
An Adaptive Wavelet Method for the

Solution of Boundary Integral Equations

in Three Dimensions

Inauguraldissertation

zur

Erlangung der Würde eines Doktors der Philosophie

vorgelegt der

Philosophisch-Naturwissenschaftlichen Fakultät

der Universität Basel

von

Manuela Utzinger

aus

Frenkendorf, Basel-Landschaft

Basel, 2016

Originaldokument gespeichert auf dem Dokumentenserver der Universität Basel

edoc.unibas.ch

Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät

auf Antrag von

Prof. Dr. Helmut Harbrecht

Prof. Dr. Angela Kunoth

Basel, den 15.11.2016

Prof. Dr. Jörg Schibler

Dekan

Acknowledgements

I want to use this opportunity to express my gratitude towards several important people,
which have been by my side during my time as a Ph.D. student.

First and foremost, I want to thank my supervisor Prof. Dr. Helmut Harbrecht for giving
me the opportunity to do a Ph.D. as a member of his research group. I am very grateful
for his constant support, for the fascinating subject I was assigned to work on, and for all
the fruitful discussions we have engaged in. The time in his group made it possible for
me to acquire valuable skills and helped me to turn curiosity into insight. It was a great
experience and I will fondly look back on the days spent here. Furthermore, I would like
to kindly thank Prof. Dr. Angela Kunoth for agreeing to be the co-referee in my thesis
committee. I know this task is time consuming and I appreciate the fact that she has taken
the time and e�ort to evaluate my work.

I also would like to thank the other, current and former, members of our research group, for
being available for mathematical, as well as trivial, discussions, for having lunch together,
for drinking tons of co�ee with me, and also for spending time together outside of work.
You have all been like a family to me and I will always remember the awesome time in this
group.

Life in the department would have been much less memorable, hadn't it been for so many
nice people that touched my life in so many ways. Special thanks go to Barbara Fridez,
Deborah Scheiblechner and Heidi Karypidis for having organised many morning and after-
noon co�ee breaks, helping me whenever I needed an auditorium or access to parts of the
website and much more. You form a core part of this department and chaos would break
loose if it weren't for you.

Many thanks go to Monica Bugeanu and Marie Kray for reading parts of this thesis and
giving me many useful suggestions on how to improve it. My sincerest thanks go to Jürgen
Dölz, which has taken the time to proofread my thesis, even during very stressful phases
of his own work.

I am deeply grateful for the support of an indispensable group of fellow female mathemati-
cians with whom it was always a pleasure to attend social events. Furthermore, I want
to thank all my other non-mathematician friends for being in my life, for spending time
with me when I needed a break from work and for cheering me up when life itself seemed
overwhelming.

Last but not least, I want to thank my partner Michael Moor for his love and support,
especially during the last months of my Ph.D. I love you more than words can say and I
hope you will be by my side for many years to come.

Contents

Introduction 1

1 Boundary Element Method 9

1.1 Laplace Equation . 11

1.1.1 Dirichlet Problem for the Laplace Equation 11

1.1.2 Neumann Problem for the Laplace Equation 13

1.2 Helmholtz Equation . 13

1.2.1 Sommerfeld's Radiation Condition 14

1.2.2 Reformulation as a Boundary Integral Equation 16

1.2.3 Scattering Problems . 18

1.3 Variational Formulation and Galerkin Scheme 19

1.4 Fast Boundary Element Methods . 21

2 Wavelets 25

2.1 Primal and Dual Scaling Functions on R . 26

2.2 Wavelet Bases on R . 27

2.3 Wavelet Bases on the Interval . 29

2.3.1 Scaling Functions . 29

2.3.2 Haar Basis . 30

2.3.3 Wavelets With Three Vanishing Moments 31

2.4 Wavelet Bases on the Unit Square . 33

2.4.1 Ordinary Tensor Product Wavelets 34

2.4.2 Wavelets With Optimised Support 34

2.5 Wavelet Bases on the Surface . 35

i

ii Contents

3 Adaptive Wavelet Schemes 39

3.1 Motivation and Background . 39

3.2 Nonlinear Approximation . 41

3.2.1 Best N -Term Approximation . 41

3.2.2 Approximation Spaces . 42

3.2.3 Sequence Spaces, Weak `p Spaces and Interpolation Spaces 43

3.2.4 Besov Spaces . 44

3.3 On Adaptive Wavelet Algorithms . 49

3.3.1 Trees . 50

3.3.2 Coarse . 52

3.3.3 Apply . 54

3.3.4 Rhs . 58

3.3.5 Solve . 58

4 Implementation 59

4.1 Element Trees . 60

4.1.1 Data Structures . 60

4.1.2 Initialisation of the Element Tree . 61

4.1.3 Element Re�nement . 64

4.2 Wavelet Trees . 66

4.2.1 Initialisation of the Wavelet Tree . 67

4.2.2 Wavelet Archive . 67

4.2.3 Wavelet Re�nement and Inheritance 70

4.2.4 Wavelets with Three Vanishing Moments 72

4.2.5 Switching Between Wavelet Bases . 73

4.3 The Adaptive Algorithm . 77

4.3.1 Overview . 77

4.3.2 Layer Classi�cation and Tree Sorting 78

4.3.3 Compress and Predict . 81

4.3.4 Structure Sparse . 85

4.3.5 Apply . 88

Contents iii

4.3.6 Gauss Quadrature and Error . 88

4.3.7 Choice of the Degree of Quadrature 90

4.3.8 Computation of the Matrix Entries 91

4.3.9 Rhs . 96

4.3.10 Coarse . 98

5 Numerical Experiments 99

5.1 Parameter Study . 100

5.2 Laplace Problems Solved by the Single Layer Operator 104

5.2.1 Fichera's Vertex . 105

5.2.2 Crankshaft . 107

5.2.3 Gearwheel . 109

5.3 Laplace Problems Solved by the Double Layer Operator 111

5.4 Exterior Helmholtz Problems . 116

5.4.1 Cartoon Right-Hand Side . 116

5.4.2 Scattering Problems . 118

6 Goal-Oriented Error Estimation 123

6.1 Motivation and Background . 123

6.2 Re�nement Strategies . 124

6.3 Laplace Equation Solved by the Single Layer Operator 126

6.4 Laplace Equation Solved by the Double Layer Operator 130

Introduction

In science and engineering one often comes across partial di�erential equations in three di-
mensions, some of which can be formulated as boundary integral equations on the boundary
Γ = ∂Ω of the three-dimensional domain Ω of interest. Solving the original problem would
result in seeking the solution in a three-dimensional domain (e.g. by means of �nite ele-
ment methods), which would lead to a sparse but extremely large system. Rewriting the
problem as a boundary value problem not only reduces the dimensionality by one, but
does give the possibility to solve also the exterior problem. Especially for exterior prob-
lems, this approach brings many advantages, since it is not necessary to �nd a way (e.g.
the introduction of arti�cial boundaries) to handle the in�nite expansion of the domain.
However, this advantage does not come entirely without cost. First, since the involved
operators are not local, the resulting matrices are dense and the complexity to assemble
and solve the resulting system of linear equations is at least O(N2), with N denoting the
degrees of freedom. Moreover, matrices which stem from the discretisation of boundary in-
tegral operators with non-zero order become more and more ill-conditioned as the degrees
of freedom increase. Second, reformulating a partial di�erential equation in a domain into
a boundary integral equation on the domain's boundary does not work unconditionally for
any partial di�erential equation. For this conversion, one needs the knowledge of a fun-
damental solution, i.e. a function k(x,y) which solves the problem Ak(x,y) = δ(x − y)

in the distributional sense for the linear di�erential operator A under consideration and
with δ being the Dirac functional. Thus, the method is restricted to problems for which a
fundamental solution is explicitly known.

In the case when a fundamental solution is known, one can make a so-called potential
ansatz, featuring a boundary integral with an unknown density ρ, which solves the original
partial di�erential equation for all points x ∈ R3 \Γ. Notice that the boundary conditions
of the original boundary value problem are not yet taken into account in the mentioned
ansatz. Letting x tend towards the boundary Γ results in an equation de�ned only on the
boundary of the domain. This boundary integral equation can subsequently be discretised
by �nite elements, called boundary elements in the present context, which explains the
name boundary element method. By solving this equation, we obtain the unknown density
ρ, which then can be used to compute the solution in each point x ∈ R3\Γ by the potential
ansatz. The latter process is called potential evaluation. As the computation of the solution
in the domain does not occur directly, but goes through a potential evaluation after having
found the density, this approach is called an indirect method.

1

2 Introduction

Boundary Element Methods

Rewriting the partial di�erential equation under consideration into a boundary integral
equation does reduce the size of the involved system of linear equations drastically, as the
domain which shall be discretised has one dimension less. However, the involved system of
linear equations emerging from the discretisation of the boundary integral operator is still
large and, more importantly, it is dense. Furthermore, the appearing integral operators
are singular. This fact is why there has been a large amount of research in order to
overcome this obstacle. Modern approaches like the fast multipole method [50,79], the panel
clustering [53], the adaptive cross approximation [2, 4], or hierarchical matrices [52, 88] are
known to reduce the complexity to log-linear or even linear cost. Some of these approaches
aim at developing the involved function k(x,y) into a degenerated kernel approximation,
for example by polynomials. Another possibility is to use a few exact entries from the
original matrix for constructing a low-rank approximation, which is the idea of the adaptive
cross approximation.

Wavelet Matrix Compression

In this thesis, we will consider a di�erent approach, namely wavelet matrix compression,
which is known to reduce the complexity, too. In the past, there has been a large amount
of research concerning the use of wavelets for solving boundary integral equations. In [7],
it was discovered that the kernel function k(x,y) of a singular integral operator, stemming
from a boundary integral equation, contains many small coe�cients when using wavelets
for its approximation. Entries in the system matrix which fall below a certain threshold
can be neglected, i.e. they can be set to zero, yielding a so-called compressible matrix.
It has been shown in [27, 28, 84] that all but only O(N) matrix entries can be neglected
with the convergence rate of the underlying Galerkin scheme still being guaranteed. This
procedure of neglecting non-relevant matrix entries is referred to as matrix compression.

The compression pattern of the matrix can thereby be identi�ed in advance. To do so, we
need estimates on the size of the matrix entries. The �rst estimate, which corresponds to
wavelets having a large distance from each other, amounts to the �rst compression. Using
the �rst compression alone does not yet reduce the number of entries to O(N). In order to
being able to have a compressed system matrix with only O(N) entries, we need to make
use of a second estimate for wavelets which overlap. Suppose that two wavelets on a largely
di�erent scale are located such that the small wavelet lies completely inside the smooth
part of the large one. Then, one can exploit the distance between the singular support of
the large wavelet to the support of the small one. This additional estimate amounts to the
second compression. Using both of these estimates �nally results in a matrix having only
O(N) non-zero entries. Let us remark at this point that it is essential to have a wavelet
basis which features su�ciently many vanishing moments.

Using wavelets for matrix compression has also been applied in many other �elds such as

3

shape optimisation [36, 37, 55] and FEM-BEM coupling [48, 57, 58], or for solving partial
di�erential equations with stochastic input parameters [61,91].

Adaptive Wavelet Schemes

Another issue to be addressed is the one of adaptivity. For some geometries or right-
hand sides, it is necessary being able to resolve speci�c parts of the geometry, while other
parts could stay coarse. One example would be a geometry featuring corners and edges.
For such a domain, the solution itself admits singularities, demanding for re�nement. A
uniform approach leads to very large systems even if it is not necessary to choose such a
�ne resolution for the whole geometry. In such a situation, an adaptive re�nement reduces
the degrees of freedom drastically without compromising the accuracy. This means that
not only a lot of computation power can be saved, but also a lot of memory, making the
computation of certain problems possible in the �rst place.

In addition to the wavelets' bene�cial compression properties, another motivation for the
usage of these particular basis functions lies in the following fact. In contrast to other basis
functions, the wavelets contain some information on the local regularity of a function. This
means that we can use the magnitude of the coe�cients in their series expansion to �nd out
where further re�nement is needed. In the �nite element setting re�nement is achieved by
mesh re�nement, where the decision of where to further re�ne the mesh depends on some
error indicator which has been computed for the solution of the previous step. Compared
to �nite element methods, we cannot compute the residual exactly for boundary integral
equations. Nevertheless, there exist reliable and e�cient estimators for the residual [39]
and also optimal convergence rates for adaptive re�nement have been proven for boundary
element methods [41,45]. However, we are not aware of an implementation which combines
these error estimators with fast boundary element methods.

In this thesis, we use the approach according to Cohen, Dahmen and DeVore, which can
be found in [16, 17] for local operators and in [27, 47] for nonlocal operators. Instead
of projecting onto a �nite-dimensional subspace after the variational formulation of the
operator equation has been found, it has been shown that the boundary integral equation
in its variational form is equivalent to a well-posed in�nite system of linear equations. As
the application of this in�nite matrix has to be approximated for solving the linear system
of equations and computing the residual, we choose a certain portion out of this in�nite
matrix. Thus, in our framework, re�nement rather means that more basis functions are
added. To be more precise, we aim at choosing the N wavelets with the largest coe�cients,
i.e. the wavelets which contribute most to the solution. This procedure is referred to as
the best N -term approximation [33].

4 Introduction

Thesis Overview

In Chapter 1, we will introduce the boundary element method in general. Suppose that
there is given a second order, elliptic partial di�erential equation in some n-dimensional,
simply connected and bounded domain Ω, supplemented by boundary conditions on the
boundary Γ := ∂Ω. Although the method itself is not restricted to a �xed spatial dimen-
sion, we will restrict ourselves in this thesis to partial di�erential equations in a three-
dimensional domain. We can consider an interior boundary value problem, where the
solution is sought inside this domain, or an exterior boundary value problem, where the
solution is sought in the unbounded exterior domain. The �rst section of Chapter 1 will
be concerned with deriving the boundary integral formulation for both, the interior and
the exterior Laplace problem with Dirichlet boundary conditions as well as with Neu-
mann boundary conditions. In the second section of Chapter 1, we introduce the exterior
Helmholtz equation which arises from the wave equation after separating its solution into
a spatial and a time dependent part and assuming a time-harmonic behaviour. For the
exterior Helmholtz problem, we choose Dirichlet boundary conditions, which are associated
with describing the propagation of a wave around a soft-sound object. In order to cast
the Helmholtz problem into a boundary integral equation, we will make use of the ansatz
according to Brakhage and Werner [11], as it eliminates the arising problem concerning
the uniqueness of the solution for irregular wavenumbers. By choosing this ansatz we will
arrive at a combination of the acoustic single layer operator and the acoustic double layer
operator. For this combination, the theory presented in [27, 47] does not hold any more.
However, as this operator is a compact perturbation of a symmetric and positive de�nite
operator, the theory from [44] can be applied to prove optimality of the adaptive scheme
under consideration. We will then proceed to the scattering problem, which is closely re-
lated to the Helmholtz equation, by introducing a direct and an indirect formulation for its
solution. In the following section, after having all desired boundary integral formulations
at hand, we discuss their variational formulation and subsequent Galerkin projection onto
a �nite-dimensional subspace by means of a single-scale basis. We will close Chapter 1
by giving a short overview on fast boundary element methods. Notice that, in this thesis,
we will use only piecewise constant ansatz functions for discretising the associated integral
equations, which is why we will not consider boundary integral equations featuring the
hypersingular operator. For the treatment of boundary integral equations featuring the
hypersingular operator, one needs globally continuous ansatz functions, see e.g. [63,82,86].

In Chapter 2, we are going to give an introduction to wavelets, in particular aiming to
arrive at the setting which we are going to use later for our implementation. After having
at hand a single-scale basis on R, we will encounter the �rst wavelets on R by choosing
appropriate linear combinations of the given single-scale functions. Afterwards, we will
change our setting from R to the unit interval, as we wish to later arrive at wavelets on
the unit square. This conversion poses certain obstructions, especially for large wavelets,
as there is now a boundary preventing the wavelets to be translated unconditionally. This
obstacle requires some modi�cations for the wavelets at the boundary. Without going too

5

much into detail on their construction, we introduce two wavelet bases on the unit interval
which form the foundation for the subsequent construction of wavelets on the unit square.
In the following section, we introduce two wavelet bases on the unit square, which are
obtained by taking the tensor product of the basis functions on the unit interval. Finally,
we use the constructed wavelet bases for obtaining wavelets on the surface of a domain.
This is achieved by mapping the unit square onto the boundary of the three-dimensional
domain, which is represented as a union of four-sided patches. We close this chapter by
introducing the system of linear equations emerging after the Galerkin projection onto the
�nite-dimensional subspace given by a �nite subset of this new basis. Notice, that there
exists also the possibility for constructing wavelet bases by using higher order polynomial
ansatz functions, see e.g. [18, 30, 54, 60]. However, as we develop a code for piecewise
constant wavelets, we restrict the discussion to our case here.

Chapter 3 will be concerned with the theoretical aspects of the adaptive wavelet scheme.
In its �rst section, we motivate the use of adaptive methods when considering the numerical
treatment of the previously introduced boundary integral equations. We introduce the
setting for our adaptive algorithm according to the lines of the theory which has already
been developed in e.g. [16, 17, 26�28, 46, 47]. The key ingredient throughout all of these
articles is the equivalence of the underlying boundary integral equation in its variational
form to an in�nite system of linear equations. Let us remark here that this is the key
di�erence in comparison to adaptive �nite element methods. For adaptive wavelet methods,
we stay in the in�nite-dimensional setting, which makes the use of stability conditions,
such as the inf-sup condition, which are necessary for the adaptive �nite element setting,
dispensable. However, as it is not possible to truly apply an in�nite operator, we have to
�nd a way of applying it approximately, such that optimal convergence is still guaranteed.
This is achieved by restricting the underlying in�nite-dimensional index set to a �nite
subset of a �xed cardinality N , which is realised by choosing the appropriate rows and
columns from the underlying in�nite-dimensional matrix.

Besov spaces are closely related to nonlinear approximation, which is what the second sec-
tion of Chapter 3 will be concerned with. For non-smooth domains or singular right-hand
sides, regularity of the solution is decreased and so may be the e�ciency of the approxima-
tion [23,33]. That is why, in this context, we will need di�erent function spaces than for the
uniform setting, these are Besov spaces instead of Sobolev spaces. The condition that the
solution is contained in a Besov space is much milder than demanding that it be contained
in a Sobolev space. Besov spaces have been studied in the context of adaptive algorithms
in e.g. [21,23,33]. We are interested in the question of how small the approximation error
can become when choosing N coe�cients from the solution's expansion with respect to the
wavelet basis. Also, we want the error, produced by approximation, to be the best error
with respect to the chosen N degrees of freedom. We thus establish the concept of the
best N -term approximation, being a form of nonlinear approximation, which is essential
in order to measure the error produced by the adaptive wavelet method. Subsequently, we
introduce approximation spaces, weak `p spaces and, most importantly, Besov spaces.

6 Introduction

In the third section of Chapter 3, we will focus on the building blocks of the adaptive
wavelet method like the routines coarse, rhs and apply. The adaptive setting makes
it necessary to work with tree structures, as they are able to fully exploit the adaptivity
of the method. In particular, the e�cient computation of the matrix entries, which is the
most demanding and time consuming part of the whole implementation, is not possible
in optimal complexity without using the appropriate adaptive structures. The discussion
on the theoretical details of the key routines in the implementation is preceded by an
introduction on trees. The best N -term tree approximation is then according to the best
N -term approximation, with the only di�erence that the underlying index set is restricted
to a tree structure. Subsequently, we focus on each building block separately and state the
purpose and the requirements for each of these blocks in order to produce an algorithm of
optimal complexity.

Chapter 4 forms the practical counterpart to Chapter 3, as it focusses on the implemen-
tation of the adaptive method. A fast implementation of the uniform wavelet method does
already exist, see [54], and the realisation of routines in a uniform setting like Apply and
Rhs can be found therein. While the principle realisation of assembling and solving the
system of linear equations is thus nothing new, the innovation of our implementation is the
conversion and fresh implementation of these routines to work with truly adaptive struc-
tures, namely trees. The e�cient computation of e.g. the matrix entries is not possible
without using the appropriate adaptive structures. Though the literature cited in Chapter
3 discusses the theoretical requirements for the realisation of an adaptive wavelet scheme,
we are not aware of a practical realisation by truly adaptive data structures so far.

In the �rst two sections of Chapter 4, we will focus on the newly developed adaptive
structures for representing the elements and the wavelets. In an adaptive setting, neither
elements nor wavelets can e�ciently be arranged into arrays any more, which is why we
have to �nd a way to represent them uniquely by a tree. However, elements as well as
wavelets have many similarities among translated and re�ned versions of each other. This
is why we introduce a lean data structure to represent the elements and wavelets. Hence,
after specifying how we represent elements and wavelets, we turn towards initialising and,
more importantly, maintaining the introduced structures. After we provided these details,
we will turn towards the related building blocks Apply, Rhs and Coarse of the adaptive
algorithm, which are already known from the previous chapter. For these routines, we
provide the implementational details, tailored to the present context of boundary element
methods. Moreover, we provide some insight in the implementation of routines like Com-
pression, Prediction and Assembling. The numerical method is able to compute the
solution of the boundary integral equation in asymptotically optimal complexity. This
means that any target accuracy can be achieved at a computational expense that stays
proportional to the number of degrees of freedom (within the setting determined by the
underlying wavelet basis) that would ideally be necessary for realizing that target accuracy
if full knowledge about the unknown solution were given.

In Chapter 5, we will present several numerical results for our adaptive implementation.

7

In the �rst section of Chapter 5, we study the choice of certain parameters which appear
in the implementation. After the parameters are chosen, we present numerical examples
for solving the interior Laplace equation with Dirichlet boundary conditions by means of
the single layer potential. Here, we will consider various geometries as well as di�erent
right-hand sides. Subsequently, in the third section of Chapter 5, we present numerical
examples for solving the interior Laplace equation involving the double layer operator for
its solution. We will again present examples by using di�erent right-hand sides. Finally, we
turn towards solving the exterior Helmholtz problem, where we use the ansatz according
to Brakhage and Werner to cast the boundary value problem into a boundary integral
equation. After presenting one numerical example for the solution of the exterior (low-
frequency) Helmholtz equation, we proceed to scattering problems where we consider also
various higher wavenumbers.

In the last Chapter 6, we present the ansatz of goal-oriented error estimation in the
context of solving adaptive boundary integral equations. While in the standard adaptive
approach we approximate the complete unknown density ρ, the idea of goal-oriented error
estimation lies in approximating a linear output functional g(ρ) of it. In order to approx-
imate this quantity of interest, one might need signi�cantly less degrees of freedom than
would be necessary for approximating the complete unknown density. Instead of control-
ling the residual from the primal problem, one additionally introduces a dual problem and
controls both residuals. In the �eld of goal-oriented error estimation, there has been a lot
of research in the context of �nite element methods, see e.g. [1, 5, 6, 31, 38, 76], as well as
for boundary element methods, see e.g. [40�42].

After introducing two di�erent re�nement strategies for goal-oriented error estimation, we
present several numerical examples for solving the interior Laplace equation. Thereby,
our �rst numerical examples will consider the solution of the interior Laplace equation by
means of the single layer operator. Afterwards, we present also an example for the solution
of the interior Laplace equation by means of the double layer operator.

We will resume this thesis with some concluding remarks as well as an outlook on a possible
further continuation of this thesis.

8 Introduction

1
Boundary Element Method

In this chapter, we review the principles of the boundary element method. To this end,
suppose that we are given a partial di�erential equation in some n-dimensional simply
connected and bounded domain Ω, supplemented by boundary conditions on the boundary
Γ := ∂Ω. We can consider an interior problem, where the boundary value problem shall be
solved inside this domain. We can also consider an exterior problem, where the boundary
value problem is de�ned in the exterior domain Ωc := Rn \ Ω̄. As the discretisation of an
n-dimensional domain may be expensive, especially in the case of an exterior problem, it
may be desirable to convert the problem into an equivalent one on the (n− 1)-dimensional
boundary of the domain. Although the method itself is not restricted to a �xed spatial
dimension, we will restrict ourselves in this thesis to partial di�erential equations in a
three-dimensional domain.

The key idea, to convert the underlying problem into one on the boundary, is the knowledge
of the so-called fundamental solution k : R3 ×R3 → C. This means that the method itself
is restricted to problems of which a fundamental solution can be calculated. Let A be
a linear di�erential operator with constant coe�cients. Then, k(x,y) is its fundamental
solution, if it solves the problem

Ak(x,y) = δ(x− y)

in the distributional sense, with δ denoting the Dirac functional.

9

10 1. Boundary Element Method

With the fundamental solution at hand, one can make an ansatz by the potential

u(x) =

∫
Γ
k(x,y)ρ(y) dσy for x ∈ Ω (1.1)

with the unknown density ρ. It solves the underlying partial di�erential equation for all
x ∈ R3 \Γ. In order to satisfy the desired boundary conditions, by letting x tend to Γ, we
end up having to solve the equation

(Aρ)(x) = f(x) for x ∈ Γ

on Γ for some boundary integral operator A. Discretising this boundary integral equation
by �nite elements, in this context called boundary elements, leads to the boundary element
method.

We see that rather than directly obtaining the values in the domain, the boundary element
method aims at computing a density on the boundary by using the known boundary
conditions. In a next step, the integral equation (1.1) can be used to evaluate the solution
at each point in the (interior or exterior) domain. There are two approaches with which
one can treat the underlying problem, the direct method and the indirect method. The
direct method uses the Green representation formula and the fundamental solution of
the according boundary value problem to represent the solution via its potentials. The
respective densities then correspond to the unknown Cauchy data. In this thesis, we lay
our main focus on the indirect approach, where the density derived from the boundary
integral equation is physically meaningless. We thus have to do the potential evaluation
(1.1) afterwards.

This chapter is organised as follows. First, we focus on the derivation of the accord-
ing boundary integral equations for the interior and exterior Laplace problem. Thereby,
we consider Dirichlet boundary conditions as well as Neumann boundary conditions and
introduce the appearing integral operators. Second, we consider the exterior Helmholtz
equation for Dirichlet boundary conditions, describing the time-harmonic propagation of
a wave around a sound-soft object. We derive the according boundary integral equation
by using the ansatz of Brakhage and Werner, after having addressed the di�culties arising
for irregular wavenumbers. Subsequently, we focus on the scattering problem, which is
closely connected to the Helmholtz equation. For the scattering problem with a sound-soft
scatterer, we introduce the direct and indirect formulation of the problem by a boundary
integral equation. The section will be completed by reviewing the variational formula-
tion and the Galerkin projection onto a �nite dimensional subspace for the encountered
boundary integral equations.

1.1. Laplace Equation 11

1.1 Laplace Equation

In this section, we consider the reformulation of the Laplace equation in three dimensions by
boundary integral equations. In particular, we will derive the boundary integral equations
arising from the boundary value problem with both, Dirichlet as well as Neumann boundary
conditions. Since, in this thesis, we will use only piecewise constant ansatz functions for the
upcoming discretisation of the associated integral equations, we will not consider boundary
integral equations where the hypersingular operator appears. For the treatment of this
integral operator, one needs globally continuous ansatz functions, see e.g. [63,82,86].

1.1.1 Dirichlet Problem for the Laplace Equation

Consider the Laplace equation with Dirichlet boundary conditions in some bounded and
simply connected domain

∆u = 0 in Ω,

u = f on Γ,
(1.2)

i.e., we seek a harmonic function u ∈ H1(Γ) with given Dirichlet data f ∈ H1/2(Γ). To
solve the interior Dirichlet problem (1.2), we introduce the kernel

k(x,y) :=
1

4π ‖x− y‖
,

which is the fundamental solution of the Laplacian. The single layer operator

(Sρ)(x) :=
1

4π

∫
Γ

1

‖x− y‖
ρ(y) dσy = f(x), x ∈ Γ, (1.3)

is symmetric, positive de�nite and of order −1, that is S : H−1/2(Γ) → H1/2(Γ), see
e.g. [51, 63, 71]. With this operator at hand, we can formulate the boundary integral
equation

Sρ = f on Γ (1.4)

for the unknown density ρ ∈ H−1/2(Γ). As soon as the density is calculated, the solution
u of the Dirichlet problem (1.2) can be found by evaluating

u(x) =

∫
Γ
k(x,y) ρ(y) dσy for x ∈ Ω. (1.5)

In particular, the density ρ and thus the solution u to the interior Dirichlet problem is
unique, see [51, 71].

Instead of the interior Laplace equation (1.2), we can also consider the exterior problem

∆u = 0 in Ωc,

u = f on Γ,
(1.6)

12 1. Boundary Element Method

with Ωc := R3 \ Ω̄ being the exterior of Ω. We seek then the solution u ∈ H1
loc(Ω

c), where
H1

loc(Ω
c) denotes the space of all functions v ∈ L2(Ωc) which are locally contained in H1.

For the exterior problem, we additionally require the decay

|u(x)| = O
(

1

‖x‖

)
as ‖x‖ → ∞.

Likewise to the interior problem, solving (1.4) for the density ρ ∈ H1/2(Γ) gives the solution
to (1.6) via the potential evaluation (1.5) for all x ∈ Ωc.

Another possibility for solving the Dirichlet problem for the Laplace equation is to intro-
duce the double layer operator

(Dρ)(x) :=
1

4π

∫
Γ

〈x− y,ny〉
‖x− y‖3

ρ(y) dσy =

∫
Γ

∂

∂ny
k(x,y) ρ(y) dσy, x ∈ Γ. (1.7)

Here, ny denotes the normal in the point y ∈ Γ, oriented to the outside of Ω, and k(x,y)

denotes the fundamental solution as before. Due to the jump condition of the associated
double layer potential, when x approaches the boundary Γ, cp. [82, 86], we end up this
time with the integral equation (

1

2
I±D

)
ρ = f on Γ,

where 1
2I± D : L2(Γ) → L2(Γ) is an operator of order 0. Dependent on whether we want

to solve the exterior or the interior problem, we choose the appropriate leading sign in the
above equation; “ + ” for the exterior problem and “ − ” for the interior problem. The
density of the interior problem is unique [51, 71], while we need to impose the following
two conditions in order to ensure uniqueness for the exterior problem:∫

Γ
f(x)dσx = 0 and

∫
Γ
ρ(x)dσx = 0.

This issues from the fact that the value −1/2 is an eigenvalue of D with the constant
functions as eigenvectors and hence 1

2I +D is singular. Having �nally the density at hand,
the solution of the Laplace equation can be calculated by the formula

u(x) =

∫
Γ

∂

∂ny
k(x,y) ρ(y) dσy (1.8)

for all x ∈ Ω and x ∈ Ωc, respectively.

1.2. Helmholtz Equation 13

1.1.2 Neumann Problem for the Laplace Equation

The next problem we consider is the Laplace equation with Neumann boundary conditions

∆u = 0 in Ω or in Ωc,

∂u

∂n
= g on Γ,

(1.9)

where we seek the unknown solution u ∈ H1(Ω) or u ∈ H1
loc(Ω

c) for a given right-hand
side g ∈ H−1/2(Γ). Similar as for the Dirichlet problem, we can choose Ω or Ωc, resulting
in the interior or the exterior Neumann problem, respectively. In the exterior case, again
the decay property

|u(x)| = O
(

1

‖x‖

)
for ‖x‖ → ∞

is required.

We can solve the Neumann problem by means of the adjoint double layer operator

(Dtρ)(x) :=
1

4π

∫
Γ

〈x− y,nx〉
‖x− y‖3

ρ(y) dσy =

∫
Γ

∂

∂nx
k(x,y) ρ(y) dσy, x ∈ Γ, (1.10)

which amounts to the boundary integral equation(
Dt ± 1

2
I

)
ρ = g on Γ.

As in the case of the double layer operator, the choice of the leading sign depends again
on whether we solve the exterior or the interior problem. This integral operator is also of
order zero, that is Dt± 1

2I : L2(Γ)→ L2(Γ). Note that, when solving the interior problem,
we have to demand that ∫

Γ
g(x) dσx = 0 and

∫
Γ
ρ(x) dσx = 0

in order to ensure unique solvability [51,71].

Finally, the solution u is calculated from the unknown density by evaluating

u(x) =

∫
Γ
k(x,y) ρ(y) dσy

for all x ∈ Ω and x ∈ Ωc.

1.2 Helmholtz Equation

The next problems we want to consider are related with the Helmholtz equation. We will
�rst introduce the Helmholtz equation by describing how it arises from the wave equation

14 1. Boundary Element Method

and for what situations. We will encounter the Sommerfeld radiation condition and see its
importance for ensuring the uniqueness of the solution. After the Helmholtz equation is
properly introduced, we will convert it into a boundary integral equation. We will especially
encounter the problem of irregular wavenumbers and introduce the ansatz of Brakhage
and Werner [11] in order to overcome this problem. Next, we will discuss the scattering
of acoustic waves by an obstacle which is surrounded by a homogeneous medium. We will
derive the direct as well as the indirect formulation for solving this scattering problem. Both
approaches we are about to introduce are well known and frequently used [19, 20, 49, 56].
In scattering theory, there can be distinguished between objects that are penetrable and
such that are impenetrable. For this thesis, we restrict ourselves to the discussion on
impenetrable objects. Also we do only consider the forward scattering problem. For
further details on these subjects and also the treatment of the inverse scattering problem,
the reader is referred to [19,20].

1.2.1 Sommerfeld's Radiation Condition

We start this section by explaining how the Helmholtz equation arises from the wave
equation in the following form:

∂U(x, t)2

∂t2
− c2∆U(x, t) = 0. (1.11)

Here, c denotes the speed of the wave, which is assumed to be space independent. Readers,
which are interested in the physical background on how equation (1.11) is obtained, can
�nd a detailed derivation in e.g. [19,49]. Next, we use the ansatz of separation of variables

U(x, t) = X(x) · T (t),

where we assume that the function can be decomposed into a solely space dependent part
X(x) and a solely time dependent part T (t). Furthermore, we assume that the function
U(x, t) is time harmonic, meaning that

U(x, t) = <
(
u(x) e−iωt

)
with ω > 0 being the frequency. Inserting this ansatz into the original equation (1.11)
gives us

u(x) (i2ω2) e−iωt − c2∆u(x) e−iωt = 0.

After factoring out the term e−iωt and reordering, we notice that the stationary part u(x)

ful�ls the Helmholtz equation
∆u(x) + κ2u(x) = 0 (1.12)

in the exterior domain Ωc, where we set κ = ω/c = 2π/λ > 0. The parameter κ is called
the wavenumber and the parameter λ is called the wavelength, physically describing the
oscillation of the wave.

1.2. Helmholtz Equation 15

De�nition 1. A solution u to the Helmholtz equation is called radiating if

lim
r→∞

r

(
∂u

∂r
− iκu

)
= 0 where r = ‖x‖

holds uniformly in all directions x/‖x‖.

This radiation condition, introduced by Sommerfeld in [85], is known as the Sommerfeld
radiation condition. It is necessary in order to ensure the uniqueness of the solution, which
can be seen as follows. We consider the Laplace operator in spherical coordinates

∆u(r, ϑ, ϕ) =
1

r2

∂

∂r

(
r2∂u

∂r

)
+

1

sin(ϑ)r2

∂

∂ϑ

(
sin(ϑ)

∂u

∂ϑ

)
+

1

r2 sin2(ϑ)

∂2f

∂ϕ2
.

For a function u = u(r), the last two terms become zero and we have

∆u+ κ2u =
∂2u

∂r2
+

2

r

∂u

∂r
+ κ2u =

∂2

∂r2
(ru) + κ2(ru) = 0.

Considering the last equality, we have the solutions

u1(r) =
eiκr

r
and u2(r) =

e−iκr

r
.

We observe that

lim
r→∞

r

(
∂u1

∂r
− iκu1

)
= lim
r→∞

r

(
iκu1 −

1

r
u1 − iκu1

)
= 0,

lim
r→∞

r

(
∂u2

∂r
− iκu2

)
= lim
r→∞

r

(
−iκu2 −

1

r
u2 − iκu2

)
6= 0.

Thus, only u1(r) = eiκr

r ful�ls the Sommerfeld radiation condition. The physical interpre-
tation is that u1 is an outgoing wave, see e.g. [19], since the scattered wave is generated at
time t = 0 by the object Ω.

Remark 2. In Sommerfeld's original work [85], it is demanded that, aside from the radi-
ation condition from De�nition 1, there shall hold the so-called �niteness condition

u(x) = O
(

1

‖x‖

)
(1.13)

uniformly in all directions x/‖x‖ together with the existence of Green's function in the
exterior domain. In a later work [73], Magnus proves uniqueness without the existence of
Green's function. One year later, Rellich proved in [78] a stronger result on uniqueness,
which additionally omits the use of (1.13). Finally, in 1956, Wilcox proves uniqueness
in [92], as well as the derivation of representation formula (1.15) for a complex wavenumber
κ. Thereby, he used a weaker condition instead of the original radiation condition from
De�nition 1.

