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Analytical potential energy derivatives, based on the Hellmann–Feynman theorem, are presented for
any pair of isoelectronic compounds. Since energies are not necessarily monotonic functions
between compounds, these derivatives can fail to predict the right trends of the effect of alchemical
mutation. However, quantitative estimates without additional self-consistency calculations can be
made when the Hellmann–Feynman derivative is multiplied with a linearization coefficient that is
obtained from a reference pair of compounds. These results suggest that accurate predictions can be
made regarding any molecule’s energetic properties as long as energies and gradients of three other
molecules have been provided. The linearization coefficent can be interpreted as a quantitative
measure of chemical similarity. Presented numerical evidence includes predictions of electronic
eigenvalues of saturated and aromatic molecular hydrocarbons. © 2009 American Institute of
Physics. �doi:10.1063/1.3249969�

I. INTRODUCTION

The development of systematic approaches toward the
virtual engineering of chemical composition, attempting to
computationally identify compound candidates that meet a
set of specific desired property requirements, is a worthwhile
goal in general, and for pharmaceutical and materials re-
search in particular.1,2 Due to the large cardinal number of
chemical compound space �CCS� already simple enumera-
tion is computationally prohibitive, let alone attempts to pa-
rametrize and screen compounds for desired properties. This
motivated the development of more “rational” first principles
design methodologies3–5 that usually rely on electronic-
structure methods because composition, and thereby chemi-
cal bonding, must be varied frequently and freely. Within
conventional ab initio molecular dynamics �AIMD�, an ap-
proximate Schrödinger equation is solved and forces ob-
tained for a given compound in order to integrate classical
equations of motions for all ionic degrees of freedom.6,7

Analogously, one would like to extend the set of variables to
also include other molecules in order to systematically
sample CCS and obtain the desired compound as a statistical
mechanical expectation value.

Recently, important steps toward a continuous electronic
structure framework of CCS have been made that permit the
definition of energetic property gradients with respect to
variation in atomic numbers,8–11 or coefficients in linear
combinations of atomic potentials.12–16 Here, Hellmann–
Feynman derivatives17 in between any pair of isoelectronic
compounds are presented and numerically evaluated for an
energy difference, the highest occupied molecular orbital
�HOMO� eigenvalue. Unfortunately, due to the nonmonoto-
nous behavior of the HOMO eigenvalue in between two
compounds, the derivative can fail even qualitatively to esti-

mate the effect of compositional variation. Based on a lin-
earizing coefficient, an Ansatz is developed in this study that
circumvents this problem and that drastically improves the
ability to quantitatively predict changes due to alchemical
mutations without having to perform any self-consistency
calculation for the mutant. The presented results therefore
hold promise to become valuable for AIMD sampling of
CCS, for efficient gradient-based optimization algorithms in
CCS, or for more efficient computation of free energy differ-
ences through thermodynamic integration over alchemical
changes.18–23

II. METHODOLOGY

A. Transmutation

As frequently exploited for statistical mechanical com-
putation of free energy differences21 between compounds
based on thermodynamic integration,18 or free-energy
perturbations,24 any state function can reversibly be con-
nected through an order parameter, 0���1, usually
through linear interpolation of the two Hamiltonians. For the
potential energy, E, of any pair of compounds i and j,

E��� = E�Hij���� = E�Hi + � · �Hj − Hi�� . �1�

Since the electronic unperturbed Hamiltonian can only differ
in number of electrons, Ne, and nuclear charge distribution,
Z�r�=�INI��r−RI� �NI and RI being the atomic number and
position of atom I�,9 this interpolation can be performed in
the plane spanned by Ne and Z�r� �see Fig. 1�.

