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From coupled Rashba electron- and hole-gas layers to three-dimensional topological insulators
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We introduce a system of stacked two-dimensional electron- and hole-gas layers with Rashba spin-orbit
interaction and show that the tunnel coupling between the layers induces a strong three-dimensional (3D)
topological insulator phase. At each of the two-dimensional bulk boundaries we find the spectrum consisting of
a single anisotropic Dirac cone, which we show by analytical and numerical calculations. Our setup has a unit
cell consisting of four tunnel coupled Rashba layers and presents a synthetic strong 3D topological insulator and
is distinguished by its rather high experimental feasibility.
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I. INTRODUCTION

Since the discovery of the quantum Hall effect there has
been immense theoretical interest focused on understanding
topological phases of quantum matter [1,2]. The interest has
not been concentrated solely on the classification of these
novel phases, [3] which goes beyond the Landau paradigm
of phase transitions, but also on the potential applications
of the topologically ordered phases, in particular for storing
quantum information in a manner that is resilient to local
imperfections [4]. Additionally, the electronic surface states
of a strong topological insulator (TI) [2,5], being an example
of a three-dimensional (3D) topological phase of matter, forms
a two-dimensional (2D) topological metal, which is “half” of
an ordinary metal [2]. Such 2D topological metals are notable
for the fact that their electrons cannot be localized even in the
presence of strong disorder, as long as the bulk energy gap of
the parent strong 3D TI is intact [6].

There are strong indications that certain materials, such
as semiconducting alloys, behave as strong 3D TIs [2].
Despite great success in this field, both theoretically and
experimentally, there are still certain issues that need to
be resolved, in particular that strong TIs suffer from bulk
conduction due to chemical imperfections. Thus, there is a
strong need for synthetic materials where one has enough
control over the system parameters in order to achieve a
topological phase with a sufficiently large bulk gap which
excludes bulk conduction.

One of the very successful approaches for theoretically con-
structing 2D topological phases of matter is using anisotropic
hopping or a coupled wire construction [7–21]. Apart from
being very intuitive, this approach allows nonperturbative
treatment of the electron-electron interactions and is thus suit-
able for the study of fractional topological phases. Recently,
a strong effort was made to extend this approach to the study
of 3D TIs, where topological phases related to weak TIs were
obtained, as well as Weyl semimetal phases [21–23]. Despite
the great theoretical insight this approach gives, its main
drawback in the case of 3D systems is that the resulting setups
are rather complex and thus not easy to realize experimentally.

In this paper we take a different approach, instead of
coupled wires [7–22] we introduce a construction of coupled
2D layers, see Fig. 1. Each layer is a simple 2D electron
gas (2DEG) with Rashba spin-orbit interaction (SOI) [24–27].

By generalizing the coupled wires approach [17] to coupled
layers we arrive at a rather simple realization of a strong 3D
TI. Inclusion of electron-electron interactions in 2D systems is
much more involved than the 1D case, but still possible [28].
We note in passing that there are some proposals for realization
of synthetic strong TIs in ultracold atoms systems [29].

II. MODEL

We consider a system consisting of tunnel coupled layers of
2DEGs stacked along the z axis, see Fig. 1. In each 2DEG we
include an SOI [25] and we assume it to be of Rashba type.1 In
our model, we work with two different values of SOI [30–32]
that could be chosen almost arbitrarily (see below) and do
not require special tuning. In contrast to that, the chemical
potential μτ in each layer should be individually tuned to the
value determined by the corresponding SOI. Our setup has a
unit cell consisting of four Rashba 2DEG layers.

A single 2DEG layer with Rashba SOI is described by the
Hamiltonian [24]

H0 = −�
2(∂2

x + ∂2
y

)/
2m0 − iα(σx∂y − σy∂x), (1)

where α is the strength of the Rashba SOI and m0 the electron
mass in the given band. We can diagonalize this Hamiltonian
by taking the local spin quantization axis s = (− sin θ, cos θ )
to be always perpendicular to the momentum k = (kx,ky) ≡
k(cos θ, sin θ ),

E∓(k) = �
2k2/2m0 ∓ αk, (2)

where the upper (lower) sign corresponds to the spin orienta-
tion being along (opposite to) s chosen for α > 0 and to the
lower (higher) energy for a fixed k, where the corresponding
spinors are given by

|∓; θ〉 = 1√
2

(
1

±ieiθ

)
. (3)

We note here that the spin orientation is clockwise (anticlock-
wise) for |+; θ〉 (|−; θ〉). The dispersion relation Eq. (2) is

1Our results still hold if Rashba is replaced by Dresselhaus SOIs.
When both Rashba and Dresselhaus SOIs are present, our scheme
still works if one of them dominates.
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FIG. 1. (a) Setup consisting of a stack of layers arranged in the
xy plane and tunnel coupled along the z axis. The layers colored in
green (orange) denote electron (hole) 2DEGs with Rashba SOI and
at chemical potential μτ . The brightness of the color encodes two
possible values of the Rashba SOI ατ . (b) Dispersion of a 2DEG with
Rashba SOI.

depicted in Fig. 1(b), and the shape of the Fermi surfaces and
the spin orientations in Fig. 2(b).

