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We analyze effects of the hyperfine interaction on electric dipole spin resonance when the amplitude of
the quantum-dot motion becomes comparable or larger than the quantum dot’s size. Away from the well-
known small-drive regime, the important role played by transverse nuclear fluctuations leads to a Gaussian
decay with characteristic dependence on drive strength and detuning. A characterization of spin-flip gate
fidelity, in the presence of such additional drive-dependent dephasing, shows that vanishingly small errors
can still be achieved at sufficiently large amplitudes. Based on our theory, we analyze recent electric dipole
spin resonance experiments relying on spin-orbit interactions or the slanting field of a micromagnet. We
find that such experiments are already in a regime with significant effects of transverse nuclear fluctuations
and the form of decay of the Rabi oscillations can be reproduced well by our theory.

DOI: 10.1103/PhysRevLett.116.066806

Introduction.—The interest in coherent manipulation of
single electron spins has stimulated intense research efforts,
leading to a great degree of control in a variety of nano-
structures [1,2]. For electrons in quantum dots, electron
spin resonance (ESR) was first demonstrated in Ref. [3].
However, full electric control of local spins might be a
better strategy for complex architectures of many quantum
dots, envisioned to realize quantum information processing
[4]. Thus, electric dipole spin resonance (EDSR) was
developed relying on either spin-orbit couplings [5,6] or
the inhomogeneous magnetic field induced by a micro-
magnet [7,8]. The effectiveness of EDSR is highlighted by
recent experiments, which could demonstrate Rabi oscil-
lations with frequencies larger than 100 MHz for both
approaches [9,10]. To further improve the performance of
such spin manipulation schemes, it is important to char-
acterize relevant dephasing mechanisms, and especially
those which might become dominant at a strong electric
drive. In fact, while representing the main limitation for
accurate spin manipulation, dephasing is still poorly under-
stood in the large-amplitude regime of EDSR.
As we will show, one of the reasons is that the strong

drive induces profound modifications on how typical
dephasing mechanisms affect EDSR, and here we will
focus on hyperfine interactions, which are well known to
play an important role in the electron spin dynamics of
quantum dots. In particular, the ESR dephasing was
successfully interpreted in terms of a static Overhauser
field, with a variance of a few millitesla in GaAs [3]. The
resulting power-law decay and a universal π=4 phase shift
of the Rabi oscillations were accurately verified [11],
confirming the predominance of nuclear spins over other
sources of dephasing. While EDSR experiments were also
generally interpreted assuming a power-law decay, the

expected t−1=2 dependence is violated at the larger values
of the drive [9,10,12]. Specifically, Ref. [10] has demon-
strated striking deviations from the ESR behavior, includ-
ing a crossover from power-law to Gaussian decay. It is also
generally known that the electron motion, as well as the
presence of the drive, can have substantial effects on spin
dynamics and decoherence [13–17], which motivates us to
provide a detailed characterization of EDSR dephasing
induced by the hyperfine interaction, paying special atten-
tion to the regime of large amplitude (i.e., comparable to the
quantum dot’s size). Since a main objective behind trying to
achieve faster Rabi frequencies is to decrease operation
errors, we also establish the limitations on spin-flip gate
fidelity imposed on EDSR by the hyperfine interaction.
Finally, we compare our theory with EDSR experiments
which, as we will discuss, have very recently entered the
large-amplitude regime.
Model.—EDSR is induced by a driven periodic displace-

ment of the quantum dot ~RðtÞ ¼ êxδR sinωt, which we
take conventionally along x. For the time-dependent wave
function ψ(~r − ~RðtÞ), we assume harmonic confinement
along the direction of motion (which is applicable to both
nanowire and lateral quantum dots):

jψð~rÞj2 ¼ jφðy; zÞj2 1ffiffiffi
π

p
δx

e−x
2=δx2 : ð1Þ

The spin dynamics can be described with the following
Hamiltonian:

H ¼ ϵz
2
σz þ

~b · ~σ
2

sinωtþ
X
i

Ai

n0
jψ(~ri − ~RðtÞ)j2~σ · ~Ii;

ð2Þ
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where the first term is the electron Zeeman coupling, with
ϵz ¼ gμBB and ~σ being the Pauli matrices. The second term
is the drive, for which we can generally assume b ∝ δR,
while other features (e.g., the direction of ~b) depend on
specific details of the spin-orbit coupling or magnetic
gradient. The last term in Eq. (2) is the Fermi contact
hyperfine interaction, where n0 is the nuclear density. ~Ii
is the spin operator of nucleus i, with position ~ri
and coupling Ai. The periodic time dependence of
Eq. (2) is characterized by Fourier components ψmð~rÞ ¼
ðω=2πÞ R 2π=ω

