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Highlights: 

1. Hydrogenation of TiO2 nanorod electrode enhances photoelectrochemical oxidation 
of organic compounds. 

2. Au-nanoparticle modification of TiO2 nanorod electrode enables 
photoelectrochemical oxidation of organic compound under visible light due to the 
localized surface plasmonic resonance (LSPR) effect. 

3. Selective detection of organic compounds at the Au@H-TiO2 photoelectrode is 
achieved by varying wavelength of the light irradiation. 

 

ABSTRACT. 

Selective detection of organic compounds in water body is both desirable and 

challenging for photoelectrocatalytic (PEC) sensors. In this work, tunable oxidation 

capability is designed and achieved by modifying titanium dioxide nanorod arrays 

(TiO2) photoelectrodes with nano-sized plasmonic gold (Au) particle deposition and 

subsequent hydrogenation treatment (i.e. Au@H-TiO2). The effective incorporation of 

Au nanoparticles onto the TiO2 nanorods induces a plasmonic effect and extends light 

absorption from ultraviolet (UV) to the visible light range while the hydrogenation 

process dramatically improves PEC oxidation activity. Under visible light, the Au@H-

TiO2 electrode exhibits selective detection capability to labile organic compounds. This 

excellent selectivity is demonstrated by a wide linear relationship between photocurrent 

and the concentration of different types of sugars, including glucose, fructose, sucrose 

and lactose in the presence of various concentrations of the aromatic compound 

potassium hydrogen phthalate (KHP). Furthermore, the modified electrode can also 

undiscriminately detect all kinds of organic compounds in a rapid manner under UV 

irradiation due to the strong oxidation capability. Such a unique feature of the tunable 

oxidation capability bestows the Au@H-TiO2 photoelectrodes a new generation of the 

PEC sensors for selective and collective degradation of organic compounds. 
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Introduction 

The photoelectrocatalysis (PEC) sensor can in-situ monitor the overall amount of organic 

compounds in water body as well as speciation of organic pollutants in a simple, accurate and low 

cost way [1, 2]. The PEC sensors are developed by using high performance TiO2 photoelectrodes 

to collective oxidate the organic compounds at under UV light [3]. To date, the selective 

oxidization of organic compounds is another important but challenging feature of photocatalytic 

(PC) and of PEC processes in advanced applications, including selective synthesis of desired 

organic compounds, selective removal of toxic pollutants and selective detection of expected 

organic compounds among mixtures [4-6]. The application of selective PC and PEC oxidation 

process would bestow selective detection capability for PEC sensors. 

In recent studies of photocatalytic materials, it is well-established that nano-sized metals (such 

as Au, Pt, Ag, and Pd) can enable PC and PEC reactions under visible light due to surface 

plasmonic resonance (SPR) induced electron excitation [7-10]. The SPR hot electrons from the 

nano-sized noble metal can be rapidly injected into the TiO2, leading to enhanced oxidation 

efficiency [11, 12]. This facilitates the use of nano-sized metal modified TiO2 photocatalysts for 

water splitting under visible and solar irradiation [13, 14]. It has also been recently reported that 

plasmonic catalysts play an important role in driving degradation of some labile organic 

compounds [15, 16]. Based on these findings, the oxidation power of organic compounds is 

logically tunable by the selection of UV light or visible light for the PC or PEC reactions. 

Theoretically, the combined use of different light spectra will enable the detection of different 

organic compounds in a mixed solution without a separation process such as high performance 

liquid chromatography (HPLC) [17].   
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Existing nano-sized Au modified TiO2 photoelectrodes provide very limited PC and PEC 

efficiency for practical applications due to low energy conversion efficiency [18-21]. Low 

conversion efficiency is a common barrier in practical applications of PECsensors of organic 

compounds, especially in situations where response time is critical. Hydrogenation processes are 

a potential solution as the hydrogenation of TiO2 could produce oxygen vacancies and Ti3+. These 

in turn could significantly improve electrical conductivity and cause red-shift of light absorption 

resulting in better PEC performance [22-24]. Hydrogenated TiO2 has a higher sensitivity and wider 

linear range for the determination of collective organic compounds due to its decreased intrinsic 

electrochemical resistance in the UV region[25].  

