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Abstract Inductive Game Theory (IGT) was developed to study the emergence of the subjective
views of individuals in a recurrent social situation. We define an extension process (EP) to go from
a memory kit to an inductively derived view (i.d.view) and prove that every i.d.view is the result
of some EP. We put a restriction on an EP, which we call a linking EP, to address the problem
that there are a countably infinite number of i.d.views from a memory kit whenever there is at
least one. We study finite existence of i.d.views obtained by linked EP’s.
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1 Introduction

Inductive Game Theory (IGT) (see Kaneko and Kline (2008a), Kaneko and Kline (2013)) was
developed to study the emergence of the subjective views of individuals in a recurrent social
situation. Each individual learns about the social situation by his repeated interactions in that
situation. Kaneko and Kline (2013) studied the emergence of a variety of subjective views from
memories. These were called inductively derived views (i.d.views) since they are based on the
inductive learning from repeated plays of the game. In the present paper, we consider a step by
step process called an extension Process (EP) for constructing i.d.views. It is shown that every
i.d.view is obtained as the result of some EP.

When someone is involved in a new social situation occurring several times, he tries to represent
it by a subjective view of the situation. This view helps to improve his understanding of the world
around him and to optimize his future behavior in the recurrent social situation.

We start by giving some remarks on the use of an information protocol and memory function
introduced in (Kaneko and Kline 2008b) for inductive game theory and explain why the standard
extensive form game is insufficient for our purposes.
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Fig. 1 Stages of IGT (adapted from Fig. 1
in Kaneko and Kline (2013))

First, the i.d.view obtained by an individual depends upon his experiences and memories from
repeated interactions in the given social situation. In IGT, we presume that a player does not know
the structure of the social situation ex ante. Nevertheless, he constructs his view (understanding) of
that situation from his memories of his trials and errors over repeated interactions. An information
protocol is consistent with this approach since a player receives only pieces of information while
interacting in the social situation. These pieces need not contain details about the entire structure
of the social situation. The standard theory of extensive games, on the other hand, implicitly
presumes knowledge of the underlying game tree describing the social situation. We are interested
in precisely how and what a player learns about this structure from his experiences. For this
purpose, information protocols are more appropriate than extensive form games.

Second, the approach of IGT treats two types of memories and distinguishes these from the
information transmission described by an information partition. The first type of memories are local
“short term” memories obtained while interacting in the social situation. These are experienced
as the output of his objective memory function. This should be interpreted only as a mechanism
describing his local memory at various points in the course of one round of the social situation.
The mechanism is not known to him at all. The second type of memory consists of “long term”
memories which are the ones that remain in his mind and are described by his memory kit. In
contrast, the theory of extensive form games mixes information transmission and memories of
a player in the information partition. The memory function and the memory kit are additional
components to an extensive game. In this paper, we start with the memory kit of a player and
discuss how possibly he might construct his i.d.view from that memory kit.

Before summarizing the results of this paper, we give some general comments on the basic
scenario of IGT. Kaneko and Kline (2008a) divided the dynamics of a basic scenario for IGT into
three main stages (Fig. 1). During the stage of experimentation, the player collects memories from
his repeated interactions in the social situation. In the second stage, the player uses his memories
to inductively derive his subjective view. This derivation is inductive1 in the sense that it is based
on his collected memories of past experiences. In the third stage, the player uses his subjective view
to adjust his behavior in future. Later, he may return to the stage of experimentation, followed by
an update of this i.d.view and may repeat the same cycle.

Some parts of the stages of this general scenario have already been explored in more detail.
For example, Kaneko et al (2012) analyzed the accumulation of memories from experimentation
and the resulting memory kit in the example of Mike’s bike commuting. Kaneko and Kline (2013)

1 In this context, the term “induction” has to be understood as the scientific induction and thus a process of
deriving a general statement from a finite number of observations Kaneko and Kline (2008a).
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Fig. 2 Inductive processes from Kaneko and Kline
(2008b) to this present paper

studied the behavioral use of i.d.views, in particular, the behavioral checking of i.d.views and the
effect on decision making.

In the present paper, we focus on the inductive derivation phase from the memory kit to the
i.d.view. Kaneko and Kline (2008b) looked first at players having exact and perfect recall memory
abilities. In this case, the memory kit of the player already defines a unique subjective i.d.view of
the social situation. In Fig. 2, this uniqueness result is symbolised by a point. Kaneko and Kline
(2013) next considered i.d.views for the case of partial memories. For this, the notion of an i.d.view
had to be extended. The extension guarantees existence, but generates a great multiplicity of views
as shown in Fig. 2. The authors interpreted this variety of views as having the potential to describe
the diversity of beliefs found in society. As IGT is concerned with bounded rationality, the authors
focussed on small i.d.views and introduced the notion of minimal i.d.views. While this approach
leads to a finite set of i.d.views, the authors noted (on page 31 of Kaneko and Kline (2013)) that, in
the presence of weak memory, minimal i.d.views may not capture essential structures for decision
making since those views are typically too small.

We take an alternative approach to dealing with the multiplicity of i.d.views. We first develop
an explicit process, called an EP, for extending the memory kit of a player to an i.d.view. We prove
that every i.d.view can be obtained from some EP. Next, we consider a restriction on an EP that
the memories be linked in a certain sense before they can be used in the EP. This leads to the notion
of a linking EP which reduces the set of i.d.views to a set of i.d.views called linked i.d.views (see
Fig. 2). We prove that acyclicity of the memory kit is necessary and sufficient for the set of linked
i.d.views to be finite, when at least one exists. We also provide a necessary and sufficient condition
on the memory kit for existence of a linked i.d.view. Finally, we study conditions directly on the
objective view to ensure the set of linked i.d.views from the memory kit is finite and non-empty.

The remainder of the paper is organized as follows. Sect. 2 explains basic notions of IGT and
presents basic results. Sect. 3 presents EP’s and shows that they can be used to obtain the full
set of i.d.views. Sect. 4 explores linked EP’s and studies when an i.d.view can be obtained from
a linked EP and when the set of linked i.d.views is finite. Sect. 5 explores sufficient conditions
directly on the objective view for existence and finiteness the set of i.d.views obtained by linking
EP’s. Sect. 6 concludes.

2 Inductive Game Theory and Views

IGT considers two types of views: objective views and subjective views. An objective view describes
the actual social situation. A subjective view describes a player’s construction of the social situation
based on his limited experiences and memories.

An objective view consists of two parts. The first part is called an information protocol which
describes the information transmission and available actions of the players interacting in the social
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situation. It corresponds to an extensive game of Kuhn (1953) and is required to satisfy two basic
axioms and three non-basic axioms. The second part is called a memory function. It describes the
“short term” local memories of a player over a particular interaction in the social situation.

A subjective view corresponds to a player’s understanding of the social situation. It is also
described by an information protocol and a memory function. However, since it is based on limited
experiences and memories of a player, it is required to satisfy only the two basic axioms. Conse-
quently, it may not correspond to an extensive game of Kuhn (1953), but rather to a weaker form
of extensive game which is explained in Kaneko and Kline (2008a) and Kaneko and Kline (2008b).

