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Modeling electronic quantum transport with machine learning
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We present a machine learning approach to solve electronic quantum transport equations of one-dimensional
nanostructures. The transmission coefficients of disordered systems were computed to provide training and test
data sets to the machine. The system’s representation encodes energetic as well as geometrical information
to characterize similarities between disordered configurations, while the Euclidean norm is used as a measure
of similarity. Errors for out-of-sample predictions systematically decrease with training set size, enabling the
accurate and fast prediction of new transmission coefficients. The remarkable performance of our model to
capture the complexity of interference phenomena lends further support to its viability in dealing with transport
problems of undulatory nature.
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I. INTRODUCTION

Substantial advances in computational science capabilities
have opened new research frontiers, greatly expanding the
impact of the material sciences community’s work. The
unrelenting drive towards the use of atomistic simulation for
the routine generation of large data sets is obtaining great
interest [1]. Large-scale efforts such as the United States
Materials Genome Initiative [2] are aiming for the discovery
and development of new compounds thanks to increasingly
faster and cheaper computational resources [3]. In parallel,
the development of data mining techniques for intelligent
interrogation of large databases are succeeding in recognizing
meaningful patterns in structured data [4,5]. It still remains an
open question, however, as to how to integrate into explicit
structure-property relationships the knowledge hidden, yet
implicitly present, in the data. Machine learning (ML), the
ability of computer algorithms to comprehend data and infer
new results for new situations, is gaining importance as a
tool of choice to analyze the growing and complex data
generated in many scientific and engineering contexts [6,7].
By appropriately estimating pairwise distances in a data set,
supervised learning techniques directly allow for the resolution
of computationally expensive sets of equations by making
sense of accumulated knowledge. Within atomistic simula-
tion, ML already demonstrated its usefulness in predicting
outcomes from known patterns and inferring new knowledge.
Examples include chemical binding [8], electronic levels [9],
and one-dimensional orbital free density functionals [10].

In this paper we use ML to develop a new and alternative
ansatz for modeling transmission coefficients of disordered
one-dimensional (1D) device channels. This resulting tech-
nique allows us to estimate the conductivity of a large
data set of model device channels accurately, with very
moderate computational effort. The model introduced predicts
a real-valued function (electron transmission) for independent
values (electron energy) based on training for examples that
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were previously constructed by randomly selecting a set
of disordered systems. We validate the expected computed
function with a second set of reference results. The ML
model is able to capture the complex behavior of reflective
electron waves canceling each other as a consequence of
destructive interference upon multiple reflections between
channel impurities. As such, this statistical model retains the
underlying quantum features of the training data, and projects
them into the validating set with high accuracy.

II. METHOD

We simulate electron transport for a conducting channel
model, which is assumed to be sufficiently transferable. The
system consists of an infinite-long hexagonal network of
single-orbital atoms (simple model for a graphene nanoribbon)
divided in three regions [see Fig. 1(a)]. A central region
(channel) exhibiting geometrical or compositional disorder
is coupled to the left and right to two semi-infinite and
multitransverse mode ballistic leads. All backscattering phe-
nomena occur in the channel, which matches the leads with
reflectionless contacts.

A standard first-neighbor tight-binding Hamiltonian
parametrizes the energetic description of the disordered sys-
tem,

H =
∑

i

εi |i〉〈i| +
∑
i,j

γij |i〉〈j |, (1)

where εi is the on-site energy of site i, and γij is the hopping
element to a nearest-neighbor site j in the lattice. In order
to analyze the two-terminal transport through the conducting
system, we use the Landauer-Büttiker (LB) approach [11–13]
that provides a conceptually simple framework to describe the
physics of electron coherent transport at the nanoscale. In a
two-probe system, the conductance is quantized in G0 = e2/h,
the quantum unit of conductance, and reads:

G(E) = G0T (E) = G0

N∑
n=1

Tn(E), (2)
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FIG. 1. (Color online) (a) schematic diagram of the modeled
system. A hexagonal network of atoms divided in three parts: left
and right leads, and a central region containing scattering centers. (b)
and (c) show the transmissions of defectless channels (black lines),
and of 8000 defective configurations for five spatially fixed scattering
centers with the parameters in inset (green lines). Red lines indicate
the average transmissions, and vertical blue lines the energies at which
the machine has been trained for results in Fig. 2 and Fig. 3.

where the transmission coefficients T (E) can be expressed as a
sum over all the N transmitting modes at energy E, and give the
probability of an electron to be transmitted from one electrode
to the opposite when it quantum mechanically interferes with
the channel impurities. We evaluate the retarded (advanced)
Green’s functions of the system within the standard Green’s
function formalism,

G±(E) = {EI − H − �±
L (E) − �±

R (E)}−1, (3)

where �±
L(R)(E) are the self-energies, which describe the

coupling of the channel to the left (−) and right (+) electrodes.
These quantities are related to the transmission factor by the
relation [14],

T (E) = tr{�L(E)G+(E)�R(E)G−(E)} (4)

with �L(R)(E) = i{�+
L(R)(E) − �−

L(R)(E)}. We have imple-
mented and applied this framework for the generation of the
various test and training sets outlined below.

An efficient supervised learning scheme relies upon a
proper definition of a measure of similarity between systems.
Probably the most crucial step consists of finding a suitable
representation, also known as a descriptor [15], which should
fulfill certain requirements such as symmetry invariance,
uniqueness, or differentiability. Our electron transport model
relies on the following square matrix M as a descriptor,

Mij =

⎧⎪⎨
⎪⎩

εi ∀ i = j,

γij ∀ i adjacent j,√
dij otherwise,

(5)

where dij = |Ri − Rj | is the distance between two sites. The
dimensionality of M is the number of atoms in the channel.

Invariance with respect to site indexing is enforced by sorting
the atom site indices according to the norm of the rows
of M. Note that M encodes the system’s identity in terms
of energetic descriptions and geometrical configurations, the
same information that also defines the Hamiltonian entering
the Green’s function formalism.

For the ML model we rely on the standard Laplacian kernel
model that has already been used in the context of a wide range
of applications [16]. This ML model estimates the transmission
T at energy E for a system with descriptor MJ as a sum of
weighted exponential functions,

T est(E,MJ ) =
Nt∑

I=1

αI (E)e− DIJ
σ , (6)

where Nt is the number of samples in the training set, and
where DIJ = |MI − MJ |, i.e., the Euclidean norm between
two channels I and J . The regression coefficients {αI (E)},
and length scale σ (E), are obtained at discrete values of E

through kernel ridge regression. The direct solution for the
coefficient vector α can be obtained through inversion of the
training set’s kernel matrix

α(E) = [K − λI]−1Tref(E), (7)

where K is the kernel matrix with elements KIJ = e−DIJ /σ ,
and where Tref(E) is the vector of the training set’s reference
transmission coefficients at E. Since the employed reference
data is noise free, the regularization parameter λ, ordinarily
used to account for the noise in experimental data [16], has
been set to zero. The characteristic length yielding optimal
predictive performance of the model converged to σ ∼ 1000.
We have found little sensitivity with respect to variation of σ ,
and have therefore fixed it to σ = 1000 for all predictions made
in this study. It is worth pointing out that in Eq. (7) the kernel
matrix inversion is independent of E. Since σ is kept fixed this
implies that for a given training set of channel configurations,
only a single kernel matrix inversion is necessary to map out
the entire set of corresponding channel weights {αI (E)} as a
function of E.

We estimate the performance of resulting models for
predicting transmissions of out-of-sample systems by means
of the mean absolute error (MAE) as measured with respect to
corresponding reference transmissions

MAE(E) = 1

Nt

Nt∑
i=1

∣∣T est
i (E) − T ref

i (E)
∣∣, (8)

where T est
i (E) and T ref

i (E) are the respective predicted
[Eq. (6)] and reference [Eq. (4)] transmissions at a given
energy E.