In this work, we fabricate a composite photoanode by combining TiO2 nanorod arrays with 

plasmonic Au nanoparticles (i.e. Au@TiO2 photoanode) to achieve selective detection of organic 

compounds under visible light. The electrode is subjected to a hydrogenation treatment that could 

enhance electronic conductivity, accelerate transport of photoelectrons from the Au nanoparticles 

to the external circuit via TiO2, and ultimately boost PEC efficiency. The boosted hydrogenated 

Au@TiO2 photoanode (i.e. Au@H-TiO2 photoanode) is expected to be able to oxidize and sense 

glucose in the presence of potassium hydrogen phthalate (KHP). KHP is used to determine whether 

the Au@H-TiO2 photoanode can selectively detect sugars in the presence of aromatic compounds 

without the use of separation processes. The selectivity of the photoanode can be tuned by varying 

the wavelength of the light irradiation. Under visible light irradiation, sugars can be detected while 

the aromatic compounds KHP remain intact. Under UV illumination, the photoanode can 

indiscriminately detect the overall amount of organic compounds. To the best of our knowledge, 

this is the first report of a PEC sensor based on the SPR effect and hydrogenation for selective 
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detection of specific organic compounds and collective determination of overall organic 

compounds. 

 

 

Experimental Section   

TiO2 nanorod array electrodes were grown on a fluorine-doped tin oxide (FTO) glass substrate 

using a hydrothermal method [26]. Briefly, 30 ml of hydrochloric acid (37 wt%) and deionized 

water (1:1 v/v) were mixed in a 100 ml Teflon-lined stainless steel autoclave. While vigorously 

stirring the HCl solution, 0.36 mL of titanium butoxide was added to the autoclave and a 

transparent solution was obtained after 0.5 h. The FTO substrate was then immersed in the mixture 

solution and placed at an angle against the Teflon-liner wall with the conducting side facing down. 

The TiO2 nanorods grew on the FTO after a hydrothermal process at 170 °C for 6 h. The FTO 

substrate was taken out rinsed with deionized water and air dried. Finally, the sample was annealed 

in air at 500 °C for 3 h to increase the crystallinity of TiO2 nanowires and improve the mechanical 

strength of the TiO2 grown on the substrate. 

Au nanoparticles were deposited on the TiO2 nanorod array using a solution thermal reduction 

method. The TiO2 nanorod array grown on the FTO substrate was immersed in 0.03M pH 7 

HAuCl4 solutions for 2 h. The TiO2 array was taken out and washed by deionized water, air dried 

and annealed for 2 h at 300 °C. The as-grown TiO2 nanorod arrays electrode and the Au 

nanoparticles modified TiO2 nanorod arrays electrode are herein referred to as TiO2 and Au@TiO2, 

respectively. 
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Hydrogenation treatment of the TiO2 and Au@TiO2 electrodes was carried out in a 30 bar 

hydrogen atmosphere in a steel reactor at 300 °C for 30 min. The hydrogenated TiO2 and Au@TiO2 

electrodes are herein referred to as H-TiO2 and Au@H-TiO2, respectively. 

Characterization 
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Structural analyses of the TiO2 and Au@TiO2 electrodes were performed using (i) high-resolution 

X-ray diffractometer (XRD) with Cu-Kα radiations (wavelength, 1.5406 Å) on a Bruker D8 

System, (ii) scanning electron microscope (SEM) on JEOL JSM-7001F, and (iii) transmission 

electron microscopy (TEM) using a FEI Tecnai F30 TEM (operating at 300 kV). The UV−Vis 

diffusion reflectance (UV−Vis) spectra were recorded by a UV−Vis spectrometer (U3010, Hitachi) 

with an integrating sphere accessory. 