The connection between an objective and a subjective view in IGT is described as follows. The
basic ingredients for forming a subjective view are the sequences of information pieces and actions
collected as memories of the player over his various encounters in the objective view. This collection
of memories is described as a memory kit. The subjective view is inductively constructed by a
player from his memory kit. The definition of an i.d.view contains coherency restrictions between
the subjective view, memory kit, and the objective view.

In Sect. 2.1 we define objective and subjective views. In Sect. 2.2 we define memory kits and
i.d.views followed by some basic results.

Before proceeding, we have one remark. IGT is developed to consider interactive situations
between multiple player including how the views develop and how they affect the behavior of the
participants. The present paper focuses on the inductive derivation of a view of a single player.
As such, for simplicity, we do not introduce the player assignment or payoff assignment. These
additional elements can be added without affecting any results of the present paper.

2.1 Information Protocols and Memory functions

We start by describing an information protocol from Kaneko and Kline (2013). It is based on a set
of information pieces W and a set of available actions A and is formulated as a causality relation
≺ describing the flow of information pieces/actions to the participants in a particular realization
of the social situation.

Definition 2.1 An information protocol is a triple Π = (W,A,≺), where

– IP1: W is a finite nonempty set of information pieces;
– IP2: A is a finite (possibly empty) set of actions;

– IP3: The set of feasible sequences ≺ is a finite nonempty subset of

∞⋃
m=0

((W ×A)m×W ) where2

every w ∈W and a ∈ A occur in some sequence in ≺.

This definition differs from Kaneko and Kline (2013) in two respects. First, we have dropped the
player assignment and payoff functions. This allows us to focus on the structure of the information
protocol. The player assignment and payoff functions can be added without affecting any of the
results of this paper. Second, in the present definition of IP2, we have allowed the set of actions A
to be possibly empty. This change is more substantial as it guarantees the existence of an i.d.view
for general memory functions correcting a mistake in the existence proof of Kaneko and Kline
(2013).

We sometimes write [(w1, a1), . . . , (wn, an)] ≺ wn+1 for a feasible sequence

〈(w1, a1), . . . , (wn, an), wn+1〉 ∈≺. A generic sequence in

∞⋃
m=0

((W × A)m × W ) is denoted

by 〈ξ, w〉. By the stipulation in IP3 that each information piece and each action occurs in some
feasible sequence, an information protocol Π = (W,A,≺) is fully determined by the set ≺ of its
feasible sequences. Consequently, we will sometimes refer to an information protocol as the one
uniquely determined by ≺.

2 The set (W ×A)0 ×W is stipulated to be W .
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Definition 2.2 Let Π = (W,A,≺) be an information protocol and let w be an information piece
in W :

1. (Decision/End Pieces): w is called a decision piece iff w occurs as an information piece in
[(w1, a1), . . . , (wm, am)] for some feasible sequence 〈(w1, a1), . . . , (wm, am), wm+1〉 ∈≺. Other-
wise, w is called an end piece. We denote the set of decision pieces by WD and the set of end
pieces by WE = W \WD;

2. (Available Actions): The set of available actions at w is the set Aw := {a ∈ A : (w, a)
appears in some feasible sequence in ≺}.

Definition 2.2 partitions the set of information pieces into decision pieces and end pieces. The
set of decision pieces are received by a player before he takes some action. The set of end pieces
are where the game ends. The set of available actions is defined at each information piece so that
the set will be non-empty if and only if the information piece is a decision piece. We follow the
convention of using u, v, w for decision pieces and z for end pieces.

To add more structure to an information protocol, we will make use of the notions of a ”subse-
quence” and ”supersequence” of a sequence. For this, let 〈ξ, w〉 = 〈(w1, a1), . . . , (wm, am), wm+1〉

and 〈η, u〉 = 〈(u1, b1), . . . , (un, bn), un+1〉 be two sequences taken from

∞⋃
m=0

((W ×A)m ×W ).

Definition 2.3 We say that 〈ξ, w〉 is a subsequence of 〈η, u〉 iff [(w1, a1), . . . , (wm, am), (wm+1, a)]
is a subsequence (in the standard sense) of [(u1, b1), . . . , (un, bn), (un+1, b)] for some a and b. In the
dual manner, we say that 〈ξ, w〉 is a supersequence of 〈η, u〉 iff 〈η, u〉 is a subsequence of 〈ξ, w〉.

When S is a set of sequences taken from

∞⋃
m=0

((W ×A)m ×W ), we use ∆(S) to denote the set

of subsequences of S. The next lemma describes a basic property of ∆ that will be used from time
to time. The proof is straightforward.

Lemma 2.1 Let S and T be finite non-empty subsets of

∞⋃
m=0

((W × A)m × W ). Then,

∆(S)
⋃
∆(T ) = ∆(S

⋃
T ).

The following notions play key roles in our analysis. For most of this paper, we will take S to
be the set of feasible sequences ≺ from an information protocol Π = (W,A,≺). However, it helps
to have the general notions for an arbitrary set of sequences S in some parts of the analysis.

Definition 2.4 (Maximal sequences, Initial segments, and Positions) Let S be a finite set
of sequences.

1. A sequence 〈ξ, w〉 in S is said to be maximal in S iff S contains no proper supersequence of
〈ξ, w〉.

2. An initial segment of a sequence 〈(w1, a1), . . . , (wm, am), wm+1〉
is 〈(w1, a1), . . . , (wk, ak), wk+1〉 for some k ≤ m.

3. A position 〈ξ, w〉 is an initial segment of a maximal sequence 〈η, v〉 in S.

When S is the set of feasible sequences ≺ from an information protocol Π = (W,A,≺), a
position corresponds to an exhaustive history of information pieces and actions occurring in some
realization of the social situation before reaching an information piece. We denote the set of
positions in an information protocol by Ξ. Consider a position 〈ξ, w〉 in Ξ. This position ends with
either a decision piece or an end piece. In the former case, the position 〈ξ, w〉 is called a decision
position. In the latter case, it is called an end position. We use ΞE and ΞD to denote the sets of
end positions and decision positions in Π = (W,A,≺).

Kaneko and Kline (2008b, 2013) gave two basic axioms and three non-basic axioms for an
information protocol Π = (W,A,≺).
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Fig. 3 Objective protocol

Axioms for Information Protocols :

– B1 (Subsequence-closedness) ≺ = ∆(≺).
– B2 (Weak extension), If ξ ≺ w and w ∈ WD, then there are a ∈ A and v ∈ W such that
〈ξ, (w, a), v〉 ∈ ≺

– N1 (Root) There is a distinguished element w0 ∈ W such that 〈w0〉 is an initial segment of
every position;

– N2 (Determination) Let 〈ξ, u〉 and 〈η, v〉 be positions. If ξ = η and are nonempty, then u = v;
– N3 (History-Independent Extension) If 〈ξ, w〉 is a position and [(w, a)] ≺ u, then 〈ξ, (w, a), v〉

is a position for some v ∈W .

The following result from Kaneko and Kline (2013) (Lemma 3.1) states that every information
protocol satisfying axioms B1 and B2 can be expressed in terms of its end positions.