III. RESULTS AND DISCUSSION

Transport calculations adopting the aforementioned
Green’s function formulation have been used to generate
several training and testing data sets. For all experiments, im-
purities have randomly been scattered along a channel formed
by repeating four times an armchair graphene nanoribbon unit
cell with seven single-orbital atom dimers across the ribbon
width.
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FIG. 2. (Color online) 2D histograms of correlated 2000 reference transmissions with machine-learning-based predicted values, for Nt =
8000 samples with five spatially fixed scattering centers and parameters εi = 0 and γij ∈ [−1.5, − 0.5]. Above each panel the energy E at
which the transmissions were computed, and the mean absolute error (MAE), are indicated. Insets show the histograms of the corresponding
{αI (E)} distributions.

A. First experiment

We have obtained ML results for a training set consisting of
Nt = 8000 different samples, all with the same five impurity
sites chosen at random, as also illustrated in Fig. 1(a). Hopping
terms of the impurities to their nearest neighbors have been
set randomly within the range γij ∈ [−1.5,−0.5]. For the
rest of sites in the leads and the channel, γij = −1. On-site
energies have been set to εi = 0 for all sites. The black line
in Fig. 1(b) illustrates the stepwise increasing transmission
of a defectless channel for increasing values of E in the
conduction band. Green lines show for defective channels the
transmission drop as result of the backscattering, and represent
the extent of the transmission variation for the considered range
of energy. For various discrete values of E, highlighted with
vertical blue lines in Fig. 1(b), we have trained a ML model
and tested its performance for 2000 out-of-sample defected
channels. Figure 2 shows the predictive performance in various
panels, each corresponding to a different energy value, in heat
histogram representation. Overall, the correlations between the
ML (predicted) and Eq. (4) (reference) results are remarkable,
with errors routinely scoring at less than 5% of the average
transmission coefficients. Notice that the accuracy of the model
varies as a function of electron energy, being the largest error at
E = 0.8 and 1 eV. This is also manifested by the corresponding
{αI (E)} histograms (insets of Fig. 2), which evince a direct
relation between the broadening of the computed coefficients
of Eq. (6) and the quality of the prediction. It is observed that
α varies smoothly as a function of E, pointing out that the
contribution of a given sample does not change abruptly as E

is tuned. This might help to improve the model’s accuracy in
the future through inclusion of derivatives of α with respect
to E.

The two peaks in MAE in Fig. 3(b) are clearly consistent
with the apparition of new transmission modes, which occur in
the vicinity of E = 0.4 and 0.8 eV. The wide variability of the
transmission coefficients from sample to sample at a resonance
energy and in the vicinity of a van Hove singularity hinder the
training process and, thereby, enhance the unpredictability.

This can be ascribed to the interference phenomena resulting
from the multiple reflections of electron waves with the
scattering centers, rendering T (E) strongly sensitive to both
the distance between impurities and the strength of γij . Notice
the linear decrease of the MAE with logarithm of training
set size for each E value, including those of more difficult
predictability.

B. Second experiment

Within the second experiment, we generated more complex
training and test sets introducing an additional source of
disorder. The scattering efficiency is enhanced by allowing the
εi of the impurities to take finite values. Figure 1(c) features

