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We theoretically consider the effect of a spatially periodic modulation of the superconducting order parameter
on the formation of Majorana fermions induced by a one-dimensional system with magnetic impurities brought
into close proximity to an s-wave superconductor. When the magnetic exchange energy is larger than the
inter-impurity electron hopping we model the effective system as a chain of coupled Shiba states, while in the
opposite regime, the effective system is accurately described by a quantum wire model. Upon including a spatially
modulated superconducting pairing, we find, for sufficiently large magnetic exchange energy, that the system is
able to support a single pair of Majorana fermions with one Majorana fermion on the left end of the system and
one on the right end. When the modulation of superconductivity is large compared to the magnetic exchange
energy, the Shiba chain returns to a trivially gapped regime while the quantum wire enters a new topological
phase capable of supporting two pairs of Majorana fermions.
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I. INTRODUCTION

The interest in topological properties of physical systems
has increased following the discovery of topological insulators
[1] and superconductors [2,3]. These new phases of matter
have garnered much attention for their exotic physical proper-
ties and prospective use in classical and quantum computation
[4–8]. In particular, one-dimensional topological supercon-
ductors host Majorana fermions (MFs) at their boundaries
with nontopological systems which may be used in nearly
decoherence-free manipulation of quantum bits [9–14].

Recent theoretical [15–20] and experimental [21,22] efforts
have been made to engineer such MFs by placing magnetic
adatoms on the surface of a superconductor. When the
magnetic exchange between an adatom and the quasiparticles
in the bulk superconductor is sufficiently strong, a local Shiba
state [23–25] with energy inside the superconducting gap
is formed. A chain of such adatoms creates many Shiba
states that can hybridize and form a band, which can itself
support zero-energy MFs at the ends of the chain [17,21].
Alternatively, when the magnetic exchange energy is small
compared to the inter-adatom coupling, a one-dimensional
band with helical magnetic order, via the Ruderman-Kittel-
Kasuya-Yosida interaction [18–20], is formed in the adatom
chain itself that, analogously to a one-dimensional quantum
wire with proximity-induced superconductivity [26–28], can
form MFs at the ends of the chain [22].

It is known that magnetic impurities within superconductors
cause a local decrease in the superconducting order parameter
[29–38]. When the exchange energy is of the order the Fermi
energy, the pairing potential can be reduced to zero and even
reverse sign [31,33], forming a local π junction. Away from
the impurity, the superconducting gap returns to the bulk value
described by a power-law dependence with the length scale
set by the Fermi wavelength. Consequently, a chain of such
impurities induces a periodic spatial modulation of the pairing
potential. The effect of such modulation of the superconduc-
tivity strength on the formation of MFs in a chain of spin
impurities has not been studied. In this paper, we address
this in both previously mentioned regimes. When a band of
Shiba states is formed and the interatomic electron hopping
can be neglected [17,39], we find two phases as a function of

the magnetic exchange energy and periodic decrease in pairing
potential: one in which there are no MFs and one in which there
is a single pair of MFs with one on the left end of the system
and one on the right end. Conversely, when the interatomic
electron hopping is larger than the magnetic exchange energy,
the system can support three phases: in addition to the known
trivial phase with no MFs and the topological phase supporting
a single pair of MFs [28], for a sufficiently large amplitude in
the inhomogeneity of the order parameter, two pairs of MFs
can be realized with two (orthogonal) MFs on the left end of
the system and two on the right end.

The paper is organized as follows. In Sec. II, we detail the
Shiba chain model with periodic decrease in superconductivity
that we use to find the MF bound state solutions, allowing us to
qualitatively describe the phase diagram as a function of this
decrease in superconductivity and magnetic exchange energy.
Using the model of a quantum wire in Sec. III, we again
construct the phase diagram, as a function of the same control
parameters by explicitly finding the MF wave functions. We
conclude in the final section, Sec. IV, by considering the
implication on current experimental realizations of magnetic
impurity chains and suggest systems where these effects would
be most pronounced.

II. SHIBA CHAIN MODEL

We begin with the case when the inter-impurity coupling
strength is small compared to the magnetic exchange strength
with the quasiparticles in the superconductor. However, before
we model a chain of magnetic impurities, we recall the
properties of a single magnetic impurity within a conventional
s-wave superconductor. We consider the Hamiltonian [36]

H = ξpτz + �(r)τx − JS · σ δ(r), (1)

where ξp = p2/2m − μ is the dispersion of the quasiparticles
with momentum p and mass m in the normal metal phase, μ is
the chemical potential, and �(r) is the local superconducting
pairing potential at position r. The Pauli matrices τ (σ )
act in Nambu (spin) space in the basis (�↑,�↓,�

†
↓,−�

†
↑)

where �σ (�†
σ ) are the electron creation (annihilation)

operators. Here, J is the magnetic exchange interaction
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strength between the magnetic impurity and the quasiparticles;
S = (cos φ sin θ, sin φ sin θ, cos θ ) is the magnetic moment of
the impurity, treated as a classical variable. We consider a
homogenous pairing potential �0 with a local decrease at
the position of the impurities given by �(r) = �0 − l3�′δ(r)
that models a reduction in the gap by �′ in the volume l3

around the impurity. This model is justified for l � 1/kF ,
which is supported by tight-binding calculations in the regime
where the exchange energy is larger than the Fermi energy.
We can assume that the gap is suppressed on the length
scale determined by the Shiba wave function profile as was
shown in numerical works [29–35,38]. However, we also note
that there could be an interplay between impurities as shown
in Refs. [36,37]. Importantly, the specific profile of the gap
suppression is not as important as its periodicity.