16 1. Boundary Element Method

1.2.2 Reformulation as a Boundary Integral Equation

Consider the exterior Helmholtz problem

∆u+ κ2u = 0 in Ωc,

u = f on Γ,

lim
r→∞

r

(
∂u

∂r
− iκu

)
= 0 as r = ‖x‖ → ∞.

(1.14)

As boundary conditions, we chose Dirichlet boundary conditions u = f at Γ, in which case
the right-hand side f is in H1/2(Γ). Other possibilities are Neumann boundary conditions,
that is ∂u/∂n = f , or impedance boundary conditions, that is iκλu+ ∂u/∂n = f . We go
into more detail on the physical meaning of the di�erent boundary conditions in Section
1.2.3, where we introduce the scattering problem.

Before we turn to reformulating problem (1.14) into a boundary integral equation, we want
to state the representation theorem for a solution to the Helmholtz equation. To this end,
by means of Green's second theorem, the following result can be shown:

Theorem 3. For a solution u to the exterior Helmholtz equation, which satis�es the
Sommerfeld radiation condition, there holds:

u(x) =

∫
Γ

(
u(y)

∂k(x,y)

∂ny
− ∂u

∂n
(y)k(x,y)

)
dσy, x ∈ Ωc. (1.15)

Thus, u can be represented by a combination of the acoustic single layer potential

(Sρ)(x) =

∫
Γ
k(x,y) ρ(y) dσy for all x ∈ R3 \ Γ (1.16)

and the acoustic double layer potential

(Dρ)(x) =

∫
Γ

∂k(x,y)

∂ny
ρ(y) dσy for all x ∈ R3 \ Γ. (1.17)

The expression k(x,y) denotes the fundamental solution of the Helmholtz equation and is
of the form cf. [19]

k(x,y) =
1

4π

eiκ‖x−y‖

‖x− y‖
for all x 6= y. (1.18)

The fact that this fundamental solution ful�ls the Helmholtz equation for any x ∈ R \ y,
given a �xed y, can be veri�ed by di�erentiation.

Now, we would like to introduce two boundary integral equations which arise from the
single layer potential and the double layer potential, respectively, in the exterior domain.
The two equations are

1.2. Helmholtz Equation 17

Sρ = f on Γ (1.19)

and (
1

2
I +D

)
ρ = f on Γ. (1.20)

For particular values of κ, we will run into problems, since the homogeneous interior
Dirichlet and Neumann boundary value problems feature nontrivial solutions [19, 68, 83].
According to the second theorem of Fredholm we state:

Theorem 4. Consider two compact, adjoint operators A,A′.

• The nonhomogeneous equation (I−A)ρ = f is solvable, if and only if the condition
〈f, ρ′〉 = 0 holds for the adjoint homogeneous equation (I−A′)ρ′ = 0.

• The nonhomogeneous equation (I−A′)ρ′ = f ′ is solvable, if and only if the condition
〈ρ, f ′〉 = 0 holds for the adjoint homogeneous equation (I−A)ρ = 0.

Notice that the exterior Dirichlet problem (1
2I + D)ρ = f and the interior Neumann

problem (1
2I + Dt)ρ = g are adjoint to each other. In accordance with [19] we have the

following theorem:

Theorem 5. The exterior Dirichlet problem (1.14) is uniquely solvable if κ2 is not an
interior Neumann eigenvalue. If κ2 is an eigenvalue, then the integral equation is solvable,
but the solution is not unique.

To overcome this problem, Brakhage and Werner [11], Leis [72] and Panich [77] came up
with the idea to combine the single layer potential and the double layer potential according
to

u = (D − iηS) ρ

for some η > 0. Taking the trace leads us to the integral equation

Lρ :=

(
1

2
I +D − iηS

)
ρ = f on Γ. (1.21)

The underlying integral operator is of order zero, i.e. 1
2I +D − iηS : L2(Γ)→ L2(Γ). It is

invertible for all η > 0 and κ > 0 [11], provided that the boundary Γ is Lipschitz [13,75]. For
practical use, the coupling parameter η is usually chosen as η ∼ κ. In our implementation,
we set it to η = κ/2. Further discussions on the proper choice of η can be found in [14,70].

After the density ρ in equation (1.21) is found, we can calculate the solution u to the
Helmholtz equation by evaluating

u(x) =

∫
Γ

(
∂k(x,y)

∂ny
− i η k(x,y)

)
ρ(y) dσy, x ∈ Ωc.

18 1. Boundary Element Method

1.2.3 Scattering Problems

The Helmholtz equation can be used to describe acoustic scattering at a three-dimensional
object Ω ⊂ R3. Then, we are interested in solving the Helmholtz equation in the exterior
domain Ωc. We consider the situation, where we have u = ui + us, with ui being a
known incident plane wave ui(x) = exp(iκ〈x,d〉) and us being the scattered wave. The
normalised vector d describes the direction of the plane wave. Given the direction d
and the obstacle Ω with boundary Γ, we obtain the following problem for the total �eld
u(x) = exp(iκ〈x,d〉) + us(x):

∆u+ κ2u = 0 in Ωc,

u = 0 on Γ,

lim
r→∞

r

(
∂us

∂r
− iκus

)
= 0 for r = ‖x‖ → ∞.

(1.22)

Notice that the boundary condition on Γ in (1.22) is chosen as homogeneous Dirichlet
boundary condition. Depending on the characteristics of the scatterer, the boundary con-
ditions have to be set appropriately. One example is a sound-soft scatterer, which means
that the pressure on the boundary is assumed to be zero. Then, the solution u satis�es the
Helmholtz equation with homogeneous Dirichlet conditions and the scattered wave us is a
solution to the Helmholtz equation with the boundary conditions f = −ui. The other ex-
ample is a sound-hard scatterer, meaning that the Neumann derivative on the boundary is
zero. Then, u features homogeneous Neumann boundary conditions and us is the solution
to the Helmholtz equation with the boundary conditions f = −∂ui/∂n. In this thesis, we
will consider Dirichlet boundary conditions, i.e. a sound-soft scatterer. In order to solve
the scattering problem, we will now present two possibilities on how we can proceed.

The �rst way is again to combine the single and double layer operator according to the
ansatz of Brakhage and Werner to represent the scattered �eld us:

us(x) =

∫
Γ

∂k(x,y)

∂ny
ρ(y)dσy − iη

∫
Γ
k(x,y)ρ(y)dσy, x ∈ Ωc. (1.23)

It is shown in e.g. [14] that the function us, given by this ansatz, satis�es the scattering
problem if and only if ρ satis�es the boundary integral equation (1.21). Thereby, the right-
hand side is given by f := −ui as mentioned above. Having the solution ρ at hand, the
scattered wave us can be found by evaluating the integrals in formula (1.23).

The second possibility to obtain an integral equation involves the use of the representation
formula (1.15) and Green's second theorem. With (1.15) we obtain

us(x) =

∫
Γ

(
us
∂k(x,y)

∂ny
− ∂us

∂n
(y)k(x,y)

)
dσy, x ∈ Ωc, (1.24)

1.3. Variational Formulation and Galerkin Scheme 19

for the scattered �eld us. Green's second theorem used for k(x,y) and ui leads to∫
Γ

(
ui
∂k(x,y)

∂ny
− ∂ui

∂n
(y)k(x,y)

)
dσy = 0, x ∈ Ωc. (1.25)

Adding equation (1.25) to equation (1.24) and reordering gives us

us(x) =

∫
Γ

((
us + ui

) ∂k(x,y)

∂ny
−
(
∂us

∂n
(y) +

∂ui

∂n
(y)

)
k(x,y)

)
dσy, x ∈ Ωc.

The �rst part under the integral vanishes due to the boundary condition u = ui + us = 0

for sound-soft scatterers, leaving only the second part. Using the relation u = ui + us

inside the domain Ωc, implies that the total �eld u can be represented as

u(x) = ui(x)−
∫

Γ
k(x,y)

∂u

∂n
(y)dσy, x ∈ Ωc. (1.26)

This equation features a new unknown, namely the Neumann data ∂u/∂n. By taking the
normal derivative of (1.26) and applying again the ansatz of Brakhage and Werner, we get
the boundary integral equation for obtaining the Neumann data of the total �eld:

Lt ∂u
∂n

=

(
1

2
I +Dt − iηS

)
∂u

∂n
=
∂ui

∂n
− iηui on Γ.

This equation is again uniquely solvable for every η > 0 and κ > 0. We notice that the
operator Lt is the transpose of L, since Dt is the transpose of D and S is symmetric. Both
operators L and Lt are bijections for η > 0 and κ > 0, which implies that their inverses
are bounded as well.

1.3 Variational Formulation and Galerkin Scheme

We want to conclude this chapter by reviewing the concept of converting a boundary
integral equation into its variational form. Therefore, we �rst consider a boundary integral
equation in general form

Aρ = f in Γ (1.27)

with the right-hand side f ∈ H−s(Γ), the unknown density ρ ∈ Hs(Γ), and the boundary
integral operator A : Hs(Γ)→ H−s(Γ) of order 2s. Here, Hs(Γ) denotes the Sobolev space
of possibly complex functions f : Γ → C of smoothness s. In some cases, we additionally
have the constraints ∫

Γ
f(x)dσx = 0 and

∫
Γ
ρ(x)dσx = 0.

20 1. Boundary Element Method

The variational formulation of (1.27) then reads: Find ρ ∈ Hs(Γ) such that

〈Aρ, v〉 = 〈f, v〉 for all v ∈ Hs(Γ), (1.28)

with the additional equations 〈f, 1〉 = 0 and 〈ρ, 1〉 = 0 if required.

To arrive at a �nite-dimensional setting, we use the Galerkin scheme, meaning that we
replace the energy space Hs(Γ) by a �nite-dimensional trial space Vj ⊂ Hs(Γ). This leads
to the discrete formulation: Find ρj ∈ Vj such that

〈Aρj , vj〉 = 〈f, vj〉 for all vj ∈ Vj . (1.29)

We consider the trial spaces Vj to be piecewise continuous polynomials of order r, nested
V0 ⊂ V1 ⊂ · · · ⊂ Hs(Γ) and dense in Hs(Γ). Here, the integer j in the subscript encodes
the �neness of the discretisation.

We shall assume thatA has the formM+N , withM elliptic andN compact. Furthermore,
A is injective and satis�es a Gårding inequality, i.e. there exists a constant c > 0 and a
compact operator B : Hs(Γ)→ H−s(Γ) such that

|〈Aρ, ρ〉+ 〈Bρ, ρ〉| ≥ c‖ρ‖2 for all ρ ∈ Hs(Γ). (1.30)

If we want to consider a problem featuring the double layer operator or Helmholtz problems
we have a situation exactly as described. The operator A features a part I which is elliptic
and a second part consisting of the double layer operator or a combination of the single
layer operator and the double layer operator, which is compact on smooth surfaces, i.e. C1,α

with α > 1. Following the literature of Sauter and Schwab [83], these conditions imply the
requirements of the following theorem, which guarantees uniqueness of the solution ρ, the
discrete solution ρj , as well as an error estimate for the following two variational problems.

For the operator A =M+N , the variational form of (1.28) reads: Find ρ ∈ Hs such that

〈Mρ, v〉+ 〈Nρ, v〉 = 〈f, v〉 for all v ∈ Hs. (1.31)

With its discrete counterpart: Find ρj ∈ Vj such that

〈Mρj , vj〉+ 〈Nρj , vj〉 = f(vj) for all vj ∈ Vj . (1.32)

Theorem 6. ([83, Theorem 4.2.9]) Let there be given a Hilbert space and (Vj)j a dense
sequence of �nite-dimensional subspaces. Suppose that there holds:

(i) M is elliptic, i.e. there exists a constant α > 0 such that

|〈Mρ, ρ〉| ≥ α‖ρ‖2Hs for all ρ ∈ Hs.

(ii) The operator N is compact.

1.4. Fast Boundary Element Methods 21

(iii) For f = 0, the problem has only the trivial solution, i.e.

〈Mρ, v〉+ 〈Nρ, v〉 = 0⇒ ρ = 0.

Then, the problem (1.31) has a unique solution ρ ∈ Hs for every right-hand side f ∈ H−s.

There exists a constant j0 > 0 such that for all j ≥ j0 the Galerkin equation (1.32) has
a unique solution ρj ∈ Vj . The sequence (ρj)j of solutions converges towards ρ and for
j ≥ j0 there holds the error estimate

‖ρ− ρj‖Hs ≤ C min
vj∈Vj

‖ρ− vj‖Hs , (1.33)

with the constant C being independent of j.

The proof to this theorem can be found in [83].

In the case when we consider the Helmholtz equation, the constant C in the error estimate
(1.33) additionally depends on the wavenumber κ and the coupling parameter η. More
details on this dependence can be found for example in [14,49].

The next step is to choose a suitable basis Φj = (φi)i of Vj . Making the ansatz

ρj = Φjρ
Φj =

∑
i

ρ
Φj

i φi,j , (1.34)

as it is well known from the �nite element setting, leads to the system of linear equations

AΦjρ
Φj

j = fΦj (1.35)

with the right-hand side fΦj and the sti�ness matrix AΦj de�ned through

f
Φj

i := 〈f, φi〉 and A
Φj

i,i′ := 〈Aφi′ , φi〉. (1.36)

First, the form of the matrix AΦj heavily depends on properties of the underlying operator
A, more precisely on the involved kernel function. For example, in the case of the single
layer operator, we end up with a symmetric positive de�nit matrix, which is not the case
for integral equations featuring the double layer operator. Second, the properties of the
system matrix depend heavily on the involved basis as well. Before we focus on wavelet
bases in the next chapter, we �rst give a short overview on fast boundary element methods
in general.

1.4 Fast Boundary Element Methods

Besides the wavelet matrix compression there are numerous di�erent approaches to treat
the kernel function k(x,y), which appears under the integral, some of which we will brie�y

22 1. Boundary Element Method

mention here.

Considering a basis φj for the spaces Vj , which live on a single scale of spatial resolution,
results in a full system matrix. The complexity to assemble and solve the system of linear
equations is then at least O(N2), where N denotes the number of degrees of freedom.
Another issue is that the involved matrix can become more and more ill-conditioned as the
number of degrees of freedom increases. These two obstacles have led to a lot of progress
for mathematical methods on reducing the complexity to O(N log(N)), or even to O(N),
some of which we will address here.

One of the key ideas for fast boundary element methods lies in the fact that, for su�ciently
smooth kernel functions and if the distance of the points x and y is large enough, an
approximation of the kernel function

k(x,y) ≈ k̃r(x,y) :=

r∑
l=1

gl(x)fl(y), (1.37)

separating the two variables, may be used. This so-called degenerate kernel approximation
allows us to separate the double integral in (1.36), under which the kernel function appears,
into single integrals, featuring the x and y part separately.

Since (1.37) is applicable only if ‖x−y‖ is large enough, one has to introduce an appropriate
matrix partitioning as it is for example done for hierachical matrices [52, 88]. Suppose we
have given an index set I of cardinality N and our set of basis functions {φi}i∈I . With
these ingredients, we can build a so-called cluster tree TI (the nodes of this tree are called
clusters), which is generated by subdividing the index set I into disjoint non-empty subsets
ι, ι′ with I = ι∪ ι′. The subdivision is repeated until the cluster has less than a prescribed
number of indices. The leafs of this tree form then a partition of the original set I. With
this tree at hand, we form a block-cluster tree TI×I by combining clusters of the cluster

Aι,ι′ ι

ι′

Figure 1.1: Structure of the block-cluster tree

1.4. Fast Boundary Element Methods 23

tree. As we do this, we use, starting from the root, a recursive admissibility condition to
check which of these blocks Aι,ι′ ∈ R|ι|×|ι′| qualify for a low-rank approximation, i.e. by a
matrix of rank r.

Using the local representation (1.37) for the matrix entries in (1.36) gives an approximation
to the matrix block

Aι,ι′ ≈ LRt (1.38)

with matrices L ∈ R|ι|×r and R ∈ R|ι′|×r given by

Li,l := 〈gl, φi〉, Ri′,l := 〈fl, φi′〉.

Blocks of dimension |ι| × |ι′| can thus be stored in O(r(|ι| + |ι′|)) instead of O(|ι| · |ι′|).
In the following we mention several methods to obtain the degenerated kernel expansion
(1.37).

The fast multipole method, see [50, 79] for example, aims at rewriting the involved kernel
function into a polynomial expansion by means of spherical harmonics. Another approach
is provided by the so-called panel clustering by Hackbusch and Novak [53]. Here, the
kernel is approximated by through a Taylor expansion, whereas [10] approximates the
kernel function by polynomial interpolation.

While the aforementioned methods aim at approximating the involved kernel function by
an explicit degenerated kernel approximation, the idea of the adaptive cross approxima-
tion [2, 4] is a di�erent one. Namely, it rather uses a few exact entries of the original
matrix for constructing the low-rank approximation (1.38) directly. The idea on how to
determine which values should be used for this procedure is explained in e.g. [3]. The
storage requirements for the block Aι,ι′ ∈ R|ι|×|ι′| are then again O(r(|ι|+ |ι′|)).

All of the mentioned schemes realise the desired accuracy in complexity O(N log(N)),
where N denotes the number of degrees of freedom. The complexity can be further reduced
to O(N) if H2-matrices are used. They are a special case of H-matrices which exploit a
nested hierarchy between di�erent levels. We only mention [9] and the references therein.
However, we are not aware of an algorithm using adaptive methods for H-matrices or
H2-matrices.

We will, in this thesis, consider basis functions with special properties to deal with the
appearing problem of a full system matrix. These basis functions are called wavelets and
their main feature is that the coe�cients of the system matrix in the wavelet basis decay
drastically as we move away from the singular parts. This allows us to neglect matrix
entries without losing over-all accuracy [7]. Using only this property already reduces the
complexity to O(N log(N)), with N denoting again the number of unknowns. Then, using
a second estimate for neglecting even more matrix entries [84] results in linear complexity
O(N).

24 1. Boundary Element Method

2
Wavelets

In this chapter, we will present the wavelet bases under consideration. We have already
mentioned that the structure of the system matrix after discretisation depends heavily on
the choice of the basis. Choosing a single-scale basis for discretisation will result in a dense
system matrix. However, choosing a wavelet basis will result in a quasi-sparse matrix, as
the representation of the operator in wavelet coordinates contains a large amount of very
small entries, which can be neglected without compromising the over-all accuracy.

The structure of this chapter is as follows. In the �rst section, we will introduce the primal
and dual single-scale bases and associated wavelets in one spatial dimension. We will then
de�ne the wavelets on the unit interval, where we will not go too much into detail on
their construction, since this would involve an extensive discussion on biorthogonalisation
techniques and stable completions, see e.g. [12, 30, 32] for more details. After these func-
tions are introduced, we continue to the wavelets on the unit square, built by taking the
tensor product of wavelets on the unit interval. Thereby, we will introduce a second form
of representing the wavelet basis, for which the functions are optimised with respect to
their support. These are the functions which are �nally used in our implementation. Sub-
sequently, we focus on how to represent surfaces of three-dimensional domains, where we
use mappings from the unit square to the according patches on the surface of the geometry
under consideration. These mappings are applied in the last section to construct piecewise
constant wavelets on the surface. For the discussion of globally continuous wavelet bases
on surfaces and for higher order ansatz functions, we refer the reader to [18,30,54,60].

25

26 2. Wavelets

2.1 Primal and Dual Scaling Functions on R

This section is concerned with introducing the primal and dual basis functions, called
scaling functions, as well as the concept of a multiresolution analysis on R. We restrict
ourselves to piecewise constant scaling functions to construct the underlying multireso-
lution analysis, since we only consider piecewise constant wavelets in this thesis and for
our implementation. For the construction of spline wavelets of arbitrary order m, see
e.g. [18,30,54].

Let us start by de�ning the scaling function φR(t) as the characteristic function of the
interval I (being the B-spline of order m = 1). Without loss of generality, we can assume
that I = [0, 1]. This function is compactly supported

φR(t) 6= 0⇔ t ∈ I

and normalised ∫
R
φR(t)dt = 1.

Our scaling functions are subject to a re�nement relation, which means that they can be
expressed as a combination φR(t) = φR(2t− 1) + φR(2t) of translated and dilated versions
of themselves. By considering the dilates φR(2jt) with respect to an arbitrary re�nement
scale j ∈ Z and the translates φR(t − k) with arbitrary k ∈ Z, we can de�ne the set of
functions

φRj,k(t) = 2j/2φR(2jt− k). (2.1)

The factor 2j/2 is introduced for normalisation, leading us to L2-normalised functions

φRj,k(t) =

{
2j/2, if t ∈

[
2−jk, 2−j(k + 1)

)
,

0, else.

The integer k ∈ Z which determines the translation, indicates at the same time the number
of each basis function. Moreover, all of these functions have a compact support with respect
to the scale j, that is diam(supp(φRj,k)) = 2−j .

De�nition 7. Let {ti}i∈Z be given vectors in a Hilbert space V and span{ti} = V . If
every element v ∈ V has a unique expansion v =

∑
i∈Z viti and if there exist universal

constants c1 and c2 such that

c1‖v‖`2(Z) ≤ ‖v‖L2(R) ≤ c2‖v‖`2(Z),

then {ti}i∈Z is called a Riesz basis. Here, with v = {vi}i∈Z we denote the vector of
coe�cients and with `2(Z) the space of square summable sequences.

2.2. Wavelet Bases on R 27

For each j, the collections ΦR
j = {φRj,k}k∈Z, introduced in (2.1), form Riesz bases and they

generate the spaces V R
j = span(ΦR

j). For the parameter m̃ ≥ m (and m̃+m even), there

exists a scaling function φ̃R (with polynomial exactness m̃), being biorthogonal, meaning
that ∫

R
φR(t− k) φ̃R(t− k′)dt = δk,k′ for k, k′ ∈ Z, (2.2)

cf. [18]. Like before, we obtain the set of functions φ̃Rj,k(t) = 2j/2φ̃R(2jt−k) by considering
the translates and dilates. They are again compactly supported, normalised and re�nable
[25].

The collections Φ̃R
j = {φ̃Rj,k}k∈Z of the dual functions form again Riesz bases and generate

the dual spaces Ṽ R
j = span(Φ̃R

j). The spaces V R
j and Ṽ R

j generated like this form a primal
and dual multiresolution analysis in L2(R):

De�nition 8. A multiresolution analysis of the space L2(R) consists of a sequence of
nested spaces · · · ⊂ V R

−2 ⊂ V R
−1 ⊂ V R

0 ⊂ V R
1 ⊂ V R

2 ⊂ · · · which satisfy⋃
j∈Z

V R
j = L2(R) and

⋂
j∈Z

V R
j = ∅.

Furthermore, for a function f ∈ L2(R), it is required that

f(t) ∈ V R
0 ⇐⇒ f(2jt) ∈ V R

j for all j ∈ Z,
f(t) ∈ V R

0 ⇐⇒ f(t− k) ∈ V R
0 for all k ∈ Z.

(2.3)

2.2 Wavelet Bases on R

Suppose, we have chosen a basis in V R
j . If we decide that this level of re�nement does

not su�ce, we have to choose a completely new basis for V R
j+1, throwing away the old

one. Furthermore, representing nonlocal operators using a single-scale basis leads to dense
system matrices. The idea of wavelets is to keep track of the increment of information
between two subsequent spaces V R

j and V R
j+1.

Suppose, we have given the primal and dual bases ΦR
j and Φ̃R

j of the spaces V R
j and Ṽ R

j ,
respectively. The goal is to �nd collections of functions {ψR

j,k}k∈Z and {ψ̃R
j,k}k∈Z, each set

forming the complement spaces WR
j and W̃R

j , such that

V R
j+1 = V R

j ⊕WR
j+1 and Ṽ R

j+1 = Ṽ R
j ⊕ W̃R

j+1

hold for each j ∈ Z. By using this property recursively, we get the multiscale decomposition⊕
j∈Z

WR
j =

⊕
j∈Z

W̃R
j = L2(R).

28 2. Wavelets

Aside from forming Riesz bases, the collections {ψR
j,k}k∈Z and {ψ̃R

j,k}k∈Z shall ful�l the
orthogonality relation∫

R
ψR(t− k) ψ̃R(t− k′) dt = δk,k′ for k, k′ ∈ Z. (2.4)

To �nd the sets {ψR
j,k} and {ψ̃R

j,k}, we use appropriate linear combinations of the functions
φR and φ̃R to construct functions ψR and ψ̃R (see Section 2.3 for details). Involving their
translates ψR(t− k) and dilates ψR(2jt), we de�ne the sets

ψR
j,k(t) = 2j/2ψR(2jt− k), ψ̃R

j,k(t) = 2j/2ψ̃R(2jt− k).

Again, the factor 2j/2 is introduced due to normalisation, leading to L2-normalised func-
tions. According to [18], these functions ful�l (2.4) if equation (2.2) holds. Finally, the
collections ∪j∈ZΨR

j and ∪j∈ZΨ̃R
j form Riesz bases in L2(R) [18].

Since we have a biorthogonal basis, we have some useful relations between di�erent spaces,
namely W̃R

j+1 ⊥ V R
j , W

R
j+1 ⊥ Ṽ R

j and WR
j ⊥ W̃R

j′ for j 6= j′. Also, the spaces WR
j and

W̃R
j inherit a similar property as the single-scale spaces in equation (2.3). If the set φ̃Rj,k

of dual scaling functions is exact of order m̃, then the property WR
j+1 ⊥ Ṽ R

j , together with
equation (2.2) implies the so-called vanishing moment property for the primal wavelets∫

R
tr ψR

j,k(t) dt = 0 for r < m̃. (2.5)

Analogously, we remark that the dual wavelets have m vanishing moments. Speci�cally
we use wavelets with (m, m̃) = (1, 1) vanishing moments (Haar wavelets) and such with
(m, m̃) = (1, 3) vanishing moments. In the upcoming section, we will see a speci�c wavelet
construction which uses a combination of only �nitely many single-scale functions φR. Since
all of these have compact support, the constructed wavelets too have compact support with
respect to the re�nement scale j.

Let γ and γ̃ (γ, γ̃ > 0) denote the regularity of the basis functions φR and φ̃R, that is

γ = sup{s ∈ R : φR(t) ∈ Hs(R)} and γ̃ = sup{s ∈ R : φ̃R(t) ∈ Hs(R)}.

As our primal multiresolution is based on smoothest splines, the regularity of the ansatz
functions is γ = m− 1/2 = 1/2.

For parameters s1 ≤ s2 ≤ m = 1 with q < γ we have the following approximation estimate

inf
vj∈V R

j

‖u− vj‖Hs1 (R) . 2j(s1−s2)‖u‖Hs2 (R) for u ∈ Hs2(R) (Jackson). (2.6)

2.3. Wavelet Bases on the Interval 29

Also there holds the inverse estimate

‖vj‖Hs2 (R) . 2j(s2−s1)‖vj‖Hs1 (R) for all vj ∈ V R
j (Bernstein) (2.7)

for s1 ≤ s2 < γ, see e.g. [30, 60]. Analogous estimates hold for the dual multiresolution
analysis.

With the Jackson and Bernstein estimate holding, we have the norm equivalences [29,43,66]

‖v‖2Hs(R) ∼


∑
j,k∈Z

2js|(v, ψ̃j,k)|2, s ∈ (−γ̃, γ),∑
j,k∈Z

2js|(v, ψj,k)|2, s ∈ (−γ, γ̃).

2.3 Wavelet Bases on the Interval

After having introduced the idea of the primal and dual multiresolution analysis and the
wavelet bases on R, we now turn to the bases on the unit interval [0, 1]. Other than
on R, where any translate of a wavelet is acceptable as basis function, this may not be
the case on the unit interval as we arrive at the interval boundary. This is why the
construction of a suitable primal and dual wavelet basis is tedious. Biorthogonalisation
techniques are needed and appropriate functions, which form a stable completion, must
be found. In this section, we specify two wavelet bases, which will later be used for
the implementation, and state the properties that they ful�l. All the left out theoretical
background on biorthogonalisation techniques or stable completions can be found in e.g.
[12,30,54].

2.3.1 Scaling Functions

Let us start by introducing the index set ∆
[0,1]
j := {0, . . . , 2j − 1} of cardinality 2j . It

contains the indices k of the piecewise constant functions φj,k with respect to a uniform
re�nement of level j on the unit interval [0, 1]. This gives us the L2-normalised basis of Vj

φ
[0,1]
j,k = 2j/2χ[2−jk,2−j(k+1)] with k ∈ ∆

[0,1]
j (2.8)

for each re�nement level j. Let us denote the set of single-scale functions on a re�nement
scale j as Φ

[0,1]
j = {φ[0,1]

j,k }k∈∆
[0,1]
j

. These scaling functions form Riesz bases for the spaces

V
[0,1]
j = span(Φ

[0,1]
j), are re�nable in accordance with

φ
[0,1]
j,k =

1√
2

(
φ

[0,1]
j+1,2k + φ

[0,1]
j+1,2k+1

)
, (2.9)

30 2. Wavelets

compactly supported and exact of orderm = 1. One can also construct a set of dual scaling
functions φ̃[0,1]

j,k , see [30, 54], such that they form a basis of the dual space Ṽ [0,1]
j . Finally,

the spaces V [0,1]
j and Ṽ [0,1]

j form a primal and dual multiresolution analysis in L2([0, 1]).

With these biorthogonal bases Φ
[0,1]
j and Φ̃

[0,1]
j at hand, the next step is to construct a

wavelet bases. Setting W [0,1]
0 := V

[0,1]
0 and W̃ [0,1]

0 := Ṽ
[0,1]

0 , the spaces W [0,1]
j and W̃ [0,1]

j are
uniquely de�ned for all j ≥ 0 via

V
[0,1]
j+1 = V

[0,1]
j ⊕W [0,1]

j+1 and Ṽ
[0,1]
j+1 = Ṽ

[0,1]
j ⊕ W̃ [0,1]

j+1 ,

where W [0,1]
j+1 ⊥ Ṽ

[0,1]
j and W̃

[0,1]
j+1 ⊥ V

[0,1]
j . Next, we will give two explicit examples of

wavelet bases on the interval. These bases will build the foundation for the two-dimensional
wavelet bases on the unit square, which we are using for our implementation.

2.3.2 Haar Basis

The �rst example are the Haar wavelets. Given the piecewise constant primal and dual
basis functions on the interval [0, 1] and the index set ∆

[0,1]
j , we consider the di�erence

set ∆
[0,1]
j \∆

[0,1]
j−1 = {2j−1, · · · , 2j − 1}. We easily see that this set is equivalent to the set

{0, · · · , 2j−1 − 1} by shifting the indices by the factor 2j−1. We will denote this shifted
di�erence set by ∇[0,1]

j for j > 0. As wavelet functions we can simply take the linear
combination

ψ
[0,1]
j,k =

1√
2

(
φ

[0,1]
j,2k − φ

[0,1]
j,2k+1

)
with k ∈ ∇[0,1]

j

for the primal wavelet basis, as well as for the dual wavelet basis due to orthonormality,
i.e.

ψ
[0,1]
j,k = ψ̃

[0,1]
j,k .

Hence, the primal and dual basis consists of the same functions everywhere, i.e. there is
no special boundary modi�cation. By Ψ

[0,1]
j we denote the collection

Ψ
[0,1]
j =

j⋃
j′>0

ψ
[0.1]
j′,k ∪Φ

[0,1]
0 with k ∈ ∇[0,1]

j′ .

Analogously we de�ne the dual basis Φ̃
[0,1]
j . In Figure 2.1 we see the scaling function

φ
[0,1]
0,0 , the �rst two re�ned functions φ[0,1]

1,0 , φ[0,1]
1,1 and the Haar wavelet ψ[0,1]

1,0 on the unit

interval. The index set∇[0,1]
j contains the indices k of the functions ψ[0,1]

j,k and ψ̃[0,1]
j,k , forming

the complementary spaces W [0,1]
j and W̃ [0,1]

j , which coincide here. The wavelet functions

obtained in this way feature (m, m̃) = (1, 1) vanishing moments and the collection Ψ
[0,1]
j

forms a Riesz basis (in this case it even forms an orthonormal basis) in L2([0, 1]). Also, the
wavelets have the same regularity as the Haar wavelets on R and they are clearly compactly
supported.

2.3. Wavelet Bases on the Interval 31

0 1

1

φ
[0,1]
0,0

0 1

√
2

1
2

φ
[0,1]
1,0 φ

[0,1]
1,1

1

−1

0

1

1

−1

ψ
[0,1]
1,0

Figure 2.1: Scaling function, �rst two re�ned single-scale functions and Haar wavelet.

Furthermore, there holds the norm equivalence (recall that ψ[0,1]
j,k = ψ̃

[0,1]
j,k)

‖v‖2Hs([0,1]) ∼
∑
j≥0

∑
k∈∇[0,1]

j

2js|(v, ψ[0,1]
j,k)|2, s ∈

(
−1

2
,
1

2

)
.

2.3.3 Wavelets With Three Vanishing Moments

For constructing the wavelets with three vanishing moments, we either have to start with
a larger interval for de�ning the scaling functions, or start with a re�nement scale which
is larger than 0. This we have to do because the resulting wavelets have a larger support,
requiring more singe-scale functions for their construction. Hence, suppose we have given
the interval [0, 1] with a large enough initial re�nement. Particularly in our case, this
means that these functions can be built by using single-scale functions on level j = 3. The
primal scaling functions follow the same re�nement relation (2.9) as for the construction of
the Haar wavelets. For the dual scaling functions, we have the re�nement relations cf. [54]

φ̃
[0,1]
j,0 =

1√
2

(
11

8
φ̃

[0,1]
j,0 +

5

8
φ̃

[0,1]
j,1 +

1

8
φ̃

[0,1]
j,2 −

1

8
φ̃

[0,1]
j,3

)
,

φ̃
[0,1]
j,1 =

1√
2

(
−1

2
φ̃

[0,1]
j,0 +

1

2
φ̃

[0,1]
j,1 + φ̃

[0,1]
j,2 + φ̃

[0,1]
j,3 +

1

8
φ̃

[0,1]
j,4 −

1

8
φ̃

[0,1]
j,5

)
,

φ̃
[0,1]
j,2 =

1√
2

(
1

8
φ̃

[0,1]
j,0 −

1

8
φ̃

[0,1]
j,1 −

1

8
φ̃

[0,1]
j,2 +

1

8
φ̃

[0,1]
j,3 + φ̃

[0,1]
j,4 + φ̃

[0,1]
j,5 +

1

8
φ̃

[0,1]
j,6 −

1

8
φ̃

[0,1]
j,7

)
.

These three equations represent the re�nement relations for the boundary functions at the
left interval boundary. Similar equations hold (modulo leading signs) for the right boundary
functions φ̃j,2j−1−1, φ̃j,2j−1−2 and φ̃j,2j−1−3 as well. For the interior scaling functions, we

32 2. Wavelets

have the re�nement relation

φ̃
[0,1]
j,k =

1√
2

(
−1

8
φ̃

[0,1]
j,2k−2 +

1

8
φ̃

[0,1]
j,2k−1 + φ̃

[0,1]
j,2k + φ̃

[0,1]
j,2k+1 +

1

8
φ̃

[0,1]
j,2k+2 −

1

8
φ̃

[0,1]
j,2k+3

)
,

for k ∈ {3, . . . , 2j−1 − 4}. Choosing the Haar basis as stable completion, see e.g. [30, 54],
we �nally end up with the following variations of wavelets

ψ
[0,1]
j,0 =

1√
2

(
−5

8
φ

[0,1]
j,0 +

11

8
φ

[0,1]
j,1 −

1

2
φ

[0,1]
j,2 −

1

2
φ

[0,1]
j,3 +

1

8
φ

[0,1]
j,4 +

1

8
φ

[0,1]
j,5

)
,

ψ
[0,1]

j,2j−1−1
=

1√
2

(
+

5

8
φ

[0,1]

j,2j−1
− 11

8
φ

[0,1]

j,2j−2
+

1

2
φ

[0,1]

j,2j−3
+

1

2
φ

[0,1]

j,2j−4
− 1

8
φ

[0,1]

j,2j−5
− 1

8
φ

[0,1]

j,2j−6

)
,

ψ
[0,1]
j,k =

1√
2

(
−1

8
φ

[0,1]
j,2k−2 −

1

8
φ

[0,1]
j,2k−1 + φ

[0,1]
j,2k − φ

[0,1]
j,2k+1 +

1

8
φ

[0,1]
j,2k+2 +

1

8
φ

[0,1]
j,2k+3

)
,

for k ∈ {1, . . . , 2j−1 − 2}. Note that we have only two wavelets (one at each boundary)
which do not coincide with the interior functions, which are given by the �rst and second
equation. Figure 2.2 shows us the three di�erent (primal) wavelets on the interval.

0
1

−5
8

11
8

−1
2

1
8

−1
8

1

−1

1
8

5
8

−11
8

1
2

−1
8

Figure 2.2: Wavelet with three vanishing moments with the left and right boundary mod-
i�cation.

