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Abstract 

According to United Nations Intergovernmental Panel on Climate Change, aviation accounts for 2% 

of the total global greenhouse gas emissions, with international aviation accounting for 1.3% and by 

2050, aviation will account for 3% of total global greenhouse gas emissions. Over the next two 

decades passenger traffic and air cargo is expected to increase at up to 6% per annum. 

International flights generate both visible (e.g. con trails) and invisible (e.g. carbon dioxide, 

nitrogen oxide) emissions across many countries and legal jurisdictions. International emissions 

were excluded from the Kyoto Protocol and article 2.2 directed The Parties in Annex I of the 

Protocol to work through United Nations International Civil Aviation Organisation in limiting and 

reducing greenhouse gas emissions. In this thesis the focus is on carbon dioxide emissions since it is 

the largest greenhouse gas component in aviation emissions. Members of International Civil 

Aviation Organisation have adopted global aspirational goals for international aviation of limiting 

carbon emissions growth to neutral from 2020, including a yearly 2% fuel efficiency improvement. 

Members agreed to reduce emissions through non-market based measures such as improvements in 

airline operations, acquiring and updating to new technology, refuelling with sustainable fuel and 

implementing a global Market Based Measure scheme. At the 39th International Civil Aviation 

Organisation Assembly, a global carbon offsetting and reduction scheme for international aviation 

was presented that will be implemented from 2021. 

This thesis seeks to determine what combination of policies can be used to manage and reduce 

emissions from Australian international aviation. 

This thesis commences by estimating the total amount of carbon dioxide and carbon dioxide 

efficiency of airlines that were serving the Australian international market in 2012. Carbon dioxide 

efficiency is defined as the amount of carbon dioxide generated for each kilogram of payload flown 

over a kilometre where payload is the combined weight of passengers, luggage and freight. Qantas, 

Emirates and Singapore airlines were the top three emitters and AirAsia X and Cathay Pacific 

achieved the same carbon efficiency of 0.60 grams of carbon dioxide for each kilogram of payload 

flown over a kilometre and were the two most carbon efficient airlines. AirAsia X and Cathay 

Pacific utilised the same aircraft type but AirAsia X carried a higher number of passengers in their 

aircraft that is configured with more seats whereas Cathay Pacific configured the same aircraft with 

fewer seats but carried a higher amount of freight since Hong Kong is one the busiest airports for 

freight traffic. Emirates airline had the most carbon dioxide efficient long haul flights but was also 

the least carbon dioxide efficient on short flights to New Zealand due to low passenger numbers. 
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Qantas and United flew some of the oldest and least efficient aircraft on long haul and this is 

reflected in their poor carbon dioxide efficiency and higher emissions. 

The thesis then estimates the growth in emissions over the next 20 years and estimates the likely 

reductions in emissions growth assuming airlines adopt planned or soon to be implemented 

abatement options (such as changing their operations, retrofitting their existing fleet or purchasing 

new aircraft). Marginal abatement cost curves are presented wherein new aircraft acquisitions were 

financed at 2% to 6% per annum and repaid over 12 and 15 years. Analysis reveals that 

implementing all the abatement options with negative or zero marginal abatement cost where new 

aircraft are financed at 6% per annum repaid over 12 years will result in 17.1Mt and 33.6Mt of 

carbon dioxide emissions but if interest rate was reduced to 2% per annum, emissions are likely to 

be reduced to 16.9Mt and 31.7Mt in 2020 and 2033 respectively. Increasing the load factor on each 

flight by 10% and combining flights together would further reduce carbon dioxide emissions to 

15.4Mt and 28.8Mt in 2020 and 2033 respectively. 

The results presented in this thesis have a number of implications for policy makers. Due to 

Australia’s geographical isolation Australia has some of the longest international flights and airlines 

serving these routes have widely varying carbon dioxide efficiencies. Providing low cost finance at 

favourable terms will encourage airlines to upgrade to newer more fuel saving aircraft. Defining the 

carbon dioxide efficiency metric as the amount of carbon dioxide emitted for transporting the 

combine weight of passenger, luggage and freight adjusted for flight distance, gives a fairer 

assessment of an airline’s fuel/ carbon dioxide efficiency regardless of the airline’s business model. 

Setting a performance standard-based carbon dioxide efficiency metric allows airlines to pick and 

choose the appropriate means of meeting their commitments. Finally, incorporating target carbon 

dioxide efficiency into the carbon offsetting and reduction scheme for international aviation 

provides an additional incentive for airlines not only to reduce emissions but also to improve carbon 

dioxide efficiency. 
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Chapter 1. Introduction 

On New Year’s Day 1914, the first scheduled commercial fixed wing flight on an airboat took off 

from Saint Petersburg, Florida and landed in Tampa, Florida 23 minutes later and cost the mayor of 

Saint Petersburg US$400.00 (International Air Transport Association (IATA), 2013b). By 2014, the 

aviation industry directly and indirectly generated US$664.4 billion and US$761.4 billion, 

respectively, towards the global Gross Domestic Product (GDP) and directly employed 9.9 million 

people (and 11.2 million indirectly) around the world (Air Transport Action Group (ATAG), 2016). 

The aviation industry also carried 3.3 billion passengers and, over 50 Mt of cargo, which is 35% of 

the world’s cargo by value and represents US$6.4 trillion invested in the world’s airlines. (Air 

Transport Action Group (ATAG), 2016). The global air transport is growing at a rate of 4.3% per 

annum, so by 2034 aviation will directly contribute 14.9 million jobs and US$1.5 trillion towards 

global annual GDP (Air Transport Action Group (ATAG), 2016). 

“Over the last century, commercial aviation has transformed the world in ways 

unimaginable in 1914. The first flight provided a short-cut across Tampa Bay. Today the 

aviation industry re-unites loved ones, connects cultures, expands minds, opens markets, 

and fosters development. Aviation provides people around the globe with the freedom to 

make connections that can change their lives and the world.” 

Tony Tyler, IATA’s Director General and CEO (International Air Transport Association 

(IATA), 2013b). 

According to the United Nations (UN) Intergovernmental Panel on Climate Change (IPCC), 

aviation accounts for about 2% of the total global greenhouse gas (GHG) emissions (Air Transport 

Action Group (ATAG), 2016; Barker et al., 2007; IPCC, 1999). In 2015, aviation emitted 781Mt of 

carbon dioxide (CO2) with 80% of that attributed to flights over 1500km (Air Transport Action 

Group (ATAG), 2016). Over the next two decades, passenger traffic in the Asia-Pacific region is 

expected to increase at an annual rate of up to 6% and international air cargo is expected to grow at 

up to 5% annually with GHG emissions growing at between 3% to 4% annually (Air Transport 

Action Group (ATAG), 2016; Airbus, 2012b, 2016a; Barker et al., 2007; Boeing, 2012b, 2016; 

ICAO, 2010; Ribeiro et al., 2007). Even with more fuel efficient aircraft, aviation will account for 

3% of the total global GHG emissions by 2050 (IPCC, 1999). The amount of air travel can be 

affected by many factors such as the economy (global, regional, national), currency fluctuations, 

health concerns, political stability, wars, trade liberalisation and airfares. According to Boeing, the 
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growth in air travel is approximately 1.0-2.0% higher than the growth in GDP (Boeing, 2012a, 

2016). 

International flights generate emissions across many countries and regions, yet aviation emissions 

were excluded from the Kyoto protocol (United Nations (UN), 1998). Article 2.2 directed the 

Parties in Annex I of the protocol to work through UN’s International Civil Aviation Organisation 

(ICAO) in limiting and reducing GHG emissions. International aviation was excluded from the 21st 

Conference of the Parties (COP21) agreements and ICAO will report the results of their 

environmental work to United Nations Framework Convention on Climate Change (UNFCCC) 

Subsidiary Body for Scientific and Technological Advice (SBSTA) (ICAO, 2015). 

Members of ICAO adopted aspirational goals of carbon neutral growth from 2020 and 2% annual 

fuel efficiency improvement for international aviation (ICAO, 2013c). These goals are to be 

achieved through improvements in infrastructure and aircraft operations, advancements in aircraft 

technology, the deployment of sustainable alternative fuels and global market-based measures 

(ICAO, 2016c). At the 38th session of the ICAO Assembly in 2013, members agreed to develop and 

present recommendations on a global market-based measure (MBM) scheme for reducing 

international aviation emission at the next session (ICAO, 2013a). Almost 20 years after Kyoto, the 

global MBM presented at the 39th ICAO Assembly in 2016 is a phased implementation of the 

global Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA) beginning in 

2021. The CORSIA will distribute offset obligations to airlines operating between participating 

states, based on the airline’s share of the total emissions and relative success at meeting a prescribed 

emission baseline (ICAO, 2016c). Participation is on a voluntary basis from 2021 through to 2026 

and, as of October 2016, 66 states (including all the countries in this study, namely Australia, 

United States of America (USA), United Arab Emirates (UAE), New Zealand, Malaysia, Singapore, 

Hong Kong and Indonesia) intend to voluntarily participate in the CORSIA from 2021. Emission 

units and permits generated from mechanism such as the UNFCCC’s Clean Development 

Mechanism (CDM), programs such as Reducing Emissions from Deforestation and forest 

Degradation in developing countries (REDD+) or projects such as forestry conservation and 

renewable energy can be used by airlines to offset their emissions obligations. ICAO’s 

environmental work, including the CORSIA, was presented to the UNFCCC’s SBSTA at the 22nd 

Conference of the Parties (COP22) in November 2016. 

Research on an integrative policy for GHG emissions management in international aviation has 

focused mainly on global, regional (e.g. European Union) or large national (e.g. United Kingdom) 

markets. These studies consider the problem from the “top-down”, ignoring how (current and 

proposed) policies will affect each individual airline servicing these markets. The literature review 
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discussed in each relevant chapter in this thesis found no studies that focused on airlines servicing 

the Australian international aviation market. This thesis therefore tackles the research problem 

“How can airlines on Australian international routes more effectively reduce their CO2 emissions 

and improve efficiency?” and does so by answering three research questions: 

Research Question 1. What is the CO2 emissions profile of airlines operating in the Australian 

international routes? 

Research Question 2. What emissions abatement options are available to airlines on Australian 

international routes and what is the impact on the future CO2 emissions 

profile? What are the marginal abatement costs and what is the impact of 

low-interest finance? 

Research Question 3. What integrative policies could facilitate more effective emissions outcomes 

on the Australian international routes? 

Chapter 2 provides a general literature review of the numerous aviation stakeholders, emission 

abatement options, policy instruments and obstacles that have an impact on aviation emissions. It 

outlines how governments (directly and indirectly) have nurtured and regulated the development of 

the aviation industry and how policy makers are attempting to control the growth in aviation 

emissions. 

Chapter 3 gives an overview of how the thesis methodology meets the overall research objectives. 

This chapter summarises how each stage of the methodology produced key results that answered the 

three research questions. 

Chapter 4 provides the CO2 emissions profile of airlines operating on the most populous Australian 

international routes in 2012. These routes are between Australia and the USA, UAE, New Zealand, 

Malaysia, Singapore, Hong Kong and Indonesia. An airline’s CO2 emissions profile is made up of 

the amount of CO2 emitted and CO2 efficiency (i.e. the amount of CO2 emitted for each passenger 

per kilometre flown and CO2 emitted for each kilogram of payload per kilometre flown). Payload is 

the combine weight of passengers, luggage and freight. This is the first study to combine both 

passenger and freight when calculating the efficiency of each airline, which is useful in developing 

performance metric that can be used in policy instruments. Chapter 4 concludes by briefly 

discussing the need to perform additional research on the effect each abatement option has on both 

CO2 emissions and CO2 efficiency for each airline. This chapter was published in the Journal of Air 

Transport Management (Yin, Dargusch, & Halog, 2015). 