Defining α = πνF JS and α′ = πνF l3�′, where νF is
the density of states at the Fermi energy and S = |S|, one
may show that, when α < α′, there are four in-gap bound
state solutions with wave function at the position of the
impurity r = 0:

ψ+ =
(|↑〉

|↑〉
)

, ψ− = −
(|↓〉

|↓〉
)

,

(2)

χ+ =
(−|↑〉

|↑〉
)

, χ− =
( |↓〉

−|↓〉
)

,

where

|↑〉 =
(

cos θ/2
eiφ sin θ/2

)
, |↓〉 =

(
e−iφ sin θ/2
− cos θ/2

)
. (3)

These bound states have energies E+,+,E+,−,E−,+, and E−,−,
respectively, where

Eσ,τ

�0
= τ

1 − β2
σ,τ

1 + β2
σ,τ

. (4)

Here, τ is the eigenvalue of τx,σ is the eigenvalue of S · σ ,
and βσ,τ = τα′ + σα. When α > α′, the magnetic exchange
energy overcomes the decrease in superconducting order pa-
rameter and there are only two solutions, ψ+ and χ−, to Eq. (5).

Next, to model a chain of such impurities (see Fig. 1), we
consider the Hamiltonian

H = ξpτz + �(r)τx −
N∑

i=1

JiSi · σ δ(ri − r), (5)

where ri are the positions of the N impurities and take
the local decrease in superconductivity as �(r) = �0 −
l3 ∑N

i=1 �′
iδ(ri). In the following we consider identical im-

purities, so that Ji = J, |Si | = S, and �′
i = �′. We consider a

planar helix, θi = π/2, with pitch kh,φi = 2khri , where θi and
φi parametrize the magnetic dipole moment at ri according to
Eq. (3).

The four-component Bogoliubov–de Gennes (BdG) spinor
ψ(ri) with energy E at ri satisfies the coupled equations which
we find following the procedure of Ref. [17]:

ψ(ri) = (αĴisi · σ + α′Ĵiτx)ψ(ri)

+
∑
j �=i

(α�̂ij sj · σ + α′�̂ij τx)ψ(rj ), (6)

ΔΔ0

}a2kha
S

Superconducting Gap

FIG. 1. Schematic of our setup of a chain of helically ordered
magnetic impurities with pitch 2kha and magnetic dipole moment S
on top of a conventional s-wave superconductor with bulk gap �0,
where a is the distance between adjacent impurities. At the point of
each impurity, the superconducting order parameter is locally reduced
by �′.

where si = Si/Si and

Ĵi = E + τx�0√
�2

0 − E2
,

�̂ij =
⎡
⎣ (E + τx�0) sin(kF rij )√

�2
0 − E2

+ τz cos(kF rij )

⎤
⎦e−rij /ξE

kF rij

.

(7)

The distance between impurities at ri and rj is rij = |ri −
rj |, kF (vF ) is the Fermi wave vector (Fermi velocity) of
the superconductor in the normal metal state, and ξE =
�vF /

√
�2

0 − E2 . We only consider the regimes when the
bound states are close to the chemical potential, βσ,τ ≈ ±1, so
that the uncoupled states have energy Eσ,τ ≈ τ�0(1 − |βσ,τ |).
Further, we expand to lowest order in the coupling between
impurity sites 1/kF r .

There are two regimes of the Shiba band model [see Eq. (6)]
accessible in this approximation. When the magnetic exchange
energy is greater than the decrease in superconductivity (α >

α′ but not necessarily α 	 α′), there are only two bands in
the spectrum and, because β+,+ = β−,− ≈ 1, both are near
the chemical potential. When the magnetic exchange energy
is much smaller than the decrease in superconductivity (α 

α′ ≈ 1), there are four bands in the spectrum: two slightly
above the chemical potential at energy with energy difference
2α,E±,+ = �0(1 − α′ ∓ α), and two at −E±,+. We exclude
the regime α < α′, because, although two of the particle-hole
partners will have a energy near the chemical potential, the
other pair will have energy somewhere between the chemical
potential and the gap edge and thus are not captured by our
approximation [40].

