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The accuracy of machine learning models of quantum mechanical observables of

molecules hinges on the quality of the molecular representation.

This article discusses necessary and desirable properties, as well as a

Fourier series of atomic radial distribution function, potentially useful as

unique molecular fingerprint.

For heats of atomization of over hundred thousand organic molecules this

fingerprint is shown to reach density functional theory level of accuracy.
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Fourier series of atomic radial distribution functions: A molecular fingerprint for

machine learning models of quantum chemical properties
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We introduce a fingerprint representation of molecules based on a Fourier series of atomic radial
distribution functions. This fingerprint is unique (except for chirality), continuous, and differentiable
with respect to atomic coordinates and nuclear charges. It is invariant with respect to translation,
rotation, and nuclear permutation, and requires no pre-conceived knowledge about chemical bond-
ing, topology, or electronic orbitals. As such it meets many important criteria for a good molecular
representation, suggesting its usefulness for machine learning models of molecular properties trained
across chemical compound space. To assess the performance of this new descriptor we have trained
machine learning models of molecular enthalpies of atomization for training sets with up to 10 k
organic molecules, drawn at random from a published set of 134 k organic molecules with an average
atomization enthalpy of over 1770 kcal/mol. We validate the descriptor on all remaining molecules
of the 134 k set. For a training set of 10k molecules the fingerprint descriptor achieves a mean
absolute error of 8.0 kcal/mol, respectively. This is slightly worse than the performance attained
using the Coulomb matrix, another popular alternative, reaching 6.2 kcal/mol for the same training
and test sets.

I. INTRODUCTION

For all but the most restricted problems and subsets of
chemical compound space (CCS), screening, even when
using high-throughput methods, becomes rapidly pro-
hibitive due to the combinatorial explosion of possible
arrangements of atom types and positions. The number
of small stable organic molecules, for example, was es-
timated to exceed 1060.1 The formal dimensionality of
CCS corresponds to 4N degrees of freedom, associated
to the three Cartesian coordinates and the one nuclear
charge of N atoms. This clearly illustrates the “curse of
dimensionality” from which many first-principles inverse
design efforts suffer2. Consequently, more compact rep-
resentations of CCS are desirable, in particular if they
can be more intuitively dealt with.

Recent machine learning (ML) efforts leverage modern
data analysis methods for atomistic simulations. The
basic idea is to develop algorithms that infer the solu-
tion of the electronic structure problem for a new ma-
terial, rather than investing in the computational time
to numerically solve it, with increasing accuracy as more
training data are added3. Given sufficient data, these
approaches are among the most promising avenues to-
wards efficient exploration of CCS from first principles.
A more profound and rigorous understanding of CCS
would greatly help computational design and optimiza-
tion of new materials with desirable properties. As such,
efficient navigation of CCS is at the heart of all first prin-
ciples based materials and bio design efforts.

To infer properties based on their correlations with
compounds is akin to what Hammett accomplished in
the 1930s through the exploitation of linear free energy
relationships4,5. Such approaches have already delivered

convincing results for highly relevant applications, such
as enhanced sampling6, screening of heterogeneous cat-
alyst candidates based on Sabatier’s principle7, and, de-
vising simple materials design rules leading to topological
insulators, semi-conductors, and others8.

With increasingly available simulation data stemming
from routine applications of first principles methods,
such as Born-Oppenheimer or Car-Parrinello molecu-
lar dynamics9, statistical ML methods can be applied,
in the hope of detecting trends and relationships that
hitherto were difficult, if not impossible, to spot for
the human expert. Applications of such approaches in-
clude data-mining for crystal structure discovery10, re-
gression for reorganization energies that enter Marcus
charge transfer rates11,12, learning of potential energy
surfaces (PES)13–17, learning of density functionals18,
and learning of the electronic Schrödinger equation of
organic molecules19. The success of the latter, i.e., the
success of predicting PESs across CCS without human
bias yet in an accurate and reliable fashion, hinges on
how well the input variables are represented for use by
the ML algorithm. This representation, also known as
“descriptor”, encodes chemical identity in terms of chem-
ical composition and atomic configuration. As such, de-
scriptors are a crucial ingredient for the development of
predictive ML models of PESs across CCS.

Conventionally, descriptors encode some prior knowl-
edge about electronic structure effects. A frequently
made assumption is that number and order of cova-
lent bonds in compounds are known a priori and fixed.
For example, Faulon’s Signature descriptor encodes the
graph of covalent bonding in a molecule20. Among oth-
ers, this descriptor was applied to inverse QSAR21, pre-
diction of protein interactions22, and to predict reorga-
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nization energies of poly-aromatic hydrocarbons12. The
underlying assumption severely limits the realm of ap-
plications when it comes to modeling processes where
the bonding is not known a priori. Examples for which
this assumption is not valid include basically all pro-
cesses commonly referred to as “chemical change”, i.e.,
bond breaking and formation, metal ligand exchanges,
diffusion of defects in solids, proton hopping in aque-
ous solvents (Grotthuss-mechanism) or even simple tau-
tomeric equilibria. The assumption also breaks down
for interactions less localized than covalent binding, such
as supramolecular van der Waals complexes, bound due
to hydrogen bonds or (many-body) London dispersion
forces23. The latter are particularly crucial for biologi-
cal function, as recently illustrated for the selective self-
assembly of hydrogen-bonded nano-structures24. For a
comprehensive overview and comparative analysis of over
600 different descriptors see the 2005 study carried out
by Meringer and coworkers25. The limitation due to
such inherent assumptions might possibly explain the
current state of affairs in QSAR-based drug discovery
efforts26. It is therefore desirable to devise more general
“first principles-like” descriptors that conserve the rigor
of ab initio methods27, such as wave function28, density
functional29, or quantum Monte Carlo methods30, and
that consequently can also, at least in principle, account
for any chemical scenario or compound1,31.