Chapter 5 determines the increase in CO2 emissions of airlines operating on the most populous 

Australian international routes as passenger and freight traffic increases over the next 20 years. 
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Some airlines on Australian international routes have announced a number of emissions abatement 

options that will be implemented over this period. This chapter estimates the change in CO2 

emissions and CO2 efficiency as airlines implement a number of these abatement options. The 

results show the maximum amount of emissions that would be abated and the further reduction of 

emissions still needed from all flights in order to stay carbon neutral after 2020. Chapter 5 

concludes by discussing the need to determine the financial viability and ease of implementation of 

each abatement options for each airline. This chapter was published in the International Journal of 

Sustainable Transportation (Yin, Dargusch, & Halog, 2016). 

Chapter 6 determines the financial viability of each abatement option presented in Chapter 5 for 

each airline. The costs of all abatement options are adjusted for inflation, with some abatement 

costs recurring regularly over the next 20 years due to obsolescence and wear and tear. This chapter 

pays special attention to the total cost of acquiring new fuel-efficient aircraft by building a cost 

model that takes into consideration inflation, maintenance, loan, depreciation, residual and lease 

cost of each aircraft type. The model was used to determine the savings in fuel cost for each 

abatement option over the next 20 years. Marginal abatement cost curves (MACCs) are produced 

and the CO2 emissions profile are updated, assuming that airlines implement only the financially 

viable abatement options (an abatement option is deemed financially viable if it has negative or zero 

marginal abatement cost). This chapter also considers how obtaining favourable finance can 

increase the number of new aircraft in the fleet, subsequently reducing total emissions and 

improving CO2 efficiency. Chapter 6 concludes by discussing that Australian-based airlines 

sometimes use the same aircraft for both domestic and international flights, so more accurate 

MACCs should include both the domestic and international fleet. This chapter is currently under 

review with the International Journal of Sustainable Transportation. 

Chapter 7 reviews the global market-based measure for international aviation in the form of the 

CORSIA that was presented at the 39th ICAO Assembly in 2016. This chapter presents an 

improvement to the formula used to calculate the carbon offset obligations for each airline in the 

CORSIA by taking into consideration an airlines relative success at meeting or exceeding the yearly 

CO2 efficiency target. The CO2 efficiency target allows airlines to choose the most appropriate 

means for meeting the efficiency benchmark. 

Chapter 8 presents the carbon offset obligations for airlines servicing the Australian international 

routes using both the ICAO’s CORSIA and the improved carbon offset scheme (presented in 

Chapter 7). It assumes that these airlines will implement all the financially viable abatement options 

with new aircraft acquisitions financed at 2% per annum and repaid over 12 years and that the new 

aircraft acquired to handle the growth in passenger and cargo traffic in Chapter 6 are distributed 
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between airlines that are currently servicing Australian international routes. This chapter 

recommends that additional study is needed to determine if using multiple CO2 efficiency targets 

would improve the consistency of the offset obligations calculation for each airline. 

Finally, Chapter 9 summarises how the thesis has met the overall research objectives and specific 

research questions and also highlights the strengths and limitations of the study. It demonstrates 

how the results of the thesis may: contribute to better awareness and knowledge in the areas of 

international aviation and aviation finance from the airlines perspective (bottom-up); serve to 

provoke future research; and ultimately how they may aid in the sustainable management of 

international airline emissions. 



K-s.Yin Page 25 

Chapter 2. Context 

2.1 Aviation Industry 

When a traveller is planning their next international flight they usually take into consideration the 

ticket price, airlines, time of departures, length of flights, frequent flyer programs, number of 

layovers, luggage allowance, airports to avoid to name but a few. Air travellers are beginning to 

think about their carbon footprint on their flights and are willing to pay to voluntarily offset their 

emissions (Choi & Ritchie, 2014; Lu & Shon, 2012). Some airlines such as Qantas and Virgin 

Australia have provided passengers the option to voluntarily offset their carbon emissions on their 

flights (Qantas, 2014; Virgin Australia, 2017). The amount of emissions on each flight is highly 

dependent on the aircraft used, aircraft total weight, route flown, weather conditions and congestion 

in the air and at the airport. The cost of fuel is a major component of the airlines business cost and 

when fuel cost was high, airlines purchased new efficient aircraft to reduce fuel use on each flight 

(Flottau, Broderick, Unnikrishnan, & Schofield, 2015; Townend, 2011). But when the price of oil 

dropped from over US$120 a barrel to less than $40 a barrel, airlines kept their less fuel efficient 

aircraft instead of retiring and renewing to more efficient aircraft (Freed, 2016; Mangla, 2015). 

The airline-aviation industry is made up of multinational manufacturers, global network of 

suppliers, government and privately run airlines, airports, air navigation service providers, fuel 

providers, freight companies, caterers, travel agents, labour unions, financiers, trade associations, 

public groups and many more. Each can directly and indirectly affect the amount of emissions 

generated. These stakeholders will all have varying influence in setting and shaping the national, 

regional and international aviation policy. Many governments have relied on the airline-aviation 

industry for expert advice on formulating regulations and policies or in some case self-regulation. 

2.2 Aviation Regulation 

Many parts of the airline-aviation industry, unlike other industries are heavily regulated by local, 

national and regional governments (Backx, Carney, & Gedajlovic, 2002; Button & McDougall, 

2006; Gillen, 2011). Around the world some national airlines, airports, air traffic management 

infrastructure and services are government owned, controlled and regulated. Some manufacturers 

receive tax incentives and subsidies (directly or indirectly) to help with the development of new 

commercial aircraft, and airlines receive government contracts to transport government personnel 

(Knorr, Bellmann, & Schomaker, 2012; Vasigh, Fleming, & Tacker, 2013). Government regulations 
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and interventions have both facilitated and hinder the evolution of the airline-aviation industries 

(Button & McDougall, 2006; Gillen, 2011; Morrison & Winston, 1989). 

Looking back to the beginning of commercial aviation, governments have played an active and 

important role in nurturing the aviation industry. In the USA, the Contract Air Mail Act (1925) and 

Air Commerce Act (1926) subsidized airmail based on weight. To meet these requirements, 

manufacturers produced aircraft that can carry more weight and fly faster so as to maximize profits 

(Smithsonian National Postal Museum, 2004; Vasigh et al., 2013). The Watre Act (1930) changed 

airmail weight based subsidies to distance; manufacturers responded by producing larger aircraft 

that can fly longer intercontinental distance with the extra space used to transport passengers 

(Smithsonian National Postal Museum, 2004; Vasigh et al., 2013). Other policies and government 

agencies can have direct and indirect effects on the design of the aircraft. For example the US 

Federal Aviation Authority (FAA) Aviation Noise Abatement Policy (1976, 2000) specifies the 

noise standards that future aircraft must meet. The US Environmental Protection Agency (EPA) 

Clean Air Act is a US federal law that controls air pollution. It also sets emission standards in motor 

vehicles and aircraft. 

In the USA, Australia and other countries, governments have deregulated the airline industries 

(Morrison & Winston, 1989; Qantas, 2010). Qantas for example was privatized in 1993 (Qantas, 

2010). The US Airline Deregulation Act (1978) removed control of fares, routes and market entry 

for new airlines (Smithsonian National Air and Space Museum, 2007) but many carriers around the 

world are still government owned, controlled, and even after privatisation most still receive 

favourable treatment from their governments as the national carrier. Airlines under financial 

difficulty have also being re-nationalized after privatisation (e.g. Air New Zealand in 2001) or seek 

government assistance (e.g. Qantas in 2014 lobbied the Australia federal government to review the 

Qantas sales act that limited foreign ownership of Qantas) (Griffiths, 2014; Kohler, 2001). 

Airlines right to fly into and out of any cities of each country; number of carriers and number of 

flights are subject to negotiated bilateral agreements between each country. The first bilateral 

agreement was signed in Bermuda in 1946 between the United Kingdom (UK) and USA. This was 

updated in 1977 before it was superseded by the Open Skies agreement between the EU and USA in 

2000. All other bilateral and multilateral agreements display similar properties to the Bermuda 

agreement. The first Open Sky agreement was signed between USA and the Netherlands in 1992; 

the agreement allows airlines from each country to fly any route with no limitations on the number 

of carriers or flights. Most bilateral, multilateral Air Service agreements and Open Skies agreements 

will specify all or a subset of the nine Freedoms that will be granted (Vasigh et al., 2013). As of 
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2017, Australia has treaty level Air Services Agreements accompanied by arrangements with 97 

countries/economies (Bureau of Infrastructure Transport and Regional Economics (BITRE), 2017). 

The UN ICAO was established in 1944 to “manage the administration and governance of the 

Convention on International Civil Aviation (Chicago Convention)” (ICAO, 2017). ICAO works 

with its Member States and industry groups on international civil aviation standards and 

recommended practices (SARPs) and policies (ICAO, 2017). Member States ensure that their local 

civil aviation operations and regulations adhere to these SARPs and polices. “ICAO also: 

coordinates assistance and capacity building for States in support of numerous aviation 

development objectives; produces global plans to coordinate multilateral strategic progress for 

safety and air navigation; monitors and reports on numerous air transport sector performance 

metrics; and audits States’ civil aviation oversight capabilities in the areas of safety and security” 

(ICAO, 2017). 

2.3 Aviation finance and subsidies 

Governments can provide funds or subsides for constructing airports, to develop new air routes, to 

upgrade production facilities, to research and develop new aircraft and aviation technology 

(Bednarek, 2016; Knorr et al., 2012; Ramos-Pérez, 2016; A. Smyth, Christodoulou, Dennis, Al-

Azzawi, & Campbell, 2012). Governments can use their export credit agencies to greatly increase 

the number of new and more fuel efficient aircraft and additional capacity (seats) available. The 

Export-Import (EXIM) Bank of the US is the official export credit agency of the US federal 

government and it assists in financing the export of US goods and services to international markets 

(Ali, Hampson, Inglis, Sargeant, & Ali, 2013; Export-import Bank of the United States, 2012). The 

EXIM Bank provides credit and assumes the risk for countries that cannot obtain credit in the open 

market and it provides loan guarantees to certain foreign airlines to purchase Boeing aircraft. The 

three European export credit agencies – UK’s Export Credits Guarantee Department, Germany’s 

Euler Hermes and France’s Compagnie Française d'Assurance pour le Commerce Extérieur 

(Coface) perform a similar function to EXIM Bank in financing the sales of Airbus aircraft (Ali et 

al., 2013; International Airlines Group Legal Department, 2011). 

2.4 Aviation emissions 

All forms of aviation are responsible for about 2% of global anthropogenic CO2 emissions and 

international aviation is responsible for around 1.3% of the global anthropogenic CO2 emissions 

(ICAO, 2016b; IPCC, 2007). 
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Aircraft engines produce about 70% CO2, about 30% water vapour (H2O) and less than 1% is made 

up of black carbon (soot), sulphur oxides (SOX), mono-nitrogen oxides (NOX), hydrocarbons (HC), 

methane (CH4) and carbon monoxide (CO) (U.S. Federal Aviation Administration (FAA), 2015). 

Soot is the second largest contributor to global warming after CO2, it absorbs heat and reduces 

albedo (Bond et al., 2013). Aircraft condensation trails (contrails) can cause cooling during the day 

and warming at night (Travis, Carleton, & Lauritsen, 2004). A multiplier of emitted CO2 can be 

used to account for the effects from non-CO2 emissions but at present there is no general agreement 

on the exact multiplicative factor to be used (D. S. Lee et al., 2009; Marbaix, Ferrone, & Matthews, 

2008).  

Shuttle buses, transport to and from airports, ground support vehicles and airport power (include 

power provide to aircraft at the gate) will generate similar emissions but this thesis will focus only 

on CO2 emissions from aircraft, since CO2 is the largest component of aircraft engine emissions. 