When α > α′, while keeping α + α′ ≈ ±1, there are only
two bands within the gap. We construct an effective Hamilto-
nian by projecting Eq. (6) onto the unperturbed eigenspinors
of Eq. (2), ψ+ and χ−, to obtain a 2N × 2N matrix equation,
H eff

1 φ1 = Eφ1 for an N -impurity chain written in the basis
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(ψ+i ,χ−i), where (see Appendix A for some useful identities)

H eff
1 =

(
heff

ij �eff
ij

(�eff
ij )† −heff

ij

)
,

heff
ii = E+,+, �eff

ii = 0,
(8)

heff
ij = −�0

e−rij /ξ0

kF rij

sin(kF rij )〈↑,i|↑,j 〉,

�eff
ij = �0

e−rij /ξ0

kF rij

cos(kF rij )〈↑,i|↓,j 〉,

for i �= j . Here, ψ+i and χ−i (|↑,i〉 and |↓,i〉) are the spinors
defined in Eq. (2) [in Eq. (3)] at ri . After taking the Fourier
transform (see Appendix B) and making a unitary rotation by
π/2 around the x axis in Nambu space, the Hamiltonian takes
the off-diagonal form

Heff
1 = h1τy + �1τx, (9)

with eigenvalues and eigenvectors ε± = ±
√

h2
1 + �2

1 and
(h1 + ε±,�1)T , respectively, where

h1 = �0

kF a
{ln [f (kF + k+)f (kF − k+)

×f (kF + k−)f (kF − k−)]} + �0(1 − α − α′),

�1 = − �0

kF a
�

{
ln

[
f (kF + k+)f (kF − k+)

f (kF + k−)f (kF − k−)

]}
. (10)

f (k) = 1 − exp(−a/ξ0 + iak),k± = k ± kh, and a is the
impurity spacing [42]. Here, �[F (kF ,k±)] = [F (kF ,k±) +
F (−kF ,−k±)]/2 and [F (kF ,k±)] = [F (kF ,k±) − F (−kF ,

−k±)]/2i, which reduce to the real and imaginary parts,
respectively, when k± is real. The zero-energy solutions are
defined by h1 = ±i�1. In order to find the MF solution, we
linearize Eq. (10) around the Dirac points in the continuum
limit 1/a 	 kF ,kh. When kF > kh there are four Dirac points,

k1 = 0, k2 = π/a,
(11)

k3 = −k4 = −
√

k2
F − k2

h.

When kF < kh, there are only two Dirac points, k1 and k2.
We Fourier-transform the linearized Hamiltonian back into
real space and find that the zero-energy eigenvectors are
�±

μ (r) = (±i,1)T eikμr−κ±
μ r , where r = |ri − r0| = ri0 is the

distance away from the left end written as a continuous
variable, and

κ±
1 = ±π

k2
F − k2

h

2kh

, κ±
2 = ±(3 − α − α′)

kF

kha
,

(12)
κ±

3 = κ±
4 = ∓πkh/2.

When kF > kh μ = 1, . . . ,4, while μ = 1,2 when kF < kh, as
there are only two Dirac cones.

In order for a MF to form at the left end of the chain, r = 0,
the wave function must vanish at both infinity, �M (r → ∞) =
0, and the left end, �M (0) = 0. To satisfy the former boundary
condition, one must choose the values of κ±

μ in Eq. (12)
corresponding to exponentially decaying solution. Therefore,
because �+

μ and �−
ν are orthogonal, the latter condition can

be satisfied if and only if two different κ+
μ or κ−

μ have the

same sign, i.e., κ±
μ κ±

ν > 0 for μ �= ν, which is true only when
0 < kh < kF . In this case, we find the Majorana wave function,
up to normalization, to be

�M (r) = eiπ/4[�−
3 (r) − �−

4 (r)], (13)

in agreement with Ref. [39] in the special case that α′ → 0.
One finds a Majorana wave function on the opposite side of
the chain, using an analogous argument, taking �−

μ → �+
μ .

When the decrease in the local superconductivity is much
larger than the magnetic exchange energy, α′ 	 α, while
keeping all uncoupled Shiba energies near the chemical
potential, Eσ,τ ≈ 0, one must use all four solutions of the
uncoupled impurity [Eq. (2)]. Following the same procedure
as with the two-band model, one may show that there are not
MFs possible in this parameter regime. See Appendix C for
technical details.

Collecting our results in a qualitative phase diagram
(Fig. 2), we find that for a hybridized Shiba band to be
in a topologically nontrivial phase the bands must satisfy
three conditions. First, the uncoupled Shiba states must be
approximately within the width of the band (∼�0/kF a)
to the chemical potential, so that some of the bands are
filled and some are empty. Second, the magnetic exchange
energy must be large enough compared to the reduction in
superconductivity, α � α′, so that there are two bands near the
chemical potential. Lastly, kF > kh.