0 jψ(~r − ~RðtÞ)j2e−imωtdt, of which only the
static (m ¼ 0) and resonant (m ¼ �1) ones are of interest
here. In fact, in a frame rotating at frequency ω≃ ϵz=ℏ and
neglecting fast oscillating terms, the transformed
Hamiltonian H0 reads

H0 ≃ ϵz − ℏω
2

σz −
1

4
ð~b × ~σÞz

þ
X
i

Ai

n0
½ψ0ð~riÞσzIi;z þ iψ1ð~riÞð~σ × ~IiÞz�; ð3Þ

where longitudinal and transverse fluctuations are con-
trolled by ψ0ð~rÞ and ψ1ð~rÞ, respectively. Without loss of
generality, we restrict ourselves to the case bx ¼ bz ¼ 0
[18]:

H0 ¼ Δ
2
σz þ

b
4
σx þ

1

2
~h · ~σ; ð4Þ

where Δ ¼ ϵz − ℏω is the detuning and ~h is defined by the
second line of Eq. (3).
Nuclear fluctuations.—On the relatively short time

scales of the EDSR experiments, it is appropriate to

describe ~h with a static random classical magnetic field.
In the lab frame and for infinite-temperature nuclear spins,
the variance of the Overhauser field is given by

σ2 ¼ P
ið2Ai=n0Þ2jψð~riÞj4IiðIi þ 1Þ=3. However, ~h is for

a reference frame moving with the dot and rotating at
frequency ω. As a consequence, its statistical properties

differ from the ones in the lab frame. We still have h~hi ¼ 0,
but Eq. (3) implies that hh2zi and hh2x;yi have an interesting
dependence on the strength of the drive. For finite δR and
jψð~rÞj2, as in Eq. (1), we can evaluate hh2zi and hh2x;yi as
follows, in terms of hypergeometric functions:

δhz ¼
ffiffiffiffiffiffiffiffiffi
hh2zi

p
σ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pFq

�
1

2
;
1

2
; 1; 1;−

2δR2

δx2

�s
; ð5Þ

δhxy ¼
ffiffiffiffiffiffiffiffiffiffiffi
hh2x;yi

q
σ

¼ 1

2

δR
δx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pFq

�
3

2
;
3

2
; 2; 3;−

2δR2

δx2

�s
: ð6Þ

In the above formulas, the only dependence is on δR=δx, i.e.,
the amplitude of motion relative to the width of the electron
wave function. δhz and δhxy are plotted in Fig. 1(a), showing

that, for δR → 0, only the longitudinal fluctuations sur-
vive. Therefore, in this limit one recovers the same
behavior of ESR. At a finite δR=δx, the value of δhz is
a decreasing function of amplitude, while the transverse
fluctuations become nonzero and have a nonmonotonic
dependence on δR=δx. Such transverse fluctuations can
serve at b ¼ 0 as a driving term [13], and in this context
they were previously discussed through an expansion at
small δR [14] or numerical evaluation [15]. However, both
scenarios of EDSR (i.e., based on a micromagnet or spin-
orbit coupling) are in a physical regime distinct from
Refs. [13–15] because δhxy is typically much smaller than
the drive b. To see this, we notice that Eq. (6) implies
δhxy < 1

2
δR=δx; thus,

hx;y
b

∼
σδhxy
b

<
δR=δx
2b=σ

¼ η

2
≪ 1: ð7Þ

In Eq. (7) we defined the useful parameter η ¼ σδR=bδx. η
is approximately constant (since b ∝ δR) and is typically
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FIG. 1. (a) Plot of Eqs. (5) and (6), which characterize the
longitudinal and transverse nuclear fluctuations (upper and lower
curves, respectively). (b) Numerical result for the Rabi oscil-
lations P↓ðtÞ, averaged over nuclear fluctuations (the thick blue
curves). We used η ¼ 0.05, Δ ¼ 0, and δR=δx ¼ 0.1; 0.2;…; 0.6
(from bottom to top). For clarity, the curves are shifted vertically.
The red dashed curves are the asymptotic power-law decay of
Ref. [11], valid when δR=δx≲ ffiffiffiffiffi

2η
p ¼ 0.3. The thin gray curves

are from Eq. (9). (c) Plot of Eq. (12). Dots are decay times from
Ref. [10], rescaled using T�

2 ≃ 9 ns and η≃ 0.09. (d) Error in
realizing a π rotation, plotted as a function of δR=δx at η ¼
0.01; 0.03; 0.05 (from bottom to top). Numerical results (the thick
solid lines) are compared to the asymptotic result (the thick
dashed lines) and the upper bound (the thin red lines) given in
Eq. (13) [19]. The thin red lines also practically coincide with the
ESR result, as seen by taking δhz ¼ 1 and δhxy ¼ 0 in Eq. (13).
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small, according to our later estimates. Therefore, trans-
verse nuclear fluctuations provide an additional dephasing
mechanism which becomes progressively more important,
until the maximum effect is reached at δR=δx≃ 1.8. We
will discuss how the effect of δhxy becomes dominant over
δhz in a regime of a sufficiently strong EDSR drive, which
was already realized in recent experiments [10].
Rabi oscillations.—We now use Eqs. (5) and (6) to

perform a Gaussian average P↓ðtÞ with respect to ~h of the
spin-flip probability P↓ðtÞ:

P↓ðtÞ ¼
ðb=2þhxÞ2þh2y

ðb=2þhxÞ2þh2y þðΔþhzÞ2

×sin2
�

t
2ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb=2þhxÞ2þh2yþðΔþhzÞ2

q �
: ð8Þ

Although we cannot provide a general closed-form result,
several relevant features can be explicitly characterized. In
particular, at sufficiently large drive and detuning, we
can neglect the components of ~h perpendicular to
ðb=2Þêx þ Δêz [see Eq. (4)] to obtain

P↓ðtÞ≃ b2=2
b2 þ 4Δ2

�
1 − e−ðt=TRÞ2 cos

�
t
ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2=4þ Δ2

q ��
:

ð9Þ

The Rabi decay time is

TRðΔÞ ¼
�

T�
2

δhxy

�
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 4Δ2

b2 þ 4Δ2ðδhz=δhxyÞ2
s

; ð10Þ

with T�
2 ¼

ffiffiffi
2

p
ℏ=σ being the typical inhomogeneous

dephasing time associated with nuclear spins.
Equation (9) implies a crossover between the ESR
power-law decay at weak drive to the Gaussian decay of
the strong-drive regime.
To exemplify this behavior, we first consider the resonant

condition (Δ ¼ 0) when, besides δR=δx, the form of the
decay is determined by T�

2 and the coefficient η. An
example of numerical results for P↓ðtÞ is shown in
Fig. 1(b), assuming η ¼ 0.05. We confirm that the ESR
power-law decay [3,11] is recovered when δR=δx → 0, but
significant deviations from this known dependence appear
at a larger strength of the drive. In the large-drive limit, we
find a Gaussian decay with no universal π=4 phase shift, as
Eq. (9) becomes an excellent approximation. This cross-
over to the strong-drive regime occurs when the effect of hx
in Eq. (8) becomes dominant over hz, i.e., bhx ≫ h2z . We
estimate the typical values of hx; hz using the limit of
δhxy; δhz at small δR=δx (which is justified if η ≪ 1), i.e.,
hx ∼ 1

2
σδR=δx and hz ∼ σ. This yields the condition

δR
δx

≳ ffiffiffiffiffi
2η

p
; ð11Þ

in good agreement with the numerical results of Fig. 1(b).
Of special interest is the decay time scale:

TRðΔ ¼ 0Þ ¼ T�
2

δhxy
; ð12Þ

which follows simply from Eq. (10) and is plotted in
Fig. 1(c). The increasing strength of δhxy with the drive
leads to a significantly faster decay, as also seen in the time
domain results of Fig. 1(b). However, it is important to note
that the fidelity of the π rotation grows monotonically with
δR, as shown in Fig. 1(d). For a quantitative analysis, we set
t ¼ 2πℏ=b in Eq. (8) and perform an expansion up to
second order in ~h. After statistical averaging, we have