The setup we consider herein consists of four stacked layers
composing the unit cell, which then periodically repeats in the
z direction with spacing az between layers. Each of the four
layers of the unit cell is labeled by two indices η = ±1 and
τ = ±1. The index η = 1 (η = 1̄) corresponds to an electron
(hole) dispersion relation. The index τ refers to two different
values of the SOI, α1 and α1̄, where without loss of generality
we assume that 0 < α1 < α1̄. The ordering of the layers inside
the unit cell is shown in Fig. 2(a). Two electron layers are
followed by two hole layers as the SOI magnitude ατ alternates
from layer to layer.

The total Hamiltonian of the system is H =∑N
n=1

∫
dxdy Hn(x,y), where N is the total number of unit

cells and the Hamiltonian density is given byHn = Hn0 + Hnt

with Hn0 = ∑
{τ,η=1,1̄} Hnητ , where

Hnητ =
∑
σ,σ ′

�†
nητσ

[
− η�

2

2m0

(
∂2
x + ∂2

y

) + ητμτ

− iτατ (σx∂y − σy∂x)

]
σσ ′

�nητσ ′ . (4)

The electron (hole) annihilation operator �nητσ (r) acts on par-
ticles with spin σ at the position r = (x,y) of the (nητ ) layer.
The chemical potential μτ is calculated from the crossing point
at k = 0 determined by the SOI energy Eso,τ = �

2k2
so,τ /2m0

with the SOI wave vector kso,τ = m0ατ/�
2. The dispersion

relation (for fixed θ ) of each layer is shown in Fig. 2(a) and can
be easily generalized to all directions of k. In the following, we
fix the chemical potentials as μ1 = μ1̄ = Eso,1̄ − Eso,1. This
choice ensures that the interior (exterior) Fermi surfaces have
the same radius kFi = kso,1̄ − kso,1 (kFe = kso,1̄ + kso,1) across
all the layers. Additionally, we need to assume that μτ � t .

The tunneling between the layers is assumed to be spin
independent and takes the following form:

Hnt =
∑

σ 〈τη;n′τ ′η′〉
t�†

nητσ (r)�n′η′τ ′σ (r) + H.c., (5)

where the summation runs over all neighboring layers.

(a)

(b)

FIG. 2. (a) Dispersion relation of each layer for fixed θ . The
chemical potentials μτ are chosen such that inner and outer Fermi
surfaces have the same radii across different layers. The arrows
indicate where the tunneling between the layers opens up gaps (small
green circles). Note that the bottom and top layers stay gapless
and have a dispersion consisting of a single Dirac cone with spin
locked to momentum due to time reversal invariance. (b) Interior and
exterior Fermi surfaces of each layer with the cuts for ky = const.
The fields for interior (exterior) left and right movers Si

nθiητ ,S
i
n[π−θi ]ητ

(Se
nθeητ ,S

e
n[π−θe ]ητ ) have in general different spin orientations.

First, we demonstrate that the top and bottom layers host
gapless modes with a helical Dirac spectrum. For the moment,
we assume that the system is infinite and translationally
invariant in x and y directions and we introduce momenta
kx and ky , which are good quantum numbers. Alternatively,
due to rotation invariance, one can change to polar coordinates
with momenta kr and kθ . This allows us to treat the problem as
effectively one dimensional if the orbital degree of freedom is
integrated out, see Fig. 2. The wave function can be represented
close to the Fermi surface in terms of slowly varying fields
S

e/i

nθητ ,

�nθητσ (x,y) =
∑
δ=e,i

αδθητσ Sδ
nθητ e

ikFδ (x cos θ+y sin θ), (6)
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with the angle θ ∈ [0,2π ), αeθητσ = 〈σ | − τ · η,θ〉 and
αiθητσ = 〈σ |η,θ〉. The kinetic term can be rewritten as