In this study we introduce a molecular descriptor that
uniquely (except for chirality) represents any molecule as
a fingerprint, here a univariate function in terms of ge-
ometric distance. Within the Born-Oppenheimer view
on the CCS of molecules, any molecular geometry is
uniquely characterized within its 4N -6 degrees of free-
dom, subtracting three rotational (two if linear) and
three translational degrees of freedom. Our descriptor is
unique, differentiable, and invariant with respect to rota-
tion, translation, and indexing of atoms. In full analogy
to the information entering the electronic Schrödinger
equation, this descriptor requires only atomic coordinates
and nuclear identities. Thus, any composition and ge-
ometry is accounted for in a way amenable to ML. The
descriptor might even be suitable for modeling of nuclear
quantum effects through ab initio path-integral molec-
ular dynamics32, relevant for instance in the case of of
Watson-Crick tautomers33, if energies and forces for all
the replicas can be learned with sufficient predictive ac-
curacy.

This paper is structured as follows. In the methods
section, we first outline the conceptual framework and
discuss desirable properties of descriptors. Then, start-
ing with the external potential, we proceed with a step
by step discussion of translational, rotational and atom-
indexing invariances, as well as uniqueness requirements,
which have guided us to the specific form of our descrip-
tor. In the results section, the descriptor’s performance is
assessed and compared to the Coulomb matrix, another
popular descriptor, using heats of atomization of up to
134 k organic molecules taken from Ref. 34.

II. METHOD

A. Descriptor properties

The defining purpose of a descriptor D is to repre-
sent a compound, defined through input variables, in a
form that can be correlated to a property of interest P,
i.e., its form should be amenable to statistical learning.
More specifically, D should rigorously and in a convenient
fashion represent the variables that occur in the equation
being modeled via ML.
Many descriptors and classification schemes for them

have been proposed. For the purpose of modeling results
derived from Schrödinger’s equation, one could consider
the following three cases

First principles: Descriptors that encode the relevant
information in the quantum Hamiltonian without
loss of information. As such, they should be appli-
cable to the learning of any quantum observable,
such as energies, forces, or electronic properties.
Examples include the sorted Coulomb-matrix19,
Gaussian shapes35, bispectrum, power spectrum,
or angular distribution functions17,36. The chal-
lenge consists of removing redundancies and en-
coding invariances, i.e., to render them maximally
compact without losing information. Note however,
that some observables might require more degrees
of freedom than others. In ML models of atom-
ization energies, for example, the chirality of the
molecule is not relevant. For ML models of the op-
tical activity in circular dichroism, however, it is.

Coarsened: Descriptors that reflect important struc-
tural features typically work for a range of prop-
erties but not for all of them. Examples include
the number of hydrogen-bond donors or acceptors
(used in Lipinski’s rule of five37), number of aro-
matic units, the diagonalized Coulomb matrix38,39,
the bag-of-bond descriptor40, or the signature de-
scriptors20. Such descriptors are not bijective, i.e.,
they do not allow reconstruction of the compound
in general; in practice, some allow reconstruction
given enough constraints. The challenge consists of
finding a form for which the loss of information is
minimal while maintaining the advantages of coars-
ening.

Integrated: Descriptors that explicitly encode inte-
grated properties correlating well with the prop-
erty of interest. Examples are adsorption energies
for catalytic activity7, logP octanol/water parti-
tion coefficients or Lipinski’s rule of 51 for oral
bio-availability, electrophilic superdelocalizability
for pKa prediction41, HOMO eigenvalues42,43 and
other simple property descriptors commonly used
in high-throughput screening8. The challenge con-
sists of gauging their transferability to other com-
pound classes, properties, or even environmental
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conditions.

In this study, we restrict ourselves to First principles

kind of descriptors which can be used for the construc-
tion of ML models of quantum mechanical observables.
For Coarsened or Integrated descriptors the reader is
referred to the above cited literature.

Uniqueness

We believe uniqueness, up to invariants that leave the
modeled observable O unchanged, to be crucial. In other
words, we consider a descriptor to be unique if there is
no pair of molecules that produces the same descrip-
tor. Here, we do not refer to the reverse case, namely
that any given single molecule can have more than one
descriptor. For example, our criterion of uniqueness is
still met by any descriptor consisting simply of the set of
atomic nuclei and associated Cartesian coordinates due
to the mapping between molecular Hamiltonian and un-
perturbed wave-function Ψ of the ground-state: While
no pair of molecules exists with the exact same sets of
atomic nuclei and coordinates, there are many different
sets of coordinates which merely differ by molecular sym-
metry operations (translation, rotation, or complete nu-
clear permutation)44. Removal (or reduction) of such
invariant degrees of freedom is relevant for the efficiency
of the machine learning model but less crucial on a con-
ceptual level.
The reason for the uniqueness requirement can be

shown by reductio ad absurdum in three steps—in anal-
ogy to the first Hohenberg-Kohn theorem45—for any
quantum mechanical observable O = 〈Ψ|Ô|Ψ〉. Here the
unperturbed ground-state Hamiltonian H is defined by
its external potential, determined by {ZI ,RI}, the set
of nuclear charges and coordinates, as well as number of
electrons Ne. The variational principle yields the sys-
tem’s many-body wavefunction Ψ for any given H.