The wavelets ψ[0,1]
j,k provide for all k ∈ ∇[0,1]

j three vanishing moments, i.e.∫ 1

0
trψ

[0,1]
j,k (t) dt = 0 for r < 3.

More precisely, it holds (m, m̃) = (1, 3). Notice that all basis functions (primal and dual)

2.4. Wavelet Bases on the Unit Square 33

are compactly supported. The norm equivalences hold in the ranges

‖v‖2Hs([0,1]) ∼



∑
j≥0

∑
k∈∇[0,1]

j

2js
∣∣∣(v, ψ̃[0,1]

j,k)
∣∣∣2, s ∈

(
−γ̃, 1

2

)
,

∑
j≥0

∑
k∈∇[0,1]

j

2js
∣∣∣(v, ψ[0,1]

j,k)
∣∣∣2, s ∈

(
−1

2 , γ̃
)
.

2.4 Wavelet Bases on the Unit Square

In this section, we will present the construction of wavelet bases on the unit square � =

[0, 1]× [0, 1]. We make use of the introduced bases Φ
[0,1]
j and Φ̃

[0,1]
j of the spaces V [0,1]

j and

Ṽ
[0,1]
j and Ψ

[0,1]
j and Ψ̃

[0,1]
j on the interval. The general construction of wavelet bases on

the n-dimensional unit cube can be found in e.g. [32, 54].

Let us start by de�ning the sets of scaling functions on the unit square. To this end,
we introduce the vectors t := (t1, t2) denoting the coordinates in the square and k :=

(k1, k2) ∈ ∆�
j := ∆

[0,1]
j × ∆

[0,1]
j the pair of indices. We then de�ne the set of primal and

dual scaling functions on the square by taking the tensor product of the one-dimensional
basis functions on the unit interval

Φ�
j = Φ

[0,1]
j ⊗Φ

[0,1]
j , Φ̃�

j = Φ̃
[0,1]
j ⊗ Φ̃

[0,1]
j . (2.10)

This means that each basis function is de�ned by a product of one-dimensional basis
functions

φ�j,k(t) = φ
[0,1]
j,k1

(t1) · φ[0,1]
j,k2

(t2), φ̃�j,k(t) = φ̃
[0,1]
j,k1

(t1) · φ̃[0,1]
j,k2

(t2).

The sets Φ�
j = {φ�j,k}k∈∆�j

and Φ̃�
j = {φ̃�j,k}k∈∆�j

generate the spaces V �j = span(Φ�
j) and

Ṽ �j = span(Φ̃�
j), respectively. The spaces V �j and Ṽ �j are nested, exact of order m and

m̃, respectively, and the union of all V �j and Ṽ �j , j ≥ 0, is dense in L2(�). We again
search functions ψ� an ψ̃� in the complement spaces W�

j+1 and W̃�
j+1 to enrich V �j and

Ṽ �j , respectively, in such a way that we get the next �ner space

V �j+1 = V �j ⊕W�
j+1 and Ṽ �j+1 = Ṽ �j ⊕ W̃�

j+1.

In particular, it holds W̃�
j+1 ⊥ V �j and W�

j+1 ⊥ Ṽ �j . Nevertheless, it is not obvious how to
de�ne the associated wavelets. This is the point where a certain degree of freedom comes
in and di�erent wavelet bases can be chosen. We will explain the idea of how we can
construct such bases, in particular, we use two speci�c examples of wavelet functions.

As introduced in Section 2.3, we use the Haar basis and the wavelets with three vanishing
moments on the interval to build the tensor product wavelets. We shall not simply take
ordinary tensor product wavelets, but construct wavelets which are optimised with respect

34 2. Wavelets

to their support. These have much smaller supports which leads to superior compression
results. This is the main reason why we use them for our implementation.

2.4.1 Ordinary Tensor Product Wavelets

The �rst possibility to decompose the space V �j+1 is according to

V �j+1 = V
[0,1]
j+1 ⊗ V

[0,1]
j+1

=
(
V

[0,1]
j ⊕W [0,1]

j+1

)
⊗
(
V

[0,1]
j ⊕W [0,1]

j+1

)
= V �j ⊕

(
W

[0,1]
j+1 ⊗ V

[0,1]
j

)
⊕
(
V

[0,1]
j ⊗W [0,1]

j+1

)
⊕
(
W

[0,1]
j+1 ⊗W

[0,1]
j+1

)
.

(2.11)

In the third equality, we used the rule H1⊗ (H2⊕H3) = (H1⊗H2)⊕ (H1⊗H3). If we do
not further transform this representation, we can take the tensor products of functions in
the above de�ned spaces. We then end up with four di�erent kinds of basis functions; the
scaling functions from equation (2.10) together with three sorts of wavelets:

ψ�j,k,1(t) = ψ
[0,1]
j,k1

(t1) · φ[0,1]
j,k2

(t2) with k = (k1, k2) ∈ ∇�j,1,

ψ�j,k,2(t) = φ
[0,1]
j,k1

(t1) · ψ[0,1]
j,k2

(t2) with k = (k1, k2) ∈ ∇�j,2,

ψ�j,k,3(t) = ψ
[0,1]
j,k1

(t1) · ψ[0,1]
j,k2

(t2) with k = (k1, k2) ∈ ∇�j,3.

The index sets∇�j,{1,2,3} are all representing the set of basis functions. Each set is composed
of the tensor product of two one-dimensional index sets on [0, 1] and can take di�erent
shapes. In particular, we have the sets ∇�j,1 = ∇[0,1]

j × ∆
[0,1]
j , ∇�j,2 = ∆

[0,1]
j × ∇[0,1]

j and

∇�j,3 = ∇[0,1]
j ×∇[0,1]

j .

2.4.2 Wavelets With Optimised Support

It is possible to arrive at a di�erent representation of (2.11) by a further transformation
of the last two terms. We keep the �rst two addends V �j and W [0,1]

j+1 ⊗ V
[0,1]
j and use the

relation V [0,1]
j ⊕W [0,1]

j+1 = V
[0,1]
j+1 to obtain the following decomposition

V �j+1 = V �j ⊕
(
W

[0,1]
j+1 ⊗ V

[0,1]
j

)
⊕
(
V

[0,1]
j+1 ⊗W

[0,1]
j+1

)
.

The advantage of this representation is that it produces wavelets with a smaller support,
since the involved single-scale space in the third addend is V [0,1]

j+1 instead of V [0,1]
j . This

may seem insigni�cant from the analytical point of view, but it is of great importance for
speeding up the computations since the matrix can be compressed more e�ciently. We

2.5. Wavelet Bases on the Surface 35

have now two sorts of wavelets instead of three, namely

ψ�j,k,1(t) = ψ
[0,1]
j,k1

(t1) · φ[0,1]
j,k2

(t2) with k = (k1, k2) ∈ ∇�j,1 = ∇[0,1]
j ×∆

[0,1]
j ,

ψ�j,k,2(t) = φ
[0,1]
j+1,k1

(t1) · ψ[0,1]
j,k2

(t2) with k = (k1, k2) ∈ ∇�j,2 = ∆
[0,1]
j+1 ×∇

[0,1]
j ,

and likewise for the dual basis. Note that the �rst index set ∇[0,1]
j,1 is the same as before,

the other set ∇[0,1]
j,2 , however, is di�erent.

We form the collections Ψ�
j,ι = {ψ�j,k,ι} and Ψ̃�

j,ι = {ψ̃�j,k,ι}, respectively, with respect to
the di�erent index sets ∇�j,ι for ι = {1, 2} for the optimised wavelets and ι = {1, 2, 3}
for the ordinary tensor product wavelets. Ultimately, we have the set of primal wavelets
Ψ�
j =

⋃
ι Ψ

�
j,ι and dual wavelets Ψ̃�

j =
⋃
ι Ψ̃

�
j,ι. These sets span the complement spaces

W�
j = span(Ψ�

j) and W̃�
j = span(Ψ̃�

j). Both mentioned wavelet bases feature (m, m̃) =

(1, 1) and (m, m̃) = (1, 3) vanishing moments, respectively, similar to their one-dimensional
counterparts on the unit interval which were used for their construction.

2.5 Wavelet Bases on the Surface

We will close this section by introducing wavelets on surfaces. To this end, we will �rst
describe how we represent surfaces. Let Ω ⊂ R3 be a bounded and simply connected
domain with boundary Γ := ∂Ω. The surface of the geometry is divided into smooth,
four-sided patches Γi, meaning that the surface Γ is represented by the union

Γ =
M⋃
i=1

Γi, Γi = γi(�), i = 1, . . . ,M

with γi : � → Γi being smooth di�eomorphisms from the unit square � = [0, 1]2 to the
patch Γi. Thereby, we assume that the intersection Γi∩Γi′ , i 6= i′, of two di�erent patches
is either empty, a common edge or a common vertex. Besides that, the mappings γi need
to ful�l a certain conformity condition so that we will obtain a regular mesh. For each x
in the intersection of two patches Γi ∩ Γi′ , there exists an a�ne map Ξ: �→ � such that
x = γi(t) = (γi ◦ Ξ)(t). Re�nement of the surface is then automatically introduced by a
re�nement of the unit square. More precisely, a uniform mesh of level j on Γ is obtained
by subdividing the square into 4j portions (called elements) of the form

�j,k := [2−j(k1, k1 + 1)]× [2−j(k2, k2 + 1)] ⊆ �,

with k = (k1, k2) again indicating the location. When we assume that the surface is
re�ned uniformly, this generates M4j elements Γi,j,k on the surface with Γi,j,k := γi(�j,k).
In particular, we have Γi,0,(0,0) = Γi. Figure 2.3 shows two di�erent elements and how
they are represented on the unit square. Note that this way of representing the surface of
a geometry is well known in Computer Aided Geometric Design. In particular, it is the

36 2. Wavelets

Γi,1,(1,1)

Γi,2,(0,1)

Figure 2.3: Element Γi,1,(1,1) and element Γi,2,(0,1).

topic of recent studies in isogeometric analysis [64].

Consider a surface Γ, which is represented in the described way. Suppose we have at hand
the bases on the unit square. We can then construct the bases on the surface Γ, by using
these mappings to represent scaling functions and wavelets on the surface in the following
way, where t := γ−1

i (x):

φΓi
j,k(x) = φ�j,k(t) and ψΓi

j,k,{1,2,3}(x) = ψ�j,k,{1,2,3}(t)

φ̃Γi
j,k(x) = φ̃�j,k(t)/µi(t) and ψ̃Γi

j,k,{1,2,3}(x) = ψ̃�j,k,{1,2,3}(t)/µi(t)
(2.12)

for all x ∈ Γi. Thereby, the expression µi stands for the surface measure which is de�ned
as

µi(t) :=

∥∥∥∥∂γi(t)∂t1
× ∂γi(t)

∂t2

∥∥∥∥ . (2.13)

Note that it holds µi(t) > 0 for all t ∈ � and i = 1, . . . ,M . We introduce the following
notation. Given a wavelet ψΓi

j,k,ι of re�nement level j on the i-th patch Γi with k indicating
the location, then we will write ψΓ

λ with λ := (i, j,k, ι). The last integer ι in this 4-tuple
denotes the sort of wavelet. On one �xed scale of re�nement j we can de�ne the collections
ΨΓ

Λ(j) = {ψΓ
λ |λ ∈ ∇Γ

j } and Ψ̃Γ
Λ(j) = {ψ̃Γ

λ |λ ∈ ∇Γ
j }, by collating the functions ψλ and ψ̃λ,

respectively, for all i, k, ι. The index set ∇Γ
j hereby generalises the aforementioned set

∇�j and contains all possible variations of 4-tuples (i, j,k, ι) for a �xed j. We introduce
the following abbreviation for the level j = |λ|. Finally, we get the complete sets of
basis functions on the surface up to a certain �xed scale J by the union of the bases of a
re�nement scale j, i.e.

ΨΓ
Λ =

J⋃
j=0

ΨΓ
Λ(j) and Ψ̃Γ

Λ =
J⋃
j=0

Ψ̃Γ
Λ(j).

2.5. Wavelet Bases on the Surface 37

According to [32], we have the norm equivalences

‖v‖2Hs(Γ) ∼



∑
j≥0

∑
λ∈∇Γ

j

2js|(v, ψ̃Γ
λ)|2, s ∈

(
−min

{
1
2 , γ̃
}
, 1

2

)
,

∑
j≥0

∑
λ∈∇Γ

j

2js|(v, ψΓ
λ)|2, s ∈

(
−1

2 ,min
{

1
2 , γ̃
})
,

which hold in the given ranges.

Finally, we have primal and dual biorthogonal Riesz bases in L2(Γ), generating the spaces
V Γ
j , Ṽ

Γ
j ,W

Γ
j and W̃Γ

j and forming a primal and dual multiresolution analysis. Furthermore,
the primal wavelets have vanishing moments of order m̃ = 1 or m̃ = 3, dependent on the
chosen basis, expressed by the more general counterpart to equation (2.5)∫

�

tα ψΓ
λ(γi(t)) dt = 0 for |α| < m̃ (2.14)

with the multi-index α = (α1, α2) and |α| = α1 + α2. The dual wavelets have always
vanishing moments of order m = 1.

We choose an analogous ansatz as in Chapter 1 to represent the solution ρ by a linear
combination of basis functions, only this time we do so with respect to the other basis
ΨΓ

Λ = (ψΓ
λ)λ∈Λ, i.e.

ρ = ΨΓ
Λρ

ΨΓ
Λ =

∑
λ

ρ
ΨΓ

Λ
λ ψλ. (2.15)

This leads again to a system of linear equations

AΨΓ
ΛρΨΓ

Λ = fΨΓ
Λ (2.16)

with the entries f
ΨΓ

Λ
λ of the right-hand side and the matrix A

ΨΓ
Λ

λ,λ′ given by

f
ΨΓ

Λ
λ = 〈f, ψλ〉 and A

ΨΓ
Λ

λ,λ′ = 〈Aψλ′ , ψλ〉. (2.17)

In the following, we will omit the mentioning of the basis and the surface Γ in the super-
script as we will always use wavelet bases on surfaces. Whenever this is not the case, e.g.
to work on the unit square for assembling the system matrix, we will emphasise it.

38 2. Wavelets

3
Adaptive Wavelet Schemes

This chapter will focus on the theoretical framework for the adaptive wavelet algorithm
and is structured as follows. In the �rst section, we consider the numerical treatment of
boundary integral equations as introduced in Chapter 1 and motivate and explain the need
for an adaptive approach. Under these aspects, the desire for more general function spaces,
namely Besov spaces instead of Sobolev spaces, will become clear. In the second section,
we introduce approximation spaces, weak `p spaces and, most of all, Besov spaces and
establish the necessary analytical background. Afterwards, we motivate the concept of the
bestN -term (tree) approximation, which is essential in order to measure the error produced
by the adaptive wavelet method. Finally, the theoretical framework for the key routines
of the adaptive implementation, like coarse, rhs and apply, will be presented. In this
chapter we will focus on the theoretical aspects of these routines. We will state the purpose
and the requirements for each of these blocks in order to produce an optimal algorithm
and �nally present some complexity estimates. Therein, we will encounter two important
estimates for the entries of the involved boundary integral operator, which follow from the
properties of the chosen wavelet basis. The use of both of these estimates is necessary
to being able to compute an approximation to the boundary integral operator in optimal
complexity.

3.1 Motivation and Background

Recall a boundary integral equation in general form as described in Chapter 1:

Aρ = f in Γ. (3.1)

39

40 3. Adaptive Wavelet Schemes

For many such problems, particularly for geometries with edges or if the right-hand side
has singularities, the solution ρ itself admits singularities and thus has limited Sobolev
regularity [23, 33]. This raises two questions. First, is it necessary to uniformly re�ne in
the whole domain of interest in order to obtain an accurate approximation to the solution?
Second, are Sobolev spaces still the best function spaces to work with, and if not, what
other function spaces would be appropriate? These questions and their discussion form
the �rst part of this chapter.

The answer to the �rst question is rather straightforward, as approximating a solution
featuring singularities can require a very strong local re�nement in small parts of the
geometry. Dependent on the extent of this re�nement, it is neither possible nor com-
putationally e�cient to re�ne uniformly, even if large servers with extensive amounts of
memory are involved. Even if storage is not the problem, the time needed to perform
such computations may be too long. Therefore, an adaptive re�nement is required for the
approximation of the solution.

In Chapter 1, we introduced the representation of the solution ρ by a linear combination of
suitable functions ρ =

∑
i ρ

Φ
i φi, the choice of which is speci�ed in Chapter 2. Now, we aim

at not choosing these functions in advance, but will rather use the estimated residual in each
step in order to �nd the new wavelets to be added. Compared to �nite element methods, we
cannot compute the residuum exactly for boundary integral equations. Nevertheless, there
exist reliable and e�cient estimators for the residual [39] and also optimal convergence
rates have been proven [41, 45]. However, the questions of computability and linear cost
are not trivial and therefore they will form a prominent part of this chapter.

The algorithms presented in what follows are based on the developments of Cohen, Dah-
men, DeVore, Gantumur, Harbrecht, Schneider and Stevenson and their work in e.g.
[16,17,26�28,46,47]. The key ingredient throughout all of these articles is the equivalence
of the underlying boundary integral equation in variational form to an in�nite system of
linear equations. To that end, let us introduce the in�nite index set J? =

⋃∞
j=0∇j and

assume that the wavelet functions are Hs(Γ)-normalised, i.e. ‖ψλ‖Hs(Γ) ∼ 1. The set
Ψ = {ψλ |λ ∈ J?} thus forms a Riesz basis in the energy space Hs(Γ). The equivalent
formulation of (3.1) into a well-posed in�nite system of equations in `2(J?) reads: Seek
ρ = Ψρ =

∑
λ∈J? ρλψλ such that

Aρ = f (3.2)

with f = 〈f, ψλ〉λ∈J? and A = 〈Aψλ′ , ψλ〉λ,λ′∈J? .

This is a convenient moment to emphasise the main di�erence between the adaptive wavelet
methods and adaptive �nite element methods. For standard �nite element methods, at
some point, one has to restrict the in�nite dimensional problem to a �nite dimensional
setting. With this, there come stability conditions such as inf-sup conditions in order
to ensure that the system of linear equations stays solvable and well-de�ned after the
projection onto a �nite dimensional subspace. For adaptive wavelet methods, we stay in
the in�nite-dimensional setting, which is why the aforementioned concepts are not needed

3.2. Nonlinear Approximation 41

here. However, it is not possible to truly apply the in�nite operator A. Thus, there has to
be a way of approximating the application of this in�nite operator, especially one which
guarantees optimal convergence. The restriction of the in�nite wavelet basis to a �nite
subset J ⊂ J? with cardinality N can be realised by choosing the appropriate rows and
columns from the underlying in�nite dimensional matrix. To obtain a good approximation,
we need a way to measure its error.

The next question is: How small can the approximation error become when choosing N
coe�cients from the solution's expansion with respect to the wavelet basis? The idea
of choosing the N largest coe�cients comes up naturally and is referred to as the best
N -term approximation. Furthermore, for any target accuracy ε, we want to approximate
the solution with a computational complexity that stays proportional to the best N -term
approximation of the solution.

In the case of uniform re�nement, the building-blocks to approximate the solution ρ are
taken from linear spaces. For smooth geometries and smooth right-hand sides, the solution
is regular and uniform approximation works well. However, for non-smooth domains or
singular right-hand sides, regularity of the solution is decreased and so may be the e�-
ciency for the approximation [23, 33]. Both these articles deal with the question on which
properties are desired for a function in order to determine its rate of approximation by
using a nonlinear approximation method. The answer amounts to Besov spaces and mea-
suring the smoothness of the solution therein. There are several ways to introduce Besov
spaces. One possibility is to use moduli of smoothness and another is the use of wavelet
coe�cients. We are going to introduce Besov spaces in more detail in the following section,
giving an insight on both mentioned perspectives. Throughout this section, we will draw
upon the work of, e.g. [22�24, 33, 45] and give embedding results as well as convergence
estimates for the error of the approximation to the solution.

3.2 Nonlinear Approximation

The question, this section will be concerned with, is basically the following: How good
can we approximate complicated functions in a space H by more simple functions from a
sequence of spaces {Vi}, which is dense in H, and how to choose this sequence? Here, we
do not want to restrict ourselves to linear approximation which is associated with uniform
re�nement, but allow the partition, which is achieved by re�nement, to depend on the
function to be approximated for a �xed number of unknowns. For this purpose, wavelets
are exactly the right functions.

3.2.1 Best N-Term Approximation

Recall the equivalence of the boundary integral equation (3.1) to the in�nite system of linear
equations (3.2) in `2(J?) with the in�nite index J? and the Hs(Γ)-normalized wavelet basis

42 3. Adaptive Wavelet Schemes

Ψ. We restrict the in�nite set to a �nite subset J ⊂ J? of cardinality N , ending up with
the system of linear equations on the index set J :

AJρJ = fJ , (3.3)

with AJ = 〈Aψλ′ , ψλ〉λ,λ′∈J and fJ = 〈f, ψλ〉λ∈J . We already raised the question of how
small the approximation error becomes when choosing N terms out of the in�nite basis Ψ.
One way of choosing coe�cients is to choose them without a further constraint, which is
referred to as the unconstrained N -term approximation. In contrast to this, we want to
�nd the N best coe�cients, which means that the estimate

‖ρ− ρJ ‖`2(J?) ≤ ‖ρ− ρJ ′‖`2(J?)

shall hold for any other set J ′ with the same cardinality N . In other words, we minimize
the approximation error in `2(J?) of the in�nite dimensional vector ρ. The choice of these
N coe�cients is referred to as the best N -term approximation. It comes natural to choose
just the largest N coe�cients of ρ.

3.2.2 Approximation Spaces

This subsection will be concerned with introducing the approximation spaces. We try to
summarise the concept and most important properties explained in [33], where the complete
discussion can be found. We choose the following setting, that is, a normed space H with
norm ‖·‖H and an unconditional basis χ = {χi | i ∈ J?}. Suppose, we want to approximate
a function f ∈ H. If we consider linear approximation, we choose the linear space HN of
dimension N with its basis {χi| i = 1, . . . , N}, i.e. HN = span{χi | i = 1, . . . , N}. Using
the ansatz fN =

∑N
i=1 ciχi, the approximation error EN (f) between the function f ∈ H

and the approximant is measured by

EN (f) = inf
fN∈HN

‖f − fN‖H .

For nonlinear approximation of a given f ∈ H, we use the N -term approximation and
write the approximant fN as fN =

∑
i∈J ciχi with J being any set of indices of maximal

cardinality N , i.e. #J ≤ N . Thereby, the linear space HN is replaced by the space XN ,
containing all functions fN which can be expressed in the above manner. The sum of two
elements from the space XN does not necessarily lie in XN , explaining the term nonlinear
approximation. The error for the N -term approximation then reads as

σN,H(f) = inf
fN∈XN

‖f − fN‖H .

We want to describe the set of functions that ful�l a certain rate of approximation, meaning

3.2. Nonlinear Approximation 43

that
σN,H(f) = O(N−s), N →∞. (3.4)

All functions f ∈ H ful�lling this will be grouped by one set which is called approximation
space. For s > 0 and 0 < p ≤ ∞, the approximation space Asp,H is de�ned as the set of all
functions f ∈ H such that

|f |Asp,H :=


∑
N∈N

(
[N sσN,H(f)]p

1

N

)1/p

, 0 < p <∞,

sup
N∈N

N sσN,H(f), p =∞,
(3.5)

is �nite. Note that (3.4) describes the situation for p =∞. Together with the norm ‖ · ‖H ,
we get a quasi-norm (since the triangle inequality is not valid, but it holds ‖x + y‖ ≤
C(‖x‖+ ‖y‖)) for the approximation space, i.e. ‖ · ‖Asp,H := ‖ · ‖H + | · |Asp,H .

For smaller values of p, fewer functions are contained in the space Asp,H , i.e.

Asp,H ⊂ Asp′,H , 0 < p < p′ ≤ ∞.

3.2.3 Sequence Spaces, Weak `p Spaces and Interpolation Spaces

Consider the sequence x = (xN)N∈N with xN ∈ R and denote by RN the set of all such
sequences. Those sequences which satisfy∑

N∈N
|xN |p <∞ for 0 < p <∞ or sup

N∈N
|xN | for p =∞

generate the sequence space `p(N). For p ≥ 1, these spaces are Banach spaces with the
norm induced by

‖x‖`p(N) :=


(∑
N∈N
|xN |p

)1/p

, p <∞,

sup
N∈N
|xN |, p =∞.

(3.6)

The same holds true if we consider the index set J? in place of N, leading us to the
sequence space `p(J?). Furthermore, notice that it holds `p(J?) ⊂ `p

′
(J?) for p < p′. For

our purpose, the most important among these spaces is the space `2(J?), being not only a
Banach, but a Hilbert space.

Instead of considering just the sequence x, we consider now the non-increasing rearrange-
ment (x?N)N∈N, meaning that x?N+1 ≤ x?N for all N ∈ N, and use it to de�ne the weak

44 3. Adaptive Wavelet Schemes

space `wq by

`wq (J?) :=

{
x ∈ `q(J?) such that sup

N∈N
N1/q|x?N | =: |x|`wq <∞

}
.

This weak `q space (`wq = `q,∞)is very close to `q, there holds `q ⊂ `wq ⊂ `q
′
for any q < q′.

In particular, if H = `2(J?) it holds that the weak `q space is equal to the approximation
space As∞,H = `wq (J?) in the range 1/q = s + 1/2, see [16, 33]. Before we proceed, we
are going to introduce the concept of interpolation spaces which will be very useful for
characterising Besov spaces. For further details, see e.g. [33].

De�nition 9. Let X and Y be normed, linear spaces. It is assumed here that Y is
continuously embedded in X, i.e. Y ⊂ X and ‖ · ‖X ≤ C‖ · ‖Y . For given f ∈ X and some
real number t > 0, the K-functional is de�ned as

K(f, t,X, Y) := inf
g∈Y

(‖f − g‖X + t|g|Y) ,

where ‖ · ‖X is a norm on X and | · |Y is a semi-norm on Y .

With the help of the K-functional, we de�ne the real interpolation spaces (X,Y)θ,q for
0 < θ < 1 and 0 < q ≤ ∞ as the set of all functions for which

|f |(X,Y)θ,q
:=


(∫ ∞

0

[
t−θK(f, t,X, Y)

]q dt
t

)1/q

, if 0 < q <∞,

sup
t>0

t−θK(f, t,X, Y), if q =∞,
(3.7)

is �nite. Often, instead of (3.7), the following equivalent formulation is used

|f |(X,Y)θ,q ∼


(∞∑
i=0

[
2i θK(f, 2i, X, Y)

]q)1/q

, if 0 < q <∞,

sup
i≥0

2i θK(f, 2i, X, Y), if q =∞.

The aforementioned approximation spaces Asq,H are such interpolation spaces, i.e. Asq,H =

(H,Arq′,H)s/r,q for r > s > 0, 0 ≤ q′ ≤ ∞ and 0 < q ≤ ∞, see [33, Theorem 2], if (2.6) and
(2.7) hold. These interpolation spaces will prove bene�cial for the upcoming subsection,
where we want to state results for the interpolation between di�erent function spaces.

3.2.4 Besov Spaces

As mentioned before, there are certain situations where the solution is not smooth enough
any more to be contained in a Sobolev space of smoothness s, but is still contained in the
Besov space with the same smoothness index, as Besov regularity is milder and considerably

3.2. Nonlinear Approximation 45

enlarges the set of functions contained in the space. There are di�erent classical approaches
to classify regularity or smoothness. In the Hölder spaces Cs, smoothness is measured by
di�erences. Sobolev spaces W s

p are well known for measuring smoothness in the spaces Lp

by checking if the weak derivatives up to some positive integer order s of a function are still
contained in the space Lp. Sobolev spacesW s

p for non-integer s in addition measure Hölder
smoothness bsc + α with α ∈ [0, 1). For p = 2 the Sobolev spaces W s

p are the same as
the spaces Hs. Sometimes these parameters do not su�ce to measure smoothness. Besov
spaces Bs

p,q feature three parameters, where s is the order of smoothness and p gives the
space Lp in which the smoothness is measured. The third parameter q is used to obtain
a �ner graduation, while leaving the parameters s and p unchanged. Here, we mainly
introduce those aspects of Besov spaces which are important for our implementation. For
a more detailed discussion on the subject, the reader is referred to, e.g. [33].

First, we introduce the characterisation of Besov spaces trough moduli of smoothness. To
that end, let h ∈ Rd, f : Rd → R be a given function and Ω ⊂ Rd a Lipschitz domain.
We de�ne the di�erence operator ∆hf := f(· + h) − f(·) and, for an integer 1 < r ∈ N,
the r-th di�erence operator given by ∆r

hf := ∆h(∆r−1
h f). It is a convention to set the

r-th di�erence operator ∆r
h to zero if any of the points x + kh for k = 0, . . . , r is not

contained in Ω. For a function f ∈ Lp = Lp(Ω) with 0 < p ≤ ∞, we de�ne the modulus of
smoothness or order r

ωr(f, t)p := sup
‖h‖≤t

‖∆r
hf‖Lp

for every t > 0.

Functions in Lp which show a similar behaviour in terms of moduli of smoothness, i.e.

sup
t>0

t−sωr(f, t)p <∞ and r > s,

are now collected in one set. For 0 < s < r and 0 < p, q < ∞, the Besov space Bs
p,q =

Bs
p,q(Ω) is de�ned as the space of all functions f that ful�l:

|f |Bsp,q :=


(∫ ∞

0
[t−sωr(f, t)p]

q dt
t

)1/q

<∞, 0 < q <∞,

sup
t>0

t−sωr(f, t)p <∞, q =∞.
(3.8)

This is a seminorm for Bs
p,q. Including ‖f‖Lp to this seminorm gives us a quasi-norm on the

Besov space. For characterising Besov spaces we can consider also the decay of coe�cients
of a function which is decomposed into a series of building blocks. Our interest here lies
in the wavelet expansion of a function. All functions for which their coe�cients in the
wavelet expansion exhibit a similar decay behaviour are collected. We shall resume some
important properties of Besov spaces Bs

p,q, Sobolev spaces W s
p = W s

p (Ω) and spaces which
lie in between, see e.g. [33, 67]. To this end, we assume that the bounded domain Ω is
Lipschitz.

46 3. Adaptive Wavelet Schemes

Lemma 10. (i) For p 6= 2 and s /∈ N, the Sobolev spaces W s
p are equal to the Besov

spaces Bs
p,p. If p = 2, the equality holds for all s > 0.

(ii) For 0 < p ≤ p′ ≤ ∞, there holds that Bs
p′,q ↪→ Bs

p,q.

(iii) For 0 < q < q′ ≤ ∞, we have the embedding Bs
p,q ↪→ Bs

p,q′ , but for any δ > 0 we have

the embedding Bs+δ
p,q′ ↪→ Bs

p,q.

(iv) For 1 ≤ p, p′ ≤ ∞ and s, s′ ≥ 0, we have the embedding Bs
p,p ↪→ Bs′

p′,p′ if the relation

s− s′ ≥ d
(

1
p −

1
p′

)
> 0 holds.

(v) Interpolation between Lp and Sobolev spaces W s
p : For 0 < θ < 1 and 0 < q ≤ ∞,

there holds
(Lp,W s

p)θ,q = Bθs
p,q. (3.9)

(vi) Interpolation between Besov spaces: For s′ < s′′ and 0 < q, q′ ≤ ∞, there holds

(Bs′
p,q, B

s′′
p,q′)θ,q = Bθs

p,q,

for s = (1− θ)s′ + θs′′ and any 0 < θ < 1 and 0 < q ≤ ∞.

(vii) Interpolation between Besov spaces and Lp: For 0 < θ < 1 and 0 < q ≤ ∞, there
holds

(Lp, Bs
p,q′)θ,q = Bθs

p,q, (3.10)

for any 0 < q′ ≤ ∞.

1
p

L2

s

0 1
∞

s̃

t

1
p̃

1
2

Bŝ
p̃,p̃

Bs̃
p̃,p̃

ŝ
Ht

L2-line: 1
p = s

d + 1
2

Ht-line: 1
p = s−t

d + 1
2

Bs
2,2 = Hs = W s

2

Figure 3.1: Triebel/DeVore diagram of function spaces.

3.2. Nonlinear Approximation 47

The relations between di�erent spaces from Lemma 10 can be graphically interpreted with
the help of the diagram found in Figure 3.1. It has to be interpreted as follows. Each
point (1/p, s) in the diagram belongs to the space Bs

p,q, where the third parameter q is
not taken into account, i.e. each point in the diagram represents a range of Besov spaces.
However, one has to be careful, as some results do not necessarily hold for any value of
q. Whenever this is the case, we will write down the conditions for q. In equation (3.10),
we have a look at the vertical line going through (1/p, 0), for a �x integrability parameter
p, where the space Lp is represented. All spaces on this line correspond to Besov spaces
with a smoothness index 0 < s′ < s and integrability p. Equation (3.9) states a similar
relation, but with a Sobolev space instead of a Besov space. From Lemma 10 (ii), we know
that Besov spaces Bs

p,q with larger integrability index p are contained within a Besov space
Bs
p′,q with p′ < p. In the diagram this concerns the Besov spaces located to the left of

Bs
p′,q. Moving horizontally to the right in this diagram for a �xed s increases the value of

1/p, thus p becomes smaller and the space Bs
p,q becomes larger. Moving up vertically, the

value of the smoothness parameter s increases.

For the following, we restrict ourselves to Besov spaces of the form Bs
τ,τ . For a �xed p, we

consider the pair (Lp, Bs
ττ). If the parameters τ and s are coupled through the relation

1

τ
=
s

d
+

1

p
, (3.11)

then there holds, see e.g. [33],

(Lp, Bs
ττ)θ,q = Bsθ

q,q, where
1

q
=
sθ

d
+

1

p
.

Here, the integer d denotes the spatial dimension. In the diagram in Figure 3.1, we �nd two
lines with slope d, one going through (1/2, 0) and one going through (1/2, t). Any Besov
space which lies above the according line can be embedded into the underlying space Lp.
Besov spaces Bs

τ,τ which lie on the line can be embedded into Lp if the relation (3.11)
holds. The following theorem by Dahlke and DeVore [23] is one of the main results of this
chapter:

Theorem 11. ([23, Theorem 3.2]) Let Ω be a bounded domain in Rd+1 with Lipschitz
boundary Γ. If v is a harmonic function on Ω which is in the Besov space Bλ

p,p for some
0 < p ≤ ∞ and some λ > 0, then

v ∈ Bα
τ,τ for τ =

(
α

d+ 1
+

1

p

)−1

and 0 < α <
λ(d+ 1)

d
.

We recall the approximation spaces, which were introduced in Subsection 3.2.2. Suppose
that the wavelets have su�ciently many vanishing moments m̃ and enough smoothness γ
required for the validity of the Jackson (2.6) and Bernstein estimates (2.7). Then, there
holds the following characterisation for the approximation spaces Asq,H = Asq,p in H = Lp.

48 3. Adaptive Wavelet Schemes

Let 1 < p < ∞, 0 < s′ and 1/τ = s′/d + 1/p. For each 0 < s < s′ ≤ ∞ and 0 < q ≤ ∞
holds

(Lp, Bs′
τ,τ)s/s′,q = As/dq,p .

For each s, there is a value of q, given by 1/q = s/d + 1/p, for which this interpolation
space is a Besov space

(Lp, Bs′
τ,τ)s/s′,q = Bs

q,q,

with equivalent quasi-norm, see e.g. [33]. When we have H = Hs, functions from the
approximation spaces As

′
∞,s can be characterised by Besov spaces Bs+ds′

p,p . We will in the
following omit the �rst index in the subscript and write As

′
s := As

′
∞,s.

We are going to conclude this subsection with two error estimates, the �rst of which is
the well known estimate for uniform methods. Let Ψ be a Hs(Γ)-normalized wavelet basis
and ρ ∈ `2 and recall that (m, m̃) = (1, 3) for our wavelet basis.

Lemma 12. For ρ := Ψρ ∈ Hs+ds′(Γ) with s′ ≤ s̄ := m−s
d , uniform re�nement with with

respect to the spaces Vi with N degrees of freedom yields the estimate

inf
ρN∈Vi

‖ρ− ρN‖`2(J?) . h
ds′‖ρ‖Hs+ds′ (Γ) ∼ N

−s′‖ρ‖Hs+ds′ (Γ),

with h ∼ N−d.

As mentioned earlier, if the boundary Γ has edges or the right-hand side admits singu-
larities, the solution might not be in Hs+ds′(Γ) any more. We have the following error
estimate for adaptive methods.

Lemma 13. For ρ ∈ Bs+ds′
p,p (Γ) and s′ ≤ s̄ := m−s

d with 1
p = s′ + 1

2 , then adaptive
re�nement gives the error estimate

inf
ρJ∈XN

‖ρ− ρJ ‖`2(J?) . h
ds′‖ρ‖

Bs+ds
′

p,p (Γ)
∼ N−s′‖ρ‖

Bs+ds
′

p,p (Γ)
,

again with h ∼ N−d.