Changes in Ne have already been used to study redox
processes in gas, biological, and liquid systems,9,23,25 based
on conceptual DFT and the energy derivative corresponding
to the HOMO eigenvalue within Kohn–Sham DFT.26–31

Dealing exclusively with isoelectronic changes in Z�r�, how-
ever, derivatives can naturally be defined through linear com-
bination of “alchemical potentials” evaluated at all the
nuclear positions, according to Refs. 8–11. This approach,
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however, is hampered by the fact that such derivatives refer
to paths which follow infinitesimal changes in the classical
nuclear charge distribution, Z�r��Z�r�+�Z, implying that
for every nucleus one must sequentially pass through adja-
cent atomic numbers in the periodic table.

For paths restricted to any two isoelectronic compounds,
however, it is equally straightforward to leverage the
Hellmann–Feynman theorem,

dE�Hij����
d�

= � �Hij���
��

�
�

=� drn��r� · vij
t �r� , �2�

where 	¯ 
 denotes the quantum-mechanical expectation
value of the local derivative of the transmutating Hamil-
tonian, dubbed the “transmutational” potential, vij

t �r�. For the
linearly interpolated Hamiltonian, Eq. �2� amounts to the ex-
pectation value of the difference between the external poten-
tials of compounds i and j,

dE���
d�

= 	Hj − Hi
� =� drn��r� · �v j�r� − vi�r�� . �3�

Here, vi�r� refers to the conventional Coulomb potential of
the nuclear charges acting on electrons, �I�iNI / �r−RI�, the
trivial contribution from the internuclear Coulomb repulsion
being omitted for simplicity. Note how the � dependence of
��E��� is introduced exclusively by the electron density n�r�,
vt being a constant object. This is to be contrasted with the
discontinuous stepwise behavior of �Ne

E�Ne� �Z�r�.
28

The restriction to being isoelectronic, on a side note, is
by no means serious. The diversity of CCS is rather due to
all the possible specific combinations of functional groups in
real space �local objects�, than due to the number of electrons
of the entire system �global object�. Furthermore, in most
practical applications of property optimization, the number
of electrons is quite finite due to previously selected classes
of compound systems. In the case of drug design, for ex-
ample, maybe dozens of different numbers of electrons
might have to be screened, but not hundreds or thousands.
Finally, the isoelectronic requirement becomes even less se-

vere if, as it is shown to be the case within pseudopotential
calculations, this restriction refers only to the valence-
electron number. If one considers, for example, all the pos-
sible isoelectronic molecules containing only 30 valence
electrons �benzene just as well as B3N3H6 just as well as
Si6H6�, in particular when including all rows �through
pseudopotentials� and columns �through satisfying valency
by adding or removing hydrogen�. In practice, for a given
energetic property optimization one could easily envision to
perform separate isoelectronic gradient based optimization
for a small set of different electron numbers.

Linear isoelectronic transmutations have been computed
for all compound pairs of methane, ammonia, water, and
hydrogen fluoride for a potential energy difference, namely,
the HOMO eigenvalue,

�ij��� �
E�Hij�Ne,��� − E�Hij�Ne − �,���

�
, �4�

for small �. The results �Fig. 2� indicate a smooth, concave,
and overall well-behaved dependence. The Hellmann–
Feynman derivative, computed by combination of Eqs. �3�
and �4�,27

d�ij���
d�

=
1

�
� dr�n��r� − n�

�+�r�� · �v j�r� − vi�r�� , �5�

reflects this behavior perfectly well. Numerical results for
these derivatives �Eq. �5�� as a function of � are displayed as
an inset for all compound pairs in Fig. 2, together with the
corresponding coinciding finite difference derivatives,
d� /d�������−���−��� /�. The very good agreement be-
tween these derivatives serves as numerical evidence for the
suitability of the Hellmann–Feynman theorem in this con-
text. Illustrative isosurfaces of the employed transmutational
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j
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FIG. 1. Cartoon of alchemical transform plane between compounds i and j
with set of electron number, Ne, and high-dimensional nuclear charge dis-
tribution, Z�r�, according to Eq. �1�. The blue diagonal represents the lin-
early interpolated Hamiltonian, the red line one of the manifold of nonlinear
ones, both driven by a coupling parameter, 0���1. This paper deals ex-
clusively with horizontal, i.e., isoelectronic, changes and derivatives,
Nei

=Nej
, E��� �Ne

, and ��E �Ne
.