(i) Let D denote a descriptor that is not unique. Then
two systems H1 6= H2 exist that differ in excess of
the invariants, but they are mapped to the same
descriptor value d, H1 → d and H2 → d.

(ii) Because H1 and H2 differ by more than their
property’s invariances, they have different wave-
functions, Ψ1 6= Ψ2, yielding two different observ-
ables, O1 = 〈Ψ1|Ô|Ψ1〉 andO2 = 〈Ψ2|Ô|Ψ2〉. Here,
we deliberately ingore the obvious exception and
special situation of all observables which happen
to be degenerate.

(iii) A trained statistical model predicts any observable
O solely based on descriptor input d leading to

identical predictions Opred
1 = Opred

2 . In the limit
of infinite training data, these predictions will be
exact, implying O1 = O2, in contradiction to (ii).

Consequently, non-unique descriptors can yield absurd
results for any observable. In other words, artificial de-
generacies in the descriptor imply prediction errors that
can not be remedied through addition of more training
data. As such, non-unique descriptors defy the very idea
of using ML in quantum mechanics.

Uniqueness up to invariances is necessary, but not suf-
ficient for the design of a good descriptor. Consider the
case of the invariant degrees of freedom, for which a man-
ifold of unique descriptors could be constructed: Descrip-
tors which depend on rotations, translations, and nuclear
permutations could in principle be used, the obvious ex-
ample being the 4N -dimensional vector with four entries
corresponding to nuclear charge and three Cartesian co-
ordinates, Zxyz. For example, translational invariance
could be imposed by including shifted copies of Zxyz
vectors in the training set. While representations of in-
ternal degrees of freedom, such as atom-atom distance
matrices or the Z-matrix, popular in quantum chemistry
communities, encode rotational and translational invari-
ances, they still suffer from lack of nuclear permutational
invariance. It is possible to obtain invariance with re-
spect to nuclear permutation by simply representing each
molecule not by one but rather by a set of Zxyz vectors,
each vector containing the same elements but in different
order (see Ref. 46 for a successful application of this idea).
However, in general such descriptors lead to substantial
overhead for the statistical learning, since in order to ob-
tain a transferable ML model, the training set would have
to be constructed (and extended) to explicitly reflect all
these invariances. Furthermore, the model’s transferabil-
ity would also be inherently limited to those ranges of the
redundant degrees of freedom that have been covered in
training. Also, when it comes to measuring similarity be-
tween descriptors of two molecules (the ultimate feature
of any ML model) absence of translational, rotational,
and nuclear permutation invariance can aggravate align-
ment problems, with multiple minima, and numerically
difficult and challenging optimization problems, as re-
cently reviewed by Zadeh and Ayers47. Another reason
for aiming to remove all invariances can be given by anal-
ogy to the definition of the property. In the case of the
electronic Schrödinger equation, position and orientation
of the external potential in the Hamiltonian are arbitrary,
and the external potential, a sum over all nuclei, is per-
mutationally invariant. Since the descriptor is meant to
represent the independent variables in the Hamiltonian,
it suggests itself that it be invariant with respect to all
the redundant degrees of freedom. Finally, absence of
invariance with respect to nuclear permutations might
also become cumbersome for modeling the energy when
it comes to simulation regimes in which Heisenberg’s un-
certainty principle applies to atoms, such as collisions at
high temperature, and when atoms of the same type and
weight can become indistinguishable. We conclude that a
lack of invariances can present severe challenges in prac-
tice, it appears therefore desirable to map all invariant
structures to the same descriptor, i.e., for the descriptor
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to obey all invariances. The challenge consists of remov-
ing as many of these redundant degrees of freedom as
possible, without losing uniqueness, i.e. without turning
the First principles descriptor into a Coarsened de-
scriptor. Below we will encounter an example for a coars-
ened descriptor (FD) that meets all invariances but has
lost uniqueness [see Eq. (6) and Fig. (2)].
We reiterate that the uniqueness vs. invariance issue

is strongly dependent on property. For example, at-
omization energies of stereo-isomers, calculated within
non-relativistic Born-Oppenheimer-approximated time-
independent electronic structure theory, do not violate
parity and are therefore also invariant with respect to
choice of enantiomers48. If the goal was to also account
for parity-violating effects in the potential energy, the
descriptor would have to be enantio-selective.

