
release of local secondary structures.16 Comparison of
sequences of intrinsically disordered proteins with natively
folded ones showed that disordered regions are generally
depleted of specific residues, which were termed “order-
promoting amino acids”.6 These include, in decreasing order,
Trp, Tyr, and Phe followed by Ile, Leu, and Asn.17 The
bulkiness of the side chains has been proposed to have a direct
impact on the local conformation and dynamics of natively
unfolded proteins.18 Our calculations more specifically suggest
that bulkier side chains, notably aromatic ones, impede the
hydration of neighboring carbonyl and amide groups, favoring
the formation of backbone hydrogen bonds and peptide
folding. Such elementary folding events are likely to act as
nucleation points initiating the folding process and leading to
the formation of protein secondary structure elements, without
excluding that coalescence of neighboring chains might be
essential to stabilize them.19 The long-standing view that the
interaction between backbone functional groups is favored by
the formation of hydrophobic pockets15,20,21 and shielding from
solvent22−25 is thus shown to hold at the scale of a single amino
acid side chain. Cooperativity between adjacent side chains is
expected to play a key role in defining the level of backbone
hydration, suggesting that the processes involved in protein
folding are even more local than previously thought.26 This
further reveals that the effective, or biased,27 conformational
search space can involve as little as a few tens of atoms per
nucleation point, in line with the mechanism hypothesized by

Levinthal in the 1960s as a way to circumvent the protein
folding paradox.28 Here we have provided a mechanistic view at
the atomistic scale in which the level of hydration of the main
chain is shown to be a determinant of the protein folding
process and is defined locally by the characteristics of the lateral
chains. These findings contribute to the development of an
amino acid-based code to understand the interatomic driving
forces defining the tridimensional structure of proteins.
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Figure 3. Backbone hydration. (A, B) Histograms showing the
numbers of water molecules coordinating the amide hydrogen or
carbonyl oxygen atoms of residues 3−7 for the peptides with (A) X =
Tyr and (B) X = Trp. Data for X = Gly are shown as a reference. The
“low” and “high” labels refer to pools of conformations that have low
or high RMSDs with respect to the experimental RDC values. (C−E)
Representative molecular structures for X = Trp (low and high
RMSD) and X = Gly. The average water density within 3.5 Å of the
amide hydrogen of residue Ala6 is shown for X = Trp with high
RMSD (D) and X = Gly (E). The water density is isocontoured at
0.016 molecule/Å3 (i.e., half of the bulk density).
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Material and Methods 

Molecular dynamics 

The simulations were carried out using the GROMACS simulation package1 and the Amber03 force 

field2. The initially completely extended peptides were constructed with the MOLMOL package3 and 

solvated in a dodecahedron box with about 8700 TIP4P water molecules4. Sodium chloride at a 

concentration of about 0.02 mol.L-1 was used to neutralize the system ( 3 Na+, 2 Cl-). The system was 

energy minimized by the steepest descent procedure with a tolerance of 1000 kJ•mol-1, followed by a 

peptide position restrained run of 500 ps to allow the solvent to equilibrate. Production run lasted 

typically 100 ns. For the purpose of the analyses, coordinates were taken every 20 ps, so that a typical 

simulation is represented by 5000 conformations (an interval of 4 ps was used for the autocorrelation 

analyses). Long-range electrostatic interactions were calculated using particle-mesh Ewald (PME) with 

a grid spacing of 0.12 nm5,6, and a cutoff of 1.4 nm was used for the Lennard-Jones interactions. All 

bonds were constrained with the P-LINCS algorithm7, allowing an integration time step of 2 fs in leap-

frog dynamics. The temperature was kept constant at 300 K through velocity rescaling (!! = 0.1 ps)8, 

and the pressure at 1 bar (!! = 0.2 ps)9. 

RDC and chemical shift calculations  

Theoretical RDCs for every snapshot of the MD trajectories were predicted based on a steric alignment 

model using PALES10. Many RDC calculations were repeated using an efficient algorithm described 

previously11 and yielded the same results. The calculated RDC values of each conformation were 

scaled by a constant that was determined by a least square fit between the average RDCs of all 

conformations and the experimental RDC values of a given peptide. The chemical shifts were 

calculated using SPARTA12. Most of the analyses were performed on ensemble averages of the 

calculated RDCs or chemical shifts over the total time of the independent simulations (typically 5000 

frames), or over stretches of 10 ns (500 frames) for the time series analyses. The RDCs are proportional 

to !!!!!!
!!"#!!!!!

! , where!! represents a nuclei gyromagnetic ratio, and r represents the inter-nuclear 

distance. In order to take into account the different values of carbon and nitrogen gyromagnetic ratios 

and bond lengths related to the two sets of RDCs (1DC!H!!and 1DNH), the RMSDs were pooled as 

follows:! 

!"#$ = ! !
! ∙ !"#$!"#"/2 ! !+ !!"#$!"!  (1) 
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The RMSDC!H!!is divided by 2 to take into account that the magnitude of 1DC!H! is roughly twice that of 
1DNH, which is due to the different gyromagnetic ratios (67.23 MHz T −1 for 13C and  -27.1 MHz T −1 for 

15N) and bond lengths (109 pm for C-H and 104 pm for N-H). 

Cluster analysis and maximum entropy 

We clustered the 35,000 conformations of the X = Trp peptide according to the backbone dihedral angles 

(!,!) of residues 3 to 7, independently of the RDC values. A hierarchical cluster analysis was performed 

on a Euclidean distance matrix with the metric:  

! !, ! = !
(num. of res.)

(!1 !!.,!"#,!!,!"#
! + !1 !!,!"#,!!,!"#

!)!"#  

where 

!1 !!,!! = min!(! !! − !! , !! − !! + 360° , !! − !! − 360° ) 

Twenty clusters were requested and sorted in descending order of their number of conformations. The 

largest cluster contains about 12,000 conformations, i.e. 34% of the whole ensemble, and the first 8 

clusters account for about 80% of all conformations (Fig. S2).  

Using the software package IPOPT13, individual weights producing the best agreement to the experimental 

measurements were attributed to each conformation by maximizing the information entropy of the 

ensemble: 

! = − !!!!"
!

!!! 

while respecting the constraints: 

!!! = 1!  

( !!
!

!!"#!,!,!"# − !!"#,!"#)!
!"#

≤ ! !!"#!
!"#

! 

where !! is the optimized population of conformation !. Three datasets were used for this calculations, the 

RDCs 1DC!H! and 1DNH, and the J coupling 3JHNH! from Dames et al.14, and thus three independent 

constraints were defined based on Eq. 6. For each dataset, !!"#!,!,!"# and !!"#,!"# correspond, for a given 

residues, to the calculated RDC (or J coupling) of conformation ! and the corresponding experimental 

RDC (or J coupling). Eq. 6 states that !! should be below or equal to the experimental error, assuming 

that each residue measurement has an error of !!"# Hz. The following !!"# were used for 1DC!H!, 1DNH, 

and 3JHNH! respectively: 2 Hz, 1 Hz, and 0.3 Hz. The weight of each cluster was obtained by summing the 

population of all conformations found in the cluster. 

(2) 

(3) 

(5) 

(6) 

(4) 
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Statistical analyses  

Statistical analyses were conducted using the R software environment15. For the identification of the 

structurally relevant hydrogen bonds (reported in Tables S1 and S2) that could best explain the correlation 

observed in Fig. 1b, we performed the following analysis. First we discarded the pairs of residues for 

which the frequency of hydrogen bond formation was less than 2.5% of all intra-molecular hydrogen 

bonds formed. For the peptide with X=Trp, for example, 11 out of the 36 residue pairs account for 80% of 

the total number of intra-molecular backbone hydrogen bonds. For each hydrogen bond, we performed a 

linear regression between its observed frequency and the RMSD to experiment, using the individual 

simulations as replicates (n = 12 and 10 for Tyr and Trp respectively). We finally retained only the residue 

donor-acceptor pairs for which the regression was statistically significant. Having detected the relevant 

residue pairs, we repeated an identical analysis on these residues only, but at the level of the hydrogen-

bond donor and acceptor chemical groups. We report in Tables S1 and S2 the donor-acceptor pairs for 

which the regression was statistically significant.  Furthermore, some of these analyses were repeated with 

a stricter criteria for counting the hydrogen bonds within the structures, namely with distance between 

acceptor and donor of 3.0 Å instead of GROMACS default value of 3.5 Å. Despite a strongly reduced 

number of detected hydrogen bonds, they produced essentially the same trends.  

 The superposition of the structural parameter values and the RMSD to experimental RDCs in Figs. 

2 and S4 was minimized by linear regression. The procedure allows the quantification of the relation 

between any calculated structural parameter and the RMSD to experimental measurements by a single 

RMSD° value, as reported on the figures. This quantity is written RMSD° to emphasize that it refers to a 

RMSD between different quantities, e.g. radius of gyration (nm) and RDCs (Hz). The quality of the 

regressions was tested through the R “Fitting Linear Models” module. After having verified that the time 

had no significantly measurable effect on any parameter, we computed the regressions without implied 

intercept term. All the presented correlations were statistically significant with p < 0.01, and all the 

models explained more than 90% of the variance (n = 70 for 700 ns of simulations). 

Hydration of backbone polar groups 

We compared the number of water molecules within the first hydration shell of chosen atoms in folded 

or extended peptides. For each simulation with X = Tyr or X = Trp, we selected two groups of peptide 

conformations: A first group was formed with the 20% of structures with the lowest RMSD to the 

experimental RDC values, thus representing mainly folded conformations, and a second group with the 

20% of structures with the largest RMSDs, thus with mainly extended conformations. The remaining 



  31 

 

S5 

structures are intermediate cases that are partially folded. Analysis of the hydration of these structures 

would lead to inconclusive results and were thus not considered. Since the same RMSD cutoff values 

were used for the different simulations, the proportion of structures retained in the two groups varied 

slightly around 20% for each of the simulations. For the X = Gly peptide, all structures were retained 

since they are mainly extended.  

 For each group of conformations of each simulation, we computed the radial distribution 

function of the solvent oxygen atoms around functional groups of the backbone. The number of water 

molecules in the first hydration shell was then obtained by integration from 0 to a cutoff value of 

d=0.28 and 0.33 nm for amide and carbonyl groups respectively. The cutoff was chosen based on 

normalized radial distribution function, in line with previous studies16,17. Standard errors were 

calculated on the basis of the independent simulations with n = 7, 12, and 10 for Gly, Tyr and Trp 

respectively. The Tukey honest significant differences test18 was used to perform a pairwise 

comparison of the average number of water molecules. In Fig. 3 the Tukey’s Honesty Significance 

Difference test is only applied to the comparison between X = Gly and the extended conformations of 

peptides with X = Tyr or Trp.  

Autocorrelation 

The stability of backbone hydrogen bonds and dihedral angles was addressed through the calculation of 

autocorrelation functions. In order to get smoother autocorrelation curves, conformational sampling 

was increased by taking coordinates every 4 ps. The existence function of all hydrogen bonds involving 

the backbone of residues 3 to 8 was used for the autocorrelation calculation, as defined by the g_hbond 

module of Gromacs19. The ! dihedral angles of the four alanine residues next to the substituted residue 

were considered in two groups: direct neighbors (Ala4 and Ala6) and second neighbors (Ala3 and 

Ala7). To take into account the periodicity of the dihedral angles, the following autocorrelation 

function defined in the g_chi module of Gromacs was used20: 

! ! = cos! ! ! − !(! + !)  

In both cases, we fitted the sum of a stretched exponential (in the picosecond time range) and a single 

exponential (in the nanosecond time range)21 over the first 20 ns, and retained the value of the single 

exponential as the structurally relevant lifetime. The number of replicates was 7, 7, 7 and 9 simulations 

of 100 ns for X = Gly, Ile, Tyr and Trp respectively. Following the ANOVA, the Tukey honest 

significant differences test18 was used to perform pairwise comparisons. 

(7) 
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Supplementary Results  

Stability of the structure  

We computed the autocorrelation function of hydrogen bond existence between backbone atoms of 

residues 3 to 8, as well as the ! dihedral angles of the alanine residues next to the substituted residue. The 

stabilization of the structure, as inferred through larger autocorrelation times, increases with the size of the 

side-chains (Figs. S6 and S7). Particularly, for the analysis of the dihedral angles, we postulated that, if the 

residue at position X would affect the stability of the backbone dihedrals, we should detect a larger impact 

on the direct neighbors (positions 4 and 6), and a smaller one on the second neighbors (positions 3 and 7). 

Effectively, whereas all autocorrelation times of the second neighbors are identical with values of about 

2.5 ns, they increase for the direct neighbors to 2.8, 4.2, and 4.7 ns for Ile, Tyr, and Trp respectively, and 

decrease to 1.5 for Gly. These results support the idea that larger amino acids not only promote the 

formation of a turn or short helix, but also stabilize this conformation. 

 

Tables 

Table S1. Atom pairs for which the formation of a hydrogen bond correlates significantly with the 

experimentally measured RDCs (Peptide with X=Trp) 

Atom pair Correlation coefficient 1) p-value Slope of the regression 
A3-O – A6-NH - 0.85 0.002 -15.9 
A3-O – A7-NH - 0.92 0.001 -16.7 
A4-O – S8-NH - 0.74 0.02 -16.8 
W5-O – S8-NH - 0.62 0.06 -31.8 

1) Coefficient of correlation between the hydrogen bonding probability and the RMSD between experimental and 
predicted RDCs. Regression calculated over the averaged values of 10 simulations of 100 ns each.  
 

Table S2. Atom pairs for which the number of hydrogen bonds correlates significantly with the 

experimentally measured RDCs (Peptide with X=Tyr) 

Atom pair Correlation coefficient 1) p-value Slope of the regression 
A3-O – A6-NH - 0.60 0.03 -3.21 
A3-O – A7-NH - 0.71 0.005 -4.54 
A4-O – A7-NH - 0.69 0.006 -7.50 
A4-O – S8-NH - 0.65 0.02 -4.82 
Y5-O – S8-OH - 0.63 0.02 -6.95 

1) Coefficient of correlation between the hydrogen bonding probability and the RMSD between experimental and 
predicted RDCs. Regression calculated over the averaged values of 12 simulations of 100 ns each.  
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Figures 

 

 
 

Figure S1. Comparison of experimental and predicted RDCs. For each peptide, the experimental RDC 

patterns as published by Dames et al.13 are shown (black lines), with the MD predicted RDC patterns 

(solid red lines). The averages and standard errors were taken over 7 (Gly), 7 (Ile), 12 (Tyr) and 10 (Trp) 

simulations of 100 ns. The average RDCs of the conformations found in the first cluster are shown for X = 

Tyr and Trp (dashed red lines). A perfect agreement with the experimental data can be obtained after 

limited reweighting of the different sampled conformations (dashed blue lines). 
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Figure S2. Correlation between structural parameters and the RMSD between predicted and 

experimental RDCs of the peptide with X = Trp. Time series of seven 100 ns simulations are shown 

side by side. The different structural parameters are: (A) Radius of gyration, (B) Total number of intra-

molecular hydrogen bonds, (C) Averaged ! angle of residues 4 and 5, (D) Torsion angle as defined by the 

Cα atoms of residues 4, 5, 6 and 7. Each point represents the average over 10 ns. The curves were aligned 

by minimization through linear regression. The term RMSD° expresses the quality of the alignment fits 

(see Methods). 
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Figure S3. Clustering of conformations for the X = Trp peptide. (A) Distribution of the 35,000 

conformations over 20 clusters defined on the basis of the dihedral angles of residues 3 to 7. (B) 

Ramachandran plots for these residues in the four first clusters. (C) Molecular graphics of representative 

conformations of clusters 1, 2, and 4. Hydrogen bonds are indicated by dashed lines. 
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Figure S4.  Reweighting of population clusters using a maximum entropy approach for X = Trp. (A) 

The population of the different clusters extracted from the MD simulations are corrected to reproduce the 

data shown in (B) while maximising the entropy of the distribution. For all clusters, the required 

correction is relatively small. (B) With the corrected distribution, the RDC and J-coupling data from 

Dames et al. 14 are reproduced within their experimental errors. The experimental data and associated 

error bars are shown in black and the fitted data in blue.  
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Figure S5. Correlation between structural parameters and the RMSD between predicted and 

experimental RDCs of the peptide with X = Tyr.  Time series of seven 100-ns simulations are shown 

side by side. The different structural parameters are: (A) Radius of gyration, (B) Total number of intra-

molecular hydrogen bonds, (C) Averaged ! angle of residues 4 and 5, (D) Torsion angle as defined by the 

Cα atoms of residues 3, 4, 5 and 6. Each point represents the average over 10 ns. The curves were aligned 

by simple linear regression. The term RMSD° expresses the quality of the alignment fits (see Methods). 
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Figure S6. Correlation between 1HN chemical shifts and structural parameters. Time series of seven 

100-ns simulations are shown side by side for peptides X = Tyr (A) and X = Trp (B). The coefficient of 

correlation between the experimental and predicted 1HN chemical shifts are compared to structural 

parameters: the number of intra-molecular hydrogen bonds and the average of ! angle of residues 4 and 5. 

Each point represents the average over 10 ns. 
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Figure S7. Larger amino-acids stabilize helical conformations. We report the average and SE of the 

backbone hydrogen bond autocorrelation time for different substitutions at position X.  

 

 
 

Figure S8. Larger amino-acids stabilize backbone dihedral angles of neighboring residues. (A) The 

averages and SE of the cosine autocorrelation time of the ! dihedral angles of residues 3 and 7 (white 

squares) and residues 4 and 6 (black squares) are shown. (B) Time series of the ! angle of residue 6, over 

5 simulations of 100 ns each for X = Gly and X = Trp. The aromatic amino acid stabilizes the dihedral of 

residues in the middle of the chain to values typical of helices or turns, i.e. ! ≈ -30º. 
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2.2 Validation through COPER: convex optimization for 
ensemble reweighting 

2.2.1 Introduction 
 
 In the investigations of the peptides of sequence EGAAXAASS presented above, the 

most probable conformation of the peptides was deduced from a systematic comparison 

between the experimental and predicted RDCs and chemical shifts (74). Theoretical RDCs 

for every snapshot of the MD trajectory were calculated based on a steric alignment model 

using PALES (75), and chemical shifts were estimated using SPARTA (76). However, the 

large and fast conformational fluctuations of these mostly disordered peptides required to 

consider ensemble averages in order to determine the most favored conformation as a 

function of the sequence. A strong relationship was identified between the number of 

intramolecular hydrogen bonds and the agreement with the experimental RDCs (Fig. 1 of 

the paper). However, more than hundred different combinations of hydrogen bond patterns 

could theoretically be formed in this peptide. Thus, as reported in the supplementary 

material of the publication reproduced in the section 2.1.5, the identification of the 

structurally relevant hydrogen bonds was performed in a multistep regression analysis. 

First, the pairs of residues for which the probability of hydrogen bond formation represented 

less than about 2% of the total amount of hydrogen bonds were removed from the 

hydrogen-bond list. Using this scoring procedure, about 30% of the possible theoretical 

pairs could be removed, while preserving maximal information. Because of the large and 

fast conformational changes of the peptides, the averages over complete trajectories were 

used for the linear regressions analyzes. The residue pairs for which the regression was 

highly significant were retained for a second procedure performed at the level of hydrogen 

bond donor and acceptor chemical groups. The relationship between the agreement to the 

experiment and the number of hydrogen bonds was only highly statistically significant in the 

case of a one-turn helix, thus supporting the idea that the experimentally measured RDC is 

related to a one-turn helix or a turn. However, using this procedure, some frames were 

discarded. The next paragraph and the following paper show that, using a slightly different 

approach, which incorporates all the frames, the same overall conclusions could be drawn. 

 Recently, Leung et al. (77) reassessed the identification of the conformers of the 

same peptide EGAAXAASS which reproduce at best the experimental RDCs for two of the 

four substitutions, namely Ile and Trp. For this second analysis, the 3JHαN couplings of the 

two short peptides were included. The newly introduced method, which reweights every 

single frame as a function of its agreement to experiment while maximizing the ensemble 

entropy, was called COPER, for convex optimization for ensemble reweighting. The results 
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corroborate the previous findings that, in the case of a substitution with Trp, the formation of 

a main cluster forming a one-turn helix was key to reproduce the experimental RDC pattern 

(77). The reweighting factors were less than 3 kT, consistent with errors in MD force fields 

(78). 

 

2.2.2 Statement of contribution 
 

 I performed all the simulations and the clustering analysis as well. I wrote an 

evolutionary based algorithm in the Python programming language, which reweights the 

frames according to the criteria described in the paper. The Appendix 2.2.3.1 contains the 

code and the Appendix 2.2.3.2 presents an illustrative example. Dr. Hoi Tik Alvin Leung, 

using a different algorithm, calculated the results reported in the paper. 

 
 

2.2.3 Original publication 
 

Hoi Tik Alvin Leung, Olivier Bignucolo, Regula Aregger, Sonja A. Dames, Adam 

Mazur, Simon Bernèche, and Stephan Grzesiek 

 

A Rigorous and Efficient Method to Reweight Very Large 
Conformational Ensembles Using Average Experimental 

Data and To Determine Their Relative Information Content 
 
Journal of Chemical Theory and Computation 2016 vol. 12 (13) pp. 383-394 
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ABSTRACT: Flexible polypeptides such as unfolded proteins
may access an astronomical number of conformations. The most
advanced simulations of such states usually comprise tens of
thousands of individual structures. In principle, a comparison of
parameters predicted from such ensembles to experimental data
provides a measure of their quality. In practice, analyses that go
beyond the comparison of unbiased average data have been
impossible to carry out on the entirety of such very large
ensembles and have, therefore, been restricted to much smaller
subensembles and/or nondeterministic algorithms. Here, we show
that such very large ensembles, on the order of 104 to 105

conformations, can be analyzed in full by a maximum entropy fit
to experimental average data. Maximizing the entropy of the
population weights of individual conformations under experimen-
tal χ2 constraints is a convex optimization problem, which can be solved in a very efficient and robust manner to a unique global
solution even for very large ensembles. Since the population weights can be determined reliably, the reweighted full ensemble
presents the best model of the combined information from simulation and experiment. Furthermore, since the reduction of
entropy due to the experimental constraints is well-defined, its value provides a robust measure of the information content of the
experimental data relative to the simulated ensemble and an indication for the density of the sampling of conformational space.
The method is applied to the reweighting of a 35 000 frame molecular dynamics trajectory of the nonapeptide EGAAWAASS by
extensive NMR 3J coupling and RDC data. The analysis shows that RDCs provide significantly more information than 3J
couplings and that a discontinuity in the RDC pattern at the central tryptophan is caused by a cluster of helical conformations.
Reweighting factors are moderate and consistent with errors in MD force fields of less than 3kT. The required reweighting is
larger for an ensemble derived from a statistical coil model, consistent with its coarser nature. We call the method COPER, for
convex optimization for ensemble reweighting. Similar advantages of large-scale efficiency and robustness can be obtained for
other ensemble analysis methods with convex targets and constraints, such as constrained χ2 minimization and the maximum
occurrence method.