H̃0 = − i�
∑
δ=i,e

nθ ;τ,η=±1

βδηυFτ

(
Sδ

nθητ

)† ∂

∂r
Sδ

nθητ , (7)

where βe = 1 and βi = τ . We also take into account that
the Fermi velocities �υFτ = ∂Eτ/∂k|μτ

are different. The
tunneling terms induce couplings between interior/exterior
Fermi surfaces of different layers,

H̃t =t
∑
nθ

[(
Se

nθ11

)†
Se

nθ 1̄1̄ + (
Se

[n−1]θ 1̄1

)†
Se

nθ11̄

+ (
Si

nθ11̄

)†
Si

nθ11 + (
Si

nθ 1̄1̄

)†
Si

nθ 1̄1

] + H.c. (8)

Here, we keep only nonoscillating terms and take into account
the spin conservation during the tunneling, see Fig. 2(a).
Importantly, all coupling terms in Eq. (8) involve fields with
opposite signs of Fermi velocities and each field, except
for the ones belonging to the top and bottom layers, has a
partner to which it is coupled. This results in the opening of
gaps at the Fermi level such that the bulk spectrum is fully
gapped. However, the exterior Fermi surface field Se

1θ11̄ of the
top-most layer and the interior Fermi surface field Si

Nθ 1̄1 of the
bottom-most layer do not have partners in Eq. (8) and, thus,
stay gapless as all the remaining layers are insulating. As was
noted above, Se

1θ11̄ and Si
Nθ 1̄1 describe the helical Dirac cones

in which spin direction is locked to the momentum direction.
In our case, the spin direction stays always perpendicular to the
momentum, see Fig. 2(b). Such surface states are the hallmark
of a strong 3D TI [2]. The same Hamiltonian H̃t [Eq. (8)]
also occurs in systems with a gradient of SOI from layer to
layer (analogous to the 2D TI in Ref. [17]) and with either
exclusively electron or exclusively hole spectrum in all layers.

Since the rotational symmetry is broken, it is far from
obvious that the surface states exist on any 2D boundary.
To this end, we demonstrate that helical surface states also
exist if a hard-wall boundary is added, say, at the plane
x = 0. To this end we assume that the system is infinite in
y and z directions. Since the system is translation invariant
in the y direction (z direction), ky (kz) is a good quantum
number defined via �kz

= ne
inkza�n/

√
N , where a = 4az is

the unit-cell size. The y dependence of the total wave function
is given trivially as �kykzητσ (x,y) = eikyy�kykzητσ (x). Since
both ky and kz are good quantum numbers the problem is
effectively one dimensional, see Fig. 2(b). To simplify the
problem further, we linearize the motion in the x direction
which is achieved with the ansatz following from Eq. (6),

�kykzητσ (x) =
∑
δ=i,e

θ∈{θδ ,π−θδ }

αδθητσ Sδ
kzθητ (x)eikFδx cos θ , (9)

where Sδ
kzθητ is the Fourier transform of Sδ

nθητ . The above
ansatz [33–35] is valid for ky < kFi and t 
 |Eso,τ − �

2(ky −
τkso,τ̄ )2/2m| with Ey = �

2k2
y/2m0. The angles θi and θe

are defined in Fig. 2(b) or explicitly expressed by cos θδ =√
k2
Fδ − k2

y/kFδ. The spin orientation is determined by αδθητσ

and depends on θδ which in turn depends on ky , see Fig. 2(b).

After performing the above linearization [33–35], we arrive
at the effective Hamiltonian

H̄0 = −i
∑
δ=i,e

�

∑
η,τ=±1

θ∈{θδ ,π−θδ }

βδηυFτ cos θ
(
Sδ

kzθητ

)†
∂xS

δ
kzθητ ,

(10)

H̄t = t
∑

θ∈{θi ,π−θi }

[(
Si

kzθ11̄

)†
Si

kzθi11 + (
Si

kzθ 1̄1̄

)†
Si

kzθi 1̄1

]

+ t
∑

θ∈{θe,π−θe}

[(
Se

kzθ11

)†
Se

kzθ 1̄1̄ + eikza
(
Se

kzθe 1̄1

)†
Se

kzθe11̄

]
+ H.c. (11)

It is readily noticeable from Fig. 2(a) that the Hamiltonian
breaks down into 2 × 2 blocks, formed by the fields coupled
by the tunneling. After inserting the ansatz Sδ

kzθητ (x) ∼ eikδx ,
we arrive at the bulk spectrum around the interior and exterior
Fermi surfaces,