Desirable properties

The descriptor’s size-extensive and symmetry behavior
is also relevant. In analogy to the external potential in
Schrödinger’s equation, atoms or groups that are sym-
metric should contribute in equal ways to the descriptor;
and changes in system size should lead to corresponding
changes in the descriptor (e.g., its size or range of compo-
nent values). Another important feature of a descriptor
is its completeness, or global nature, meaning that it en-
codes the whole of a compound, as opposed to only a local
part of it. Local descriptors in terms of expansions over
atomic contributions were successfully used with neural
networks49 and kernel ridge regression17,36 to learn po-
tential energy hypersurfaces and forces across configura-
tion space, and, for enhanced sampling using molecular
dynamics. While local descriptions form the basis for
linear-scaling electronic structure software, and might be
appropriate for some properties (e.g., properties of atoms
in molecules, such as nuclear magnetic resonance chemi-
cal shifts or atomic forces) and systems (e.g., insulators
and semi-conductors where the electronic “nearsighted-
ness principle”50 can be exploited), this can not be as-
sumed in general, and might be limiting for energies of
long-range electron/phonon coupling, electron transfer,
or metals.
Other desirable features of descriptors include a closed

and analytic form for analysis and rapid evaluation, dif-
ferentiability (with respect to nuclear charges and coor-
dinates) to account for response properties and use of ad-
vanced learning techniques, uniform length for finite sets
of compounds to conveniently compare molecules that
differ strongly in size (number of atoms), and, a func-
tional form that can cope well with all the various ranges
relevant to physical chemistry, i.e. nuclear charges rang-
ing from 0 to ∼100, and interatomic distances ranging
from tenths to dozens of Å (or even a thousand Å in the
case of more exotic molecules51).
An overview of crucial and desirable properties is given

in Table I for various relevant descriptors, including Sig-

TABLE I. Properties of various descriptors including Sig-
nature (σ) 20, nuclear charges and Cartesian coordinates
(Zxyz), Coulomb matrix (CM), diagonalized CM matrix
(Eig(CM))19, and the radial distribution Fourier series de-
scriptor (FR) introduced here. N denotes number of atoms.
The upper part contains requirements used for the design of
FR. X and ¬ indicate whether a requirement is fulfilled or
not.

Property σ Zxyz CM Eig(CM) FR

Unique X X X ¬ X

First principles ¬ X X X X

Transl. invariant X ¬ X X X

Rotat. invariant X ¬ X X X

Index. invariant ¬
a

¬ ¬ X X

Differentiable ¬. N.A. X X X

Symmetry X ¬ X X X

Size extensive X X X X X

Complete/global ¬
a

X X ¬ X

Dimensionality N.A. 4N (N2
−N)/2 N m b

Analytical X X X X X

Uniform length ¬ ¬ ¬ ¬ X
c

Variable ranges X X X X X

a unless taken to full height h = N .
b m ≥ (N2 −N)/2 being the number of grid elements required
for discretizing the largest interatomic distance

c If damped by a Gaussian

nature (σ)20, nuclear charges and Cartesian coordinates
(Zxyz), Coulomb matrix (CM), diagonalized CM ma-
trix (Eig(CM))19, and the Fourier series of atomic radial
distribution functions (FR), introduced here. CM , re-
cently introduced19, satisfies many of the aforementioned
requirements, but not all. In particular, it lacks invari-
ance with respect to nuclear permutation (fixed in prac-
tice by sorting atom indices with respect to the norm
of it’s rows or columns), and its dimensionality scales
quadratically with number of atoms. We note that the
dimensionality listed in Table I, however, is a rather for-
mal construct: The (N2 −N)/2 entries in the Coulomb
matrix are not independent variables. This statement is
clearly also true for the m grid-points representing “di-
mensions” of the FR descriptor.

Another aspect is the smoothness of the property as a
function of the descriptor. Smoothness is a prerequisite
for machine learning (to enable meaningful selection from
the infinitely many models that are compatible with the
training data), related to regularization. However, the
function’s smoothness might vary along different direc-
tions in descriptor space (as an example, consider lig-
and binding, where steric constraints of the host might
cause abrupt changes in affinity upon certain geometri-
cal changes of the ligand, as opposed to more gradual
changes not conflicting with the host’s geometry, e.g.,
“magic methyls”, or, more generally, “activity cliffs”52).
Reducing the models smoothness requires more training
data than necessary in smooth data regions, whereas in-
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creasing the models smoothness reduces prediction accu-
racy in data regions with more rapid changes. A potential
solution might be models with local smoothness 53.
In the following we discuss the sequence of steps that

has led us to the FR descriptor which meets all the re-
quired and desired features listed in Table I, i.e. (i) first
principles and nuclear permutation invariance, (ii) trans-
lational invariance, (iii) rotational invariance and mirror
symmetries (Euclidean symmetries), (iv) uniqueness, and
(v) differentiability.

B. First principles Ansatz: The external potential

The first Hohenberg-Kohn theorem shows that the
electron density n(r) of a given system, as determined
by its external potential v(r) through application of the
variational principle, is as unique as its electronic wave-
function Ψ(r) obtained through solution of Schrödinger’s
equation45. After application of the variational principle
(yielding the electron density that minimizes the energy),
the total potential energy is commonly given as an inte-
gral containing electron density and external potential,