■ INTRODUCTION

Proteins exist as ensembles of interchanging conformations.
Obviously, unfolded polypeptide chains, such as chemically or
physically denatured proteins and intrinsically disordered
proteins (IDPs), can access an extremely large number of
conformations.1 A comprehensive description of their
structural preferences is a prerequisite for understanding
protein folding and the function of IDPs in health and
disease.2 However, native, folded proteins also usually adopt
many conformations close to the global free energy

minimum,3 and their interchange is a hallmark of protein
function, such as catalysis4 or signal transduction.5

A detailed experimental determination of individual
structures in such protein ensembles becomes impossible as
soon as their number exceeds a few, since the number of
conformational degrees of freedom quickly outpaces the
number of measurable parameters.6 To make progress,
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ensembles containing tens of thousands of conformers are
often simulated and compared to experimental data. Simulated
ensembles can be obtained by many methods, e.g., the
simulation of a random chain according to the coil model of
the unfolded state,7−9 coarse-grained simulations of protein
domain motions,10,11 or all-atom molecular dynamics (MD)
simulations with varying degrees of complexity.12−16 The
quantitative analysis of such very large ensembles presents a
formidable challenge. An initial analysis needs to establish the
accuracy and information content of the predicted ensemble
relative to any experimental knowledge, and, if necessary, the
ensemble needs to be refined to reproduce the experimental
data. Only then are more detailed predictions of unobserved
parameters warranted. Due to the very large size, so far
analyses of entire large ensembles have been limited to the
comparison of unbiased averages over the ensemble to
measured experimental average values. Thus, e.g., unbiased
averages derived from even the most advanced MD force
fields still fail to accurately predict the experimental data
without further adjustments.15

Due to computational intractability, more detailed analyses
of simulated ensembles have been restricted to much smaller
size ensembles, i.e., typically on the order of, at most, several
hundred conformers. Procedures such as sample-and-select
(SAS),17 the ensemble optimization method (EOM),18

ASTEROIDS,19 and sparse ensemble selection (SES)20 select
smaller subsets by various strategies from initially created large
ensembles that satisfy the measured parameters. Similarly,
maximum entropy (ME) reweighting of individual con-
formers,11,21 Bayesian estimation of individual conformer
weights,22 and maximum occurrence (MO),10 which estimates
the maximal possible occurrence of a conformer within an
ensemble, have been used only on smaller selected subsets or
clusters but not on entire very large ensembles. Minimal-size
ensembles compatible with experimental data may also be
generated by constrained ensemble structure calculations.6

Besides the recently proposed SES,20 all proposed methods
use stochastic mathematical procedures such as genetic
algorithms or simulated annealing, and their solutions are
not guaranteed to be optimal and unique.
Here, we show that very large ensembles can be analyzed in

full and very efficiently by a maximum entropy approach that
reweights all individual populations in the ensemble such that
the average over the ensemble reproduces the experimental
data within the experimental error (χ2 ≤ 1). This constrained
search for the maximum entropy Smax falls into the class of
convex optimization problems, which can be solved in a very
efficient and deterministic manner even for very large data
sets. As the population weights are calculated in a robust
manner on the entire ensemble, the reweighted large
ensemble represents the most accurate representation of the
combination of simulation and experiment in an information-
theoretical sense. Furthermore, since Smax is a well-defined
parameter, its reduction relative to an unconstrained ensemble
presents the true measure of the information content of
experimental data relative to the simulated ensemble. We call
the method COPER, for convex optimization for ensemble
reweighting. As an example, we analyze an ensemble of 35000
snapshots of a 700 ns MD trajectory of the nonapeptide
EGAAWAASS in water, for which we had previously obtained
extensive residual dipolar coupling (RDC), J coupling, and
chemical shift data.23,24 The results show that the uncon-
strained MD simulation overestimates the α-helical content.

However, reweighting factors are moderate, corresponding to
free energy changes of 2.6kT, which are within the expected
inaccuracy of MD force fields. A very strong discontinuity
observed in the RDCs around the central tryptophan residue
can be explained by a cluster of helical conformations of the
central residues.24 Not surprisingly, reweighting of a 35 000
member ensemble generated from a random coil model of the
unfolded state by the program Flexible-Meccano8 requires a
larger free energy change of 3.7kT, consistent with its coarser
nature of approximation. In contrast, a similar analysis carried
out for the nonapeptide EGAAIAASS indicates largely
extended conformations and much smaller necessary
reweighting factors for its MD trajectory. As a corollary, we
show that reweighting populations for χ2 minimization and
the maximum occurrence method10 are also convex
optimization problems that can be solved in an equally
efficient, deterministic manner.

■ THEORY
Maximum Entropy Reweighting as a Convex

Optimization Problem. We consider an ensemble of N
members with populations pi (0 ≤ pi ≤ 1, ∑ipi = 1, i = 1, ...,
N). Its entropy S in the sense of Shannon25 is given as

∑= −
=

S p pln
i

N

i i
1 (1)

Let dj
exp be one of M measured experimental parameters (1

≤ j ≤ M) and di,j
pred, its predicted value for the ith member of

the ensemble. Its predicted weighted average dj
pred over the

ensemble is then given as

∑=
=

d pdj
i

N

i i j
pred

1
,
pred

(2)

Equation 2 holds for cases where each conformation can be
treated individually and the experimental parameter is a
population-weighted average. Many NMR parameters, such as
chemical shifts, residual dipolar couplings, paramagnetic
relaxation enhancements, and J couplings, fulfill this condition.
Assuming that the experimental system is ergodic, the
ensemble average also equals the time average of an individual
member. We apply this here to the prediction of NMR
parameters from the average over the time frames from a MD
trajectory, for which we assume that it is long enough for
convergence.
The quality of the agreement between predicted average

and the experimental data is judged by χ2

∑χ σ=
−

=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟M

d d1

j

M
j j

j

2

1

pred exp 2

(3)

where χ2 ≤ 1 signifies agreement within the error limits σj.
The error σj for the parameter j in eq 3 presents the total
error, e.g., composed of the error of the measurement σj,expt
and the error of the model σj,model, i.e., σj = (σj,expt

2 +
σj,model
2 )1/2.
The maximum entropy search problem can now be

formulated as the following optimization problem

pSmaximize ( ) (4a)

χ ≤psubject to ( ) 12
(4b)
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≤ ≤ =p i N0 1, 1, ...,i (4c)

∑ =
=

p 1
i

N

i
1 (4d)

Here, the vector p = (p1,...,pN) is the optimization variable of
the problem. An optimal solution pS‑max is found when the
object function S(p) has its maximal value among all vectors p
that satisfy the inequality constraints (eqs 4b and 4c) and the
equality constraint (eq 4d).
A convex optimization problem is one where both the

objective function and the inequality constraint functions are
convex, whereas the equality constraint functions are affine.26

A function f is convex when its epigraph, epi f (the set of
points above or on the graph of f, epi f = {(x,t)|x ∈ dom f,
f(x) ≤ t}) is a convex set. A set is convex if for any two
points of the set the connecting straight line segment between
the two points is also in the set (Figure 1A). Thus, the

convex inequality constraints define convex sets of feasible
points. Similarly, the affine equality constraints define affine
sets. A set is affine if for any two points of the set their entire
connecting straight line is also in the set. Since intersections
of convex and affine sets are convex, the combined conditions
imposed by convex inequality and affine equality constraints
define a set of feasible points, which is also convex26 (Figure
1B). Convex optimization problems can be solved very
efficiently by interior point (IP) methods.26,27 Figure 1B
illustrates how the optimal solution can be reached from an
interior point within the intersection of the feasible regions of
all constraints. Starting from the interior point, the search
follows the gradient of the objective function until the
boundary of the set of feasible points is reached, from where
the search continues along the boundary until the optimal
solution is attained. If the optimum is located at an interior
point, then the problem reduces to an unconstrained

optimization. The convex nature of the objective function
ensures that the solution is unique in both cases.
It is easy to show that the negative of the entropy −S(p)

(eq 4a) and the constraining functions of the inequality
constraints (eqs 4b and 4c) are convex since their Hessians
are positive semidefinite.
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where δab is the Kronecker delta.
We also note that the constrained χ2 minimization problem

χ pminimize ( )2
(6a)

≤ ≤ =p i Nsubject to 0 1, 1, ...,i (6b)

∑ =
=

p 1
i

N

i
1 (6c)

is a convex optimization problem and hence can be solved
very efficiently.
In order to find the maximum entropy according to eqs 4

by interior point methods, we use the following two-step
procedure:

(1) Search for the population vector pχ
2‑min that minimizes

χ2 under the constraints of eqs 6b−6c starting from an

interior point such as pi
equal = 1/N. If χ2(pχ

2‑min) ≤ 1,

then pχ
2‑min is an interior point for the constrained

maximum entropy problem eqs 4; otherwise, it has no
solution.

(2) Search for the population vector pS‑max that maximizes
the entropy under the constraints of eqs 4b−4d starting

from the interior point pχ
2‑min.

Change of Entropy and Free Energy under
Reweighting. When no experimental information is present,
i.e., the chi-square condition (eq 4b) is dropped from the
optimization problem of eqs 4, the maximum entropy is
achieved when all populations are equal and pi

equal = 1/N. In
this situation, the entropy takes the value S(pequal) = ln(N).
The change in population weights due to the experimental
information under maximum entropy principle leads to a
decrease in entropy ΔS from this value

∑
Δ = −

= − −

‐

=

‐ ‐

p pS S S

p p N

( ) ( )

ln ln( )

S

i

N

i
S

i
S

max equal

1

max max

(7)

This decrease in entropy coincides with the definition of
the relative entropy (Kullback−Leibler divergence)28 ΔSAB of
two populations pA and pB

∑Δ = −
=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟S p

p

p
lnAB

i

N

i
A i

A

i
B

1 (8)

for the case pi
B = pi

equal = 1/N. The negative of the relative
entropy ΔSAB presents the mean information I(A:B) for

Figure 1. Solution of constrained convex optimization problem by
interior point method. (A) Example of convex and nonconvex sets.
(B) Illustration of interior point method. The intersection of all
convex constraints (constraint 1 (green), constraint 2 (magenta), ...)
defines the convex set of feasible points (yellow). The value of the
convex objective function is shown by the blue, dashed contour lines.
The search starts from an interior point (red circle) within the set of
feasible points and follows the gradient of the objective function until
the boundary of the set of feasible points is reached. The search then
continues along the boundary following the gradient of the objective
function until the optimal solution (red circle) is attained (see text).
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discrimination in favor of pA against pB. Thus, −ΔS in eq 7 is
the information content of experimental data for discrim-
ination against an equal population.
To quantify the reweighting of individual populations under

the experimental constraints and the maximum entropy
principle, we define the reweighting factor ri and its associated
free energy change ΔGi

= ‐r p p/i i
S

i
max equal

(9a)

Δ = −G kT rln( )i i (9b)

where k is the Boltzmann constant and T the absolute
temperature. Using eqs 7−9, it is obvious that kTΔS presents
the mean free energy change ⟨ΔG⟩
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■ RESULTS AND DISCUSSION
Experimental NMR Data and MD Simulations on the

EGAAWAASS Nonapeptide. Previously, we had systemati-
cally investigated the influence of single amino acid
substitutions X on the conformation of unfolded model
peptides EGAAXAASS, as monitored by 1DNH and 1DCαHα
RDCs, 3JHNHα scalar couplings, and 13Cα secondary shifts.23

Homogeneous RDC, chemical shift, and J coupling values
along the peptide sequence indicated extended peptide

conformations for most amino acid types X. However,
substitutions by the aromatic amino acids tryptophan and
tyrosine led to a kink in the center of the peptide, as was
evident from a discontinuity in the NMR data. The original
NMR data were obtained on peptides at natural abundance of
13C and 15N. To obtain access to further NMR parameters,
the tryptophan-substituted EGAAWAASS peptide was 13C
and 15N isotope-labeled in a bacterial expression system.29

Figure 2 shows sequential RDC (1DNH,
1DCαHα,

1DCαC′) and J
coupling (3JHNHα,

3JHαN) data acquired on this isotope-labeled
EGAAWAASS peptide (a complete list of experimental data is
provided in Supporting Information, Table S1). The
discontinuity is evident in the sequence profile of the 1DNH
and 1DCαHα RDCs. Whereas they are negative and positive,
respectively, for almost all amino acids, consistent with an
extended conformation of the peptide in horizontally
compressed polyacrylamide gels,30 they change sign at the
central residues A6 (1DNH) and W5 (1DCαHα), indicative of a
kink. Figure 2 also shows experimental statistical error
estimates for the J coupling and RDC values (Supporting
Information, Table S1). The error estimates for the 3JHNHα
and 3JHαN couplings are very close to RMSD values found
previously between experimental data and data predicted from
structural knowledge by the respective Karplus parame-
ters.31,32 For the RDC data, a true error estimate is much
harder to establish due to the lack of detailed knowledge on
the interactions of the peptide with the alignment medium
and possible induced conformational changes during this
interaction. We have previously observed a similar disconti-
nuity in the RDC pattern with a different alignment medium
(Pf1 phages),23 which indicates that the kink in the peptide is
not induced by interactions with the medium. Nevertheless,

Figure 2. Comparison of experimental RDCs and backbone scalar couplings obtained on the nonapeptide EGAAWAASS to values back-
calculated from its 35 000 frame MD trajectory. Experimental data are shown as blue circles, and the unbiased (equal population) average of the
predicted observables from the trajectory, as green lines. The reweighted averages after χ2 minimization and the COPER entropy maximization
are indicated as dashed magenta lines and red lines, respectively.
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the RDC model error is unknown for flexible peptides. Since
better estimates are not available, the total RDC error was
taken as the experimental error.
To identify the structural reason for the kink in the peptide,

we have carried out a total of seven, 100 ns MD simulations
on the EGAAWAASS peptide under full hydration. Theoreti-
cal RDCs and J couplings were then calculated for every 20 ps
frame using a steric exclusion model6 and available Karplus
parameters.31,32 Figure 2 shows the equally weighted averages
of the different observables over the total of 35 000
conformations (green solid lines). Clearly, the unbiased
averages do not reproduce the experimental data (blue)
within the indicated error, which is particularly noticeable for
the kinks observed in the experimental RDC data in the
region around residues W5 and A6. These deviations lead to a
total χ2 value (eq 3) of 116.
COPER Procedure: χ2 Minimization Followed by

Entropy Maximization. The COPER procedure was then
applied to reweight the individual conformations. In practice,
using a single total (χ2 ≤ 1) constraint for all different data
types in the maximum entropy search led to a very uneven
distribution of deviations among the different RDC and J
coupling data types. Therefore, we used individual χα

2 ≤ 1
constraints for each of the different data types α (RDC or J
coupling). To find a feasible inner point for this maximum
entropy search, the initial χ2 minimization was then carried
out on the sum ∑αχα

2, which differs from the original χ2

definition in eq 3 only by reweighting via the number of data
points Mα in the individual data sets. Minimization of ∑αχα

2

within the usual constraints on population weights (eqs 6b
and 6c) of the 35 000 conformations led to very good
agreement of the average data predicted from the minimizing

population vector pχ
2‑min with the experimental data (Figure 2,

dashed magenta lines). As compared to the equal population

entropy S(pequal) = ln(35 000) = 10.46, the entropy for the

pχ
2‑min vector is significantly reduced to a value S(pχ

2‑min) =
5.59 (ΔS = −4.87; Table 1).
The minimized ∑αχα

2 value of 0.37 (Table 1) guarantees
that the individual χα

2 values are also smaller than 1; hence,

pχ
2‑min presents a feasible starting point for the maximum

entropy search within the χ2 and population constraints (eqs
4b−4d). The subsequent maximum entropy search then
yielded average predicted data that agree less well with the
experimental data than the minimal χ2 prediction, but the data
are still within the error limits (Figure 2, red lines).
Consequently, the entropy is again increased to a value
S(pS‑max) = 7.95, but it is still reduced relative to the equal
population situation by ΔS = −2.51. This reduction in
entropy corresponds to the minimal restriction of the
accessible conformational space needed to satisfy the
experimental information. In the simplest case, it may be
pictured as making certain conformations completely inacces-
sible, whereas the accessible conformations remain equally
likely. In this situation, S(pS‑max) would correspond to the
logarithm of the number of accessible conformations; hence,
e−ΔS (12.3 for the current case) would correspond to the
factor by which the number of accessible conformations is
reduced due to the experimental information.
Due to the efficiency of the inner point method, the entire

COPER procedure of constrained χ2 minimization followed
by constrained entropy maximization took only about 9 min
to complete on a single core of a 2.6 GHz Intel Xeon CPU
for the 35 000 member EGAAWAASS peptide ensemble.
Tests with different ensemble sizes showed that this time
increased approximately linearly with ensemble size for
ensembles of up to 70 000 members.

Table 1. χ2 and Entropy Valuesa before Reweighting, after χ2 Minimization, and after Entropy Maximization of the Frames of
the EGAAWAASS Nonapeptide’s MD Trajectory or Its Flexible-Meccano Data Set Using Different NMR Observables as
Constraints

before reweightingb after χ2 minimization after entropy maximization

constraints Nc ∑αχα
2d ∑αχα

2 ΔSe ∑αχα
2 ΔSe ΔS averagef ΔS SDf

3JHNHα 7 3.52 0.00 −0.201 1.00 −0.045 −0.044 0.000
3JHαN 5 4.41 0.00 −0.878 1.00 −0.215 −0.199 0.006
3JNCγ 1 4.42 0.00 −0.043 0.00 −0.043 −0.008 0.001
3JC′Cγ 1 11.77 0.00 −0.277 0.98 −0.195 −0.210 0.070
1DNH 8 498.97 0.00 −1.415 1.00 −0.668 −0.652 0.008
1DCαHα 7 383.92 0.00 −0.905 1.00 −0.540 −0.540 0.013
1DCαC′ 8 35.56 0.01 −1.387 1.00 −0.459 −0.459 0.000
all backbone 3Jg 12 4.41 0.00 −1.037 1.00 −0.206 −0.206 0.006
all 1Dh 23 959.94 0.31 −4.194 3.01 −2.297 −2.311 0.068
all 1D + all backbone 3Ji 35 967.87 0.37 −4.870 4.94 −2.512 −2.581 0.158
all 1D + all backbone 3J (FM ensemble)j 34 1158.08 0.98 −5.738 4.94 −3.611 −3.685 0.035
all 1D + all 3Jk 37 1024.19 0.20 −5.203 6.82 −2.633 −2.656 0.057

aUnless noted otherwise, all values correspond to a calculation of the 35 000 frame MD data set. bThe entropy value of the equal population
distribution for the 35 000 conformations is S(pequal) = ln(35 000) = 10.463. cNumber of experimental constraints. dThe values correspond to the
sum of individual χ2 values for the different data types. eThe entropy difference is calculated as the deviation from S(pequal). fThe 35 000
conformation data set was randomly divided into two mutually exclusive data sets, each containing 17 500 conformations. The calculation was
repeated on both data sets, and entropy differences were calculated as the deviation from S(pequal) = ln(17 500) = 9.770. ΔS average (SD)
corresponds to the average (standard deviation) of both entropy differences. gThe constraints consist of the backbone scalar couplings 3JHNHα and
3JHαN.

hThe constraints consist of the RDCs 1DNH,
1DCαHα, and

1DCαC′.
iThe constraints consist of 3JHNHα,

3JHαN,
1DNH,

1DCαHα, and
1DCαC′.

jThe
calculation was carried out on a 35 000 conformation ensemble generated by Flexible-Meccano using 3JHNHα,

3JHαN,
1DNH,

1DCαHα, and
1DCαC′

constraints. Due to the nature of the Flexible-Meccano simulation, the φ angle of the last residue is fixed and its 3JHNHα constraint is not meaningful.
kThe constraints consist of 3JHNHα,

3JHαN,
3JNCγ,

3JC′Cγ,
1DNH,

1DCαHα, and
1DCαC′.
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Robustness Test, Effect of Error Uncertainty, and
Information Content of Individual Data Types. To
estimate the information content of different types of NMR
constraints on the MD ensemble, we systematically
determined the entropy loss induced by these constraints
via COPER fitting relative to the equilibrium population.
Table 1 lists these losses for different combinations of scalar
and dipolar couplings. In order to estimate the errors and
robustness of the method, the set of 35 000 conformations
from the MD trajectory was further subdivided into two
randomly chosen subsets of 17500 conformations, for which
the COPER fit procedure was repeated and the entropy was
calculated. Table 1 lists the average and standard deviation
values of the resulting entropy reductions for the two
subpopulations relative to their equal population entropy
S(pequal) = ln(17 500) = 9.77. It is obvious that the entropy
losses are highly reproducible, with relative standard
deviations of less than 7%, and very close to the losses
calculated for the 35 000 conformation data set. This indicates
that the sampling of the conformational space is dense, since
significant variations of the entropy reduction would be
expected for a sampling of conformational space that is too
low. In this manner, the comparison of the entropy reduction
within different subsets of an ensemble provides both a test
for the robustness of the reweighting and for the density of
sampling.
To assess the effect of the errors used on the total entropy

reduction, we have also varied the limits for χα
2 from 0.25 to 4,

corresponding to a scaling of the errors by factors between
0.5 and 2 (Supporting Information, Figure S1A). Consistent
with the expectation that weaker constraints allow larger
conformational entropy and with previous findings by
Hummer and colleagues,11 the entropy reduction decreases
monotonously with increasing χα

2 limits. A limit of χα
2 ≤ 4

decreases the entropy reduction to 1.75 from its value of 2.51
for χα

2 ≤ 1. Thus, a 2-fold increase of the error size has an
effect of less than 1 kT unit on the free energy change.
The entropy reduction induced by the experimental

constraints may range from zero, for which the reweighted
population is identical to the equally populated state, to
ln(N), for which the constrained ensemble reduces to a single
conformation (equivalent to a final entropy value of zero).
The entropy losses due to 3JHNHα (ϕ angle) or 3JHαN (ψ
angle) constraints are 0.05 and 0.22, respectively (Table 1).
Thus, the 3JHNHα data carry about four times less information
than the 3JHαN data. This is in agreement with the fact that
among the different conformations accessible to the
polypeptide, i.e., helical vs extended, variations in ϕ angle
are much smaller than in ψ-angle. The entropy losses for
individual 1DNH,

1DCαHα, and
1DCαC′ constraints are 0.67, 0.54,

and 0.46 respectively, which indicates a significantly higher
information content of the dipolar couplings relative to the
scalar couplings. Combining all three dipolar couplings
constraints increases the entropy loss to 2.30, which is a
more than additive effect on the restriction of conformational
space. Finally, when both dipolar and scalar coupling
constraints are applied simultaneously, the total entropy loss
of 2.51 approximately equals the sum of their individual
contributions. This shows that the dipolar and scalar coupling
constraints each contain information not captured by the
other data type. Since the entropy loss times the thermal
energy kT represents the mean free energy change (eq 10), an
adjustment of the MD force field by 2.51 kT units would be

necessary to bring the ensemble in agreement with the
experiment.