2.5 Industry Commitments to CO2 reduction 

In 2008, members of International Air Transport Association that represent 240 airlines and 84% of 

total air traffic have committed to 1.5% fuel efficiency improvement per year to 2020, carbon 

neutral growth from 2020 and 50% net carbon emission reductions by 2050 relative to 2005 (Air 

Transport Action Group (ATAG), 2016; International Air Transport Association (IATA), 2009, 

2013a). At the 38th session of ICAO Assembly in 2013, members endorsed the aspirational goal of 

global fuel efficiency improvement of 2% per annum and carbon neutral growth from 2020 (ICAO, 

2013c). To achieve these goals, a number of emissions abatement measures including global MBM, 

alternative fuels, improvements in technology and operation will need to be adopted. 

2.6 Emissions abatement options 

In the airline-aviation industry, the four main categories of abatement options that are available for 

reducing CO2 emissions are: (Banbury, Behrens, Bowell, et al., 2009; Banbury, Behrens, Browell, 

et al., 2009; Braathen et al., 2012; L. M. Dray, Evans, Reynolds, Schäfer, & Vera-Morales, 2009; 

Green et al., 2005; Holland et al., 2011; IPCC, 1999; Kar, Bennefoy, & Hansman, 2010; Morris, 

Rowbotham, Morrell, et al., 2009)  

1. Improve the amount of fuel used by changing aircraft operations. This may include: 

a) Change aircraft flight path (improve air traffic management (ATM)) (Asia and Pacific 

Initiative to Reduce Emissions (ASPIRE), 2012; Grewe et al., 2014; Søvde et al., 2014). 

b) Improve airport infrastructure (National Research Council et al., 2011). 
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c) Increase aircraft load factor by combining flights and cancelling underutilised ones 

(Steven & Merklein, 2013). 

d) Using larger aircraft on trips (Morrell, 2009). 

e) Reduce aircraft weight e.g. Less drinking water and food, reduce packaging on food on 

short flights, light weight seats, carpets, inflight entertainment (IFE) equipment, galley 

equipment, cockpit equipment (Poll, 2014). 

f) Lower aircraft cruise speed (Lovegren & Hansman, 2011). 

g) Retire less efficient older aircraft (L. Dray, 2013). 

h) Change maintenance intervals (L. M. Dray et al., 2009). 

2. Develop and acquire aviation technology to reduce fuel used. This may include: 

a) Develop and acquire new fuel efficient aircraft technology (Graham, Hall, & Vera 

Morales, 2014): 

i) Develop and acquire new engines/engine technology such as Open rotor, hybrid 

electric propulsion, boundary layer ingesting. 

ii) Develop and acquire new fuel efficient aircraft including radical aircraft design 

such as blended/hybrid wing body, double bubble body (Hileman, De la Rosa 

Blanco, Bonnefoy, & Carter, 2013). 

iii) Use lightweight material in all parts of the aircraft from airframes to seats. 

iv) Develop and acquire wings with better lift to drag ratio. 

b) Improve current aircraft efficiency (Berglund, 2008): 

i) Reduce drag e.g. Winglets, Riblets, Laminar Nacelles, etc. 

ii) Reduce aircraft weight e.g. light weight seats, carpets, trolley, washing engines, 

washing aircraft, reduce paint. 

iii) Reduce the use of Auxiliary Power Unit while at airport. 

3. Refuel with Alternative Fuels (Dillingham et al., 2014; Gegg, Budd, & Ison, 2015; Stratton, 

Wong, & Hileman, 2010). 

4. Changing travellers’ behaviour that could lead to less demand for air travel. This may include: 

a) Teleconference instead of business travel (Borggren, Moberg, Räsänen, & Finnveden, 

2013; Davies & Armsworth, 2010). 

b) More efficient alternative transportation (Borken-Kleefeld, Fuglestvedt, & Berntsen, 

2013). 

Some abatement options such as installing winglets, retrofitting with lightweight cabin equipment, 

taxiing on one engine, washing aircraft engines, etc. can be implemented immediately but other 

abatement options such as acquiring the next generation of fuel efficient aircraft (like 737MAX, 
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A320NEO, 777X) will have a longer lead time since these aircraft will enter service within the next 

10 years (Airbus, 2016b; Bachman & Schlangenstein, 2017; Norris, 2013). 

Not all of these abatement options can be actioned by airlines on their own; some can only be 

actioned by local, national or regional governments, manufacturers and other stakeholders in the 

airline-aviation industry. For example, local and/or national governments usually pay for 

improvements to airport infrastructure whereas national and/or regional governments pay for 

upgrades to ATM systems that in turn might require new equipment in aircraft and/or retraining of 

aircrew to make use of these improvements. 

Future aviation technologies such as hybrid-electric propulsion, blended/hybrid wing-body, double 

bubble plane, etc. may come on the market in the next 20 to 40 years with up to 70% reduction in 

fuel consumption when compared to conventional (tube-and-wing) aircraft (Graham et al., 2014). 

Some of these future aviation technologies are still in small scale development phase and it’s highly 

unlikely that commercial companies will research these projects without government assistance 

(Graham et al., 2014). Apart from saving fuel, these future technologies must meet other 

requirements and regulations such as noise, emissions, scalability, and emergency evacuation and 

gate size before entering service. 

2.7 Environmental policy instruments 

There are a number of environmental policy instruments available to reduce CO2 emissions in 

aviation. These instruments can encourage research, development and adoption of emission 

reduction technologies, improve efficiency and increase awareness. The list of environmental policy 

instruments may include taxes on emissions, tradable emissions permits, support for meeting 

emissions baselines, taxes on emissions intensive goods and services, support for green 

technologies, directly mandate the use of certain technologies, regulations, standards, financial 

incentives and voluntary agreements. 

A number of these instruments, their main advantages and disadvantages are summarised in Table 

2.1 (Burniaux et al., 2009; Cebreiro-Gómez et al., 2006; Duval, 2008; Goulder & Parry, 2008; 

Huppes & Simonis, 2009) 
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Table 2.1 Environmental policy instruments 

Policy Instrument Description Pros and Cons 
Emission tax. A tax on emissions 

where the amount of 
tax paid is proportional 
to the quantity of 
emissions generated. 

Since the abatement cost is equal to the tax, it 
makes it simple to administer and implement 
nationally or across a region but it also makes it 
easier to remove thus creating uncertainty. 

The emission tax provides a stable carbon price 
with less chance for corruption and revenue 
collected can be recycled. 
One of the main disadvantages is the cost and 
difficulty in monitoring and enforcement. 

Developing nations tend to have higher carbon 
intensity and will be impacted more by an 
emission tax and are less able to afford the cost of 
enforcement, monitoring and administration. 

Stakeholders and groups affected adversely by the 
emission tax will lobby against it. 

Emission tax does not limit the actual amount of 
emissions generated and could reduce 
competitiveness when compared to none taxed 
regions. 

Tax on goods or 
services. 

Tax emissions 
intensive goods and 
services such as 
products, fuel, air 
travel, electricity, etc. 

Higher taxes can lead to less demand but does not 
encourage cleaner production of emissions 
intensive goods and services and does not focus 
on the externalities. 

It can be easier and cheaper to implement 
especially when emissions monitoring is difficult. 

Taxing emissions intensive goods and services 
reduce the competitive advantage of imports from 
non-taxed regions. 

Subsidies for 
pollution 
abatement. 

Policy instrument that 
rewards industries for 
every unit of emissions 
below a baseline 
emissions level. 

Subsidies will lower cost only when emissions are 
below an artificial emissions baseline. 

It’s not as cost effective as emission taxes or 
tradable emission permits. 
Provides the wrong production incentive. 

Tradable emission 
permits. 

Emission permits are 
similar to Emission 
Taxes where an 
emitter must have a 
permit for the amount 
of emissions produced.  

The number of permits is capped and the permits 
are tradable. 

The permit price fluctuates depending on the 
market and can respond quicker than emission 
taxes but can also lead to carbon price volatility. 

Capping the number of permits can create an 
artificial upper bound on emissions. 

Nations and regions can setup separate emission 
permit trading scheme and can reduce permit 
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Policy Instrument Description Pros and Cons 
price volatility by linking different schemes 
together. 

Linked scheme can have an adverse effect on 
carbon price with regions and nations losing 
sovereignty over their local emission targets. 

If these national and regional schemes are not 
comparable then integration will be difficult. 

Setting up an emissions permit-trading scheme, 
monitoring, enforcement and paying for permits 
can be expensive and difficult especially for 
developing nations. 

Help can be provided to disadvantaged 
stakeholders and countries by allocating free 
permits (grandfathering). 

Lax monitoring can reduce permit price whereas a 
monopolistic permit seller can drive up the permit 
price and abatement cost. 

To tackle ‘local’ emissions, permits can be 
restricted by region or industry. 

Technology 
support. 

Instrument that 
support research, 
development and 
adoption of green/new 
technology. This can 
be direct funding, tax 
incentives, subsidies, 
intellectual property 
law, investor 
incentives, etc. 

Policy instrument that support the research, 
development and adoption of green technology 
will mainly address future emissions and does not 
directly address the current demand, emissions 
and externalities. 

Technology subsidies will boost the economy but 
can create market distortions and it’s not the most 
cost effective way of encouraging research, 
development and adoption of new technology. 

It can be used to target specific technologies and 
adoption issues but can also target or support the 
wrong technologies. 

There is also no guarantee that the new 
technology will deliver the desired outcome with 
some having long and undefined lead times. 

Technology subsidies may require additional 
administration cost and does not tackle the whole 
chain and process. 

Technology support instruments are more 
effective when implemented in conjunction with 
market-based incentives. 

Technology support instruments spread the cost 
over the population but benefits only the 
researchers, developers and adopters of the green 
technology. 
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Policy Instrument Description Pros and Cons 
Command and 
Control. 

Direct regulatory type 
instrument can be used 
to mandate the use of 
certain technology, 
performance standard, 
eco labelling, public 
disclosure, etc. 

Technology mandates affects only part of the 
production chain, reduce emitter’s choice of 
abatement options and since all firms must 
comply regardless of individual situation it is 
unlikely to reduce abatement cost. 

Technology standards may be more cost effective 
when emission monitoring is difficult. 

Performance standards allow industry to pick and 
choose the appropriate means of meeting their 
commitments but do not control the emissions 
quantity. 

Standards can be monopolised by lobby groups 
and can gradually be undermined. 

Standards are difficult to determine if they are too 
weak or strong and there are no incentives to do 
more than what is required. 

Eco-labelling and public disclosures provide 
information to educate the consumer but only 
affect future emissions. 
Command and control instruments are easy to 
enforce and is more effective when implemented 
in conjunction with other instruments like MBM. 
Can have negative interactions with other policy 
instruments. 
Command and control instruments do not cope 
well with change since regulators may not have 
the most up to date information (when setting 
technology and performance standards). 
Unlike taxes and permits, cost is not as visible. 
Easier for consumers to understand. 

Voluntary 
agreements 

Voluntary Agreements 
between government 
and stakeholders on 
limiting emissions can 
be seen as a special 
type of Command and 
control instrument. 

They can raise awareness, can be easier to 
implement and lead to stricter agreements. 

It’s not cost effective since there are no incentives 
to do more than what is specified. 

Since it’s voluntary, there are no guarantees that 
emissions are reduced or the cheapest abatement 
options are implemented. 

Voluntary Agreements can lead to or combine 
with the threat of more stringent policies. 

It can also be monopolised by lobby groups so as 
to avoid or even prevent stricter measures. 