E[n(r)] = Fee[n(r)]−

∫

dr n(r)v(r) +
1

2

∑

IJ

ZIZJ

|RI −RJ |
,

(1)

with Fee the universal functional encoding all contri-
butions to energy coming from electron-electron inter-
actions, the second term representing the Coulomb at-
traction between nuclear charges and electrons, and the
last term corresponding to the nuclear Coulomb repul-
sion between all atoms. The total potential energy of any
molecule is therefore determined, independent of transla-
tions, rotations, or nuclear permutations, determined by
its unique electron density.
The electron density can be viewed as a “quantum”

molecular descriptor, used to predict molecular energies
through the map n(r) 7→ E. Already three decades ago,
Carbó et al. proposed to use the overlap integral of elec-
tron densities of different molecules to quantify molecular
similarity.54 In fact, the electron density is already used
as a descriptor in practice when density functionals are
trained empirically to reproduce the energies of a train-
ing set. If the electron density were not unique, density
functional theory as we know it would not exist. The
Hohenberg-Kohn theorem in this sense underscores the
importance of the descriptor’s uniqueness when it comes
to the training of potential energy surface models.
The external potential, conversely, is in a unique re-

lationship with atomic Cartesian coordinates {RI} and
nuclear charges {ZI}, v(r) =

∑

I ZI/|r − RI |. Due to
its translational and rotational dependence, however, the
external potential itself does not qualify as a promising
descriptor. In a first step we replace the system’s rep-
resentation in form of its external potential by a model
of nuclear charge densities, namely a sum of Gaussians

located at atomic coordinates with atom type-specific
heights ZI ,

P (r) =
∑

I

ZIe
−a|r−RI |

2

, (2)

where the sum runs over all N atoms in the molecule, and
a is a global parameter for all atoms and all molecules,
for now simply fixing the nuclear width for all atoms in-
dependent of type. Note that a could be defined in an
atom-type specific way, and that P does no longer inte-
grate to Np, the total number of protons present in the
system, except for infinitely small width of the Gaussians.
Similar to Gaussian type orbitals as a basis for molecu-
lar orbitals, we thereby deliberately forego any physical
non-Gaussian like features in favor of computational con-
venience. Note, however, that P (r) is still in a one-to-one
relationship with the external potential, and that it is still
atom index invariant.

C. 3-D Fourier transform

An appealing characteristic of using plane wave ba-
sis sets in electronic structure calculations is their in-
variance with respect to atomic position (translational
invariance). In contrast to atomic basis sets, Pulay
forces and basis set superposition errors, i.e., additional
force terms due to basis set incompleteness, can be
avoided, which makes the implementation of geome-
try optimization or molecular dynamics methods more
straight-forward. Analogously, we can remove transla-
tional degrees of freedom of a charge distribution by
changing to the Fourier frequency domain55. The Fourier
transform of the Gaussian charge distribution,

F(P ) =
1

(2a)3/2
e−

ω
2

4a

∑

I

ZIe
iωT

RI , (3)

can be multiplied with its conjugate to yield a real func-
tion in the three dimensions of the Fourier domain ω,

F (ω) =
1

(2a)3
e−

ω
2

2a

∑

J,I

ZIZJ cos[ωT (RI −RJ)], (4)

after simplification using Euler’s formula. Eq. (4) is a
translation-invariant representation of the nuclear charge
distribution in Eq. (2). F (ω) can be viewed as a sum over
all elements of a symmetric atom-atom pairwise matrix
M with elements

MIJ = ZIZJ cos[ωT (RI −RJ)]. (5)

This matrix is reminiscent of the Coulomb matrix19. At
ω = 0 and for a = (1/4)1/3, its diagonal elements be-
come identical to those of a preliminary version of the
Coulomb matrix, 0.5 Z2

I , the potential energy of the hy-
drogenic atom. While Eq. (4) has appealing features,
it still lacks rotational invariance. Furthermore, prelim-
inary tests with machine learning models of atomiza-
tion energies based on this descriptor, after alignment
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of all molecule pairs in the Fourier domain, resulted
in rather disappointing predictive accuracy for out-of-
sample molecules.

D. 1-D version

To remove rotational dependence, we project the
Fourier transform (Eq. 4) onto one dimension by replac-
ing the argument of the cosine function by the scalar
product of a frequency and the interatomic distance:

FD(r) =
1

(2a)3
e−

ω
2

2a

∑

J,I

ZIZJ cos[ω × rIJ ], (6)

where rIJ = |RI−RJ | is interatomic distance. Eq. 4 is a
double sum over atoms that maintains invariance with re-
spect to nuclear permutation, translation, and rotation.
Fig. 1 illustrates the meaning of this ”hack” for various
interatomic distances of H2, LiH, and HF. Changes in
interatomic distances induce changes in oscillatory fre-
quency, while changes in elemental composition affect
overall amplitude. Differences in atomic numbers within
any of these three diatomics are expressed through the
width of the oscillatory band, i.e., the larger the differ-
ence, the narrower the band. The Gaussian prefactor
dampens the descriptor towards zero for large frequen-
cies.