Comparison to Flexible-Meccano Random Coil
Ensemble. The entropy reduction presents a measure of
the accuracy of the model ensemble. This can be used to
quantitatively compare different types of ensembles. For this,
we created a 35 000 conformation ensemble based on a
random coil model of the unfolded with residue-specific ϕ/ψ
propensities using the program Flexible-Meccano.8 Reweight-
ing its populations by COPER using the same backbone J
coupling and RDC constraints as those for the MD ensemble
caused an entropy reduction by 3.61 (Table 1), which is more
than the corresponding value of 2.51 for the MD ensemble
and consistent with the considerably coarser nature of
approximation used in Flexible-Meccano.
It is interesting to note that the ∑χα

2 difference between the
experimental and back-calculated data for the MD ensemble
before reweighting amounts to 968 and is therefore only
slightly smaller than the corresponding ∑χα

2 value of 1158 for
the Flexible-Meccano ensemble (Table 1). However, the
minimized ∑χα

2 decreases to 0.37 for the MD, but it decreases
only to 0.98 for the Flexible-Meccano ensemble. Thus, the
MD ensemble contains conformations that, as population-
weighted combinations, better represent the experimental data
than the Flexible-Meccano ensemble. Since the ∑χα

2 minimum
is lower for the MD ensemble, it is expected that the χα

2 ≤ 1
conditions lead to a larger allowed space for the population
weights and, as a consequence, to a smaller reduction in
entropy.

Cross-Validation of COPER ME Populations. Cross-
validation of ME-derived populations with additional,
independent experimental data is problematic, since the ME
solution is, per definition, underdetermined. If the predictions
agree with the additional data, then their information is
redundant and they would not have constrained the original
fit. In contrast, if the additional data deviate from the
predictions of the original fit, then they contain independent
information. Using COPER, the information content of the
additional data can be estimated from the entropy reduction
that results from including these data in the fit.
Using this quantitative concept, populations of the 35 000

frame MD data set obtained by the COPER ME fit of the
1DNH,

1DCαHα,
1DCαC′,

3JHNHα,
3JHαN couplings (Figure 2) were

cross-validated by experimentally determined χ1 angle
populations of the W5 side chain. Assuming staggered
conformers, the χ1 angle populations were derived by a
simple linear transformation (linear least-squares fit) from
experimental 3JNCγ and 3JC′Cγ couplings33,34 (Supporting
Information, Table S1), which had not been used as
constraints (Figure 3). These experimental populations of
the χ1 + 60°, χ1 + 180°, and χ1 − 60° rotamers are 22, 46,
and 31%, respectively. The χ1 populations from the MD
simulation (58, 34, 6%) deviate strongly, but they get closer
(44, 45, 12%) to the experimental values after COPER
reweighting by the 1DNH,

1DCαHα,
1DCαC′,

3JHNHα, and
3JHαN

data, thereby confirming the correct trend of the independent
fit. Obviously, including the 3JNCγ and

3JC′Cγ scalar couplings
in the COPER procedure leads to the best agreeing χ1
populations (31, 40, 28%) at a cost of reducing the entropy
by 2.63 relative to the equal population situation (Table 1).
However, this reduction is only 0.12 larger than for the fit
without the side chain 3JNCγ and 3JC′Cγ scalar couplings.
Therefore, their additional information content is rather small
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Thus, Hummer and colleagues11 use the free energy function
G = χ2 − ΘS, where Θ is a tunable temperature parameter
that balances the agreement between experimental and back-
calculated data with conformational diversity. Θ is then varied
until the corresponding free energy change matches an
expected error in the force field. In COPER, we define the
error of the parameters, i.e., χ2, and obtain as a result the
entropy change ΔS and the concomitant free energy change
ΔG. Thus, as shown in Supporting Information Figure S1, the
relation between ΔS and χ2 can be easily established. This
relation can also be used to achieve a certain ΔG (=kTΔS)
that matches expected force field errors. Using our error
estimates, the free energy changes of less than 3kT were in
the range of the expected force field errors.
In contrast to the maximum entropy approaches, the

Bayesian22 ensemble reweighting algorithm determines the
population weights from assumed prior distributions of the
weights and likelihood functions of the parameters based on
experimental, theoretical, or assumed errors. This approach
also provides estimates of the uncertainties in the weights,
which are not easily obtained by other methods. However, the
computational cost is rather high, and, so far, it has been
applied only to small ensembles of hundreds of conforma-
tions.
Extension of the Inner Point Convex Optimization to

Maximum Occurrence. Bertini and colleagues have
previously introduced the method of maximum occurrence
(MO)10 for the analysis of ensembles of flexible macro-
molecules. The method tries to determine the maximum time
or occurrence that a molecule can spend in a given
conformation k such that the weighted average over all
conformations of a theoretical ensemble is still compatible
with the experimental average data. The problem can thus be
formulated as

pmaximize k (11a)

χ ≤psubject to ( ) 12
(11b)

≤ ≤ =p i N0 1, 1, ...,i (11c)

∑ =
=

p 1
i

N

i
1 (11d)

where the populations pi and the constraining function χ2 are
defined as in eqs 4. Previously, this problem could be solved
only by using a nondeterministic, simulated annealing
procedure on smaller subsets (480 families of 50 members)
of a large ensemble (56 000 structures).10 However, since the
target function pk (eq 11a) and the constraints (eq 11b−11d)
are convex or affine, the entire problem is a convex
optimization problem that can be solved efficiently by the
described inner point method.
While it is beyond the scope of the present work to

perform a detailed analysis of the EGAAWAASS peptide
conformations by the MO method, we have tested the
efficiency of this inner point solution to the MO problem on
ensembles of random conformations generated for this
peptide by the program Flexible-Meccano.8 The ensembles
ranged in size from 10 000 to 70 000 members and were
subjected to the MO optimization using the experimental
RDC and J coupling backbone constraints described in Figure
2. The CPU time necessary to calculate one MO population
increased approximately linearly with the ensemble size and
amounted to 850 s on a single core of a 2.6 GHz Intel Xeon
CPU for the 70 000 member ensemble. This compares very
favorable with the 6 h reported previously for subsets of a
56 000 member ensemble.10

Figure 6. Analysis of the 10 000 conformations from the MD trajectory of the EGAAIAASS peptide. The conformations were clustered into 20
subsets according to the φ/ψ angles of its central five residues (A3−A7). (A) Ramachandran population plots of the four most highly populated
clusters are shown with contour levels spaced by a factor of 2.5. The most highly populated cluster 1 has extended conformations for residues A3
and I5 to A7 and partially α-helical conformations for residue A4. (B) Populations of the 20 clusters before reweighting are shown in red, and
those after COPER reweighting, in blue. (C) Reweighting factors for the cluster populations are indicated as ln(pCOPER/pequal), where pequal and
pCOPER represent the populations before and after COPER reweighting, respectively.
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and reduces the conformational space only by an additional
11%.

Structural Interpretation by φ/ψ Cluster Analysis. To
obtain structural insights into the effects of the ME
reweighting, the 35 000 conformations were clustered into
20 clusters based on the similarity of the ϕ and ψ torsion
angles of the central five residues (A3−A7) using a
hierarchical clustering algorithm. The clusters were then
ordered according to the size of their populations in the
original MD trajectory. Figure 4A shows the ϕ/ψ angle
distributions of the four most highly populated clusters,
accounting for 66% of all conformations. The largest cluster 1
has α-helical conformations for residues A4−A6 and partially
α-helical conformations for residues A3 and A7, whereas the
other clusters contain more extended conformations. A
representative set of conformations of cluster 1 is shown in
Figure 4B. It is obvious that residues A3−A7 form a turn with
backbone hydrogen-bond contacts. These contacts are
protected from water by the bulky aromatic side chain of
residue W5, as shown in a recent analysis24 of the full MD
trajectory, which explains the tendency of the aromatic groups
to induce kinks in the unfolded peptide chain.
Figure 5A shows the 20 cluster populations before and after

reweighting by the 1DNH,
1DCαHα,

1DCαC′,
3JHNHα, and

3JHαN
COPER fit. Before reweighting, cluster 1 has a population of
about 33%, whereas the other clusters have populations of less
than 12%. After reweighting, the population of cluster 1
decreases significantly to about 15%, the population of cluster
2 decreases, and those of 3 and 4 increase. The rest of the
cluster populations remain below 10%. To test the statistical
significance of this result, the cluster populations after
reweighting were also determined for the two randomly
selected subsets of 17 500 conformations. Figure 5A also

Figure 3. Cross-validation of the COPER-reweighted populations by
χ1 rotamer populations determined independently from 3JNCγ and
3JC′Cγ scalar couplings for the side chain of W5 in the EGAAWAASS
peptide. Experimentally determined populations are shown in blue,
unbiased populations from the 35 000 frame MD trajectory, in green,
COPER-reweighted populations according to backbone RDCs and J
couplings (1DNH,

1DCαHα,
1DCαC′,

3JHNHα,
3JHαN), in red, and COPER-

reweighted populations according to backbone and side chain RDCs
and J couplings (1DNH,

1DCαHα,
1DCαC′,

3JHNHα,
3JHαN,

3JNCγ,
3JC′Cγ),

in magenta.

Figure 4. Clustering of the 35 000 conformations from the MD trajectory of the EGAAWAASS peptide according to the φ/ψ angles of its central
five residues (A3−A7). (A) Ramachandran population plots of the four most highly populated clusters are shown with contour levels spaced by a
factor of 2.5. The most highly populated cluster 1 has α-helical conformations for residues A4−A6 and partially α-helical conformations for
residues A3 and A7. (B) Overlay of eight representative conformations from cluster 1 where residues A3−A7 form a helical turn. Backbone
hydrogen contacts in this turn are shielded from external water by the side chain of W5.24
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shows their averages and standard deviations. The maximal
standard deviation of populations in the 17 500 conformation
sets is only 3%, and their averages agree within this limit to
the results from the 35 000 conformation set. Thus, the
reproducibility of the COPER-derived populations is very
high.
We have also assessed the effect of the used errors on the

cluster populations by varying the limits for χα
2 from 0.25 to 4

(Supporting Information, Figure S1B). Again, as for the
induced entropy changes, the cluster populations vary
monotonously with the χα

2 limits. This is a further indication
of the robustness of the results. For a change of the χα

2 limits
from 1 to 4, the populations for most clusters vary by less
than 2-fold, with cluster 1 always remaining the dominant
cluster.
The reduction of the population of cluster 1 caused by the

COPER reweighting with experimental data indicates an
overestimation of helical content by the AMBER03 force field,
which is in agreement with findings by Best, Lindorff-Larssen,
and colleagues.15,35 It is noted that this reduction of the
helical cluster 1 is stronger than that reported previously.24

This is caused by the 3JHαN couplings that were not present in
the previous study, which increased the content of extended
conformations. However, even after reweighting by COPER
with these additional data, helical cluster 1 remains the most
highly populated cluster, albeit closely followed by clusters 3
and 4 (Figure 5A).
The relative changes in the cluster populations due to the

COPER reweighting are shown in Figure 5B as ln(pCOPER/
pequal), where pequal and pCOPER represent the cluster
populations before and after reweighting, respectively. Values
for ln(pCOPER/pequal) range between about −0.9 and 2.4,
corresponding to errors on the order of less than 3kT in the
free energy of the individual clusters.

Results for the EGAAIAASS Nonapeptide. As indicated,
in contrast to the kinked form of EGAAXAASS peptides with
aromatic amino acids X in their center, peptides with other
amino acids besides proline and glycine showed extended
conformations from the sequence profile of their NMR
parameters.23 We further tested the reweighting of a 10 000
conformation trajectory of the prototypical extended EGAA-
IAASS peptide, for which the published 1DNH,

1DCαHα, and
3JHNHα values were used as input for the COPER ME method.
As for EGAAWAASS, the conformations were clustered into
20 clusters based on the ϕ and ψ torsion angles of residues
A3−A7. Figure 6A shows the ϕ/ψ distributions of the four
most highly populated clusters before reweighting. In this
case, the most highly populated (18%) cluster 1 has almost
completely extended conformations, with only a slight
admixture of helical conformations for residue A4. Clusters
2−4 have about 10% populations and are mostly extended
(cluster 2), mixed extended/helical (cluster 3), and mostly
helical (cluster 4). COPER reweighting reduced the total χ2

value from 8.8 to 1.0, but it changed the individual cluster
populations by less than 2% (Figure 6B). Accordingly, the
reweighting factors ln(pCOPER/pequal) ranged only from about
−0.2 to 0.1 (Figure 6C), showing that the free energy
adjustment is less than 0.2 kT. The total entropy loss due to
the reweighting was only 0.11. Apparently, the AMBER03
force field in conjunction with the TIP4P water model
reproduced the extended conformations of the EGAAIAASS
peptide almost quantitatively, whereas it significantly
exaggerated the more helical conformations of the EGAA-
WAASS peptide.

Comparison of COPER with Other Ensemble Re-
weighting Algorithms. The COPER approach may be
compared to the previously proposed maximum entropy11,21

and Bayesian22 ensemble reweighting algorithms. These
previous methods all contained nondeterministic random
sampling algorithms and were limited to smaller subsets (at
most several thousand structures) from computed ensembles
of tens of thousands of structures. In contrast, due to the
efficiency of the inner point convex optimization method and
the use of only gradients of the objective and constraining
functions,36 COPER can calculate globally optimized weights
in a very efficient, numerically stable, and deterministic
manner for very large ensembles of, so far, up to 70 000
structures. We note that this limit is dictated rather by
numerical precision than by computational speed.
Besides this advantage in efficiency and the well-defined

nature of the solution, the underlying mathematical target of
COPER also differs from that in previous approaches. The
described maximum entropy approaches11,21 minimize a free
energy, in which an entropy term was subtracted from χ2.

Figure 5. Reweighting of populations for the 20 clusters from the
35 000 MD conformations of the EGAAWAASS peptide. (A)
Populations of the clusters before reweighting are shown in red,
and those after COPER reweighting, in blue. For testing robustness,
the 35 000 conformations were split into two 17 500 conformation
sets. Averages and standard deviations of the cluster populations of
these two subsets after COPER reweighting are shown in green. (B)
Reweighting factors for the cluster populations indicated as
ln(pCOPER/pequal), where pequal and pCOPER represent the populations
before and after COPER reweighting, respectively. Data for the
COPER analysis of the 35 000 conformations and of the two 17 500
conformation subsets are shown in blue and green, respectively.
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Thus, Hummer and colleagues11 use the free energy function
G = χ2 − ΘS, where Θ is a tunable temperature parameter
that balances the agreement between experimental and back-
calculated data with conformational diversity. Θ is then varied
until the corresponding free energy change matches an
expected error in the force field. In COPER, we define the
error of the parameters, i.e., χ2, and obtain as a result the
entropy change ΔS and the concomitant free energy change
ΔG. Thus, as shown in Supporting Information Figure S1, the
relation between ΔS and χ2 can be easily established. This
relation can also be used to achieve a certain ΔG (=kTΔS)
that matches expected force field errors. Using our error
estimates, the free energy changes of less than 3kT were in
the range of the expected force field errors.
In contrast to the maximum entropy approaches, the

Bayesian22 ensemble reweighting algorithm determines the
population weights from assumed prior distributions of the
weights and likelihood functions of the parameters based on
experimental, theoretical, or assumed errors. This approach
also provides estimates of the uncertainties in the weights,
which are not easily obtained by other methods. However, the
computational cost is rather high, and, so far, it has been
applied only to small ensembles of hundreds of conforma-
tions.
Extension of the Inner Point Convex Optimization to

Maximum Occurrence. Bertini and colleagues have
previously introduced the method of maximum occurrence
(MO)10 for the analysis of ensembles of flexible macro-
molecules. The method tries to determine the maximum time
or occurrence that a molecule can spend in a given
conformation k such that the weighted average over all
conformations of a theoretical ensemble is still compatible
with the experimental average data. The problem can thus be
formulated as

pmaximize k (11a)

χ ≤psubject to ( ) 12
(11b)

≤ ≤ =p i N0 1, 1, ...,i (11c)

∑ =
=

p 1
i

N

i
1 (11d)

where the populations pi and the constraining function χ2 are
defined as in eqs 4. Previously, this problem could be solved
only by using a nondeterministic, simulated annealing
procedure on smaller subsets (480 families of 50 members)
of a large ensemble (56 000 structures).10 However, since the
target function pk (eq 11a) and the constraints (eq 11b−11d)
are convex or affine, the entire problem is a convex
optimization problem that can be solved efficiently by the
described inner point method.
While it is beyond the scope of the present work to

perform a detailed analysis of the EGAAWAASS peptide
conformations by the MO method, we have tested the
efficiency of this inner point solution to the MO problem on
ensembles of random conformations generated for this
peptide by the program Flexible-Meccano.8 The ensembles
ranged in size from 10 000 to 70 000 members and were
subjected to the MO optimization using the experimental
RDC and J coupling backbone constraints described in Figure
2. The CPU time necessary to calculate one MO population
increased approximately linearly with the ensemble size and
amounted to 850 s on a single core of a 2.6 GHz Intel Xeon
CPU for the 70 000 member ensemble. This compares very
favorable with the 6 h reported previously for subsets of a
56 000 member ensemble.10

Figure 6. Analysis of the 10 000 conformations from the MD trajectory of the EGAAIAASS peptide. The conformations were clustered into 20
subsets according to the φ/ψ angles of its central five residues (A3−A7). (A) Ramachandran population plots of the four most highly populated
clusters are shown with contour levels spaced by a factor of 2.5. The most highly populated cluster 1 has extended conformations for residues A3
and I5 to A7 and partially α-helical conformations for residue A4. (B) Populations of the 20 clusters before reweighting are shown in red, and
those after COPER reweighting, in blue. (C) Reweighting factors for the cluster populations are indicated as ln(pCOPER/pequal), where pequal and
pCOPER represent the populations before and after COPER reweighting, respectively.
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■ CONCLUSIONS
We have presented the ME method COPER using inner point
convex optimization to reweight large simulated conforma-
tional data sets by average experimental data. Compared to
previous methods, COPER can analyze full, very large
ensembles of 104 to 105 conformers, not just smaller subsets
thereof, in a deterministic, fast, and robust manner. The
convex optimization guarantees a global unique optimal
solution and, hence, a reliable determination of the final
population weights for the full ensembles. Therefore, such
reweighted ensembles constitute the best representation of the
information contained in both the simulated ensemble and
the experimental data. Since the final entropy is determined
reliably, its loss relative to the unconstrained ensemble can be
used as a quantitative measure of the information content of
experimental data relative to the theoretical ensemble. A large
reduction in entropy will indicate that the theoretical
ensemble is not a good representative of the real-world
situation and, hence, that the simulation needs to be
improved. However, the measure can also be used to judge
the information content of individual data types, e.g., a
comparison of the entropy reduction induced by the different
NMR data types clearly revealed the much higher information
content of RDCs relative to three-bond J couplings.
Furthermore, the reproducibility of the entropy reduction
on different subsets of the large ensembles provides an
estimate for its density of sampling of the conformational
space. Thus, if the reproducibility becomes low, then a larger
number of structures needs to be generated in the initial
ensemble to cover the space adequately.
The application to the reweighting of the MD trajectories

of small peptides by NMR data showed that the AMBER03
force field overestimated the helical content for the turn-
forming EGAAWAASS peptide but not for the extended
EGAAIAASS peptide. The reduction in entropy was, in all
cases, smaller than 3, indicating that adjustments of the force
field of less than 3 kT units would be needed to bring the
MD trajectory into agreement with the experimental data. An
ensemble created by the Flexible-Meccano statistical coil
model of the EGAAWAASS peptide needed stronger
reweighting than the MD-derived ensemble to fit the
experimental data, consistent with the cruder nature of this
model. Eventually, such COPER-reweighted populations may
be used via projection onto some essential coordinates to
improve existing MD force fields by free energy perturbation
methods.37 Compared to pure χ2 minimization for force field
optimization,38,39 this may have the advantage of reducing the
risk of overfitting,40 since the entropy is maximized.
While the application of COPER was shown here for

average NMR data, it is, in fact, applicable to any
experimental average data that can be predicted from a set
of molecular conformations, such as small-angle X-ray
scattering41 or Förster resonance energy transfer42 data.
Furthermore, convex optimization can provide similar
advantages of well-defined, robust solutions and large-scale
efficiency for other ensemble analysis methods with convex
target functions and constraints such as constrained χ2

minimization and MO.10

■ MATERIALS AND METHODS
Sample Preparation. Uniformly 15N/13C-labeled peptide

EGAAWAASS was prepared by expression in Escherichia coli

as a C-terminal fusion with the immunoglobulin-binding
domain of streptococcal protein G as described previously.43

The peptide was cleaved bluntly from the fusion by factor Xa.
NMR samples were prepared as 1 mM (0.25 mM) peptide,
25 mM acetate, pH 4.5, in 5/95% D2O/H2O for measure-
ment under isotropic (anisotropic) conditions. Residual
alignment of peptides was achieved by introducing the
peptide solutions into 10% (w/v) polyacrylamide gels and
horizontal compression.44,45

NMR Experiments. All NMR experiments were carried
out at 298 K on a Bruker Advance III 600 MHz spectrometer
equipped with a TXI probe. Spectra were processed using
NMRPipe.46 3JNHα couplings were obtained from a
quantitative-J version of the 3JNHβ-HNHB experiment using
a 27 ms 15N−1Hα dephasing delay.34,47 The resonance line
shapes were fitted with the NLINLS program contained in
NMRPipe, and 3JNHα coupling constants were determined
from the ratios of cross and reference peak heights as
described.34 The 3JHNHα values were taken from the work by
Dames et al.23 3JNCγ and

3JC′Cγ scalar couplings of the central
W5 residue were determined by quantitative-J 2D constant-
time 15N−{13Cγ} and 13C′−{13Cγ} spin−echo difference
experiments.33 Error estimates for the quantitative-J measure-
ments were obtained from the noise of the spectra.