FIG. 2. Linear transmutation of HOMO eigenvalue, �ij =��Hij����, for re-
laxed and superimposed compound pairs, �i , j�CH4,NH3,H2O,HF�. The
inset �same symbol/color code� demonstrates the good numerical agreement
between finite difference derivative �symbol� and analytical Hellmann–
Feynman derivative �star� using vij

t as displayed in Fig. 3 and according to
Eq. �5�.
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potentials, v j�r�−vi�r�, which have been used to compute the
analytical derivatives, are featured in Fig. 3. The chemical
nature of both molecules is clearly encoded in this object,
evoking an interpretation of Eqs. �2� and �3� as alchemical
perturbational response.

B. Linearizing

Inspection of the connecting curves makes clear that
these gradients are not necessarily well suited, and in the
nonmonotonic cases can fail to predict even qualitatively the
right trends due to transmutation. Suppose, for example, one
desired to predict the HOMO eigenvalue of methane after
having calculated the HOMO eigenvalue of water �blue line
in Fig. 2�. With the transmutational analytical derivative, re-
quiring only the external potential of methane as an input,
one could attempt to predict methane’s value by truncating a
Taylor expansion to first degree in �,

�CH4
� �H2O +  ��H2O,CH4

��


��H2O
· ��, �� = + 1. �6�

While the derivative at �=0 �corresponding to H2O� is cor-
rectly pointing upward �solid arrow�, the actual HOMO ei-
genvalue of CH4 is below the one of H2O, thereby yielding a
qualitatively wrong prediction of the effect of transmutation.
Resorting to higher order of the property expansion in �,
based on linear response theory for example,32 one might
hope to estimate at least qualitatively the right trends. The
computational burden, however, would also increase, thereby
defying the initial motive of being able to predict the effect
of the transmutation analytically, i.e., without additional
computational overhead.

If, however, the energy �difference�, and not its Hamil-
tonian, was linear in �, the first order derivative would be
sufficiently predictive by construction. Since the interpola-
tion of the Hamiltonian is arbitrary, instead of Eq. �1�, one
can equally well postulate a new Hamiltonian with energy,

EL��� = E�Hij
L���� = E�Hi + f ij��� · �Hj − Hi�� , �7�

where f ij is a function with boundary conditions f ij��=0�
=0 and f ij��=1�=1, whose sole purpose consists of lineariz-
ing E in �. Assuming f to be harmonic, the boundary condi-
tions define all but one coefficient, aij, and

Hij
L��� = Hi + �� + aij · � · �1 − ��� · �Hj − Hi� , �8�

a result that is reminiscent of the enthalpy of a binary mix-
ture in regular solution theory. Combining Eqs. �2� and �8�,
equating them to the new constraint that E be linear in �, i.e.,
��EL=Ej −Ei, one solves for aij,

aij��� = � Ej − Ei

��Eij���
− 1� ·

1

2� − 1
. �9�

Note the divergence for �→1 /2, and that if, by coincidence,
E��� was already linear for the linearly interpolated H, aij

would be zero. aij depends not only explicitly on � but also
implicitly through the electron density. At the two end points,
however, Hij does not depend on �, and aij is given analyti-
cally, aij��=0�=1− �Ej −Ei� /��Eij��=0�, and aij��=1�= �Ej

−Ei� /��Eij��=1�. For any �, aij requires knowledge about
both end points.