α

α

0

1

1

Nontopological

1/kF a

1 MF

α
α

α
>

α

α
<

α

FIG. 2. Qualitative phase diagram for the helical impurity chain
as modeled by a Shiba band within the bulk superconductor. The
system is able to support a single pair of MFs if the Shiba band is
near the chemical potential (within the bandwidth), α + α′ ≈ 1, the
decrease in superconductivity is smaller than the magnetic exchange
energy, α′ � α, and the pitch of the helix is larger than the Fermi
wavelength, 0 < kh < kF . The gray region cannot be described by
our model. Otherwise, the system is topologically trivial.
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III. QUANTUM WIRE MODEL

In this section, we consider the regime where the magnetic
exchange interaction between the spins of the electrons of
the bulk superconductor with the magnetic atoms forming the
chain is much smaller than the intrachain electron hopping.
The superconductor induces a proximity gap in the chain
of magnetic atoms which, in the ground state, are helically
ordered with pitch twice the Fermi wave vector, 2kF [18–20],
where the Fermi wavelength is now defined by the Fermi level
of the wire. As such, we model the chain as a quantum wire
with a helical magnetic order on top of a superconductor by

H 0 =H kin + HZ + Hsc. (14)

The contributions to the Hamiltonian from the kinetic energy,
magnetic exchange interaction, and proximity induced super-
conductivity are given by

H kin =
∑

σ

∫
dr �†

σ (r)

[
(−i�∂r )2

2m
− μ

]
�σ (r),

HZ = �z

∑
σ,σ ′

∫
dr �†

σ (r)[cos(2kF r)σx

+ sin(2kF r)σy]σσ ′�σ ′(r),

H sc = �0

2

∑
σ,σ ′

∫
dr [�σ (r)(iσy)σσ ′�σ ′(r) + H.c.], (15)

respectively, where m is the effective electron mass, μ is the
chemical potential of the wire, �0 is the uniform proximity
induced superconducting order parameter, and �z is the
splitting energy of two opposite spin directions (as a result
of the magnetic exchange interaction). The operator �σ (�†

σ )
destroys (creates) an electron with spin σ = ↑,↓ and σi are
the Pauli matrices acting on spin space. The Hamiltonian
can be linearized around ±kF by expressing the electron
operators in terms of slowly varying left and right movers
[18,26,28], �σ (r) = Rσ (r)eikF r + Lσ (r)e−ikF r to obtain two
modes, ψr = (R↑,L↓,R

†
↑,L

†
↓) and ψl = (L↑,R↓,L

†
↑,R

†
↓), of

opposite helicity, where ψr and ψl are written in Nambu space.
The components of the Hamiltonian density, H0, defined by

H 0 = 1

2

∫
drψ†H0ψ = 1

2

∫
drψ†(Hkin + Hsc + HZ)ψ,

(16)
reduce to

Hkin = (−i�vF ∂r )σz ⊗ 1 ⊗ ρz,

HZ = �zσx ⊗ ηz ⊗ (1 + ρz)/2, (17)

Hsc = �0σy ⊗ ηy ⊗ 1,

after dropping all fast-oscillating modes where ψ = (ψr,ψl)
and vF is the Fermi velocity. Here, ηi and ρi are the Pauli
matrices acting in Nambu space and mode space (e.g., ρx

exchanges ψr and ψl), respectively; ψr and ψl are uncoupled
by H0.

If the superconducting order parameter is not uniform,
we include a spatial modulation of �̃. One may show that
after dropping fast-oscillating modes, the only additional
contribution to the Hamiltonian, HI = (1/2)

∫
dr ψ†HIψ ,

is modulation of the superconducting order with wavelength

λF /2,

HI = �′σy ⊗ ηy ⊗ ρx, (18)

where �′ is the amplitude of the Fourier mode of �̃ at 2kF ; HI

mixes the modes ψr and ψl . Although the Fourier mode, �̃, is
largest when the position dependence of the superconducting
order parameter is harmonic, any periodic decrease of the gap
will contribute a finite �′, independent of shape.

The bulk spectrum of the Hamiltonian is given by

E2
σσ ′ = (�vF k)2 + �2

0 + �′2 + (�0 + σ�z/2)2 + (�z/2)2

+ 4σ ′
√

(�vF k�′)2 + (�0 + σ�z/2)2(�′2 + �2
z/4).

(19)

The eight eigenstates of H with zero energy, Eσσ ′ = 0, after
transforming to the electron-hole basis, (�↑,�↓,�

†
↑,�

†
↓), and

dropping fast-oscillating terms, can be written as �±
i (r) =

χ±
i exp(−κ±

i r) (see Appendix D) where i = 1 . . . 4 and

�vF κ±
1 = − 1

2 [�z ±
√

(�z − 2�0)2 − 4�′2],

�vF κ±
2 = − 1

2 [−�z ±
√

(�z + 2�0)2 − 4�′2],
(20)

�vF κ±
3 = − 1

2 [−�z ±
√

(�z − 2�0)2 − 4�′2],

�vF κ±
4 = − 1

2 [�z ±
√

(�z + 2�0)2 − 4�′2].