FIG. 3. (Color online) Linear drop of the mean absolute error
(MAE) as a function of the logarithm of the number of training
samples (Nt ), in (a) for εi = 0 and γij ∈ [−1.5, − 0.5], in (c) for εi ∈
[−13,0] and γij ∈ [−1, − 0.3], and in (e) with the same parameters
as in the latter after removal of 10% of the outliers. (b), (d), and (f)
show the MAE as a function of the energy for Nt = 8000 samples.
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the corresponding transmission profiles for εi ∈ [−13,0] and
γij ∈ [−1, − 0.3] for another training set with Nt = 8000
samples. Figure 3(c) illustrates again a linear drop of the
MAE with training set size. Despite the additional disorder,
the higher degree of localization induced by the activation
of the on-site energies leads to a significantly reduced MAE.
For larger Nt , however, both models converge to similar error
ranges. The E dependency of the MAE is moderated in this
case, exhibiting only a small peak at E = 0.8 eV, in the
close vicinity to a new transmitting mode onset. Because small
sample-to-sample variations may yield large differences in the
transmission, some training data may be difficult to classify.
This usually involves additional effort for the learning task,
either in debasing the performance, or in slowing down the
error decreasing with the training set size. A reduction of
the variation range through the removal of 10% of outliers
whose T (E) deviate most from the average supports this
surmise. Figures 3(e) and 3(f) show a significant improvement
of the predictive power with reductions in the MAE by up
to 50%.

C. Third experiment

Finally, we investigate the ML model resulting from a
training set with variable random positions of the scattering
centers in combination with random γij strength. Specifically,
we generated 100 samples with different random positions.
From each of these samples we generated 100 defected
configurations with γij ∈ [−1, − 0.7] randomly chosen for the
impurity sites, and γij = −1 eV for all other sites. εi has been
set to 0 throughout. Eight thousand out of the resulting 10000
channels have been selected at random to train our ML model,
and the remaining 2000 were used for out-of-sample testing.
The green lines of Fig. 4(a) feature the resulting transmission
coefficients for this training set. The resulting evolution plot

FIG. 4. (Color online) (a) Transmissions of Nt = 8000 defective
channels (green lines) with various γij strength and changeable
random positions. Red line indicates the average. (b) shows the MAE
as a function of the energy for the Nt samples. (c) Linear drop of
the mean absolute error (MAE) as a function of the logarithm of Nt

in (a).

of the MAE with Nt in Fig. 4(b) demonstrates a very good
correlation with the predicted results. Only in the proximity
of the resonance at E = 1 eV, however, the variation in T

becomes large, the MAE increasing by an order of magnitude
to ∼ 0.4. Despite such a large error, Fig. 4(c) clearly suggests
that even at the resonance energy a lower error can be achieved
through extension of the training set size.

Overall we have found that the error of the largest outlier in
this study does not exceed 50% of the corresponding reference
value. While such an error could be considered problematic
for a deductive, physics-based, model, it is less surprising for
a mere summation over weighted exponentials [Eq. (6)]. In
terms of usefulness, such large outliers can still be considered
acceptable in the context of virtual high-throughput screening
[1], which is aimed at producing ranked lists of promising
materials candidates for further in-depth study or experimental
characterization. Furthermore, the implementation of more
sophisticated ML techniques, currently used in active learning
[6], such as calculating the predicted variance along with any
transmission probability estimate, could be used in the future
to assign error bars to out-of-sample predictions, and to remedy
the issue through interactive and dynamic evolution of training
set composition.

IV. CONCLUSION

We have introduced a ML model for predicting electronic
quantum transmission coefficients as a function of electron
energy for one-dimensional channels. Our numerical results
suggest that the model is capable of integrating previously
computed transmission coefficient data into a simple and
efficient framework, and of inferring transmission coefficients
for new (out-of-sample) channels. The proposed descriptor has
proved to be highly efficient in encoding the defected channels’
identity. The remarkable performance of this ML scheme
when it comes to capturing the complexity of interference
phenomena lends further support to its viability in dealing
with transport problems of undulatory nature. Furthermore,
as follows from the different complexity of the equations
to solve, the ML model is dramatically less computationally
demanding than conventional models and, given a sufficiently
large training set of disordered channels, yields competitive
accuracy [17]. In summary, we have shown that nonlinear
statistical regression approaches offer promising alternatives
for solving the electron transmission problem in disordered
nanostructures.
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