E. Uniqueness

The 1-D Fourier fingerprint (Eq. (6)) is invariant with
respect to translations, rotations, and nuclear permuta-
tions. However, it is no longer unique due to the in-
formation lost in modifying the argument of the cosine.
This can easily be seen for the task of distinguishing ho-
mometric molecules, i.e., molecules with identical sets of
interatomic distances.57 Note that while in Ref. 39 it is
mentioned that all enantiomers are homometric, there ex-
ist also homometric compounds that are not enantiomers.
While potentially of interest for the ML modeling of par-
ity violation48, for the electronic Schrödinger equation
within the Born-Oppenheimer approximation any mir-
ror symmetries (leading to enantiomers) represent only
redundant degrees of freedom, which need not be distin-
guished by the descriptor. However, all pairs of homo-
metric molecules that are not enantiomers should be dis-
tinguished by the descriptor. An example of such a com-
pound pair, proposed in Ref. 56, is on display in Fig. 2.
Note that any two homometric compounds would have
exactly the same potential energy if modeled by an ex-
clusively pair-wise interatomic potential, no matter how
well parametrized to effectively account for many-body
effects. As such homometric compound pairs exemplify
the importance of many-body effects in interatomic po-
tentials, effects recently shown to be sizeable not only
for covalent bonding, but also for intermolecular van der
Waals forces23,58.

Homometric compounds do not differ by the number
of “bonds” (interatomic distances), but rather by their
distribution: In the rectangular compound all four atoms
have a short, medium, and long bond, (s,m, l). In the
triangular compound, two atoms (lower corners of the
triangle) have the same distribution of bonds (s,m, l),
but the lower middle and upper atoms have different dis-
tributions (s,m, s) and (l,m, l). In Ref. 59 it has been
shown that any simplex can be represented without loss
of information, i.e., uniquely, using such distributions of
distances between vertices.
A continuous version of such a distribution of inter-

atomic distances can be obtained by replacing the scalar
ω×rIJ argument in the cosine in the Fourier series by an
atomic radial distribution function RDFI for each atom
I,

FDR(r) =
1

(2a)3
e−

r
2

2a

∑

I

Z2
I cos[RDFI(r)]. (7)

In other words, the 1-D frequency domain ω has been
turned into a 1-D real space interatomic distance do-
main. Any functional form of atomic radial distribu-
tion functions, numerical or analytical such as “softened”
Coulomb potentials

∑

J ZJ/(|r − rIJ |+ 1), or Slater (or

Laplace) functions
∑

J e−α|r−rIJ | can be used. Other
smoothening functions, such as Gaussian radial distribu-
tions, were already proposed as descriptors in the past
(See Refs.17,36,60–62). To the best of our knowledge, how-
ever, they were not used as arguments in Fourier series
expansions.
We have used ML models to test several variants of

radial distribution functions. The Gaussian radial distri-
bution function,

∑

J Zn
J e

−b(r−rIJ )
2

/Zm
I , included in the

Fourier series in the following form,

FR(r) =
∑

I

Zl
I

(

cos

[

Zm
I

∑

J

Zn
J e

−b(r−rIJ )
2

]

− 1

)

(8)

has resulted in the best performance. Here, we have omit-
ted the Gaussian prefactor from Eq. (7) to keep the de-
scriptor complete, notwithstanding that it could still be
used to obtain finite length, or to localize the descrip-
tor. Parameters l,m, n, b ∈ R are global hyperparameters
which we optimize via cross-validation when training the
machine learning model. Further flexibility could still be
introduced by making these parameters atom type ZI -
dependent. In this study, however, we have not investi-
gated these degrees of freedom.
FR is a fingerprint as a function of interatomic dis-

tance. It decays to zero for all interatomic distances
larger than the molecule. The linear independence of the
atomic terms in the Fourier summation, measurable by
the Wronskian, guarantees that no atoms’ RDF’s linearly
add (or cancel) each other—unless they all have exactly
the same radial distribution. As such, the Fourier series
introduces the linear independence of the radial distri-
bution around each atom I. Only if all atoms in two
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FIG. 1. Illustration of Fourier descriptor FD (units of charge squared, Eq. (6)) for three diatomics, H2 (left), LiH (center),
and HF (right) for five interatomic distances r. The hyperparameter a is set to 1. Note that for r = 0, FD corresponds to
(Z2

1 + 2Z1Z2 + Z2
2 )/8.

FIG. 2. LEFT: Sketch of two homometric molecules (same atom types, same sum of interatomic distances) from Ref. 56.
The atomic distribution of distances (s short, m medium, l long) are indicated. The sorted Coulomb matrix can distinguish
these two molecules38,39,57. s and l are set to 1 and 2 Å, respectively. RIGHT: Illustration of Fourier series with Gaussian
radial distribution function based descriptor R (according to Eq. (7)) for the homometric, rectangular (r) and triangular (t),
geometries displayed in Fig. 2.

molecules have the same RDF will the two molecules
yield the same FR and therefore represent the same point
on the potential energy surface. Note that in Ref. 36 an
angular Fourier series-based descriptor that sums over
individual angles (as opposed to distributions of angles)
has been investigated. This descriptor, however, has been
introduced in the context of modeling the potential en-
ergy surface of a single compound, not for training across
CCS.

The uniqueness of FR can be recognized from a
Gedankenexperiment: Imagine two FRs corresponding
to two molecules. In order for them to be the same,
for each atomic term in the Fourier sum of one molecule
there has to be an identical atomic term in the Fourier
sum of the other molecule. This is only possible if the
corresponding atoms in the respective molecules happen
to have the same RDFI (see below Eq. (8) for examples
of atomic RDF s). Now, only if for each atomic RDFI

in one molecule there is an identical atomic RDFI in the
other molecule will the two FR be the same, in which
case the two molecules are identical (see also Boutin and
Kemper59).