C. Linearizing coefficients

What if, however, aij was transferable, i.e., one could
determine it once for a reference compound pair, �i� , j��, and
then use it to linearize other pairs of compounds �i , j�? In-
sertion of ai�j�

ref into Eq. �8� and differentiation according to
Eq. �2� yields such an approximation to the exact first order
derivative of EL��� at �=1 or 0, using information of only
either of the two end points,

��EL��� � � ��Ei�j�
L

��Ei�j����
�ref

· ��Eij��� . �10�

The fraction, expressing the degree of divergence in slope
between EL and E in the case of the reference pair, stems
from ai�j�

ref , and is dubbed “linearization coefficient.” Note
that the numerator, ��Ei�j�

L , is identical with Ej�−Ei�.
In order to test this Ansatz HOMO eigenvalues have

been estimated at one end point ��=1� using eigenvalue,
gradients, and Cref at the other end point ��=0�,

�ij�� = 1� � �ij�� = 0� + Ci�j�
ref �� = 0� · ���ij�� = 0� · �� ,

with Ci�j�
ref ��� = � � j� − �i�

���i�j�����
ref

, �11�

the linearization coefficient, Cref, being defined in complete
analogy to Eq. �10�. For numerical evaluation, �i , j� and
�i� , j�� have been restricted to compound pairs involving the
prediction of molecules with one functional group, Gi, start-
ing from the same molecules but with a different functional
group, Gj. Referencing has been included through variation
of the remainder of the molecule, R, i.e., �i , j� and �i� , j��
have been modeled by �R-Gi ,R-Gj� and �R�-Gi ,R�-Gj�, re-
spectively. More specifically for �Gi=CH3�,

FIG. 3. Transmutational potentials, vij
t �r�=v j�r�−vi�r�, used for computa-

tion of energy derivatives in Figs. 2 and 4 according to Eq. �2�. Six linearly
interpolated, relaxed, and superimposed compound pairs �i , j�. �From left to
right� Top: �CH4,NH3�, �CH4,H2O�, and �CH4,HF�. Bottom: �NH3,H2O�,
�NH3,HF�, and �H2O,HF�. Blue and red represent isovalue surfaces at 0.2
and �0.2 a.u., respectively.
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�R-CH3

pred = �R-Gj

start + CR�-CH3,R�-Gj

ref · ���R-Gj

start . �12�

A graphic illustration of the increase in predictive power us-
ing the linearizing coefficients is given in Fig. 4 �dashed
arrows� for R=H, Gj �NH2, OH, F, and R�=CH3, i.e.,

�CH4

pred � �NH3

start + CCH3–CH3,CH3–NH2

ref �
��NH3

start

��
, �13�

��H2O
start + CCH3–CH3,CH3–OH

ref ·
��H2O

start

��
, �14�

��HF
start + CCH3–CH3,CH3–F

ref ·
��HF

start

��
. �15�

This figure is discussed in more detail in Sec. III.
Further predictions of �R-CH3

pred have been calculated start-
ing from �Gj �NH2,OH,F�, for �R ,R��H, CH3, C2H5, Ph
�benzene ring: C6H5�, Py �para-substituted pyridine ring:
p-NC5H4��. For all pairs �R-CH3,R-Gj�, the geometries of
the various R have been kept constant, thereby canceling the
nuclear contribution of R to the derivative. All transmutating
groups, �CH3,Gj�, have been relaxed before being superim-
posed at the position of the heavy atom, and attached to R.

D. Computational details

All calculations have been performed within Kohn–
Sham density functional theory,26,33 using the generalized
gradient approximation PBE,34 as implemented in the plane-
wave pseudopotential code CPMD,35 Goedecker
pseudopotentials36 as published by Krack,37 a plane-wave
cutoff of 200 Ry, isolated box of 153 Å3 for CH4-series,

20�15�15 Å3 for C2H6 and C3H8 series, and 20�20
�10 Å3 for Ph and Py series. The transmutational potential,
vt=v j −vi, as depicted in Fig. 3 using VMD �Ref. 38� has
been computed by superimposing the position of the heavy
atoms which are being transformed, and by subtracting the
total potentials due to the local pseudopotentials of all atoms
involved in the transmutation. A routine for the calculation of
this expectation value has been implemented in CPMD. The
Hellmann–Feynman derivatives of the HOMO eigenvalues
have been obtained via finite difference for a slight decrease
in Ne by � through introduction of a background charge of
�=+0.01. For simplification, and without any loss of gener-
ality, the nonlocal channel of the fluorine atom has been used
for the transforming heavy atoms, and kept constant through-
out all transmutations. While this affects the absolute values
of the real corresponding PBE HOMO eigenvalues, �CH4
=−9.26, �C2H6