Lemma 2.2 If Π = (W,A,≺) is an information protocol satisfying Axiom B1, then ≺ = ∆(Ξ).
Moreover, ≺ = ∆(ΞE) whenever Axiom B2 holds as well.

The information protocol describes the first component of a view. We start with one example
that will be used throughout the paper.

Example 2.1 (Information Protocol): Let Π = (W,A,≺) be an information protocol defined by:
W = {w0, w1, w2, z1, z2, z3, z4}, A = {a, b}, ≺= ∆(ΞE) where

ΞE ={〈(w0, a), (w1, a), z1〉, 〈(w0, a), (w1, b), z2〉, 〈(w0, b), (w1, a), (w2, a), z2〉,
〈(w0, b), (w1, a), (w2, b), z3〉, 〈(w0, b), (w1, b), z4〉} (1)

Here, we use the properties of Lemma 2.2 to simplify the description. A depiction of the
information protocol is illustrated in Fig. 3.

The reader can verify that this information protocol satisfies all the axioms. If we delete the end
position 〈(w0, b), (w1, b), z4〉, then we obtain an information protocol that satisfies all the axioms
except N3. If, alternatively, if we modify this end position to be 〈(w0, b), (w1, a), z4〉, we obtain an
information protocol that violates both axioms N2 and N3.

For the objective view, the second component in Kaneko and Kline (2013, 2008b) consists of
a set of memory functions, one for each player in the game. In the present paper, since we focus
on the inductive derivations of a single player, we only include a single memory function for the
objective view.

Definition 2.5 Let Π = (W,A,≺) be a basic information protocol. A memory function m assigns
a finite sequence 〈η, v〉 = 〈(v1, b1), . . . , (vm, bm), v〉 to each position 〈ξ, u〉 in the domain Y where:

1. ΞE ⊆ Y ⊆ Ξ;
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2. v = u;
3. m ≥ 0 and vt ∈W , bt ∈ Avt for all t = 1, . . . ,m

Item 1 in Definition 2.5 requires the domain Y of the memory function to be some subset of the
positions that includes the end positions.3. When the player arrives at some position 〈ξ, u〉 in the
domain Y of his memory function, he has the local memory4 m〈ξ, u〉 = 〈η, v〉. We will refer to the
value of the memory function at a position as a memory thread and the position where the memory
occurs 〈ξ, u〉 as the current position. Items 2 and 3 are coherency conditions. Item 2 requires the
player to have a correct memory of at least the last information piece of the current position.
Item 3 requires the information pieces to occur in the information protocol and the actions in his
memory to be available at the corresponding information pieces in his memory thread.

This definition of a memory function allows for partiality of memories even including falsities.
Recall that IGT is concerned with bounded rationality which allows for forgetfulness including
false memories.

We use two examples of memory functions as illustrations. The first memory function is a bench-
mark case. It describes perfect memories. The second memory function contains false memories.

Definition 2.6 The perfect information memory function mPI is defined over the full domain of
positions Y = Ξ by

mPI〈ξ, w〉 = 〈ξ, w〉.

The perfect information memory function describes the complete and perfect memory of the
history at each position. If a player experiences the full domain of positions by playing enough, and
keeps all those memories, then he may be expected to inductively derive the objective information
protocol for his subjective view.

In general, however, the memory function will be partial and his subjective view may contain
partial elements and falsities. We provide an example now for the information protocol from Fig. 3.

Example 2.2 (Incorrect Recall of Actions) Consider the information protocol of Fig. 3.

Let the domain of the memory function be Y = {〈ξ, w〉 ∈ Ξ : w 6= w2}, and let the memory
function be defined by m〈ξ, w1〉 = 〈(w0, a), w1〉 and m〈ξ, w〉 = 〈ξ, w〉 for all w 6= w1.

With this memory function, the player has perfect memory except at the position ending in
w1 that occurs after action b is taken at w0. At this position, he recalls, incorrectly, that action a
was taken. Here we see how a memory function can introduce some falsity.

Definition 2.7 (Objective and Subjective Views).

1. An objective view is a pair (Πo,mo) where Πo = (W o, Ao,≺o) is an information protocol
satisfying all the basic and non-basic axioms B1, B2, N1, N2 and N3, and mo is a memory
function.

2. A subjective view is a pair (Π,m) where Π = (W,A,≺) is an information protocol satisfying
the basic axioms B1 and B2 and m is a memory function.

Both views consist of an information protocol and a memory function. The main difference is
in terms of the axioms required of the view. In the next section we will describe how the two views
are connected.

3 This differs superficially from Kaneko and Kline (2013) where the domain was required to also include the
decision positions of the player. Since we have suppressed the player assignment in this paper, we do not include
this additional restriction. If we have the player assignment, the additional restriction can be applied and the results
of this paper are unaffected.

4 When there is no risk of confusion we will omit the parentheses and simply write m〈ξ, u〉 for m(〈ξ, u〉).
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2.2 Memory Kits and inductively derived views

In IGT, the subjective view is obtained after the accumulation of memories of a player in the
objective view. In the present paper, we do not model this accumulation process explicitly as was
done in Kaneko et al (2012). Rather, we focus on the resulting set of memory threads from this
accumulation process.

Definition 2.8 Let (Πo,mo) be an objective view. D ⊆ Y is called a domain of accumulation iff
D contains at least one end position.

The domain of accumulation is the set of positions in the objective protocol that the player
observes during the phase of experimentation described in Fig. 1. For some results of this paper,
we focus on domains of accumulation that are closed in a certain sense to be defined presently.

Definition 2.9 A domain of accumulation D is a closed domain iff for some non-empty subset
S ⊆ ΞE

D =
⋃

〈ξ,w〉∈S

{〈η, v〉 : 〈η, v〉 is an initial segment of 〈ξ, w〉}. (2)

When the set S is a singleton, we refer to the domain of accumulation as a cane domain. If
we take the union of the local memories over the set of positions in a domain of accumulation D,
we obtain a memory kit. This set of memories describes the player’s long term memory after the
stage of experimentation described in Fig. 1.

Definition 2.10 The memory kit obtained from the domain of accumulation D is the set TD =
{mo〈ξ, w〉 : 〈ξ, w〉 ∈ D}.

It is important to emphasize that the local memories are accumulated without the order in
which they appeared. This assumption is made by Kaneko and Kline (2008b, 2013). It entails
some implicit assumption of bounded rationality on the part of the individual. He simply cannot
include all the details of the timing of local memories. Rather he focuses only on the timing of
information received within one play of the social situation. This approach denies the type of
memory used in repeated game theory which allows the entire sequence of rounds of memories to
be recorded with a time parameter.

We take the set of accumulated long term memories in the memory kit as the basic ingredients
for an i.d.view. Following Kaneko and Kline (2008b, 2013) we presume that:

M1: the player can read all objectively available actions at any information piece in his memory
kit.

M1 is a working assumption that allows us to avoid explicitly writing out the set of available
actions in a memory thread. It is used to control the set of subjective views that are allowed
from a memory kit. The set of allowed subjective views are those that satisfy some consistency
requirements involving the memory kit and the objective view. These subjective views, which are
called i.d.views will be defined presently.