III. RESULTS

A. Organic molecules

To illustrate the Fourier series of radial distribution
function descriptor for realistic systems, Fig. (3) features
FR for three iso-electronic organic molecules, drawn at
random from the GDB data base63. The nature of a
molecular fingerprint, reminiscent of a spectrum, be-
comes evident for these more complex molecules. Com-
pound (B) has a different stoichiometry while (A) and
(C) are constitutional isomers, differing merely in their
covalent bonding pattern. Clearly, the fingerprints in
Fig. (3) reflect the differences in molecular structure, in
particular for larger distances. For smaller r, FR can
more easily be understood. For very small r they look
very similar, the first peak at r < 0.5 Bohr is due to
the stoichiometry (nuclear charges) only, with (B) being
slightly off from the FR of (A) and (C) which are super-
imposed. The subsequent three peaks (at 2 to 2.5 Bohr)
reflect contributions from the first neighbor shell in the
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FIG. 3. FR fingerprints [Eq. (8)] with optimized parameters
l, n,m, b (from 3k ML model) for three iso-electronic organic
molecules (A), (B) and (C) with seven atoms (not counting
hydrogens), drawn at random from the GDB-7 data base63.
White, blue, and black atoms denote hydrogen, carbon, and
nitrogen, respectively. (A) and (C) are constitutional isomers
while (B) differs in stoichiometry.

atomic radial distributions, being also very similar, albeit
not identical, for all three molecules with single, double,
cyclic, or even triple bonds (for (A)) between CH, NH,
CC, CN, and NN atom pairs. Note that the gap be-
tween stoichiometry and structural peaks in Fig. (3) can
be expected to be conserved throughout CCS since there
are no covalent bonds that are shorter than bonds formed
with hydrogen. The fingerprints shown correspond to op-
timized hyperparameters settings in Eq. (8), alternative
parameter combinations would lead to different appear-
ance.

B. Machine Learning models

Any inductive approach requires us to measure dis-
tances in terms of input variables. In order to com-
pare chemical compounds, we use the Euclidean norm
between the FR descriptors of the two compounds as a
proper metric. More specifically, we consider the inte-
gral over the squared differences of two FR-descriptors
corresponding to molecules i and j,

Dij(r
max
IJ ) =

√

∫ rmax

IJ

0

dr |FRi(r)− FRj(r)|2.

In our implementation, we discretized the FR descrip-
tor and employed an optimal value of 0.1 Bohr for the

grid spacing, dr. Note that for limrmax

IJ
→∞ Dij converges

for any molecular pair. Here, we used 20 Bohr as the
integration upper bound, rmax

IJ , for all molecules.

FIG. 4. Mean absolute error (MAE) and root mean square
error (RMSE) for out-of-sample predictions of atomization
enthalpies at T = 298.15 K, as a function of training set size,
N , for FR and sorted CM descriptor. Training and test sets
consist of enthalpies of atomization at T = 298.15 K of the
134 k molecules in the GDB-9 data base63, calculated at the
B3LYP level of theory34. The inset shows the corresponding
scatter plot for the 10k machine for predicted (ML) versus ac-
tual (DFT) enthalpies of atomization in kcal/mol using sorted
CM (black) and FR (red) descriptors.

In order to have an idea of the FR’s performance of a
descriptor, we have built ML models using the enthalpies
of atomization for 134 k organic molecules taken from the
GDB-17 database, recently published in Ref. 34. The
GDB data base represents an exhaustive list of all organic
molecules that can be constructed from up to 17 heavy
atoms, containing as atom types C, N, O, F, S, Cl, Br, or
I and saturating valencies with hydrogen atoms64,65. All
GDB molecules are expected to be stable and synthet-
ically accessible according to organic chemistry rules63.
We have drawn at random training sets of sizes 1 k, 2 k,
3 k, 4 k, 5 k, and 10 k.
We then solved the kernel ridge regression problem for

the given training sets following the recipes set out in
Ref. 66. The solution yields the coefficients {αi} in the
ML model of the atomization enthalpy H with FR as an
input for any out of sample molecule j,

H(FRj) =
N
∑

i

αik(Dij). (9)

Similarly, we have also trained ML models of the sorted
Coulomb matrix CM for the same training and testing
sets. In the case of FR, a Gaussian kernel function k
with Euclidean norm proved to lead to the best predictive
performance. By contrast, in the case of CM we used
the Laplacian kernel function with a Manhattan norm,
following the findings in Ref. 66.
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Resulting mean absolute errors (MAE) and root mean
square errors (RMSE) as a function of training set size
N , as measured on the remaining molecules in the 134 k
set, is shown for both models in Fig. 4. These error
estimates have been obtained for out-of-sample predic-
tions (not part of training set), using noise-level and
length-scale hyper-parameters optimized through cross-
validation runs on training sets. In the case of FR, also
parameters b, l,m, n in FR [Eq. (8)] have been optimized
using cross-validation for training set sizes N = 1k, 2 k
and 3 k. We have found that the training set size has rel-
atively little influence on these parameters, and we have
therefore kept them fixed for all training set sizes larger
than 3 k. For the set of N = 3k, optimal parameters
b, l,m, n amount to 7.0052, 0.0852, 1.2395, and -0.1626,
respectively. Note for the construction of FR that these
parameters refer to interatomic distances in Bohr.
The systematic decay of the mean absolute error with