Can be difficult to monitor, report or enforce. 
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2.8 Political Obstacles 

In an ideal world, the policy instruments used to tackle GHG emissions will be the most cost 

efficient and environmentally effective, and at the same time produce the most benefits. But the 

policy instruments that are introduced are usually a compromise between what is effective, 

beneficial and feasible. Apart from the advantages and disadvantages listed in Table 2.1, each 

policy instrument has their own unique political and sometimes constitutional hurdles to overcome 

before becoming the law. In some countries and regions the cultural, social and standard practices 

may greatly influence the type of instruments that will be introduced and applied. 

For example, the UK Labour Government introduced Climate Change Levy (CCL) as part of a 

number of policy instruments to reduce GHG emissions. The CCL is a tax on energy used, and the 

Labour Government had to make sure that the CCL did not unduly affect the poor, so as not to lose 

voter support (in coal mining areas) or cause energy price rises for households. The Labour 

Government also wanted to avoid to be seen as a high tax, big spending and anti-business 

government. The CCL taxed energy used by industry only but excluded the transportation sector 

and households, and encourages the use of renewable energy but not nuclear power. The 

transportation sector was excluded because they were subject to other MBM. CCL provided 

discounts for industries that reduce emissions to or over an agreed baseline but no incentives were 

given to electricity generators (D. Pearce, 2005). 

In Canada, a mix of instruments was introduced at both the federal and provincial/territorial level to 

tackle regional NOX and SOX air pollution. The Canadian constitution states that each province or 

territory has responsibilities for environmental protection within their borders but the federal 

government address cross-border pollution and product standards such as vehicle and fuel standard. 

The Canadian federal government developed national standards with provincial/territorial 

governments who then use these standards to develop their own provincial/territorial regulations 

(OECD, 2007). 

Cherry et al. (2014) showed that cultural and social factors can influence support for low-carbon 

technology (Cherry, García, Kallbekken, & Torvanger, 2014). They determined that an individual’s 

cultural worldviews greatly influence their support of publicly funded R&D whereas local 

economic interests influence their support of deployment of low carbon technology. 

Finally the passage of environmental policy into law is not the end of the struggles as can be seen in 

Australia where the elected conservative government has dismantled the “carbon tax” laws that 

were passed by the previous Australian Labour government. 
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For each of policy instrument listed in the Table 2.1, Table 2.2 summarise some of these political 

obstacles from the perspective of the voters, politicians and affected industry (Burniaux et al., 2009; 

deSerres, Llewellyn, & Llewellyn, 2011; Hammar, Lofgren, & Sterner, 2004; Kirchgassner & 

Schneider, 2003; Oates & Portney, 2003). 

 
Table 2.2 Policy Obstacles 

Actors Market Based 
Measures (E.g. 
Emissions Tax, 
Permit, Goods 
and Services Tax) 

Command and 
Control (E.g. 
standards, 
regulations, etc.) 

Technology 
Support (E.g. 
subsides, 
incentives, 
intellectual 
property etc.) 

Voluntary 
Agreement 

Politician No votes for new 
taxes. 
Difficult to 
negotiate an 
equalised tax or 
standardised 
permit. 
Hard convincing 
voters that money 
collected will be 
used appropriately 
or recycled (into 
tax reductions, 
subsidies, or 
incentives). 

Easier to sell to 
industry and 
voters. 
Not tackling the 
current emissions. 

Tackling only 
future emissions 
(not current 
demand).  
Voters want more 
immediate benefits 
and actions. 
More government 
administration 
required. 
Government 
funding private 
industry. 

No enforcement. 

Perceived as not 
doing enough. 

Industry 
(+ their 
special 
interest 
groups) 

Lobby against 
paying for 
emissions. 

Lobby for 
exceptions or 
grandfathering of 
permits (instead of 
auctions). 
Threats of staff 
reductions, 
industry shut 
downs or 
relocation due to 
additional cost. 

Lobby for less 
restrictive 
regulations with 
minimal economic 
liability. 
Prefer Command 
and Control to 
MBM since there 
is no cost on 
current emissions. 

Lobby for 
subsidies, tax 
incentives by 
affected industry. 

Lobby against if 
it’s seen as helping 
competitors. 

Non-binding. 
Lobby for 
voluntary 
agreement only if 
government 
threaten to 
implement 
traditional 
command control 
or taxation. 
Lobby for the least 
restrictive 
voluntary 
agreement. 

Voter / 
Public 

Not likely to vote 
or support another 
tax or revenue 
generator. 

Bigger government 
to manage new 
regulations (bigger 
government seen as 
a waste of public 

Concern about 
supporting the 
wrong technology. 
Bigger government 

Non-binding. 

Perceived as not 
doing enough. 
Hard to enforce, if 
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Actors Market Based 
Measures (E.g. 
Emissions Tax, 
Permit, Goods 
and Services Tax) 

Command and 
Control (E.g. 
standards, 
regulations, etc.) 

Technology 
Support (E.g. 
subsides, 
incentives, 
intellectual 
property etc.) 

Voluntary 
Agreement 

Not convinced that 
taxes are used to 
solve the emissions 
problem or 
recycled. 
Need to be 
convinced to pay 
price now for the 
benefit of future 
generations. 
Believe that 
polluters not 
paying enough and 
non-participants 
are freeloading. 
Believe that 
industries will 
reduce wages or 
relocate to areas 
with no MBM. 
Perceived as extra 
burden or increase 
cost of living. 
See permits as 
licences to pollute. 
High consumers of 
a product or service 
affected by the tax 
or permit will vote 
against 
taxes/permits (and 
vice versa). 
Lobby for the other 
policies that are 
seen as “costing 
nothing” (on the 
surface).  

funds by voters). 
Lose or bad 
regulations mean 
polluters not 
paying enough. 
Voters more 
interested in 
solutions to tackle 
current emissions 
but Command and 
control instruments 
tackle future 
emissions. 
Voters directly 
impacted by 
emissions will 
want more strict 
standards. 

to administer 
funds. 
Benefits are too far 
in the distances. 
Government 
funding/support 
private industry. 
Voters directly 
impacted will want 
more (technology) 
support but other 
voters will view it 
as government 
welfare to industry. 

no penalty. 
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2.9 Policy Interaction  

Since most environmental problems are more than just reducing the total amount of GHG emission, 

environmental policies will contain more than one instrument which could target one or more 

stakeholders (industries, sectors, etc.), address multiple market behaviours or issues. This mix of 

instruments can directly and/or indirectly affect the same/different stakeholders, market behaviours 

or issues both positively and negatively (Goulder & Parry, 2008; OECD, 2007; Sorrell & Sijm, 

2003). 

For example, a policy with both an emission tax and an emission permit instrument where emitters 

can choose how they meet their commitments can reduce their cost uncertainty but may reduce the 

effectiveness of emission tax (OECD, 2007). 

OECD reviewed a mix of instruments from around the world that tackled household waste 

generation, water pollution, mercury emissions, regional air pollution and residential energy 

efficiency, and in the residential energy efficiency example, a mix of energy tax, financial support, 

performance and technical standards, information based instrument like energy labels and voluntary 

instrument like appliance efficiency were used in Canada and the UK to not only reduce energy 

consumption but to improve energy efficiency (OECD, 2007). 

Lyon et al. (2003) presented a gaming model that determines the environmental technology 

adoption under unilateral action, voluntary agreements and taxation (Lyon & Maxwell, 2003). The 

model showed weak voluntary agreements are often used when stronger policy instrument (such as 

taxes) are not political feasible due to heavy lobbying and resistance from the affected industries. 

The model showed that inefficient companies affected by taxation could either leave the industry or 

adopt cleaner technology, whereas voluntary agreements will cause companies to do only the latter. 

Companies that adopt voluntary agreements will also increase lobbying against tax proposals but 

some may choose to adopt unilateral action to pre-empt taxation (Lyon & Maxwell, 2003).  

Environmental policies can interact with policies in other areas, Sijm (2005) concluded that the 

national energy policies in sectors that are also participating in the European Union Emissions 

Trading System (EU-ETS) should be abolished since it would make the CO2 performance of EU-

ETS less optimal having overlapping policy instruments. Sijm (2005) states that overlapping 

policies can only be justified if it improves the design and political acceptability of EU-ETS, reduce 

(technology, market) barriers, correct market failures and/or meet other objectives. 

An optimal policy need to be cost effective at reducing emissions, encourages research and 

development (R&D), promotes learning from producing and adopting new technology, and cope 
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with market/emission fluctuations (Duval, 2008; Fischer & Newell, 2008). Duval (2008) 

recommends selecting some form of price instrument (such as tax or emission permit) in 

combination with technology support, standards and/or voluntary agreements. Fischer and Newell 

(2008) evaluated six policies used in the electricity sector for reducing GHG emissions and 

concluded that a mix of policy instruments that includes an emission price, subsidies for R&D and 

learning is more cost and environmental effective than any single instrument alone (Fischer & 

Newell, 2008). These six policies were pricing CO2 emissions, tax on fossil fuelled energy, tradable 

emissions performance standard, portfolio standards of renewables, production subsidy for 

renewables and subsidies for R&D. 

There is also a belief that imposing a price on CO2 emissions will lead to more R&D in 

environmentally friendly technology. Gans (2012) determined that this assumption is not 

necessarily true. Gans’s model shows that higher carbon price leads to less fossil fuel usage and 

may improve the R&D of alternative or non-emitting technologies but may discourage R&D into 

more fuel efficiency technology (Gans, 2012). 

In Hamamoto’s analysis of household CO2 emissions, policies that include high carbon price and 

economic incentives are not enough to change household behaviour but suggest including 

cooperative policies that “influence psychological factors” such as feedback and reward, 

information, etc. (Hamamoto, 2013). 

In Asia, the main factors that are causing the growth of CO2 emissions in the transport sector are 

economic and population growth and some Asian countries are applying a mix of policy 

instruments such as fuel efficiency standards, occupancy rates, eliminate or reduced fuel subsidies, 

tax incentives, fuel switching, congestion pricing to curb CO2 emissions (Timilsina & Shrestha, 

2009). 

According to Hofer et al. an air travel carbon tax on US domestic routes will increase airfares and 

may discourage some travellers from flying. Traveller may switch to automobile travel on shorter 

routes, thus leading to higher automobile emissions and lower total air travel emission savings 

(Hofer, Dresner, & Windle, 2010).  

Looking at these examples from other industries, sectors, and regions it is clear that a portfolio of 

instruments is required to achieve the CO2 emissions reduction objectives. In producing an 

environmentally effective and economically efficient mix of environmental policy instruments, 

OECD (2007) listed three main criteria that should be met: 

1) Cost versus benefit, i.e. cost of implementing the instrument mix versus the benefits 

2) Cost-effectiveness, i.e. cost of applying the instrument mix 
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3) Environmental effectiveness, i.e. environmental benefits of instrument mix 

2.10 Aviation and EU-ETS 

The inclusion of international flights to and from the European Union (EU) in the EU Emissions 

Trading System (ETS) was the first major attempt to regulate international aviation emissions. To 

meet its Kyoto commitments, the EU introduced an Emissions Trading System in 2005 to reduce 

GHG. The EU-ETS placed an absolute limit on the quantity of emissions emitted and businesses 

require emission allowances before emitting. Most businesses are allocated some free allowances 

with the others auctioned. Businesses that can keep their emissions below their allowances can sell 

their extra allowances and those that cannot keep their emissions below the free allowance can 

invest in low/clean emissions technology and/or purchase additional allowances on the open 

market. Businesses that do not have enough emission allowances to cover their emissions will be 

fined. Aviation was included into the EU-ETS where airlines had their 2012 emissions capped at 

97% of the average annual emissions in 2004 to 2006 and their emissions cap for 2013 to 2020 

reduced to 95%. 85% of emission allowances are issued for free and the other 15% will be 

auctioned off. Only flights arriving at or leaving from EU airports are included in the EU-ETS, this 

includes flights that originated from or destined to airports outside the EU (McConnachie, 2012). 