With these two results, we can conclude the following: By using nonlinear approximation,
we can achieve the same convergence rate as we would by using linear approximation.
However, the condition that the solution be in the Sobolev space Hs+ds′ is much more
restrictive than the condition for the solution to be in the Besov space Bs+ds′

p,p . In regard
to the diagram in Figure 3.1 this means that, instead of vertically going up the Hs-line
(which is the case for linear approximation), we can go up the line with slope d. We
thus work in the larger Besov space, which can still continuously be embedded into the
underlying Sobolev space. Note, that the maximal rate of convergence for our piecewise
constant wavelets is given by s̄ < (1 − s)/d = (1 − s)/2. As for the single layer operator
s = −1/2 and for the double layer operator s = 0, this results in a maximal rate of N−0.75

and N−0.5, respectively.

3.3. On Adaptive Wavelet Algorithms 49

With these fundamentals on approximation spaces in mind, we now turn towards the
theoretical aspects of the implementation.

3.3 On Adaptive Wavelet Algorithms

The goal of our adaptive implementation is the following: For ρ ∈ Asq for some s ≤ s̄ and a
target accuracy ε, we want to compute the solution ρJ with #J . ε−1/s |ρ|Asq , such that
‖ρ − ρJ ‖ ≤ ε. We assume that we have a Hs-normalised wavelet basis, with s denoting
the smoothness index of the energy space. This shall be done in optimal complexity which
stays proportional to the size of the index set, i.e. O(#J).

In this subsection, we specify what building blocks will be needed to arrive at an adaptive
algorithm with optimal complexity. The adaptive algorithm with its building blocks Solve,
Coarse, Apply or Rhs, has already been introduced in, e.g. [16,17,27,28,44,47,54]. The
particular algorithm used for this implementation is according to Gantumur, Harbrecht
and Stevenson [46]. It consists of the following steps:

Solve −→ Estimate −→ Mark −→ Refine

For an initial �nite index set J ⊂ J?, the system of linear equations (3.3) is assembled and
solved with accuracy ε, i.e. ρJ = Solve[J , ε] where the output ρJ satis�es ‖ρ−ρJ ‖ ≤ ε.
Subsequently, the following routine stated in Algorithm 1, we will call itGrow, is initiated.
Its goal is to estimate the residuum with su�cient accuracy ε by extending the incoming
index set J to J ′ in such a way that the error is reduced by a constant factor in each
iteration. After this loop, the algorithm assembles and solves the system of linear equations
with respect to the larger index set J ⊂ J ′′ with accuracy ε.

Algorithm 1: Grow.

Given: ηinit, J ;
Set: η = ηinit;
do

Set: η = η/2;
Calculate rJ ′ = Rhs[η] − Apply[η,A,ρJ];
Set: r = ‖rJ ′‖;
Calculate rJ ′′ = Coarse[rJ ′ , θ] (0 < θ < 1 threshold constant);

while η ≥ r;

Some more explanations with respect to the inner part of Grow are in order. The second
step inside the do-while loop estimates the residuum up to the accuracy η/2 by computing
rJ = fJ − AρJ . Thereby, we have hidden a routine which is run in the process, the
so-called Prediction routine, which enlarges the index set J to J ′. Therein, the routine
Rhs[η] calculates the right-hand side up to the accuracy η, i.e. ‖f−fJ ′‖ ≤ η. Furthermore,

50 3. Adaptive Wavelet Schemes

Apply[η,A,ρJ] calculates an η-accurate approximation to the matrix-vector product Aρ
with respect to the new index set J ′ which is applied to the solution ρJ , with J the
set of wavelets emerged from the previous step. This version of the adaptive algorithm
includes a coarsening step in order to control the complexity. The index set J ′′ becomes
smaller than J ′, i.e. ‖rJ ′′‖ ≤ θ‖rJ ′‖ for a 0 < θ < 1 which is small enough. However,
it still holds that J ⊂ J ′′ ⊂ J ′. This last step combines the steps mark and re�ne,
as J ′′ is a re�ned version of J . Finally, the index set is rede�ned as J := J ′′ and the
loop begins anew. The iteration stops if η ≥ r, which happens whenever the condition
(1− θ)‖rJ ′‖ ≤ ‖rJ ‖ ≤ (1 + θ)‖rJ ′‖ is ful�lled.

In the following subsections, we will discuss each of the mentioned routines in detail. Each
of them shall be of optimal complexity in order to guarantee an optimal over-all complexity
of the adaptive algorithm. Rather than allowing J to take the form of any subset out of
the set J?J? of all subsets, it should be taken from a strict subset P ⊂ J?J? . Furthermore,
we want the subset J to form a tree. For what follows, we assume that we are always under
a tree constraint, i.e. P = J. In the following subsection, we will give a precise de�nition
of a tree and subsequently propose our version of the tree sorting algorithm based on the
algorithm which was originally proposed by Binev and DeVore in [8].

3.3.1 Trees

Let us specify the setting we are working with.

De�nition 14. A graph is a pair G = {Λ, E} consisting of nodes Λ (or vertices) and edges
E ⊂ {(λ,λ′) ∈ Λ×Λ : λ 6= λ′}.

The graph G is connected, if there always exists a path between two nodes λ, λ′ ∈ Λ. It
is called undirected if (λ, λ′) ∈ E whenever (λ′, λ) ∈ E. A cycle consists of a set of nodes
and edges such that we can start traversing through the graph by following the edges
connecting the nodes, and end at the same vertex. If no edge or node is used more than
once, the cycle is called a simple cycle.

De�nition 15. A graph G that is connected, undirected and does not contain any simple
cycles, is called a tree.

De�nition 16. The topmost node of a tree is called the root. A node which directly
descends from another node is called a child. The inverse of a child is called the parent.
The generalisation of a child, i.e. a node that can be reached by repeatedly going to a
child, is called a descendant. Reversely, a node which is reached by repeatedly going up
to a parent is called an ancestor. The set of nodes of a tree, which share the same parent,
are called siblings. A tree can either have a �xed number of children for each node, or the
number of children can vary from node to node.

De�nition 17. Each node of a tree has a given level, i.e. the number of edges to pass
through, to arrive at the node starting from the root which has level 0. Given the set of

3.3. On Adaptive Wavelet Algorithms 51

all nodes, there is a maximum level, which is referred to as the depth of the tree. Each
node with at least one child is called an internal node. All nodes with no further children
are called leafs.

R

a

c d

b

Figure 3.2: Simple example of a tree.

To illustrate these terms, consider Figure 3.2. The node R is the root node of the tree. Its
children are the nodes a and b, where b is a leaf of the tree and a is an internal node. It
has child nodes c and d (which are then again leafs). Conversely, a is the parent of c and
d, R is the parent of a and b. Also a and b are siblings, as well as c and d. Nodes c and d
have level 2, nodes a and b have level 1. In this example, c and d are both descendants of
R, although they are not directly connected. On the opposite, R is an ancestor of c and
d. The depth of this tree is 2, since the longest distance between any node and the root
node is two (R to c or R to d).

After the basic terms for trees are introduced, we can proceed to a more general setting
which is more appropriate for our purpose. To that end, we organise the index set J?,
encountered in Subsection 3.2.1, in an in�nite tree. This in�nite tree is supposed to have
one root node and each node has a certain number of children denoted by ci. The number
i ∈ {0, . . . , k} is in principle allowed to vary from node to node, however, we choose k = 3

in our speci�c case. We introduce the following notation C(λ) for the set of children of a
node λ. Similarly, with D(λ), we denote the set of all descendants of a node λ and with
L(J) all leafs of the tree J . We will use the following de�nition for a subtree, a proper
subtree, a branch and a proper branch.

De�nition 18. A collection of nodes with λ ∈ J? is called a subtree J ⊂ J?, if for each
node λ ∈ J all its siblings are in J , too. The subtree is called a proper subtree, if it
contains all root nodes of J?.

De�nition 19. A collection of nodes λ ∈ J? is called a branch J ⊂ J?, if for each node
λ ∈ J all its descendants are in J too. A proper branch is a branch, which has as root
node any other but the root of J .

In our implementation we have two trees, one element tree and one wavelet tree, the second
of which shall be sorted by the magnitude of the wavelet coe�cients. After the sorted tree
is obtained, we will use a thresholding algorithm to coarse the tree. Now, we will provide

52 3. Adaptive Wavelet Schemes

the theoretical background for e�cient tree sorting, based on the article [8] of Binev and
DeVore and will immediately apply it to our situation.

3.3.2 Coarse

The theoretical aspects of the tree-sorting, which is followed by the coarsening routine,
have been considered in the article [8] by Binev and DeVore. Sorting a tree is a demanding
task, which has to be done in the right way if optimal complexity shall be achieved. Recall
that we have a condition for the structure of our �nite subset J ⊂ J?. For our purpose,
we want to preserve the tree structure of the wavelet basis. Regarding J? as an in�nite
tree, then P shall be taken from the set J of all �nite subtrees of J?. An algorithm
to �nd the largest N coe�cients, with N denoting the degrees of freedom, under a tree
constraint is of exponential complexity and thus prohibitive. What is done in practice,
is to �nd a near optimal tree instead, which is nearly as good as the best N -term tree
approximation. This procedure is referred to as near best N -term approximation. Finding
this can be achieved by thresholding, meaning that we sort the tree by magnitude of the
coe�cients and keep just the largest coe�cients by discarding the rest. By following the
implementation according to [8], this can be done in optimal complexity O(N). This article
discusses two di�erent algorithms for coarsening, the second of which will be used in our
implementation.

Let us introduce the error functional e and the error E, for each node λ in the proper
subtree J ⊂ J?

E(J) =
∑

λ∈L(J)

e(λ).

Recall that L(J) denotes the set of all leafs of J , C(λ) the set of all children of a node λ
and D(λ) the set of all its descendants. Thereby, the error functional e(λ) for any node
λ ∈ J is calculated bottom-up by

e(λ) = |vλ|2 +
∑

λ′∈C(λ)

e(λ′) = |vλ|2 +
∑

λ′∈D(λ)

|vλ′ |2. (3.12)

The routine �rst calculates the error functional for all leafs and subsequently, for each
node, the error functional is obtained by adding up the error functional for each child.
Note that cutting o� a complete branch at node λ produces an error of size

√
e(λ). Once

the error functional is calculated for each node, we continue by calculating the modi�ed
error functional ẽ(λ) top-down. We start by setting ẽ(λ) := e(λ) for the root node. For
all other nodes, we recursively set ẽ(λ′) := q(λ) for all children λ′ ∈ C(λ) with

q(λ) :=

[∑
λ′∈C(λ) e(λ

′)
]
ẽ(λ)

e(λ) + ẽ(λ)
. (3.13)

We notice that ẽ(λ′) is constant on all children λ′ ∈ C(λ). More importantly, for all nodes

3.3. On Adaptive Wavelet Algorithms 53

λ, the coe�cients ẽ(λ′) decrease monotonically for all descendants λ′ ∈ D(λ), giving an
over-all hierarchy on the wavelet tree. This is important since we do not want do destroy
the tree structure by randomly deleting wavelets with small coe�cients, when coarsening
the tree, but rather cut o� complete branches. With this modi�ed error functional, this is
automatically ensured, even if a parent itself has a small value and only one of its children
has a large value.

Finding the best tree amounts to �nding the minimum

EN = min
J

E(J),

with J taken from the set of all proper subtrees of J? with N interior nodes.

De�nition 20. Let v ∈ `2(J?) be given. The best ε-tree is the smallest tree J ⊂ J? such
that

‖v − v|J ‖`2(J?) ≤ ε.

As already mentioned, it is too costly to �nd the best N terms under the tree constraint
in reasonable time. What we do instead is that we want to �nd a proper subtree J ⊂ J?
such that E(J) ≤ EN . J is then called a near optimal tree. More precisely:

De�nition 21. Let N denote the number of interior nodes of the ε-best tree. A tree
J ⊂ J? is called ε-near best if, for all v ∈ `2(J?), there holds

#J ≤ CN,

i.e. the number of interior nodes is bounded by a constant factor times N with a universal
constant C ≥ 1 for all v ∈ `2(J?).

The procedure, which was presented beforehand, produces a near optimal tree and, more
speci�cally, in our case the constant C which appears in De�nition 21 is C = 1. Addi-
tionally, recall that N0 = 1 in our case. With the sorted tree at hand, the next step is to
coarse it. This means, we want to �nd the �nitely supported output vJ = Coarse [ε,v]

for the �nitely supported input v with tree structure, such that

‖v − v|J ‖`2(J?) ≤ ε,

for a given accuracy ε. This shall be done within optimal complexity O(nnzv) and is
achieved by throwing away a certain percentage of the vector. Or better to say, by keeping
a prede�ned percentage and deactivating the rest. Together with [8, Theorem 5.2] we
state the following propositions for the structure of the output tree as well as the cost for
computing it, cf. [8, 28].

Proposition 22. For any given, �nitely supported input v, the computational cost of the
output vJ , produced by Coarse[ε,v], remains proportional to #supp(v) (where v has
again tree structure) and the underlying tree J is near best.

54 3. Adaptive Wavelet Schemes

The coarsening itself is realised by thresholding. To that end, �rst sort the input tree v
by the magnitude of its modi�ed error functional ẽ as explained at the beginning of the
current subsection. Subsequently, these values are added up until there holds

‖v − v|J ‖`2(J?) ≤ ε

for the desired target accuracy ε. The emerging index set J �nally contains all relevant
wavelets and the remaining wavelets are neglected. For the precise implementation of the
coarsening plus the computation of the two involved functionals e and ẽ, we refer to the
Subsections 4.3.2 and 4.3.10.

Proposition 23. If v ∈ Asq and ‖v −w‖`2(J?) ≤ ε with #supp(w) <∞, then the output
vJ = Coarse[ε,w] satis�es

supp(v|J) . |v|1/sAsq
ε−1/s, ‖v − v|J ‖`2(J?) . ε and

∣∣v∣∣J |Asq . |v|Asq .
3.3.3 Apply

In this subsection, we will focus on the routine wJ = apply [ε,A,v], the goal of which
is to compute an ε-accurate approximation to Av. Thereby, we assume again that the
support of the �nitely supported input variable v is a tree. To be more precise: We wish
to compute the �nitely supported output wJ for the �nitely supported input v and the
target accuracy ε such that

‖Av −wJ ‖ . ε (3.14)

within linear complexity. To that end, we �rst recall the vanishing moment property (2.14),
which implies the so-called cancellation property of order m̃

|〈v, ψλ〉| . 2−|λ|(s+m̃+1)|v|W m̃,∞(supp(ψλ)). (3.15)

Thereby, the term |v|W m̃,∞(Ω) := sup|α|=m̃,x∈Ω |∂αv(x)| denotes the semi-norm inW m̃,∞(Ω).
Notice, that there holds the same estimate for the dual wavelets and the number m of van-
ishing moments of the primal wavelets.

All kernels k(x,y), which were considered in Chapter 1, are analytically standard of order
2s, according to the following de�nition.

De�nition 24. Consider a kernel k(x,y) of order 2s, the multi-indices α = (α1, α2),
β = (β1, β2), and |α| = α1 + α2. Then the transported kernel functions ki,i′(s, t) :=

k(γi(s),γi′(t))µi(s)µi′(t) with 1 ≤ i, i′ ≤M are called analytically standard of order 2s if
the partial derivatives are bounded by

|∂αs ∂
β
t ki,i′(s, t)| .

(|α|+ |β|)!
(r ‖γi(s)− γi′(t)‖)(2+2s+|α|+|β|) (3.16)

for some r > 0 provided that 2 + 2s+ |α|+ |β| > 0.

3.3. On Adaptive Wavelet Algorithms 55

From (3.16) and the cancellation property (3.15), we can derive the following decay estimate
for the matrix entries, cf. [28, 84,87,89,90],

|〈Aψλ, ψλ′〉| .
2−(|λ|+|λ′|)(s+m̃+1)

dist(supp(ψλ), supp(ψλ′))2+2s+2m̃
. (3.17)

By having a closer look at the above estimate, we can say that wavelets having a larger
distance from each other produce a larger value in the denominator of the estimate, giving
a smaller value in total. The same holds true for two wavelets having a larger sum of
re�nement scales |λ|+ |λ′|. Note that (3.17) gives rise to the so-called �rst compression.

Additionally, we can state a second estimate, cf. [28, 54,84,87],

|〈Aψλ, ψλ′〉| .
2−|λ|(s+m̃+1) 2|λ

′|(1−s)

dist(supp(ψλ), sing supp(ψλ′))2s+m̃
, (3.18)

where we assumed that |λ′| < |λ|, which leads to the so-called second compression. Herein,
the term sing supp(ψλ) stands for the singular support of a wavelet (the points on which
the wavelet is not smooth). In Chapter 4, we will provide some details for using these
estimates for the practical realisation of the adaptive algorithm. We presented these two
estimates at this point, as they are of great importance to derive a sparse representation
of the in�nite operator A.

Let us introduce the concept of compressibility. A very important part of the implemen-
tation is the compression of the system matrix. Here compression means determining the
important matrix entries and calculating these only. Being able to do this is crucial, since
calculating the matrix entries is the most time consuming part in the whole implementa-
tion. In the following, by Aj we denote the compressed matrix.

De�nition 25. The operator A is said to be s?-compressible if there exist sub-matrices
Aj , where the rows and columns of Aj contain at most the order of αj2j non-zero entries,
such that for any s < s? there holds

‖A−Aj‖`2(J?) ≤ αj2−sj , (3.19)

with (αj)j∈N being a summable sequence of positive numbers with
∑

j∈N αj ≤ 1.

With the estimates (3.17), (3.18) at hand, we can state the following theorem [28,87].

Theorem 26. Suppose that the operator A : Hs+σ(Γ) → H−s+σ(Γ) is bounded for a
su�ciently large range of positive σ. Moreover, suppose that the wavelet bases Ψ, Ψ̃ have
(exactness) order m, m̃, respectively, and that

m̃ > γ − 2s, m̃ > m− 2s,

56 3. Adaptive Wavelet Schemes

where γ indicates the regularity of the primal wavelets. Then, A is s?-compressible with

s? > (m− s)/2 = s̄.

Recall that γ = 1/2 and m = 1 in our case. Moreover it is s = −1/2 for the single layer
operator and s = 0 for the double layer operator. Hence, the highest possible convergence
rate which can be achieved in the norm ‖·‖Hs(Γ) is N

−(m−s)/2. The computational aspects
of compression itself will be discussed in the next section.

Setting αj = (1 + j)−2 in equation (3.19), gives us the estimate

‖A−Aj‖`2(J?) ≤ (1 + j)−2 2−s̄j

for a �xed s̄ = (m− s)/2 < s?. In addition, we need the following estimate for the number
of non-zero entries for the i-th column Ai

j of Aj

#supp(Ai
j) . (1 + j)−22j . (3.20)

The precise compression pattern will be introduced in Chapter 4 about the implementation.
With the compressibility at hand, we will proceed to the theory of how to compute the
ε-accurate approximation to Av. Given a �nitely supported vector v with the associated
index set J , forming a tree, we can compute a sequence of nested trees JJ ⊂ JJ−1 ⊂ · · · ⊂
J0 = J such that

‖v − v|Jj‖`2(J?) ≤ 2js̄ε. (3.21)

Hereby, J is found by

J :=

⌈
log2

(
‖v‖`2(J?)/ε

)
s̄

⌉
. (3.22)

Next, we will de�ne the di�erence sets ∆j := Jj−1 \ Jj , which will in the following be
referred to as layers. We set the according portions of v with respect to one layer ∆j to
v|∆j and write v =

[
v|∆J

,v|∆J−1
, · · · ,v|∆1

]T
. Using estimate (3.21), we deduce that

‖v|∆j‖`2(J?) = ‖v|Jj−1 − v|Jj‖`2(J?) ≤ ‖v − v|Jj‖`2(J?) ≤ 2js̄ε.

Finally, we choose
∑J

j=1Ajv|∆j for the �nitely supported approximation of wJ with
accuracy ε. A schematic way of describing this matrix-vector product, is given by

[
AJ |AJ−1| · · · |A0

]
v|∆J

v|∆J−1

...

v|∆0


by setting the di�erence set ∆0 = J ′ \ J , with J ′ denoting the enlarged set obtained

3.3. On Adaptive Wavelet Algorithms 57

by prediction. As we have chosen the layers such that estimate (3.21) holds, we have to
approximate each portion Aj inside the matrix with accuracy 2−js̄ in order to ful�l the
desired estimate (3.14).

We use estimate (3.19) together with the well-posedness of the underlying problem, the
fact that the wavelets form a Riesz basis and the triangle inequality to derive the following
estimate:

‖Av −wJ ‖`2(J?) =

∥∥∥∥∥Av −
J∑
j=1

Ajv|∆j

∥∥∥∥∥
`2(J?)

≤
J∑
j=1

‖A−Aj‖`2(J?)‖v|∆j‖`2(J?)

≤
J∑
j=1

αj2
−js̄2js̄ε ≤ ε.

This is the �rst part of the following Theorem, cf. [28].

Theorem 27. Let v be a �nitely supported array with tree structured index set and ε > 0.
Then, the approximation wJ = apply [ε,A,v] is also a �nitely supported tree and satis�es∥∥∥∥∥Av −

J∑
j=1

Ajv|∆j

∥∥∥∥∥
`2(J?)

≤ ε.

For any s ≤ s̄, one has
#suppZε . ε−1/s|v|1/sAsq

,

with Zε =
⋃J
j=1

⋃
i∈∆j

#supp(Ai
j) and Asq the approximation spaces. Furthermore, the

number of arithmetic operations and storage locations is bounded by

Wε . #supp(v).

The estimate for the work comes from [8, Theorem 5.2]. To conclude the second estimate,
we use

#Zε ≤
J∑
j=1

∑
i∈∆j

#supp(Ai
j) .

J∑
j=1

∑
i∈∆j

αj2
j

=

J∑
j=1

#∆jαj2
j .

J∑
j=1

αjε
−1/s|v|1/sAsq

= ε−1/s|v|1/sAsq

using the de�nition of Zε for the �rst, (3.20) for the second, and #∆j . (2js̄ε)−1/s|v|1/sAsq
cf. [28], for the third inequality.

58 3. Adaptive Wavelet Schemes

3.3.4 Rhs

In order to have an approximation to the solution of the system of linear equations, we also
need a routine for approximating the right-hand side f of our system. For ensuring the
optimal convergence rate, the approximation to the right-hand side must converge with at
least that rate. We want to have the following routine:

For the target accuracy ε, the routine fJ = Rhs [ε] shall calculate the approximation fJ
to the right-hand side such that

‖f − fJ ‖`2(J?) ≤ ε.

If ρ ∈ Asq for some s < s?, then it can be shown that f ∈ Asq together with |f |Asq . |ρ|Asq .
Still, there is no way of telling how to compute such an approximation. In order to realise
this in linear complexity, we need some a priori knowledge of the function f . If this is
given, then we have the following estimates for the work Wε

Wε . ε
−1/s|v|1/sAs

q
+ 1

and the output fJ
#supp(fJ) . ε−1/s|v|1/sAsq

.

3.3.5 Solve

At the beginning of Section 3.3, we gave a quick overview of the interaction between
di�erent routines in order to form the complete adaptive algorithm. To that end, the
system of linear equations is solved on the initial index set such that ‖ρ − ρJ ‖ ≤ ε.
Inside the routine grow, this initial index set J is enlarged to J ′ and coarsened to J ′′

with J ⊂ J ′′ ⊂ J ′. This index set is su�ciently large to ensure the saturation property.
Therefore, the error of the new solution ρJ ′′ decreases by a constant factor compared to
the error of the old solution. For calculating the new solution ρJ ′′ , it is su�cient to take
the system matrix of the approximate matrix-vector product from the growing routine with
a higher accuracy. Again, we will go into more detail for this routine in the next chapter,
where the main focus lies on the implementation.

4
Implementation

In Chapter 3, the main focus has been on the theoretical aspects of the adaptive wavelet
method. We introduced complexity estimates and error estimates, which are needed in
order to produce an adaptive algorithm of optimal complexity. The main aspect of the
following chapter are the practical aspects of the implementation, for which we used the
programming language C, and the computational details of our particular adaptive wavelet
method.

An e�cient implementation of the uniform wavelet method does already exist, see [54],
and related routines Apply and Rhs can also be found therein. While the principle
realisation of assembling and solving the system of linear equations is thus nothing new,
the innovation of the present implementation is the conversion and fresh implementation of
these routines to work with truly adaptive structures, namely trees. Though the literature
cited in Chapter 3 discusses the theoretical requirements for the realisation of an adaptive
wavelet scheme, we are not aware of a practical realisation by truly adaptive data structures
so far.

This chapter is structured as follows: In the �rst section, we introduce the adaptive struc-
tures which are needed for the e�cient realisation of our adaptive algorithm, incorporating
the element tree and the wavelet tree. Furthermore, we will illustrate the handling of these
trees, like their initialisation or the re�nement and inheritance of certain characteristics
from parent to child. The second section will be concerned with the practical realisation of
each important routine which was mentioned in theory in Chapter 3, i.e. the realisations of
Apply, Rhs, Coarse and Solve. Moreover, we focus on the implementation of further
important routines like Compression, Prediction and Assembling.

59

60 4. Implementation

4.1 Element Trees

In the existing uniform implementation, elements and wavelets are stored in arrays, see [54].
The advantage of this is that the access to the entries is very e�cient, since we know exactly
where the elements and wavelets are located in these arrays. However, this only works if
we have a uniform re�nement, or if there is another way of knowing the exact structure of
the underlying tree. Since there is no way of knowing the exact development of such a tree
in an adaptive method, we do not know in advance how many wavelets and elements (and
which ones) will be needed. As we have already de�ned trees in the previous chapter, we
will now introduce the element tree and the wavelet tree.

Before we introduce the element tree and the speci�c structure Element, used in the im-
plementation, we will �rst explain what underlying mathematical structure we want to
represent. To this end, we will brie�y recall how to represent surfaces, as it was already
mentioned in Section 2.5. For any geometry, we describe its surface Γ as the union

Γ =

M⋃
i=1

Γi, Γi = γi(�), i = 1, . . . ,M,

with the di�eomorphisms γi mapping from the unit square � = [0, 1]2 to the patch Γi. For
each geometry we use, we have these mappings given in the following form:

typedef struct {

Vector3 (*gamma)(Vector2 a);

Vector3 (*nGamma)(Vector2 a);

} Parametrix;

The �rst component (*gamma) points to an array of functions which de�nes the mappings
γi. The second component (*nGamma) points to an array of functions which contains
∂t1γi(t)× ∂t2γi(t) and thus encodes the surface measure µi(t) = ‖∂t1γi(t)× ∂t2γi(t)‖ and
the normal vector n(γi(t)). Thereby, the appearing structures Vector2 and Vector3 con-
tain two and three doubles, representing a two- or three-dimensional vector, respectively.

4.1.1 Data Structures

In order to de�ne the elements, we subdivide the unit square into portions of the form
�j,k := [2−j(k1, k1 + 1)] × [2−j(k2, k2 + 1)], where the integer j ≥ 0 denotes the level of
re�nement and k = (k1, k2) denotes the location. We then use the mapping γi to lift it to
the surface which leads to the elements Γi,j,k := γi(�j,k), see Figure 2.3 in Chapter 2 for
an illustration. Therefore, an element is characterised by the following properties:

typedef struct {

Element *parent, *child[4], *neighbour[4];

int shift_x, shift_y;

4.1. Element Trees 61

int level, patch, vertex[4];

} Element;

In each Element, we store its level j of re�nement (in level), the patch i it belongs to
(in patch), and its location inside the patch (in the integers shift_x and shift_y). In
addition, Element has an array *child[4], consisting of exactly four pointers indicating
the children of the element, generated by one more re�nement step. As long as these
elements are not generated yet, thus, if the element is a leaf of the tree, we will set each
pointer to NULL. We set also a pointer back to the parent, meaning the ancestor of the
element in the tree. The only exception is the root node, which has its parent pointer set
to NULL. Figure 4.1 illustrates a possible re�nement of the unit square with the resulting
structure of the according element tree.

patch

c0

c0 c1 c2 c3

c0 c1 c2 c3

c1 c2 c3

c1

c2c3

c0 c1

c2c0 c1

c2c3

Figure 4.1: Re�nement of an element with emerging element tree.

The two ingredients not discussed yet are the array vertex[4], consisting of four integers
which indicate where the associated vertices can be found in the array pointList, and
the array *neighbour[4], consisting of element pointers referring to the four adjacent
elements of the same level. We shall next explain the initialisation of the element tree and
will therein go into detail on these two arrays as well.

4.1.2 Initialisation of the Element Tree

As soon as we have given the parametrisations γi, i = 1, . . . ,M , for each patch of the
geometry, we can calculate the three-dimensional coordinates of the four vertices of each
patch Γi. We do this by mapping the four corners (0, 0), (1, 0), (1, 1) and (0, 1) of the
unit square to the four according vertices of each patch Γi on the surface. Each point
obtained in this way will then be stored in the array pointList, consisting of the three-
dimensional coordinates of the element vertices. For each element, the array vertex[4]

contains the four integers which indicate where the associated vertices can be found in the
array pointList. In order to have each vertex stored in this array only once, we must not
store each of the four vertices for each patch, since they all share certain edges.

62 4. Implementation

We will now explain what we do in the implementation to set the array vertex[4] for
each patch and to initialise at the same time the array pointList. We call the function
CalcVertices for each patch, where the procedure is outlined in Algorithm 2. This
function uses the associated parametrisation to calculate the (three-dimensional) image
of each (two-dimensional) corner of the unit square. The function findPoint, which is
called within, compares this point to all the points already stored in the array pointList.
If the point is already contained in the array, the function returns the index where it can
be found. If the point is not found, it is added to the array pointList and the according
index is returned. Thus, after this function terminates, each patch element has the array
vertex[4] of indices set, which contains the correct location of the associated vertex in
the array pointList. Notice that the procedure of �nding vertex indices is of quadratic
cost, which is why we use it on the patch level only.

Algorithm 2: Calculate and set the vertices for each patch.

for i = 1 to noPatches do

e is the i-th patch;
e → vertex[0] = findPoint(γi(0, 0), pointList);
e → vertex[1] = findPoint(γi(1, 0), pointList);
e → vertex[2] = findPoint(γi(1, 1), pointList);
e → vertex[3] = findPoint(γi(0, 1), pointList);

end

The next issue to be addressed is setting the adjacent elements for each patch, called
neighbours, meaning the elements that share an edge. For setting the neighbours of a
patch, we call the routine CalcNeighbours, which is outlined in Algorithm 3. For each
edge of the patch, we call the routine findNeighbour. It checks whether the incoming
edge, which is uniquely characterised by the two integers of its vertices in ascending order,
coincides with the edge of any other patch. If they do, we have found the element of interest
and set it as neighbour, if not, we set the pointer to NULL. Thus, the implementation can
handle closed surfaces as well as non-closed ones.

Algorithm 3: Set the neighbours for each patch.

for i = 1 to noPatches do

e is the i-th patch;
e → neighbour[0] = findNeighbour(e → vertex[0], e → vertex[1]);
e → neighbour[1] = findNeighbour(e → vertex[1], e → vertex[2]);
e → neighbour[2] = findNeighbour(e → vertex[2], e → vertex[3]);
e → neighbour[3] = findNeighbour(e → vertex[3], e → vertex[0]);

end

4.1. Element Trees 63

e
c0 c1

c2c3

v0 v1

v2v3

n0

n1

n2

n3

Figure 4.2: Element e with neighbours n0, n1, n2, n3, children c0, c1, c2, c3 and vertices
v0, v1, v2, v3.

Before we proceed to element re�nement, we will explain in which way we number vertices,
neighbours and children of an element e. At this point, we remember that we do not
work directly with the three-dimensional vertices of the element, but with the integers
that are associated to their location in the array pointList. The numbering of vertices
and children is always the same, starting with the south-western vertex v0 and the child c0

located there, and proceeding counter-clockwise to the north-western vertex of the element.
Moreover, the element that shares the edge with vertices vi and v(i+1) mod 4 will always be
the neighbour ni. Hence, n0 is the neighbour in the south, n1 is the neighbour in the east,
n2 is the neighbour in the north and n3 is the neighbour in the west. The same can be
done with the vertices, using south-west, south-east, north-east and north-west instead.
Figure 4.2 gives an illustration of the described situation.

After the element tree is initialised, we have at hand the list with the patch vertices on the
surface, as well as the neighbouring relations among the patches. Two important remarks
have to be made at this point. First, the cost of the initialisation is of order O(1) since
the number M of patches is �xed and independent of the degrees of freedom. Second,
the patches are consistently oriented, but it is in general impossible to also number the
neighbours consistently. We will explain what we mean with this by an example. Consider
the situation illustrated in Figure 4.3, where three patches share a common vertex. Such
degenerated vertices appear often when we want to parametrise a closed three-dimensional
surface. Consider the element e with its vertices v0, v1, v2 and v3 and its neighbours set.
Element e then is its western neighbour and element e is its southern neighbour. The
element e itself is also the northern neighbour of e. The neighbouring relations between
e and e are still consistently set with e being the western neighbour of e and e being the
eastern neighbour of e. We can thus apply the rule:

e → neighbour[i] → neighbour[(i+2) mod 4] = e;

This is not possible any more for e and e. As we have already mentioned, e is the western
neighbour of e but e is the northern neighbour of e (instead of being the eastern neighbour).
Of course, this is considered in the routine findNeighbour, ensuring that the neighbours
are set for each patch consistently in its reference.

64 4. Implementation

e

v0

v1

v2

v3

e

v0

v1

v2

v3

e

v0

v1

v2

v3

Figure 4.3: Parametrisation of a degenerated vertex.

4.1.3 Element Re�nement

Each time we decide to re�ne an element, we need an e�cient way to pass all the parameters
required in the de�nition of an element to its children. Whenever an element is re�ned,
there appear new vertices which have to be added to the array pointList. Thereby,
we have to keep track of the vertices already available, continuously updating the array
pointList as the code proceeds.

We will present an example to explain the element re�nement. The cost of element re�ne-
ment is constant in our case, meaning O(1), where the key ingredient for having this are
the neighbourhood relations provided by the array *neighbour[4]. Consider the situation
illustrated in Figure 4.4. We have given the element e with the four known vertices v0, v1,
v2 and v3, and the four neighbours n0, n1, n2 and n3. In this situation, we assume that
the neighbouring element n2 is already re�ned and rotated di�erently from e.

When the element e is re�ned, the new child elements c0, c1, c2 and c3 will be generated,
together with the possibly new vertices p0, p1, p2 and p3 on the edges and the midpoint m.
As the vertices of the parent element e are already given, we can transmit the associated
vertex indices by the following rule:

e → child[i] → vertex[i] = e → vertex[i];

The midpointm is always a new vertex. Thus, we use the mapping γi of the according patch
to obtain the new three-dimensional point on the surface, add it to the array pointList

and set:

e → child[i] → vertex[(i+2) mod 4] = pointListLength;

Here, pointListLength denotes the current length of the array pointList, which is in-
creased by one after the index is set. Another relation we know for sure is that we have at
least two new neighbours for each child, which we set according to the following rule:

4.1. Element Trees 65

e

c1 c2

c3c0

v0 v1

v2v3

n0

n1

n2

n3

re�ne element e
c1 c2

c3c0

v0 v1

v2v3

n0

n1

n2

n3

c0 c1

c2c3

p0

p2

p3 p1
m

Figure 4.4: Re�nement procedure of an element.

e → child[i] → neighbour[(i+1) mod 4] = e → child[(i+1) mod 4];

e → child[i] → neighbour[(i+3) mod 4] = e → child[(i+3) mod 4];

Setting the vertices p0, p1, p2 and p3 needs some more thought, since it is not clear whether
these vertices already exist. This is what we need to �nd out without running through
the whole array pointList each time and here is where we will exploit the neighbouring
relations.

If a neighbour ni already has children, then the vertex pi already exists and we just have
to �nd the index of this vertex. The only di�culty remaining is that the relation e →
neighbour[i] → neighbour[(i+2) mod 4] = e; does not necessarily hold, as we have
already noticed from the example in the previous section. Thus, in case the neighbour
already has children, it comes down to �nding out how the neighbours are related to each
other. Suppose we know the index j which satis�es e → neighbour[i] → neighbour[j]

= e. Then, since the patches of the geometry are always oriented counter-clockwise, we
can set the new vertex and the associated neighbouring relations according to the following
rules:

e → child[i] → vertex[(i+1) mod 4] =

e → child[(i+1) mod 4] → vertex[i] =

e → neighbour[i] → child[j] → vertex[(j+1) mod 4];

e → child[(i+1) mod 4] → neighbour[i] = e → neighbour[i] → child[j];

e → child[i] → neighbour[i] = e → neighbour[i] → child[(j+1) mod 4];

e → neighbour[i] → child[j] → neighbour[j] = e → child[(i+1) mod 4];

e → neighbour[i] → child[(j+1) mod 4] → neighbour[j] = e → child[i];

If the neighbour ni does not have any children, we know that the vertex pi is new. Thus,

66 4. Implementation

we use the mapping γi to obtain its three-dimensional image on the surface, add it to the
list of points and set:

e → child[i] → vertex[(i+1) mod 4] =

e → child[(i+1) mod 4] → vertex[i] = pointListLength;

Recall that we allow only elements as neighbours which have the same level as the element
itself. This is why some neighbours cannot and therefore must not be set at this point.
In Figure 4.4, the element c2 has the native neighbours n0 = c1 and n3 = c3, as well as
the neighbour n2 = c2. The eastern neighbour of c2 is set to NULL since n1 is too large
to be its neighbour (neighbour n1 is already the neighbour of the element e). As we set
new neighbours and points consistently, we can throughout the implementation rely on
the facts described above for managing the mesh, without searching vertices in the array
pointList.