Definition 2.11 An i.d.view from the memory kit TD is a subjective view (Π,m) that satisfies:

– ID1 : W = WTD ≡ {w ∈ W o : w occurs in some sequence in TD}, WD ⊆ W oD and
WE ⊆W oE ;

– ID2 : Aw ⊆ Aow for each w ∈W ;
– ID3 : ∆(TD) ⊆≺.
– ID4 : m is the perfect information memory function mPI for Π
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Since we require an i.d.view to be a subjective view, it must satisfy Axioms B1 and B2. Con-
ditions ID1, ID2, and ID3 are the consistency conditions mentioned above. The first part of ID1
requires that the set of information pieces W in the i.d.view are exactly those that appear in the
memory kit. The second part of ID1 requires that the player does not mix up the decision pieces
and end pieces in his i.d.view. ID2 requires that the available actions at an information piece w in
his i.d.view are objectively available at w. This requirement makes sense in the presence of M1.
ID3 requires that all memory threads in the memory kit appear in the causality relation of the
i.d.view. Finally, we require by ID4 that the player has the perfect information memory function.
This make sense since the subjective view is in the mind of the player. The same assumption was
taken in Kaneko and Kline (2013).

To present some basic results from Kaneko and Kline (2013) we introduce the following notions.

Definition 2.12 (TD-based Sequences and Conservative Supersets)

1. A sequence 〈(w1, a1), . . . , (wm, am), wm+1〉 is TD-based iff each of w1, . . . , wm+1 occur in ∆(TD)
and at ∈ Aowt

for t = 1, . . . ,m.
2. A superset F of ∆(TD) is conservative iff every sequence in F is TD-based.

The notion of a conservative superset of the memory kit allowed Kaneko and Kline (2013) to
state a general existence result and to characterize the existence in a simple manner. Unfortunately,
the existence proof contains a mistake if we require the set of available actions to be non-empty
as the following example shows.

Example 2.3 Let Πo = (W,A,≺), where W = {w, z}, A = {b} and ≺= {〈w〉, 〈(w, b), z〉}. Let the
domain of the memory function Y be the same as the domain of accumulation D = {〈(w, b), z〉}
which consists of the unique end position in Πo. Consider the memory function mo〈(w, b), z〉 = 〈z〉
which generates the memory kit TD = {〈z〉}.

If we require the set of actions A in the i.d.view to be non-empty, then there is no i.d.view
from the memory kit. To see the problem, observe that by ID1, the set of information pieces is a
singleton, that is, W = {z}. Since z is objectively an end piece, and thus has no available action,
it follows by ID2 that the available action set Az in any i.d.view must be empty. Since the action
set A of the i.d.view is required to be non-empty, there must be some action a in A. Then, by the
condition IP3, a must occur in some sequence in the information protocol of the i.d.view. But this
implies a ∈ Az which contradicts our earlier finding that Az must be empty.

In the present paper, we allow the set of available actions in an information protocol to be empty
which fixes the existence problem. The following theorem summarizes the existence Theorem 4.1
and the characterization Theorem 4.2 for i.d.views from Kaneko and Kline (2013).

Theorem 2.1 Let (Πo,mo) be an objective view and let D be a domain of accumulation.

1. (Existence) There is an i.d.view from TD.
2. (Conditions on ≺) Let ≺ be an arbitrarily given set of feasible sequences. There is an i.d.view

from TD with the set of feasible sequences ≺ if and only if:
(a) ≺ is a conservative superset of ∆(TD);
(b) ≺= ∆(≺);
(c) w ∈W oE for any maximal sequence 〈ξ, w〉 ∈≺.

Before moving on, we mention two important consequences of these results. First, if there is no
decision piece that occurs in the memory kit TD, then there is a unique i.d.view from TD. Second,
if there is at least one decision piece in TD, then there are an infinite number of i.d.views from TD.

The result of uniqueness whenever there is no decision piece in TD follows from Theorem 2.1
part 2. When there is no decision piece, ∆(TD) is the only conservative superset of ∆(TD) and it
defines the unique i.d.view from TD.
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The result that there are an infinite number of i.d.views whenever there is at least one decision
piece in the memory kit was explained in Kaneko and Kline (2013) (p. 44). We paraphrase the
argument here. Consider any i.d.view from TD and call it Π. We can create a new i.d.view from
Π by adding a decision piece/action pair from TD to the front of each maximal sequence in Π.

This great multiplicity was partially dealt with in Kaneko and Kline (2013) by introducing the
notion of ”minimal i.d.views”. Minimality, however, had some issues in that the minimal i.d.views
may be too small for adequate decision making due to partiality of the memory function. In
the present paper, we take an alternative route for dealing with this multiplicity which involves
restricting the ways of extending a memory kit to obtain an i.d.view.

3 Extension Process

We start our analysis with an explicit constructive extension process. We will show that this process
can be used to obtain all i.d.views.

Definition 3.1 An extension process (EP) from a memory kit TD is a finite sequence {≺0, . . . ,≺τ}
such that :

1. (initial step) ≺0 = ∆(TD),
2. (inductive step) for each t > 0, there is a TD-based sequence αt not in ≺t−1 such that ≺t =
≺t−1

⋃
∆({αt}),

An extension process takes the subsequence closure of a memory kit and extends it by adding
the subsequence closure of new TD sequences, one by one.

Definition 3.2 An extended memory kit (EMK) from a memory kit TD is the last step of an EP
from TD.

Recall the remark after Definition 2.1 that an information protocol is completely determined
by its set of feasible sequences ≺. Since an EP starts with a subsequence closed set and unites it
with a set of subsequence closed sequences, it follows by Lemma 2.1 that each step in the process
is an information protocol satisfying axiom B1. However, it may not satisfy axiom B2.

Definition 3.3 An EMK ≺ is said to be satiated iff w ∈W oE for any maximal sequence 〈ξ, w〉 ∈≺.

Satiation of an EMK is precisely condition (c) of part 2 of Theorem 2.1 which characterizes
when a conservative superset of TD is an i.d.view. Conditions (a) and (b) of that theorem are
already guaranteed by requirements 1 and 2 of Definition 3.1 of an i.d.view. We thus have the
following result that the set of i.d.views from TD is exactly the set of satiated EMK’s from TD.

Theorem 3.1 (Equivalence) Let (Πo,mo) be an objective view and let TD be a memory kit ob-
tained on a domain of accumulation D. The set of i.d.views from TD is equivalent to the set of
satiated EMK’s from TD.

Proof (Only-if part) Let ≺ be an i.d.view from TD. Since every i.d.view is a subjective view, ≺must
satisfy Axioms B1 and B2 and ΞE must be a finite non-empty set. By Lemma 2.2, ≺= ∆(ΞE).

Consider the set of end positions in ≺ that are not in ∆(TD), which is denoted by ΞE \∆(TD).
If this set is empty, then ≺= ∆(TD) and the process {≺0} is an EP that generates the EMK ≺.
Hence, by Theorem 2.1 (only-if part of part 2), ≺ is a satiated EMK.