1 −max½P↓ðtÞ�≃ η2ð4δh2z þ π2δh2xyÞ
ðδR=δxÞ2 <

4.1η2

ðδR=δxÞ2 : ð13Þ

Equation (13) includes a contribution proportional to δh2xy,
but the additional dephasing from transverse fluctuations is
more than compensated by the decrease of δh2z and the
faster Rabi frequency. Thus, Eq. (13) shows that it is always
advantageous to apply a stronger drive and the effect of the
hyperfine interaction on a π-rotation error can be reduced
below any desired threshold with a sufficiently large
δR=δx [10].
Decay at finite detuning.—Considering a finite detuning

yields further insight on the role of longitudinal and
transverse nuclear fluctuations. The effect ofΔ is illustrated
in Fig. 2, where Fig. 2(c) confirms that Eq. (9) provides an
excellent approximation in the strong-drive regime. A first
consequence is that the Rabi oscillations approach the
“chevron” pattern of Fig. 2(a). Furthermore, the decay time
gets reduced at a finite Δ, which is illustrated in Figs. 2(c)
and 2(d).
The dependence of TR on Δ has a simple physical

explanation, as it can be traced to the difference in strength
between the transverse and longitudinal nuclear fluctua-
tions shown in Fig. 1(a). Since Eq. (4) implies that a finite
detuning corresponds to a field along z in the rotating
frame, the relevant component of the nuclear fluctuations
(i.e., along the total driving field) becomes a weighted
average of hx and hz. Since δhz > δhxy, the nuclear
fluctuations gets enhanced by a finite detuning. As shown
in Fig. 2(d), the dependence of TR on Δ is particularly
pronounced at smaller values of δR=δx. This is natural, as
the ratio δhz=δhxy is large in this regime [see Fig. 1(a)],
while the nuclear fluctuations become more isotropic at
larger δR=δx. Thus, studying the dependence of TR on Δ
allows one to explore how the relative strength of longi-
tudinal and transverse nuclear fluctuations evolves
with δR=δx.
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Stationary limit.—We conclude our analysis of the Rabi
oscillations by commenting briefly on the stationary limit
P↓ðt → ∞Þ, which is a useful quantity for estimating σ.
Common methods rely either on the drive dependence at
resonance (as done in the ESR experiment of Ref. [11]) or
the linewidth (considering finite detunings). We find that,
even if the Rabi oscillations are sensitively modified by
transverse nuclear fluctuations, the effect on P↓ð∞Þ is
negligible in the current experimental regime η ≪ 1. A
significant difference between ESR and EDSR only
appears when η ∼ 1 (for more details, see the
Supplemental Material [20]). Therefore, methods to extract
σ from P↓ð∞Þ are still valid for large-amplitude EDSR.
Comparison to experiments.—We now discuss the

application of our theory to available experimental data.
In Fig. 3 we show an analysis of the data shown in Fig. 2(c)
of Ref. [9], obtained from InSb nanowire dots with a strong
spin-orbit interaction. As seen, our theory is able to
reproduce well the Rabi oscillations and the fit yields
values δR=δx and b that are consistent with b ∝ δR=δx. For
EDSR driven by the spin-orbit coupling, we have

η ¼ lSO
2δx

σ

ϵz sin θ
; ð14Þ

where lSO is the spin-orbit length and θ the angle between
the spin-orbit field and ~B. Using lSO ¼ 200–300 nm,
δx≃ 10–20 nm [21], g ¼ 41, and B ¼ 31.4 mT [9] gives

η≃ ð0.015 − 0.04Þ= sin θ. Figure 3(b) implies η ∼ 0.03,
which is consistent with this estimate.
While Fig. 3(b) has δR=δx≲ 0.1, we estimate that larger

values of δR=δx were achieved in a recent experiment on
GaAs quantum dots [10]. There, the drive is based on a
micromagnet for which numerical simulations give
b=δR ∼ jgjμB × ð1 mT= nm) [10]. Using the largest
achieved Rabi frequency fmax ∼ 120 MHz, jgj≃ 0.4, and
δx ∼ 35–60 nm (corresponding to orbital energies
∼0.3 − 1 meV), we obtain δRmax=δx ∼ 0.7–1.2, which is
relatively close to the condition at which hx fluctuations are
most effective. On the other hand, the regime of motional
narrowing δR=δx≳ 1.8 [22] does not appear to be within
reach of current experiments. For GaAs quantum dots
σ ∼ jgjμB × ð1–4 mTÞ [3,11,13,23], which allows us to
estimate a typical range η ∼ 0.02 − 0.1.
Several findings of Ref. [10] are in good agreement with

our discussion, including the transition to a chevron pattern
in the strong-drive regime [10]. As a result, Figs. 2(a) and
2(b) are remarkably similar to the corresponding panels of
Ref. [10]. Furthermore, a crossover from power-law decay
(for b≲ jgjμB × 5 mT) to Gaussian decay (for b≳ jgjμB×
15 mT) was observed. The strength of the drive for such a
crossover is compatible with Eq. (11), which can be
rewritten as b≳ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2σδxðb=δRÞp
∼ jgjμB × ð8–20 mTÞ,

using the above estimates of σ; δx, and b=δR. We also
show in Fig. 1(c) that Eq. (12) is able to reproduce the
dependence of TR on the drive strength, with reasonable fit
parameters for GaAs quantum dots (T�

2 ≃ 9 ns, η≃ 0.09).
Conclusion.—In conclusion, we have characterized the

dephasing induced by the hyperfine interaction in large-
amplitude EDSR, and we showed that transverse fluctua-
tions of the Overhauser field are likely to play an important
role in this regime, recently achieved experimentally. It
should be mentioned that also other dephasing sources
were suggested for EDSR, such as paramagnetic impu-
rities, charge noise, and photon-assisted tunneling
[9,10,12]. In the absence of clear evidence (or specific
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predictions) about these alternative mechanisms, our theory
offers a further means to test whether nuclear spins are
indeed the dominant effect, e.g., through a detailed analysis
of TR as a function of both drive and detuning. In fact, it is
unlikely that other types of dephasing would induce the
same type of sensitive dependence on Δ discussed in
relation to Eq. (10) and Fig. 2.
From a more general point of view, our study is helpful

to assess the limitations to spin manipulation due to the
quantum-dot motion and the nuclear-spin bath. These two
aspects are unavoidable for EDSR based on III-V semi-
conductors, in contrast to ESR or spin manipulation based
on group-IV materials [24,25]. Nuclear fluctuations, on the
other hand, do not represent a fundamental obstacle to
EDSR, since high-fidelity gates can be achieved at suffi-
ciently large amplitude.

We thank W. A. Coish, T. Otsuka, P. Stano, and J.
Yoneda for useful discussions. S. C. acknowledges funding
from NSFC (Grant No. 11574025). D. L. acknowledges
support from the Swiss NSF and NCCR QSIT.

*stefano.chesi@csrc.ac.cn
[1] R. Hanson, J. R. Petta, S. Tarucha, and L. M. K.

Vandersypen, Rev. Mod. Phys. 79, 1217 (2007).
[2] D. D. Awschalom, L. C. Bassett, A. S. Dzurak, E. L. Hu, and

J. R. Petta, Science 339, 1174 (2013).
[3] F. H. L. Koppens, C. Buizert, K. J. Tielrooij, I. T. Vink,

K. C. Nowack, T. Meunier, L. P. Kouwenhoven, and L. M.
Vandersypen, Nature (London) 442, 766 (2006).

[4] D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998).
[5] V. N. Golovach, M. Borhani, and D. Loss, Phys. Rev. B 74,

165319 (2006).
[6] K. C. Nowack, F. H. L. Koppens, Y. V. Nazarov, and

L. M. K. Vandersypen, Science 318, 1430 (2007).
[7] Y. Tokura, W. G. van der Wiel, T. Obata, and S. Tarucha,

Phys. Rev. Lett. 96, 047202 (2006).
[8] M. Pioro-Ladrière, T. Obata, Y. Tokura, Y.-S. Shin, T. Kubo,

K. Yoshida, T. Taniyama, and S. Tarucha, Nat. Phys. 4, 776
(2008).

[9] J. W. G. van den Berg, S. Nadj-Perge, V. S. Pribiag, S. R.
Plissard, E. P. A. M. Bakkers, S. M. Frolov, and L. P.
Kouwenhoven, Phys. Rev. Lett. 110, 066806 (2013).

[10] J. Yoneda, T. Otsuka, T. Nakajima, T. Takakura, T. Obata,
M. Pioro-Ladrière, H. Lu, C. J. Palmstrøm, A. C. Gossard,
and S. Tarucha, Phys. Rev. Lett. 113, 267601 (2014).

[11] F. H. L. Koppens, D. Klauser, W. A. Coish, K. C. Nowack,
L. P. Kouwenhoven, D. Loss, and L. M. K. Vandersypen,
Phys. Rev. Lett. 99, 106803 (2007).

[12] S. Nadj-Perge, S. M. Frolov, E. P. A. M. Bakkers, and L. P.
Kouwenhoven, Nature (London) 468, 1084 (2010).

[13] E. A. Laird, C. Barthel, E. I. Rashba, C. M. Marcus, M. P.
Hanson, and A. C. Gossard, Phys. Rev. Lett. 99, 246601
(2007).