As in the previous section, our goal is to construct a MF
wave function that satisfies the boundary conditions. Our
strategy is to identify the zero-energy solutions that decay
exponentially with increasing r; the sign of the real part of the
wave vectors in Eq. (20) changes as κ±

i goes through zero as a
function of the parameters �z,�0, and �′. One may see from
Eq. (20) that this happens when �z = |�2

0 − �′|2/�0 wherein
the gap closes and there is a change in the topological phase.

When 0 � �z < (�2
0 − �′2)/�0, the solutions that decay

exponentially are �−
1 ,�−

2 ,�−
3 , and �−

4 . However, because
�±

i (r) are mutually orthogonal for any value of r , one cannot
form a MF that satisfies the boundary condition at the wire end
and therefore this phase defined by that boundary is trivial.

If �z > |�2
0 − �′2|/�0, the decaying solutions are

�−
2 ,�+

3 ,�−
3 , and �−

4 . We find one MF wave function satisfying
the boundary conditions:

�M
1 (r) = i[(�vF κ−

3 − �0 + �′)�+
3 (r)

− (�vF κ+
3 − �0 + �′)�−

3 (r)]. (21)

Therefore, this region is topologically nontrivial. When �′ =
0, the solution and topological criteria (�z > �0) reduce to
the result found in Ref. [28].

When 0 < �z < (�′2 − �2
0)/�0, the decaying solutions

are �+
2 ,�−

2 ,�+
3 , and �−

3 . We find, in addition to the MF already
constructed, �M

1 (r), another MF at the same end

�M
2 (r) = i[(�vF κ−

2 + �0 − �′)�+
2 (r)

− (�vF κ+
2 + �0 − �′)�−

2 (r)]. (22)

In this regime �′ > |�0 ± �z|, so that κi acquire an imaginary
part and the decay length of the MF solutions is set by 1/�z.
That is, the gap in the single-MF phase, 1/�vF κ+

3 , is always
larger than that in the two-MF phase, where the gap is �z.
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Δ

Δz0

Δ
z > (Δ 2

0 −Δ 2)/Δ
0

Δ
z < (Δ 2

0 −Δ 2)/Δ
0

Δz
< (Δ

2 − Δ
2
0
)/Δ0

Δz
> (Δ

2 − Δ
2
0
)/Δ0

Nontopological

1 MF

2 MFs

Δ
z

=
Δ

0

Δ = Δ0

FIG. 3. Qualitative phase diagram for the helical impurity chain
as modeled by a quantum wire with proximity induced supercon-
ductivity as a function of control parameters �′ and �z in units
of �0 �= 0. In the parameter regimes 0 � �z < (�2

0 − �′2)/�0 the
system is nontopological, while when �z > |�2

0 − �′2|/�0 and
0 < �z < (�′2 − �2

0)/�0 the system supports one and two pairs of
MFs, respectively. When �z = 0 and �′ > �0, although two-MF
solutions can be found, the system is gapless and thus the MFs are
not localized states.

If 0 = �z < (�′2 − �2
0)/�0 we may still construct two-MF

solutions satisfying the boundary conditions but they are
delocalized; i.e., the decay length is infinite. Although �M

1 and
�M

2 are orthogonal, there is no inherent symmetry in the system
that prevents two MFs at the same end from splitting; e.g., they
are not Kramers pairs protected by time-reversal symmetry
[43–50]. One may show that an infinitesimal deviation away
from a planar helix will split the MF energies away from zero.
If this deviation is small, which is expected for systems with
large anisotropy, the splitting is negligible and the energy of
the two pairs of MFs remains within the gap [51].

Our results are summarized as a phase diagram (Fig. 3) as
a function of �′ and �z > 0, fixing �0 �= 0. For a sufficiently
small magnetic field and decrease in superconductivity, the
system is a conventional s-wave superconductor and therefore
has no MFs. When �0�z is larger than the difference in
squares of �0 and �′, the system is in the known phase of
the one-dimensional topological superconductor supporting
a single pair of MFs [28]. Finally, when �′ is larger than the
superconducting gap in the bulk and the magnetic exchange en-
ergy is sufficiently small but finite, 0 < �z < (�′2 − �2

0)/�0,
we find that the system is capable of supporting two pairs of
MFs, with two MFs on the left end of the system and two on
the right end.

When �z < 0 the topological conditions of the zero, one,
and two MF phases are analogous upon replacing �z → −�z.
The MF solutions that satisfy the boundary conditions at r = 0

and infinity become

�̃M
1 (r) = i[(�vF κ−

4 − �0 + �′)�+
4 (r)

− (�vF κ+
4 − �0 + �′)�−

4 (r)],

�̃M
2 (r) = i[(�vF κ−

1 − �0 + �′)�+
1 (r)

− (�vF κ+
1 − �0 + �′)�−

1 (r)]. (23)

Thus, we may extend the phase diagram in Fig. 3 to negative
values of the magnetic field with analogous boundaries and the
same number of MFs as in the positive magnetic field regime.