If ΞE \∆(TD) is non-empty, then we can enumerate it’s elements as 〈ξ1, w1〉, . . . , 〈ξτ , wτ 〉 for
some τ > 0. Let ≺0= ∆(TD), and for each t such that 0 < t ≤ τ inductively define ≺t=≺(t−1)⋃
∆({〈ξt, wt〉}). By construction, {≺0, . . . ,≺τ} is an EP. It follows from Lemma 2.1 that this EP

generates ≺. Finally, by Theorem 2.1 (only-if part of part 2), ≺ is a satiated EMK.
(If part) Let ≺ be a satiated EMK. By Definition 3.3 and repeated applications of Lemma 2.1,

≺ is seen to be a conservative superset of TD satisfying Axiom B1. By the fact that the EMK
obtained is satiated, it follows from Theorem 2.1(if-part of part 2) that there is an i.d.view from
TD with ≺ as the set of feasible sequences. ut
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We end this section with an example based on the objective protocol of Fig. 3. It shows how a
diversity of views can arise even with a simple cane domain.

Example 3.1 We consider the cane domain defined by the end position 〈(w0, a), (w1, a), z1〉 on
the left most side of Fig. 3. We presume the player recalls correctly at each position only the
previous information piece and action if they exist. The resulting memory kit is expressed by
TD = {〈w0〉, 〈(w0, a), w1〉, 〈(w1, a), z1〉}.

One can construct cane domain of accumulation as a satiated EMK by the following EP denoted
by A. The initial step of the EP is ≺0= ∆(TD). The first and last inductive step of the EP A is
α1
A = 〈(w0, a), (w1, a), z1〉. Then,

≺1
A=≺0 ∪∆({〈(w0, a), (w1, a), z1〉}) (3)

The EMK ≺1
A is satiated and thus, by Theorem 3.1, it is an i.d.view (Fig. 4a).

(a) (b) (c)

Fig. 4: Examples of i.d.views

Consider the alternative EP denoted by B which is formed by adding the TD-sequence
〈(w0, a), (w1, b), z1〉 to ∆(TD as the first and only inductive step. This results in the different
satiated EMK:

≺1
B=≺0 ∪∆({〈(w0, a), (w1, b), z1〉}) (4)

Action b was not experienced by the player over this domain. Nevertheless, the sequence
〈(w0, a), (w1, b), z1〉 is a TD-based sequence since b ∈ Aow1

and by M1 the player can see b is
written on w1. The EMK ≺1

B is also satiated and it describes a different i.d.view from ≺1
A.

As noted in Kaneko and Kline (2013), we encounter an infinite number of possible i.d.views
whenever there is at least one. This can be seen here by extending ≺1

A, using the TD-sequence
〈(w0, a), (w0, a), (w1, a), z1〉 to obtain:

≺2=≺1
A ∪∆({〈(w0, a), (w0, a), (w1, a), z1〉}) (5)

Even though the player has not memorized that w0 is a successor of w0,
〈(w0, a), (w0, a), (w1, a), z1〉 is nevertheless a TD-based sequence and another i.d.view is reached
(Fig. 4c). By extending this memory kit further in the same manner, we can obtain an infinite
number of satiated EMK’s. As we will see in the next section, avoiding such repetitions is one
way to restrict the number of i.d.views.
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Fig. 5: Jigsaw analogy

We finish this example and section by showing that the perfect information memory func-
tion does not always reduce the set of i.d.views to a finite set. With the perfect infor-
mation memory function on the same cane domain, the memory kit expands to: T ∗D =
{〈w0〉, 〈(w0, a), w1〉, 〈(w0, a), (w1, a), z1〉}. One effect of this increased memory ability is that ∆(T ∗D)
is itself a satiated EMK equivalent to (3). Nevertheless, an infinite number of i.d.views can be
reached by adding repetitions of w0 in front of the sequence as above.

4 Jigsaw analogy and linking extension processes

An EP can be loosely compared to the manner in which one constructs a jigsaw puzzle. The
memory kit TD serves as a partially constructed puzzle lying on the table. Next to the puzzle is
a set of jigsaw pieces which are TD-based sequences. In each successive step of the EP, the player
takes one new jigsaw piece and uses it to solve some part of the puzzle. This continues until he
reaches a solution which is an i.d.view.

The person in Fig. 5 constructs a puzzle in this manner. He takes the three threads in his
memory kit at the left and links them together to obtain a long memory thread at the right. This
linking requirement is an additional restriction to EP’s that we will explore in this section. This
restriction has the potential to limit the set of i.d.views obtained to be a finite set. On the other
hand, the restriction may be too strong and lead to no i.d.view.

In what follows, let S be a subset of

∞⋃
m=0

((W ×A)m ×W ).

Definition 4.1 A triple (w, a, v) ∈ W × A × W is called an adjacent triple in S iff there is a
sequence 〈(w1, a1), . . . , (wm, am), wm+1〉 ∈ S such that (w, a, v) = (wk, ak, wk+1) for some k ≤ m.
We denote by T (S), the set of adjacent triples in S.

In Fig. 5, the set of adjacent triples in the memory kit of the player is T (TD) =
{(x, d, z), (v, b, w), (w, c, x), (u, a, v)}. In contrast, (v, b, z) is not an adjacent triple in T (TD) even
though 〈(v, b), z〉 is a TD-based sequence. We will use the set of adjacent triples T (TD) to restrict
the set of TD-based sequences that can be used to extend a memory kit.

Definition 4.2 A TD-based sequence 〈ξ, w〉 is called TD-linked iff T ({〈ξ, w〉}) ⊆ T (TD).

For instance, 〈(u, a), (v, b), w〉, 〈(w, c), (x, d), z〉 and 〈(v, b), (w, c), (x, d), z〉 are three examples of
TD-linked sequences for the memory kit of Fig. 5. In contrast, the TD-sequence 〈(v, b), z〉 mentioned
after Definition 4.1 is not TD-linked.

Definition 4.3 An EP {≺0, . . . ,≺τ} is called a linking EP iff for each t > 0, the sequence αt

introduced in step t is TD-linked.
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EMK’s and satiated EMK’s are called linked when they are generated by linking EP’s. By
the equivalence Theorem 3.1, every linked satiated EMK will be an i.d.view. Correspondingly, we
define linked i.d.views as follows.

Definition 4.4 An i.d.view from TD with the set of feasible sequences ≺ is called a linked i.d.view
iff ≺ is a linked satiated EMK from TD.

Let’s return to Fig. 5. The player starts with a memory kit described by the left bubble. In the
first step, he links the sequence 〈(v, b), (w, c), x〉 with the sequence 〈(x, d), z〉 using the TD-linked
sequence 〈(v, b), (w, c), (x, d), z〉. This generates the EMK in the middle bubble. We have excluded
the full set of subsequences in the bubbles for simplicity. These can be generated by applying ∆ to
the set of sequences in each bubble. Finally, the player links the sequence he created in step 1 to
the sequence 〈(u, a), v〉 using the adjacent triple (u, a, v) to obtain the long sequence in the right
bubble. Under the presumption that z is the unique end piece, this constitutes the unique linked
i.d.view.