=−8.05, �C3H8
=−7.71, �Ph-CH3

=−5.80, and
�Py-CH3

=−5.48 eV, their ranking is not altered. Calculations
for noninteger � values have been performed by scaling the
valence atomic number and pseudopotential parameters �Ci�
in the pseudopotentials. The geometries of the benzene and
the pyridine group correspond to the relaxed geometry of
benzene. The heavy atom of the transmutating group has
always been placed at 1.511 Å distance from the aromatic
ring. All hydrogen atoms of the transmutating group have
been relaxed for the benzene system, except for molecules in
the CH4 series which have been relaxed separately.

III. RESULTS AND DISCUSSION

An illustrative example of the increase in predictive ac-
curacy is given by the arrows in Fig. 4 for �Gi=CH3�, �Gj

�NH2,OH,F�, �R=H�, and �R�=CH3�. Clearly, the predic-
tion based solely on the Hellmann–Feynman derivative is
rather meaningless: NH3, H2O, and HF predict methane’s
HOMO eigenvalue ��8.54 eV� to be �5.43, �2.28, and
+4.41 eV, respectively. Only after multiplication with the
reference coefficient, quantitative results can be obtained:
�7.07, �8.68, and �8.90 eV for NH3, H2O, and HF using
R�=CH3 for the reference pair.

All the corresponding numerical results for this and all
other combinations of �R ,R�� are displayed in Table I. One
finds a systematic and sometimes drastic improvement in
predictive accuracy when using the reference coefficient. The
root-mean-square deviation from the actual eigenvalue is de-
creased to eV accuracy, no matter how large it is for predic-
tions without referencing. As one would expect for the vari-
ous starting groups, �Gj�, the improvement is more
significant for cases with the more pronounced extrema in
the connecting curves, –F� –OH� –NH2. Furthermore, it
seems that the larger R the less dramatic is the deviation of
the unreferenced prediction from the actual value. If the im-
provement is a measure of similarity of compound pairs,
these results suggest that linearizing reference coefficients
might offer a general way to quantify otherwise ill-posed
notions such as molecular similarity or transferability. For
example, the ranking in accuracy of the prediction of the
HOMO eigenvalue of propane, C2H5–CH3, starting from
C2H5–F follows CCH3–CH3,CH3–F

ref �CH–CH3,H–F
ref �CPh-CH3,Ph-F

ref

FIG. 4. Prediction �arrows� of HOMO eigenvalue of CH4 ��8.54 eV� from
NH3, H2O, and HF, according to Eqs. �11� and �12�. Solid arrows
correspond to predictions based solely on the first order derivative of �ij,
�Eq. �6��. Dashed arrows use linearization coefficients, Cref, as
obtained from reference pairs, �R�-Gi ,R�-Gj�� �CH3–CH3,CH3–NH3�,
�CH3–CH3,CH3–OH�, and �CH3–CH3,CH3–F� �Eq. �12��. Corresponding
numerical results for this and other cases are presented in Table I.
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�CPy-CH3,Py-F
ref , thereby providing a specific and quantitative

ranking of similarity, in terms of HOMO eigenvalues, among
these compound pairs. Predictions of compounds with R-Gi

other than R-CH3, namely, for Gi�NH2, OH, or F �not
shown in this study�, also improve when using linearization
coefficients, albeit less dramatically.