A few comments are in order regarding the topological
characterization of our Hamiltonian and end states. One may
show that the total Hamiltonian, H0 + HI , is invariant under
the the (pseudo-)time-reversal operation T and particle-hole
symmetry C defined by U

†
T (H ∗)UT = H and U

†
C(H ∗)UC =

−H , respectively. Because the matrices UT = σx ⊗ ηz ⊗ 1
and UC = σz ⊗ 1 ⊗ 1 satisfy the property U ∗

T UT = U ∗
CUC ,

this Hamiltonian is in the BDI topological class [53] of
Hamiltonians. One may further show that �M

1 (r) [�̃M
1 (r)]

and �M
2 (r) [�̃M

2 (r)] are eigenvectors of the operator UCUT K ,
where K denotes complex conjugation, with eigenvalue −i

(i). Therefore the nontrivial topological phases when �z > 0
have opposite topological number from those when �z < 0.
This suggests a strong analogy with other models such as the
Shiba impurity regime in the presence of spin-orbit interaction
[54] or semiconducting-superconducting Rashba nanowires in
in the presence of magnetic fields [55–57], which fall into
the same topological symmetry class and support the same
topological numbers as our model.

IV. CONCLUSIONS

We have studied a chain of helically ordered magnetic
impurities on a conventional s-wave superconductor, including
a periodic spatial decrease in the proximity induced super-
conducting order parameter: first, when the band is formed
by adjacent Shiba states within the bulk superconductor
(Sec. II), and second, when the band is formed within the
one-dimensional atomic chain with induced superconductivity
(Sec. III). In both cases, if the magnetic exchange energy and
the decrease in superconductivity are small compared to the
bulk superconducting gap, then the systems are topologically
trivial. Also for both scenarios, when the magnetic exchange
energy is much larger than both the bulk superconductivity
and local decrease in superconductivity, the system is able to
support one pair of MFs. However, when the local suppression
of the superconducting order parameter is large, comparable
to the bulk order parameter itself, then the two models differ:
for the Shiba band there are no MFs while in the quantum
wire regime there are two pairs of MFs. A numerical study
of these systems using a tight-binding model could provide a
continuous map between the Shiba and quantum wire regimes,
but this is beyond the scope of our analysis.

For many experimental setups where magnetic adatoms
are placed on the surface [21,22], the magnetic exchange
interaction cannot generate a large enough decrease in
superconducting order to move away from the single MF
pair topological phase [29–38]. Alternatively, we propose an
experimental setup to observe two pairs of MFs wherein a
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quantum wire is placed on top of a bulk superconductor with
spatially alternating 0-π phase along the direction of the wire
[58–60]. Perhaps the simplest realization of such a system
is to make a two-dimensional superconductor-ferromagnet-
superconductor junction with periodically varying thickness
of the ferromagnetic layer. By grounding one superconductor,
the other will have a spatially alternating 0-π phase according
to the period of change in thickness of the ferromagnetic layer.
A quantum wire on top of such a superconductor inherits this
phase, due to proximity induced superconductivity. Because,
for our purpose, a π phase is effectively a decrease in the
superconducting order by twice the the bulk value, we expect
that in such an experimental setup, for sufficiently small
magnetic exchange interaction, one may detect two MFs at
a single end of the wire.
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APPENDIX A: SHIBA EIGENVECTOR IDENTITIES

The solutions to Eq. (5) satisfy a number of identities, which
for completeness we list here:

sj · σ |ψσ/χσ ,j 〉 = σ |ψσ/χσ ,j 〉,
iτy |ψσ ,j 〉 = −|χσ ,j 〉, iτy |χσ ,j 〉 = |ψσ ,j 〉, (A1)

τz|ψσ ,j 〉 = −|χσ ,j 〉, τz|χσ ,j 〉 = −|ψσ ,j 〉,
and

〈ψ+,i|ψ+,j 〉 = 〈↑,i|↑,j 〉 = cos(θi/2) cos(θj /2)

+ eiφj −iφi sin(θi/2) sin(θj /2),

〈ψ−,i|ψ−,j 〉 = 〈↓,i|↓,j 〉 = eiφi−iφj sin(θi/2) sin(θj /2)

+ cos(θi/2) cos(θj /2),

〈ψ+,i|ψ−,j 〉 =−〈↑,i|↓,j 〉 = −e−iφi sin(θi/2) cos(θj /2)

+ e−iφj sin(θj /2) cos(θi/2),

〈ψ−,i|ψ+,j 〉 = − 〈↓,i|↑,j 〉 = −eiφj sin(θj /2) cos(θi/2)

+ eiφi sin(θi/2) cos(θj /2),

〈ψσ ,i|χσ ′ ,j 〉 = 0. (A2)