PEC measurement 

PEC experiments were carried out in a three-electrode PEC cell including an Ag/AgCl reference 

electrode and a platinum mesh auxiliary electrode. The working photoelectrodes were mounted in 

a special holder with an area of 0.78 cm2 for visible and UV light illumination. A 0.1 M NaNO3 

solution was used as the supporting electrolyte solution. A potentiostat (voltammograph, CV-27, 

BAS) was used to conduct linear sweep voltammetry (LSV) and amperometric measurements. The 

light source was a 150 W xenon lamp system (HFC-150, TrustTech). A UV band-pass filter (UG 

5, Schott) was used to remove the visible and infrared light while a UV light cut off filter (λ > 420 

nm, 500mW cm-2) was used to block the light in the UV region. 

Results and discussion 

Characterization of photoelectrodes 

The TiO2 nanorod arrays were firstly grown on a fluorine-doped tin oxide (FTO) glass substrate 

by a hydrothermal process followed by the deposition of Au nanoparticles, resulting in the 

Au@TiO2 photoanode. Subsequent hydrogenation treatment leads to the Au@H-TiO2 photoanode. 

The SEM micrographs of the Au@TiO2 electrodes illustrate the uniform deposition of Au 

nanoparticles on the as-prepared TiO2 nanorod arrays (see Figure S1, Supplementary Material) by 

the deposition–precipitation method. There is no significant morphological change between the 
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Au@TiO2 and the Au@H-TiO2 electrodes (see Figure 1 and S1), suggesting that the Au@TiO2 

sample is physically stable during the hydrogenation process. The TEM image in Figure 1c 

indicates that the Au nanoparticles deposited on the TiO2 nanorod have a typical size of 5-10 nm, 

which is confirmed by energy-dispersive X-ray spectroscopy (see Figure S2 Supplementary 

Material). This also coincides with the observation of the HRTEM image in Figure 1d where two 

Au spherical nanoparticles have a diameter of 7-8 nm. Two distinct lattice fringes, the interface 

between the TiO2 nanorod and Au nanoparticle regions can be assigned to Au (pink) and rutile 

TiO2 (blue). Furthermore, dislocation of TiO2 lattices could be observed in the area indicated by 

the red arrow where the thickness is ca. 1.5 nm. This surface lattice disorder which can be attributed 

to the hydrogenation treatment could yield mid-gap electronic levels that are responsible for the 

absorption of broader light wavelengths [27]. 

 

Figure 1. (a) Low and (b) high magnification SEM images of the Au@H-TiO2 electrode, (c) 

Low and (b) high magnification HRTEM images of the Au@H-TiO2 electrode. 
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The surface disorder is also reflected in the significant decrease in the XRD (002) peak after the 

hydrogen treatment (Figure 2a). This can indicate the increase of oxygen vacancy density in the 

TiO2 structure which induces improvement in the electric conductivity due to the increase in donor 

density. The dominant peak (002) diffraction at 63.2° and the peak (101) at 36.5° (JCPDS No. 88-

1175) suggest that the crystalline phase of the H-TiO2 and Au@H-TiO2 electrodes remain mainly 

rutile. No other change in the XRD spectra implies that the FTO substrate is not affected by the 

hydrogenation process. 

 

Figure 2. (a) XRD patterns of the TiO2, H-TiO2, Au@TiO2 and Au@H-TiO2 electrodes and (b) 

UV−Vis spectra of the TiO2, H-TiO2, Au@TiO2 and Au@H-TiO2 electrodes. 

The nano-sized Au deposition and hydrogenation treatment allow visible light absorption by the 

PEC electrode through the introduction of the SPR effect and mid-gap electric state. The UV-Vis 

diffuse absorbance spectra of H-TiO2, Au@TiO2 and Au@H-TiO2 are used to study the optical 

properties of the PEC electrodes and contrast with the as-prepared TiO2 electrode (Figure 2b). 