IV. CONCLUSIONS

It has been shown that analytical gradients of potential
energies in CCS can be obtained between any isoelectronic
pair of compounds according to the Hellman–Feynman theo-
rem. Sets of linearization coefficients can be employed to
drastically improve the accuracy of predicting changes in
HOMO eigenvalues due to alchemical transmutation without
any significant increase in computational effort. Albeit re-
quiring preliminary effort for establishing a library of com-
pound pairs, this Ansatz is not only promising for the devel-
opment of more efficient gradient-based optimization
algorithms navigating high-dimensional subsets of CCS, it
might also prove useful for more efficient free energy differ-
ence evaluations relying on numerical thermodynamic
integration.23 Furthermore, linearization coefficients might
offer a useful interpretative means to quantify chemical simi-
larity.

The submitted study represents important progress with
respect to variational changes in nuclear charge distribution.9

Through generalization of the derivatives as expectation val-
ues of differences in external potentials any two isoelectronic
compounds �no matter how different the atomic numbers of
their constituting atoms, no matter how different the number
and location of their atomic sites� can now be directly con-
nected and their energy derivatives be obtained analytically
simply by virtue of the Hellmann–Feynman theorem. Fur-
thermore, the problem of nonmonotonous functions in be-
tween two compounds is circumvented via the linearizing
reference coefficients. Hence, it seems possible to rigorously
and quantitatively predict one molecule’s energetic proper-
ties based on given knowledge about one isoelectronic mol-
ecule, augmented by library information of another molecule
pair.

It is reiterated that while this study has been limited to
atoms of the first and second row only, the restriction to
isoelectronic interpolations is sufficiently general to permit
the extension to elements of other rows in the periodic table
simply through the use of pseudopotentials, thereby factori-
ally increasing CCS, i.e., the number of available compound
pairs and corresponding derivatives. The technical details of
numerical pseudopotential interpolation in conjunction with
known effects of pseudopotential construction on relevant
electronic properties, such as band gaps,39 will be part of
future studies. The suitability of this approach for dealing

TABLE I. Predicted HOMO eigenvalues, �R-CH3

pred , of various molecules �R-CH3�. All predictions made starting
from R-Gj with �Gj �F,OH,NH2� and according to Eq. �12�. Diagonal values �bold� refer to predictions made
without referencing �CR�-Gj,R�-CH3

ref =1�, off-diagonal predictions correspond to the diagonal predictions multi-
plied by �CR�-F,R�-CH3

ref �, �CR�-OH,R�-CH3

ref �, or �CR�-NH2,R�-CH3

ref � in the respective top, middle, and lower third of this
table �CR�-Gj,R�-CH3

ref = ��R�-CH3
−�R�-Gj

� /���R�-Gj
�. First and second row entries in the H–CH3-column correspond

to solid and dashed arrows in Fig. 2 �right�. The actual HOMO eigenvalues �R-CH3

act and their root-mean-square
deviations are shown in the last three rows, with �CR�-Gj,R�-CH3

ref = ��R�-CH3
−�R�-Gj

� /���R�-Gj
� and without

�CR�-Gj,R�-CH3

ref =1� �bold� linearizing coefficient. All values are in eV.

Starting R�-Gj

R-CH3

H–CH3 CH3–CH3 C2H5–CH3 Ph-CH3 Py-CH3

H-F +4 .41 �7.37 �7.25 �6.05 �5.90
CH3–F �8.90 +2 .15 �7.45 �6.14 �5.95
C2H5–F �9.01 �7.72 +0 .06 �6.17 �5.97
Ph-F �7.65 �6.72 �6.75 �2.75 �5.76
Py-F �6.55 �5.91 �6.13 �5.54 �3.93

H-OH �2.28 �7.51 �7.27 �6.37 �6.17
CH3–OH �8.68 �1.94 �7.38 �6.44 �6.22
C2H5–OH �8.85 �7.79 �2.31 �6.53 �6.26
Ph-OH �7.49 �6.58 �6.44 �3.10 �5.87
Py-OH �6.51 �5.71 �5.67 �5.31 �4.38