1DCαC′ RDCs were calculated as the difference in 13C′−13Cα

doublet splittings observed under anisotropic and isotropic
conditions, which had been measured with a modified version
of HNCO experiment, in which the 180° Cα decoupling pulse
in the C′ evolution was removed. Similarly, 1H−15N RDCs
were obtained from 1H−15N HSQCs without 1H decoupling
during the 15N evolution. A modified version of the
HN(CO)CA experiment without 1H decoupling in the 13Cα

evolution period was used to detect 1Hα−13Cα RDCs. Each
RDC experiment was carried out twice, and the reported
values and the error estimates refer to mean and standard
deviation values derived from such repeated experiments.

MD Simulations. MD simulations were carried out with
the GROMACS simulation package48 using the AMBER03
force field.49 Extended input starting structures of the peptides
EGAAXAASS were generated using MOLMOL50 and solvated
in a dodecahedron box containing about 8700 TIP4P water
molecules, three sodium ions, and two chloride ions. The
energy of the system was first minimized by the steepest
descent method, followed by a 500 ps simulation for
equilibration of solvent molecules, with the position of the
peptide kept fixed. Electrostatic interactions were imple-
mented by particle-mesh Ewald (PME) summation with a
grid spacing of 0.12 nm,51 while the Lennard-Jones
interactions had a cutoff at 1.4 nm. The integration time
step was 2 fs. Production runs for 100 ns were carried out at a
constant temperature of 300 K and pressure of 1 bar. 35 000
(X = W) or 10 000 (X = I) conformations were obtained as
20 ps frames sampled uniformly from seven (X = W) and two
(X = I) 100 ns trajectories started with different random
seeds.

Back Calculation of NMR Parameters. For every
snapshot of the MD trajectory, theoretical RDCs were
predicted based on a steric alignment model using an efficient
algorithm described previously.6 The RDC values of each
conformation were scaled by a constant determined by a least-
square fit between the average RDCs of all conformations and
the experimental RDC values of the peptide. Theoretical 3J
values (in Hertz) were calculated using the following Karplus
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relations: 3JHNHα = 8.40 cos2(ϕ − 60°) − 1.36 cos(ϕ − 60°)
+ 0.33;31 3JHαN = −1.00 cos2(ψ − 120°) + 0.65 cos(ψ −120°)
− 0.15;32 3JNCγ(W5) = 1.29 cos2(χ1) − 0.49 cos(χ1) + 0.34;
and 3JC′Cγ(W5) = 2.31 cos2(χ1 − 120°) − 0.87 cos(χ1 −
120°) + 0.49.52

Clustering of MD Conformations. To obtain structural
insights, the ensemble of MD conformations for the
EGAAXAASS peptides were divided into 20 clusters using
the hierarchical clustering function of MATLAB (MathWorks,
Inc.) and a ϕ/ψ angle distance metric d(i,j) between
individual conformations i and j

∑ ϕ ϕ ψ ψ= +d i j d i j d i j( , ) ( ( ), ( )) ( ( ), ( ))
res

ang
2

res res ang
2

res res

where the summation runs over central residues A3−A7 of
the peptide to emphasize their conformation and the periodic
angular distance metric dang is defined as

α β α β α β= | − | ° − | − |d ( , ) min( , 360 )ang

The distance between two clusters was defined as the
average of all of the individual distances of their members.
Implementation of COPER. COPER was implemented

using the IPOPT36 open-source software package written in C
++ for large-scale nonlinear optimization. The IPOPT
algorithm utilizes primal-dual interior point methods26 to
find local solutions of optimization problems. COPER
objective functions, constraints, and their derivatives, as well
as data input and output, were coded in C and linked to
IPOPT. To speed up the search for the maximum entropy
solution, the optimization was implemented as a minimization
of the convex function e−S rather than as a maximization of
the entropy S. COPER source code and compiled executables
for several platforms are available from the authors upon
request.
Default tolerances and the maximum numbers of iterations

for the chi square minimization (entropy maximization) were
set to 1 × 10−3 and 20 000 (1 × 10−5 and 80 000),
respectively. Using these parameters, the total reweighting of
the 35 000 member EGAAWAASS peptide ensemble with 35
constraints took 560 s on a single core of a 2.6 GHz Intel
Xeon CPU.
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2.2.3.1 Appendix 1: Python script for the maximum entropy reweighting 
 

The following python code performs a minimization of the RMSD between experimental and 
predicted values, while satisfying the criteria exposed in the publication enclosed in section 2.2.3. 
Blue text that follows a ‘#’ indicates comments which are used to annotate the code. 
This code was tested in Python 2.7 and requires an appropriate initial RDC table as indicated in 
the notes. An illustrative example of the output is presented in the appendix 2.2.3.2. 
 
 
# Purpose: minimize RMSD between predicted and experimental RDCs with the #following 
constraints: 
# sum(pi) = 1 
# 0 <= pi <= 1 
# X2 <= 1  
# NOTES: 
#1) the RDC table must contain the reference (i.e. experimental) values in the first line 
#2) if the number of frames (or clusters) exceeds the number of measured parameters, there is 
“overfitting” 
#3) the coefficient optimization is performed here through an evolutionary based algorithm. 
# The evolutionary algorithm is slower and less efficient than the inner point descent, but it 
converges to the X2 value given before the name of the function. 
#The outputs of the iterations are  
#1) a vector of length = number of frames (or clusters), containing the pi values #attributed to 
each frame (or cluster) in order to reduce the RMSD to experiment while #maximizing the 
entropy. 
#Name of the vector: name_opt.txt, where "name" is the name of the table containing the RDC 
for all frames 
#2) a table of 6 columns and n rows, where n is the number of performed iterations 
#Column 2 => RMSD, column 4 => iteration number, column 6 => S = -sum(pi*LN(pi) 
from math import sqrt, log 
from random import uniform, randrange 
import commands 
 
#Target value of X2 
X2 = 1 
 
def minimize(data): 
 f_data = open(data + ".txt","r") 
 f_pi = open(str(data) + '_opt.txt','w') 
 txt_all  = f_data.readline().splitlines() 
 HN_exp, HA_exp = [], [] 
 #these 4 lines take the experimental values from the first line of the RDC table 
 for i_meas in range(2, 10): 
  HN_exp.append(float(txt_all[1].split("\t")[i_meas])) 
 for i_meas in range(10,20): 
  HA_exp.append(float(txt_all[1].split("\t")[i_meas]))    
 i, n = 2, len(txt_all)  
 frames, HN_MD, HA_MD = [], [], [] 
 while i < n: 
  text_i = txt_all[i].split("\t") 
  frames.append(float((text_i)[0])/1000) 
  i+ = 1 
 #List_pi is the list of pi values, with length = number of frames or clusters 
 list_pi = frames 
 rmsd, percent, j, entr = 1000, 0.5, 0, 0 
 #select randomly one of the clusters 



 

 

 cl = randrange(1, 1 + len(list_pi))       
 commands.getoutput("rm -rf "+str(data) + "_follow") 
 counter = 5000000 
 while rmsd > X2 and j < counter:      
  f_follow = open(str(data)+'_follow','a')      
  rmsd_bef = rmsd 
  entr_bef = entr   
  #modify the pi of the selected cluster using uniform 
  p = -1 
  #store the value of pi before the modification 
  p_bef = list_pi[cl - 1]        
  while p <0: 
   p = list_pi[cl-1]+uniform(-percent, percent)    
  list_pi[cl-1] = p         
  l_entr = [] 
  # here calculate the new entropy 
  for value in list_pi: 
   l_entr.append(float(value)*log(float(value))) 
  entr = -sum(l_entr) 
  HN_MD_RDC, HA_MD_RDC = [], [] 
  for HN in range(2, 10): 
   l_hn, l_fr = [], [] 
   for i in range (0, len(list_pi)): 
    hn = float(txt_all[i+2].split("\t")[HN]) 
    pi = list_pi[i] 
    l_hn.append(hn*pi) 
    l_fr.append(pi) 
   val = sum(l_hn)/sum(l_fr)  
   HN_MD_RDC.append(float(val))  
  for HA in range(10,20): 
   l_ha, l_fr = [], [] 
   for i in range(0, len(list_pi)): 
    ha = float(txt_all[i+2].split("\t")[HA]) 
    pi = list_pi[i] 
    l_ha.append(ha*pi) 
    l_fr.append(pi) 
   val = sum(l_ha)/sum(l_fr) 
   HA_MD_RDC.append(float(val)) 
  # scaling of the MD RDCs 
  DobsDcalc,Dcalc2=0,0 
  for k in range(0,8): 
   DobsDcalc+ =HN_exp[k]*HN_MD_RDC[k] 
   Dcalc2+ =HN_MD_RDC[k]**2 
  for k in range(0,10):  
   DobsDcalc+ =HA_exp[k]*HA_MD_RDC[k] 
   Dcalc2+ =HA_MD_RDC[k]**2  
  Scaling = DobsDcalc/Dcalc2 
  HN_MD_scl, HA_MD_scl = [], [] 
  for i in range(0, 8): 
   HN_MD_scl.append(float(HN_MD_RDC[i]*scaling)) 
  for i in range(0, 10): 
   HA_MD_scl.append(float(HA_MD_RDC[i]*scaling)) 
  HN_rmsd, HA_rmsd = [], [] 
  for i in range(0, 8): 
   HN_rmsd.append(float(HN_MD_scl[i]-HN_exp[i])**2)  
  HN_rmsd = sqrt(sum(HN_rmsd)/len(HN_rmsd))  
  for i in range(0, 10): 



 

 

   HA_rmsd.append(float(HA_MD_scl[i]-HA_exp[i])**2)  
  HA_rmsd = sqrt(sum(HA_rmsd)/len(HA_rmsd))  
  Rmsd = 0.5*(HA_rmsd+HN_rmsd) 
  #increasing entropy under condition that RMSD is close to target 
  if rmsd - X2 <= 0.5:       
   tester = [rmsd-rmsd_bef, entr_bef-entr] 
  else: 
   tester = [rmsd-rmsd_bef] 
  #rejection of the new value: 
  if any(item >=0 for item in tester):   
   list_pi[cl-1] = p_bef 
   entr = entr_bef 
   rmsd = rmsd_bef 
   #for next round: select a cluster or frame 
   cl = randrange(1, 1+len(list_pi))  
  #record the parameters every 200th iteration     
  if j%200 == 0: 
   f_follow.write("Rmsd: "+str(rmsd)+" j: "+str(j)+" and Entr: "+str(entr)+"\n") 
  f_follow.close() 
  #acceptation of new pi value 
  normalize(list_pi) 
  j+ = 1 
 f_follow = open(str(data)+'_follow','a') 
 for i in range(0, len(list_pi)):     
  f_pi.write(str(list_pi[i]) + "\n")  
 f_follow.write("Done " + str(j) + " iterations\nobtain a rmsd of " + str(rmsd) + "\nand Entr = 
"+str(entr) + "\n")  
 f_data.close() 
 f_pi.close() 
 
def normalize(list_of_pi): 
 a = sum(list_of_pi) 
 for i in range(0, len(list_of_pi)): 
  list_of_pi[i] = list_of_pi[i]/a 
 return list_of_pi 
 
#uncomment the next line to execute the code 
#name refers to a table.txt containing the RDCs and the experimental values in the #first line 
 
#minimize(str(name)) 
  



 

 

2.2.3.2 Appendix 2: RDC minimization and entropy maximization 
 

 The purpose of this section is to illustrate that the python code of the previous section 

solves the RMSD minimization while maximizing the entropy, as further explained in the paper 

enclosed in section 2.2.3. Precisely, the code performs the following optimization (equation 4 of 

the JCTC paper): 

 - maximizes 

! =  − !!
!

!!!
∙ !" !!  

 - minimizes  

!"#$ =  1
2 ∙ !"#$!"#"/2 !  +  !"#$!"!  

This expression for the RMSD takes into account the different values of carbon and nitrogen 

gyromagnetic ratios and bond lengths related to the two sets of RDCs (1DCαHα and 1DNH), as 

reported in the supplementary material of the paper enclosed in section 2.1.5. 

 - normalizes the sum of all pi values, so that their sum is equal to 1, in order to 

represent the full probability space of the chosen set of values (frames or clusters).  

 

 Two sets of 500 frames were chosen, one for which the unbiased average was extremely 

far from the experimental data (first few ns of a simulation, containing essentially extended 

structures) and a second one for which the agreement with the experimental data was much 

better. Figure 2.1 shows that both sets of values could be brought to a very close agreement to 

the experimental data. The RMSD, coefficients of correlation, and entropy values are shown in 

table III.  

 

Table III: RMSD, coefficients of correlations and entropy values before and after 
reweighting.  

 Before reweighting After reweighting 

Trajectory RMSD RDC R Entropy 
 

RMSD RDC R Entropy 
 

A 5.22 -0.60 6.21 1.28 0.91 3.07 

B 4.46 0.61 6.21 0.67 0.95 3.84 

 



 

 

 
Figure 2.1. Reweighting of predicted populations under the constraints of the experimental 
RDCs and the maximum entropy principle 
A) 1DNH and 1DCαHα RDCs for a representative ensemble of 500 frames containing essentially 
extended structures. B) 1DNH and 1DCαHα RDCs for an ensemble of 500 frames containing a large 
proportion of helical structures.  Experimental data are shown as black squares. MD data before 
and after reweighting are shown as cyan and magenta lines, respectively. 
 

 The results presented here show that the Python code given in the appendix 2.2.3.1 

performs a minimization satisfying the criteria of the equation 4 in the JCTC paper. The entropy 

decrease of the “essentially extended” population was larger then the one of the “almost-folded” 

population. This indicates that the algorithm can provide a metric to describe the starting 

population as a function of its agreement with the experimental values. Therefore, an appropriate 

usage of this algorithm requires considering the minimization and also the entropy loss.  
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2.3 Using cross-correlation function analysis to study protein 
conformational changes 

 
2.3.1 Introduction 
 

 The exact role of explicit water in protein dynamics is not completely understood, although 

its has been emphasized already in 2004 (79). For example, a recent study described the 

interactions between trimethylamine N-oxide (TMAO), dipeptides and hexapeptides and the 

solvent. TMAO is an osmolyte known to promote protein folding. In mammalians, it is mainly 

found in kidneys, where it counteracts the denaturating effect of urea (80). The investigations led 

to the hypothesis that the TMAO molecules reduce the access of water from the surface of the 

peptide, which further enhance the folding propensities (60). However, other studies suggest that 

the hydrophobic collapse precede the desolvation (59). In these studies, Cho et al. studied small 

helices whereas Cheung and colleagues tested their model on a β-barrel, so that the apparent 

contradiction may be related to the specific secondary structure investigated, as well as to the 

size of the molecule. The purpose of the method introduced below is to contribute to elucidate 

which of these two mechanisms is the more likely to occur in a β-turn. The test provides a precise 

determination of the succession of events during folding and unfolding at the level of a few 

hundreds of picoseconds. 

 The lack of hydration of backbone carbonyls and amides was postulated as a key driving 

force triggering folding nucleation in the investigations of peptides of sequence EGAAXAASS 

presented in section 2.1. It was shown that bulky side chains limit the access of water molecules 

to the polar groups of adjacent residues, thus increasing their energy. The consequence is the 

formation of intramolecular hydrogen bonds form, which potentially may initiate further folding. To 

test this hypothesis, the number of water molecules coordinating the carbonyl and amide groups 

of the residues involved in the helix formation was computed. To show that the observed 

difference in hydration was a potential driving force and not only a consequence of a folded 

conformation, extended conformations of the Tyr or Trp substituted peptides were compared to 

conformations of the Gly peptide, which was generally extended. Focusing on these unfolded 

conformations allowed deciphering how the level of hydration of the backbone carbonyl and 

amide groups might affect the folding propensities of the peptides. In the case of the Trp 

substituted peptide, there was a significant reduction of water access to the amide and the 

carbonyl groups. These calculations supported the view that bulky hydrophobic side chains, 

because they prevent the access of water molecules to the adjacent functional groups, increase 

the folding propensity locally (Fig. 3 of the JACS paper). Similar trends were observed for the Tyr 

substituted peptide.  



 

 

 Here an additional way to investigate whether locally reduced hydration may be a driving 

force sustaining folding nucleation is introduced. This hypothesis implies that the concerned 

atomic groups are dehydrated before forming the native hydrogen bonds. Here, the expression 

“concerned atomic groups” refers to the carbonyl and amide atoms that initiate the folding into a 

helical structure. It is expected that, in a larger protein, the following helix elongation would occur 

cooperatively and the related mechanisms are not the subject of this work.  

 

2.3.2 Materials and methods 
 

 The succession of the folding events, namely hydration of specific atomic groups, 

formation of intramolecular hydrogen bonds and native contacts, was investigated through MD 

simulations of a well-known fast folding β-hairpin for which a folded structure has been deposited 

in the PDB (67). Since the native structure of the protein is known, it is possible to score the 

conformations along the folding pathways through comparison between the predicted and 

deposited structures during an MD simulation. In addition, all-atom simulations allow computing 

the time evolution of the hydration of the polar groups involved in the formation of the native 

structure hydrogen bonds. If the lack of hydration plays a role as a folding driving force, the 

hydration fluctuations at the level of the key polar groups are expected to occur before these 

groups interact with each other and form or break native intramolecular hydrogen bonds.  

 The model molecule chosen to test the order of events during folding is a fast folding 

small peptide. Chignolin is a ten residue peptide of sequence GYDPETGTWG, which was 

designed through fragment assembly from a set of more than 10,000 short segments (81). This 

peptide was shown to fold in several hundreds of nanoseconds to a few microseconds into a 

unique β-hairpin structure, characterized by four intramolecular hydrogen bonds. The structure of 

chignolin has been solved by solution NMR. 185 restraints, mostly NOE (nuclear Overhauser 

effect), were used to determine the most probable structure. The 20 lowest energy conformations 

are deposited under the PDB code 1UAO (81) and one representative structure is shown in 

Figure 2.2. Since the solution structure of this fast-folding peptide has been deposited, the folding 

and unfolding events of this β-hairpin have been thoroughly investigated by coarse-grain and all–

atom MD simulations (70, 82-86). The molar fraction of folded peptide in solution has been 

determined to be about 60% at 300K (70, 83).  

 The all-atom MD simulations of chignolin were performed in explicit water TIP3P (87) 

using the GROMACS software package version 4.5 (88) and the CHARMM36 force field (89). 

The simulation started from a fully extended structure generated with PyMOL, imposing an all-

trans conformation to all backbone dihedrals (90). In order to quantify the folding of the peptide, 

the time course of the RMSD of the backbone atoms from residues two to nine with respect to the 

deposited NMR structure was computed. The experimentally determined backbone hydrogen 

bonds and the distances between hydrophobic residues shown through NOE determination to be 



 

 

close to each other in the folded structure were also investigated. The hydration was accessed 

through computation of the number of water molecules within the first hydration shell of specific 

atomic groups. The radius of the hydration shell was extracted from the analysis of several radial 

distribution functions of the concerned atomic functional groups. 

 

2.3.3 Results 
 

 According to the NMR solution structure, the β-hairpin is stabilized by hydrogen bonds 

involving the following backbone amide and carbonyl groups: Asp3CO-Gly7NH, Thr8CO-Asp3NH 

and Gly7CO-Asp3NH. In addition, the side chain carbonyl group of Asp3 was involved in a fourth 

hydrogen bond formation with the amide of Gly5, termed Asp3sc-Gly5NH in the following. This 

pattern suggests a key function in terms of hydrogen bond formation for Asp3. The inspection of 

the experimentally determined NOEs, summarized in Table 3 of (81), shows that the following 

atom pairs involving the aromatic residues were closer to each other than 3.5 Å in the folded 

structure: Tyr2Hα-Trp9Hα, Tyr2Hα-Trp9Hε3, Tyr2Hδ#-Trp9Hα. Consequently, the distances 

between these groups were computed too, in order to fully describe the folding/unfolding events 

of the peptide. 