increasing training set size (see Fig. 4) is encouraging.
When compared to the current state of the art, the
sorted Coulomb matrix, the FR descriptor starts off at
a slightly smaller MAE, and significantly smaller RMSE,
for a training set size of 1 k. Up to 2 k, CM and FR
model errors decay with similar off-set and speed until
they reach an accuracy with MAE ∼11 kcal/mol, an ac-
curacy similar to the early generalized gradient approx-
imated density functionals in Kohn-Sham DFT67. For
larger training set sizes the MAE and RMSE of the FR
based model continue to decrease, however at a decid-
edly slower learning rate. The CM -model’s errors, in
contrast, continue to decay significantly faster. A pos-
sible explanation for the FR’s change in learning rate
could be that as the model’s error passes 11 kcal/mol re-
maining energy differences are dominated by differences
in geometry which, due to its high frequency oscillatory
nature, the FR descriptor possibly captures only in a
less efficient manner than the Coulomb matrix. These
first results, however, do not yet enable us to conclu-
sively assess the FR’s performance. Merely due to some
inherent selection bias of the employed data sets the ML-
model’s performance using one descriptor might look fa-
vorable over the other. Here, for example, we used only
relaxed geometries. When attempting to model reaction
barriers, however, the performance could possibly be in-
verted and lead to a different outcome. In any ways, the
presented results do amount to numerical evidence sug-
gesting that for the modeling of atomization enthalpies
further improvements are necessary before the FR de-
scriptor can be considered competitive with the sorted
CM matrix. Further improvements could possibly be
achieved by making the FR hyperparameters atom type
ZI -dependent.

C. Computational details

Hyperparameters were estimated through 5-fold cross
validation (CV) on training set of size N . Accordingly,

N training molecules were distributed at random into
5 bins, each containing N/5 molecules. Each bin was
used once as the holdout set, with the remaining 4 bins
as training set, and hyperparameters were optimized by
minimizing the MAE for the holdout-bin. Globally op-
timal hyperparameters were obtained by taking the me-
dian of the 5 folds. The final kernel with globally opti-
mized hyperparameters was subsequently used to predict
atomization enthalpies for the 134 k−N out-of-sample
molecules which never had a part in training.

IV. CONCLUSIONS

A set of fundamental physical arguments has been in-
troduced as to what are crucial and desirable proper-
ties of descriptors that can be expected to yield reli-
able performance in intelligent data analysis (IDA) meth-
ods when applied to the modeling of quantum chemical
properties of molecules. Starting from the external po-
tential in the electronic Hamiltonian, and using Fourier
transforms and radial distribution functions, we have in-
troduced an intramolecular distance based fingerprint-
like descriptor, FR, corresponding to a Fourier series of
atomic radial distribution functions. The FR is unique
for any molecular compound (i.e. chemical composition
and geometry), and invariant with respect to translation,
rotation, and atom indexing. Furthermore, FR is differ-
entiable, not only with respect to nuclear displacement
for geometry optimization or molecular dynamics, but
also with respect to “alchemical” changes, i.e. change
in nuclear charges31,68–71, potentially useful for compu-
tational materials design72–74. As such, this descriptor
exhibits all the crucial and desired properties listed in Ta-
ble I. The FR descriptor can be reduced to N×(N−1)/2
dimensionality if it is evaluated only at those r-values
that correspond to interatomic distances in a compound.
A Gaussian pre-factor can be used to damp the descrip-
tor to reduce the dimensionality further and to introduce
locality. Results from preliminary ML models, yielding
promising predictive power for out-of-sample compounds,
suggest that the FR descriptor, or variants thereof, is
likely to be well suited for the generic and systematic
construction of ML models that are valid for all regions
of the potential energy surface of novel compounds, as
long as trained across sufficiently representative subspace
of CCS. The current FR-performance, however, is not
(yet) on par with the sorted Coulomb matrix. Note that
the FR exclusively represents the external potential of a
molecule, not the molecule’s charge. Differences in the
latter can easily be added to FR distances through the
use of more sophisticated metrics, such as normalized Eu-
clidean, or Mahalanobis, distances. A more comprehen-
sive assessment, also including non-equilibrium geome-
tries on the same potential energy surfaces, will be sub-
ject of future work.
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MATCH 54, 163 (2005).

26 G. Schneider, Nature Reviews 9, 273 (2010).
27 K. Burke, (2011), ”Any ab initio method must either be

void of empirical parameters, or at least have parameters

that do not depend on the system being studied.” Oral
communication, IPAM, UCLA.

28 T. Helgaker, P. Jørgensen, and J. Olsen, Molecular
Electronic-Structure Theory (John Wiley & Sons, LTD,
2000).

29 Y. Zhao and D. G. Truhlar, Acc. Chem. Res. 41, 157
(2008).

30 J. Ma, A. Michaelides, and D. Alfé, J. Chem. Phys. 134,
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33 A. Pérez, M. E. Tuckerman, H. P. Hjalmarson, and O. A.
von Lilienfeld, J. Am. Chem. Soc. 132, 11510 (2010).

34 R. Ramakrishnan, P. Dral, M. Rupp, and O. A. von Lilien-
feld, Scientific Data 1, 140022 (2014).

35 J. A. GRANT, M. A. GALLARDO, and B. T. PICKUP,
Journal of Computational Chemistry 17, 1653 (1996).
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