[14] E. I. Rashba, Phys. Rev. B 78, 195302 (2008).
[15] G. Széchenyi and A. Pályi, Phys. Rev. B 89, 115409

(2014).
[16] C. Echeverría-Arrondo and E. Y. Sherman, Phys. Rev. B 87,

081410 (2013).
[17] J. Jing, P. Huang, and X. Hu, Phys. Rev. A 90, 022118

(2014).
[18] For an infinite-temperature nuclear bath, we can always

choose the drive along x in spin space due to the rotational
invariance of the hyperfine coupling in the x-y plane; see

Eq. (3). The strength of the drive is b⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2x þ b2y

q
¼ b if

bz ¼ 0. If bz ≠ 0, one should substitute b → b⊥ into Eq. (4)
and in the rest of the Letter.

[19] For δR=δx ≲ 1, the approximation of 1 −max½P↓ðtÞ� given
in Eq. (13) is very close to its upper bound. However, at
large values of δR, Eq. (13) gives 1 −max½P↓ðtÞ�≃ffiffiffiffiffiffiffiffiffiffi
2=π3

p
ð4þ π2Þη2ð1.29þ ln δR=δxÞ=ðδR=δxÞ3, which

approaches zero faster than the upper bound.
[20] See the Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.116.066806 for a more
detailed analysis of the stationary value.

[21] S. Nadj-Perge, V. S. Pribiag, J. W. G. van den Berg, K. Zuo,
S. R. Plissard, E. P. A. M. Bakkers, S. M. Frolov, and L. P.
Kouwenhoven, Phys. Rev. Lett. 108, 166801 (2012).

[22] When δR=δx ≫ 1, the large-amplitude motion induces an
averaging of several independent nuclear configurations,
separated by a distance ∼δx [15]. This in turn leads to a
decrease of δhxy.

[23] J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird,
A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson,
and A. C. Gossard, Science 309, 2180 (2005).

[24] E. Kawakami, P. Scarlino, D. R. Ward, F. R. Braakman,
D. E. Savage, M. G. Lagally, M. Friesen, S. N. Coppersmith,
M. A. Eriksson, and L. M. K. Vandersypen, Nat. Nano-
technol. 9, 666 (2014).

[25] M. Veldhorst, J. C. C. Hwang, C. H. Yang, A.W. Leenstra,
B. de Ronde, J. P. Dehollain, J. T. Muhonen, F. E. Hudson,
K. M. Itoh, A. Morello, and A. S. Dzurak, Nat. Nano-
technol. 9, 981 (2014).

PRL 116, 066806 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

12 FEBRUARY 2016

066806-5

http://dx.doi.org/10.1103/RevModPhys.79.1217
http://dx.doi.org/10.1126/science.1231364
http://dx.doi.org/10.1038/nature05065
http://dx.doi.org/10.1103/PhysRevA.57.120
http://dx.doi.org/10.1103/PhysRevB.74.165319
http://dx.doi.org/10.1103/PhysRevB.74.165319
http://dx.doi.org/10.1126/science.1148092
http://dx.doi.org/10.1103/PhysRevLett.96.047202
http://dx.doi.org/10.1038/nphys1053
http://dx.doi.org/10.1038/nphys1053
http://dx.doi.org/10.1103/PhysRevLett.110.066806
http://dx.doi.org/10.1103/PhysRevLett.113.267601
http://dx.doi.org/10.1103/PhysRevLett.99.106803
http://dx.doi.org/10.1038/nature09682
http://dx.doi.org/10.1103/PhysRevLett.99.246601
http://dx.doi.org/10.1103/PhysRevLett.99.246601
http://dx.doi.org/10.1103/PhysRevB.78.195302
http://dx.doi.org/10.1103/PhysRevB.89.115409
http://dx.doi.org/10.1103/PhysRevB.89.115409
http://dx.doi.org/10.1103/PhysRevB.87.081410
http://dx.doi.org/10.1103/PhysRevB.87.081410
http://dx.doi.org/10.1103/PhysRevA.90.022118
http://dx.doi.org/10.1103/PhysRevA.90.022118
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.066806
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.066806
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.066806
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.066806
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.066806
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.066806
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.066806
http://dx.doi.org/10.1103/PhysRevLett.108.166801
http://dx.doi.org/10.1126/science.1116955
http://dx.doi.org/10.1038/nnano.2014.153
http://dx.doi.org/10.1038/nnano.2014.153
http://dx.doi.org/10.1038/nnano.2014.216
http://dx.doi.org/10.1038/nnano.2014.216