 The backbone RMSD in reference to the deposited structure, three of the four native 

intramolecular hydrogen bonds and the NOE distances show that, while visiting some local 

minima at 150 and 200 ns, the protein adopted the native conformation at around 600 ns, and 

remained stable for the next 100 ns. However, one of the four native hydrogen bonds, Gly7CO-

Asp3NH, was not formed during the simulations. An explanation for this discrepancy was not 

found. Precisely, at t = 600 ns, the backbone RMSD was approximately 1.5 Å, all the tested NOE 

distances between the hydrophobic residues were smaller or close to 5 Å and three native 

hydrogen bonds were formed (Figure 2.3). In order to test the reduced hydration hypothesis, the 

time course of the number of water molecules within the first hydration shell of the carbonyl 

oxygen or amide nitrogen of the following atoms was computed: Asp3CO, Asp3NH, Gly7NH, the 

side chain of Asp3-Gly5NH and Thr8CO. These atoms are involved in the formation of hydrogen 

bonds in the native structure. Additionally, the hydration of Gly7CO, which does not form any 

hydrogen bond in the native structure, was also extracted. In other words, Gly7CO was used as a 

negative control. The average hydration of the atoms involved in the native hydrogen bonds 

followed the same fluctuations than the RMSD to the native structure (Figure 2.4B). The Gly7CO-

Asp3NH hydrogen bond was not formed in the MD trajectory. As expected, the time course of 

hydration of Gly7CO oxygen did not change significantly during the 700 ns of simulation (Figure 

2.4A). In Figure 2.4C, ensembles of potentially unfolded and extended structures and the cluster 

of natively folded structures are easily identifiable.  

 Because this trajectory shows transitions between ensembles of extended and folded 

structures, it provides the required conditions to elucidate whether the fluctuations of functional 



 

 

groups hydration precede the conformational changes. Precisely, a cross-correlation analysis 

between the RMSD to the native structure and the hydration was performed. This first calculation 

involved 7500 structures, calculated every 100 ps. The cross-correlation plot suggests that the 

hydration and dehydration events occur ahead of the folding/unfolding events by a few hundreds 

of ps (Figure 2.5A). This is indicated by the fact that the maximum of the function is not at Δt = 0, 

marked by the dashed lines in the figure, but a few hundreds of picoseconds to the right. The 

asymmetry of the correlation distribution also suggests that the folding/unfolding events follow the 

hydration fluctuations. A second, more precise investigation was performed, in which the RMSD 

to the deposited structure and the hydration values were computed every 4 ps. Interestingly, in 

this cross-correlation function, only the amine group of Asp3 was clearly dehydrated ahead of the 

folding into the native structure, which may suggest that this functional group would initiate the 

folding. Precisely, the cross-correlation function displays a prominent “shoulder” about 1 ns to the 

right of the values with Δt = 0 (Figure 2.5B). Similar analyses were performed on a second 

simulation, lasting 850ns, but in which the peptide was trapped two times into a low energy basin, 

without folding exactly into the deposited structure. The RMSD to the deposited structure and the 

level of hydration were recorded every 40 ps. This second cross-correlation function analysis also 

suggested that the level of hydration precedes the variations of RMSD.  

 

2.3.4 Conclusion 
 

 Cross-correlation functions are standard analysis tools in the area of computational time 

series analysis. The results presented in this section indicate that a cross-correlation analysis can 

be applied on MD trajectories to determine the order of events in the context of peptide folding. 

Here, the role of hydration in the mechanism of protein folding was investigated at the time scale 

of a few picoseconds, and these preliminary results suggest that hydration fluctuations occur a 

few hundreds of picoseconds ahead of folding. The same method could be used to investigate 

the relations between hydration and other conformational changes, particularly to better 

understand the dynamics of IDPs or to study the interactions between proteins and other 

molecules. Especially, the interactions with denaturants as well as small molecules that promote 

folding like TMAO, trimethylglycine, glycerol, trehalose or sucrose, (91) could be investigated. 

 Interestingly, the sequence of Chignolin provides an additional support to the idea that 

aromatic amino acids deserve to be called “order-promoting” residues, as was exposed in the 

section 2.1.3. Two out of the ten residues of this peptide are aromatic residues. For comparison, 

aromatic residues represent about 8.5% of the sequences deposited to the Swiss-Prot server 

(http://www.uniprot.org/) (72). In the sequence engineering of chignolin, only residues two to eight 

were optimized, whereas the terminal Gly residues were not. As stated in the paper describing 

the engineering of this peptide, they were introduced to reduce electrostatic effects between the 

central eight residues (81). However, subsequent optimization of this peptide in order to further 



 

 

improve its folded stability led to the sequence YYDPTGTWY, in which the aromatic amino acids 

represent 40% of the residues (92). Not surprisingly, the replacement of Tyr at position two by Ala 

was shown to strongly destabilize the β-hairpin structure (82).  

 
Figure 2.2. β-hairpin structure of chignolin from NMR experiment and from simulation. 
Molecular representation of the PDB deposited structure (A) and a snapshot of the molecular 
dynamics trajectory at t=625 ns (B). The secondary structure is highlighted with beta-strands in 
yellow, turns in cyan, and loops in white, Residues are shown in licorice with carbon: grey, 
nitrogen: blue, and oxygen: red. Hydrogen atoms are not shown. 

A B 



 

 

 

Figure 2.3: Folding trajectory of Chignolin 
A) Time course of the RMSD of the backbone atoms in reference to the deposited structure. B) 
Cumulative numbers of hydrogen bonds. Asp3O-Gly7NH: dark blue, Thr8O-Asp3NH: purple, 
Asp3-sc-carboxyl-Gly5NH: light blue. C) Main hydrophobic contacts as determined from the 
NOEs. Tyr2Hα-Trp9Hα: purple Tyr2Hα-Trp9Hε3: brown, Tyr2Hδ#-Trp9Hα: orange. The dashed 
line highlights the 5Å distance. 
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Figure 2.4.Specific atomic group dehydration upon folding.  
A) Time course of the hydration of Asp3CO, Asp3NH, Gly7NH and Thr8CO (orange). The 
average (solid line) and the standard errors (dashed lines) of the hydration level are shown. 
Black: Time course of the hydration of Gly7CO. B) Time course of the RMSD to the deposited 
structure (black, left Y-axis) and hydration of Asp3CO, Asp3NH, Gly7NH and Thr8CO (blue, right 
Y-axis). C) Average number of water molecules hydrating Asp3CO, Asp3NH, Gly7NH and 
Thr8CO versus the RMSD to the deposited structure. Each data point corresponds to an average 
over 100 ps of simulation, colored according to the time. 
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Figure 2.5: Hydration fluctuations occur ahead of conformational changes 
A) Cross-correlation function of the RMSD to the deposited structure versus the number of water 
molecules within the first hydration shell of the for the atomic groups involved in the four 
experimentally observed hydrogen bonds computed every 100 ps. B) Cross-correlation function 
of the RMSD to the deposited structure versus the number of water molecules within the first 
hydration shell of the Asp3 amide group recorded every 4 ps. In both figures, the dashed lines 
mark the level of correlation for Δt=0, highlighting the right shift of the correlation distribution. 
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2.4 A project to systematically explore the relationships between 
sequence and conformational changes 

 

 The observations described above have shown that molecular dynamics investigations 

may provide useful insights, not only on the conformations adopted by peptides, but also on the 

fundamental mechanisms directing the transitions between such conformations. Without a 

profound understanding of the factors affecting the conformational behavior of proteins, we may 

not be able to predict biologically relevant interactions among proteins and between proteins and 

other molecules. As mentioned above, the low energy conformation of a protein can be 

determined to a very high resolution through crystallography, NMR spectroscopy, Cryo-electron 

microscopy, and computational techniques (homology modeling). MD might not execute this 

particular task much better and faster, given the present accuracy of force fields. However, MD 

trajectory analysis can increase our understanding of the mechanisms leading to conformational 

changes. We still do not have a deep understanding of the mechanisms by which amino acid 

chains change their conformations to fold or to interact with solvent, denaturants, and ligands, 

and how this dynamic may be predicted from sequence. This knowledge is required for accurate 

prediction of protein conformations.  

 The lack of backbone hydration in the vicinity of large side chains was shown to impact on 

the folding propensity of peptides of sequence EGAAXAASS, where 14 substitutions at position X 

were experimentally tested. The RDCs of these peptides could be sorted into two groups 

according to their RDC pattern. The substitutions with the two aromatics Tyr and Trp resulted in a 

considerably contrasted pattern, with some residues even changing sign, whereas the other RDC 

patterns were rather flat. The MD simulations focused on four substitutions: the two aromatics Trp 

and Tyr, and two residues used as controls: Gly and Ile. The role of hydration was also 

investigated in the folding process of the β-hairpin chignolin, of sequence GYDPETGTWG. Thus, 

a combination of MD simulations, NMR experiments, and statistical analyses constitutes an 

appropriate tool for the investigation of peptide conformational changes. 

 A more complete screening would be required in order to be able to predict 

conformational changes occurring during folding and unfolding. An initial step would be to fully 

assess the effect of nearest-neighbor residues in a peptide. An experimental layout would be to 

mutate amino-acid triplets, which would require the investigation of 8,000 sequences. The use of 

tripeptide sequences was reported for the estimation of the effect of nearest-neighbor on the 

chemical shifts of the central residue via bioinformatics analysis (93). In line with the rational that 

led to the sequence EGAAXAASS in the previous work, the study of the conformational behavior 

of peptides of sequence S1S2ApApX1X2X3ApApS3S4 would elucidate the role of nearest-neighbors 

in short peptides. Here, S stands for spacers, Ap for apolar residues with relatively small side 

chains, and the substitutions by X1X2X3 ensure the exploration of all possible occurrences of 



 

 

amino acid triplets. In the previous work, Ala residues were used around the mutated residue, 

and the spacers were Glu, Gly, and Ser.  Structure determination by NMR offers insight into the 

dynamics of molecular systems, and it is tailorable to answer specific questions at atomic 

resolution. Validation of MD trajectories and putative conformations would be performed through 

NMR determination of NOEs, RDCs and chemical shifts for selected peptides.  

 In 2015, I supervised a research project performed by Tomas Tomka (Computational 

Sciences, Department Mathematics and Informatics, University of Basel). A small set of peptides 

with sequence EGAAX1X2X3AASS has been simulated for 200 ns with the CHARMM27 force 

field. Each simulation was performed three times, with a different set of initial particle speeds at 

300 K using the GROMACS package 4.5.3. The following triplets were investigated: EAE, FAF, 

GAG, KAK, QAQ, and WAW. Since most of the previous work focused on the role of large 

hydrophobic residues on the conformational behavior of small peptides, several hydrophilic 

residues were included in this short pilot study. Phe and Trp display stronger folding propensities 

than Gly, confirming the results of the previous study and the subsequent work introduced in 

section 1.2 (Figure 2.6). Interestingly, the folding propensities into helices of peptides with 

sequences EGAAEAEAASS and EGAAKAKAASS are even stronger. Precise analyses of the 

interactions between the side chains, the backbone and the solvent in this sort of trajectories may 

have help decipher the mechanisms involved in the conformational behavior of peptides. 

 In relation to the hypothetical differences between helices and β-barrels exposed in 

section 2.3, it would be fascinating to use the statistical tool exposed therein to explore if different 

driving forces induce the folding into different secondary structures, and how similar mechanisms 

could underlie the conformational changes of intrinsically disordered proteins. 

 



 

 

 

Figure 2.6: Folding propensities of four peptides of sequence EGAAXAXAASS 
X is the substituted residue Glu (A), Lys (B), Trp (C) and Gly (D). The averages and standard 
deviation of the frequencies of hydrogen bond formation between the backbone carbonyls of 
residues i and the backbone amides of residue i+4, during three independent simulations of 200 
ns each. (Circles: A3-A7, triangles: A4:A8, squares: X5:A9) 
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3 Membrane perturbations induced by toxins, a 
voltage-sensor domain and the membrane potential 

 

 

3.1 Introduction 
 

 Most spider toxins, as was described in the introduction section 1.2.3, carry an electric 

charge, generally +2 to +4, and their structure is essentially amphiphilic. For this reason, they 

were chosen as tools to investigate the lipid-mediated hypothesis of gating modification. 

However, despite the overall structural similarity of the inhibitory cysteine knot (ICK) evidenced in 

Figure 1.4, these toxins are highly specific. Hanatoxin (Hatx), for example, inhibits several 

voltage-gated ion channels, among them the potassium channel Kv2.1 and the calcium channel 

Cav2.1 (94). However, according to the literature, it does not affect KvAP (39). Other toxins, like 

Vstx1 or GsMTx4, have no effect on the K+ channels Kv2.1 or Shaker, but induce a right shift in 

the response curve of KvAP (95). Vstx1 inhibits, in addition, the Nav1.7 channel (96).  

 On the other hand, by transfer experiments between channels, Alabi et al. (39) 

determined precisely which parts of the VSD are mediating the toxin sensitivity. When the S4 

helix of Shaker, which is normally insensitive to Vstx1, was replaced by the corresponding KvAP-

S4 helix, the chimera became sensitive to Vstx1. This experiment indicates that S4 of KvAP is 

important for the sensitivity to Vstx1. In another experiment, Kv2.1 became insensitive to Hatx 

after replacement of its S3b segment by the corresponding S3b segment of KvAP. (39). These 

findings, summarized in Figure 3.1, raise questions about the lipid-mediated mechanism of 

action: if the mechanism is mediated by the membrane, this specificity should appear in the 

membrane perturbations. Thus, an approach intended to study spider toxin interactions with the 

membrane and their effect on the target protein requires the identification of similarities and 

differences in the membrane perturbations they induce. Considering several toxins known 

experimentally to inhibit different channels, any difference between them in terms of effects on 

the membrane would be a hint to explain their specificity, while similar effects would potentially 

describe common mechanisms of actions. This does not exclude the combination of some shared 

mechanisms reflecting the similar overall 3D structure, and additionally more specific interactions 

explaining the experiments exposed above. With the aim to take the specificity into account, the 

two toxins Hanatoxin and Vstx1 were selected. Both structures have been determined to a high-

resolution and other experimental data are available, and they were shown experimentally to 

inhibit different targets.  

 On the other hand, since the targets of gating modifiers are VSDs, some features of the 

VSD were investigated to. The indirect effect hypothesis may be explored through the responses 

of the VSD to the membrane perturbations. Since Vstx1 was shown experimentally to inhibit 

KvAP, but Hanatoxin not, the VSD of KvAP (PDB code 1ORS) was inserted in the bilayers. Any 



 

 

differences between the interactions of the two toxins with the VSD of KvAP could be regarded as 

hints for their specificity. However, an additional challenge is that the exact conformational 

changes of a VSD as a function of the membrane voltage are unknown (97, 98). According to 

these considerations, the following minimum requirements are needed to investigate an indirect 

mechanism of action of spider toxins on ion channels: 

 - two toxins (at least), known experimentally to inhibit different targets, 

 - the specific target of one of the two toxins, 

 - a molecular system, which enables the explicit tuning of the membrane potential. 

Interestingly, in support of this approach, in which a wide range of membrane potentials 

were studied, it was shown experimentally in 2015 that the binding of Vstx1 to KvAP depends on 

the membrane potential, namely that Vstx1 affects the VSD only under depolarized conditions 

(99). Yet, the membrane asymmetry and relative diversity were added in order to generate 

trajectories of realistic models, but they are not directly linked to the lipid-mediated gating modifier 

hypothesis. Interestingly, it was recently demonstrated that PIP2 has a profound effect on the 

VSD (1). This negatively charged phospholipid is found essentially in the intracellular membrane 

leaflet.  

 The amphipathic character of the spider toxin structure suggests that they partition into 

the membrane, and this partitioning was shown experimentally (56). However, at the beginning of 

the thesis, the orientation of most toxins in the membrane was unknown (47, 99). One important 

part of the work was then to investigate the orientation of each toxin within a membrane, before 

assessing their effect on the bilayer. Fortunately, experimental studies of the orientation Vstx1 

were published in 2014 (100) and 2015 (99), giving the required information to validate the 

orientation of the toxins within the bilayer.  

 

 
Figure 3.1. The toxin sensitivity of the VSD is determined by unique VSD subsets  



 

 

A) Vstx1 does not inhibit Shaker. B) Vstx1 inhibits Shaker, if the S3b-S4a segment of Shaker has 
been replaced by the KvAP residues Pro99 – Arg126. C) Hanatoxin inhibits Kv2.1, but Vstx1 
does not. D) Neither Vstx1 nor Hanatoxin inhibit Kv2.1, if its S3b segment was replaced by the 
KvAP-S3b segment. Left panel: channel constructs, transferred segments are highlighted in blue 
(KvAP segments were transferred either in Shaker or Kv2.1). Right panel: Voltage-current 
response curves in the absence (black) or in the presence of toxin (red). The Shaker-Hanatoxin 
interaction was not reported in the original study.  Figure adapted from (39). 

 

3.2 Material and methods 
 

 The all-atoms molecular dynamics simulations were performed using the GROMACS 

software package version 4.5 (88) with the CHARMM36 force field (89).  

 The initial protein structures were obtained from the coordinates deposited in the RSCB 

Protein Data Bank (PDB) (http://www.rcsb.org/) (67), explicitly:  

 - Hanatoxin, code 1D1H, NMR solution structure (101) 

 - Vstx1, code 1S6X, NMR solution structure (102) 

 - KvAP VSD, code 1ORS, crystal structure (31) 

 In order to investigate the responses of the lipids, toxins and VSD to an applied 

membrane voltage, the systems were built in two steps. First, a simple initial system with an 

asymmetric membrane was generated (Figure 3.2A), using the CHARMM-GUI web site (103). A 

typical membrane contained approximately 100 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine 

(POPC) and 80 cholesterol molecules on the “extra-cellular” leaflet, and 50 POPC, 50 1-

palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine (POPS) and 80-90 cholesterol molecules on the 

“intra-cellular” leaflet. Around 25,000 water TIP3P molecules (87) were added. Finally, KCl was 

included by molecular replacement of water to a final concentration of 0.15 M. Two such systems 

were combined in an antiparallel way to obtain a double bilayer simulating an asymmetric 

membrane. A double bilayer system is the most biologically relevant way to simulate a cell 

membrane separating two different water compartments (104-107). Through antiparallel 

orientation of the bilayers, the construct contained in its center a water slab simulating the 

“intracellular” compartment, which is in contact with the POPS enriched leaflets. The 

“extracellular” compartment was constituted of two water slabs, linked together through the 

periodic boundary condition, and was in contact with the leaflet without POPS. Each double 

bilayer system contained in addition a VSD in each bilayer and in most cases two toxins in the 

extra-cellular compartment, for a total number of ≈ 235,000 atoms.  

 A membrane potential (Vm) was then simulated through charge imbalance between the 

compartments (Figure 3.2B). The displacement of a single ion affected the membrane potential 

by approximately 200 mV, which is almost twice the sensitivity of larger systems used in other 



 

 

studies (108). Luckily, this high sensitivity led to the easy identification of gating charge transport 

events (section 3.3.2.4).  

 Standard periodic boundary conditions were used in an ensemble held at 1 bar 

(compressibility 4.5 x 10-5 bar and time constant 1ps) using the Berendsen algorithm (109). The 

temperature was kept at 310 K and to ensure a proper canonical ensemble, the velocities were 

rescaled using a stochastic term (time constant 0.2 ps) (110). Simulations were run with a 2 fs 

integration time step. Electrostatic interactions were computed using the particle mesh Ewald 

method (111), and for the van der Waals interactions a cut-off of 12 Å was used, and the 

neighbor list was updated every 10 steps.  

 The number of constructed systems was as follows: 

 - Hanatoxin: 34 double bilayers, initial Vm between -1.29 and +0.42 V. lengths between 

200 and 400 ns, total 7400 ns. 

 - Vstx1: 26 double bilayers, initial Vm between -1.75 and 0.46 V, lengths between 200 and 

740 ns, total 7160 ns. 

 - Controls, with a VSD in each bilayer, but no toxin: 6 double bilayers, initial Vm between -

1.33 and +0.39 V, lengths between 200 and 400 ns, total 1600 ns. 

 The analysis of the trajectories was performed using a combination of GROMACS utilities 

and in-house R and Python codes, and the statistical analyzes were performed using the R 

environment (112).  

 

 

3.3 Results 
3.3.1 Perturbation of the bilayer upon toxin insertion 
 

 In the next sections, the insertion of the two selected toxins will be described first. For 

each of them, the analysis are restrained to the simulations in which the toxin, which was in the 

water phase at the beginning of the simulation, inserted at least at the level or below the 

phosphate groups of the membrane within the 200 to 740 ns of simulations. Vstx1 is described 

first, because the orientation of this toxin has been recently experimentally determined (99). It is 

found that, as expected, the hydrophobic residues insert deeply into the membrane, while the 

charged residues form hydrogen bonds with the lipid head groups. A similar approach is then 

applied for the orientation of Hanatoxin, for which such precise experimental data are not 

available.  

 Next, the toxin induced perturbations of acyl chains of the POPC molecules are 

described. A second analysis shows that the insertion of the toxins induces a reorientation of the 

choline head groups, so that the positively charged choline group moves toward the water phase. 

An explanation for this effect, based on the literature and on our results, is provided. The 



 

 

simulations suggest that the head groups respond to a subtle combination of electric repulsion, 

since both the choline head group and the toxin are positively charged, and, in addition, a steric 

effect consecutive to the formation of hydrogen bonds between the Arg residues of the toxin and 

the phosphate groups. It is also found that the bilayer thickness is reduced near the toxin.  