While the TiO2 electrode strongly absorbs light only in the UV region due to the large band gap 

(3.0 eV for rutile), the Au@TiO2 electrode shows another absorption band centered at 560 nm that 

can be attributed to the typical SPR effect of Au nanoparticles. Moreover, noticeable enhancement 

of UV and visible light absorption can be observed in H-TiO2 and Au@H-TiO2. This result 
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confirms that the hydrogenation of TiO2 could induce mid-gap energy levels to absorb visible light 

[28]. Overall, the significant absorption enhancement of the Au@H-TiO2 electrode in both UV 

and visible light regions is beneficial to PEC performance. 

PEC sensor  

The capability of the PEC electrodes to photodegrade organic compounds was assessed in 0.1 

M NaNO3 solution as shown in Figure 3. The PEC profiles of different photoelectrodes (Figure 

3a, c) were obtained under visible light using a band pass filter (λ > 420 nm). Because the 

photocurrents can be considered as the PEC reaction rate of the PEC oxidation reaction, the 

photocurrents of the TiO2, H-TiO2, Au@TiO2 and Au@H-TiO2 electrodes can be used to evaluate 

their PEC oxidation activity. A set of linear sweep voltammetry (LSV) curves are recorded in the 

potential range between -0.1 V and 1.2 V versus Ag/AgCl in Figure 3a. Upon illumination by 

visible light, the photocurrents increase linearly with increasing applied potential in the 

photoelectrodes. The H-TiO2 electrode produces a slightly enhanced photocurrent under the same 

visible irradiation compared with TiO2 electrode. This is in line with the working principle of 

hydrogenation, i.e. the creation of mid-gap energy levels facilitates the absorption of visible light. 

The PEC performance of the Au@TiO2 electrode in the visible region is remarkably better than 

the TiO2 and H-TiO2 electrodes due to the SPR effect. As expected, the Au@H-TiO2 electrode has 

the highest photocurrent compared with the other electrodes, which could be attributed to the 

synergy of the hydrogenation treatment and the SPR effect of the Au nanoparticles.  

Although the added energy levels (resulting from hydrogen treatment) of the Au@H-TiO2 

electrode could contribute to the visible light PEC performance, most photoexcited holes located 

at mid-gap energy levels do not have sufficient activation energy to drive the water oxidation. 

Therefore, the significant enhancement of photocurrents using the Au@H-TiO2 electrode is very 

likely due to the efficient separation of photoexcited electron-hole pairs (resulting from SPR effect 
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of Au nanoparticles), which is attributed to the improved electrical conductivity of hydrogenated 

TiO2. This coincides with observations of the transient photocurrent measurements in Figure 3c, 

where a constant potential of 0.6 V is applied because the electrochemical currents of both 

electrodes are stable when the potential above 0.6 V in LSV. The pristine TiO2 electrode generates 

a small photocurrent (2.5 μA cm-2), while a dramatically larger photocurrent (77.8 μA cm-2) is 

observed for the Au@H-TiO2 electrode (vs. 0.6 V Ag/AgCl).  

 

Figure 3. The LSV of the TiO2, H-TiO2, Au@TiO2 and Au@H-TiO2 electrodes under (a) visible 

light and (b) UV light at a scanning rate of 10 mV s-1. Photocurrent profiles at 0.6 V in the dark 

and under (c) visible light and (d) UV light. 

The LSV and transient photocurrent measurements under UV light are also performed in 0.1 M 

NaNO3 solution and are shown in Figure 3b and d. The photocurrents of the hydrogenated samples 

(Au@H-TiO2 and the H-TiO2) are much higher than the non-hydrogenated electrodes respectively 
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under UV light (Figure 3b and d), which is due to the hydrogenation-enhanced conductivity. The 

highest photocurrent (2.5 mA cm-2 vs. 0.6 V Ag/AgCl) of the Au@H-TiO2 electrode than the H-

TiO2 resulted from Schottky barriers between TiO2 and Au that facilitate the separation of 

photoelectron and hole, rather than the SPR effect as it is not active under UV light [29]. 