4.2 Wavelet Trees

In this section, we are going to introduce the wavelet tree. To that end, let us recall the
basic facts about the wavelets on surfaces from Section 2.5. We �rst need wavelets on the
unit square, as introduced in Section 2.4. We then need mappings γi from the unit square
to each patch Γi, i = 1, . . . ,M , of the surface Γ.

For wavelets ψ�j,k,ι on the unit square, the integer j indicates the level of re�nement,
k = (k1, k2) the location inside the unit square and ι gives the index set ∇j,ι, associated
with the prototype of the wavelet, out of which k is taken. Each wavelet ψ�j,k,ι can be
represented via a linear combination of scaling functions φ�j,k,ι. In the present case of
piecewise constant wavelets, the scaling functions are box functions of height 2j , associated
with a single element of re�nement level j. The coe�cients in the linear combination are
called weights. Thus, in our implementation, we represent the support of a wavelet ψ�j,k,ι
on the unit square by the union

supp ψ�j,k,ι =
⋃

(j′,k′)∈I

�j′,k′ , (4.1)

with I being the set of elements in the wavelet's support and �j′,k′ denoting the elements
where the wavelet is smooth. Finally, the wavelets on the surface are obtained by lifting the
wavelets on the unit square to Γ by the mapping γi, which requires only the information
of the index i.

Our data structure Wavelet consists thus of the following ingredients:

typedef struct {

Wavelet **child, *parent;

Element **support;

int protoType, patch;

4.2. Wavelet Trees 67

} Wavelet;

In order to have a tree structure among the wavelets, each wavelet has an array of pointers,
leading to the descendants of the wavelet, and a pointer back to the ancestor. The array
**child of descendants consists of wavelets, where, in contrast to the elements (always
having four children), the number of wavelet children can vary. This is why we use the
pointer **child instead of e.g. *child[4]. The variable *parent is a pointer to the
ancestor and consists of the wavelet's parent in the tree. We store the patch, on which
the wavelet is located, in the variable patch. Subsequently, all the elements �j,k from
equation (4.1), more precisely a pointer to all these elements, are being stored in the array
**support. The details on how to compose this array exactly will be introduced in Section
4.2.2. In particular, this will be closely linked to the prototype of the wavelet, which is
indicated by the variable protoType.

4.2.1 Initialisation of the Wavelet Tree

In Section 4.1, we outlined the initialisation of the element tree. Initialising the wavelet
tree is performed similarly. On each patch Γi, i = 1, . . . ,M , we have given the coarse-grid
scaling function φΓi

0,(0,0) = φ�0,(0,0)(γ
−1
i), forming the root nodes of the future wavelet tree.

For each patch p, we set for the associated wavelet w:

w → support = p;

w → child[i] = NULL;

w → parent = NULL;

One more ingredient in the element tree, which has not yet been mentioned in Section 4.1,
is the array **wavelet, containing pointers to each wavelet which has this element in its
support. At the same time as the support is being set in the wavelet w, a pointer to this
wavelet is set in the according array of each element. As soon as the initialisation of the
wavelet tree is completed, each further contact with the wavelet tree comes down to the
re�nement of a leaf in this tree. In order to understand how wavelet re�nement works with
our tree, we will �rst introduce the so-called wavelet archive, which builds the foundation
for understanding how exactly we represent our wavelets. With this knowledge at hand, we
can �nally continue to Section 4.2.3, where we will explain in detail how wavelet re�nement
works.

4.2.2 Wavelet Archive

The idea of the wavelet archive is to store all wavelet properties which are independent of
the re�nement, i.e. which are induced by translation or dilation, as global variables, such
that we can access these variables whenever desired. Also, we want the implementation to
be able to work independently of the di�erent wavelet bases available.

68 4. Implementation

Before we can start explaining the speci�c variables appearing in the archive, we have to
introduce the concept of the prototype protoType, which is to be found in the structure
Wavelet, mentioned earlier. For this purpose, we recall the construction of wavelet bases
on the unit interval, as it has been introduced in Subsection 2.4, and the scaling functions
φ

[0,1]
j,k from equation (2.8). We will focus on the wavelets with optimised support and brie�y

repeat the formulae for constructing them by taking tensor products of one-dimensional
functions on the interval. We have given the three products

φ�j,k(x) = φ
[0,1]
j,k1

(x1) · φ[0,1]
j,k2

(x2),

ψ�j,k,1(x) = ψ
[0,1]
j,k1

(x1) · φ[0,1]
j,k2

(x2),

ψ�j,k,2(x) = φ
[0,1]
j+1,k1

(x1) · ψ[0,1]
j,k2

(x2).

For each of these products, we will assign a di�erent prototype. Hereby, the prototype
of the scaling functions φ�j,k is de�ned to be 0 and the prototype of the wavelet ψ�j,k,1 is
de�ned to be 1. The wavelets ψ�j,k,2 are somewhat special. Note that we have taken the

scaling functions φ[0,1]
j+1,k1

on level j + 1 for their construction, ending up with twice as
many wavelet functions, which have, however, half the support compared to the wavelets
of prototype 1. We will thus assign the prototypes 2 and 3 for these wavelets. Later in
this section, we will see why this choice is especially convenient for our implementation.

Now, let us introduce the �rst two arrays used in the wavelet archive:

extern int* supportSize[];

extern double** waveWeights[];

The array supportSize contains integers that indicate the number of elements in a wavelet's
support. The support size of a wavelet depends on its prototype. Therefore, the overall size
of this array corresponds to the number of di�erent prototypes. The variable waveWeights
contains the values of the weights of each element contained in the wavelet's support. The
size of this array thus depends on the number of elements in a wavelet's support and its
prototype, resulting in a two-dimensional array. Figure 4.6 shows the weights for each
prototype in case of the two-dimensional Haar wavelets. Here and in the following, we use
the top view onto a scalar function in R2 to present our wavelets, as seen in Figure 4.5.

As shown in Figure 4.6, each of the prototypes has a possibly di�erent set of weights and
number of supporting elements. Since these properties alone are not su�cient to uniquely
determine a wavelet, we introduce the next variable in the archive:

extern char** waveSupport[];

This array consists of a set of characters, indicating the elements in the wavelet's support
with respect to one well-de�ned reference element, which we will, in the following, call the
master element. In order to fully understand this, we need to introduce another wavelet
property not mentioned yet, namely the pointer

Element *master;

4.2. Wavelet Trees 69

z

xy

top view

0.5 −0.5

−0.50.5

Figure 4.5: Three-dimensional graph of a Haar wavelet and how it is drawn in top view.

1

Scaling function (prototype 0)

0.5 −0.5

−0.50.5

Wavelet of prototype 1

0.5

−0.5

Wavelet of prototype 2

0.5

−0.5

Wavelet of prototype 3

Figure 4.6: Top view of the prototypes in case of Haar wavelets.

which contains the pointer to exactly this master element. Thus, for each wavelet, we
assign a master element in addition to its supporting elements, with respect to which we
can set the support, only needing the knowledge on its prototype. In order to illustrate
this, let us have another look at Figure 4.6. For each of the four prototypes, we set the
pointer Element *master to the coarse element which coincides with prototype 0. The
wavelet with prototype 1 then has this element's four children as support, the wavelet of
prototype 2 is supported by the element's children c0 and c3, and the one with prototype
3 is supported by its children c1 and c2. For the two-dimensional Haar basis, this leads to
the following speci�c arrays:

int* supportSize[4] = {

(int[1]) {1},

(int[1]) {4},

(int[1]) {2},

(int[1]) {2}

};

70 4. Implementation

double** waveWeights[1] = { (double*[4]) {

(double[1]) { 1.0 },

(double[4]) { 0.5, -0.5, -0.5, 0.5 },

(double[2]) { 0.5, -0.5 },

(double[2]) { 0.5, -0.5 } }

};

char** waveSupport[4] = {

(char*[1]) { "e" },

(char*[4]) { "c0", "c1", "c2", "c3" },

(char*[2]) { "c0", "c3" },

(char*[2]) { "c1", "c2" }

};

Each of the four rows in the arrays corresponds to one wavelet prototype. Aside from the
level dependence of a wavelet, all wavelets of the same prototype have the same structure,
i.e. the same support with respect to their particular master element and the same weights.
The only remaining di�erence is that wavelets on a larger re�nement scale have smaller
supporting elements, resulting in a smaller support in total. For our purpose, it is useful to
represent a wavelet ψλ independently of its level j. The piecewise constant part φ�j′,k′(s) on
each element �j′,k′ in the support is multiplied with the (level independent, but prototype
dependent) weight ωk′,ι:

ψλ(γi(s)) =
∑

(j′,k′)∈I

φ�j′,k′(s)ωk′,ι. (4.2)

As the level j is already stored with the wavelet, we have to store only one set of weights
ωk′,ι for each prototype in a global variable. As these weights are independent of the level
j, this requires only O(1) memory. Furthermore, by knowing the wavelets' prototype, their
weights can be accessed easily by the global variable.

4.2.3 Wavelet Re�nement and Inheritance

With the arrays from the archive, the support and the weights of each wavelet are acces-
sible at any time. Whereas we considered one wavelet in isolation in the aforementioned
situation, we will now examine how the variables **support, protoType and *master are
transferred to a wavelet's children.

Since we had not introduced the variables protoType and *master, when we �rst talked
about the initialisation of the wavelet tree, we have to jump back and explain how to do
this when initialising the tree. Recall that the pointer *master is set to the patch for each
scaling function and its prototype is set to 0. In particular, the scaling function is the only
wavelet, which has the pointers **support and *master set to the same element. It is also

4.2. Wavelet Trees 71

the only wavelet of prototype 0.

As soon as we have set all these variables for the scaling functions, we need one more
ingredient in the archive to be able to re�ne wavelets and set all desired variables of their
children:

extern int** inherit[];

This three-dimensional array contains two di�erent kinds of inheritance information for
all available wavelet prototypes, where each line of the array corresponds to a di�erent
prototype. Thus, each prototype has its own set of inheritance rules for wavelet re�nement.
The �rst 4-tuple of integers assigns the prototype of a wavelet's children. The second 4-
tuple of integers is used to set the pointer *master for each of the four children.

Since the array **inherit[] may seem somewhat unintuitive at �rst, we will use an
example to explain its handling and usefulness in detail. Let us therefore consider the
Haar basis, in which case the array for inheritance is the following:

int** inherit[4] = {

(int*[2]) { (int[3]) {1,2,3}, (int[3]) {0,0,0} },

(int*[2]) { (int[4]) {1,1,1,1}, (int[4]) {0,1,2,3} },

(int*[2]) { (int[4]) {2,3,3,2}, (int[4]) {0,0,1,1} },

(int*[2]) { (int[4]) {2,3,3,2}, (int[4]) {0,0,1,1} }

};

We will go into details shortly, but �rst we illustrate how this array is used in a re�nement
step. Suppose that we have given a wavelet of prototype 2. This means that we are looking
at the third line

(int*[2]) { (int[4]) {2,3,3,2}, (int[4]) {0,0,1,1} }

of the array **inherit[].

The �rst 4-tuple, which is {2,3,3,2}, encodes the protoType of the four children of the
wavelet with prototype 2. They are numbered counter-clockwise like the children of an
element. Hence, for this set of integers, the wavelet children 0 and 3 receive the prototype
2, while the wavelet children 1 and 2 receive the prototype 3.

The second 4-tuple, which is {0,0,1,1}, will help to identify the pointer *master of each
child by the following rule:

w → child[i] → master = w → support[inherit[w → protoType][1][i]];

We notice that the use of this 4-tuple of integers is not as straightforward as for the �rst 4-
tuple of integers, as we insert the according integer into the support of the parent wavelet.
In this particular example (with the array {0,0,1,1}), this means that both, child 0 and
child 1, receive the parent's �rst supporting element as pointer *master. Child 2 and child
3 receive the parent's second supporting element.

72 4. Implementation

Recall Section 4.2.2, where we anticipated that we will assign both, prototypes 2 and 3, to
the wavelets ψ�j,k,2. Figure 4.6 illustrates the situation. The wavelet which is located at the
left (plot in the middle) is of prototype 2, whereas the wavelet at the right (right plot) is
of prototype 3. The reader may ask why these two wavelets, which look much alike, have
two di�erent prototypes. If we would choose just prototype 2 for both wavelets, we would
run into consistency problems when transferring some properties to the wavelet's children,
the support for instance, found in waveSupport. Assigning two di�erent prototypes allows
us to identify each wavelet uniquely and, as a consequence, transfer all properties to its
children.

We notice that the �rst line of the array **inherit[4] contains two triples of integers
instead of two 4-tuples, which is because the �rst line corresponds to wavelets of prototype
0. This is a unique property of the scaling function: It is the only function of prototype 0,
which has three children, one of each prototype 1, 2 and 3.

To summarise the current subsection, we give an outline of the wavelet re�nement in
Algorithm 4. The function SetSupp, called in the routine, sets the support for each child
by using the global variables supportSize and waveSupport.

Algorithm 4: Wavelet re�nement.

for i = 0 to noChildren-1 do

w → child[i] → parent = w;
w → child[i] → protoType = inherit[w → protoType][0][i];
w → child[i] → master = w → support[inherit[w → protoType][1][i]];
setSupp(w → child[i], supportSize[w → child[i] → protoType]);

end

4.2.4 Wavelets with Three Vanishing Moments

For the sake of simplicity, we deliberately used the Haar basis to introduce the archive.
The situation changes considerably when we decide to use wavelets with more than one
vanishing moment. For instance, the interior and boundary wavelets are the same for Haar
wavelets. This is no longer the case for wavelets with three vanishing moments. This
subsection will address these challenges by discussing how to design the archive in a way
which is independent of the chosen wavelet basis.

First, recall Figure 2.2, showing the situation on the interval. We see the interior wavelet
with three vanishing moments in the middle, as well as the modi�ed left and right boundary
wavelet, respectively. By using the same strategy as for the Haar basis in Subsection 2.4.2
in order to construct wavelets with three vanishing moments on the unit square, we obtain
three prototypes for the interior wavelets (type zero is again assigned only to the scaling
function). Additionally, we get two-dimensional boundary wavelets at each boundary of
the unit square, each of them de�ning a new prototype. This leads to nine prototypes in

4.2. Wavelet Trees 73

total, all of which are displayed in Figure 4.7 together with the according weights. The
master element is coloured slightly darker than the other elements in the support.

The elements, which are in the support of a wavelet, are given in the array waveSupport,
where each line corresponds to a di�erent prototype, de�ned with respect to the master
element:

char** waveSupport[10] = {

(char*[1]) { "e" },

(char*[6]) { "c0" , "c1" , "c2" , "c3" , "n3" , "n1" },

(char*[6]) { "c0" , "c3" , "n0c0" , "n0c3" , "n2c0" , "n2c3" },

(char*[6]) { "c1" , "c2" , "n0c1" , "n0c2" , "n2c1" , "n2c2" },

(char*[6]) { "c0" , "c1" , "c2" , "c3" , "n1" , "n1n1" },

(char*[6]) { "c0" , "c1" , "c2" , "c3" , "n3" , "n3n3" },

(char*[6]) { "c0" , "c3" , "n2c0" , "n2c3" ,"n2n2c0","n2n2c3"},

(char*[6]) { "c1" , "c2" , "n2c1" , "n2c2" ,"n2n2c1","n2n2c2"},

(char*[6]) { "c0" , "c3" , "n0c3" , "n0c0" ,"n0n0c3","n0n0c0"},

(char*[6]) { "c1" , "c2" , "n0c2" , "n0c1" ,"n0n0c2","n0n0c1"}

};

As already mentioned in Section 2.3.3, the wavelets with three vanishing moments are
supported on three elements, which is why we cannot use them before a certain level of
re�nement is reached. However, as soon as the necessary level of re�nement is reached,
the arrays for the support and the weights can be used as usual together with the same
routines for transferring the prototype, the support, the weights and the master element.
The only di�erence is that the arrays are larger, as they feature nine prototypes instead of
three.

4.2.5 Switching Between Wavelet Bases

As already mentioned, a certain level of re�nement is required to use the wavelets with
three vanishing moments. Instead of using a single-scale basis up to the desired re�ne-
ment scale (being 2 in this case), we will start the algorithm by using Haar wavelets until
then. The use of two di�erent wavelet bases poses a challenge, as we have to switch from
Haar wavelets to the wavelets with three vanishing moments during runtime. The transfer
of support, protoType and master, before and after changing the wavelet basis, works
as explained before. The only challenge is the transfer of these variables in the moment
when the basis changes. For this purpose, we will extend the archive by two new arrays
and one new function. The array kind contains the information about when to change
wavelets, the array int* switchRules[][][] contains a list of possible prototypes to as-
sign to a wavelet's children during the change. Also, we will enhance the two known arrays
supportSize and waveSupport by an additional parameter, such that all information for
the old and the new wavelets is contained. The remaining arrays are simply enhanced with
additional information on the new prototypes which appear.

74 4. Implementation

-1
8 1

2

1
2

-1
2

-1
2 1

8

- 1
16

- 1
16

1
2

-1
2

1
16

1
16

Wavelet type 1, 2 and 3

- 1
16

- 1
16

1
2

-1
2

1
16

1
16

Wavelet type 4 and 5

5
16 -11

16

-11
16

5
16 -1

8
1
2

- 5
16

- 5
16

11
16

11
16-1

2
1
8

Wavelet type 6 and 7

5
16

-11
16

1
4

1
4

- 1
16

- 1
16

5
16

-11
16

1
4

1
4

- 1
16

- 1
16

Wavelet type 8 and 9

1
16

1
16

-1
4

-1
4

11
16

- 5
16

1
16

1
16

-1
4

-1
4

11
16

- 5
16

Figure 4.7: All nine prototypes of the wavelets with three vanishing moments.

We best use the particular example of changing from Haar wavelets to the wavelets with
three vanishing moments to explain this situation. In this case, the array switchRules is
de�ned as

int* switchRules[3] = {

(int[3]) {1, 4, 5},

(int[3]) {2, 6, 8},

(int[3]) {3, 7, 9}

};

where the integers therein mean the following: Each line of the array stands for a prototype
of the wavelet basis, which is used �rst (being Haar wavelets here). Let us consider the
�rst line of this array which contains the numbers 1, 4 and 5. Having a Haar wavelet of
type 1, these numbers give us the possible prototypes of its children after switching to
the second wavelet basis. For example, a Haar wavelet of type 1 has potential children
of types 1, 4 or 5, but not every prototype is allowed for every wavelet child. As soon as

4.2. Wavelet Trees 75

the variable kind initialises a change between di�erent wavelet bases, the routine FitsIn,
outlined in Algorithm 5, is called inside the routine for wavelet re�nement. It checks
which of the three possible prototypes is allowed for the wavelet child under consideration.
The function thereby runs through the support of each possible prototype of the wavelet's
children obtained from the array waveSupport. The function relativeNeighbours,
which is called within, checks if all elements in the support are located on the same patch.
If they all are, then the wavelet �ts in.

Figure 4.8 shows two di�erent situations. First, we consider a wavelet w1 of type 1 (hatched
area) in the top left corner. This wavelet has four children and Figure 4.8 illustrates the
situation for child 3. The possible prototype for this child are the types 1, 4 and 5. We
notice that a wavelet of type 1 does not �t as a child, since part of its support would be
located outside the patch. The same would happen for a child of type 5. Thus, the only
possible prototype of w1→ child[3] is type 4. The second wavelet w2 under consideration
is a type 3 wavelet (dotted area) and Figure 4.8 shows the situation for its child 1, which
has the possible prototypes 3, 7 and 9. Again, for a wavelet of prototype 3 (and also for a
wavelet of prototype 9), a part of the support would be located outside the patch, which
is why these prototypes are inadmissible.

Algorithm 5: FitsIn

Input: Integer k being 1, 2 or 3 and wavelet w
Output: 1, if index is the correct prototype, else 0

Set: index = switchRules[w → protoType-1][k];
for i = 0 to supportSize[index][1] do

if 0 = relativeNeighbours (waveSupport[index][i]) then
return 0;

end

end

return 1;

It was already mentioned that the arrays supportSize and waveSupport are equipped
with a second set of integers and additional characters, such that the complete information
for both bases is stored within. Thus, as soon as the prototype of all wavelets is known,
the array support and the pointer *master can be set as usual. For the current situation,
where we switch between Haar wavelets and wavelets with three vanishing moments, the
arrays are de�ned as

int* supportSize[10] = {

(int[1]) {1},

(int[2]) {4, 6}, (int[2]) {2, 6}, (int[2]) {2, 6},

(int[2]) {0, 6}, (int[2]) {0, 6}, (int[2]) {0, 6},

(int[2]) {0, 6}, (int[2]) {0, 6}, (int[2]) {0, 6}

};

76 4. Implementation

type 3 E

type 1 E

type 7 X

type 4 X

Figure 4.8: Illustration of the function FitsIn.

Likewise, the array inheritance is enhanced with the data for the newly appearing pro-
totypes. It contains the following integers:

int** inherit[10] = {

(int*[2]) { (int[3]) {1,2,3}, (int[3]) {0,0,0} },

(int*[2]) { (int[4]) {1,1,1,1}, (int[4]) {0,1,2,3} },

(int*[2]) { (int[4]) {2,3,3,2}, (int[4]) {0,0,1,1} },

(int*[2]) { (int[4]) {2,3,3,2}, (int[4]) {0,0,1,1} },

(int*[2]) { (int[4]) {4,1,1,4}, (int[4]) {0,1,2,3} },

(int*[2]) { (int[4]) {1,5,5,1}, (int[4]) {0,1,2,3} },

(int*[2]) { (int[4]) {6,7,3,2}, (int[4]) {0,0,1,1} },

(int*[2]) { (int[4]) {6,7,3,2}, (int[4]) {0,0,1,1} },

(int*[2]) { (int[4]) {2,3,9,8}, (int[4]) {0,0,1,1} },

(int*[2]) { (int[4]) {2,3,9,8}, (int[4]) {0,0,1,1} }

};

Remark 28. We will complete this subsection with a �nal remark. Some routines rely on
the fact that the support of the wavelets' descendants is always contained in the parents'
support. One such example is the routine which computes the pattern for the matrix
compression. In general, this condition is ful�lled. However, during the change of Haar
wavelets to wavelets with three vanishing moments, this condition is violated, since the
new wavelets are larger than the Haar wavelets which have been used before. This is a
problem which cannot be solved within the wavelet archive, but has to be taken care of in
the according routine, i.e. compress and predict.

4.3. The Adaptive Algorithm 77

4.3 The Adaptive Algorithm

Since the most important underlying structures are now explained, we can turn towards
the details of the implementation. In this section, we will �rst give an overview of the
work-�ow of the program as well as the interaction and hierarchy between the routines.
Figure 4.9 illustrates the control-�ow diagram of the program.

4.3.1 Overview

The program starts by initialising the parametrisation, followed by building the underlying
tree structures, as explained in Subsections 4.1.2 and 4.2.1. At the same time, we initialise
the array pointList, as outlined in Algorithm 2, followed by �nding and setting the neigh-
bour elements. Furthermore, we compute the points, which are needed later for evaluating
the potential. While the trees are initialised, they automatically become intertwined, as
whenever a new wavelet is added to the wavelet tree, possibly new elements will be added,
giving a link to the element tree. Vice versa, a new wavelet appears in the array of wavelets
for the according element, giving a link back to the wavelet tree, too.

Initialise

- Geometry
- Elements and wavelets
- Potential eval. points

- resNorm := resNorm/2
- Sort tree
- Calculate prediction &
compression constants

Prediction

- Update balls & boxes
- Increase accuracy

Compression and

matrix assembly

- Update integrals

Calculate rhs

- Compute residual
- Coarse residual

New resNorm

small enough?

Postprocessing

Draw re�nement

and solution

Solver

- Solve system of
linear equations

- Evaluate potential

Enough
accuracy/

unknowns?

Grow no

yes

yes
no

Figure 4.9: A schematic display of the control-�ow diagram.

Remark 29. Despite the fact of having an element tree, the implementation does not rely
on an underlying mesh. Indeed, it is a meshless method since the re�nement of wavelets

78 4. Implementation

does not depend on where we decide to re�ne elements. Whenever it is decided that new
wavelet functions are activated, elements will be re�ned as a consequence. The only two
exceptions to this are the assembly routine, which is able to re�ne elements for quadrature,
and the routine for the evaluation of the potential.

As soon as the element tree and the wavelet tree are initialised, we will start a loop
consisting of di�erent routines, which we will subsume as grow in what follows. The basic
goal of this loop is to grow the wavelet tree. Starting with an initial guess for the estimated
norm of the residual, the routine will perform a prediction step which adds appropriate
new wavelet functions. In a next step, the system matrix is assembled with respect to
this extended set of basis functions. After calculating the discrete approximation to the
right-hand side, we compute the new approximation to the residual. For this calculation,
we need only a matrix-vector multiplication. The loop terminates as soon as the estimated
norm falls below a certain threshold, after which we solve the system of linear equations
and check again if the desired accuracy is met. If it is, the code terminates and, if desired,
we can visualise the solution and the re�nement of the geometry. Otherwise, we repeat
the growing process. For solving the system of linear equations, we use the preconditioned
conjugate gradient method [62] if the integral operator under consideration is symmetric
and positive de�nite, which is the case for an integral equation featuring only the single
layer operator (1.3). In the other cases, we use the (restarted) GMRES method [80]. That
is, for example, for equations which feature the double layer operator (1.7), or for the
system of linear equations arising from the Helmholtz equation.

During the next subsections, we will step-by-step address the routines which are outlined
in Figure 4.9 and go into detail on their e�cient implementation.

4.3.2 Layer Classi�cation and Tree Sorting

In the process of growing the wavelet tree, we will �rst have to sort the tree. In Subsection
3.3.2, we already discussed the theoretical aspects of sorting and coarsening trees, whereas
the current subsection focusses on the implementation. During the runtime of the algo-
rithm, there are two situations where the wavelet tree needs to be sorted, namely for the
prediction and for the coarsening of the residual at the end of the growing cycle. The way
of sorting the tree hereby di�ers, dependent on which of the two situations occurs.

For prediction as well as for coarsening, we �rst have to arrange the wavelets into layers, in
order to ful�l the estimate (3.21). Recall that the theoretical aspect of doing so has already
been mentioned in Subsection 3.3.3. In the implementation, we store the information on
the wavelet layer in the integer layer. In order to be even able to collate the wavelets into
di�erent layers, we need two additional doubles down and up to sort the tree in advance.
The doubles down and up correspond to the functionals e and ẽ, respectively, encountered
in Subsection 3.3.2. The di�erence between prediction and coarsening lies in the way of
computing the coe�cients down and up, since we calculate these coe�cients with respect

4.3. The Adaptive Algorithm 79

to a di�erent norm:

sort(v, ‖ · ‖s) with ‖v‖2q ∼
∑
λ∈v

v2
λ |Aλ,λ|,

sort(v, ‖ · ‖−s) with ‖v‖2−q ∼
∑
λ∈v

v2
λ

|Aλ,λ|
.

(4.3)

Here, each λ = (i, j,k, ι) is associated with an active wavelet ψλ. The coe�cient vλ is the
λ-th coe�cient of the vector v whose index set has tree structure. The term Aλ,λ is the
diagonal entry of the system matrix. As mentioned in Subsection 3.3.2, we will �rst run
recursively through the tree bottom-up, starting with calculating the coe�cient for each
leaf wavelet. The procedure performing this step is outlined in Algorithm 6.

Algorithm 6: void up(w)

Set: w → up = 0;

if w → child 6= NULL then

for i = 0 to noChildren[w] do

up(w → child[i]);
Update: w → up += w → child[i] → up;

end

end

Update: w → up (according to the underlying norm);
Update: wNorm (according to the underlying norm);

Whenever we later refer to sorting the tree, we will make clear which norm has been
used. After Algorithm 6 terminates, we have a hierarchy on the wavelet tree, since all
parent wavelets have a larger coe�cient than each of their children. The second algorithm,
outlined in Algorithm 7, runs through the tree top-down. It preserves the hierarchy among
the wavelets but, in addition, the generated coe�cients are equal for all siblings. This
makes sense, since all children of one wavelet are of equal importance. The value q, which
is initialised �rst, is according to equation (3.13) and also for the root node it holds that
ẽ(λ) = e(λ).

Algorithm 7: void down(w)

Initialise: q = w → down · (
∑

i w → child[i] → up)/(w → up + w → down);

if w → child 6= NULL then

for i = 0 to noChildren[w] do

Set: w → child[i] → down = q;
down(w → child[i]);

end

end

80 4. Implementation

After Algorithm 7 terminates, each active wavelet ψλ is equipped with a coe�cient down.
This coe�cient is a global representative inside the wavelet tree of either the residuum
or the solution, cf. Subsection 3.3.2. Finally, we sort the wavelet tree according to the
magnitude of these coe�cients. Thus, the question arises which sorting algorithm should
be used best.

Let us brie�y address pros and cons of the two most common known sorting algorithms
Quicksort and merge sort. No sorting algorithm is able to perform in linear complexity.
Merge sort has complexity O(N log(N)) in the best case, average case and worst case.
Quicksort has the same best and average complexity, but it is of quadratic worst case
complexity, see [69]. If we want a sorting routine which performs with linear complexity,
we have to use a quasi-sorting instead, for example bucket sort. With quasi-sorting we
mean that the coe�cients are sorted into buckets according to their order of magnitude,
i.e. without further sorting the coe�cients inside the buckets. This does not result in a
completely sorted tree, but is su�cient for our purpose.

In our implementation, however, we do not use bucket sort. We use a slightly better
version of merge sort, by using so-called runs. The standard implementation divides the
array dyadically until only single values remain to be compared and arranged in the correct
order. Then, each pair of sorted values is merged together with another pair, resulting in
an array with four correctly sorted values. This is done recursively until the complete array
is sorted. If we know in advance that large parts of the array are sorted natively, which is
the case for our tree, we do not have to subdivide the array until only one value remains.
These pre-sorted parts of the tree (runs) have to be found in advance, which normally
requires one extra step to use this version of merge sort. Fortunately, we know from the
beginning that parent wavelets will end up having a larger coe�cient than their children.
Thus, we collect the information about the runs while executing Algorithm 7.

Algorithm 8: Layer classi�cation.

Wavelets are now sorted in the array sortVec;
Set: err = ctr = 0;
Set: thresh;

for i = maxLayer to 1 do
Update: thresh;
while thresh > err do

Update: err += (sortVec[ctr] → sol)2 · sortVec[ctr] → diag;
Set: sortVec[ctr] → layer = i;
Set: ++ctr;

end

end

for j = ctr to nWavelets do Set: sortVec[ctr] → layer = 0;

With the sorted tree at hand, we can set the layer of each wavelet according to Algorithm

4.3. The Adaptive Algorithm 81

8, such that the estimate (3.21) holds. The arrangement into layers ∆j is not only useful
for prediction and coarsening, but also for compression and assembling the system matrix.

4.3.3 Compress and Predict

After the tree is sorted via sort(v, ‖·‖q) according to equation (4.3), the next routine called
in Grow is the routine for prediction. The input v, which is to be sorted, is the solution
to the system of linear equations from the previous step. After the tree is sorted and the
arrangement into layers is completed, we will start the prediction routine. As prediction
and compression work very similarly, we will focus on both routines in this subsection with
the main focus on the compression.

In compress and predict, we need to be able to distinguish between wavelets that have
been in the tree before entering the growing loop and wavelets that are newly added. For
this reason, each wavelet has a �ag activity, which can take three di�erent values:

wavelet→ activity =


0, if the wavelet is inactive,

1, if the wavelet is activated permanently,

2, if the wavelet is activated for test purposes.

Every time we enter the growing routine after having solved the system of linear equations
in the main routine, each active wavelet in the tree has its activity set to 1. The routines
for prediction and compression are recursive functions, which check how a new wavelet
interacts with the other wavelets. Whenever we decide to add a new wavelet in the pre-
diction step, we assign the value 2. The wavelet can either keep this value, or it will be
inactivated again by coarsening (see Figure 4.9). After growing has been completed, we set
the value for all wavelets with activity 2 to activity 1, meaning that they are permanently
added.

Before we proceed with the implementation in detail, we shall recall some notation from
Subsection 2.5. We write ψλ with λ = (i, j,k, ι), for a wavelet ψΓi

j,k,ι of level j with
prototype ι on the i-th patch Γi, where the index k = (k1, k2) indicates the location of its
master element inside the patch. For convenience, we use again the abbreviation |λ| = j

for the level. With ĵ := j + log2(αj), the compression pattern has been identi�ed in [87].
The entries of Aj (see De�nition 25) are obtained from A by setting

(Aj)λ,λ′ =



0, if ||λ| − |λ′|| > ĵ,

0, if dist(supp(ψλ), supp(ψλ′)) > C ĵ1(j, j′),

0, if |λ| − |λ′| > ĵ
2 and 2|λ

′|dist(supp(ψλ), sing supp(ψλ′)) > C ĵ2(j, j′),

0, if |λ′| − |λ| > ĵ
2 and 2|λ|dist(sing supp(ψλ), supp(ψλ′)) > C ĵ2(j, j′),

〈Aψλ, ψλ′〉, else.
(4.4)

82 4. Implementation

The cut-o� parameters C ĵ1(j, j′) and C ĵ2(j, j′) are given by

C ĵ1(j, j′) :=a 2−min{j,j′} max

{
1, 2b(

ĵ
2
−|j−j′|)

}
,

C ĵ2(j, j′) :=a max

{
γ
|j−j′|− ĵ

2

2ĵ−2|j−j′|, 2−|j−j
′|
}
.

(4.5)

Here, a ≥ 1 and 1/4 ≤ b < 1/2 are suitable �xed parameters and (γn)n∈N is a polynomially
decreasing sequence such that

∑
n∈N γn < ∞. With dist(supp(ψλ), supp(ψλ′)) we denote

the distance between the two wavelets ψλ and ψλ′ . To be more precise, we mean the
three-dimensional distance between the convex hulls of the wavelets on the surface, which
is calculated by using the bounding boxes of the wavelets. Also, we recall the singular
support of a wavelet ψλ, denoted with sing supp(ψλ), which is the set of all points on which
the wavelet is not smooth. To compute this distance, we consider the distance between
the elements in their supports on the unit square, as the smaller wavelet is located inside
the larger wavelet.

The constant a ≥ 1, which appears in the cut-o� parameter, is the so-called bandwidth
parameter. It has an in�uence on the sparsity of the matrix, where a lager a results in a
more dense matrix. In our simulations, we choose a = 2.5, b = 0.5 for prediction, b = 0.75

for compression and γn = 1/(1 + n)2. In case we consider the Helmholtz equation, the
bandwidth parameter a becomes dependent on the wavenumber κ, see [65] for details. In
particular, we choose a = a · (1 + (κ/4)). The consequence is that the matrix gets even
more dense.

ψλ

ψλ′

ψλ′′
1 2

Figure 4.10: Illustration of a situation which is a�ected by the �rst compression (labelled
with 1) and by the second compression (labelled with 2).

The second condition in equation (4.4) amounts to the �rst compression, whereas the
third and forth conditions in equation (4.4) amount to the second compression. The
�rst compression applies to two wavelets with disjoint supports and makes use of the
distance between them. The second compression applies to two wavelets for which the �rst
compression cannot be applied. It can be used when they have a large level di�erence and
one wavelet lies in the smooth part of the other, see Figure 4.10 for an illustration.

4.3. The Adaptive Algorithm 83

A useful property of these compression rules is that we can draw conclusions for neglecting
matrix entries of children wavelets by knowing whether the �rst or second compression
applies to their parents. Suppose that we have given the wavelets ψλ and ψλ′ which have
a disjoint support. Furthermore, let λ̃ be in the set of 4-tuples (i, j + 1, k̃, ι̃) such that
ψλ̃ is a child of ψλ. Analogously, let λ̃′ be in the set of 4-tuples (i′, j′ + 1, k̃′, ι̃′) such
that ψλ̃′ is a child of ψλ′ . Let us stress two properties for the involved cut-o� parameter

C ĵ1(j, j′). First, the cut-o� parameter C ĵ1(j, j′) is symmetric with respect to the levels j and

j′, i.e. C ĵ1(j, j′) = C ĵ1(j′, j). Second, for the cut-o� parameters C ĵ1(j̃, j′) and C ĵ1(j, j̃′) of the

children ψλ̃ and ψλ̃′ (i.e. j̃ = j + 1 and j̃′ = j′ + 1) there holds that C ĵ1(j̃, j̃′) ≤ C ĵ1(j̃, j′),

C ĵ1(j, j̃′) ≤ C ĵ1(j, j′).