 

A 



 

 

 
Figure 3.2, previous page: The double bilayer system enables the explicit tuning of the 
membrane potential.  
A) The simulated asymmetric bilayer contains 100 POPC and 80 cholesterol molecules in the 
upper leaflet, and 50 POPC, 50 POPS and 85 cholesterol molecules in lower leaflet. The lipids 
are colored as follows: POPC: grey; POPS: red; Cholesterol: green. The phosphate and nitrogen 
atoms of the phospholipids are shown as tan and blue spheres, respectively. 
B) Left: Molecular representation of two bilayers with embedded VSDs. Proteins are represented 
in cartoons, with the helices colored as follows: S1: red, S2: magenta, S3: cyan, S4: blue. Lipids 
are represented with acyl chains in grey, and the phosphorus atoms as tan spheres. Potassium 
and chloride ions are shown as yellow and green spheres, respectively. Right: In this illustrative 
configuration, the imbalance in the number of charged species on both sides of the membrane 
induces a negative potential of about 250 mV in the middle water slab, as compared to the top 
and lower slabs. 
 

3.3.1.1 Orientation of the membrane bound toxins 
 

0
5

10
15

20
B

ox (nm
)

-0.4

-0.2 0

0.2

0.4

0.6
Potential (V)B 



 

 

 Hanatoxin and Vstx1 have been shown to partition into lipid membranes (56, 113) and 

their toxin activity is thought to depend on their amphipathic character (114). However, although 

some experiments assessed the depth of the Trp residues of these toxins upon interaction with 

the membrane, very little is known about their exact orientation. Luckily, during the time of this 

thesis, two experimental studies investigating the orientation of Vstx1 in micelles and in 

membranes were published, allowing a comparison with the computational results. 

 

3.3.1.1.1 Vstx1 
 

 To date, two experimental studies have provided a detailed description of Vstx1 

membrane partitioning, so that a validation of the molecular dynamics trajectories may be 

performed by comparison with experiment. Ozawa et al. reported a residue level description of 

the Vstx1 partitioning in n-decyl-β-D-maltopyranoside (DM) micelles (99). In the work of 

Mihailescu et al., the orientation of the toxin in lipid bilayers was obtained more indirecty through 

rigid body rotations and translations of the solution structure in order to fit measured scattering-

length density profiles (100). Ozawa et al. (99) reported the chemical shift perturbations of each 

residue of Vstx1 upon interaction with the DM micelles. In the same study, they identified the 

membrane binding residues by a cross-saturation experiment. Both experimental procedures 

provided, independently, a residue-based quantification of interaction with DM micelles and, in 

both the intensity of the signal is expected to increase linearly with the insertion depth. The 

orientation of Vstx1 found in the MD simulations was compared to a combination of the two 

experimental value series, obtained through normalization and pooling. This procedure was 

chosen, as it takes into account the discrepancies between the two series of experimental results. 

For the analysis of the toxins’ orientation in the MD trajectories, the position of the center of mass 

(COM) of each residue side chain along the normal to the membrane (Z axis) was computed 

during the last 20 ns of simulation. The position of the lipid phosphate groups was calculated as a 

reference and the trajectories for which the average computed insertion over a whole toxin was 

below the level of the phosphate groups were retained. Toxins that were not yet well inserted 

were excluded. The simulations started with the toxin, either in the water phase (22 replications) 

or the toxin placed randomly at the surface of the bilayer (30 replications), and a set of 5 

simulations was retained, based on the mentioned average depth criteria. The distribution of 

residue depth within the membrane of these simulations matches the experimental 

measurements within the statistical error of the experimental determination (Figure 3.3). This is 

also indicated by the coefficient of correlation (R = -0.67) calculated between the depth of the 

Vstx1 side chains and the NMR measurements  (Figure 3.4) 



 

 

 Mihailescu et al. described a “relatively superficial position” (100) of Vstx1 on the 

membrane bilayer, and the orientation of the toxin differed slightly from that measured by Ozawa 

et al. The later reported a deeper insertion at the level of the C-terminus and of some charged 

residues (K17, D18). In Figure 3.6, membrane interacting residues determined by NMR, 

scattering-length density profile, and MD are mapped on the molecular structure of the toxin. 

Interestingly, the surface identified through MD simulations seems closer to the NMR identified 

one, but it additionally contains some features observed only by the scattering experiment of 

Mihailescu et al (100). Particularly, they reported that the three Trp residues “form a ridge that 

aligns along the water-hydrocarbon interface”. Figure 3.3 shows that, in the MD simulations, 

Trp7, Trp25, and Trp27 all insert at the same depth, about 4-6 Å under the phosphate level. 

However, while the scattering-length density profile suggests a deeper insertion of the C-

terminus, the MD simulations show only a particularly high variability at this terminus.  

 In almost all the 53 simulated systems containing Vstx1, the toxin formed hydrogen bonds 

with the membrane within the first 20-40 ns. In order to estimate any large conformational 

changes upon binding to the membrane, a simulation in which a toxin remained far from the 

membrane for at least 80 ns before binding to the membrane was selected. The RMSD of the 

backbone atoms in reference to the deposited structure did not change much more when the 

toxin interacted with the membrane (Figure 3.5), which was also observed through NMR 

spectroscopy measurements (47). Thus, NMR measurements and the MD trajectories suggest 

that Vstx1 does not undergo large conformational changes upon insertion.  

 

3.3.1.1.2 Hanatoxin 

 
 Although Hanatoxin has been investigated much more than Vstx1, an experimentally 

determined description of its insertion into the membrane, at the level of the side-chains, is 

missing. The agreement between the orientation of Vstx1 towards the end of our simulations and 

the NMR studies exposed above (Figures 3.3 & 3.4) strengthens our confidence in the MD 

approach. An experimental reference is nevertheless provided by the measured insertion of the 

Trp indole group. Contrary to Vstx1, which has three Trp residues, Hanatoxin displays a single 

Trp residue, resulting in a one-to-one correspondence between measurement and depth.  

Accordingly, several authors have determined the depth of the toxin by a fluorescence-quenching 

approach (115, 116). Upon insertion into a membrane, the Trp fluorescence is shifted toward 

shorter wavelengths. By measuring quenching profiles of brominated lipid tails, the depth of the 

Trp indole can be estimated, and values of about 7-9 Å from the center of the bilayer were 

reported. These values correspond to approximately 10 Å below the level of the phosphate 

groups. In the MD trajectories, the depth of the Trp30 side chain depth displayed a large 

variability among simulations, with values ranging from z = 1 to 12 Å below the phosphate 

groups. In Figure 3.7B, a snapshot is depicted, highlighting the insertion of Hanatoxin into the 



 

 

membrane at the end of a 200 ns long simulation. In the same way as in the analysis of Vstx1 

insertion, the insertion of Hanatoxin over the last 20 ns of simulations was computed. The 

agreement between the experimental and computational orientations found for Vstx1 indicates 

that Hanatoxin probably inserts into the membrane as illustrated in Figure 3.7. The membrane 

interacting surface of the toxin displays a cluster of mostly hydrophobic residues (Y4, L5, F6, 

C28, A29, W30, F32) and a higher variability at the C-terminus in comparison to the N-terminus. 

With this orientation, most charged side chains (E1, R3, K10, K17, K22, D25, K26) sit at the level 

of the phosphate groups (dotted line in Figure 3.7A). 

 
Figure 3.3: Orientation of Vstx1 upon interaction with the membrane and its 
correspondence with experimental data.  
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A) Position of residue side chain along the z-axis, averaged over the last 20 ns of 5 simulations. 
Solid lines: averages. Dashed lines: average ± standard deviation. The level of the phosphate 
groups is represented by tan dashed lines. z = 0 Å corresponds to the center of the membrane. 
B) Normalized chemical shift perturbations and cross-saturation experiment values from Ozawa 
et al. (99). CS: cross-saturation, CSP: chemical shift perturbation. The averages ± standard 
deviations are shown. Residues for which at least one experimental value was missing were 
omitted. 

 
Figure 3.4: Relationship between the NMR membrane interaction signals and the depth of 
Vstx1 residue side chains.  
MD measurements were averaged over the last 20 ns of 5 simulations.  
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Figure 3.5. The overall structure of Vstx1 is only slightly affected upon binding to the 
membrane.  
The time course of the RMSD to the deposited structure (black) does not correlate with the 
binding to the membrane, which is assessed by the number of hydrogen bonds between the toxin 
and the lipid head groups (cyan). 

 

Figure 3.6. Similar NMR determined and MD predicted clusters of Vstx1 residues 
interacting with the membrane. 
The surfaces of residues interacting with the membrane, colored in green, were determined by 
three methods. A) NMR chemical shifts perturbation. B) Neutron diffraction data. C) MD 
simulation: Residues for which the side chains inserted more than 4 Å below the phosphate 
groups are colored in green. 
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Figure 3.7. Orientation of Hanatoxin upon interaction with the membrane.  
A) Position of residue side chains along the z-axis, averaged over the last 20 ns of 6 simulations. 
Solid lines: averages. Dashed lines: average ± standard deviation. The level of the phosphate 
groups is represented by a tan dashed line. z = 0 Å corresponds to the center of the membrane. 
B) Snapshot of an inserted toxin after 200 ns of simulation. The proteins are shown with helices 
in purple, β-strands in yellow, turns in cyan and loops in silver. Tyr4, Leu5, Phe6, Gly7, Trp25 and 
Phe27 of Hanatoxin are shown as green surfaces. The phosphate and nitrogen atoms of the 
phospholipids are shown in tan and blue spheres, respectively. C) Surface representations of 
Hanatoxin with Tyr4, Leu5, Phe6, Gly7, Trp25 and Phe27 colored in green, and the other 
residues in grey. 

3.3.1.2 Disordering of the lipid chains near the toxins 
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 The toxin may be expected to locally decrease the order of the lipid tails upon insertion in 

the membrane. Lipid order parameters can be extracted from 2H NMR measurements or 

calculated from the atom coordinates in an MD trajectory. The order parameter SCD is defined by 

the following time and ensemble average: 

!!" =  3cos!
! − 1
2   

where θ is the instantaneous angle between the C-D (carbon-deuterium) vector and the bilayer 

normal. More detailed descriptions of the geometry of order parameters are given in (117). 

 The preceding section showed that a subset of the simulations displayed a toxin insertion 

into the membrane, which was comparable with experimental values in terms of orientation. 

Accordingly, the order parameters of the POPC tails for the last 20 ns of these simulations were 

calculated. Since the purpose of this investigation was to quantify the effect of the toxins on the 

membrane, lipids closer than 10 Å from a VSD were excluded. The remaining lipids were 

grouped in rings around a toxin, depending on their distance to the toxin, in order to pool the 

calculated parameters from molecules experiencing a similar environment. The order parameters 

of POPC Sn-1 and Sn-2 decreased significantly upon toxin insertion, as illustrated in Figure 3.8 

(Vstx1) and 3.9 (Hanatoxin). The observed trends were reproducible for several independent 

simulations (n=5 for Vstx1, n = 6 for Hanatoxin). The relationship between the average distance 

to a toxin and the SCD parameters was fitted by an asymptotic hyperbolic function, since the toxin 

is not expected to exert any measurable effect on lipids further than a given distance. Beside a 

slightly better fit and smaller variability among the different simulations in the case of Hanatoxin, 

which was also observed to insert slightly deeper than Vstx1 in the membrane, there was no 

apparent difference between the effects of the two toxins on the lipid tail order parameters.  

 An apparent contradiction deserves an explanation. Since it was evidenced above that the 

toxin insertion reduces the values of the order parameters in its vicinity, the fact that values of the 

lipids far from any toxin are slightly higher than the values of lipids in control simulations, without 

any toxin, is not expected (Figures 3.8 and 3.9).  The insertion of the toxin increases the number 

of particles in the extracellular leaflet. Because the number of atoms in the intracellular leaflet 

does not change, and as the system is too small to respond with a significant curvature change, 

the lateral pressure of the extracellular leaflet increases as a consequence of the higher number 

of particles. This higher lateral pressure restraints the acyl chains and consequently increases the 

values of the order parameters. In other words, these observations would be a consequence of 

the finite and relatively small size of the computed system, and would not be biologically relevant. 

 In a recent investigation of the insertion of a small molecule (S-methyl 

methanethiosulfonate) in membrane, Miguel et al. described a complex effect on the ordering of 

1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayers. Four MD simulations were 

performed, each at a different concentration. While the small concentrations (0.09 and 0.18 M) 

induced a slight disordering of the SCD parameters (about 0.02 smaller values for positions C6 



 

 

and higher), the two simulations at higher concentrations (0.33 and 0.44 M) suggested an 

ordering effect (118). Disordering of lipid chain upon peptide insertion has also been reported by 

Kandasamy and Larson (119). However, in a NMR study, Dave et al. investigated the membrane 

insertion of a 28 residues long α-helix. This helix contains mainly hydrophobic residues and one 

Arg at its N-terminus. The measured Sn-1 order parameters of POPC did not vary upon 

interaction with a 4 mol solution of the peptide (120). In a recent NMR investigation of the 

interactions between Vstx1 and POPC (Vstx1: lipid ratio 1:100), Mihailescu et al. recorded 

through 2H solid-state NMR the Sn-1 SCD parameters of the lipid and reported a decrease of 

about 0.03 of the order parameters (100). The analysis performed in this work, and presented in 

Figure 3.8 emphasizes the effect of the toxin as a function of the distance, which may help 

understanding the involved mechanisms. However, in order to compare the results from the MD 

with the 2H solid-state NMR measurements, Figure 3.10 presents a comparison of the average 

Sn-1 order parameters in simulations containing an inserted Vstx1 toxin with control simulations, 

which did not contain any toxin. The magnitude of the effect is very close to the decrease found in 

the 2H solid-state NMR experiment (100). 

  All together, these experimental and computational results show that the interactions 

between a protein and a membrane do not always induce a disordering of the acyl chains. In the 

case of Vstx1 and Hanatoxin, however, NMR experimental measurements and computational 

observations suggest a clear disordering at the vicinity of the toxin. In addition, the effects are 

similar for both toxins. 



 

 

 
Figure 3.8. The SCD lipid order parameters decrease near Vstx1.  
A) SCD order parameters (left: Sn-1, right: Sn-2) of POPC lipids pooled as a function of their 
distance to the inserted peptide. Solid lines: averages. Dashed lines: average ± standard error of 
the mean, n = 6 independent simulations. The inset gives the averages and standard deviations 
of the distance to the toxin and the number of lipids. Acyl-chain carbons on the x-axis are 
numbered according to their serial position. B) Sn-1 SCD of each carbon atom as a function of the 
distance to the toxin for 6 independent simulations. The smooth curves correspond to asymptotic 
hyperbolic functions. The black crosses correspond to the SCD values of 7 different simulations 
without toxin (included at an arbitrary distance of around 55 Å).  
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Figure 3.9. The SCD lipid order parameters decrease near Hanatoxin.  
A) SCD order parameters (left: Sn-1, right: Sn-2) of POPC lipids pooled as a function of their 
distance to the inserted peptide. Solid lines: averages. Dashed lines: average ± standard error of 
the mean, n = 5 independent simulations. The insets give the averages and standard deviations 
of the distance to the toxin and the number of lipids. B) Sn-1 SCD of each carbon atom as a 
function of the distance to the toxin for 5 independent simulations Smooth curves correspond to 
asymptotic hyperbolic functions. The black crosses correspond to the SCD values of 7 different 
simulations without toxin (included at an arbitrary distance of around 55 Å). 
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Figure 3.10. Reproducibility of experimental data with regard to the disordering effect.  
A) Disordering effect observed in NMR measurements (taken from Mihailescu et al.(100)). B) 
SCD order parameters of POPC lipids in simulations containing a membrane interacting toxin 
(green, n = 6 simulations) and control simulations without toxin (black, n = 3 simulations) are 
shown.  

 

Figure 3.11. The angle of the POPC P-N vectors relative to the normal of the bilayer 
decreases near the toxins.  
The lipid molecules from 6 different simulations were clustered as a function of their average 
distance to the toxin during the last 20 ns of simulations. The smooth curves correspond to 
hyperbolic functions with asymptotes at ≈ 70-71 degrees in both panels. The values 
corresponding to 7 different simulations where no toxin was included are shown in magenta at an 
arbitrary distance around 55 Å from any toxin. A) Vstx1. B) Hanatoxin. 

 

 

 

 

 

3.3.1.3 Reorientation of the phosphocholine head groups 
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 As shown above, experimental and computational methods suggest that Vstx1 and 

Hanatoxin partition into the membrane through a cluster of hydrophobic residues while most of 

the charged residues remain close to the surface of the membrane, where they interact with the 

lipid head groups. Most spider toxins carry a global positive electric charge. The global charge of 

Hanatoxin and Vstx1 are +2 and +3, respectively. Scherer and Seelig have measured alterations 

of the orientation of phosphocholine head groups upon interaction with electrically charged 

amphiphile molecules (49, 50). Their measurements suggested that the choline group of the P-N 

dipole reorients toward the water phase upon addition of positively charged amphiphiles. The 

same type of effect was observed independently of the nature of the electrically charged 

molecules (peptides, lipids, metal ions). The rational explaining this P-N response relies on the 

insertion of the charged amphiphile molecule in such a way that the effective positive charge 

interacts with the phosphodiesters and so inserts below the choline functional groups. 

Consequently, the positive choline group would be repelled. A similar electrostatic effect may be 

expected upon interaction of the spider toxin with the membrane. According to the MD 

simulations, most of the arginine and lysine side chains, particularly for Vstx1, were positioned 

just below or close to the level of the phosphate groups (Figures 3.3 and 3.7).  

 Similarly to the calculations described in the section 3.3.1.2, the cosines of the angle 

formed by the P-N vector of each individual lipid and the normal to the bilayer were computed for 

the last 20 ns. The same simulations as in the last section were used for this analysis. The 

strategy was to sample over several simulations in order to disentangle the variability among 

simulations from variations due to a specific interaction with the toxin. The lipids closer than 10 Å 

from the VSD were excluded for this analysis. The lipids were then clustered within concentric 

circles around an inserted toxin. 

 Vstx1 insertion into the membrane induced a significant change of the POPC head group 

orientation (p < 0.001). The relationship between the average distance to a toxin and the angle 

relative to the normal of the bilayer was fitted by a hyperbolic asymptotic function, with an 

asymptote corresponding to around 70 degrees far from the toxin. However, the head group 

reorientation, although similar among different simulations, was rather small. The average angle 

of the POPC P-N vector relative to the membrane normal decreased from around 70 degrees to 

approximately 66 degrees for lipids close to the toxin (Figure 3.11A). Hanatoxin insertion affected 

the head group P-N vectors similarly to Vstx1 (p < 0.001, from approximately 71 to 66 degrees, 

Figure 3.11B).  

 

 The previous analysis focused on the distance between the lipids and the toxin. Upon 

toxin insertion, two different phenomena may influence the reorientation of the head groups. First, 

the positively charged toxin may repel the positively charged choline groups. Second, with 

decreasing distance between the toxin and the lipids, hydrogen bonds will form between the toxin 

and the phosphate groups, leading to a steric displacement of the choline head groups. The 



 

 

observed reorientation might be the synergistic result of the two phenomena. The dependence of 

head group tilting on the formation of hydrogen bonds between acidic residues and the 

phosphate groups can be extracted from the trajectories, and differentiated from the Coulomb 

effect. In order to investigate direct contacts between the toxin and the lipids, the number of 

intermolecular hydrogen bonds formed between the peptide and the POPC molecules was 

summed. A hydrogen bond was counted if an interaction between a donor and an acceptor 

(defined by a distance of less than 3.5 Å and an angle of more than 30°) was observed for more 

than 10% of the investigated simulation time. As in the previous section, the simulations for which 

the average toxin insertion was below the level of the phosphate groups were selected. In most 

cases, hydrogen bond acceptors were the oxygen atoms of the phosphate groups. Six examined 

simulations involving an inserted Hanatoxin displayed 139 hydrogen bonds, of which 110 

involved the phosphate groups and 29 the ester or carbonyl oxygen atoms of the bilayer. On the 

side of the toxin, the 4 Lys and the 2 Arg were involved in approximately half of the total number 

of hydrogen bonds formed with the membrane, implying a main function for these residues in 

terms of maintaining the toxin at the surface of the bilayer. Similar hydrogen bond proportions 

were observed upon insertion of Vstx1. Using the results of the toxin insertion analysis of section 

3.3.1.1, it is possible to identify the residues which most likely interact with the phosphate groups. 

Focusing on these residues, Figure 3.12 shows that the reorientation of the lipid head groups 

follows a positive relationship with the number of hydrogen bonds they form with the toxin. This 

indicates that a significant part of the head group reorientation is due to direct contacts between 

those residues of the toxin and the phosphodiesters.  

  On the other hand, if the global charge were the only factor affecting the head groups, 

Vstx1 could be expected to exert a stronger influence, since it carries a charge of +3, while 

Hanatoxin carries a charge of +2. Yet, the relationship is slightly steeper in the case of Hanatoxin. 

Interestingly, Figure 3.12 shows that a lipid forms up to three hydrogen bonds with Hanatoxin. 

The inspection of that particular case shows that His and Arg residues of the toxin interact with 

the phosphate groups, pushing the choline group toward the water phase. Consequently, this 

phosphocholine group forms an angle of 40° with the bilayer normal, compared to the average 

value of about 71° observed far from any toxin. A similar head group reorientation could be 

observed upon interaction between Arg residues of Vstx1 and phosphodiesters (Figure 3.13).  

 

 In experiments involving the interaction of the positively charged 

dialkyldimethylammonium with a POPC bilayer, a P-N dipole reorientation up to 30° has been 

measured, with the choline group moving toward the water phase (49). However, this elevated 

value was obtained using an oversaturated mole fraction of 0.8, (50 times higher than the 

concentration typically used in experiments with spider toxins). This concentration implies that 

after partitioning almost every second molecule in the membrane would be an added amphiphile, 

assuming that all the added dialkyldimethylammonium molecules partitioned into the membrane. 



 

 

In standard experiments involving toxins, as well as in the MD simulations performed in this work, 

the mole fraction is much lower, and corresponds to one toxin for approximately 200 lipid 

molecules, or an initial toxin concentration in water of about 4 mmol/L.  