By setting a price on emissions, it was hoped that as the price of emission allowances goes up 

business would invest in lower emission options. The global financial crisis and subsequent 

economic downturn has caused businesses to emit less. Fewer emissions mean there was less need 

for emission allowances, which then drove down the price of emission allowances. A lower cost for 

emission allowances reduced the incentive for investing in cleaner emission technologies. Some 

options considered include propping up the price of emission allowances by setting a price floor, 

auctioning less allowances and having allowances that take into consideration economic and 

emission forecasts (van Renssen, 2012). During the economic downturn airlines restructured, 

merged, reduced frequency of flights, shrunk their network, used smaller aircraft, flew more 

efficient aircraft, parked their unneeded/less efficient aircraft in the desert or simply went bankrupt 

or out of business (Clark, 2010). 

Since the EU-ETS is not part of a global emissions market scheme, indirect flights between non EU 

countries that use an EU hub will incur additional costs and indirect flights between EU and non EU 

country could incur lower costs if the transfer takes place in a non EU country. Certain indirect 

routes can cause carbon leakage if avoiding EU-ETS increases travel to non EU countries on less 

emissions efficient flights or modes of transport (Bognár, 2012). The solution is to have a global 
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aviation emissions market scheme where all international flights are included; this will stop aircraft 

operators from using “pollution havens”.  

At least twenty-six (26) non-EU countries opposed the inclusion of international flights in the EU-

ETS and several North American airlines challenged the inclusion of non-EU owned airlines in the 

EU-ETS in court. The European Court of Justice has ruled that EU’s legislation on aviation 

emission is valid under international law, but the EU has decided to apply EU-ETS only on flights 

that depart from and arrive at EU airports (European Union Court of Justice, 2011). Because 

European airlines were included in the EU-ETS, they were forced to improve their efficiency, 

which resulted in a higher average efficiency than non-European airlines (Li, Wang, & Cui, 2016). 

2.11 ICAO’s Market-Based Measure 

At the 38th ICAO General Assembly in 2013, members defined a “basket” of measures to achieve 

the ICAO’s global aspirational goals of carbon neutral growth and 2% fuel efficiency improvements 

from 2020 (ICAO, 2013a). These measures will include implementing fuel saving technologies, 

improving aircraft operation, refuelling with sustainable alternative fuels but it will not be enough 

to achieve carbon neutral growth after 2020 (International Air Transport Association (IATA), 

2009). At the 38th Assembly, members agreed that to meet these commitments some form of MBM 

will need to be developed and presented at the 39th session with the goal of implementing the MBM 

scheme from 2020 (ICAO, 2013a, 2013c). 

At the 39th ICAO General Assembly in 2016, a global MBM in the form of a Carbon Offsetting and 

Reduction Scheme for International Aviation (CORSIA) was presented (ICAO, 2016d). The 

voluntary pilot and first phases of the CORSIA will begin in 2021 and end in 2026, while the 

second phase will run from 2027 to 2035 (ICAO, 2016d). As of October 2016, 66 states have 

volunteered to participate in the CORSIA from 2021 and in phase 2; states whose share of 

international aviation activity in Revenue Tonne Kilometre (RTK) in 2018 is ½% of the total RTK 

or whose cumulative share is 90% of the total RTKs will be included. Least Developed Countries, 

Small Island Developing States and Landlocked Developing Countries will be excluded but can 

volunteer to participate in phase 2 (ICAO, 2016d). From 2021, the CORSIA will cover routes 

between participating states and allocate offset obligations to aircraft operators on these routes 

based on a combination of the global average growth factor and individual operator’s growth factor 

in emissions in each year. From 2021 to 2029, only the global growth rate factor will be used before 

switching to a combination of global and individual growth factor from 2030 (ICAO, 2016d). 

Aircraft operators can fulfil their offset obligations by obtaining and redeeming emission units 

generated outside the international aviation sector. These will include emissions units from 
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UNFCCC Clean Development Mechanism (CDM), Reducing Emissions from Deforestation and 

forest Degradation in developing countries (REDD+) and eligible emissions units purchased from 

the carbon market. 
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Chapter 3. Methodology 

3.1 Research Objectives 

This thesis seeks to achieve the following research objectives:  

• Determine the carbon emissions profile of airlines flying on international routes into and out 

of Australia and determine how the main drivers such as flight distance, aircraft type and 

payload (i.e. passengers and freight) has on each airline’s emissions profile.  

• Determine the impact of low-interest loans on the uptake of emissions abatement options 

and the change in the emissions profile for these airlines over time.  

• Finally, determine a pathway forward to not only mitigate the growth in emissions, but also 

to improve efficiency while giving airlines the freedom to choose from the ICAO’s basket of 

emissions abatement measures. 

 

3.2 Research Questions 

This thesis will achieve these objectives by answering the following three research questions: 

Research Question 1. What is the CO2 emissions profile of airlines operating in the Australian 

international routes? 

Research Question 2. What emissions abatement options are available to airlines on Australian 

international routes and what is the impact on the future CO2 emissions 

profile? What are the marginal abatement costs and what is the impact of 

low-interest finance? 

Research Question 3. What integrative policies could facilitate more effective emissions outcomes 

on the Australian international routes? 

3.3 Methodology overview 

Investigating these research objectives involved three broad methodological stages, as highlighted 

in Figure 3.1 and as discussed below. 
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Note: A detailed methodology for each stage is presented in Chapters 4 to 7. 

 
Figure 3.1 Methodology Overview 

3.3.1 Stage 1 

Stage 1 (results in Chapter 4 and Yin et al. (2015)) determines the CO2 emissions profile of airlines 

flying international passengers and freight (including mail) into and out of Australia in 2012. In this 

stage, only passengers and freight traffic along some of the most populous Australian international 

routes are included. The CO2 emissions model used to determine the CO2 emissions profile is based 

on the ICAO carbon emissions calculator which assumes that aircraft will fly the great circle path 

between each airport. The Australian Government’s Bureau of Infrastructure, Transport and 

Regional Economic (BITRE) collected the passenger and freight traffic data that was used in the 

model. The airline flight schedules database for 2012 was purchased from Innovata. The flight 

schedules contain not only airline, origin and destination location, but also the number of flights and 

seats on each aircraft type used on the route. The amounts of fuel that each aircraft type consumes 

are published by the European Environmental Agency (EEA). The CO2 emissions profile for each 

airline is composed of the total amount of CO2 emitted and CO2 efficiency. An airline’s emissions 

profile for short-haul flights, medium-haul flights, long-haul flights and all flights were produced. 

Post-processing of the CO2 emissions profile is performed in Microsoft (MS) Excel. 
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In summary, this stage answered research question 1 by producing CO2 emissions profile (i.e. CO2 

emitted and CO2 efficiency) of airlines flying on some of the most populous Australian international 

routes. 

3.3.2 Stage 2a 

Stage 2a (results in Chapter 5 and Yin et al. (2016)) builds on Stage 1. Starting from 2013, and over 

the next 20 years, passenger and freight traffic are predicted to grow at the annual rates of 6% and 

5%, respectively. A number of abatement options were identified and incorporated into the 

emissions model from Stage 1 to determine the change in the CO2 emissions profile over the next 

20 years. These abatement options range from increasing the load factor, reducing the number of 

engines used while taxiing to and from runway, reducing the weight of current fleet, installing 

winglets to improve aerodynamics, acquiring new aircraft to handle the traffic growth and renewing 

the current fleet. A business-as-usual and four abatement scenarios were simulated. Each abatement 

scenario combines a number of abatement options to determine the maximum emissions reduction 

and to identify the amount of emissions that still needs to be abated in order to achieve carbon 

neutral growth from 2020. The first abatement scenario combines retrofitting the current fleet with 

emission-reducing technologies, changing airline operations and acquiring new aircraft to handle 

the growth in passenger and freight traffic. The second abatement scenario builds on the first, but 

with all routes currently serviced by Boeing 747s being replaced with new aircraft. The third 

abatement scenario focuses on acquiring the latest aircraft to renew the current fleet and to handle 

the growth in passenger and freight traffic. In the third abatement scenario, airline operations are 

not updated and no current aircraft are retrofitted with emission-reducing technologies. In the fourth 

abatement scenario, the total numbers of additional flights are reduced by “packing” more 

passengers on each flight. The passenger load factor on each flight in the three previous abatement 

scenarios are increase by 5% and 10%. 

3.3.3 Stage 2b 

Stage 2b (results are in Chapter 6) builds on Stage 2a. As passenger and freight traffic increase over 

the next 20 years, the change in CO2 emissions profile will depend on the abatement options that 

airlines implement. This stage will model airlines that implement only financially viable abatement 

options (i.e. abatement options with negative or zero marginal abatement cost). The abatement cost 

for implementing some of these abatement options can be found on manufacturers’ web-sites but 

most were estimated based on data and information published in aviation trade journals and 

adjusted for inflation over the next 20 years. Apart from aircraft acquisition, all other abatement 
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cost are not discounted or financed. Due to the high cost of acquiring new aircraft, the model 

assumes that airlines will finance their aircraft purchases with interest rates of between 2% to 8% 

per annum repaid over 12 and 15 years. The model assumes that the actual price of the new aircraft 

are discounted by up to 50% of the listed price and depreciated over 25 years with a 10% residual 

value that is recouped when the aircraft is sold. If an aircraft type is no longer in production, airlines 

can acquire the use of these aircraft through leasing. The leasing model assumes a lease period of 5 

years, with lease rates recalculated at the end of each lease period. Aircraft maintenance cost are 

also included in the costing model and are adjusted depending on the age of the aircraft. The results 

in Stage 2a are post-processed in MS Excel to incorporate the abatement cost model and MACCs 

are generated. Because interest rates and repayment periods are varied, the emissions profile 

presented in Stage 2a are also recalculated to include only the financially viable abatement options 

and to identify the amount emissions that still needs to be abated in order to achieve carbon neutral 

growth from 2020. 

In summary, Stages 2a and 2b answered research question 2 by determining the CO2 emissions 

profile over the next 20 years after implementing the most financially viable abatement options. 

3.3.4 Stage 3 

Stage 3 (results are in Chapter 7 and Chapter 8) builds on the lessons learnt from the previous two 

stages. In Stage 1, airlines on the Australian international routes were ranked according to the 

amount of CO2 emission generated and CO2 efficiency. Stage 2b shows that, even after 

implementing a number of financially viable abatement options, additional emissions still need to 

be abated in order to stay carbon neutral after 2020. At the 39th ICAO Assembly, a phased 

implementation of a global Carbon Offsetting and Reduction Scheme for International Aviation 

(CORSIA) was presented. The CORSIA allocates carbon offset obligations to each airline based on 

the amount of emissions than each airline generated. In Stage 3, this formula will be modified so 

that carbon offset obligations will also take into consideration each airline’s relative success or 

failure at meeting the CO2 efficiency target. In Chapter 7, a simple example will be used to illustrate 

the changes to carbon offset obligations under this new scheme and shows how the new scheme 

provides additional incentives for each airline to be more efficient. 

Assuming airlines servicing the Australian international routes implement all their financially viable 

abatement options and airlines finance their new aircraft acquisition at 2% per annum over 12 years, 

carbon offset obligations from 2021 are calculated using ICAO’s CORSIA and the improved carbon 

offset scheme presented in Chapter 7. The initial CO2 efficiency target in 2021 is the average CO2 

efficiency from 2019 and 2020 and, because ICAO has committed to a global fuel efficiency 
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improvement of 2% per annum, each subsequent CO2 efficiency target is set at 2% lower than the 

previous year. The carbon offset obligations for airlines servicing Australian international routes 

under the CORSIA and the new scheme starting from 2021 are presented in Chapter 8. 