To confirm the mechanism of photocurrent enhancement by hydrogenation and to quantitatively 

quantify the photoelectron transfer performance of the photoelectrodes, the PEC reaction 

resistance is measured by a series of LSVs of the Au@TiO2 and Au@H-TiO2 electrodes under 

visible light illumination at different light intensities (see Figure S3). Compared to typical Ohmic 

resistance, the PEC reaction resistance (R0) is an intrinsic property of the electrode during the PEC 

reaction. The R0 can be obtained by the calculation using the photocurrent curves of Au@TiO2 

and Au@H-TiO2 electrodes under visible light illumination with different light intensity according 

to the Equation S1 (see supporting information). The calculated R0 values for the Au@TiO2 and 

Au@H-TiO2 electrodes are 152.4 and 28.5 Ω, respectively. The significant decreased resistance 

of the Au@H-TiO2 electrode is due to the oxygen vacancies from the hydrogenation treatment. 

The lower PEC resistance could be beneficial to electron transport and the separation of 

photoelectron-hole pairs. Under visible light the SPR photo-excited electrons from the Au particles 

at the Au@H-TiO2 electrode can swiftly transfer to the counter electrode through H-TiO2 leading 

to higher photocurrent compared with Au@TiO2 [30]. This suggests that the enhancement of 

Au@H-TiO2 electrodes is mainly due to the boosted conductivity of hydrogenated TiO2 resulting 

from oxygen vacancy. Good electronic conductivity can improve the efficiency of electron transfer 

and reduce the recombination of electron–hole pairs to enhance the PEC degradation performance.  

Feasibility of PEC sensor application 
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The photodegrading organic compound performance of Au@H-TiO2 is firstly characterized in 

0.1 M NaNO3 solution under a constant applied potential of +0.60 V and visible irradiation. As 

seen in Figure 4a, under the visible light, there is a stable background current (iblank) resulting from 

water oxidation at the surface of the electrode. Different photocurrents (itotal) can be detected for 

glucose with diverse concentrations, and a net steady-state current (inet) can be obtained by 

subtracting iblank from itotal.  

inet = itotal − iblank    (1) 

Because inet represents the oxidation rate of the corresponding organic compounds using the 

different electrodes, it can be used to characterize the contribution of the SPR effect and 

hydrogenation treatment to PEC oxidation of a certain organic compounds as shown in Figure 4b. 

With the increase of glucose concentration, the inet at TiO2 and H-TiO2 electrodes remain zero, 

which is attributed to the inability of TiO2 and H-TiO2 to PEC oxidize glucose under the visible 

light. In contrast, with the introduction of the plasmonic effect, the linearly increased inet at the 

Au@TiO2 electrode illustrates that the labile organic compounds, e.g. glucose, can be PEC 

oxidized by hot-hole at the plasmonic Au nanoparticles. Hydrogenation treatment further 

improves PEC performance, evidenced by the fact that the Au@H-TiO2 electrode not only has the 

perfect linear relationship between inet and glucose concentration but also presents the highest 

sensitivity towards all sugars (see Figure 4b and c). The calibration curves of inet values versus the 

concentration of different types of sugars for Au@H-TiO2 are plotted in Figure 4c. The Au@H-

TiO2 electrode presents an excellent linear calibration line from 0 to 1.0 mM due to the limiting 

step of mass transport of organic compounds. When the concentration of glucose, fructose, lactose 

and sucrose increase over 1.0 mM, the Au@H-TiO2 electrode reaches its oxidation capacity and 

the photocurrents become steady. This result suggests excellent PEC performance of the Au@H-
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TiO2 electrode in photodegrading labile organic compounds under visible irradiation. Under 

visible illumination, however, the Au@H-TiO2 electrode is non-photoactive to the varying 

concentration of KHP because KHP is chemically stable [31]. This represents a high selectivity 

feature of Au@H-TiO2, which can be used as PEC sensor to selectively detect labile organic 

compounds.  