H–NH2 �5.43 �9.87 �9.95 �5.86 �6.22
CH3–NH2 �7.07 �5.15 �7.71 �5.27 �5.71
C2H5–NH2 �6.94 �7.45 �5.20 �5.22 �5.67
Ph-NH2 �6.30 �9.75 �9.84 �4.63 �6.20
Py-NH2 �6.74 �7.14 �7.20 �5.14 �5.14

�R-CH3

act �8.54 �7.64 �7.52 �5.82 �5.59
RMSDa 8.50 6.70 5.48 2.47 1.21
RMSDb 1.40 1.24 1.25 0.49 0.45

aCR�-Gj,R�-CH3

ref =1.
bCR�-Gj,R�-CH3

ref = ��R�-CH3
−�R�-Gj

� /���R�-Gj
.
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with other systems and other properties to which the
Hellmann–Feynman theorem does not apply remains to be
elucidated.

ACKNOWLEDGMENTS

I am grateful to M. Cuendet, P. J. Feibelman, G. Henkel-
man, R. J. Magyar, A. Pérez, P. A. Schultz, A. P. Thompson,
and M. E. Tuckerman for many helpful comments. Special
thanks go to A. E. Mattsson and D. Sheppard for many dis-
cussions, and to A. P. Seitsonen for help with the proofs. I
acknowledge support from the SNL Laboratory Directed Re-
search and Development Truman Program, Grant No.
120209. Sandia is a multiprogram laboratory operated by
Sandia Corporation, a Lockheed Martin Co., for the U.S.
Department of Energy National Nuclear Security Adminis-
tration, under Contract No. DE-AC04-94AL85000.

1 P. Kirkpatrick and C. Ellis, Nature �London� 432, 823 �2004�.
2 J. Hafner, C. Wolverton, G. Ceder, and Guest Editors, MRS Bull. 31, 659
�2006�.

3 A. Franceschetti and A. Zunger, Nature �London� 402, 60 �1999�.
4 P. Piquini, P. A. Graf, and A. Zunger, Phys. Rev. Lett. 100, 186403
�2008�.

5 J. K. Nørskov, T. Bligaard, J. Rossmeisl, and C. H. Christensen, Nat.
Chem. 1, 37 �2009�.

6 R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 �1985�.
7 R. Iftimie, P. Minary, and M. E. Tuckerman, Proc. Natl. Acad. Sci.
U.S.A. 102, 6654 �2005�.

8 O. A. von Lilienfeld, R. Lins, and U. Rothlisberger, Phys. Rev. Lett. 95,
153002 �2005�.

9 O. A. von Lilienfeld and M. E. Tuckerman, J. Chem. Phys. 125, 154104
�2006�.

10 O. A. von Lilienfeld and M. E. Tuckerman, J. Chem. Theory Comput. 3,
1083 �2007�.

11 V. Marcon, O. A. von Lilienfeld, and D. Andrienko, J. Chem. Phys. 127,
064305 �2007�.

12 M. Wang, X. Hu, D. N. Beratan, and W. Yang, J. Am. Chem. Soc. 128,

3228 �2006�.
13 D. Xiao, W. Yang, and D. N. Beratan, J. Chem. Phys. 129, 044106

�2008�.
14 X. Hu, D. N. Beratan, and W. Yang, J. Chem. Phys. 129, 064102 �2008�.
15 D. Balamurugan, W. Yang, and D. N. Beratan, J. Chem. Phys. 129,

174105 �2008�.
16 S. Keinan, M. J. Therien, D. N. Beratan, and W. Yang, J. Phys. Chem. A

112, 12203 �2008�.
17 R. P. Feynman, Phys. Rev. 56, 340 �1939�.
18 J. G. Kirkwood, J. Chem. Phys. 3, 300 �1935�.
19 R. W. Zwanzig, J. Chem. Phys. 22, 1420 �1954�.
20 B. Widom, J. Chem. Phys. 39, 2808 �1963�.
21 W. F. van Gunsteren, X. Daura, and A. E. Mark, Helv. Chim. Acta 85,