In summary, Stage 2b and 3 answered research question 3 by showing how policy makers can use a 

combination of financial and performance standards (CO2 efficiency target) to achieve better 

emission outcomes in international aviation. 
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Chapter 4. An analysis of the greenhouse gas emissions profile of 

airlines flying the Australian international market 

Yin, K.-s., Dargusch, P., & Halog, A. (2015). An analysis of the greenhouse gas emissions 

profile of airlines flying the Australian international market. Journal of Air Transport 

Management, 47, 218-229. 

Chapter Summary 

In this chapter, 2012 data on airlines’ aircraft characteristics, passenger load and cargo load 

(obtained from statistics reported by Australian Government Bureau of Infrastructure, Transport and 

Regional Economics) was used to estimate the volume and carbon efficiency on each international 

route flying to and from Australia. This is the first study to use actual passenger and cargo load data 

to determine the greenhouse gas (specifically CO2) efficiency of airlines operating in the Australian 

international aviation market. Airlines’ CO2 emission profile is dependent on many factors 

including but not limited to the aircraft used, payload, route taken, weather conditions. The results 

reveal that the airlines’ CO2 emission profile is not only dependent on the aircraft used and the 

number of passengers but also the amount of cargo on each flight. 

4.1 Introduction 

Aviation accounts for 2% of the total global greenhouse gas (GHG) emissions according to the 

United Nations (UN) Intergovernmental Panel on Climate Change (IPCC)  (Barker et al., 2007; 

IPCC, 1999). Over the next two decades passenger traffic and air cargo is expected to increase at a 

rate of 4.5% to 5.0% per year (Airbus, 2014b; Boeing, 2014b; Ribeiro et al., 2007) with GHG 

emissions growing at between 3-4% per year (Barker et al., 2007; ICAO, 2010). B. Owen, Lee, and 

Lim (2010) modelled the global aviation carbon dioxide (CO2) emissions under the four 

Intergovernmental Panel on Climate Change/Special Report on Emission Scenarios (IPCC/SRES) 

plus one additional mitigation scenario and predicted that aviation CO2 will grow to between 2.4% 

and 4.1% of the projected 2050 global CO2 emissions 

Unlike other industries, international flights generate emissions across many countries and legal 

jurisdictions, with the effects both visible (e.g. con trails) and invisible (e.g. carbon dioxide (CO2), 

mono-nitrogen oxides (NOX)). Only flights within New Zealand and the European Union (EU) are 

subject to some form of GHG emissions regulation (Braathen et al., 2012). International aviation 

emissions were not included in the Kyoto protocol (United Nations (UN), 1998). Article 2.2 

directed The Parties in Annex I of the protocol to work through International Civil Aviation 
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Organisation (ICAO) in limiting and reducing GHG emissions. At the 2013 38th session of the 

ICAO Assembly, members agreed to develop and present recommendations on a global Market 

Based Measure (MBM) scheme for reducing international aviation GHG emission at the 39th 

session in 2016, with the goal of implementing MBM scheme from 2020 (ICAO, 2013a). The 

MBM is likely to also include alternative fuels, and improvements in technology and operations. 

Currently international aviation outside of the EU is not subject to any form of GHG emissions 

regulations. Aircraft emissions are not only made up of CO2 but also black carbon (soot), sulphur 

oxides (SOX), water vapour and NOX. To account for the effects of non-CO2 emissions, a multiplier 

of emitted CO2 such as Radiative Forcing Index (RFI), Global Warming Potential (GWP), and 

Global Temperature Potential (GTP) is used. Marbaix et al. (2008) recommended using a GWP-

based multiplier of between 1.5 and 4.1 with a best estimate of 2.4, which includes the effects of 

NOX, contrails and induced cirrus clouds. D. S. Lee et al. (2009) suggested using 3.5% of total 

anthropogenic forcing (4.9% anthropogenic forcing including non-CO2 and cirrus cloud) in 2005. 

Some airlines and many companies have produced aviation carbon emission calculators that allow 

individuals and businesses to offset their carbon emissions from air travel (Carbon Footprint, 2014; 

Carbon Neutral, 2014; Kling & Hough, 2011; myClimate, 2014; Qantas, 2014). These calculators 

use different methodologies and produce different estimates of GHG emissions equivalent (CO2e) 

for the same flight (Table 4.1). There is currently no consensus on which multiplier to use or how to 

include non-CO2 aviation emissions. ICAO recommends focusing only on CO2 aviation emissions 

since it is the largest component (ICAO, 2008). 
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Table 4.1 GHG Emissions (CO2e) estimates using four different carbon calculators. 

Trip (one way) myClimate1 
tCO2e 

Qantas2 
tCO2e 

Carbon Footprint3 
tCO2e 

Carbon Neutral4 
tCO2e 

Sydney-Los Angeles 
(SYD-LAX) 2.373 1.616 0.96 2.18 

Brisbane-Los Angeles 
(BNE-LAX) 2.256 0.955 0.92 2.08 

Sydney-Abu Dhabi 
(SYD-AUH) 2.379 1.561 0.96 2.18 

Sydney-Auckland 
(SYD-AKL) 0.430 0.114 0.18 0.44 

Perth-Kuala Lumpur 
(PER-KUL) 0.782 NA 0.33 0.75 

Sydney-Hong Kong 
(SYD-HKG) 1.379 0.818 0.59 1.33 

The right to fly between an airlines’ home country and any city of a foreign country or region (like 

the EU) is subject to negotiated bilateral or multilateral air service agreements. Most bilateral and 

multilateral Air Service agreements and Open Skies agreements will specify all or a subset of the 

nine Freedoms that will be granted (ICAO, 2013b; Vasigh et al., 2013). Prior to developing policies 

(such as economic, emissions and/or command and control policies) to manage and reduce CO2 

emissions from international aviation, policy makers in each country need to assess the amount of 

CO2 emitted and the efficiency of all airlines on their international routes using actual load factors, 

flight schedule and aircraft characteristics.  

Flight emissions calculators developed by various groups - ICAO (2014b); Jardine (2009); Kling 

and Hough (2010); C. Miyoshi and Mason (2009) - all follow similar methodologies and estimate 

the amount of CO2 apportioned to a passenger based on the seat class, aircraft type, distance flown, 

average load factor on the route and may include the average cargo load on the route. The carbon 

calculator presented in C. Miyoshi and Mason (2009) used the actual airlines routes, load factor, 

aircraft type and cabin configuration but not cargo to highlight each airline’s CO2 emission 

performance in the UK market. In this thesis a modified version of the ICAO (2014b) Carbon 

Calculator Methodology was used to determine the CO2 emissions profile of airlines that fly the 

Australian International aviation market using the airline’s aircraft type, passenger and cargo load in 

2012. For benchmarking to be effective, ICAO recommends that benchmarking (performance) 

                                                 

1 (myClimate, 2014) 
2 (Qantas, 2014) 
3 (Carbon Footprint, 2014) 
4 (Carbon Neutral, 2014) 
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parameters should be independent of different airline business model (ICAO, 2008). The CO2 

calculator developed in this thesis does not take into account the seat class that is usually attributed 

to the different airline business models (i.e. low cost, traditional network). The results demonstrate 

that an airline’s choice of aircraft; seat density (i.e. number of seats in each aircraft), passenger load 

factor (i.e. % of occupied seats) and the amount of cargo transported on each flight can affect the 

CO2 efficiency on Australian international routes. 

4.2 Methods 

The CO2 estimates presented in this chapter were derived using the CO2 Profile Calculator shown in 

Figure 4.1. This CO2 Profile Calculator is a modified version of the ICAO Carbon Calculator 

Methodology that calculates the amount of CO2 emitted on each flight (ICAO, 2014b). Unlike the 

ICAO Carbon Calculator, the algorithm used in this thesis does not take into consideration the class 

of travel. The calculator used in this thesis determines the amount of CO2 emitted for an aircraft 

flying the great circle distance route between two cities. Passengers are treated as weighted payload 

and combined with the weight of freight (including mail) to form the total payload on each flight. 

The amount of CO2 emitted is then apportioned to each kilogram of payload kilometre flown. 

 
Figure 4.1 CO2 Profile Calculator. 
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4.2.1 Input 

4.2.1.1 Airport Details 

Airport Details contains each airport’s geographic location in latitude and longitude plus the three-

letters International Air Transport Association (IATA) airport code, city, country name of the 

airport that each airline is flying to and from. This information was used to convert the airport/city 

pairs in the Airline Flight Schedule to geographic locations in latitude and longitude. 

4.2.1.2 Airline Flight Schedule 

Airline Flight Schedule contains the departure airport, arrival airport, aircraft equipment used, 

number of flights per month and the number of seats on the flight. This information can be obtained 

from each airline or purchased from companies that sell aviation information and analysis services 

(e.g. Innovata (2014); Official Airline Guide (OAG) (2014)). 

4.2.1.3 Fuel Burn Tables 

Fuel Burn Tables map the amount of fuel used by each aircraft type to fly a given distance. Most 

airlines have more detailed information on the fuel burn for each aircraft in their fleet but this 

information is not publicly available. In the algorithm used in this thesis, Core Inventory of Air 

Emission (CORINAIR) fuel burn tables are used to determine the fuel burnt on each flight 

(European Environment Agency, 2006). The fuel burn table maps the fuel used for each phase of 

the flight namely; taxi out, take off, climb out, climb/cruise/descent, landing approach and taxi in. 

Horton (2010) recommend using the CORINAIR fuel burn tables but with a few modifications 

listed in Table 4.2. These modifications improve the accuracy and create new fuel burn tables for 

newer aircraft like the 777-300ER and A380. For each fuel burn table, a quadratic function is also 

used to extrapolate and create additional table entries at intervals of 500nm (Supplementary data 

Table 4.10 to Table 4.13). 
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Table 4.2 Fuel Burn Table Modifications. 

Aircraft Type Modifications 
A320 Raise the original A320 fuel burn in CORINAIR tables by 4.2% 

A321 Increase the new A320 fuel burn by another 15.8% 

737-800/900 Use the new A320 fuel burn numbers 

737-700 Use 737-400 fuel burn minus 5% 

767 Raise original 767 fuel burn by 7% 

777-300ER /200LR Raise original 777 fuel burn by 12% 

A340-600/500 Raise the A340 fuel burn by 36% 

A380 Use 747-400 but raise fuel burn by 15.5% 

4.2.1.4 Airline Load Factor 

The airlines will have more detailed information on their passenger load factor and the amount of 

cargo carried on each flight. This commercial in confidence information is not available to the 

public but some Government departments and/or airports record the number of passengers, load 

factor and/or cargo on all flights leaving and entering the country 

4.2.1.5 Passenger and Baggage Weight 

The average baggage and passenger weight can be dependent on passenger gender (i.e. 

male/female), travel season (i.e. summer/winter), aircraft type (i.e. commuter, narrow body, wide 

body), flight time, distance and airline business model (i.e. low cost, traditional network). 

International checked baggage allowance varies depending on where the airlines are flying to, e.g. 

flights to North America usually have higher checked baggage allowance than to South East Asia or 

New Zealand. Berdowski et al. (2009) surveyed 22,901 passengers and concluded that the average 

passenger weight should be set at 88kg with baggage weight of 17kg for a total average passenger 

mass of 105kg. The U.S. Federal Aviation Administration (FAA) (2005) recommends using a 

passenger weight of 190-195lbs (i.e. 86.1-88.5 kg) with at least 30lbs (i.e. 13.6kg) for checked 

baggage. According to ICAO (2009), 82% of airlines agreed that the average passenger mass (i.e. 

passenger plus baggage) should be 100kg with a few airlines recommending values between 95-

105kg. About 70% of carriers suggest using an average checked baggage weight of 10-20kg for 

short haul international flights and 46% suggest using 20-30kg for long haul international flights. If 

no other values are available, ICAO (2013b) recommend using a passenger mass of 100kg. 
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4.2.2 Processes 

4.2.2.1 Calculate Distance Flown 

The actual flight path taken by airlines is not usually the shortest most direct route between two 

airports i.e. great circle paths. The aircraft might have to fly over or around bad weather, avoid war 

zones, circle around due to congestion, and take a longer route to take advantage of favourable wind 

conditions. In the algorithm used in this thesis, aircraft are assumed to fly great circle distance 

(GCD) between departure airport and arrival airport. To take into account of traffic congestion, 

weather and stacking 50km is added to the distance flown if the GCD is less that 550km, 125km if 

GCD is greater than 5500m and 100km for GCD between 550km and 5500km (ICAO, 2014b). 