We can thus compute the distance between ψλ and ψλ′ and check if the �rst compression
applies. If the answer is yes, then we have the following lemma cf. [54]:

Lemma 30. If dist(supp(ψλ), supp(ψλ′)) > C ĵ1(j, j′), then there holds

dist(supp(ψλ̃), supp(ψλ′)) > C ĵ1(j̃, j′),

dist(supp(ψλ), supp(ψλ̃′)) > C ĵ1(j, j̃′),

dist(supp(ψλ̃), supp(ψλ̃′)) > C ĵ1(j̃, j̃′),

for all children ψλ̃ of ψλ and all children ψλ̃′ of ψλ′ .

This lemma holds true due to the monotonicity of the cut-o� parameters as explained
earlier and due to the fact that the support of a wavelet's child is always contained in
the parent's support, i.e. supp(ψλ̃) ⊂ supp(ψλ) for all children. Thus, whenever the �rst
compression applies for (Aj)λ,λ′ , we can neglect the matrix entries (Aj)λ̃,λ′ , (Aj)λ,λ̃′ and
(Aj)λ̃,λ̃′ as well.

A similar rule is valid for the second compression. Suppose that the two wavelets ψλ and
ψλ′ are located on the same patch i, i.e. λ = (i, j,k, ι) and λ′ = (i, j′,k′, ι′). Furthermore,
assume that the wavelet ψλ′ is located inside the wavelet ψλ, which especially implies j′ �
j. The cut-o� parameter, associated with the second compression, is again symmetric with
respect to the input levels, i.e. C ĵ2(j, j′) = C ĵ2(j′, j). In addition, there holds C ĵ2(j, j′+1) ≤
C ĵ2(j, j′). Thus, there holds the following lemma cf. [54]:

Lemma 31. If dist(supp(ψλ′), sing supp(ψλ)) > C ĵ2(j, j′) then there holds that

dist(supp(ψλ̃′), sing supp(ψλ)) > C ĵ2(j, j′ + 1),

for all children ψλ̃′ of ψλ′ .

Consequently, if the matrix entry (Aj)λ,λ′ can be neglected, then the entry (Aj)λ,λ̃′ can
also be neglected.

84 4. Implementation

From the above discussion, we easily see that the �rst compression and the second compres-
sion have a di�erent inheritance behaviour for wavelet children. Since our implementation
uses a recursive routine for the compression and the prediction, it is of advantage being
able to decide which of the two compression rules apply. The routine criterion, outlined
in Algorithm 9, checks whether a matrix entry can be neglected and, if yes, why. It has
return values in the set {0, 1, 2, 3, 4}. If the matrix entry has to be calculated, the routine
returns the value 0. If the matrix entry can be neglected, it returns a value between 1 and
4, helping to decide how the recursion has to proceed.

Algorithm 9: criterion

Input: Wavelets w1, w2;

Short tests:
if Both wavelets are inactive then return 1;
if The level di�erence is too large then return 2;
if The distance of the bounding boxes on the surface is too large then return 3;
if The level di�erence is too small then return 0;

If all above tests failed, we have to run through the support:
Set: l1 = w1 → level, l2 = w2 → level;
for i = 0 to suppSize[w1 → protoType][kind[w1]] do

for j = 0 to suppSize[w2 → protoType][kind[w2]] do

if w1 → patch = w2 → patch then

Calculate: distance d2 on unit square;

if d2 < C ĵ2(l1, l2) then return 0;
else

Calculate: d3 = dist3d(w1 → support[i], w2 → support[j]);

if d3 < C ĵ2(l1, l2) then return 0;
end

end

end

return 4;

We observe that there are four di�erent reasons why a matrix entry may be neglected. Al-
gorithm 9 �rst performs four short tests, already ruling out a large amount of wavelets, be-
fore having to check distances of the supporting elements or calculating three-dimensional
distances. Each return value has a di�erent meaning and a di�erent consequence:

0: The matrix entry has to be calculated and is set in the compression pattern.

1: Both wavelets are inactive and, thus, the children are not active either. The recursion
can stop for both wavelets.

2: The level di�erence is too large. The recursion can stop for the wavelet on the �ner
re�nement scale.

4.3. The Adaptive Algorithm 85

3: The �rst compression applies. Thus, the recursion can stop unconditionally.

4: The second compression applies. The recursion can stop for the wavelet on the �ne
re�nement scale.

The two routines compression and prediction are initialised for each scaling function. More-
over, we call these routines in a way such that we can guarantee that the level of the �rst
wavelet is always larger or equal to the level of the second wavelet. This condition makes
it easy to call the routine in a further recursion. After we started the prediction or the
compression, respectively, the routine recursively runs through the tree by calling itself for
the children until one of the stopping criteria is met. In Algorithm 10, we see the outline of
how the recursion works for prediction and compression. Prediction and compression are
based on a very similar idea for the recursion. The di�erence is the ability of the prediction
routine (highlighted in red) to further call the routine for wavelet re�nement if the children
are not yet part of the tree. The routine for compression will stop if the recursive call for
its children cannot be performed.

The recursive call of the prediction and compression routine returns the value which has
been computed inside the function criterion. Its result a�ects how the recursion has to
proceed. Thus, this result can directly be used inside the recursive call. Recall that an even
return value of the function criterion means that the matrix entry cannot be neglected,
in which case the recursion has to continue with the children of the wavelet. Whenever the
criterion returns the value zero, we will add the pair of wavelet indices to the compression
pattern, leaving us with a complete set of pairs, for which we need to determine the matrix
entry by quadrature. Before we discuss this, we will brie�y mention the structure, which
is used to represent the compressed matrix.

4.3.4 Structure Sparse

Since the system of linear equations emerging from our adaptive wavelet method is quasi-
sparse, we use the compressed row storage format to work with the system matrix. We
need thus the following ingredients, which are stored in the structure sparse:

double **value;

int **index, *rowNumber, *maxRowNumber, noRows, noColumns;

Therein, the variables noRows and noColumns denote the dimension of the system matrix.
In our case, these dimensions are the same, since we work always with a quadratic system
matrix. For each row of the matrix, there is an array associated with it. This array contains
the matrix entries, stored in value, and the index where it is found inside the according
row is stored in index. The variables rowNumber and maxRowNumber indicate how many
entries are stored in the row and how much memory is allocated, respectively. Figure 4.11
illustrates the data structure.

86 4. Implementation

Algorithm 10: Recursive call of prediction and compression.

Input: Wavelets w1, w2;
Output: c given by the output of the routine criterion;

c = criterion(w1, w2);
if c = 0 then

Add the wavelet indices to the compression pattern;
else

return c;
end

if (w1 → level = w2 → level) then

if (w1 6= w2) then

for i = 0 to noChildren do

r1[i] = compress/predict(w1 → child[i], w2);
end

for j = 0 to noChildren do

r2[j] = compress/predict(w2 → child[j], w1);
end

for i, j = 0 to noChildren do

if r1[i] and r2[j] are even then
compress/predict(w1 → child[i], w2 → child[j]);

end

end

else // w1 = w2

for i = 0 to noChildren do

r1[i] = compress/predict(w1 → child[i], w1);
end

for i, j = 0 to noChildren do

if r1[i] and r1[j] are even then
compress/predict(w1 → child[i], w1 → child[j]);

end

end

end

else // w1 → level != w2 → level

for i = 0 to noChildren do

compress/predict(w1 → child[i], w2);
end

end

4.3. The Adaptive Algorithm 87

noRows

maxRowNumber

rowNumber[0]

rowNumber[1]

rowNumber[2]

rowNumber[noRows]

?

?

?

?

......
...

value
index

value
index

value
index

value
index

Figure 4.11: Illustration of the sparse data structure.

The compression routine determines all indices, which have to be set in the array index.
During the compression process, the array value is not modi�ed. Whenever the criterion
routine returns zero, we set a new entry in the compression pattern for the according
wavelet index. New indices are then inserted into the array index with respect to their
modulus. After compression is complete, we have thus at hand all the required indices
in increasing order, as well as the rowNumber for each row of the matrix. The pattern is
�nally completed by allocating the array value, using the correct size rowNumber[i] for
all columns, as well as reallocating the array of indices by this length.

Figure 4.12: Original matrix (left) and compressed matrix (right).

Figure 4.12 shows us the system matrices emerged from the implementation. These par-
ticular matrices originate from our adaptive implementation of the single layer operator
on the Fichera vertex for 2946 unknowns. In the left picture, we see the full matrix, i.e.

88 4. Implementation

with all matrix entries calculated. In the right picture, we see the compressed matrix for
the compression parameter a = 2.

4.3.5 Apply

After the compression pattern has been identi�ed, the relevant matrix entries have to be
calculated. To this end, let us �rst introduce the theoretical aspects of calculating the
matrix entries by quadrature, followed by the details on the implementation. All matrix
entries marked by the compression will be calculated here, the indices of which have been
stored in the sparse structure in advance.

For the matrix assembly, we have to calculate integrals of the following form

Aλ,λ′ = 〈Aψλ′ , ψλ〉 =

∫
Γ

∫
Γ
k(x,y)ψλ′(y)ψλ(x) dσx dσy

with k(x,y) being the kernel function of the according integral operator. The index λ =

(i, j,k, ι) for a wavelet ψλ encodes again the patch i, the level j, the location k, and
the prototype ι. Transporting the patch on the surface to the unit square by the liftings
γi : �→ Γi gives

Aλ,λ′ =

∫
�

∫
�

ki,i′(s, t)ψλ′(γi′(t))ψλ(γi(s)) ds dt (4.6)

where ki,i′(s, t) := k(γi(s),γi′(t))µi(s)µi′(t) is the transported kernel which contains the
surface measures µi(s) and µi′(t) and s = γ−1

i (x), t = γ−1
i′ (y). Inserting the representation

(4.2) for any wavelet ψ�j,k,ι(s) on the unit square, leads to

Aλ,λ′ =
∑

(j,k)∈I

∑
(j′,k′)∈I′

∫
�j,k

∫
�j′,k′

ki,i′(s, t)φ
�
j′,k′(t)wk′,ι′ φ

�
j,k(s)wk,ι ds dt

=
∑

(j,k)∈I

∑
(j′,k′)∈I′

2j+j
′
wk′,ι′ wk,ι

∫
�j,k

∫
�j′,k′

ki,i′(s, t) ds dt.

(4.7)

The factor 2j+j
′
, which appears in the last equality, comes from our L2-normalised piece-

wise constant ansatz functions φ�j,k. Notice that we reduced the calculation of the matrix
coe�cient to the calculation of the sum of interactions between pairs of elements. With
equation (4.7) given, we will now discuss how to approximate the appearing integrals.

4.3.6 Gauss Quadrature and Error

For the approximation of the integrals appearing in equation (4.7), we use four-dimensional
tensor product Gauss-Legendre quadrature rules. For our purpose, we need to be able to

4.3. The Adaptive Algorithm 89

approximate the following four-dimensional integral

I(�j,k×�j′,k′)[f] = 2j+j
′
∫
�j,k

∫
�j′,k′

f(s, t) ds dt.

To that end, we use the four-dimensional (n, n′)-point tensor product Gauss-Legendre
quadrature rule

Q
(n,n′)
(�j,k×�j′,k′)

[f] =
n2∑
l=1

n′2∑
l′=1

ωl ωl′ f(ξl, ξl′). (4.8)

There holds the following estimate for the quadrature error, see [54]:

Lemma 32. The error which is produced by the four-dimensional Gauss-Legendre quadra-
ture rule is bounded by∣∣∣I(�j,k×�j′,k′)[f]−Q(n,n′)

(�j,k×�j′,k′)
[f]
∣∣∣

. 2−(j+j′)

2−2n(j+2)

(2n)!

 max
z∈�j,k

z′∈�j′,k′

∣∣∣∣∂2nf(z, z′)

∂z2n
1

∣∣∣∣+ max
z∈�j,k

z′∈�j′,k′

∣∣∣∣∂2nf(z, z′)

∂z2n
2

∣∣∣∣


+
2−2n′(j′+2)

(2n′)!

 max
z∈�j,k

z′∈�j′,k′

∣∣∣∣∣∂2n′f(z, z′)

∂z′1
2n′

∣∣∣∣∣+ max
z∈�j,k

z′∈�j′,k′

∣∣∣∣∣∂2n′f(z, z′)

∂z′2
2n′

∣∣∣∣∣

 .

The integrals in (4.7) feature the kernel function. Recalling the De�nition 24 for a kernel to
be analytically standard of order 2s gives us immediately a bound for the partial derivatives
of the kernel. We have the following lemma, see e.g. [59,84]:

Lemma 33. Let the di�eomorphisms γi : �→ Γi be analytical for all i = 1, . . . ,M . Then,
the kernels of the single layer operator (1.3), the double layer operator (1.7) and its adjoint
(1.10) are analytically standard of the corresponding operator order.

Now, we want to describe the error which arises from applying the four-dimensional tensor
product Gauss-Legendre quadrature rule to the four-dimensional integral featuring the
transported kernel:

I(�j,k×�j′,k′)[ki,i′(s, t)] = 2j+j
′
∫
�j,k

∫
�j′,k′

ki,i′(s, t) ds dt.

Combining Lemma 32 with estimate (3.16) gives the following result.

Proposition 34. Let the kernel k(x,y) be analytically standard of order 2s. Assume that
there holds dist(Γi,j,k,Γi′,j′,k′) > 0, where Γi,j,k = γi(�j,k) with �j,k the element of level

90 4. Implementation

j at location k = (k1, k2) of the unit square. Then, the quadrature error is bounded by∣∣∣I(�j,k×�j′,k′)[ki,i′(s, t)]−Q
(n,n′)
(�j,k×�j′,k′)

[ki,i′(s, t)]
∣∣∣

. 2−(j+j′)

[(
2−j

4r

)2n

dist(Γi,j,k,Γi′,j′,k′)
−(2+2s+2n)

+

(
2−j

′

4r

)2n′

dist(Γi,j,k,Γi′,j′,k′)
−(2+2s+2n′)

 .
(4.9)

When using the four-dimensioal tensor product Gauss-Legendre quadrature rule (4.8) to
approximate the integrals from (4.7), we obtain the approximation

Ãλ,λ′ =
∑

(j,k)∈I

∑
(j′,k′)∈I′

n2∑
l=1

n′2∑
l′=1

ωl ωl′ ki,i′(ξl, ξl′)wk′,ι′ wk,ι (4.10)

to Aλ,λ′ . Hence, the use of numerical quadrature introduces a perturbed matrix entries
Ãλ,λ′ . Despite of this error, we still want a scheme which guarantees optimal convergence
and complexity.

4.3.7 Choice of the Degree of Quadrature

We will now go into detail on the accuracy which has to be realised by the quadrature in
order to produce an over-all error which is consistent with the theory from Subsection 3.3.3.
Suppose that we have given an Hs-normalised wavelet basis. Recall the representation for
the approximation to the matrix-vector product, i.e.∥∥∥∥∥Av −

J∑
j=1

Ajv|∆j

∥∥∥∥∥
`2(J?)

. ε.

Here, the layers ∆j are formed by taking the di�erence of the two subsequent trees Jj−1\Jj ,
where JJ ⊂ JJ−1 ⊂ · · · ⊂ J0 = J and J is obtained by (3.22). For computing the
approximationwJ =

∑J
j=1Ajv|∆j to the in�nite matrix-vector productAv, we use tensor

product Gauss-Legendre quadrature rules. Hence, an error is introduced. To that end, let
us introduce the notation A

∆j

j = (Aj)λ∈J ,λ′∈∆j
and Ã

∆j

j for the approximation of A
∆j

j

by quadrature. Furthermore, w̃J =
∑J

j=1 Ã
∆j

j v|∆j shall denote the approximation to
wJ . This approximation shall ful�l the estimate

‖Av − w̃J ‖`2(J?) . ε. (4.11)

If the error, which is introduced by approximating the blocks (Ã
∆j

j)λ,λ′ , stays proportional
to 2−js̄ for all j ≤ J , then obviously estimate (4.11) holds, see e.g. [27, 28, 54]. The error

4.3. The Adaptive Algorithm 91

which is allowed per entry has been identi�ed in [28]:

Proposition 35. If the used quadrature realises the accuracy∣∣∣(A∆j

j)λ,λ′ − (Ã
∆j

j)λ,λ′
∣∣∣ ≤ 2−js̄√

2j min (2j ,#∆j/αj)
=: εj,j′ , (4.12)

then the error, which is introduced by the approximation of the blocks (Ã
∆j

j)λ,λ′ , stays
proportional to 2−js̄ for all j ≤ J .

For the computation of the matrix entries, we use the four-dimensional tensor product
Gauss-Legendre quadrature rule to approximate the element-element interactions. If we
want that the approximation realises the desired accuracy, the elements Γi,j,k and Γi′,j′,k′

have to ful�l the criterion

dist(Γi,j,k,Γi′,j′,k′) ≥ 2−min{j,j′}. (4.13)

Whenever this criterion is ful�lled, we use the estimate (4.9) to compute the degree
of quadrature, which is necessary in order to ensure the desired precision from (4.12).
Thereby, we need to take into account that we use an Hs-normalised wavelet basis. In
view of (4.9), by setting the degrees of quadrature n and n′ to

n =

⌈
z

log2(dist(Γi,j,k,Γi′,j′,k′)) + j + 2 + log2(r)

⌉
,

n′ =

⌈
z

log2(dist(Γi,j,k,Γi′,j′,k′)) + j′ + 2 + log2(r)

⌉
,

with

z =

⌈
−1

2

(
log2(εj,j′) + (j + j′)(1 + s) + (2 + 2s) log2(dist(Γi,j,k,Γi′,j′,k′))

)⌉
,

the desired precision is met. In our implementation, the choice r = 1 turns out to be
su�cient.

In the case that the criterion (4.13) is not ful�lled, the quadrature error does not tend
to zero when increasing n and n′. If Γi,j,k ∩ Γi′,j′,k′ 6= ∅, i.e. if either the elements are
the same or if they have a common edge or a common vertex, the integrand is singular.
In these cases, we use the so-called Du�y trick to transform the singular integrands into
non-singular ones. For the details, see e.g. [35,54,81].

4.3.8 Computation of the Matrix Entries

Certain elements, for which the criterion (4.13) does not hold, may have to be subdivided
further for calculating the desired integral by either using or computing the integrals with
respect to their children. One example would be the integration of a very coarse element

92 4. Implementation

Γi,j,k which is in the neighbourhood of a very small element Γi′,j′,k′ such that (4.13) is
not satis�ed. In such a case, we use the integrals which have been computed for the four
children of Γi,j,k to obtain the integral of the parent. On one hand, this means that the
integral for the parent does not have to be calculated from scratch, but more importantly,
these integrals can afterwards also be used for the calculation of other element-element
interactions featuring this element or one of its ancestors. This procedure we refer to
as recycling. Suppose the element Γi,j,k has four children Γi,j+1,kl where k0 = (k1, k2),
k1 = (k1 + 2−(j+1), k2), k2 = (k1 + 2−(j+1), k2 + 2−(j+1)) and k3 = (k1, k2 + 2−(j+1)), and
their element-element interactions v(i,j+1,kl),(i′,j′,k′) with the element Γi′,j′,k′ are known.
Then, the element-element interaction v(i,j,k),(i′,j′,k′) for the interaction of the parent Γi,j,k
with Γi′,j′,k′ can be obtained by

v(i,j,k),(i′,j′,k′) =
1

2

(
v(i,j+1,k0),(i′,j′,k′) + v(i,j+1,k1),(i′,j′,k′)+

v(i,j+1,k2),(i′,j′,k′) + v(i,j+1,k3),(i′,j′,k′)

)
.

(4.14)

There appear two challenges in the implementation. One challenge concerns the precision
and the other challenge concerns the memory requirement. First, the accuracies which
are needed for di�erent element-element interactions vary. Second, storing the element-
element interactions for recycling for all elements in the tree is not e�cient, since it would
need too much memory.

We solve both problems by using a queueing system for the involved elements. Recall
that, for compression, we used a sorted tree with respect to the wavelet layer. Between
compression and assembling, the sorting will certainly not change, since the indexing would
then no longer be consistent. We use the sorted wavelet list to determine the layer of an
element

e → layer = max{ w → layer for all w ∈ e → wavelet }.

As soon as we know the number of elements per layer, we arrange them in a queue, starting
with the largest layer. For elements with a larger layer, we need to assign a larger degree of
quadrature in order to guarantee that quadrature is performed within the desired accuracy.
As soon as the queue has been created, we start the assembly routine which iterates over
the elements in the queue. Since the routine for this iteration is long and requires a lot of
explanation, we present it in two pieces, part one of which forms Algorithm 11.

There shall be given the i-th element in the queue, which is contained in the support of
several di�erent wavelets (the number of wavelets which have this element in their support
is given in the variable e → waveNumber). First, the weights associated with this element
in each of those wavelets is stored in the array double *weights, which has been allocated
before. Second, in preparation for the part of the algorithm, which is outlined in Algorithm
12, a second array ansatzWave is allocated.

The do-while loop, which is outlined in Algorithm 12, consists of an iteration through all

4.3. The Adaptive Algorithm 93

Algorithm 11: First part of the iteration for computing element-element interactions.

Given: i-th element e of the queue, i.e. e = queue[i];
Allocate: ansatzWave = zeros(e → waveNumber);
Allocate: weights = zeros(e → waveNumber);
for All wavelets w in e → wavelet[j] do

Find k such that e → wavelet[j] → support[k] = e;
Set: weights[j] = waveWeights[kind(w)][w → protoType][k];

end

wavelets which interact with one of the wavelets having the element e in their support.
The �rst step is to �nd the minimal index ind for which we have to compute an element-
element interaction. With this index, we automatically have the correct wavelet at hand,
i.e. the wavelet testWave = sortVec[ind]. Next, we compute the interaction between the
element e and each element in the support of testWave. The value c which is obtained
by the routine interaction (this routine is explained in Algorithm 13 later), is then
multiplied with the weight associated with the element in the wavelet's support to obtain
the element-element interaction result.

Algorithm 12: Second part of the iteration for computing element-element interactions.

do

for j = 0 to e → waveNumber do

Find: min ind = A → index[e → wavelet[j] → index][ansatzWave[j]];
end

if ind = A → noRows then break;
Set: testWave = sortVec[ind];

Set: result = 0;
for j = 0 to testWave → supportSize do

c = interaction (e, testWave → support[j]);
Set: result += c· waveWeights[kind(testWave)][testWave → protoType][j];

end

for j = 0 to e → waveNumber do
if (A → index[e → wavelet[j] → index][ansatzWave[j]] = testWave)

then

Add result · weights[j] to correct position in the matrix;
Increase: ++ansatzWave[j];

end

end

while no break;

Free all variables which are not needed any more;

Finally, the desired element-element interaction, more precisely result · weights[j], is
added to the correct position in the matrix. In this step, we also increase the index of

94 4. Implementation

the ansatz wavelet ansatzWave, such that the next larger index ind will be found at the
beginning of the next iteration of this do-while loop. This procedure continues until the
minimal index, which can be found in A→ index, is the dimension of the matrix, in which
case the iteration is terminated. The program then proceeds to the next element in the
queue.

Algorithm 13: double = interaction(e1, e2)

Find and set: first, second (element with smaller/larger index);

if j = searchIntegral (first, second) 6= -1 then

return first → integrals.value[j];
end

if e1 → level = e2 → level then

Calc: dist(e1, e2);
Calc: [g1, g2] = degOfQuad (e1 → level, e2 → level, dist(e1, e2), prec);
Calc: case;

case 1: do result = normal;
case 2: do result = patch;
case 3: do result = edge;
case 4: do result = vertex;

else // e1 → level != e2 → level

Find and set: high, low (element with higher/lower level);

if dist(e1, e2) is large enough then
result = normal;

else

if low has no children then refineElement (low);

for i = 0 to 3 do
result += 0.5 · interaction (hi, low → child[i]);

end

end

end

Set: setIntegral(first, second, int);
return int;

Inside this procedure, the routine interaction is called, which is where the quadrature
is performed.

interaction has two elements e_1 and e_2 as input. Each element has assigned an index
that coincides with its position in the queue. In doing so, we create a hierarchy on the
elements, which we can use for the recycling of the integrals. As we always calculate the
integral between two elements, it is not trivial where to store the element-element interac-
tion and, for memory reasons, it is no valid option to just store it for both. We decided to
store the element-element interaction in the structure associated with the element having
the smaller index, i.e. the element which is more to the front in the queue. This is the

4.3. The Adaptive Algorithm 95

natural choice, considering the above assembly routine running through the queue.

As the routine interaction is called, it �rst checks whether the desired element-element
interaction has already been calculated in a previous call and has been stored. If this
is the case, the element-element interaction is returned and the routine terminates. For
what follows, we distinguish between two cases. Either the elements e1 and e2 have the
same level, in which case we decide which of the following four quadrature routines shall
be used to perform the quadrature, or the level di�ers. For elements with the same level,
we distinguish between four cases: normal, patch, edge and vertex. Each of these
routines is associated with how the two elements are aligned. If they share a vertex, an
edge, or if they are the same, the kernel contains the singularity and the Du�y trick,
see e.g. [35, 54, 81], must be applied in order to transform the singular integral into a
non-singular integral. In the latter case, i.e. if the level di�ers, the distance between the
elements may be large enough such that (4.13) applies and direct quadrature can be used.
If the distance is too small, i.e. (4.13) is violated, then the larger element is re�ned and
the routine interaction is called for all children in the further recursion. As soon as an
element-element interaction is computed, it will be stored with the �rst element by the
routine setIntegral.

After all element-element interactions are calculated and added to the system matrix for
one element in the queue, it will never appear again in the assembly routine. This is why
we can clear all variables in the according element associated with the integration routine.

By calling the routine for all elements in the order in which they are aligned in the queue, we
may automatically compute values for descendants with a higher accuracy than necessary.
Recall that the matrix-vector product can schematically be written as

Av ≈

∼2−Js̄
↓

∼2−(J−1)s̄

↓
∼1
↓[

AJ AJ−1 · · · A0

] 
v|∆J

v|∆J−1

...

v|∆0


←∼ ε 2Js̄

←∼ ε 2(J−1)s̄

←∼ ε

. (4.15)

For each j, we denote by Aj the compressed sub-matrices as described in Subsection
4.3.3, where j = {0, · · · , J} and J given by equation (3.22)) we denote the part of the
matrix which contains entries for the particular layer J . To be precise, in this block, all
non-negligible matrix entries

(Aj)λ,λ′ for λ ∈ J and λ′ ∈ ∆j

are found. The visualisation of the approximation for the matrix-vector product Av in
(4.15) is just the basic idea, but not what is actually done in practice. Inside the blocks
Aj , for j = 0, . . . , J , we can further consider the portion of each layer, leading to the blocks
Aj,j′ given by (

Aj,j′
)
λ,λ′

for λ = ∆j and λ
′ ∈ ∆j′

96 4. Implementation

with j, j′ ∈ {0, . . . , J}. This pattern is visualised in the upper left part of (4.16):
AJ,J AJ,J−1 · · · AJ,0

AJ−1,J AJ−1,J−1 · · · AJ−1,0

...
...

. . .
...

A0,J A0,J−1 · · · A0,0




AJ,J At
J−1,J · · · At

0,J

AJ−1,J AJ−1,J−1 · · · AJ−1,0

...
...

. . .
...

A0,J A0,J−1 · · · A0,0




AJ,J At
J−1,J · · · At

0,J

AJ−1,J AJ−1,J−1 · · · AJ−1,0

...
...

. . .
...

A0,J A0,J−1 · · · A0,0




AJ,J At
J−1,J · · · At

0,J

AJ−1,J At
J−1,J−1 · · · At

0,J−1
...

...
. . .

...

A0,J A0,J−1 · · · A0,0


(4.16)

The entries in the �rst block (Aj)λ,λ′ with λ ∈ J and λ′ ∈ ∆j have to be calculated
with the highest precision 2−Js̄, the entries in the second block (Aj)λ,λ′ with λ ∈ J and
λ′ ∈ ∆j−1 have to be calculated with the second highest precision 2−(J−1)s̄, and so on.
What is done in practice is the following. First, whenever an entry 〈Aψλ′ , ψλ〉 is relevant
according to the compression pattern (4.4), the entry 〈Aψλ, ψλ′〉 is relevant too, leading to
a symmetric compression pattern. Second, if entries (Aj)λ,λ′ are calculated with |λ′| ≥ |λ|,
demanding for high precision, we can cheaply obtain the mirrored entries simultaneously.
Thus, the entries above the diagonal are calculated with an even higher precision than
necessary, where the cost is at most doubled. This idea is illustrated in (4.16).

4.3.9 Rhs

With the routine apply at hand, we have an important ingredient for calculating the
residual. We need still one more ingredient, namely a routine for calculating the right-
hand side of the system of linear equations. As mentioned in Subsection 3.3.4, this will be
done in the routine fJ = Rhs [ε]. For a desired target accuracy ε, it returns the �nitely
supported approximation fJ to the right-hand side f such that

‖fJ − f‖`2(J?) ≤ ε.

This is to be calculated in linear complexity O(N), with N denoting the degrees of freedom.
In order to realize this, we need a-priori information on the function f .

For the evaluation of the right-hand side f : R3 → R, we have to approximate the scalar
product of the according function with a wavelet. Similar (but easier) as for the matrix
assembly, we split the wavelet into its �xed set of elements in its support. Thus, we need to
calculate a sum of integrals for each element. We use again the element-wise representation
(4.2) to get

fλ = 〈f, ψλ〉 =

∫
�

fi(s)ψλ(γi(s)) ds =
∑

(j,k)∈I

2j ωk,ι

∫
�j,k

fi(s) ds.

4.3. The Adaptive Algorithm 97

Here, we abbreviated fi(s) := f(γi(s)), where we used the usual transformation to the unit
square again. Analogously to Subsection 4.3.6, where we used a four-dimensional tensor
product Gauss-Legendre quadrature, we use a two-dimensional n-point tensor product
Gauss-Legendre quadrature

Q
(n)
(�j,k)[f] :=

n2∑
l=1

ωl f(ξl),

to approximate a two-dimensional integral of the form I(�j,k)[f] := 2j
∫
�j,k

f(s)ds. With
the help of a suitable quadrature rule, we compute the approximation to the right-hand
side according to

f̃λ =
∑

(j,k)∈I

n2∑
l=1

ωlfi(ξl)wk,ι. (4.17)

The implementation in this case is not as tricky as in the assembly routine. For each
element, we store the approximated integral of the function f in the variable double load.
This variable is not set from the beginning whenever an element is created, but it is
computed several times during the implementation and may also change its value. As the
adaptive algorithm advances, we increase the precision to compute these integrals. Thus,
in the growing routine, we call the routine updateLoad to replace the values by a more
accurate approximation, before we call the routine rhs for computing the right-hand side.
The routine updateLoad is outlined in Algorithm 14 below.

Algorithm 14: updateLoad(e, ε)

Input: Element e, accuracy ε

if e → child[0] 6= NULL then

for all children do
updateLoad(e → child[i], ε);

end

e → load = 0.5 * (e → child[0] → load + e → child[1] → load +

e → load = 0.5 *(e → child[2] → load + e → child[3] → load);

else

makeQuadrature(e, ε);
end

This function is called recursively for each element which is currently in the tree. The
routine makeQuadrature, that performs the calculation in (4.17), is called only for the
leafs of the tree. All remaining integrals are computed by combining the four integrals of
the element's children. After each element has this integral stored, we can call the routine
rhs. Therein, we combine these integrals with the correct wavelet weights, in order to
calculate the approximation to the right-hand side for each wavelet.

98 4. Implementation

4.3.10 Coarse

The last subsection in this chapter is dedicated to the coarsening routine. In the routine
Grow, we are expanding the (tree structured) index set J from the previous iteration to
the larger set J ⊂ J ′ in such a way that the error is reduced by a constant factor. To
control the complexity, we have to coarsen the index set J ′ such that ‖rJ ′′‖ ≤ θ‖rJ ′‖
for a θ ∈ (0, 1) which is small enough. Note that J ′′ is still a re�ned version of J , i.e.
J ⊂ J ′′ ⊂ J ′.

Suppose that we have a sorted wavelet tree at hand. Which wavelets we are going to
deactivate in the coarsening routine is then decided by thresholding. As mentioned earlier,
there are di�erent norms we use for the sorting. Before coarsening the residual, we used
the routines apply and rhs to compute it. As soon as this step has been performed, we
will sort the residual vector with respect to the norm ‖ · ‖−q from equation (4.3) by using
the routine outlined in Subsection 4.3.2.

For calling the coarsening routine, we will additionally compute two quantities outerNorm
and innerNorm. To obtain them, we will distinguish between permanently added wavelets,
having their activity set to 1, and wavelets currently in a test-phase, with activity 2. The
inner norm is computed by summing up all coe�cients of wavelets with activity 1 in (4.3).
The outer norm consists of the coe�cients of wavelets with activity 2. The threshold
parameter, which is �nally included in the routine, is obtained by multiplying the outer
norm with the threshold constant. The routine for coarsening is outlined in Algorithm 15
below.

Algorithm 15: void coarseRes(thresh · outerNorm)

Set: err = i = 0
Set: eps = thresh · outerNorm
while eps · eps + err < Norm do

Add: err += (wavelet[i] → res)2 / wavelet[i] → diag[i];
Set: ++i;

end

for j = i to end do
Set: wavelet[j] → activity = 0;

end

Remark 36. One additional issue, which could be discussed, is the deactivation of the
wavelet. It would be a possibility to remove the unnecessary wavelets from the tree instead
of setting its activity to 0, having the advantage that no unnecessary memory is occupied.
However, if the wavelet is to be added again in the next prediction step, it has to be created
again.

With this remark, we close this chapter on the implementation of the adaptive wavelet
method and proceed to Chapter 5, where we are going to present various numerical results.

5
Numerical Experiments

In this chapter, we will present our numerical results for the adaptive wavelet method,
which has been discussed in theory in the previous Chapters 3 and 4. We have developed
an adaptive code for solving the interior Laplace equation by using the single layer operator
or by using the double layer operator. Also, we have developed an adaptive code for
solving the exterior Helmholtz equation for wavenumbers κ ≥ 1 by the Brakhage-Werner
formulation. Furthermore, we present results for solving the scattering problem involving a
sound-soft scatterer. All developed codes work for various geometries and right-hand sides.
The subsequent experiments have all been performed on a single processor of a computing
server with 24 Intel(R) Xeon(R) E5-2643 CPUs with a clock rate of 3.40GHz and a main
memory of 256GB. For the visualisation of the results, the program Paraview has been
used.

This chapter is structured as follows: The �rst section will be a parameter study. Therein,
we focus on one representative example and investigate how the change of certain parame-
ters in�uences the estimated residual or other quantities of interest like the re�nement and
coarsening behaviour of the code. Based on these results, we will �x one setting which is
then used for all following experiments. In the second section, we present our �rst results
for solving the interior Laplace problem by using an indirect formulation which involves
the single layer potential, leading to a Fredholm integral equation of the �rst kind for the
single layer operator. We will consider various geometries as well as di�erent smooth right-
hand sides. The third section is concerned with presenting some results for the Laplace
equation, which has been solved by an indirect formulation which involves the double layer
potential, leading to a Fredholm integral equation of the second kind involving the double
layer operator. In the course of our experiments we will notice, in contrast to the bound-
ary integral equation for the single layer operator, that adaptivity does not pay o� for

99

100 5. Numerical Experiments

smooth right-hand sides. This is still the case, even though we also consider geometries
featuring edges and vertices, see [24]. Motivated by this, we subsequently choose a singu-
lar right-hand side of the form f(r) = 1/rα, where the expected rate of convergence for
adaptive and uniform re�nement depends on the parameter α. For uniform re�nement,
we expect to obtain only half the rate as for an adaptive approach, provided that α is
su�ciently small. We will choose various α and observe the predicted behaviour, which
is in accordance with the theory proposed in [24]. The fourth section is concerned with
solving the exterior Helmholtz equation for di�erent wavenumbers κ ≥ 1. The observation
that adaptivity is not necessary for solving the Laplace equation by means of the double
layer potential if a smooth right-hand side is chosen, can also be made for the exterior
Helmholtz equation. This behaviour motivates the choice of discontinuous Dirichlet data
for the �rst numerical example in Section 5.4. In this experiment, we consider only the
case of a �xed wavenumber κ = 1. In the forthcoming numerical examples, we consider
then scattering problems for various κ ≥ 1 at a drilled cube. Now, since we use the direct
formulation (1.26), adaptivity pays o�.