3113 �2002�.
22 M. Sulpizi and M. Sprik, Phys. Chem. Chem. Phys. 10, 5238 �2008�.
23 K. Leung, S. B. Rempe, and O. A. von Lilienfeld, J. Chem. Phys. 130,

204507 �2009�.
24 C. Oostenbrink, J. Comput. Chem. 30, 212 �2009�.
25 X. Zeng, H. Hu, X. Hu, A. J. Cohen, and W. Yang, J. Chem. Phys. 128,

124510 �2008�.
26 W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 �1965�.
27 J. F. Janak, Phys. Rev. B 18, 7165 �1978�.
28 J. P. Perdew, R. G. Parr, M. Levy, and J. L. Balduz, Phys. Rev. Lett. 49,

1691 �1982�.
29 R. G. Parr and W. Yang, Density Functional Theory of Atoms and Mol-

ecules �Oxford University Press, New York, 1989�.
30 P. Geerlings, F. D. Proft, and W. Langenaeker, Chem. Rev. �Washington,

D.C.� 103, 1793 �2003�.
31 A. J. Cohen, P. Mori-Sánchez, and W. Yang, Phys. Rev. B 77, 115123

�2008�.
32 A. Putrino, D. Sebastiani, and M. Parrinello, J. Chem. Phys. 113, 7102

�2000�.
33 P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 �1964�.
34 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865

�1996�.
35 J. Hutter et al., computer code CPMD, V3.13.2, Copyright IBM Corp.

1990–2008, Copyright MPI-FKF Stuttgart 1997–2001.
36 S. Goedecker, M. Teter, and J. Hutter, Phys. Rev. B 54, 1703 �1996�.
37 M. Krack, Theor. Chim. Acta 114, 145 �2005�.
38 W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graphics 14, 33

�1996�.
39 O. A. von Lilienfeld and P. Schultz, Phys. Rev. B 77, 115202 �2008�.

164102-6 O. Anatole von Lilienfeld J. Chem. Phys. 131, 164102 �2009�

http://dx.doi.org/10.1038/432823a
http://dx.doi.org/10.1038/46995
http://dx.doi.org/10.1103/PhysRevLett.100.136805
http://dx.doi.org/10.1038/nchem.121
http://dx.doi.org/10.1038/nchem.121
http://dx.doi.org/10.1103/PhysRevLett.55.2471
http://dx.doi.org/10.1073/pnas.0500193102
http://dx.doi.org/10.1073/pnas.0500193102
http://dx.doi.org/10.1103/PhysRevLett.95.153002
http://dx.doi.org/10.1063/1.2338537
http://dx.doi.org/10.1021/ct700002c
http://dx.doi.org/10.1063/1.2752811
http://dx.doi.org/10.1021/ja0572046
http://dx.doi.org/10.1063/1.2955756
http://dx.doi.org/10.1063/1.2958255
http://dx.doi.org/10.1063/1.2987711
http://dx.doi.org/10.1021/jp806351d
http://dx.doi.org/10.1103/PhysRev.56.340
http://dx.doi.org/10.1063/1.1749657
http://dx.doi.org/10.1063/1.1740193
http://dx.doi.org/10.1063/1.1734110
http://dx.doi.org/10.1002/1522-2675(200210)85:10<3113::AID-HLCA3113>3.0.CO;2-0
http://dx.doi.org/10.1039/b802376j
http://dx.doi.org/10.1063/1.3137054
http://dx.doi.org/10.1002/jcc.21116
http://dx.doi.org/10.1063/1.2832946
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRevB.18.7165
http://dx.doi.org/10.1103/PhysRevLett.49.1691
http://dx.doi.org/10.1021/cr990029p
http://dx.doi.org/10.1021/cr990029p
http://dx.doi.org/10.1103/PhysRevB.77.115123
http://dx.doi.org/10.1063/1.1312830
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevB.54.1703
http://dx.doi.org/10.1007/s00214-005-0655-y
http://dx.doi.org/10.1016/0263-7855(96)00018-5
http://dx.doi.org/10.1103/PhysRevB.77.115202

