This document is confidential and is proprietary to the American Chemical Society and its authors. Do not copy or disclose without written permission. If you have received this item in error, notify the sender and delete all copies.

Correction to A Toolkit to Fit Nonbonded Parameters from and for Condensed Phase Simulations

Journal:	Journal of Chemical Information and Modeling
Manuscript ID	ci-2016-00777s
Manuscript Type:	Erratum
Date Submitted by the Author:	21-Dec-2016
Complete List of Authors:	Hedin, Florent; University, Chemistry El Hage, Krystel; University of Basel, Department of Chemistry Meuwly, Markus; University, Chemistry

SCHOLARONE ${ }^{\text {m }}$
Manuscripts

Correction to A Toolkit to Fit Nonbonded Parameters from and for Condensed Phase Simulations

Florent Hédin, ${ }^{\dagger}$ Krystel El Hage, ${ }^{\dagger}$ and Markus Meuwly ${ }^{*, \dagger, \dagger}$
\dagger Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
\ddagger Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.
E-mail: m.meuwly@unibas.ch

In a recent publication we presented a fitting environment for parametrizing point charge (PC) and multipolar (MTP) force fields for condensed-phase simulations. ${ }^{1}$ After publication of this work it came to our attention that one of the scripts contained an error which caused an energy component in the free energy simulations to return incorrect values. This affects the optimization of the parameter ℓ when scaling the Lennard-Jones parameters according to $\varepsilon^{*}=\ell \varepsilon$ and $R_{\min }^{*} / 2=\ell R_{\min } / 2$ but not the MTP terms.

Hence, all compounds considered were reparametrized according to the procedure described in Ref. ${ }^{1}$ The corresponding correlations between experiment and the optimized parametrizations are reported in Figures 1 and 2. While the best ℓ typically differs by $\Delta \ell=0.1$ the average quality of all parametrizations is unchanged. In the published article ${ }^{1}$ the statistical measures for ΔG_{hyd} and ΔH were $\left(\mathrm{RMSE}=0.36 \mathrm{kcal} / \mathrm{mol}, R^{2}=0.99\right)$ and $(\mathrm{RMSE}=0.53$ $\mathrm{kcal} / \mathrm{mol}, R^{2}=0.97$) (see Figures 3 and 4 in Ref. ${ }^{1}$), which changes to ($\mathrm{RMSE}=0.31 \mathrm{kcal} / \mathrm{mol}$,

Figure 1: Correlation between experimental and computed solvation free energies $\Delta G_{\text {hyd }}$ ($\mathrm{kcal} / \mathrm{mol}$, respectively, x-axis and y-axis) for a range of compounds of interest. Computed values obtained after optimization of the LJ parameters.
$\left.R^{2}=0.99\right)$ and $\left(\mathrm{RMSE}=0.57 \mathrm{kcal} / \mathrm{mol}, R^{2}=0.96\right)$ using the correct script, respectively.

For one example, N -Methyl-Acetamide, the three observables ($\rho, \Delta H, \Delta G_{\mathrm{hyd}}$) were given explicitly as a function of the scaling ℓ in Table 1 of Ref. ${ }^{1}$ This data has been recomputed and is reported here in Table 1. In this case the same scaling $\ell=0.95$ is found to provide the best parametrization, i.e. the one with the lowest score $S=\sum_{i=1}^{3} w_{i}\left(\mathrm{Obs}_{\mathrm{i}}-\mathrm{Calc}_{\mathrm{i}}\right)^{2}$ with $w_{\rho}=1$, $w_{\Delta H}=3$ and $w_{\Delta G}=5$ which differently weights the three observables. ${ }^{1}$ The scores S are now larger in magnitude than in the original work ${ }^{1}$ because the results from the hydration free energy simulations differ.

The current results show that the quality of the parametrizations and all conclusions from

Figure 2: Correlation between experimental and computed enthalpy of vaporization $\Delta H_{\text {vap }}$ (kcal/mol, respectively, x-axis and y-axis) for a range of compounds of interest. Both, MTP and LJ parameters were optimized.

Table 1: Dependence of $\rho\left(\mathrm{g} / \mathrm{cm}^{3}\right), \Delta H_{\text {vap }}$ and $\Delta G_{\text {hyd }}$ (both in kcal/mol) when scaling the Lennard-Jones parameters. In bold face is shown the value of ℓ minimising the score S.

Scaling ℓ	ρ	$\Delta H_{\text {vap }}$	$\Delta G_{\text {hyd }}$	Score S
0.9	1.13	14.24	-10.57	1.2
0.925	1.08	13.95	-10.41	0.8
$\mathbf{0 . 9 5}$	$\mathbf{1 . 0 0}$	$\mathbf{1 4 . 1 1}$	$\mathbf{- 1 0 . 3 1}$	$\mathbf{0 . 3}$
0.975	0.99	13.84	-10.23	0.5
1	0.95	13.82	-9.78	0.9
1.025	0.92	13.68	-9.27	4.1
1.05	0.88	13.57	-9.01	6.9
1.075	0.84	13.29	-8.21	20.0
1.1	0.81	13.47	-7.98	23.7
Expt.	$0.94^{2,3}$	$14.2^{2,4}$	-10.08^{5}	

the original article remain unchanged. However, the value of the scaling ℓ that is required for a particular quality of a parametrization changes.

References

(1) Hedin, F.; El Hage, K.; Meuwly, M. A Toolkit to Fit Nonbonded Parameters from and for Condensed Phase Simulations. J. Chem. Theory Comput. 2016, 56, 1479-1489.
(2) Kim, S.; Thiessen, P. A.; Bolton, E. E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B. A.; Wang, J.; Yu, B.; Zhang, J.; Bryant, S. H. PubChem Substance and Compound databases. Nucleic Acids Research 2016, 44, D1202-D1213.
(3) CRC Handbook of Chemistry and Physics, 96th Edition. 2015.
(4) Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Physical Properties and Methods of Purification, 4th ed.; John Wiley \& Sons: New York, NY, 1985; Vol. II. Organic Solvents.; p 660 .
(5) Abraham, M. H.; Andonian-Haftvan, J.; Whiting, G. S.; Leo, A.; Taft, R. S. Hydrogen bonding. Part 34. The factors that influence the solubility of gases and vapours in water at 298 K, and a new method for its determination. J. Chem. Soc., Perkin Trans. 2 1994, 1777-1791.