Eδ,± = kδ(υ1 − υ1̄) cos θδ

±
√

4t2 + k2
δ (υ1 + υ1̄)2 cos2 θδ, (12)

where kδ = kx − kFδ cos θδ and δ = e,i. The bulk spectral gap
is given by � = 2t

√
υ1υ1̄/(υ1 + υ1̄). The dispersion relation

is determined by

sin (2�) = ±2 sin(kza/2) cos θe cos θi

cos θe + cos θi

, (13)

and plotted in the Appendix A. We note that E(ky,kz = 0)
is independent of ky , which results in degeneracy. This
degeneracy is due to fact that we only retained resonant
processes in our perturbation analysis [36]. If the problem
is solved numerically (see below), this accidental degeneracy
is lifted except at k = 0, where it is protected by time-reversal
symmetry. Also any perturbation in the chemical potentials
lifts such a degeneracy and one is left with a single anisotropic
Dirac cone. To demonstrate this explicitly, we assume a
detuning δμ of chemical potential in the first layer. For each
value of ky there is a twofold degeneracy which is lifted
by such a perturbation. After performing the perturbation
expansion within the twofold degenerate subspace we arrive
at the following dispersion relation:

E(ky,kz = 0) = δμ

8

(
1 − kFi

kFe

)
ky

kFi

, (14)

where we assumed υ1 = υ1̄ = υ, ky 
 kFi , and t 
 kFiυ, see
Appendix B for details. The system is a strong 3D TI of the
type 1(000).

We finally address the above model numerically and study
the edge states along the yz layer in the tight-binding model
framework with ky and kz being good quantum numbers.
The corresponding tight-binding Hamiltonian is given by
H = ∑

kykzητ H0kykzητ + ∑
kykz

Htkykz
with

H0kykzητ = −
∑
nσ

{
η[t0 cos(kyay) + μτ/2]c†kykzητnσ ckykzητnσ

− ηt0c
†
kykzητ (n+1)σ ckykzητnσ

}
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+ ᾱτ

∑
n

[c†
kykzητ (n−1)1̄ckykzητn1−c

†
kykzητ (n+1)1̄ckykzητn1

+ 2i sin(kyay)c†
kykzητn1̄ckykzητn1] + H.c.,

Htkykz
= t

∑
nσ 〈τη;τ ′η′〉

eiφτητ ′η′ c
†
kykzη′τ ′nσ ckykzητnσ , (15)

where again the last sum runs over neighboring layers and
ᾱτ is the spin-flip hopping amplitude, related to the physical
SOI parameter by ᾱτ = ατ/2ay (assuming ax = ay) and to
the SOI energy by Ēso,τ = ᾱ2

τ /t0 [37–39]. Here, φ1̄111̄ =
−φ11̄1̄1 = kzaz, otherwise, φτητ ′η′ = 0. The lattice constant in
the i direction is ai with i = x,y,z. The operator c

†
kykzητnσ is an

annihilation operator acting on the electron with momentum
ky (kz) in the y (z) direction and with spin σ located at the point
x = nax along the x direction of the ητ layer. Our numerical
results confirm the strong TI phase of the type 1(000), see Fig. 3
and Appendix C. We again observe the single anisotropic Dirac

FIG. 3. (a) Dispersion relation of the surface states (red) localized
in the yz plane as well as bulk states (blue) obtained numerically,
see Eq. (15). At small momenta, the surface states form a single
anisotropic Dirac cone, but merge with the bulk states at large
momenta. b) Spin orientation (red arrows) of the first layer of
the unit cell for a fixed energy E/t0 = −0.03 and at the position
x0 = 3ax away from the left edge. The parameter values assumed are
ᾱ1 = 0.3t0, ᾱ1̄ = 0.55t0, |μ1| = |μ1̄| = 0.2125t0, and t = 0.1t0. The
spin orientation is locked to the momentum direction, confirming the
strong TI phase.

cone, where the accidental degeneracy at kz = 0 described
before is lifted by a slight detuning of the chemical potential
or due to higher-order tunneling terms not taken into account
in the linearized approximation.

III. CONCLUSIONS

We introduced a coupled-layer approach to construct a
strong 3D TI, where the building blocks are nontopological
Rashba 2DEG layers. We showed that the bulk spectrum
becomes gapped, with the gap being proportional to the
tunnel coupling t between the layers—a parameter that can
be experimentally tuned. Additionally, any 2D boundary hosts
gapless helical surface states. We calculated the dispersion
relation of these surface states and found a single Dirac cone at
k = 0, which together with the bulk gap constitutes a hallmark
of a strong 3D TI [2].
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APPENDIX A: DETAILS OF THE
ANALYTICAL CALCULATION