 

Figure 4. The PEC degradation of organic compounds under visible light: (a) Typical photocurrent 

profiles of the Au@H-TiO2 electrode in various concentrations of glucose, (b) the plot of inet 

against different concentrations of glucose for Au@H-TiO2, Au@TiO2, H-TiO2 and TiO2 

electrodes under visible light, (c) the plot of inet against different concentrations of glucose, 

fructose, lactose, sucrose and KHP for the Au@H-TiO2 electrode, and (d) relationship between 

inet and equivalent concentration (Ceq) of glucose, fructose, lactose, sucrose and KHP, where Ceq 

(meq) = nCM (mM) in 0.1 M NaNO3 solution. 
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Additionally, the Au@H-TiO2 electrode shows a higher sensitivity to lactose and sucrose than 

to glucose and fructose when the inet values are plotted against the concentrations of different types 

of sugars (Figure 4c). This is due to the larger oxidation number of lactose (48 e) and sucrose (48 

e) than fructose (24 e) and glucose (24 e). To calibrate the inet curves, molar equivalent 

concentrations (Ceq, with a unit of meq) can be calculated by molar concentration (CM) with its 

corresponding oxidation number n. 

Ceq = nCM   (2) 

Subsequently, the inet value from Figure 4c were normalized and plotted against Ceq (Figure 4d). 

As expected, the linear fit of the data (in 0−20 meq) resulted in a R2 value of 0.9931. This excellent 

linear relationship suggests that the Au@H-TiO2 photoanode is able to selectively oxidize different 

types of sugars to the same extent. This process is equivalent to “wet burning” the organic 

compounds at the photoanode surface.  

In our tuneable PEC detection system, the number of types of detectable organic compounds can 

be increased by non-selective photodegradation under UV irradiation instead of visible light. 

Calibration curves of inet values of UV PEC measurements versus the concentration of glucose or 

KHP for Au@H-TiO2 electrodes are plotted in Figure 5. The inet values increase with the increase 

in glucose and KHP concentration (Figure 5a), suggesting that either glucose or KHP can be 

degraded at the Au@H-TiO2 electrode under UV illumination. An almost linear relationship 

between the inet values of the Au@H-TiO2 electrode and concentration can be clearly observed 

from 0 to 1.0 mM for both glucose and KHP (Figure 5b). Different from the glucose oxidation, 

KHP is a much more persistent organic compound than glucose. Therefore, the high concentration 

KHP lead to the oversupply of KHP to the TiO2 surface. Due to the strong adsorption capability 

of KHP, the excessive KHP will be adsorbed onto the TiO2 surface, leading to a typical poisoning 
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or inhibition effect to the electrode.[31] As a result, photocurrents decrease with the increased 

KHP concentrations in Fig. 5a. Due to the larger oxidation number of KHP (30 e) compared to 

glucose (24 e), the Au@H-TiO2 electrode shows a higher sensitivity to KHP than to glucose. After 

conversion into TiO2 photoanode is able to indiscriminately oxidize both types of organic 

compounds to water and CO2 under UV illumination (Figure 5c). The linear relationship is of 

primary importance to analytical chemistry because it enables the Au@H-TiO2 electrode to detect 

not only an individual organic compound but also aggregative parameters of organic compounds 

(e.g. COD in wastewater) with UV illumination. This characteristic allows the Au@H-TiO2 to 

work as a universal sensor for organic compounds under UV irradiation and provides high 

selectivity for organic compounds detection, such as different kinds of sugars, under visible light. 