We can see that the linking restriction limits the set of i.d.views that can be obtained from a
memory kit. In Example 3.1, there are only two adjacent triples, (w0, a, w1) and (w1, a, z1), in TD.
There is a unique linked i.d.view which is described by (3). Here, the TD-linked restriction allows
us to avoid the repetitions that lead to an infinite number of i.d.views.

For some memory kits, however, there may be no linked i.d.view.

Example 4.1 Let a memory kit be TD = {〈(v, c), u〉, 〈(u, d), v〉, 〈z1〉} with z1 the unique end piece.
Both (v, c, u) and (u, d, v) are the only adjacent triples in T (TD). Since no TD-linked sequence can
reach z1 from the decision pieces u and v, there is no linked i.d.view from this memory kit TD.

The following theorem characterizes existence in terms of the set of linked sequences in the
memory kit. To state it we use the notion of a path where we will say that a sequence s =
〈(w1, a1), . . . , (wm, am), wm+1〉 is a path from w1 to wm+1.

Theorem 4.1 (Existence of a Linked View) Let TD be a memory kit. The set of linked i.d.views
from TD is non-empty if and only if for each decision piece w ∈WTD

⋂
W oD there is a TD-linked

sequence 〈ξ, v〉 that is a path from w to an end piece v ∈W oE.

Proof Clearly, if the right hand side of the Theorem is not satisfied, then there will be no linked
i.d.view because satiation cannot be satisfied. On the other hand, if it is satisfied, then we can
construct an EP that generates a linked i.d.view as follows. First, consider the set of maximal
sequences in TD that end with a decision piece w ∈ WTD

⋂
W oD. If this set is empty, then

{∆(TD)} is a linking EP generating the linked i.d.view ∆(TD).
If the set of maximal sequences in TD that end with a decision piece w ∈ WTD

⋂
W oD is not

empty, then list these sequences as 〈ξ1, w1〉,...,〈ξτ , wτ 〉. Let 〈ξt, wt〉 denote the t’th sequence in the
list. By the right hand side of this theorem, there is a TD-linked sequence st forming a path from
wt to some end piece vt. Since 〈ξt, wt〉 is a maximal sequence in TD it must also be TD-linked.
Define αt be the sequence obtained by concatenating st to the end of 〈ξt, wt〉. Since αt is the
concatenation of two TD-linked sequences, αt is TD-linked.

Let ≺0= ∆(TD), and for each t = 1, ..., τ , inductively define ≺t=≺t−1
⋃
∆({αt}). This defines

a linking EP that generates a linked i.d.view. ut

Let’s return to the examples to see how this theorem works. Example 4.1 is a negative result.
Due to excessive forgetfulness, there is no TD-linked sequence that is a path from the decision
piece u or v to an end piece. Thus, by Theorem 4.1, there is no linked i.d.view.

As a positive result, consider Example 3.1 where the memory kit is TD =
{〈w0〉, 〈(w0, a), w1〉, 〈(w1, a), z1〉}. There are two adjacent triples (w0, a, w1) and (w1, a, z1). The
only decision pieces in the memory kit are w0 and w1. Since, for each decision piece w, we can find
a TD-linked sequence that is a path to an end piece, it follows, by Theorem 4.1, that there is a
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linked i.d.view from TD. For example, the TD-linked sequence 〈(w0, a), (w1, a), z1〉 is a path from
the decision piece w0 to the end piece z1. As mentioned earlier, there is actually a unique linked
i.d.view from TD in the example which is expressed by (3).

In general, however, the set of linked i.d.views will not be unique and it may even be infinite
as was the case for i.d.views in general. We are interested in a condition on the memory kit that
will ensure the set of linked i.d.views is finite whenever it is non-empty.

Definition 4.5 A set of sequences S is cyclic iff there exists ` (` ≥ 1) adjacent triples in T (S)
denoted by tr(k) = (uk, ak, vk) (for k = 1, . . . , `) such that the `-uple (tr(1), . . . , tr(`)) satisfies

vk = uk+1 for each k = 1, . . . , `− 1 and v` = u1. (6)

We say that S is acyclic iff it is not cyclic.

Fig. 6 illustrates two examples of cyclic sets of sequences that represent information protocols.
In Fig. 6a the same information piece E appears twice in the position 〈(E, c), E〉 and the 1-uple
(tr(1)) with tr(1) = (E, c, E) satisfies (6). The information protocol described in Fig. 6b is also
cyclic. For instance the 2-uple (tr(1), tr(2)) with tr(1) = (u, d, v) and tr(2) = (v, c, u) satisfies (6).
Numerous examples of acyclic set of sequences has already been encountered. For instance, the
memory kit of the player in Fig. 5 or the one of Example 3.1 are acyclic.

(a) (b)

Fig. 6: Examples of cyclic information protocols

We have the following theorem.

Theorem 4.2 Let TD be a memory kit that admits at least one i.d.view. The set of linked i.d.views
from TD is finite if and only if TD is acyclic.

Proof (if) For proving the finiteness of the set of linked i.d.views, it is sufficient to prove that the
set of TD-linked sequences is finite.

Let’s construct the set of TD-linked sequences. This set is extensively described by⋃
(u,a,v)∈T (TD)

S((u, a, v)) where S((u, a, v)) is defined as the set of sequences of the form

〈(w1, a1), . . . , (wn, an), wn+1〉 such that 〈(u, a), v〉 is an initial segment of that sequence and
(wi, ai, wi+1) for i = 1, . . . , n is an adjacent triple in T (TD).

Since TD is finite and acyclic, the set of TD-linked sequences is also finite. Since every linked
i.d.view is a subset of TD-linked sequences, the number of linked i.d.views must also be finite.

(only if) We prove the contrapositive. Let TD be a cyclic memory kit. There exists an `-tuple
(tr(1), . . . , tr(`)) = ((u1, a1, v1), . . . , (u`, a`, v`)) where u1 = v` and vi = ui+1 for i = 1, . . . `− 1.

By hypothesis, there exists one linked i.d.view which we denote by ≺. By ID1, the decision piece
u1 occurs in an end position of ≺. Let 〈(w1, b1), . . . , (wm, bm), wm+1〉 be this end position where
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wt = u1 for some t ∈ {1, . . . ,m}. Then, α = 〈(w1, b1), . . . , (wt, a1), . . . , (u`, a`), (wt, bt), . . . , wm+1〉
is a TD− based sequence that is not in ≺ such that T ({α}) ⊆ T (TD). As a consequence, ≺′=≺⋃
∆({α}) is a linked i.d.view that is different from ≺. The same argument presented above can be

conducted on ≺′ and so on, as many times as one wishes, leading then to an infinite set of linked
i.d.views. ut

Let’s return to the examples to see how Theorem 4.2 works. First, consider Example 3.1 where
the memory kit was TD = {〈w0〉, 〈(w0, a), w1〉, 〈(w1, a), z1〉}. There are just two adjacent triples
(w0, a, w1) and (w1, a, z1). This set of adjacent triples does not contain any cycle, and as already
noted, there is a linked i.d.view. Hence, by Theorem 4.2, the set of linked i.d.views must be finite.
We, in fact, know the set to be a singleton in this example.