5.1 Parameter Study

Before we present our numerical results, we will �rst study some parameters chosen for
our experiments. In particular, this section is concerned with the increase of the accuracy
during Grow and before Solve.

During one loop of grow, we increase the accuracy right before the matrix compression
(see Figure 4.9). This means that we shift each layer j by a �xed constant l:


AJ,J AJ,J−1 · · · AJ,0

AJ−1,J AJ−1,J−1 · · · AJ−1,0

...
...

. . .
...

A0,J A0,J−1 · · · A0,0




AJ+l,J+l AJ+l,J−1+l · · · AJ+l,l

AJ−1+l,J+l AJ−1+l,J−1+l · · · AJ−1+l,l

...
...

. . .
...

Al,J+l Al,J−1+l · · · Al,l

 .

Obviously, if we choose a higher accuracy for the assembling inside the growing routine,
we end up with a more accurate version of the matrix, which results in a more accurate
computation of the residual. Keeping in mind that quadrature is the most time consuming
part of the implementation (and accuracy controlling a crucial part of the chosen degree
of quadrature), we still do not want to prescribe a higher accuracy than necessary.

After the inner loop of growing the wavelet tree is complete, we will solve the system of
linear equations for the newly enlarged index set (see Figure 4.9). As already mentioned,
we are using an iterative solver, namely cg [62] if the matrix is symmetric and positive
de�nit and gmres [80] if not. Thus, for Solve, we need to assemble the matrix once
more. Here, we can decide to increase the accuracy again, which then results in a more
accurate version of the solution. For both mentioned situations, the accuracy used for

5.1. Parameter Study 101

matrix assembly has to be chosen high enough in order to ensure a su�ciently accurate
residual or solution, such that the convergence of the estimated residual and the desired
approximation error of the density is guaranteed.

We have two options: The accuracy may be chosen tailor-made, i.e. di�erently, for solving
and for calculating the residual, as the requirements on accuracy may vary. However, since
matrix assembly is the most time consuming part of the implementation, it might be more
e�ective to choose a higher accuracy for growing only and use a subset of this matrix for
solving the system of linear equation associated with the coarsened index set. Both of
these options have pros and cons.

1. Choosing the accuracy di�erently for solving and calculating the residual gives us
more control on the individuality of the situation. We can choose di�erent accuracies
that are especially adapted for either solving the system of linear equations or for
calculating the residual. This means that we do not have to choose the accuracy
unnecessarily high for growing in order to ensure a su�ciently accurate matrix for
solving or vice versa. However, in this case, we need to assemble the matrix at least
twice, which might be unnecessarily time consuming.

2. If we choose the accuracy in the growing routine only and solve the system of linear
equations only on a subset of the underlying matrix, we are not able to control the
accuracy independently for the di�erent situations. It is possible that we calculate
the residual with a too high accuracy (or just the right one) but solve with insu�cient
accuracy. The opposite could be the case, too: In order for the complete scheme to
converge, we may have to choose a ridiculously high accuracy in the growing routine,
which would not be necessary for growing alone, since we use the same matrix for
solving where we need a higher accuracy. This will get especially expensive, if more
than one growing step is needed before we proceed to solving the system of linear
equations. Nevertheless, if the growing step is performed once, we only need to
assemble the matrix once and we save a lot of time. We do not expect to gain a factor
two in computation time, since the matrix which we have to assemble for solving will
be smaller than the matrix for calculating the residual, due to the coarsening after
grow.

This ambivalence led to the following parameter study. Since it is a priori not clear which
option is the better one, meaning which of the aforementioned statements is predominant,
we perform some experiments to �nd that out.

As a representative situation, we consider the exterior Helmholtz problem with Dirichlet
boundary conditions

∆u+ κ2u = 0 in Ωc := R \ Ω̄,

u = f on Γ,

∂u/∂r − iκu = O(1/r2) for r = ‖x‖ → ∞,
(5.1)

102 5. Numerical Experiments

for the Fichera vertex (Ω = (0, 1)3 \ (0, 0.5]3). As Dirichlet data in (5.1), we choose the
restriction f = u|Γ of the complex function u(x) = <(x) + i=(x) with

<(x) =
cos(κ‖x− a‖)
‖x− a‖

, =(x) =
sin(κ‖x− a‖)
‖x− a‖

. (5.2)

The wavenumber κ is set to κ = 1 and the parameter a is set to a = (0.75, 0.75, 0.75),
which is located inside Fichera's vertex. As one readily veri�es, the function u = u|Ωc
solves the Helmholtz problem (5.1).

We tested di�erent combinations of accuracy shifts l1 inside the growing routine and l2 be-
fore solving the system of linear equations. We supervised the convergence of the following
two quantities. The �rst quantity is the estimated norm of the residual res in the `2-norm,
denoted by ‖res‖. The second quantity is the maximal error of the potential, denoted by
‖u − uNdof

‖∞. In view of the de�nition for the evaluation of the potential from Chapter
1, we have the estimate

|(u− uNdof
)(xi)| =

∣∣∣∣∫
Γ
k(xi,y) (ρ− ρNdof

)(y) dσy

∣∣∣∣
≤ ‖k(xi, ·)‖H−s(Γ) ‖ρ− ρNdof

‖Hs(Γ)

(5.3)

for each point xi ∈ Ωc. Hereby, ρ denotes the exact solution of the associated boundary
integral equation and ρNdof

denotes the numerical solution. Taking the maximum norm is
then a natural choice. The potential is evaluated after the involved tree has been coarsened
and the involved system of linear equations has been solved numerically. The norm of the
estimated residual is computed on the enlarged index set after the prediction inside Grow.
By Ndof we denote the degrees of freedom after coarsening the tree and by Nres we denote
the degrees of freedom after prediction. The vector u = [u(xi)]i hereby stands for the
evaluation of the function u in several points xi inside the domain Ω for interior problems,
or inside the domain Ωc for exterior problems. By the vector uNdof

we denote the evaluation
of the approximate potential in all these points xi. As we now consider an exterior problem,
this potential evaluation afterwards is performed in several points xi which are located on
a sphere surrounding our geometry.

For the following discussion, we will use the pair (l1, l2) to indicate the accuracy shift
l1 chosen in the growing routine and the shift l2 chosen for solving the system. We �x
the over-all shift by l1 + l2 = 5 and perform our computations for di�erent combinations
of l1 and l2, i.e. (1, 4), (2, 3), (3, 2) (4, 1) and (5, 0). Notice that we deliberately leave
out the combination (0, 5). The bandwidth parameter a is �x and set to a = 2.5. The
coarsening constant has to chosen small enough in order to ensure optimal complexity,
see [46]. Nonetheless, �rst experiments showed that the complexity seems to be basically
the same if the computations are performed without coarsening. For this reason, we choose
the rather large coarsening constant θ = 0.9 for all the subsequent numerical experiments.
These setting are used thoughout this chapter unless otherwise stated.

5.1. Parameter Study 103

102 103 104 105 106
10−3

10−2

10−1

100

(5, 0)

(4, 1)

(3, 2)

(2, 3)

(1, 4)

N−0.5
dof

102 103 104 105 106

10−5

10−4

10−3

10−2

10−1
(5, 0)

(4, 1)

(3, 2)

(2, 3)

(1, 4)

N−0.5
dof

Figure 5.1: Norm of the residual (left) and potential error (right).

The right plot in Figure 5.1 displays the convergence of the maximal potential error with
respect to the degrees of freedom together with the reference lineN−0.5

dof . We observe that all
of the chosen accuracies l2 ∈ 0, . . . , 4 are high enough to guarantee a smooth convergence.
Next, consider the left plot in Figure 5.1, which shows the estimated residual versus the
degrees of freedom. Therein, we notice that the combinations (1, 4), (2, 3), and (3, 2) cause
some oscillations in the convergence. In contrast, the combinations (4, 1) and (5, 0) give a
stable convergence of both, the residual and the potential.

10−1 100 101 102 103 104 105

10−2

10−1

100

(5, 0)

(4, 1)

(3, 2)

(2, 3)

(1, 4)

Figure 5.2: Norm of the residual versus computation time.

There remains the question on which of the two combinations (4, 1) and (5, 0) is better. To
this end, let us consider the computation time as well. In Figure 5.2, one �nds the compu-
tation time versus the the norm of the residual for all combinations under consideration.
We observe that in the beginning for few degrees of freedom there is no big di�erence.
Subsequently, the unstable combinations (1, 4), (2, 3) and (3, 2) start to oscillate. This
behaviour can be explained by not only looking at the degrees of freedom after coarsening,
but also at the degrees of freedom used in the prediction step, which are not taken into

104 5. Numerical Experiments

consideration in Figure 5.1. For the two combinations (4, 1) and (5, 0) we observe a similar
over-all computation time, which is why we �nally choose the combination (5, 0), as this
combination is more accurate one.

5.2 Laplace Problems Solved by the Single Layer Operator

Let us now consider the Laplacian inside a given domain Ω with Dirichlet boundary con-
ditions:

∆u = 0 in Ω,

u = f on Γ.
(5.4)

After this problem is converted into a boundary integral equation of the form (1.3), see
Chapter 1, we use our adaptive wavelet method to compute the unknown density ρ on the
boundary Γ. With its help we evaluate the potential, given by equation (1.5), in several
points inside of the domain.

For the following experiments, we choose in (5.4) di�erent domains Ω as well as various
right-hand sides f on Γ. For the �rst and second example, we use f = 1 and we perform the
computations on Fichera's vertex as well as a crankshaft geometry. In a third example, we
choose the restriction f = u|Γ of the polynomial u(x) = 4x2

1−3x2
2−x2

3 with x = (x1, x2, x3)

as Dirichlet data. This experiment is performed on a gearwheel geometry. All these
surfaces are represented by patches as introduced in Section 2.5. The three geometries
under consideration are illustrated in Figure 5.3.

Figure 5.3: Fichera vertex (left), crankshaft (middle) and gearwheel (right).

In the rest of this thesis, whenever we present our numerical results, we use a table to
display the numbers. Thereby, the outline of the tables is always the same. The numbers
given in the �rst and second column (in this order) are the degrees of freedom Nres after
prediction and the the degrees of freedom Ndof after coarsening. The third column contains
the norm of the estimated residual ‖res‖ and the fourth column contains the error of the
potential, which is again denoted by ‖u − uNdof

‖∞. With u = [u(xi)]i we denote again
the exact evaluation of the function u and with uNdof

the approximate evaluation of the
potential. This time, we evaluate the approximate potential in multiple points xi inside
the domain Ω. The �fth column (nnz (%)) shows us the percentage of non-zero entries in

5.2. Laplace Problems Solved by the Single Layer Operator 105

the system matrix after compression. Finally, the last column contains the time in seconds
used for one step of the code, that is the time for growing the tree and estimating the
residual until the terminating condition is met, together with assembling and solving the
system, but without evaluating the potential.

The �rst row of such a table, however, will contain only partial information and has to
be interpreted as follows. We initialise our computation for the scaling functions on each
patch. For these ansatz functions, we assemble the system matrix and the right-hand side
and subsequently solve the system of linear equations in order to have a �rst approximation
to the desired density. At this point, we cannot yet compute the residual, which can be
done only when we have found the prediction set. Also, we do not list the time of this
initialisation step, since it takes place before the growing loop. However, we can already
use the �rst approximation to the density to evaluate the potential and to compute its
maximal error. For all following rows, we have at hand the approximate density from the
previous step. This density is then used for prediction, after which there are Nres degrees of
freedom. On this enlarged set of basis functions, we estimate the residual. After coarsening
the residual, there remain Ndof degrees of freedom for which the system of linear equations
is solved, providing a new solution for the next step. For the same number of degrees of
freedom, we �nally evaluate the potential to compute the maximal potential error.

5.2.1 Fichera's Vertex

Let us present the results for the interior Dirichlet problem, solved on the Fichera vertex
for the chosen constant right-hand side. As mentioned before, we initialise the computation
by assembling and solving the system of linear equations for the 12 patches of the Fichera
vertex and the subsequent potential evaluation.

Nres Ndof ‖res‖ ‖u− uNdof
‖∞ nnz (%) time (s)

� 12 � 6.09·10−2 100 �

48 38 6.07·10−2 3.58·10−2 100 0.11

726 231 1.01·10−1 9.60·10−3 77.7 1.20

1788 825 4.64·10−2 1.93·10−3 30.5 6.16

5575 2005 2.64·10−2 3.27·10−4 10.4 12

14242 4708 1.60·10−2 1.95·10−4 4.40 48

39533 11311 1.06·10−2 1.71·10−4 1.63 158

101829 27497 6.38·10−3 5.41·10−5 0.62 572

244680 66815 3.78·10−3 2.90·10−5 0.26 1721

584032 150919 2.43·10−3 7.32·10−6 0.12 5034

1302958 353044 1.46·10−3 5.03·10−6 0.05 17364

2973431 779195 9.31·10−4 2.04·10−6 0.02 63883

6577954 1663259 5.94·10−4 8.83·10−7 0.01 234206

Table 5.1: Results for Fichera's vertex with the constant right-hand side.

106 5. Numerical Experiments

102 103 104 105 106

10−6

10−5

10−4

10−3

10−2

10−1

100

1
−0.57

1

−0.99

Residual
Potential

Figure 5.4: Residual and potential error for the single layer operator and Fichera's vertex.

Figure 5.5: Solution and re�nement on Fichera's vertex with constant right-hand side.

To ease the interpretation of the results, we shall represent our data by a graph. In Figure
5.4 we �nd, in a log-log plot, the number of degrees of freedom after coarsening Ndof versus
the residual ‖res‖ and the potential error ‖u − uNdof

‖∞, respectively. Notice that we
omitted the data in the �rst line of the table. We observe that the rate of convergence for
the residual is N−0.5

dof , even slightly better. The highest possible rate that can be achieved
is N−0.75

dof . However, since we have a geometry with edges and corners, this rate is not
met due to considering only an isotropic setting since the anisotropic singularities which
appear at the edges cannot be resolved, see [74]. The convergence rate for the potential is
considerably better, namely approximately N−1

dof , caused by super-convergence e�ects of the
potential evaluation, see equation (5.3), as we are dealing with a linear output functional.
From having a look back to the Table 5.1, we can clearly see that the percentage of entries
in the system matrix decreases drastically and only very few entries remain.

To conclude the presentation of the results for Fichera's vertex, we draw the �nal density ρ

5.2. Laplace Problems Solved by the Single Layer Operator 107

which has been computed in the left plot of Figure 5.5. Furthermore, we want to illustrate
the behaviour of the adaptive code by drawing the �nal re�nement. It is found in the right
plot of Figure 5.5. Since we would not be able to see the re�nement by drawing the grid
which results from collating all elements with active wavelets, this picture was produced
in the following way: After the code has terminated, we assign to each active wavelet
the value 2j , with j being the level of the wavelet. As a consequence, smaller wavelets
get assigned a larger value. The picture above is thus to be interpreted as: First, each
representative element of an active wavelet is visualised by plotting its four vertices. This
means that more wavelets are located in areas with more points, which results in a darker
colouring. Second, by looking at the geometry's edges more closely, one notices that at
their center the colour gets lighter again. This change in colour is used to encode even �ner
elements in this area. As we consider the left plot of Figure 5.5, we observe that the most
wavelets are added along the edges and at the vertices of the geometry. This behaviour is
to be expected, as the density ρ features, for a smooth right-hand side, the singularities
of the interior and exterior problem for an indirect formulation. Another behaviour to be
noticed at this point is that the edges towards the reentrant corner are not re�ned. This
is unexpected in the �rst moment, but is in accordance with the left plot of Figure 5.5,
where we notice that the solution does not feature singularities at any of these edges.

5.2.2 Crankshaft

As a second example, we consider the interior Dirichlet problem for the Laplace equation
(5.4) on a crankshaft geometry. We choose the same constant right-hand side f = 1 as for
Fichera's vertex. Table 5.2 contains the results obtained by the adaptive code, the outline
of which is in accordance with the previous example. The computation starts again at
the patch level by assembling and solving the system of linear equations, the solution to
which is then used to evaluate the potential in several points which are located inside the
crankshaft. The surface of this geometry is represented by 142 patches.

Nres Ndof ‖res‖ ‖u− uNdof
‖∞ nnz (%) time (s)

� 142 � 1.52·10−1 100 �

568 460 2.40·10−1 1.82·10−2 92.3 2.64

8708 2787 9.62·10−2 1.67·10−2 20.0 43

18244 9615 5.51·10−2 1.10·10−2 7.72 92

45875 22158 4.14·10−2 3.40·10−3 4.14 412

116656 45898 1.63·10−2 6.25·10−4 1.44 1931

285240 101526 9.99·10−3 3.44·10−4 0.51 3822

648562 226703 5.92·10−3 1.17·10−4 0.23 11482

1390562 489995 3.60·10−3 1.19·10−4 0.10 34874

3166884 1084467 2.25·10−3 1.20·10−4 0.04 106941

Table 5.2: Results for the crankshaft with the constant right-hand side.

108 5. Numerical Experiments

For visualisation, we plot again the convergence curves for both, the potential error and
the norm of the residual, in logarithmic scale, see Figure 5.6. Observe that the rate of
convergence for the norm of the residual is this time slightly better than for the previous
example. Still, it does not reach the maximal order N−0.75

dof either, as the crankshaft
geometry also features edges and corners. The error of the potential is also slightly better
than the rate of convergence for the norm of the residual, however, the di�erence between
the two rates of convergence is smaller than in the previous example.

102 103 104 105 106

10−4

10−3

10−2

10−1

100

1

−0.65

1

−0.84

Residual
Potential

Figure 5.6: Residual and potential error for the single layer operator and the crankshaft.

Figure 5.7: Solution (left) and re�nement (right) on the crankshaft with constant right-
hand side.

5.2. Laplace Problems Solved by the Single Layer Operator 109

Finally, to conclude the results on the crankshaft, we visualise again the density ρ and
the re�nement which is produced by the adaptive code by assigning the factor 2j for each
active wavelet. The left plot in Figure 5.7 shows the density and the right plot in Figure
5.7 the re�nement. We observe that the adaptive code re�nes again towards the edges of
the geometry.

5.2.3 Gearwheel

For the last experiment of the current section, we consider the geometry of a gearwheel
with 18 teeth. This geometry is more demanding than the crankshaft and is represented by
502 patches. Recall that we choose a di�erent right-hand side, i.e. the restriction f = u|Γ
of the polynomial u(x) = 4x2

1 − 3x2
2 − x2

3. The analytical solution of the problem is
then given by the polynomial u(x). The gearwheel is much more complex than Fichera's
vertex or the crankshaft, which is why it requires a di�erent set of parameters than those
suggested in Section 5.1. We choose here the compression parameter a = 5 and the layer
shift (l1, l2) = (5, 5).

Nres Ndof ‖res‖ ‖u− uNdof
‖∞ nnz (%) time (s)

� 504 � 2.54 100 �

2016 1716 6.35 8.98·10−1 98.5 17

5084 4191 6.72 1.59·10−1 55.2 38

6290 5605 3.04 7.82·10−2 47.2 51

16384 10640 2.68 2.54·10−2 28.4 151

29340 15999 1.92 1.75·10−2 19.6 271

35415 20896 1.14 1.24·10−2 17.0 385

41162 33010 3.72·10−1 7.13·10−3 13.2 721

136946 57152 8.54·10−1 2.29·10−3 10.1 3812

144262 101764 2.37·10−1 3.02·10−3 4.47 3554

319863 142179 4.31·10−1 1.69·10−3 3.78 10234

366229 254617 1.37·10−1 1.32·10−3 1.73 11844

929944 336611 2.86·10−1 4.25·10−4 1.83 45941

786306 597850 4.73·10−2 3.85·10−4 0.75 35142

2775537 811936 1.93·10−1 6.85·10−5 0.39 228111

1808460 1320772 2.97·10−2 6.92·10−5 0.16 104015

Table 5.3: Results for the gearwheel with the polynomial right-hand side.

In Table 5.3, we �nd the data produced by the adaptive code for the gearwheel geometry,
where the �rst line has again to be interpreted specially. For this example, we observe
a rate for the norm of the residual which seems to be approximately the optimal rate
N−0.75

dof , although there are edges and vertices in the geometry. The error of the potential
is even better and behaves again much better compared with the norm of the residual. We

110 5. Numerical Experiments

visualise again the density ρ on the gearwheel, which is found in the left plot of Figure 5.9
as well as the re�nement behaviour of the adaptive code in the right plot of Figure 5.9.
Notice that many wavelets are added on the the edges and the vertices again.

103 104 105 106
10−5

10−4

10−3

10−2

10−1

100

101 1
−0.77

1

−1.31

Residual
Potential

Figure 5.8: Residual and potential error for the single layer operator and the gearwheel.

Figure 5.9: Solution and re�nement on the gearwheel with polynomial right-hand side.

This example concludes the section for the solution of the Laplace equation by the means
of the single layer potential. We see that the developed adaptive code works nicely for
solving the Laplace equation, independently of the complexity of the domain. The number
of non-zero entries in the matrix becomes indeed very small as the number of degrees of
freedom increases, being one reason for being able to perform such computations in the �rst

5.3. Laplace Problems Solved by the Double Layer Operator 111

place. Still, the computation time does not yet scale perfectly linearly in with respect to
Ndof. We observe that, for an increasing number of degrees of freedom, the administration
the adaptive structures starts playing a role as well and there is still place for improvement.
However, these structures are another reason that we are even able to perform adaptive
computations on such a scale. Observe that the code is able to compute the adaptive
solution up to more than one million wavelets still in reasonable time. There is no way
to achieve a re�nement of this degree in a uniform setting. Aside from the computability,
there are situations for non-smooth right-hand sides, where uniform re�nement would only
give half the rate of adaptive re�nement. We will encounter such examples in the following
section.

5.3 Laplace Problems Solved by the Double Layer Operator

In this section, we will present our results for the interior Laplace equation solved by
the double layer operator, de�ned by (1.7), for the unknown density ρ. For our �rst
experiment, we consider again Fichera's vertex and the a smooth right-hand side f = u|Γ
with u(x) = 4x2

1 − 3x2
2 − x2

3. We choose our parameters a = 2.5 and the layer shift
(l1, l2) = (5, 0) in accordance with our parameter study.

Nres Ndof ‖res‖ ‖u− uNdof
‖∞ nnz (%) time (s)

� 12 � 100 �

48 37 5.93 ·10−1 4.21 ·10−1 100 0.14

681 298 3.73 ·10−1 3.43 ·10−2 74.0 2.87

2010 1234 1.33 ·10−1 9.27 ·10−3 32.1 28

18494 7821 6.69 ·10−2 2.96 ·10−3 4.68 484

101291 47477 2.84 ·10−2 1.42 ·10−3 0.85 3786

400552 215932 1.17 ·10−2 1.80 ·10−3 0.22 23635

1204802 717800 4.99 ·10−3 1.79 ·10−3 0.07 65891

Table 5.4: Results for Fichera's vertex and a polynomial right-hand side.

In Table 5.4, we �nd the output of the adaptive code, the outline of which is the same as
for the previous tables. The convergence lines for the norm of the residual and the maximal
error of the potential are drawn into the separate Figure 5.10. The highest possible rate of
convergence for the norm of the residual attainable in the present setting is N−0.5

dof . Indeed
this rate of convergence is observed, with the rate of convergence of the potential error
being only marginally better.

112 5. Numerical Experiments

101 102 103 104 105 106
10−3

10−2

10−1

100

1

−0.53

1

−0.53

Residual
Potential

Figure 5.10: Residual and potential error for the double layer operator and Fichera's vertex.

Figure 5.11: Solution (left) and re�nement (right) on Fichera's vertex for the Laplace
equation with a smooth right-hand side.

Though the adaptive code gives the desired rate of convergence of N−0.5
dof , we notice that

the codes fares di�erently than for the examples involving the single layer operator given
earlier. Let us consider the two plots in Figure 5.11. In the left plot, we display again the
density and, in the right plot, the re�nement behaviour of the algorithm. We notice that
the code does not re�ne towards the edges and corners as it was the case for the single layer
operator. Indeed, the re�nement corresponds basically to a uniform re�nement. Thus, it
seems that solving the Laplace equation by means of the double layer operator does not
pay o� for a smooth right-hand side, even for a geometry featuring edges and vertices.
Let us forestall that this behaviour can also be observed for the low-frequency Helmhotz

5.3. Laplace Problems Solved by the Double Layer Operator 113

equation, which inspires the experiment in the following section on the exterior Helmholtz
equation.

Before we turn towards the Helmholtz equation, let us �rst consider another experiment
for solving the interior Laplace equation by means of the double layer operator on Fichera's
vertex. We will consider Dirichlet data of the form

f(r) =
1

rα

for α = 0.5 and α = 0.75 and with r denoting the distance to a selected point p. Notice,
that this function is singular for r = 0. Thus, we choose the point p, such that the
singularity of the right-hand side lies on the surface of our domain. More precisely, for
the Fichera vertex, this shall be the point where the reentrant corner is located, i.e. the
point p = (0.5, 0.5, 0.5). Following the theory presented in [24], we can, for this right-hand
side, expect a rate of convergence of least N−(1−α)

dof when using an adaptive scheme. In

contrast, we expect only half the rate N−(1−α)/2
dof when using uniform re�nement. To be

more precise, in [24] it has been shown that the Besov regularity of the solution ρ is twice
as high as its Sobolev regularity for the integral operator under consideration.

Let us present the results for solving the interior Laplace equation using the double layer
operator on Fichera's vertex for α = 0.5. In Figure 5.12, we visualise these results. We
plot the norm of the residual for both, uniform and adaptive re�nement, into a log-log plot.
The norm of the residual for uniform re�nement was obtained as follows. For a �xed level
of uniform re�nement, we performed a prediction step analogously to adaptive re�nement.
On this enlarged set, we estimated the norm of the residual. Subsequently, we performed
one standard step of uniform re�nement.

102 103 104 105 106 107

10−2

10−1

100
Uniform
Adaptive

N−0.5
dof

N−0.25
dof

Figure 5.12: Norm of the residual for adaptive and uniform re�nement for α = 0.5.

We expect a diminished rate of convergence of N−(1−α)/2
dof = N−0.25

dof in the case of uniform
re�nement. In our results, we observe that the rate seems to be even slightly worse than

114 5. Numerical Experiments

that. In case of adaptive re�nement, we observe a rate N−0.5
dof , which is what we expect.

Another observation can be made by comparing the number of degrees of freedom which
are necessary in order to compute the approximate density for uniform re�nement and for
adaptive re�nement. The norm of the residual is about 6 ·10−2 for uniform re�nement with
more than 3 million degrees of freedom. For adaptive re�nement, we obtain a norm of the
residual of about 4.2 · 10−2 already for approximately 40 000 degrees of freedom, which is
quite impressive.

Figure 5.13: Density and re�nement on Fichera's vertex for α = 0.5.

In the left plot of Figure 5.13, we �nd the density and in the right plot of Figure 5.13 the
re�nement produced by the adaptive wavelet method. It is clearly visible that the adaptive
method re�nes towards reentrant corner, where the right-hand side has its singularity.
We also observe an interesting pattern in form of a grid in the re�nement around the
corner. This is an artefact and it can be reduced by choosing a smaller threshold parameter
(meaning, that a larger portion of the residual is coarsened). Although the e�ect can be
reduced, it never vanishes completely since it comes due to the large support of the wavelets.

Next, let us present the results for α = 0.75. For this choice, we expect the adaptive
wavelet method to converge at least at a rate N−(1−α)

dof = N−0.25
dof . For uniform re�nement,

we expect again only half the rate N−(1−α)/2
dof = N−0.125

dof .

Indeed, we can see that the adaptive wavelet method converges at the expected rate N−0.25
dof

or even slightly better. In comparison, for uniform re�nement we observe the reduced rate
N−0.125

dof . If we compare the norm of the residuals for both strategies, we observe again the
superiority of the adaptive code. In order for uniform re�nement to produce a value of
2.86 · 10−1, it needs more that 3 million degrees of freedom. The adaptive code produces
an error of 2.72 · 10−1 with less than 15 000 degrees of freedom.

5.3. Laplace Problems Solved by the Double Layer Operator 115

101 102 103 104 105 106 107

10−1

100

Uniform
Adaptive

N−0.25
dof

N−0.125
dof

Figure 5.14: Norm of the residual for adaptive and uniform re�nement for α = 0.75.

Next, let us consider Figure 5.15 which displays the density in the left plot as well as the
re�nement in the right plot for the adaptive wavelet method for α = 0.75. We observe
again a strong re�nement towards the reentrant corner, whereas most of the remaining
surface stays coarse. In accordance to the previous results for α = 0.5, we notice again the
grid-like artefacts around the corner. They would be diminished when choosing a smaller
threshold constant which forces the adaptive algorithm to discard more non relevant entries
in the residual.

Figure 5.15: Solution and re�nement on the Fichera vertex for α = 0.75.

In conclusion, we see that the adaptive algorithm does not really pay o� for integral
equations solved by the double layer operator, if they feature a smooth right-hand side.
In these situations, the adaptive algorithm does not seem to notice the edges and corners
of the surface of the domain. However, for non-smooth right-hand sides, we observe that
adaptiveness really does pay o�. This observation goes in accordance with the theory
developed in [24].

116 5. Numerical Experiments

5.4 Exterior Helmholtz Problems

In this section, we will present numerical results in case of the exterior Helmholtz problem
(5.1). According to equation (1.21), the combination u = (D− iηS)ρ of the acoustic single
layer potential S and the acoustic double layer potential D can be used to avoid spurious
modes, and leads to the second kind Fredholm boundary integral equation (1.21).

5.4.1 Cartoon Right-Hand Side

We will present an example for solving the exterior Helmholtz equation with Dirichlet
boundary data for κ = 1. Recall the experiment in Section 5.3, where we observed that
adaptivity does not pay o� when the right-hand side is smooth, although the geometry
under consideration has edges and vertices. The same can be observed for the Helmholtz
equation. This motivates the following example.

Let us consider the sphere as geometry, which has a smooth surface such that the boundary
integral operator o�ers the full regularity. As right-hand side, we choose a so-called cartoon
function:

f(x) =

{
1, if

∥∥x− (0, 0, 1)
∥∥2 ≤ 0.125,

0, else.
(5.5)

As such a functions can be approximated at a rate N−0.5
dof , see [34], we expect that the

density ρ converges at the same rate. In contrast, we would expect only half the rate for
uniform re�nement, as this right-hand side is only in the Sobolev space H1/2−δ with δ > 0

arbitrarily small, see [24].

Nres Ndof ‖res‖ nnz (%) time (s)

� 6 � 100 �

76 16 4.04·10−1 100 0.14

1496 110 1.64·10−1 30.77 7.83

3836 843 4.21·10−2 12.74 27

25590 4813 1.99·10−2 2.165 371

53172 13807 1.02·10−2 1.022 658

223670 46892 7.56·10−3 0.245 4344

637357 122770 4.57·10−3 0.085 14512

1625857 331370 2.81·10−3 0.033 66967

6211463 968764 2.08·10−3 0.003 375731

Table 5.5: Results for the sphere with a discontinuous right-hand side.

In Table 5.5, we �nd the output of the adaptive wavelet method. As the analytical solution
of the Helmholtz equation for the Dirichlet data f is unknown, we cannot compute the

5.4. Exterior Helmholtz Problems 117

potential error. Figure 5.16 shows the convergence for the norm of the residual in com-
parison with the number of the degrees of freedom. Therein, we observe again a rate of
convergence of N−0.5

dof . Also, we see a rate of convergence of N−0.25
dof for uniform re�nement.

101 102 103 104 105 106
10−3

10−2

10−1

100

1
−0.25

1

−0.5

Adaptive
Uniform

Figure 5.16: Norm of the residual in case of a discontinuous right-hand side for uniform
and adaptive re�nement.

Figure 5.17: Solution (left) and re�nement (right) on the sphere for the exterior Helmholtz
equation with discontinuous right-hand side for the wavelets with three vanishing moments.

In the left plot of Figure 5.17, we �nd again the density on the sphere, where we can
clearly see the jump in the density coming from the discontinuity of the right-hand side.
In the right plot of Figure 5.17, we have visualised the re�nement produced by the adaptive
wavelet method. We observe that the re�nement takes place exactly around the jump, as
we expect, while the other parts stay very coarse.

118 5. Numerical Experiments

5.4.2 Scattering Problems

Next, we will present numerical results for the scattering problem, with di�erent wavenum-
bers κ ≥ 1. The choice of larger wavenumbers has a direct e�ect on the sparsity of the
system matrix, as the wavenumber has an in�uence on the compression of the matrix
see, [65].

Let us recall the layout for a scattering problem. Let u be the solution to the Helmholtz
equation, where u consists of an incident and a scattered wave, i.e. u = us + ui. The
incident wave ui is known and is of the form exp(iκdx), where d denotes the direction
(it holds ‖d‖ = 1), and the goal is to compute us. With us given, the solution u to the
Helmholtz equation can be computed as well. In order to �nd u, we can either use a
combination of the acoustic single layer operator and the acoustic double layer operator
as described in equation (1.23), or we use the direct ansatz (1.26), which we repeat for
convenience here

u(x) = ui(x)−
∫

Γ
k(x,y)

∂u

∂n
(y)dσy, x ∈ Ωc. (5.6)

The unknown Neumann data ∂u
∂n is obtained by solving the boundary integral equation(

1

2
I +Dt − iηS

)
∂u

∂n
=
∂ui

∂n
− iηui on Γ. (5.7)

For the following computations, we will solve the scattering problem by using the direct
formulation (5.6), (5.7). As geometry, we consider a drilled cube. After solving the bound-
ary integral equation (5.7), we have given the Neumann data which can be used to evaluate
u(x) according to equation (5.6).

102 103 104 105 106

10−2

10−1

100

101 κ = 1
κ = 2
κ = 4
κ = 8
κ = 16

N−0.5
dof

Figure 5.18: Norm of the residual for the adaptive wavelet method.

For the visualisation of the solution, we will compute the total �eld u(x) and the scattered
�eld us(x) in the area E = {(x1, x2, x3) : x3 = 0 and x1, x2 ∈ [−2.5, 2.5]}. We perform the

5.4. Exterior Helmholtz Problems 119

computations for κ = 1, 2, 4, 8 and 16.

Figure 5.18 shows the convergence history of the norm of the residual for each di�erent
value of κ. We observe a convergence of approximately N−0.5

dof , independently of the chosen
κ.

Similar to the observations in Section 5.3, we noticed again a diminished rate for uniform
re�nement for all chosen κ. We did not draw this into the Figure 5.18, in order not to
overload it. Nevertheless, for κ = 8, we illustrate this behaviour in Figure 5.19. For
uniform re�nement we observe a rate of convergence of approximately N−0.25

dof , which is
only half the rate as for adaptive re�nement.

102 103 104 105 106
10−1

100

101

Uniform
Adaptive

N−0.5
dof

N−0.25
dof

Figure 5.19: Norm of the residual for adaptive re�nement and for uniform re�nement.

As mentioned earlier, we draw the total �eld u(x) and the scattered �eld us(x) in the
x1-x2-plane for x1, x2 ∈ [−2.5, 2.5] for each chosen κ = 1, 2, 4, 8, and 16. This plane
intersects the drilled cube, such that we can illustrate the pattern which is produced by
the scattered wave. Thereby we chose the incident wave to travel into the direction of
(1, 1, 0). In addition to the plane, where us(x) and u(x) are evaluated, we also draw the
scatterer in the pictures. In particular, we draw the re�nement of the scatterer's surface,
where a cluster of points appears in a darker colour �rst. By looking more closely at the
corners and edges of the geometry, we see a lighter colouring, which again indicates even
a stronger re�nement.

In Figure 5.20, we see the scene for κ = 1. The top corner of the square is the point
(−2.5,−2.5), which means that the harmonic wave is travelling upwards. In the left plot
of Figure 5.20, the scattered �eld us(x) is seen and, in the right plot of Figure 5.20,
the total �eld u(x) is seen. For κ = 1, we do not observe yet an interesting scattering
pattern, as the wavenumber is too small. On the other hand, we already observe that the
adaptive wavelet method re�nes towards the edges and the vertices of the geometry again.
This behaviour came unexpected at �rst, as we did not have any such re�nements for the
scattering problem solved by the indirect formulation. However, it makes sense, as we solve

120 5. Numerical Experiments

Figure 5.20: Scattered �eld (left) and total �eld (right) for κ = 1.

the scattering problem for the direct formulation featuring the Neumann data, which have
a jump at the non-smooth parts of the geometry. In particular, we observe a re�nement
on the edges which are illuminated, i.e. the edges which face the incoming wave. On the
edges which are at the back of the geometry re�nement, the re�nement is not as strong.

In Figure 5.21, we visualise the scattered �eld and the total �eld for κ = 2. The angles of
the pictures are chosen equal to those of Figure 5.20 such that we can easily compare the
situations. We observe that the wavenumber κ = 2 is still too small to have a noticeable
scattering pattern. Also, we observe again the re�nement along the illuminated edges in
reference to the incoming wave.