This tuneable feature could enable the Au@H-TiO2 electrode to distinguish a specific organic 

compound from among several different organic compounds. 
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Figure 5. (a) Plots of inet against different concentrations of glucose and KHP for Au@H-TiO2 

under UV light, (b) relationship between inet and molar concentration CM, (c) relationship between 

inet and equivalent concentration Ceq, where Ceq (meq) = nCM (mM) in 0.1 M NaNO3 solution. 
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Application of PEC sensor in mixture solution 

From the PEC performance under visible and UV illumination, the Au@H-TiO2 can deliver 

light-directed selective and collective degradation of organic compounds as illustrated in Scheme 

1. This selective degradation feature can be tuned by the selection of the irradiation wavelength. 

On one hand, with illumination by UV light, the Au@H-TiO2 electrode can non-discriminately 

oxidize organic compounds, imparting the electrode as a universal sensor. On the other hand, the 

Au@H-TiO2 photoelectrode is able to oxidize labile organic compounds in the presence of KHP 

due to insufficient oxidation ability caused by the LSPR effect. This property can be utilized to 

detect glucose in the presence of aromatic compounds without the need for separation processes. 

It is well established that the hydrogenation process could generate mid-gap energy levels (an 

example is shown in Scheme 1) [23]. Such mid-gap energy levels facilitate the absorption of longer 

wavelength of light. However, if the energy gap of the absorbed light is lower that water oxidation 

potential (1.23 eV, vs. NHE), the oxidation of water will not occur. 
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“Scheme 1. Tuneable oxidation capability of the Au@H-TiO2 photoelectrode: selective oxidation 

of labile organic compounds (a) under visible light and collective oxidation of various organic 

compounds (b) under UV light illumination (365 nm). The black dash lines between the upper 

conduction band (CB) and lower valence band (VB) represent a possible mid-gap energy level 

(MEL) due to the oxygen vacancy that generated by the hydrogenation process.” 

To confirm the validity of detecting sugars in a mixed solution, the Au@H-TiO2 electrode is 

applied in a glucose sensor with different initiaconcentrations of KHP under visible light. The 

calibration curves of inet values versus the concentration of glucose in the presence of different 
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concentrations of KHP are plotted in Figure 6. In the absence of KHP, the obvious linear 

relationship of the inet values of the Au@H-TiO2 electrode can be clearly observed with the 

increased concentration of glucose. To assess the selective PEC detection of the Au@H-TiO2 

electrode, KHP of different concentrations is added as the initial electrolyte solution. The nearly 

perfect linear relationship between the inet values of the Au@H-TiO2 electrode with KHP 

concentrations from 0.05 mM to 1 mM is clearly observed. The negligible changes in inet values 

in Figure 6 illustrate that the presence of KHP does not affect the detection of glucose. The Au@H-

TiO2 electrode can be an excellent sensor to sensitively and selectively detect glucose in KHP 

solutions.  

 

Figure 6. Relationship between inet and glucose concentration in the presence of different 

concentrations of KHP at the Au@H-TiO2 electrode under visible light. 

Conclusions 

TiO2 nanorod arrays were synthesized and modified by plasmonic Au nanoparticles and 

hydrogenation treatments to enable the utilization of visible light for photoelectrocatalysis and 

enhance the electronic conductivity, respectively. The resultant Au@H-TiO2 electrode could 

achieve selective PEC oxidation of sugars under visible light and collective PEC degradation of 
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various types of organic compounds under UV illumination. In this work, the Au@H-TiO2 

electrode has been developed as a versatile PEC sensor: it is capable of sensitively detecting sugars 

in the presence of aromatic compounds such as KHP under visible light without the need for 

solution separation, and determining collective organic compounds under UV illumination. This 

unique tunable detection capability of the Au@H-TiO2 electrode will facilitate its use in new 

generation PEC sensors for organic compounds. 

 

Supporting Information. The calculation of PEC reaction resistance, SEM images of TiO2, H-

TiO2 and Au@TiO2 electrodes and EDS of Au@H-TiO2 electrode are supported in supporting 

information.  
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