We perform a unitary rotation[17] to obtain the more
convenient form

〈↑,i|↑,j 〉 = e(iφi−iφj )/2 cos(θi/2) cos(θj /2)

+ e−(iφi−iφj )/2 sin(θi/2) sin(θj /2),

〈↓,i|↓,j 〉 = e(iφi−iφj )/2 sin(θi/2) sin(θj /2)

+ e−(iφi−iφj )/2 cos(θi/2) cos(θj /2),

〈↑,i|↓,j 〉 = − e−(iφi−iφj )/2 sin(θi/2) cos(θj /2)

+ e(iφi−iφj )/2 sin(θj /2) cos(θi/2),

〈↓,i|↑,j 〉 = − e−(iφi−iφj )/2 sin(θj /2) cos(θi/2)

+ e(iφi−iφj )/2 sin(θi/2) cos(θj /2), (A3)

which is, written in terms of the helix wave vector, kh,

〈↑,i|↑,j 〉 = eikhxij cos2(θ/2) + e−ikhxij sin2(θ/2),

〈↓,i|↓,j 〉 = eikhxij sin2(θ/2) + e−ikhxij cos2(θ/2),

〈↑,i|↓,j 〉 = −e−ikhxij sin θ + eikhxij sin θ = 2i sin θ sin khxij ,

〈↓,i|↑,j 〉 = −e−ikhxij sin θ + eikhxij sin θ = 2i sin θ sin khxij ,

(A4)

where xij = (i − j )a.

APPENDIX B: FOURIER TRANSFORM

We would like to Fourier-transform the spatially dependent
quantities found in Sec. II. For a planar helical spin texture,
the entries in Eq. (8) and Eq. (C1) can, in general, be written
as

e−rij /ξε

kF rij

Aσ (eikF rij + σe−ikF rij )(eikhxij + σ ′e−ikhxij ), (B1)

using the identities from the Appendix A. Performing a Fourier
transform, we find

∞∑
j=−∞

e−rij /ξε

kF rij

eikxij Aσ (eikF rij + σe−ikF rij )(eikhxij + σ ′e−ikhxij )

=
∞∑

j=1

e−aj/ξε

kF aj
Aσ (eikF aj + σe−ikF aj )[eikaj

× (eikhaj + σ ′e−ikhaj ) + e−ikaj (e−ikhaj + σ ′eikhaj )]

=
∞∑

j=1

e−aj/ξε

kF aj
Aσ (eikF aj + σe−ikF aj )

× [(eik+aj + e−ik+aj ) + σ ′(eik−aj + e−ik−aj )]

=
∞∑

j=1

e−aj/ξε

kF aj
�/{[ei(kF +k+)aj + ei(kF −k+)aj ]

+ σ ′[ei(kF +k−)aj + ei(kF −k−)aj ]}

= − 1

kF a
�/ ln[f (kF + k+)f (kF − k+)

× f (kF + k−)σ
′
f (kF − k−)σ

′
], (B2)

where Aσ = 1/2i(1−σ )/2, k± = k ± kh,�[F (kF , k±)] =
[F (kF , k±)+F (−kF ,−k±)]/2{[F (kF , k±)]=[F (kF , k±) −
F (−kF ,−k±)]/2i} corresponds to σ = 1 (σ = −1),
f (k) = 1 − exp(−a/ξε + ika), and we have used the
summation

∞∑
j=1

xj

j
= − ln(1 − x), (B3)

for |x| < 1.
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APPENDIX C: α′ � α SHIBA BAND

Projecting Eq. (6) onto the four bands, we obtain a 4N ×
4N matrix equation, H eff

2 φ2 = Eφ2 with

H eff
2 =

(
h̄eff

ij �̄eff
ij

�̄eff
ij −h̄eff

ij

)
(C1)

in the basis (ψ+i ,ψ−i ,χ−i ,χ+i), where (see Appendix A)

h̄eff
ii = �0

(
1 − α − α′ 0

0 1 + α − α′

)
, �̄eff

ii = 0, (C2)

and

h̄eff
ij = �0

e−rij /ξε

kF rij

sin(kF rij )

(−〈↑,i|↑,j 〉 〈↑,i|↓,j 〉
〈↓,i|↑,j 〉 −〈↓,i|↓,j 〉

)
,

�̄eff
ij = �0

e−rij /ξε

kF rij

cos(kF rij )

( 〈↑,i|↓,j 〉 −〈↑,i|↑,j 〉
−〈↓,i|↓,j 〉 〈↓,i|↑,j 〉

)
,

(C3)

for i �= j . Upon Fourier transforming (see Appendix B), we
obtain a 4 × 4 matrix

Heff
2 = τz ⊗ (h11 + h2σx + �zσz) + τx ⊗ (�11 + �2σx),

(C4)

where

h2 = − �0

kF a

{

ln

[
f (kF + k+)f (kF − k+)

f (kF + k−)f (kF − k−)

]}
,

�2 = �0

kF a
�{ln[f (kF + k+)f (kF − k+)