Figure 5.21: Scattered �eld (left) and total �eld (right) for κ = 2.

Figure 5.22 contains the scattered �eld (left) and total �eld (right) for the wavenumber
κ = 4. Here, we observe that the wavenumber is chosen just large enough, such that for
the �rst time the wave can enter the inner part of the drilled cube. We observe again the
re�nement towards the edges and vertices facing the incoming wave, with less re�nement
in these parts of the geometry which lies on the back of the cube.

In Figures 5.23 and 5.24, we draw the scattered �eld (left) and the total �eld (right) for
the wavenumbers κ = 8 and 16, respectively. These wavenumbers are large enough in
order to produce a beautiful scattering pattern. Also, we see that both waves can travel

5.4. Exterior Helmholtz Problems 121

Figure 5.22: Scattered �eld (left) and total �eld (right) for κ = 4.

through the inner part of the drilled cube. We observe again the re�nement towards the
edges and vertices with more re�nement of those parts of the drilled cube which are hit
by the incoming wave. This can be seen very beautifully in Figure 5.25, showing the total
�eld and the scatterer in top view. Notice the colour gradient in the form of a drop which
forms around the hole of the cube.

Figure 5.23: Scattered �eld (left) and total �eld (right) for κ = 8.

Figure 5.24: Scattered �eld (left) and total �eld (right) for κ = 16.

122 5. Numerical Experiments

Figure 5.25: Top view of the scattered �eld for κ = 16.

In conclusion, we can say that the adaptive wavelet algorithm produces excellent results
for all chosen wavenumbers κ. Adaptivity pays o� especially for the direct ansatz, where
the re�nement towards the edges and vertices can be clearly observed. To achieve a similar
accuracy with a uniform code, one would need much more degrees of freedom, which would
not only take more time to compute, but may not be feasible any more as far as memory
consumption is concerned.

6
Goal-Oriented Error Estimation

In this chapter, we will be concerned with the solution of boundary integral equations by
means of a goal-oriented adaptive wavelet method. In some previous examples, especially
for the double layer operator for the Laplace equation and the Brakhage-Werner formula-
tion for the Helmholtz equation, we have observed that an adaptive approach does have no
advantage in comparison with a non-adaptive method. This is the case even if we consider
a domain featuring edges and vertices.

However, for many applications one is not interested in the unknown density ρ, but only
in a continuous, linear output functional g(ρ) of it. Approximating this new quantity of
interest instead is referred to as goal-oriented method. By considering only an output
functional of the density, one may be able to perform the computation with much less
degrees of freedom.

6.1 Motivation and Background

There has been a large amount of research in the �eld of goal-oriented adaptive �nite
element methods, see e.g. [1, 5, 6, 31, 38, 76] and the references therein. Related results
in the context of adaptive boundary element methods can be found in e.g. [40�42]. Our
results will be mainly based on [40, 76]. Notice that an improved algorithm can be found
in [31]. Nevertheless, we do not follow this approach since the proposed strategy is much
more sophisticated and too intrusive.

The �rst observation, which can be made concerning the error |g(ρ)− g(ρJ)|, is that it is
bounded through

|g(ρ)− g(ρJ)|red≤‖g‖ ‖ρ− ρJ ‖`2(J?)

123

124 6. Goal-Oriented Error Estimation

Thus, the error of the functional converges at least at the same rate as the error ‖ρ −
ρJ ‖`2(J?) of the density. The next step is to introduce the dual (or adjoint) problem

A′z = g,

with z denoting the dual solution. After restricting the in�nite index set J? to a �nite
subset J ⊂ J? of cardinality N , we end up with the following system of linear equations
on the index set J for the dual problem:

A′J zJ = g(ρJ).

With the dual problem taken into account, one arrives in view of Galerkin orthogonality
at the estimate

|g(ρ)− g(ρJ)| . ‖ρ− ρJ ‖`2(J?) ‖z − zJ ‖`2(J?).

If approximations to both, the primal and dual solutions, can be found, such that the
error of the primal solution convergences at least at a rate of N−s and the dual solution
converges at a rate of at least N−t, then, according to [76], a rate of convergence of order
N−(s+t) can be expected for the error of the output functional.

We consider here two di�erent strategies of a goal-oriented adaptive wavelet method. One
strategy is according to Mommer and Stevenson [76] and separately minimises the error
of the primal problem and the error of the dual problem, respectively. Subsequently, the
smaller of the underlying index sets is chosen for re�nement. Another strategy is to use the
union of the underlying index sets, which greatly simpli�es the algorithm. In the following
examples we will specify these two strategies and discuss their advantages and drawbacks.

We would like to mention at this point that the goal-oriented approach is not restricted to
linear output functionals, but can also be extended to non-linear output functionals, see
e.g. [1] and the references therein. However, for the sake of simplicity we are considering
only a linear output functional here.

6.2 Re�nement Strategies

As mentioned, we pursue two di�erent strategies for which we start with the following
setting. For an initial �nite index set J ⊂ J?, the system of linear equations (3.3) is
assembled and solved (for the primal problem and for the dual problem) with accuracy ε.
Subsequently, we call the routine Grow (outlined in Algorithm 1) for the primal problem,
with the input parameters J and ηprimal. The input parameter ηprimal is initialised at the
beginning by an ηinit of our choice, and it is modi�ed during the growing routine as outlined
in Algorithm 1. After this routine terminates, we call Grow again for the dual problem.
Similarly to the primal problem, we have a second parameter ηdual, which is also initialised
at the beginning and modi�ed during the growing routine. Inside Grow, the index set J
is extended to J ′1 for the primal problem. Likewise, the index set J is extended to J ′2 for

6.2. Re�nement Strategies 125

the dual problem. This strategy is outlined in Algorithm 16.

Algorithm 16: Re�nement based on the minimal index set.

Given: Initial index set J , ηinit;
Set: ηprimal = ηdual = ηinit;
Calculate: ρJ = Solve[J , ε];
Calculate: zJ = Solve[J , ε];
do

J ′1 = Grow [J , ηprimal];

J ′2 = Grow [J , ηdual];
if |J ′1 | ≤ |J

′
2 | then

J = J ′1 ;
else

J = J ′2 ;
end

for i = 0 to #J do
Set: wavelet[i] → layer =

: max{ wavelet[i] → layerPrimal, wavelet[i] → layerDual };
end

Calculate: ρJ = Solve[J , ε · ηprimal];
Calculate: zJ = Solve[J , ε · ηdual];

end

Inside each of the routines Grow[J , ηprimal] and Grow[J , ηdual], the tree structured in-
dex set J is �rst sorted according to equation (4.3) and subsequently decomposed into
layers, such that estimate (3.21) holds. As the routine Grow is performed separately
for the primal problem and for the dual problem, a wavelet may receive a di�erent layer
associated with the primal problem or the dual problem, respectively. This is why we
introduce two additional variables inside the wavelet structure, namely int layerPrimal

and int layerDual. The variable layerPrimal is associated with the layer classi�cation
for the primal problem and the variable layerDual is associated with the layer classi�ca-
tion for the dual problem. After the growing is complete for both, the primal problem and
the dual problem, the smaller of both index sets J ′1 and J ′2 is chosen to be rede�ned as
the new initial index set J . We then set the layer of each wavelet in the �nal index set
J to the maximum of both layers. After each wavelet has received the maximal layer, we
assemble and solve the system of linear equations with respect to the index set J .

The second strategy works, in principle, similar to the �rst strategy. The di�erence is that,
after the primal and dual growing, the union of both sets J = J ′1 ∪ J

′
2 is taken as the

new initial set J . Also, we subsequently set the layer of each wavelet to the maximum of
either layerPrimal or layerDual. As a consequence, we have to deal with more degrees of
freedom by using this strategy. However, there is the possibility for a much more e�cient
realisation, which manages to assemble the system of linear equations only once in each

126 6. Goal-Oriented Error Estimation

loop. This requires the modi�ed routine GrowMod, which is outlined in Algorithm 17.

Algorithm 17: Modi�ed growing routine GrowMod

Given: J , ηprimal, ηdual, ρJ and zJ ;
do

Set: ηprimal = ηprimal/2, ηdual = ηdual/2 ;

sort(ρJ , ‖ · ‖s);
sort(zJ , ‖ · ‖s);
for i = 0 to #J do

Set: wavelet[i] → layer =

: max{ wavelet[i] → layerPrimal, wavelet[i] → layerDual };
end

J ′ = Predict[J];
Calculate r(J ′,primal) = Rhs[ηprimal] − Apply[ηprimal,A,ρJ];
Calculate r(J ′,dual) = Rhs[ηdual] − Apply[ηdual,A

t, zJ];

Set: rprimal = ‖r(J ′,primal)‖, rdual = ‖r(J ′,dual)‖;

Calculate r(J ′′1 ,primal) = Coarse[r(J ′,primal), θ] (0 < θ < 1 threshold constant);

Calculate r(J ′′2 ,dual)
= Coarse[r(J ′,dual), θ];

Set: J = J ′′1 ∪ J
′′
2 ;

while ηprimal ≥ rprimal AND ηdual ≥ rdual;

Inside the routine GrowMod, we perform the following steps. Let ρJ and zJ be the
primal solution and the dual solution from a previous step. First, we sort the tree according
to equation (4.3) for the primal solution ρJ and also for the dual solution zJ . Here, it can
happen that a wavelet receives two di�erent layers layerPrimal and layerDual. After the
layer of each wavelet is again set to the maximum of the primal layer and the dual layer,
we call the routine Predict. Since the layer is set to the maximum, we make sure that
the routine Predict adds at least the same wavelets as it would add in case of separate
prediction. After prediction, we have thus enlarged J by a single index set J ′ ⊃ J .
On this new index set, we estimate the primal residual as well as the dual residual, and
subsequently perform the routine Coarse. After coarsening both, the primal residual
which leads to the index set J ′′1 and the dual residual which leads to the index set J ′′2 ,
we take the union of both index sets J = J ′′1 ∪ J

′′
2 . Finally, the algorithm assembles and

solves the system of linear equations with respect to the index set J .

6.3 Laplace Equation Solved by the Single Layer Operator

Let us present our numerical results. Consider the Laplace equation (5.4), solved inside
a bounded domain Ω with boundary Γ and converted into a boundary integral equation
of the form (1.3), see Chapter 1. For the following computations, we consider again the
Fichera vertex (0, 1)3 \ (0, 0.5]3 as our domain. The Dirichlet data for the primal problem

6.3. Laplace Equation Solved by the Single Layer Operator 127

are chosen as the restriction f = u|Γ of the polynomial u(x) = 4x2
1−3x2

2−x2
3. The output

functional under consideration is the potential evaluation

g(v) =

∫
Γ

v(y)

‖x− y‖
dσy (6.1)

in a single point x ∈ Ω. This potential evaluation corresponds to the application of a
continuous linear functional to the density v. Notice that the norm of this functional
obviously increases as x ∈ Ω approaches the boundary Γ.

After each iteration of the adaptive algorithm, we compute an approximation g(ρJ) to
g(ρ), given by equation (6.1), via the scalar product gtJρJ . We then evaluate the potential
error |u(x)− gtJρJ |, where u(x) denotes the analytical solution.

For the comparison of Algorithm 16 and Algorithm 17, we choose the evaluation point for
the functional (6.1) as x = (0.25, 0.25, 0.9). This point is located inside Fichera's vertex
and close to the top boundary. Moreover, we have chosen the coarsening constant θ = 0.5

and the bandwidth parameter a = 2.5.

101 102 103 104 105 106

10−7

10−5

10−3

10−1

101

103

1
−0.63

1
−0.77

1

−1.43

Primal Residual
Dual Residual
Potential Error

102 103 104 105 106
10−7

10−5

10−3

10−1

101

103

1
−0.54

1
−0.77

1

−1.43

Primal Residual
Dual Residual
Potential Error

Figure 6.1: Norm of the primal residual, norm of the dual residual and the potential error
for Algorithm 16 (left) and Algorithm 17 (right).

The left picture of Figure 6.1 shows the convergence histories of the primal residual, the
dual residual and the potential error for Algorithm 16. In the right plot of Figure 6.1, we
see the convergence histories of the primal residual, the dual residual and the potential
error for Algorithm 17. We observe that the primal residual has a rate of convergence of
at least N−0.5

dof for both strategies, which is what we would expect, where we observe a
slightly higher rate N−0.63

dof of convergence for the primal residual for Algorithm 16. Also
we notice that, for both algorithms, the dual residual seems to have a rate of convergence
of approximately N−0.75

dof , which is signi�cantly better than the rate of convergence for the
primal residual. The potential error has a rate of convergence of approximately N−1.4

dof .

In Figure 6.2, we plot the ratios of the primal residual, the dual residual and the potential

128 6. Goal-Oriented Error Estimation

10−2 10−1 100 101 102 103 104 105

10−7

10−5

10−3

10−1

101

Minimum index set
Union of index sets

Figure 6.2: Norm of the primal residual, norm of the dual residual and potential error
versus computation time for Algorithm 16 (red) and Algorithm 17 (blue).

error versus the computation time for both, Algorithm 16 and Algorithm 17. It turns out
that neither algorithm is superior when it comes to computing the primal residual, the
dual residual or the potential error within a given time period. Indeed, both algorithms
need the same computing time to reach a desired accuracy for the quantity of interest.

Figure 6.3: Re�nement for the evaluation point (0.25, 0.25, 0.9) for Algorithm 16 (left) and
Algorithm 17 (right).

We should also compare the re�nement which is produced by the two algorithms. In
Figure 6.3, we have visualised the two re�nements, where the plots are produced similarly
to the plots seen in Chapter 5. We observe that the re�nement for Algorithm 16 (left plot)
basically coincides with the re�nement for Algorithm 17 (right plot). In particular, a clear
re�nement is seen on the top, near from where the point x = (0.25, 0.25, 0.9) is located.
Also, both algorithms re�ne again towards the edges of Fichera's vertex.

For the next computations, we move the evaluation more closely to the boundary, namely

6.3. Laplace Equation Solved by the Single Layer Operator 129

we set x = (0.25, 0.25, 0.95) and perform our computations again for both strategies.

101 102 103 104 105 106
10−7

10−5

10−3

10−1

101

103

1
−0.63

1
−0.76

1
−1.15

Primal Residual
Dual Residual
Potential Error

102 103 104 105 106
10−6

10−4

10−2

100

102

1
−0.7

1
−0.56

1

−1.23

Primal Residual
Dual Residual
Potential Error

Figure 6.4: Norm of the primal residual, norm of the dual residual and potential error for
Algorithm 16 (left) and Algorithm 17 (right).

In Figure 6.4, we visualise the convergence histories for the primal residual, the dual
residual and the potential error versus the degrees of freedom in a log-log scale. We
observe that both, the primal residual and the dual residual, show a rate of convergence
of at least N−0.5

dof . The rate of convergence of approximately N−0.7
dof for the dual residual is

again higher than the rate of convergence of the primal residual. For the potential error, we
observe a rate of convergence of N−1.15

dof for Algorithm 16 and N−1.23
dof for Algorithm 17. This

is slightly less than the rate of convergence of the potential error for the evaluation point
x = (0.25, 0.25, 0.9). Again, there is no signi�cant di�erence between both algorithms if
we compare accuracy versus computing times, see Figure 6.5.

10−2 10−1 100 101 102 103 104 105

10−6

10−4

10−2

100

102 Minimum index set
Union of index sets

Figure 6.5: Norm of the primal residual, norm of the dual residual and potential error
versus computation time for Algorithm 16 (red) and Algorithm 17 (blue).

To conclude our results for the solution of the Laplace equation by the means of the
single layer potential, we visualise the re�nement of both algorithms in Figure 6.6. Again,
both algorithms re�ne towards the edges and vertices of the geometry and towards the
point x = (0.25, 0.25, 0.95). If we compare the re�nement on the top of the domain with

130 6. Goal-Oriented Error Estimation

the re�nement from the previous example, we notice that the re�nement is slightly more
localised here. Also, Algorithm 17 produces a mesh which has a much more localised
re�nement on the top boundary near the point x = (0.25, 0.25, 0.95).

Figure 6.6: Re�nement for the evaluation point (0.25, 0.25, 0.95) for Algorithm 16 (left)
and Algorithm 17 (right).

6.4 Laplace Equation Solved by the Double Layer Operator

In this section, we present an example for goal-oriented error estimation for the interior
Laplace equation solved by the double layer operator. We consider the same domain as
in the previous example, namely Fichera's vertex. The points x = (0.25, 0.25, 0.9) and
x = (0.25, 0.25, 0.95) are again chosen as evaluation points for the potential evaluation

g(v) =

∫
Γ

〈x− y,ny〉
‖x− y‖3

v(y)dσy. (6.2)

However, the numerical results for the convergence, as well as the re�nements for both
points, are too similar for both Algorithms 16 and 17 as to be presented separately. There-
fore, we only present our results for the point x = (0.25, 0.25, 0.9)

In the left plot of Figure 6.7, we see the convergence histories of the primal residual, the
dual residual and the potential error for Algorithm 16. In the right plot of Figure 6.7, we
see the convergence histories of the primal residual, the dual residual and the potential
error for Algorithm 17. One readily infers that the primal residual and the dual residual
show the desired rate of convergence of approximately N−0.5

dof .

In the left plot of Figure 6.8, the re�nement which is produced by Algorithm 16 is shown. In
the right plot of Figure 6.8, one �nds the re�nement which is produced by Algorithm 17. In
contrast to the previous examples, the algorithms re�ne di�erently. Algorithm 16 produces
a strong local re�nement on the top boundary, near to where the point x = (0.25, 0.25, 0.9)

is located, whereas we observe no adaptive re�nement for Algorithm 17. However, neither

6.4. Laplace Equation Solved by the Double Layer Operator 131

algorithm re�nes towards the edges and corners, as it was the case for the previous example.
We observe that, even though the re�nement behaviour is di�erent, the same precision with
respect to the primal residual, the dual residual and the potential error for both algorithms
is achieved.

101 102 103 104 105 106

10−5

10−3

10−1

101

103

1
−0.53

1
−0.47

1
−0.98

Primal Residual
Dual Residual
Potential Error

102 103 104 105 106

10−5

10−3

10−1

101

103

1
−0.49

1
−0.5

1
−1

Primal Residual
Dual Residual
Potential Error

Figure 6.7: Norm of the primal residual, norm of the dual residual and potential error for
Algorithm 16 (left) and Algorithm 17 (right).

Finally, we have also considered the computation times for both strategies. We observe
that there is again no signi�cant superiority of one strategy in comparison with the other.
This is why we do not show another plot of the primal residual, the dual residual and the
potential error versus the computation time here. Let us mention again that the same
observations, concerning the primal residual, the dual residual, the potential error and the
computation time, can be made if we move the point closer to the boundary, namely to
x = (0.25, 0.25, 0.95).

Figure 6.8: Re�nement for the evaluation point (0.25, 0.25, 0.9) for Algorithm 16 (left) and
Algorithm 17 (right).

132 6. Goal-Oriented Error Estimation

Conclusion and Future Work

In this thesis, we have proposed an adaptive wavelet method for solving boundary integral
equations in three dimensions by using piecewise constant wavelet functions. Especially,
we introduced the boundary integral formulation of the Laplace equation via boundary
potentials, as well as the boundary integral formulation for the Helmholtz equation in its
direct and indirect form. In addition, we considered goal-oriented error estimation for
solving the Laplace equation in a speci�c point inside the domain under consideration.

Throughout this thesis, we observed that several situations arise where the adaptive im-
plementation performs especially well. One such situation is the solution of the interior
Laplace equation by means of the single layer operator on a domain featuring edges and
vertices, where a uniform method may no longer be feasible. Another situation is the
solution of scattering problems while using a direct formulation.

If we solve the Laplace equation for a smooth right-hand side by the double layer operator,
we observe the maximal rate of convergence, which, however, is also obtained by uniform
re�nement. The same observation can also be made when solving the Helmholtz equation
by an indirect ansatz. If, however, we consider a right-hand side which admits a singular-
ity, our adaptive wavelet algorithm performs superior to a uniform re�nement, as it still
produces the optimal rate of convergence by adaptively re�ning towards the singularity.

In the last chapter of this thesis, where we considered goal-oriented error estimation for
the solution of the Laplace equation, we observed that the adaptive re�nement is indeed
tailored to the output functional under consideration if we consider the solution by means
of the single layer operator. If we consider the solution by means of the double layer
operator, we observe a di�erent behaviour for the two presented strategies. The strategy,
which takes the minimum of the two index sets produces a strong local re�nement in the
vicinity of where the point for the potential evaluation is located. However, for the second
strategy, where we take the union of both index sets, we observe no adaptive re�nement.

In conclusion, we have developed an adaptive code, which is able to compute the solution to
boundary integral equations up to more than one million degrees of freedom in reasonable
time. Computations in this extent, particularly for an extensive local re�nement, have not
been possible until now.

As the data structures for the adaptive implementation are now available, one possible con-
tinuation of this research would be the inclusion of globally continuous, piecewise bilinear
wavelets. Then, the solution of boundary integral equations involving the hypersingular
operator W : H1/2(Γ)→ H−1/2(Γ) could be tackled. This would, for example, include the

133

134 6. Goal-Oriented Error Estimation

Burton-Miller formulation for scattering problems involving a sound-hard scatterer, which
is an important example for the simulation of three-dimensional hearing, see [15].

Bibliography

[1] W. Bangerth and R. Rannacher. Adaptive �nite element method for di�erential equa-

tions. Lectures Math. ETH Zürich. Birkhäuser, Basel, 2003.

[2] M. Bebendorf. Approximation of boundary element matrices. Numer. Math., 86:565�
589, 2000.

[3] M. Bebendorf. Hierarchical matrices. Springer, Berlin-Heidelberg, 2008.

[4] M. Bebendorf and S. Rjasanow. Adaptive low-rank approximation of collocation ma-
trices. Computing, 70:1�24, 2003.

[5] R. Becker, E. Estecahandy, and D. Trujillo. Weighted marking for goal-oriented adap-
tive �nite element methods. SIAM J. Numer. Anal., 49(6):2451�2469, 2011.

[6] R. Becker and R. Rannacher. An optimal control approach to a posteriori error
estimation in �nite element methods. Acta Numerica 2001, 10:1�102, 2001.

[7] G. Beylkin, R. Coifman, and V. Rokhlin. The fast wavelet transform and numerical
algorithms. Comm. Pure and Appl. Math., 44:141�183, 1991.

[8] P. Binev and R. DeVore. Fast computation in adaptive tree approximation. Numer.
Math., 97:193�217, 2004.

[9] S. Börm. E�cient numerical methods for non-local operators: H2-matrix compression,

algorithms and analysis, volume 14. European Mathematical Society, Zürich, 2010.

[10] S. Börm and L. Grasedyck. Low-rank approximation of integral operators by interpo-
lation. Computing, 72(3):325�332, 2004.

[11] H. Brakhage and P. Werner. Über das Dirichletsche Auÿenraumproblem für die
Helmholtzsche Schwingungsgleichung. Arch. Math., 16:325�329, 1965.

[12] J. Carnicer, W. Dahmen, and J. Peña. Local decomposition of re�nable spaces. Appl.
Comput. Harm. Anal., 3:127�153, 1996.

[13] S.N. Chandler-Wilde and S. Langdon. A Galerkin boundary element method for high
frequency scattering by convex polygons. SIAM J. Numer. Anal., 45:610�640, 2007.

[14] S.N. Chandler-Wilde and P. Monk. Wave-number-explicit bounds in time-harmonic
scattering. SIAM J. Math. Anal., 39:1428�1455, 2008.

135

136 Bibliography

[15] Z.S. Chen, H. Waubke, and W. Kreuzer. A formulation of the fast multipole bound-
ary element method (FMBEM) for acoustic radiation and scattering from three-
dimensional structures. J. Comput. Acoust., 16(2):303�320, 2008.

[16] A. Cohen, W. Dahmen, and R. DeVore. Adaptive wavelet methods for elliptic operator
equations. Convergence rates. Math. Comput., 70:27�75, 2001.

[17] A. Cohen, W. Dahmen, and R. DeVore. Adaptive wavelet methods II. Beyond the
elliptic case. Found. Comput. Math., 2:203�245, 2002.

[18] A. Cohen, I. Daubechies, and J.C. Feauveau. Biorthogonal bases of compactly sup-
ported wavelets. Pure Appl. Math., 45:485�560, 1992.

[19] D. Colton and R. Kress. Integral equation methods in scattering theory. John Wiley
& Sons, New York, 1983.

[20] D. Colton and R. Kress. Inverse acoustic and electromagnetic scattering theory.
Springer, Berlin, 1992.

[21] S. Dahlke. Besov regularity for elliptic boundary value problems on polygonal domains.
Appl. Math. Lett., 12(6):31�36, 1999.

[22] S. Dahlke, W. Dahmen, and R.A. DeVore. Nonlinear approximation and adaptive
techniques for solving elliptic operator equations. In Multiscale wavelet methods for

partial di�erential equations, volume 6 ofWavelet Analysis and Its Applications, pages
237�283, London, 1997. Academic Press.

[23] S. Dahlke and R. DeVore. Besov regularity for elliptic boundary value problems.
Comm. Partial Di�erential Equations, 22:1�16, 1997.

[24] S. Dahlke and M. Weimar. Besov regularity for operator equations on patchwise
smooth manifolds. Found. Comput. Math., 15:1533�1569, 2015.

[25] W. Dahmen. Decomposition of re�nable spaces and applications to operator equations.
Numer. Algor., 5:229�245, 1993.

[26] W. Dahmen. Wavelet and multiscale methods for operator equations. Acta Numerica,
6:55�228, 1997.

[27] W. Dahmen, H. Harbrecht, and R. Schneider. Compression techniques for boundary
integral equations. Asymptotically optimal complexity estimates. SIAM J. Numer.

Anal., 43(6):2251�2271, 2006.

[28] W. Dahmen, H. Harbrecht, and R. Schneider. Adaptive methods for boundary integral
equations. Complexity and convergence estimates. Math. Comput., 76:1243�1274,
2007.

[29] W. Dahmen and A. Kunoth. Multilevel preconditioning. Numer. Math., 63:315�344,
1992.

[30] W. Dahmen, A. Kunoth, and K. Urban. Biorthogonal spline-wavelets on the interval.
Stability and moment conditions. Appl. Comput. Harmon. Anal., 6:132�196, 1999.

Bibliography 137

[31] W. Dahmen, A. Kunoth, and J. Vorloeper. Convergence of adaptive wavelet methods
for goal-oriented error estimation. In A. Bermudez de Castro, D. Gomez, P. Quintely,
and P. Salgado, editors, Numerical mathematics and advanced applications, pages 39�
61, Berlin, 2006. Springer.

[32] W. Dahmen and R. Schneider. Composite wavelet bases for operator equations. Math.

Comput., 68:1533�1567, 1999.

[33] R. DeVore. Nonlinear approximation. Acta Numerica, 7:51�150, 1998.

[34] D.L. Donoho. Sparse components of images and optimal atomic decomposition. Con-
str. Approx., 17:353�382, 2001.

[35] M. Du�y. Quadrature over a pyramid or cube of integrands with a singularity at the
vertex. SIAM J. Numer. Anal., 19:1260�1262, 1982.

[36] K. Eppler and H. Harbrecht. Second order shape optimization using wavelet BEM.
Optim. Methods Softw., 21:135�153, 2006.

[37] K. Eppler and H. Harbrecht. Wavelet based boundary element methods in exterior
electromagnetic shaping. Eng. Anal. Bound. Elem., 32:645�657, 2008.

[38] K. Eriksson, D. Estep, P. Hansbo, and C. Johnson. Introduction to adaptive methods
for di�erential equations. Acta Numerica, 4:105�158, 1995.

[39] B. Faermann. Localization of the Aronszajn-Slobodeckij norm and application to
adaptive boundary element methods. Part II: The three-dimensional case. Numer.

Math., 92(3):467�499, 2002.

[40] M. Feischl, G. Gantner, A. Haberl, D. Praetorius, and T. Führer. Adaptive boundary
element methods for optimal convergence of point errors. Numer. Math., 132(3):541�
567, 2016.

[41] M. Feischl, M. Karkulik, J.M. Melenk, and D. Praetorius. Quasi-optimal convergence
rate for an adaptive boundary element method. SIAM J. Numer. Anal., 51(2):1327�
1348, 2013.

[42] M. Feischl, D. Praetorius, and K.G. van der Zee. An abstract analysis of optimal
goal-oriented adaptivity. SIAM J. Numer. Anal., 54(3):1423�1448, 2016.

[43] M. Frazier and B. Jawerth. A discrete transform and decompositions of distribution
spaces. J. Functional Anal., 93:34�170, 1990.

[44] T. Gantumur. An optimal adaptive wavelet method for nonsymmetric and inde�nite
elliptic problems. J. Comput. Appl. Math., 211(1):90�102, 2008.

[45] T. Gantumur. Adaptive boundary element methods with convergence rates. Numer.
Math., 124:471�516, 2013.

[46] T. Gantumur, H. Harbrecht, and R. Stevenson. An optimal adaptive wavelet method
for elliptic equations without coarsening. Math. Comput., 76:615�629, 2007.

138 Bibliography

[47] T. Gantumur and R. Stevenson. Computation of singular integral operators in wavelet
coordinates. Computing, 76:77�107, 2006.

[48] G.N. Gatica, H. Harbrecht, and R. Schneider. Least squares methods for the coupling
of FEM and BEM. SIAM J. Numer. Anal., 41(5):1974�1995, 2003.

[49] K. Giebermann. Schnelle Summationsverfahren zur numerischen Lösung von Integral-

gleichungen für Streuprobleme im R3. PhD thesis, Universität Karlsruhe, Germany,
1997.

[50] L. Greengard and V. Rokhlin. A fast algorithm for particle simulation. J. Comput.

Phys., 73:325�348, 1987.

[51] W. Hackbusch. Integralgleichungen � Theorie und Numerik. B.G. Teubner, Stuttgart,
1989.

[52] W. Hackbusch. A sparse matrix arithmetic based on H-matrices. Part I: Introduction
to H-matrices. Computing, 64:89�108, 1999.

[53] W. Hackbusch and Z.P. Nowak. On the fast matrix multiplication in the boundary
element method by panel clustering. Numer. Math., 54:463�491, 1989.

[54] H. Harbrecht. Wavelet Galerkin schemes for the boundary element method in three

dimensions. PhD thesis, Technische Universität Chemnitz, Germany, 2001.

[55] H. Harbrecht. A Newton method for Bernoullis free boundary problem in three di-
mensions. Computing, 82:11�30, 2008.

[56] H. Harbrecht and T. Hohage. Fast methods for three-dimensional inverse obstacle
scattering. J. Integral Equations Appl., 19(3):237�260, 2007.

[57] H. Harbrecht, F. Paiva, C. Pérez, and R. Schneider. Biorthogonal wavelet approxi-
mation for the coupling of FEM-BEM. Numer. Math., 92:325�356, 2002.

[58] H. Harbrecht, F. Paiva, C. Pérez, and R. Schneider. Wavelet preconditioning for the
coupling of FEM-BEM. Num. Lin. Alg. Appl., 10:197�222, 2003.

[59] H. Harbrecht and M. Peters. Comparison of fast boundary element methods on para-
metric surfaces. Comput. Methods Appl. Mech. Engrg., 261�262:39�55, 2013.

[60] H. Harbrecht and R. Schneider. Wavelet Galerkin schemes for boundary integral
equations. implementation and quadrature. SIAM J. Sci. Comput., 27(4):1347�1370,
2006.

[61] H. Harbrecht, R. Schneider, and C. Schwab. Sparse second moment analysis for elliptic
problems in stochastic domains. Numer. Math., 109(3):167�188, 2008.

[62] M.R. Hestenes and E.L. Stiefel. Methods of conjugate gradients for solving linear
systems. J. Research Nat. Bur. Standards, 49:409�436, 1952.

[63] G. Hsiao and W. Wendland. A �nite element method for some equations of �rst kind.
J. Math. Anal. Appl., 58:449�481, 1977.

Bibliography 139

[64] T.J.R. Hughes, J.A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, �nite
elements, NURBS, exact geometry and mesh re�nement. Comput. Methods Appl.

Mech. Engrg., 194(39):4135�4195, 2005.

[65] D. Huybrechs, J. Simoens, and S. Vandevalle. A note on wave number dependence of
wavelet matrix comression for integral equations with oscillatory kernel. J. Comput.
Appl. Math., 172:233�246, 2004.

[66] S. Ja�ard. Wavelet methods for fast resolution of elliptic equations. SIAM J. Numer.

Anal., 29:965�986, 1992.

[67] H. Johnen and K. Scherer. On the equivalence of the K-functional and moduli of
continuity and some applications. In W. Schempp and K. Zeller, editors, Constructive
theory of functions of several variables (Proc. Conf., Math. Res. Inst., Oberwolfach,

1976), volume 571, pages 119�140, Berlin, 1977. Springer.

[68] A. Kirsch. Generalized boundary value and control problems for the Helmholtz equa-

tions. Habilitationsschrift, Universität Göttingen, 1984.

[69] D.E. Knuth. Sorting and Searching, volume 3 of The art of computer programming.
Addison-Wesley, Redwood City, USA, 1998.

[70] R. Kress. Minimizing the condition number of boundary integral operators in acoustic
and electromagnetic scattering. Q. J. Mech. Appl. Math., 38:323�341, 1985.

[71] R. Kress. Linear Integral Equations. Springer, Berlin-Heidelberg, 1989.

[72] R. Leis. Zur dirichletschen Randwertaufgabe des Auÿenraumes der Schwingungs-
gleichung. Mathematische Zeitschr., 90:203�211, 1965.

[73] W. Magnus. Über Eindeutigkeitsfragen bei einer Randwertaufgabe von δu+ ku = 0.
Jahresber. Dtsch. Math. Ver., 52:177�188, 1943.

[74] M. Maischak and E.P. Stephan. The hp-version of the boundary element method in
R3: the basic approximation results. Math. Methods Appl. Sci., 20(5):461�476, 1997.

[75] M. Mitrea. Boundary value problems and hardy spaces associated to the Helmholtz
equation in Lipschitz domains. J. Math. Anal. Appl., 202:819�842, 1996.

[76] M.S. Mommer and R.P. Stevenson. A goal-oriented adaptive �nite element method
with convergence rates. SIAM J. Numer. Anal., 47(2):861�886, 2009.

[77] O.I. Panich. On the question of the solvability of the exterior boundary-value problems
for the wave equation and Maxwells equation. Russian Math. Surveys, 20:221�226,
1965.

[78] F. Rellich. über das asymptotische Verhalten der Lösungen von δu + λu = 0 in
unendlichen Gebieten. Jahresber. Dtsch. Math. Ver., 53:57�65, 1943.

[79] V. Rokhlin. Rapid solution of integral equations of classical potential theory. J.

Comput. Phys., 60:187�207, 1985.

140 Bibliography

[80] Y. Saad and M.H. Schultz. GMRES: A generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput., 7(3):856�869,
1986.

[81] S. Sauter and C. Schwab. Quadrature for the hp-Galerkin BEM in R3. Numer. Math.,
78:211�258, 1997.

[82] S. Sauter and C. Schwab. Randelementmethoden: Analyse, Numerik und Implemen-

tierung schneller Algorithmen. B.G. Teubner, Wiesbaden, 2004.

[83] S. Sauter and C. Schwab. Boundary element methods. Springer, Berlin, 2011.

[84] R. Schneider. Multiskalen- und Wavelet-Matrixkompression: Analysisbasierte Meth-

oden zur e�zienten Lösung groÿer vollbesetzter Gleichungssysteme. B.G. Teubner,
Stuttgart, 1998.

[85] A. Sommerfeld. Die Greensche Funktion der Schwingungsgleichung. Jahresber. Dtsch.
Math. Ver., 21:309�353, 1912.

[86] O. Steinbach. Numerische Näherungsverfahren für elliptische Randwertprobleme: Fi-

nite Elemente und Randelemente. B.G. Teubner, Stuttgart-Leipzig-Wiesbaden, 2003.

[87] R. Stevenson. On the compressibility of operators in wavelet coordinates. SIAM J.

Math. Anal., 35(5):1110�1132, 2004.

[88] E.E. Tyrtyshnikov. Mosaic sceleton approximation. Calcolo, 33:47�57, 1996.

[89] T. von Petersdor� and C. Schwab. Wavelet approximation for �rst kind integral
equations on polygons. Numer. Math., 74:479�519, 1996.

[90] T. von Petersdor� and C. Schwab. Fully discrete multiscale Galerkin BEM. In Mul-

tiscale Wavelet Methods for PDEs, pages 287�346. Academic Press, San Diego, 1997.

[91] T. von Petersdor� and C. Schwab. Sparse �nite element methods for operator equa-
tions with stochastic data. Appl. Math, 51:145�180, 2006.

[92] C.H. Wilcox. A generalization of theorems of Rellich and Atkinson. Proc. Amer.

Math. Soc., 7:271�276, 1956.