To obtain the spectrum of the surface states we fix the
parameters (including the energy inside the gap) and find the
eight decaying eigenstates of the Hamiltonian. Using Eq. (9),
we express them on the basis of the original fermionic fields
�(x), leading to eight eight-spinor solutions �j (x) with j =
1, . . . ,8, and construct an 8 × 8 Wronskian matrix Wij (x) =
[�j (x)]i . The equation det W (0) = 0 gives the spectrum of the
surface states [36]. We note that for ky �= 0, the interior and
exterior branches have different velocities in the x direction.
After substituting E = � cos � with � ∈ [0,π ] and assuming
θe,θi ∈ [0,π/2) we obtain

det W (0) = υ2e
ikza/2

υ1
[4 sin2(kza/2) cos2 θe cos2 θi

− (cos θe + cos θi)
2 sin2(2�)]. (A1)

Thus, the dispersion from Eq. (13) in the main text, shown in
Fig. 4, is obtained.

APPENDIX B: DETUNING OF THE
CHEMICAL POTENTIAL

In this Appendix we show that any perturbation of the
chemical potential in one of the layers lifts the degeneracy
for kz = 0 which is depicted in Fig. 4. To demonstrate this
explicitly we assume a detuning δμ of chemical potential in
the first layer. For each value of ky there is twofold degeneracy
which is lifted by such a perturbation. After performing the
perturbation expansion in lowest order within the twofold
degenerate subspace we arrive at the following dispersion
relation:

E(ky,kz = 0) = δμf

(
kFe

kF i

,
t

kF iυ

)
ky

kFi

, (B1)

205406-4



FROM COUPLED RASHBA ELECTRON- AND HOLE-GAS . . . PHYSICAL REVIEW B 93, 205406 (2016)

FIG. 4. Dispersion relation of the surface states localized in the
yz plane for kFe/kFi = 3, obtained analytically from Eq. (13) of
the main text with E/� = cos �. We plot ky up to value of 0.9kFi ,
the concrete range of validity of the dispersion depends on the value
of t and is given below Eq. (9).

where we assumed υ1 = υ1̄ = υ and ky 
 kFi . The function
f (x,y) is given by (x > 1)

f (x,y) = (x2 − 1)2

8x[(x2 − 1)2 + 4y(x2 + 1)]

√
1 + 4y2

(x − 1)2

×
√

[2y(x − 1)2 − 4y3]2 + (x + 6y2)2. (B2)

Since our analysis is valid for t 
 kFiυ [we took only resonant
terms into account in Eq. (5)] we can further simplify the
above dispersion by expanding for small t/(kFiυ) and arrive
at Eq. (14).

APPENDIX C: NUMERICAL CALCULATION OF 2D
SURFACE STATES SPECTRUM

In this Appendix we compare our numerical results to
analytical ones and additionally give more details about
the numerical results. Our analytical results are valid for
t 
 |μτ |,Eso,τ , and in this limit we obtain the degeneracy
for kz = 0, see Fig. 4. This degeneracy is lifted linearly in
ky for ky 
 kFi as shown in the main text. Our numerical
tight-binding simulation confirms all these features, see Fig. 5.
Namely, around ky = 0 the degeneracy is linearly lifted
since for the tight-binding model it is very difficult to
tune the sizes of the Fermi surfaces to be the same across
the layers. Additionally, we find that there is a remaining
degeneracy at ky ∼ kFi (kFi ∼ 0.2π/ay for the parameters in
Fig. 5).

We found that increasing the tunnel coupling between the
layers, above the limit where the linearization works t ∼ Eso,1,
the ky = 0 degeneracy gets completely lifted and one obtains
a single Dirac cone at ky = 0, see Fig. 3. Additionally, in

FIG. 5. Dispersion relation of the surface states localized in
the yz plane obtained numerically in the tight-binding model. The
parameters of the system take the following values: ᾱ1 = 0.3t0,
ᾱ1̄ = 0.55t0, |μ1| = |μ1̄| = 0.2125t0, and t = 0.05t0.

Fig. 6(a) [Fig. 6(b)] we plot the cuts kz = 0 [ky = 0] of the
dispersion relation which show that there is no additional
structure inside of the Dirac cone. Figure 6(a) shows the
behavior of the surface states within the whole Brillouin zone
from where it is seen that the dispersion relation curve of the
surface state does not bend down.

FIG. 6. The (a) kz = 0 and (b) ky = 0 cuts of the dispersion
relation of the surface states localized in the yz plane obtained
numerically in the tight-binding model. The parameters of the system
take the following values: ᾱ1 = 0.3t0, ᾱ1̄ = 0.55t0, |μ1| = |μ1̄| =
0.2125t0, and t = 0.1t0.
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