 

3.3.1.4 Reduced membrane thickness 

 
 Scattering-length density experiments suggest that Vstx1 thins the bilayer. At a protein-to-

lipid ratio of 1:30, Mihailescu et al. (100) measured a decrease of about 2 Å of the membrane 

thickness. The same thinning of the membrane of about 2 Å was observed at the vicinity of Vstx1 

in the simulations (Figure 3.14A). More specifically, the comparison between the values 

corresponding to the distance from the upper leaflet to the middle of the bilayer versus the 

distance to the opposite leaflet implies that the thinning occurs mainly between the level of the 

phosphate groups and the center of the bilayer.  

 In the case of Hanatoxin, however, almost parallel slopes are observed for the length of 

the phosphate groups to the center of the bilayer (0.024 Å⋅Å-1) as to the opposite (lower) leaflet 

(0.021 Å⋅Å-1). These slopes link the given membrane thickness to the distance to the insertion 

area of the toxin.  

 Additionally, in both cases the relationship appears to be linear until the furthest distance 

within the simulated box, indicating that the observed effect extends to a distance of more than 

40 Å from the toxin. Although the construct contained 200 lipids per leaflet, this observation 

shows that a larger system is required to observe lipids completely relaxed from the effect of the 

toxin insertion. For this reason, the computed regressions do not tell whether the thinning of the 

membrane due to each toxin really differ from each other.  

 

3.3.1.5 Conclusion 
 

 The purpose of the comparison of Vstx1 and Hanatoxin was to investigate the similarities 

and differences of the membrane bilayer perturbations induced by their insertion, in order to 

explore a possible indirect mode of voltage gating modification. The term indirect mode of gating 

modification implies any modification of voltage gating that would be exerted by the toxin without 

direct binding to the VSD. The experimentally observed specificity of these two toxins led to the 

approach used here: Vstx1 is a gating modifier of KvAP, whereas Hanatoxin does not affect this 

VSD. Therefore, different perturbations of the bilayer would be potential hints for further 

investigations of an indirect effect.  

 In the simulations, both toxins showed a comparable pattern of interactions with the 

membrane. After 200 ns, the depth of the aromatic or methionine residues was at most 8-10 Å 

below the phosphate groups. Vstx1 decreased the Sn-1 and Sn-2 SCD order parameters of the 



 

 

POPC by about 0.10 respectively 0.05, whereas the effects were more pronounced with 

Hanatoxin, with decreases of approximately 0.15. 

However, only 11 simulations of 200 ns could be used, which could make it challenging to detect 

very small differences between the two toxins.  

 Seelig et al. (50) observed, that contrary to many other classes of molecules, the 

experimental results for peptides did not always substantiate the electrostatic effect hypothesis 

exposed in the section 3.3.1.3. Briefly, several converging NMR investigations of the tilting of lipid 

head groups upon added metals, salts, detergents and lipids, all electrically charged molecules, 

led Seelig and colleagues to propose that the phosphocholine head groups would reorient in 

response to a Coulomb effect induced by the effectors interacting with the membrane. However, 

when proteins interacted with the membrane, they rather mentioned a “general disordering effect 

of membrane proteins on the average lipid structure (…), not consistent with a specific 

electrostatic effect at the head group level”. The MD simulations lead to similar conclusions, since 

a strong disordering effect of the acyl chains was observed close to the toxins, and since on 

average the reorientation of the head groups was rather small. However, the precise investigation 

of the interactions between individual amino acid side chains and phosphodiesters revealed a P-

N reorientations of about 30° when positively charged side chains formed hydrogen bonds with 

the phosphodiester groups. This reorientation is similar to the experimental findings mentioned 

above. Briefly, these observations indicate that the electrostatic effect hypothesis (49, 50), 

although not substantiated at the level of globally charged peptides, applies to peptides, but at 

the residue level.  

 According to the MD trajectories, the disordering of the acyl chains and the reorientation 

of the head groups induced by the toxins were similar for both toxins and thus do not explain the 

specificity of Hanatoxin and Vstx1 with respect to KvAP. It is possible that Hanatoxin inserts 

deeper in the membrane. According to these results, it is unlikely that a specific and indirect, lipid-

mediated mechanism of gating modification, exerts its effect through the acyl chains or a 

reorientation of the head groups. 

 An indirect mode of action could involve an alteration of the binding network required by 

the VSD to function properly. As explained in the section 1.2.4, the VSD requires 

phosphodiesters groups in order to respond to membrane potential fluctuations. In the section 

3.3.2.2.3, it will be shown that the Arg side chains of the voltage-sensor domain formed hydrogen 

bonds with the phosphate groups of the lipids (Figure 3.22). This hydrogen bond network involves 

mostly Arg residues from S1 and S4. On the other hand, the study of the spider toxins revealed 

that they formed hydrogen bonds with the phosphate groups of the membrane, mostly via Lys 

and Arg residues (Figure 3.13). Consequently, an indirect mechanism involving a local 

competition for the binding to the phosphate groups may be proposed. In order to verify this 

hypothesis, one could compare the hydrogen bond network of the VSD in presence and absence 

of membrane interacting toxins. For each individual Arg residue of S4, the number of hydrogen 



 

 

bonds formed with the membrane was computed. However, neither the toxin nor the membrane 

voltage affected significantly the hydrogen bond pattern formed by the phosphate groups and any 

individual Arg residues of S4. For comparison, using a special-purpose machine designed for 

high-speed simulations, Jensen et al. (1) performed up to 256 µs long simulations of a VSD under 

different membrane potentials. Despite this very long simulation, the hydrogen bond pattern 

formed by the individual Arg residues with the membrane was only slightly affected.  

 

 

 

 

 
Figure 3.12. The reorientation of the head group involves hydrogen bonding with the 
toxins.  
Lipids closer than 10 Å on average from any toxin were considered. Each point represents the 
average number of stable hydrogen bonds formed during the last 20 ns of a simulation between a 
phosphodiester and a toxin versus the cosines of the P-N vector relative to the membrane 
normal. A) Vstx1. B) Hanatoxin. 

 

H−Bonds (occupancy) 

P
−N

 a
ng

le
 

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
20

40
60

80
p =  0.002

H−Bonds (occupancy) 

P
−N

 a
ng

le
 

0.0 0.5 1.0 1.5 2.0

0
20

40
60

80 p =  0.016

A B 



 

 

 
Figure 3.13. The reorientations of the P-N vectors upon direct interaction with the toxins 
are large. 
Molecular representations of POPC molecules are shown in licorice, with toxin His  (green) and 
Lys or Arg (blue) and backbone in cartoon representations. On the left panels (side views), the 
average level of the phosphate groups is highlighted (dashed line) and an arrow highlights the 
orientation of the P-N vector. Right panels: views from above the membrane. Above: Vstx1. 
Below: Hanatoxin  



 

 

 
Figure 3.14. The membrane thinning induced by the toxins occurs mainly on the 
extracellular leaflet.  
The lipid molecules of the extracellular leaflet were clustered as a function of their average 
distance to the toxins. The solid/dashed lines corresponds to linear regression for which p < 
0.01/0.05. A) Vstx1. B) Hanatoxin.  
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3.3.2 How the membrane potential and the voltage-sensor domain affect the 
bilayer 

 
3.3.2.1 Introduction 
 
 Many observations suggest that the effect of transmembrane proteins on the lipid order 

parameters depends on the specific proteins and lipids. Song et al. (121) recorded 2H ss-NMR 

spectra along the palmitoyl chains of POPE in membranes exposed to Dermcidin, an 

antimicrobial 48-residue peptide that forms hexamers in membranes. They reported a disordering 

effect, the SCD parameters being reduced by about 0.05 on average along the chain. On the other 

hand, an NMR study of DLPC  (1,2-Dilauroyl-sn-glycero-3-phosphocholine) in bicelles reported 

an increase of the SCD parameters when the lipids were exposed to model transmembrane 

peptides (122). In a 2H and 31P-NMR study of the interactions between POPC in bilayers and 

gramicidin, Killian et al. (123) observed that the SCD order parameters were not affected by the 

transmembrane peptide. In an all-atom, explicit solvent simulation involving G-protein coupled 

receptors and POPC bilayers, Mondal et al. reported that the acyl chains were strongly 

disordered near the proteins. The amplitude of the observed disordering was similar to the one 

described below (1). Thus, similarly to the problem of inserted proteins, introduced previously, we 

are lacking a clear picture of the effect of transmembrane proteins on the acyl-chain order 

parameters, which seems to depend on the protein-lipid interaction pair.  

 The effects of some physical factors on the lipid tails, like the temperature (1) have been 

experimentally studied. However, despite the clear importance of the membrane voltage in the 

function of cells, direct investigations of the membrane structure under varying voltages are 

scarce.  

 In the following, the perturbations of the acyl-chain order parameters near the VSD will be 

described first, followed by the reorientation of the head groups. Contrary to the study of the 

toxins, the sampling is higher, since the trajectories of 134 VSDs, lasting between 200 and 740 

ns (average 240 ns) were performed. The water slabs corresponding to the extra- or intracellular 

solution (methods) contained various ion concentrations, so that initial membrane potential 

between -1.7 and +0.5 V were simulated. The MD simulations revealed a complex modulation of 

the order parameters, where the effect of the VSD on the lipids depends on the applied 

membrane potential. On the other hand, similarly to the study of the toxins, the phosphocholine 

head groups reoriented themselves close to the VSD. In addition, there is a significant 

reorientation of the head groups as a function of the membrane potential, in line with previous 

observations. 

 

3.3.2.2 The VSD induced perturbation of the acyl chains depend on the membrane 
potential 
 



 

 

3.3.2.2.1 VSD induced perturbations of the phospholipids 

 

 The results for the extra-cellular leaflet will be described first. In the case of the KvAP VSD 

and a bilayer containing POPC and cholesterol, the membrane potential modulates the VSD 

induced disordering of the POPC Sn-1 chains. The SCD values corresponding to 43 independent 

simulations were considered, in which the lipids were clustered as a function of their distances to 

the VSD during the last 20 ns of the simulations. A clear decrease of the order parameters near 

the VSD was detected (Figure 3.15). Lipids close to the VSD (within approximately 10 Å) 

displayed significantly lower order parameters, as compared to lipids in the bulk. The perturbation 

of the lipids followed a gradient as a function of the distance to the VSD, as shown in Figure 3.16. 

As for the Sn-1 order parameters, The Sn-2 SCD parameters of the extra-cellular lipids were 

strongly reduced close to the VSD and the effect slowly decreased as a function of the distance 

to the VSD. 

 Concerning the intra-cellular leaflet, due to time constraints, the analyses focused on only 

10 simulations. On the other hand, since the intracellular leaflet contains two phospholipid 

species, the number of individual POPC or POPS in the concentric rings around the VSD was 

lower. The statistical power of the intra-cellular leaflet analyses is accordingly reduced. In spite of 

this, a similar decrease of the order parameters of the POPC Sn-1 and Sn-2 acyl chains was 

observed in the intra-cellular leaflet, and the amplitude was comparable to the one observed on 

the extra-cellular side (Figure 3.15B). However, the Sn-1 of the POPS molecules were not 

affected by the VSD, and a non-significant decrease was observed in the case of the Sn-2 acyl 

chains (Figure 3.15C). 

 The disordering of both Sn-1 and Sn-2 acyl chains of the POPC molecules was thus 

observed in the vicinity of the VSD, on the two leaflets, over 53 simulations, whereas the POPS 

acyl chains may not be affected by the voltage-sensor domain. 



 

 

 
Figure 3.15. The SCD lipid order parameters decrease near the VSD.  
SCD order parameters (A: extra-cellular leaflet; B: intra-cellular leaflet, POPC, C: intra-cellular 
leaflet, POPS, left: Sn-1, right: Sn-2) of lipids pooled as a function of their distance to the VSD. 
Solid lines: averages. Dashed lines: average ± standard deviation. Extracellular leaflet: n = 43 
independent simulations, 100 POPC molecules. Intracellular leaflet: n = 10 independent 
simulations, 50 POPC and 50 POPS molecules. The legends give the averages and standard 
deviations of the distance to the VSD and the number of lipids. Note that for POPS, fixed 
distances of 9 and 40 Å were applied for all simulations.  

 

 

3.3.2.2.2 Concerted effect of membrane potential and VSD 
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 Focusing again on the POPC molecules of extracellular leaflet, in which there is a large 

number of replication, there is a relatively high variability among the 43 simulations, visible from 

the standard deviations in Figure 3.15A. This could be the hint that additional factors affect the 

features of the acyl chains. Since the conditions, and notably the membrane potential are not the 

same in these simulations, and since the function of the VSD is to respond to Vm, the membrane 

voltage could affect the interactions between the lipids and the VSD and thus explain this 

variability. In order to test this idea, the simulations were sorted as a function of the membrane 

potential and 10 simulations with strong polarization (close to -1 V) were compared with 10 

simulations under depolarized conditions (from about 0 to 0.4 V). Interestingly, Figure 3.17 shows 

that, while the lipids in the bulk were either not at all affected by the membrane potential or were 

possibly slightly more ordered under a polarized potential, the lipids close to the VSD were clearly 

much more disordered under the polarized potential than at nearly neutral or positive membrane 

potential. This modulation observed for all the carbons of the chain is exemplified in Figure 3.18 

for C6, which again shows that the lipids were differently affected by the membrane potential as a 

function of their distance to the VSD. Indeed, the membrane potential did not affect the lipids far 

from the VSD (the small order parameter increase upon polarization is statistically not significant). 

Lipids close to the VSD were significantly more disordered under polarized conditions (p < 0.01). 

This trend was not limited to the selected 20 simulations, but was observed for 43 simulations, as 

can be seen in Figure 3.18A. Thus, the analyses suggest a complex response of the lipid SCD 

parameters of the Sn-1 chain: they decrease close to the VSD, but this decrease becomes much 

larger under a polarized membrane potential, whereas lipids far from the VSD are not affected by 

the membrane potential. 

 A comparable Vm modulation of the disordering effect induced by the VSD was not 

detected at this level of analysis for the Sn2 SCD parameters. However, the more precise 

analyses showed in Figure 3.20 and discussed in the next section, indicated that the same 

phenomenon occurred on the Sn2 SCD parameters. On the other hand, these trends were not 

observed on the POPS acyl chains. 

 

 

 

 

3.3.2.2.3. Three possible explanations 

 

 A membrane voltage modulation of the disordering effect is observed here for the first 

time and one can envision dependence of the voltage-sensing mechanism in relation to the lipid 

environment. Experimental investigations would be required to validate this finding. Yet, despite a 

literature review and personal contacts with experimentalists, we could not figure out any 

experimental method, which investigates the lipid order parameters in electrostatically polarized 



 

 

bilayers. However, in the following, three possible ways to further elucidate this phenomenon are 

proposed. 

 A first possible origin is linked to the novel conformational change of the VSD as a 

function of the membrane potential, which will be described in the section 3.3.2.4. Briefly, the 

formation of a kink and the breaking of a salt bridge, both in the middle of S4, were induced by 

strongly polarized potential. Since both this conformational change and the SCD parameter near 

the VSD are related to membrane potential fluctuations, one may ask whether they might be 

linked. The comparison of the overall RMSD between VSD structures hold at different membrane 

potentials did not answer the question. Precisely, the RMSDs of the backbone atoms in reference 

to the deposited structure, calculated during the last 20 ns of simulations, of 14 structures of the 

VSD obtained from simulations performed under polarized potential (<-0.9 V) versus 18 

structures of the VSD obtained from simulations performed under depolarized potential (> 0.2V), 

were similar, with values of about 1.5 to 3.0 Å (Figure 3.19). The section 3.3.2.4 further shows 

that the breaking of the salt bridge and the kink in S4 induced the movement of a positive charge 

across the membrane potential. The simulations performed under polarized potential were then 

further splitted: a group contained the four systems in which a significant charge displacement 

occurred, and a second group contained the nine other systems. Surprisingly, there was a 

significantly more important perturbation of the Sn-2 SCD parameters when a gating charge 

transport occurred (Figure 3.20). This result indicates a link between the lipid ordering decrease 

and the electric charge displacement. 

 A second series of analyses relates the S3b helices to the acyl chain order parameters. 

As introduced in section 3.1, experimental investigations suggest that the C-terminus of the S3 

helix, termed S3b, forms with the S4 helix a helix-turn-helix motif. The analyses revealed that the 

length of S3b correlated with both the lipid disorder and the membrane potential, whereas the 

other helices did not. Additionally, the four helices seem to display slightly different values, and 

particularly, the average and the variability of the rise per residue in S3b appeared to be more 

prominent under depolarized conditions (Figure 3.21). In order to better describe the Vm 

modulation of the Sn-1 SCD order parameters, a specific metric is introduced. The difference 

between the ensemble and time averages of the SCD parameter of lipids in the bulk (taken as 

reference) and the lipids close to the VSD is calculated: 

 

  ΔSCD = <SCD(b)> – <SCD(p)> 

 

where the values from lipids in the bulk (b) and lipids close to the VSD (p) are considered. Using 

this ΔSCD, it is easier to represent the perturbation of the lipid tails due to the VSD under different 

conditions. As shown in the Figure 3.21A, the ΔSCD values increased with decreasing rise per 

residue of S3b under a polarized potential, while no relationship was observed under depolarized 

conditions. A similar interaction was not observed for S1 and S2, whereas S4 exhibits a possible 



 

 

similar, but not significant, trend. In addition, the S3b helix seemed to shorten only under a 

polarized potential, which was not observed for the other helices. In a particular simulation started 

with a strong polarized potential, with Vm < -1.0 V, a gating charge displacement occurred after 

approximately 100 ns. At t = 200ns, the membrane potential was switched through ion 

displacement, so that the next 200 ns corresponded to a trajectory at Vm = +0.4 V. Interestingly, 

the average length of the S3b helix decreased during the first 200 ns, and increased during the 

next 400 ns (Figure 3.21D). The S3b helix may play a particular function in the context of the 

interactions with the acyl chains, because it is highly hydrophobic. Out of 13 residues, the S3b 

helix contains 11 hydrophobic ones. Due to the orientation of S3b at about 45° in respect to the 

bilayer normal, the lipids acyl chains would accordingly be reoriented in order to wrap around the 

helix.  

 The third approach describes the direct interactions between individual amino acid and 

POPC molecules. Using a special purpose machine designed for high-speed MD simulations, 

Jensen et al. performed several 14 to 256 µs long trajectories of Kv1.2 VSDs under different 

voltages (1). They observed a large translation of S4, but a slightly reduced number of salt 

bridges between the Arg residues of S4 and the phosphate groups in the activated state 

(depolarized) as compared to the resting state (polarized potential). The much shorter MD 

simulations performed in this work did not display any large translation of S4. The membrane 

potential did not alter the pattern of hydrogen bonds between any Arg residue of S4 and the lipid 

phosphate groups. However, a molecular representation of the interactions between the POPC 

molecules and the VSD shows that most of these interactions involve Arg residues making 

hydrogen bonds with the phosphate groups, and the lipid acyl chain tend to wrap around the 

hydrocarbon part of the Arg (Figure 3.23). A translation, even small, of S4 would modify the 

orientation of these side chains in respect to the membrane normal, which then could affect the 

wrapped acyl chains.  

 

Figure 3.16: The closest to the VSD the more disordered.  
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SCD order parameters (Left: Sn-1; right: Sn-2) of POPC lipids clustered in rings around the VSD 
in the extracellular leaflet. N = 43 simulations. 

 

Figure 3.17. The membrane perturbations induced by the VSD depend on the membrane 
potential. 
Order parameters SCD (Left: Sn-1; right: Sn-2) of POPC pooled as a function of their minimal 
distance to the VSD and of the membrane potential. (Black: lipids far from the VSD; red: lipids 
within 10 Å of the VSD; closed squares: depolarized potential; open circles: polarized potential). 
Averages of 10 simulations are shown in each case. SEM are shown for the Sn-1 order 
parameters.        Carbon Nr.
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Figure 3.18. Statistical interaction between the VSD and the membrane potential 
A) Sn-1 SCD parameters from C6 of POPC lipids close (red) or far (black) from the VSD are 
shown for 43 simulations as a function of the corresponding membrane potential. Solid lines: p < 
0.05. B) Sn-1 SCD parameters from C6 of POPC lipids sorted as a function of their distance to the 
VSD are shown for 10 simulations under polarized potential (open squares) and under 
depolarized potential (closed squares). Horizontal lines: average SCD values. The arrows highlight 
the opposite effects of the membrane potential. 
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Figure 3.19. The membrane potential does not affect the RMSD of the backbone atoms in 
reference to the KvAP VSD deposited structure.  
The values of 16 VSD under polarized potential (open squares) and 18 VSD under depolarized 
potential (solid squares) were computed for the last 20 ns of simulations.  
 

 

 

Figure 3.20: The lipid disordering decrease is associated with charge transport. 
Order parameters SCD of POPC pooled as a function of their minimal distance to the VSD, the 
membrane potential and the occurrence of a gating charge transport. Black: lipids far from the 
VSD; red: lipids close to the VSD, 9 simulations without any gating charge transport, dark red: 
lipids close to the VSD, four simulations where a gating charge transport occurred. Closed 
squares: Depolarized potential, Open circles: Polarized potential. Gating charge transports were 
only observed under polarized potential. Left: Sn1. Right: Sn-2. 
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Figure 3.21. The length of the S3b helix correlates with the membrane potential and with 
the lipid order parameters   
A) Each square corresponds to the average rise per residue of a given helix over the last 20 ns of 
one simulation. Red: S1; magenta: S2; cyan: S3b; blue: S4. Open symbols: polarized potential, 
closed symbols: depolarized potential. B) ΔSCD (see text) of the four helices. Same color code as 
in the Figure 3.21A. C) Molecular representation of two VSDs simulated under Vm ≈ -1.0 V (blue) 
and +0.4 V (orange) highlighting the S3b helix. The phosphorus atoms of the POPC head groups 
are shown in tan. D) Time course of the length of the S3b helix in a simulation with varying Vm 
values. Starting at t=0 ns with Vm < -1.0 V, the membrane potential was switched to +0.4 V at 
t=200 ns.  
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Figure 3.22. The interactions between the VSD and the lipids involve mostly hydrogen 
bonds with Arg side chains.  
A) The tails of the POPC molecules tend to wrap around the VSD, whereas the lipids far from the 
VSD are well ordered. B) Interactions between phosphate groups of POPC and the following 
protein residues: Tyr46 (S1), Arg57 (S1), Arg117, Arg120, Arg123, Arg126 and Ile130 (all S4). 
The protein is shown in ribbons, highlighted residues and POPC molecules are shown in licorice. 
Blue: Arg. Green: Tyr or Ile. Lipids: C: grey, O: red. N: blue, H (choline group only): white. 