× f (kF + k−)f (kF − k−)]},
�z = − α�0. (C5)

�1 is as in Eq. (10) while h1 is as in Eq. (10) after taking
α = 0. The eigenvalues of this matrix are

ε2
± = h2

1 + h2
2 + �2

1 + �2
2

+ �2
z ± 2

√
(h1h2 + �1�2)2 + �2

z

(
h2

1 + �2
2

)
. (C6)

Because α 
 1, we take �z = 0, wherein the zero-energy
eigenvectors are (0,0, ± 1,1)e−ik±

ν r−κ±
ν r , where ν = 5,6, when

1/a 	 kF ,kh and the condition on k, so that ε± = 0, simplifies
to h1 − i�1 = ∓(h2 − i�2). In the small-spacing limit, we
find four Dirac points at

k±
5 = −k∓

6 = ±kh + π/3a (C7)

with decays

κ±
5 = −κ±

6 = kF

2 + (1 − α′)

2
√

3
. (C8)

Applying the same argument as in the two-band model,
because κ±

5 κ±
6 < 0, we cannot construct a MF that satisfies

the boundary conditions.

APPENDIX D: QUANTUM-WIRE ZERO-ENERGY WAVE FUNCTIONS

The full 8 × 8 Hamiltonian density, H = H0 + HI , from Sec. III is, in matrix form,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−i�vF ∂r �z 0 −�s 0 0 0 −eiθ�′

�z i�vF ∂r �s 0 0 0 e−iθ�′ 0
0 �s −i�vF ∂r −�z 0 e−iθ�′ 0 0

−�s 0 −�z i�vF ∂r −eiθ�′ 0 0 0
0 0 0 −e−iθ�′ i�vF ∂r 0 0 −�s

0 0 eiθ�′ 0 0 −i�vF ∂r �s 0
0 eiθ�′ 0 0 0 �s i�vF ∂r 0

−e−iθ�′ 0 0 0 −�s 0 0 −i�vF ∂r

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(D1)

with eight zero-energy solutions

φ1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i
�0+�vF κ±

1
�′

−�0+�vF κ±
1

�′

−i
�0+�vF κ±

1
�′

−�0+�vF κ±
1

�′

−i

1

i

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e−κ±
1 r , φ2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i
�0+�vF κ±

2
�′

�0+�vF κ±
2

�′

−i
�0+�vF κ±

2
�′

�0+�vF κ±
2

�′

i

1

−i

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e−κ±
2 r , φ3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−i
�0−�vF κ±

3
�′

−�0−�vF κ±
3

�′

i
�0−�vF κ±

3
�′

−�0−�vF κ±
3

�′

i

1

−i

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e−κ±
3 r , φ4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−i
�0−�vF κ±

4
�′

�0−�vF κ±
4

�′

i
�0−�vF κ±

4
�′

�0−�vF κ±
4

�′

−i

1

i

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e−κ±
4 r ,

(D2)
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in the basis (R↑,L↓,R
†
↑,L

†
↓,L↑,R↓,L

†
↑,R

†
↓). Upon transforming from the basis of the left-right moving operators to the electron-

hole operators (�↑,�↓,�
†
↑,�

†
↓) and dropping fast-oscillating terms, we find the solutions given in Eq. (D2) to become

�±
1 =

⎡
⎢⎢⎣−�vF κ±

1 + �0

�′

⎛
⎜⎜⎝

−ie−ikF r

eikF r

ieikF r

e−ikF r

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

−ieikF r

e−ikF r

ie−ikF r

eikF r

⎞
⎟⎟⎠

⎤
⎥⎥⎦e−κ±

1 r ,

�±
2 =

⎡
⎢⎢⎣−�vF κ±

2 + �0

�′

⎛
⎜⎜⎝

e−ikF r

−ieikF r

eikF r

ie−ikF r

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

eikF r

−ie−ikF r

e−ikF r

ieikF r

⎞
⎟⎟⎠

⎤
⎥⎥⎦e−κ±

2 r ,

(D3)

�±
3 =

⎡
⎢⎢⎣−�vF κ±

3 + �0

�′

⎛
⎜⎜⎝

−ie−ikF r

−eikF r

ieikF r

−e−ikF r

⎞
⎟⎟⎠ −

⎛
⎜⎜⎝

−ieikF r

−e−ikF r

ie−ikF r

−eikF r

⎞
⎟⎟⎠

⎤
⎥⎥⎦e−κ±

3 r ,

�±
4 =

⎡
⎢⎢⎣−�vF κ±

4 + �0

�′

⎛
⎜⎜⎝

e−ikF r

ieikF r

eikF r

−ie−ikF r

⎞
⎟⎟⎠ −

⎛
⎜⎜⎝

eikF r

ie−ikF r

e−ikF r

−ieikF r

⎞
⎟⎟⎠

⎤
⎥⎥⎦e−κ±

4 r ,

respectively.
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