4.2.2.2 Calculate Fuel Burn and CO2 emitted 

Since the CORINAIR fuel burn tables are given in intervals of 500nm (i.e. 926km), intermediate 

values are interpolated using a (4th order) spline to produce the amount of fuel burnt for distance 

flown. Even though airlines configure identical aircraft with different number of seats, the actual 

amount of fuel used when flying the same route will be similar since the variation in payload weight 

is small when compared to the aircraft operating empty weight (OEW). It was deemed unnecessary 

in the algorithm used in this thesis to recompute the fuel burn for different number of passenger and 

freight loads i.e. different payload. According to the ICAO Carbon Calculator methodology 3.157kg 

of CO2 is emitted for each kg of aviation fuel burnt (ICAO, 2014b). 

4.2.2.3 Calculate CO2 per Payload-Distance Flown 

This function calculates the amount of CO2 emitted (in grams) for each kilogram of payload and 

kilometre distance flown. Payload of an aircraft is made up of the total weight of freight and 

passenger mass on the flight. Average passenger mass is the combined weight of an average 

passenger and checked baggage. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝐴𝑃𝑃𝑃𝐴𝑃 (𝐴𝑖 𝑘𝑘)

= 𝑁𝑁𝑁 𝑃𝐴 𝑃𝐴𝑃𝑃𝑃𝑖𝑘𝑃𝐴𝑃 × 𝐴𝐴𝑃𝐴𝐴𝑘𝑃 𝑃𝐴𝑃𝑃𝑃𝑖𝑘𝑃𝐴 𝑀𝐴𝑃𝑃 + 𝐶𝐴𝐴𝑘𝑃 𝑤𝑃𝐴𝑘ℎ𝐴 

𝐶𝐶2 𝑝𝑃𝐴 𝑝𝐴𝑃𝑃𝑃𝐴𝑃 𝑃𝐴𝑃𝐴𝐴𝑖𝐴𝑃 =
𝐹𝑁𝑃𝑃 𝐵𝑁𝐴𝑖 (𝐴𝑖 𝑘) × 3.157

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝐴𝑃𝑃𝑃𝐴𝑃 (𝐴𝑖 𝑘𝑘) × 𝐷𝐴𝑃𝐴𝐴𝑖𝐴𝑃 𝐴𝑃𝑃𝑤𝑖 (𝐴𝑖 𝑘𝑁)
 

4.2.2.4 Calculate CO2 per Passenger-Distance Flown 

Given the average passenger mass, CO2 emitted per passenger kilometre flown can be estimated by: 



K-s.Yin Page 54 

𝐶𝐶2 𝑝𝑃𝐴 𝑝𝐴𝑃𝑃𝑃𝑖𝑘𝑃𝐴 𝑃𝐴𝑃𝐴𝐴𝑖𝐴𝑃 = 𝐶𝐶2 𝑝𝑃𝐴 𝑝𝐴𝑃𝑃𝑃𝐴𝑃 𝑃𝐴𝑃𝐴𝐴𝑖𝐴𝑃 × 𝐴𝐴𝑃𝐴𝐴𝑘𝑃 𝑃𝐴𝑃𝑃𝑃𝑖𝑘𝑃𝐴 𝑀𝐴𝑃𝑃 

4.2.3 CO2 Profile 

An airline’s CO2 profile on each route is made up of the quantity of CO2 emitted, CO2 per Payload-

Distance flown and CO2 per Passenger-Distance flown. 

4.3 Calculations 

4.3.1 Data input 

The International Airline Activity data that was collected by the Australian Government’s Bureau 

of Infrastructure, Transport and Regional Economics (BITRE) showed that the country where the 

largest source of international passengers in 2012 was New Zealand (NZL) followed by Singapore 

(SGP), United States of America (USA), United Arab Emirates (UAE), Hong Kong (HKG), 

Indonesia (IDN) and Malaysia (MYS) (Bureau of Infrastructure Transport and Regional Economics 

(BITRE), 2014). These seven countries account for 72% of the 29.6 million international 

passengers. Large number of passengers to and from a particular country can equate to large 

number of flights on smaller aircraft or large wide body aircraft that are usually used on longer 

routes. Rounding out the top 10 sources of passengers in 2012 are Thailand (THA), China (CHN) 

and Japan (JPN) with passengers to/from Thailand and Japan decreasing from 2008 to 2012. It is 

anticipated that passengers travelling to/from China will continue to increase and China-based 

airlines will play a more prominent role in Australian international flights in the future. This chapter 

will focus on routes between Australia and the top seven most travelled to countries. Passengers that 

arrived in Australia after a layover in an intermediate city (country) are deemed as passengers from 

the intermediate city (country) for the purpose of this thesis and not from the city where they started 

their journey (e.g. passengers travelling to/from London with a layover in Dubai or Singapore are 

treated as passengers to/from Dubai or Singapore). (Table 4.3) 

 

Table 4.3 Source of the most Australia international passengers. 

Year Top 10 Sources of the most Australia International Passengers 
1 2 3 4 5 6 7 8 9 10 

2012 NZL SGP USA UAE HKG IDN MYS THA CHN JPN 

2011 NZL SGP USA HKG IDN MYS UAE THA CHN FIJ 

2010 NZL SGP USA HKG MYS UAE IDN THA JPN CHN 

2009 NZL SGP HKG USA UAE MYS THA IDN JPN GBR 

2008 NZL SGP HKG USA THA UAE JPN MYS IDN GBR 
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In 2012, Qantas (QF) transported the most international passengers to and from Australia followed 

by Singapore Airlines (SQ), Emirates (EK), Virgin Australia Airlines (VA), Jetstar Airways (JQ), 

Air New Zealand (NZ), Cathay Pacific (CX) and Malaysia Airlines (MH) (Table 4.4). Rounding out 

the top 10 are Thai Airways (TG) and AirAsia X (D7). Since passengers to and from Thailand are 

excluded from this thesis, TG was excluded as well. 

 

Table 4.4 Airlines transporting the most Australia international passengers. 

Year Top 10 Airlines transporting the most Australia International Passengers 
1 2 3 4 5 6 7 8 9 10 

2012 QF SQ EK VA JQ NZ CX MH TG D7 

2011 QF SQ NZ EK JQ VA CX MH TG D7 

2010 QF SQ NZ EK JQ VA CX MH TG D7 

2009 QF SQ NZ JQ EK VA CX TG MH D7 

2008 QF SQ NZ EK JQ CX TG MH D7 GA 

According to Alonso, Benito, Lonza, and Kousoulidou (2014) in a study of CO2 emissions for 

flights within the EU, over 2/3 of the CO2 emissions were on flights longer that 2500km. Australia 

has some of the longest and most emission intensive international routes in the world and even the 

shortest international flight are over 2000km. The 10 longest Australian international routes (Table 

4.5) are to Dallas Fort Worth (DFW), Los Angeles (LAX), San Francisco (SFO), Dubai (DXB) and 

Abu Dhabi (AUH) from Melbourne (MEL), Sydney (SYD) and Brisbane (BNE). 

 

Table 4.5 Longest Australia international routes. 

 Top 10 Longest Australian International Routes 
1 2 3 4 5 6 7 8 9 10 

City Pairs SYD-
DFW 

MEL-
LAX 

SYD-
AUH 

SYD-
LAX 

SYD-
DXB 

BNE-
DXB 

SYD-
SFO 

MEL-
AUH 

MEL-
DXB 

BNE-
LAX 

Distance (km) 13933 12883 12186 12186 12169 12104 12075 11777 11770 11658 

This chapter focuses on airlines that transport the most passengers and flying on some of the longest 

and most emissions intensive routes. These airlines are Qantas, Jetstar, Virgin Australia, Emirates, 

Cathay Pacific, Air New Zealand, Malaysia Airlines, Singapore Airlines and their main competitors 

Delta Air Lines, United Airlines, Hawaiian Airlines, AirAsia X, Garuda, and Etihad. These airlines 

connect 30 airports/cities between Australia and the top seven countries (Supplementary data Table 

4.9). The airline timetables for 2012 were purchased from Innovata (Innovata, 2014). 

Narrow body aircraft in this thesis (i.e. A320, 737) are assumed to fly on short-haul international 

routes of less than 3000nm (5600km) with average passenger weight set at 85kg and checked 
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baggage at 15kg giving an average passenger mass of 100kg; whereas wide body aircraft (i.e. A330, 

A340, A380, 747, 767, 777) are assumed to fly on medium and long haul international routes of 

greater than 3000nm (5600km) with the average passenger weight set at 85kg and checked baggage 

at 25kg giving an average passenger mass of 110kg.  

The Australian Government’s BITRE records the monthly passenger load factor (%) and amount of 

cargo (t) carried by each airline flying between Australia and each destination country (Bureau of 

Infrastructure Transport and Regional Economics (BITRE), 2014). Since the 2012 Airline Flight 

Schedules purchased from Innovata shows daily flights between cities, all flights for each airline 

between Australian cities and any city in the destination country are assumed to have the same 

passenger and cargo load factor for each month.  

The monthly cargo load factor was determined by dividing the actual amount of cargo carried (and 

recorded by BITRE) by the maximum cargo load that can be carried. The aircraft’s Operating 

Empty Weight (OEW) plus the weight of all passengers, checked baggage and maximum cargo 

must be below the aircraft’s Maximum Zero Fuel Weight (MZFW). The volume of cargo and 

baggage must also fit in the volume of the aircraft’s cargo hold. Different airlines may use different 

baggage and cargo density based on their own statistics but according to Reyd and Wouters (2005), 

the cargo on the lower deck of commercial flights have a density of 200-210kg/m3. ICAO (2013b) 

recommended using 161kg/m3.for freight and baggage density and jet fuel density of 0.8kg/L. In 

this thesis baggage density is set at 161kg/m3 and freight density at 205kg/m3. The combined 

weight of fuel, the aircraft’s OEW, passengers, checked baggage and maximum cargo must not 

exceed the Maximum Take-Off Weight (MTOW) and fuel must not exceed the maximum fuel 

capacity. 

The typical aircraft’s cargo capacity, MTOW, MZFW and fuel capacity are published by the 

manufacturers and will be used in this thesis (Airbus, 2014a; Boeing, 2009, 2014a). The OEW is 

highly dependent on how each airline has fitted out their aircraft. Boeing publishes a typical OEW 

for all Boeing aircraft whereas Airbus does not. For all Airbus aircraft an approximate OEW that is 

published by the airlines will be used. Each airline’s approximate OEW, MTOW, MZFW, cargo 

capacity and fuel capacity can be found in Supplementary data Table 4.14. 

4.3.2 Validation 

Since the CO2 Profile Calculator (Figure 4.1) used in this thesis was based on the ICAO Carbon 

Calculator, the ICAO Carbon Calculator will be used to compare and validate the results (ICAO, 

2014a, 2014b). The amount of CO2 apportioned to a passenger on six Australian international routes 
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determined by the ICAO Carbon Calculator and the CO2 Profile Calculator use in this thesis is 

summarised in Table 4.6. 

On average, the CO2 Profile Calculator produced CO2 estimates per passenger that were between 

8.78% lower to 27.3% higher that ICAO Carbon Calculator for these six Australian international 

routes. These differences were mainly due to the updated CORINAIR fuel burn tables (Table 4.2) 

and actual numbers of seats and passengers per flight that was used in the CO2 Profile Calculator. 