 

3.3.2.3 The reorientation of the lipid head groups 
 
 The reorientation of the POPC head groups in the vicinity of Vstx1 and Hanatoxin 

indicated that the interaction of positively charged side chain with the phosphate groups of the 

lipids cause a repulsion of the choline group, which consequently moves toward the water phase. 

The voltage-sensor domain considered in this study carries 13 positively charged residues and 

12 negatively charged ones. However, inspection of the structure embedded in a membrane 

shows that repartition of the charged residues along the z-direction is not homogenous. While the 

positively charged residues are evenly distributed across the bilayer, there are 3 Asp and 5 Glu 

on the intracellular leaflet, and only 3 Glu and 1 Asp on the extracellular side of the protein 

(Figure 3.23A). As a result, the extracellular part of the VSD carries an effective positive charge 
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of +2. If these basic side chains interact with lipid head groups similarly to the toxins, a similar 

effect as was observed for the inserted toxins may be expected.  

 The analyses of the MD simulations revealed a highly significant (p < 0.001) reorientation 

of the POPC head groups of the extra-cellular leaflet in the vicinity of the VSD (Figure 3.24A) The 

angle formed with the normal to the bilayer decreased from an average value of 70 in the bulk to 

about 64 degrees within 10 Å from the VSD. Similar observations could be reproduced for the 

POPC and the POPS molecules of the intra-cellular leaflet. 

 The head group orientations of the POPC and POPS molecules were clustered according 

to the applied trans-membrane voltage (Vm). Figure 3.25 shows that the head groups of bulk 

lipids displayed linear relationships with Vm, following the direction of the electric field. The 

reorientation amplitude was about 2 degrees over the investigated trans-membrane potential, 

which is in line with the recent literature. In an MD simulation involving pure POPC bilayers, Carr 

and MacPhee (1) reported a head group reorientation from 67 degrees under depolarized 

conditions to about 68.5 under a polarized potential of -1.95 V. In another MD simulation involving 

POPC only, Böckmann et al. (1), observed a shift from 70 degrees under depolarized conditions 

to 76 degrees under a polarized potential of about -2.0 V. These researchers reported larger 

reorientations in the intra-cellular leaflet. The results of this work also point toward larger effect in 

the intra-cellular leaflet, although not statistically significant. As stated above, the intra-cellular 

leaflet contains only 50 POPC molecules, as compared to 100 molecules in the extra-cellular 

leaflet, which reduces the statistical power of the test. The intra-cellular leaflet also contains 50 

negatively charged POPS molecules, which may interact with the POPC. The response of the 

phosphatidylserine groups to the membrane potential is inversed, as compared to the 

phosphocholine groups, as expected because these head groups carry a negative charge (Figure 

3.25B and 3.25C).  

 Since the slope representing the reorientation as a function of the membrane voltage, 

shown in Figure 3.25A, was statistically significant, the values of the angles of the POPC 

molecules of the extra-cellular leaflet presented on Figure 3.24A were accordingly normalized. 

Despite similar trends, the other angles were not normalized because the linear trends were not 

statistically significant.  

 



 

 

 

 
Figure 3.23. Charged and hydrophobic residues in KvAP. 
A) The extracellular facing part of the KvAP VSD is positively charged. B) The hydrophobic 
residues of the S4 helix C-terminus are oriented towards the middle of the bilayer. 
The molecular representations of PDB deposited structure of KvAP are shown in ribbons. The 
basic and acidic residues are colored in blue and red, respectively in the upper panel, and the 
hydrophobic residues of the S4 C-terminus are colored in green in the lower panel. The nitrogen 
and phosphorus atoms of the phospholipids are represented as blue and tan spheres, 
respectively. 
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Figure 3.24. The angle of the lipid P-N vectors relative to the normal of the bilayer 
decreases near the VSD. 
Each point represents the average value of the lipid molecules at a given average distance to the 
toxin during the last 20 ns of independent simulations. The smooth curves correspond to 
hyperbolic functions with asymptotes ≈ 70 degrees for POPC and ≈ 76 degrees for POPS. (A: 
extra-cellular leaflet, 100 POPC molecules, p<0.001, n = 32 simulations; B: intra-cellular leaflet, 
50 POPC molecules, p < 0.05, n = 10; C: 50 POPS molecules, p < 0.05, n = 10). Note that, in 
POPC, N represents the choline group, while in POPS, it represents the amine (see Figure 1.1) 
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Figure 3.25. The P-N vectors respond to the electric field.  
Each point corresponds to the average value of the bulk (black) or near to the VSD (red) lipid 
molecules under a given applied trans-membrane potential during the last 20 ns of one of 43 (A: 
extra-cellular leaflet with 100 POPC molecules) or 10 (B: intra-cellular leaflet, with 50 POPC 
molecules; C: 50 POPS molecules) independent simulations. The solid lines highlight linear 
regressions for which p < 0.05.  
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Figure 3.26. Larger RMS fluctuations and B-factors under polarized potential.  
A) The average (solid lines) and standard error (dotted lines) of the RMSF of 20 VSD exposed to 
a depolarized potential (blue) and polarized potential (orange) are shown. The helices and 
“pseudohelical segments” according to the NMR structural determination are shown as cylinders 
(1). B) The representations of a VSD simulated under a polarized potential (left) and a VSD 
simulated under a depolarized potential (right) are colored according to their B-factors (calculated 
during 200 ns each, where atoms with values below 20 Å2 and above 100 Å2 are shown in dark 
blue and red, respectively). 
3.3.2.4 A novel membrane potential induced conformational change of the voltage-
sensor domain 
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 In the last years, there have been tremendous progresses relative to the description of the 

VSD conformational changes in response to the membrane potential (1-6). Several mechanisms 

by which the positively charged residues of S4 may exchange interactions between the 

extracellular and intracellular sides of the transmembrane electric field have been proposed. A 

translation mostly along the principal axis of S4 of up to 15 Å has been deduced from avidin 

accessibility to biotin reagents of different length (1). Electron paramagnetic resonance (EPR) 

spectroscopy measurements suggest a shorter S4 translation, accompanied by its rotation (1). 

According to these models, some residues may have to exchange their interactions from an 

apolar to a more polar environment. Since the crystal structure of KvAP is assumed to represent 

the activated state, a translation of 5 or 15 Å would lead some of the hydrophobic residues of the 

S4 C-terminus to be exposed to the polar head groups or to the intracellular cytoplasm (Figure 

3.23). Models by which the S4 helix would adopt α to 310 transitions have been proposed. These 

imply more flexibility, and it was calculated that a small reorientation of the S4 helix would suffice 

to induce mechanical constraints on the pore. 

 The MD simulations performed in this work revealed an unexpected conformational 

change of the S4 helix of KvAP in response to the membrane potential. The root mean-square 

fluctuations (RMSF) of the VSD during the whole trajectories of 20 systems exposed to a 

polarized membrane potential and 20 systems exposed to a depolarized potential were 

compared. The fluctuations of the loops were similar and, as expected, larger than the 

fluctuations of the helices for all the applied potential. The structure deposited in the PDB, solved 

by X-ray crystallography, is assumed to capture the protein in a conformation corresponding to a 

depolarized potential. Interestingly, the helices displayed larger fluctuations in the systems 

simulated under polarized membrane potential than in the systems held at a potential close to 

zero (Figure 3.26A), in line with the idea that these structures should adopt a resting state under 

longer simulations. Since these large fluctuations occurred notably at the level of the second half 

of the S4 helix, this part of the protein was further analyzed. B-factors are proportional to the 

square of the RMSF. Thus, the comparison of B-factors calculated from two simulations 

conducted under different membrane potentials also illustrates this idea. A typical representation 

of the B-factors computed over a 200 ns simulation at about 0.4 V display values around 10-20 

Å2 from residue 120 to residue 141, which can be compared to a simulation performed under a 

polarized potential of around -1.0 V, where the B-factors of residues 136 to 141 increase to about 

50-100 Å2 (Figure 3.26B). In other words, whereas this segment remained rather rigid under 

depolarized membrane potential, it displayed much larger fluctuations when a negative 

membrane potential is applied.  

 A second observation was related to the transport of electric charges between the extra- 

and intracellular compartments. The charges held by Arg residues of the S4 helix are called 

gating charges. It is assumed that they change their position with respect to the membrane 

electric field upon polarization or depolarization. The current generated by this movement is 



 

 

accordingly called gating current. In the simulations, the membrane potential remained constant 

during the whole simulation time in most of the cases. However, in a few simulations under a 

polarized potential, an important drop with respect to the initial membrane potential occurred 

(Figure 3.27A). In other words, one or two positive charges changed compartment in the direction 

of the electric field. This gating charge transport was due to the breaking of the central Arg133-

Asp62 salt bridge in the middle of the bilayer, as observed earlier (1). An interesting time series, 

in which a gating current occurred, is shown in Figure 3.27B. The breaking of the salt bridge 

coincided with a gating charge transport, which reduced the membrane potential by 

approximately 300 mV within 100 ns. As shown in Figure 3.27C, the charge transport is due 

mainly to the reorientation of the Arg133 towards the intracellular water compartment. At t = 200 

ns, the simulated membrane potential was switched back to +0.5 V. This depolarization was 

almost immediately followed by the re-formation of the salt bridge.  

 The breaking of the salt bridge and the gating charge transport were further accompanied 

by the formation of a kink at residue Gly134 in the middle of S4. The formation of this kink may 

allow a translation of the positively charged residues of S4 without exposing the hydrophobic 

residues of the C-terminus to a polar environment. The S4 movement implicated by the 

simulations could reconcile the ideas of a translation of S4 with the one of a global secondary 

structure modification.  

 

 There is experimental evidence in support of the formation of a kink in S4. Interestingly, 

the available experimental structures of the KvAP voltage-sensor domain show some 

discrepancies concerning the exact definition of this segment. According to the structure solved 

by crystallography in 2003, the whole segment between residues 116 and 148 constitutes an α-

helix (1). Yet, a study on this VSD by electron paramagnetic resonance indicated that this helix 

might be constituted of two helices separated by a hinge somewhere in its middle (1, 2). An NMR 

determination of the KvAP VSD in micelles has been reported in 2009 (124). The periodicity of 

amide proton secondary chemical shifts typically reflects the helicity of a segment. The loss of 

this periodicity at the level of Gly134 was therefore interpreted as a hint that the S4 helix is 

constituted of two helices connected by a hinge constituted of Ile131, Ser132 and Arg133. In 

addition, according to other features of the NMR results, the authors defined the S4 segment as a 

rigid helix, termed S4, between Phe116 and Arg133, continued by a pseudohelical segment, S45, 

between Gly134 and Ala142. However, the solution structure determined by Shenkarev et al. (1) 

in 2010 has not been deposited in the RSCP Protein Data Bank (1). However, the analysis of 

deposited structures reveals additional hints regarding a kink in S4 of KvAP. Strikingly, among 

the 20 converged conformations of the solution NMR solved by Butterwick and MacKinnon 

(1)(PDB code 2KYH), three of them display also a kink in the middle of S4, very similar to the one 

observed in the simulations performed under polarized conditions in this work (Figure 3.27E). In 

addition, the Arg133-Asp62 salt bridge is broken in these three structures, whereas it is intact in 



 

 

the other 17 structures. A better understanding of the S4 helix behavior under different conditions 

would require investigations of the full-length channel Butterwick and MacKinnon (1) reported 

that, while the X-ray structure of the isolated VSD suggests an alpha helical structure from 

residues 117 to 147, S4 is expected to break when connected to the ion conducting pore. 

Accordingly, in the full-length deposited structure (PDB code 2AOL), solved by X-ray 

crystallography, S4 is indeed broken. However, this break occurs at residue Ser139, whereas the 

EPR investigations, the solution structure of Shenkarev and colleagues and the MD simulations 

suggest that the break occurs at Gly134.  

 Finally, a sequence alignment of voltage-gated ion channels published in 2008 (1), 

showed some conservation of Gly and Pro at the position corresponding to Gly134 in the middle 

of S4. Precisely, a Gly residue is found in Hv1 and a Pro residue in Cav2.1, Cav3.1 and Nav1.2. 

These results indicate that the conformational change observed in KvAP may apply to other 

voltage-gated ion channels. It would be of major interest to find out, whether these channels also 

form a kink in S4, and, if yes, if this is related to the membrane potential. The formation of the 

kink in S4, since it modifies the orientation of the coupling between S4 and S5, may consequently 

affect the strength of this coupling. 



 

 

 

 
 
 
 
 
 
Figure 3.27, previous page: Discovery of a novel conformational change: the S4 helix 
forms a kink under polarized potential 
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A) Each point represents the absolute difference between the membrane voltage at the beginning 
of the simulations, and after 200 ns, as a function of the initial Vm (n = 65 simulations). The 
arrows identify four gating charge transport events. B) Time course of the number of contacts 
between the side chains of Arg133 and Asp62 (black line) and of the membrane potential (red 
dots). At t=200 ns, the potential was switched from polarized to depolarized. C) Breaking of the 
central salt bridge between Arg133 and Asp62. The left panel shows the intact salt bridge at the 
beginning of the simulations. The right panel shows the structure after the breaking of the salt 
bridge. The water molecules in the first hydration shell of the side chain of Arg133 are shown as 
red (oxygen) and white (hydrogen) spheres. D) Molecular representation of the KvAP simulated 
under a polarized membrane potential showing the structure at the beginning of the simulation 
(blue) and after the breaking of the Arg133-Asp-62 salt bridge (cyan). E) Second converged 
structure of the NMR solution ensemble (PDB code 2KYH). The helices are colored as follows: 
S1: red, S2: magenta, S3a and S3b: cyan, S4: blue. The heavy atoms of Gly134 are shown as 
spheres. 

 
 All these experimental findings support the view that S4 of KvAP forms a kink under some 

conditions. The MD simulation analyses indicate that this kink occurs under a polarized 

membrane potential, is associated with the breaking of the central salt bridge between Arg133 

and Asp 62, and the whole leads to gating charge transport. 

 
3.3.2.5 Conclusion 
 

 The replication of 134 bilayers, each of them containing the same VSD, and exposed to 

different Vm values between -1.7 and 0.5 Volts has led to fascinating new findings. A modulation 

of the interaction between a protein and the bilayer by the membrane potential has been 

described here for the first time. In the simulations, the VSD induced a significant decrease of the 

acyl-chain order parameters under a depolarized potential. When the system was exposed to a 

polarized membrane potential, the decrease of the order parameters was significantly enhanced. 

Based on the conformational changes of the VSD observed during these 200 ns long simulations, 

three possible origins of the phenomenon were proposed for further investigations. 

 The orientation of the head groups was affected by the VSD and by the membrane 

potential. Their orientation followed the direction of the electric field in both leaflets, and the 

amplitude of the reorientation was comparable to other studies (1). On the other hand, the angle 

formed by the head groups and the membrane normal was found to decrease near the VSD. It 

would be interesting to test whether, similarly to the analyses of the toxin interactions with the 

phosphate groups, the formation of hydrogen bonds between the Arg side chains and the 

phosphodiesters may be at the origin of the strong reorientation of the head groups. 

 Previous NMR and EPR investigations predicted a possible kink in the middle of the helix 

S4. The MD simulations revealed that this kink is related to polarized membrane potentials, is 

associated with a gating charge transport, and additionally might be associated with the 

modulation of the VSD induced disordering effect by Vm. 



 

 

This kink formation allows S4 to translate toward the intracellular compartment without exposing 

hydrophobic side chains to a polar environment. In other words, these results indicate that the 

observed kink is formed when the VSD undergoes the transition to the resting state.  

 

 

  



 

 

4 General conclusion 
 

Fascinating discoveries about the conformational propensities of short peptides, the 

driving force of folding and a novel conformational change of the voltage-sensor domain as a 

response to the membrane potential have been revealed by the molecular dynamics simulations 

performed during this work. Additionally, lipid-mediated mechanisms by which spider toxins may 

modify the gating of voltage-sensor domains, without direct interaction with the target proteins, 

were studied. According to the results, mechanisms involving the reshaping of the acyl chain 

global structure or the reorientation of the head groups might be ruled out for further 

investigations. An alternative mechanism, by which the toxin and the voltage-sensor domain 

would compete for the phosphodiester groups, could not be demonstrated. In line with these 

results, the question whether spider toxins must partition into the membrane in order to modify 

the gating of the voltage-gated ion channel has been investigated recently through surface 

plasmon resonance, fluorescence spectroscopy and molecular dynamics. The results involving 

two gating modifiers led the authors to conclude, that “membrane interaction is not a prerequisite 

for modification of channel gating”(125). 

 

The first project of this thesis investigated how single amino acid substitutions in a short 

peptide affected its conformational propensities. Whereas NMR experiments showed that the 

substitution of X by an aromatic residue in the sequence EGAAXAASS might induce the 

formation of a kink, the MD simulations revealed that this short peptide formed a helix or a turn. 

Further investigations suggested that bulky side chains impede the hydration of neighboring 

amide and carbonyl groups. This reduced access to water consecutively favors the formation of 

intramolecular hydrogen bonds and folding. This folding nucleation may be decisive for folding, 

since it has a relatively high entropic cost, whereas the following elongation of an helix can be 

assumed to occur cooperatively. 

The exact role of water in protein conformational changes is still a matter of debate. In 

section 2.3, it was proposed to use a cross-correlation function to investigate the succession of 

events occurring during the folding und unfolding of a β-hairpin. The analyses suggest that the 

hydration fluctuations precede the peptide conformational changes by a few hundreds of 

picoseconds. 

It was concluded by calling for an extended use of a combination of unbiased classical 

MD simulations, NMR investigations and the statistical tools introduced in this thesis to elucidate 

the conformational changes occurring in proteins or other biomolecules. A proper description of 

the formation of a one-turn helix could then be progressively extended by investigations of longer 

peptides, as exposed in the proposed project in section 2.4. This combination of methods could 

efficiently be used to study other conformational changes for which the mechanisms are difficult 



 

 

to capture experimentally. The exact mechanisms, by which electrolytes like TMAO or urea favor 

the folded or unfolded states, respectively, are accessible by this approach. 

 

Several experimental discoveries led us to ask whether gating modifiers might indirectly 

affect voltage-gated ion channels. Recently, a large number of studies have emphasized the 

important function of the diversity among membrane lipids. Lipids are not only scaffolds, but were 

shown to have fundamental and functional roles (1). Lately, a study involving measurements of 

voltage gated ether à gogo (EAG) potassium channels in diverse lipids demonstrated the role of 

phosphatidylinositol 4,5-bisphosphate (PIP2) as a modulator of EAG channels (1). Voltage-sensor 

domains have been shown to be sensitive to modification of the membrane environment, since 

removal of the phosphodiester groups renders the Kv2.1 channel irresponsive to changes of the 

membrane potential. The contrary is observed upon removal of the choline head group of 

sphingomyelin by sphingomyeliase. The result is a membrane enriched in negatively charged 

phospholipids, in which the VSD were shown to activate at a more negative potential (1). Former 

experimental evidence had shown that electrically charged molecules can have a large effect on 

the structure of the phospholipids (1). The finding that spider toxins use a membrane access 

mechanism to modify the gating of their target (1) may have contributed to several investigations 

of their partitioning in the membrane (1) and their orientation within the bilayer (1). Spider toxins 

are electrically charged molecules and the exact mechanism of gating modification remains 

elusive. In the light of these facts, our motivation was to ask whether the mechanism of spider 

toxins might involve perturbations of the membrane structure. One could hypothesize that 

alterations of the lipid head groups could modify the global properties of the membrane, which in 

turn would affect the VSD. However, experimental evidence demonstrated that the spider toxins 

can be highly specific, targeting a distinct segment of an ion channel (1). For completeness, two 

different toxins for which the specificity for a given channel is well documented were chosen. The 

choice was based on the idea that any differences between their interactions with the membrane 

could be regarded as hint to explain their specificity, while similar effects would have the potential 

to describe common mechanisms of actions.  

 The MD simulations revealed significant modifications of the bilayer structure, but the 

range of perturbations of the two toxins was very similar and could not be related to any 

conformational change of the VSD. This similarity suggests that a putative lipid-mediated 

mechanism of gating modifiers is not related to reshaping of the acyl chain global structure or to 

the reorientation of the phospholipid head groups. 

 The double bilayers containing voltage-sensor domains exposed to varying membrane 

voltages were constructed with the aim to investigate the spider toxin mechanisms. However, the 

analysis of their trajectories revealed a behavior of the VSD S4 helix that has, to our knowledge, 

never been described. We observed a kink in the middle of the S4 helix that was predicted by 

EPR (1) and NMR (1) investigations. The novelty of the finding presented in this thesis, is that 



 

 

this kink was related to the polarized membrane potential, and was associated with the breaking 

of the central salt bridge between Arg133 and Asp62. This conformational change allows a 

displacement of S4 without exposing hydrophobic residues to the polar environment of the lipid 

head groups or the solvent. 

 The investigation of sequence alignments suggests that the proton channel Hv1 also has 

a Gly residue in the middle of the corresponding helix, whereas a few VSD were found, in which a 

Pro residue is inserted at this position.  

 These findings urge for experimental and computational investigations of KvAP and Hv1 

under varying membrane potential values, aimed at describing the occurrence of a kink in the 

middle of S4 as a conformational change towards the resting state. 
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