In the converse direction, whenever there is a linked i.d.view and the set of adjacent triples has
a cycle, we know that the set of linked i.d.views will be infinite. Consider Fig. 6a as an objective
protocol Πo. Let

TD = {〈E〉, 〈(E, e), z1〉, 〈(E, c), E〉, 〈(E, c), (E, e), z2〉, 〈(E, c), (E, c), z3〉}
be the memory kit obtained from the perfect information memory function mPI on D = Ξo. It
is immediately apparent that there is a cycle (E, c, E) in TD. Hence, if there is a linked i.d.view,
then, by Theorem 4.2, the set of linked i.d.views will be infinite. As it happens, ∆TD is already a
linked i.d.view and from it, we can form a infinite number of linked i.d.views by adding (E, c) to
the start of each view.

Theorems 4.1 and 4.2 provide us with necessary and sufficient conditions for the set of linked
i.d.views to be both non-empty and finite. Since we need acyclicity of TD for finiteness when there
is at least one linked i.d.view, we can simplify the existence condition which we present in the
following lemma.

Lemma 4.1 Let TD be an acyclic memory kit and let w ∈ WTD
⋂
W oD. The following two con-

ditions are equivalent:

1. there is a TD-linked sequence 〈ξ, v〉 that is a path from w to an end piece v ∈W oE.
2. there is an adjacent triple (u1, a1, u2) in T (TD) such that u1 = w.

Proof (1 ⇒ 2) Let w ∈ WTD
⋂
W oD. The first adjacent triple in the TD-linked sequence 〈ξ, v〉

guaranteed by 1 fulfils the requirement of 2 for w.
(2 ⇒ 1) Let w ∈ WTD

⋂
W oD. By 2, we can create a TD-linked sequence 〈(u1, a1), u2〉 that is

a path from w to some u2. If u2 ∈ W oE , we have satisfied 1. If u2 /∈ W oE then we can apply 2 to
u2 to obtain a TD-linked sequence 〈(u1, a1), (u2, a2), u3〉 that is a path from w to some u3. Since
TD is finite and acyclic, after a finite number of applications of 2, we must obtain a path satisfying
1. ut

When a memory kit TD is cyclic, the condition 2 of Lemma 4.1 is not sufficient for satisfying
condition 1 which can be seen in Example 4.1.

From Lemma 4.1 and Theorems 4.1 and 4.2, we obtain the following corollary which expresses
a joint necessary and sufficient condition for non-emptiness and finiteness of linked i.d.views.

Corollary 4.1 Let TD be a memory kit. The set of linked i.d.views from a memory kit TD is
non-empty and finite if and only if TD is acylic and for each decision piece w ∈WTD

⋂
W oD there

is an adjacent triple (u1, a1, u2) in T (TD) such that u1 = w.

Proof (If-part) Since TD is acylic, non-emptiness of linked i.d.views follows from Lemma 4.1 and
the if-part of Theorem 4.1. Having obtained existence, we can apply the if-part of Theorem 4.2 to
obtain finiteness.

(Only-if part) By non-emptiness and finiteness, we obtain acyclicity by Theorem 4.2. By non-
emptiness and acyclicity, we can apply Theorem 4.1 and Lemma 4.1 to obtain the second condition
of the right hand side of this Corollary. ut



16 J. Jude Kline et al.

5 Conditions on the Objective view for Uniqueness and Finiteness of Linked
i.d.Views

In the previous section we explored conditions on the memory kit for existence and finiteness of
linked i.d.views. It would be beneficial to have conditions directly on the objective view that will
generate a memory kit with a finite and non-empty set of linked i.d.views. For this, we need some
new definitions.

Definition 5.1 The information history of a sequence 〈ξ, w〉 = 〈(w1, a1), . . . , (wm, am), wm+1〉 is
the sequence θ(〈ξ, w〉) = 〈w1, ..., wm+1〉 of information pieces as they appear in 〈ξ, w〉.

Definition 5.2 For the information history θ(〈ξ, w〉) = 〈w1, ..., wm+1〉 of a sequence 〈ξ, w〉 and a
non-negative integer k, we define the information history of length k by:

θ(〈ξ, w〉)k =

{
〈wm−k+1, . . . , wm+1〉 if k ≤ m
θ(〈ξ, w〉) if k > m.

In what follows, let (Πo,mo) be an objective view and let 〈ξ, w〉 be a position in the domain Y
of the memory function mo. We will place restrictions directly on the Πo and mo to obtain finite
existence of linked i.d.views.

We define the Y -part of a position in Y . It is the history related to the domain of the player’s
memory function.

Definition 5.3 The Y -part of 〈ξ, w〉 = 〈(w1, a1), . . . , (wm, am), wm+1〉, denoted 〈ξ, w〉Y , is the
maximal subsequence 〈(wj1 , aj1), ..., (wjs , ajs), wjs+1〉 of 〈ξ, w〉 with the property that the initial
segment of 〈ξ, w〉 up to each jt is in Y .

Consider the objective view from Example 2.2 and the end position 〈(w0, b), (w1, a), (w2, a), z2〉.
The Y -part of this position 〈(w0, b), (w1, a), (w2, a), z2〉Y = 〈(w0, b), (w1, a), z2〉 since
〈(w0, b), (w1, a), z2〉 is not in Y .

Next, consider the following condition an objective view.

Definition 5.4 We say that (Πo,mo) satisfies occurrence distinguishability (OD) iff for any 〈ξ, v〉,
〈η, w〉 ∈ Y ,

θ(〈ξ, v〉Y ) 6= θ(〈η, w〉Y ) implies v 6= w. (7)

Occurrence distinguishability is based on the condition of occurrence memory introduced by
Okada (1987) to describe a weakening of Kuhn (1953) perfect recall condition in an extensive game.
Occurrence distinguishability in IGT, however, is not about memory. Instead, it is a restriction
on information transmission in an information protocol since it restricts the information histories
that can occur in the objective information protocol. It is weaker than Kuhn’s distinguishability
condition which was studied in Kaneko and Kline (2013).

The two objective protocols represented in Fig. 6 do not satisfy the OD-condition with Y = Ξo.
It can be seen easily for the left objective protocol by considering the two positions 〈E〉 and
〈(E, c), E〉 where the respective information histories are different but the information piece reached
is identical. Likewise, 〈(w, b), (v, c), u〉 and 〈(w, a), u〉 for the right objective protocol, violates (7).

Return now to the objective view of Example 2.2. It satisfies the OD condition. A justification
may be needed for positions 〈(w0, a), (w1, b), z2〉 and 〈(w0, b), (w1, a), (w2, a), z2〉. The Y -part of
these positions are respectively 〈(w0, a), (w1, b), z2〉 and 〈(w0, b), (w1, a), z2〉 and their information
histories are equal. They do, however, differ in terms of actions taken.

Next, we consider a further restriction on the player’s objective memory function mo.

Definition 5.5 The memory function mo is said to be informationally Y -correct iff θ(mo〈ξ, w〉)
is a subsequence of θ(〈ξ, w〉Y ) for each 〈ξ, w〉 ∈ Y .
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A player’s memory function is informationally Y -correct if he only recalls occurrences of past
moves correctly, though maybe not the actions taken there. There are many memory functions that
satisfy this property, since the player may forget everything, or only some part of his information
history. A particular type is called an occurrence recall-k memory function. With this type of
memory function, the player correctly recalls the last k information pieces in the Y -part of the
information history at each position in Y .

Definition 5.6 The memory function mo is an occurrence recall-k memory function iff for all
〈ξ, w〉 in Y ,

θ(mo〈ξ, w〉) = θ(〈ξ, w〉Y )k.

The notions of informationally Y -correct and occurrence recall-k memory functions are based
on the stronger notions of full Y -correctness and recall-k memory functions developed in Kaneko
and Kline (2013). The latter notions require the correct memories of both past information pieces
and past actions, while the former only requires the correct memories of past information pieces.
As such there may be several occurrence recall-k memory functions for each non-negative integer k.
It is straightforward to show that every recall-k memory function is an occurrence recall-k memory
function, while the converse is not generally true.

We have the following results on finiteness and existence of linked i.d.views which are based on
conditions placed directly on the objective view.

Theorem 5.1 Let (Πo,mo) be an objective view where Πo satisfies the OD-condition and let D
be a domain of accumulation.

1. If mo is informationally Y -correct, then the set of linked i.d.views from TD is finite.
2. If mo is an occurrence recall-k memory function with k ≥ 1 and D is closed, then the set of

linked i.d.views from TD is finite and non-empty.

The proof of Theorem 5.1 is based on the following lemma.

Lemma 5.1 Let (Πo,mo) be an objective view where Πo satisfies the OD-condition. If the memory
function mo is informationally Y -correct then TD is acyclic.

Proof By informational correctness and the fact that the definition of acyclicity of a set does not
depend on the actions in the adjacent triples, it suffices to show that {〈ξ, w〉Y : 〈ξ, w〉 ∈ Y } is
acyclic.

Consider an arbitrary sequence {(ut, at, vt)}`t=1 of adjacent triples in {〈ξ, w〉Y : 〈ξ, w〉 ∈ Y }
satisfying vt = ut+1 for t = 1, ..., ` − 1. We will show that v` 6= u1. By definition, we can find a
sequence {〈ξt, vt〉Y }`t=1 of Y -parts of positions in Ξo such that (ut, at, vt) is the last adjacent triple
in 〈ξt, vt〉Y for each t. Notice also that each 〈ξt, vt〉Y contains a proper initial segment 〈ξ′t, ut〉Y up
to ut. Thus, for t = 1, ..., `,

θ(〈ξ′t, ut〉Y ) is a proper initial segment of θ(〈ξt, vt)〉Y ). (8)

Since, vt = ut+1 for all t < ` it follows from the contrapositive of OD that for each t < `:

θ(〈ξt, vt〉Y ) = θ(〈ξ′t+1, ut+1〉Y ). (9)

Taken together (8) and (9) imply that for each t < `:

θ(〈ξ′t, ut〉Y ) is a proper initial segment of θ(〈ξt+1, vt+1〉Y ). (10)

By induction over t:

θ(〈ξ′1, u1〉Y ) is a proper initial segment of θ(〈ξ`, v`〉Y ). (11)

Since no sequence is a proper initial segment of itself, θ(〈ξ′1, ut〉Y ) 6= θ(〈ξ`, v`〉Y ). Hence, by OD,
u1 6= v`. ut
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Proof of Theorem 5.1. (1): This follows from Lemma 5.1 and the if-part of Theorem 4.2, since the
proof of the latter does not depend on the existence of a linked i.d.view.

(2): Since every occurrence recall-k memory function is informationally Y -correct, it follows by
part (1) of this Theorem, that the set of linked i.d.view is finite. By Lemma 5.1, TD is acyclic.
Hence, by Corollary 4.1, it suffices to show that for each decision piece w ∈ WTD

⋂
W oD there is

an adjacent triple (u1, a1, u2) in T (TD) such that u1 = w. Let w ∈WTD
⋂
W oD. Since D is closed

and the memory function is an occurrence recall k ≥ 1 memory function, there must be position
〈ξ, v〉 ∈ D for which mo〈ξ, v〉 has (w, a, v) as its last adjacent triple for some a ∈ Aow. ut

We return to Example 2.2. Consider an occurrence recall-1 on D = Y = {〈ξ, w〉 ∈ Ξ : w 6= w2}.
The resulting memory kit is

TD ={〈(w0, a), w1〉, 〈(w1, a), z1〉, 〈(w1, b), z2〉, 〈(w0, b), w1〉,
〈(w1, a), z2〉, 〈(w1, a), z3〉, 〈(w1, b), z4〉} (12)

By Theorem 5.1, the set of linked i.d.views is non empty and finite. Two examples are illustrated
in Fig. 7. Incidentally, none of the possible linked i.d.views satisfies every non-basic axiom. This
is the consequence of the fact that the position 〈(w0, b), (w1, a), z2〉 6∈ Y and the fact that two
positions in the objective view reach the same information piece w1.

(a) (b)

Fig. 7: Examples of linked i.d.views

6 Conclusions

In this paper, we gave an explicit process for going from a memory kit to an i.d.view. The process
was called an extension process (EP) and it was shown that every i.d.view in the sense of Kaneko
and Kline (2013) can be obtained by an EP. We then restricted EP’s by requiring them to be
linked in an effort to tackle the multiplicity issue identified by Kaneko and Kline (2013).

The notion of linked i.d.views was explored in the present paper and necessary and sufficient
conditions were obtained on the memory kit for existence and finiteness of i.d.views. We also gave
sufficient conditions directly on the objective view for finiteness and existence. These conditions
are satisfied by occurrence recall-k memory function with k ≥ 1. These memory functions include
the recall-k memory functions defined in Kaneko and Kline (2013). It is shown in Waltener (2017)
that the “perfect recall view”, that is, the direct i.d.view obtained by a player having a recall-k
memory function, is a linked i.d.view in such situations. Thus, a natural candidate for an i.d.view,
is obtained by focusing on linked i.d.views. The perfect recall view may fail to be a minimal view
which helps justify our concentration on linked i.d.views rather than minimal i.d.views.
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By establishing the notion of EP’s, this paper paves the way for further natural restrictions on
i.d.views, some of which are already explored in Waltener (2017). Those are obtained by considering
a wider source of adjacent triples allowed in a linking EP. By this weakening, the linking EP reaches
supersets of the set of linked i.d.views studied in this paper and represented in Fig 2.

Since EP’s have more structure, it may also be possible to find some measure of the cognitive
cost of constructing a particular i.d.view. Since IGT is interested in boundedly rational agents, this
may allow us to explore the relationship between the cognitive limitations on a player’s memory
and limitations on his ability to construct complicated i.d.views. One might expect a trade-off
between memory and construction ability; a player with a stronger memory would need a lower
ability of construction of i.d.views, and vice versa.
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