For example on the SYD-LAX route, the ICAO Carbon Calculator assumed the route was to be 

served by 777s and 747s. Qantas dominates this route and flies both 747s and A380s whereas 

Virgin, Delta and United flies the 777-300ER, 777-200LR and 747 respectively. In the updated fuel 

burn tables, the A380 burns 15.5% more fuel than the 747 and 777-300ER/200LR burns 12% more 

fuel than the original 777 fuel burn table used in the ICAO Carbon Calculator. On the BNE-LAX 

route, the ICAO Carbon Calculator assumed the route to be served by 747s and 777s with an 

average of 453 seats per flight. Virgin flies the 777-300ER with 361 seats and the Qantas 747 has 

394 seats. The lower seat numbers equate to lower actual passenger numbers on each flight and 

higher CO2 emissions per passenger on the route. The SYD-AUH route shows the biggest 

difference between the two calculators of 27.3%, Etihad dominates this route and flies A340-

500/600 with updated fuel burn that is 36% higher than the original fuel burn for the A340. 

On four of the six routes and selecting only the most efficient airline, the CO2 Profile Calculator 

apportioned CO2 to each passenger that closely matched the ICAO Carbon Calculator, the only 

exception being Sydney–Auckland (SYD-AKL) and Sydney-Abu Dhabi (SYD-AUH) routes. On 

the SYD-AKL route, the ICAO Carbon Calculator assumed each flight to consume 10,414kg of fuel 

and has on average 214 seats with a load factor of 75.6% (162 passengers) whereas the most 

efficient airline is Jetstar flying A320s, which has 180 seats with a load factor 78.5% (141 

passengers) and used 30% less fuel (7,400kg). On SYD-AUH route ICAO Carbon Calculator has 

assumed each flight uses 98438kg of fuel and has 343 seats with a load factor of 79.2% (272 

passengers) whereas the Virgin Australia’s 777-300ER has 361 seats with a load factor of 74.3% 

(268 passengers) but used more fuel (105,000kg). 

These CO2 Profile Calculator results correctly reflect the changes made to the CORINAIR fuel burn 

tables and the use of actual aircraft characteristics, passenger and cargo load on each route in 2012 

when compared to the ICAO Carbon Calculator. 
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Table 4.6 CO2 Profile Calculator Validation. 

Route 
(one 
way) 

ICAO Carbon 
Calculator5  CO2 Profile Calculator (Figure 4.1) 

Average amount of 
CO2 (in kg) for an 
economy class 
passenger 

 

Average amount 
of CO2 (in kg) for 
a passenger in 
2012 

Average amount of CO2 (in 
kg) for a passenger on the 
most efficient airline in 2012 

SYD-
LAX 932.66  1108.86 

(+18.89%) 
934.94 (+0.24%) 
Virgin Australia 777-300ER 

BNE-
LAX 876.2  976.21 (+11.41%) 919.76 (+4.97%) 

Virgin Australia 777-300ER 
SYD-
AUH 883.69  1124.95 (+27.3%) 1001.13 (+13.29%) 

Virgin Australia 777-300ER 
SYD-
AKL 190.52  173.82 (-8.78%) 163.97 (-13.94%) 

Jetstar A320 
PER-
KUL 285.19  301.26 (+5.64%) 275.82 (-3.29%) 

AirAsia X A330-300 
SYD-
HKG 489.67  527.17 (+7.66%) 489.48 (-0.04%) 

Cathay Pacific A330-300 

4.4 Results & Discussions 

The CO2 emissions profiles of nine of the top 10 carriers by passenger numbers (i.e. Jetstar (JQ), 

Virgin Australia (VA), Qantas (QF), Emirates (EK), Cathay Pacific (CX), Malaysia Airlines (MH), 

AirAsia X (D7), Air New Zealand (NZ) and Singapore Airlines (SQ)) and their main competitors 

(i.e. Delta Air Lines (DL), United Airlines (UA), Etihad (EY), Hawaiian Airlines (HA) and Garuda 

GA)) flying between Australia and USA, New Zealand, Hong Kong, Malaysia, Singapore, UAE 

and Indonesia in 2012 are shown in Figure 4.2. These airlines are ranked from the most CO2 

efficient on the left to the least CO2 efficient on the right in the Figure 4.2, Figure 4.3, Figure 4.4 

and Figure 4.5 (Supplementary data Table 4.15, Table 4.16, Table 4.17 and Table 4.18). AirAsia X 

is the most CO2 efficient at 64.86g of CO2 emitted for each passenger kilometre flown. This is due 

to the airline’s modern efficient A330-300s and high-density seating. United Airlines is the least 

CO2 efficient due to the use of older and less fuel efficient 747-400s on its flights to USA 

(mainland). In 2012, CO2 efficiency of all three Australian based airlines was below the average of 

80.6g of CO2 per passenger-km. As expected Qantas (QF) is the largest emitter and Emirates, 

Singapore Airlines and Cathay Pacific are the largest foreign emitters. 

                                                 

5 (ICAO, 2014a) 
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6 
Figure 4.2 CO2 Profile on Australian International Flights in 2012. 

 

Short haul international flights account for 2.5Mt of emitted CO2. Medium and long haul 

international flights both emitted over 5Mt of CO2. In short, medium or long haul flights, the most 

CO2 efficient airlines (AirAsia X, Emirates) emitted between 65g to 66g of CO2 per passenger-km 

(Figure 4.3, Figure 4.4 and Figure 4.5 and Supplementary data Table 4.16, Table 4.17 and Table 

4.18). Airlines can have large variations in CO2 efficiencies depending on the distance flown, as 

demonstrated in Emirates estimates (101.09, 69.53, 65.5 g/passenger-km) and Qantas estimates 

(69.78, 84.23, 91.73 g/passenger-km) for short, medium and long haul flights respectively (Figure 

4.3, Figure 4.4 and Figure 4.5). In 2012, all Australian based airlines are more CO2 efficient than 

Emirates (80.32 g/passenger-km) but Emirates outperforms them all on medium and long haul flight 

(but not on short haul flights). The aircraft used on each flight will affect the total amount of CO2 

emitted and the payload (i.e. passengers and cargo) carried will determine the CO2 efficiency of the 

flight. 

                                                 

6AirAsia X (D7), Cathay Pacific (CX), Air New Zealand (NZ), Singapore Airlines (SQ), Jetstar Airways (JQ), Virgin 
Australia (VA), Qantas (QF), Malaysia Airlines (MH), Emirates (EK), Hawaiian Airlines (HA), Delta Air Lines (DL), 
Garuda (GA), Etihad (EY), United Airlines (UA). 
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7 
Figure 4.3 CO2 Profile on Short Haul Australian International Flights in 2012. 

8 
Figure 4.4 CO2 Profile on Medium Haul Australian International Flights in 2012. 

9 
Figure 4.5 CO2 Profile on Long Haul Australian International Flights in 2012. 

                                                 

7AirAsia X (D7), Air New Zealand (NZ), Qantas (QF), Singapore Airlines (SQ), Jetstar Airways (JQ), Virgin Australia 
(VA), Malaysia Airlines (MH), Garuda (GA), United Airlines (UA), Emirates (EK). 
8AirAsia X (D7), Cathay Pacific (CX), Emirates (EK), Singapore Airlines (SQ), Jetstar Airways (JQ), Malaysia 
Airlines (MH), Hawaiian Airlines (HA), Qantas (QF), Garuda (GA). 
9Emirates (EK), Virgin Australia (VA), Delta Air Lines (DL), Qantas (QF), Etihad (EY), United Airlines (UA) 
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4.4.1 Aircraft used 

On long haul international flights (Figure 4.5) the choice of aircraft can greatly affect the amount of 

CO2 generated and CO2 efficiency. On flights between Australia and USA (mainland), a variety of 

both old and new wide body aircraft are used. Qantas (QF) dominates these routes with over half of 

the seats and emissions generated. Qantas uses a mixed fleet of both older 747-400 and newer A380 

aircraft whereas Virgin Australia (VA) uses the newer 777-300ER and United Airlines uses some of 

the oldest and least efficient 747-400 aircraft. Delta uses the 777-200LR which is a shortened 777-

300ER that can fly up to a range of 17,000km but carrying a reduced payload (i.e. 269 versus 361 

seats). The reduced payload makes the 777-200LR less CO2 efficient than 777-300ER. For flights 

between Australia and UAE all the aircraft used are relatively new with Emirates having the best 

CO2 efficiency by using a combination of A380 and 777-300ER whereas Etihad flies mainly the 

A340-500/600 and Virgin Australia flies the 777-300ER. Focusing on the Sydney-Los Angeles 

route (Figure 4.6), it can be seen very clearly that Virgin Australia’s choice of 777-300ER has 

resulted in the lowest amount of CO2 emitted per passenger-km flown of 76.72g even though it has 

the lowest passenger load factor of 79.9% on this route whereas United Airlines using older 747-

400s is least efficient on this long haul international route. 

 
Figure 4.6 CO2 Efficiency Virgin Australia v Qantas v Delta v United Airlines. 

 

This is repeated on the Melbourne-Los Angeles (MEL-LAX), Brisbane-Los Angeles (BNE-LAX) 

and Sydney-Abu Dhabi (SYD-AUH) routes (Figure 4.7). Virgin Australia flies the two-engine 777-

300ER aircraft on all three routes, Qantas flies four-engine A380 from Melbourne, 747-400 from 

Brisbane and Etihad (EY) flies four-engine A340 from Sydney. Virgin Australia’s 777-300ER is 

again more CO2 efficient even though it has lower passenger load factor and carrying less cargo per 

flight. 
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  10 
Figure 4.7 CO2 Efficiency Virgin Australia v Qantas & Etihad. 

 

On these long haul flights, selecting the “right” aircraft can greatly reduce the amount of CO2 

generated. Virgin Australia’s 777-300ER emits less CO2 and is the more CO2 efficient aircraft when 

compared to its competitors on the same long haul city-pair routes (Figure 4.6 and Figure 4.7). 

4.4.2 Number of Passengers carried 

The number of passengers carried on each flight is dependent on the seat density and load factor. 

On the Australia-Malaysia routes, Malaysia Airlines carried more cargo per flight than AirAsia X 

(9.86t v 4.18t), this is equivalent to having extra 52 passengers but AirAsia X with a higher 

passengers load factor and utilizing denser seat configuration of 377-401 seats translates to an 18% 

better CO2 efficiency (Figure 4.8).On the Melbourne to Kuala Lumpur and Brisbane/Gold Coast 

(OOL) to Kuala Lumpur routes both AirAsia X and Malaysia Airlines use A330-300s but Malaysia 

Airlines has 288-296 seats. The payload difference between these two airlines on these routes are 

summarised in Table 4.7. AirAsia X carries approximately 80 extra passengers on their flights and 

even though Malaysia Airlines carries 5t more cargo, it is no enough to make Malaysia Airline 

flights more CO2 efficient. 
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Table 4.7 Payload comparison: AirAsia X versus Malaysia Airlines on MEL/BNE/OOL-KUL. 

 AirAsia X Malaysia Airlines 
CO2/pax-km (g/pax-km) 65 74 
Number of Flights 1354 1988 
Avg Distance/Flight (km) 6515.38 6472.48 
Number of Seats/Flight 377-401 288-296 
Paxload/Flight (%) 78 74 
Num of Passengers/Flight 294-313 213-219 
Cargo/Flight (t) 4.12 9.62 
Payload/Flight (t) 36.46 33.71 

 

 
Figure 4.8 CO2 Efficiency on Australia-Malaysia 
Flights. 

 
Figure 4.9 CO2 Profile on Sydney-Jakarta Flights. 

 

On the medium haul routes (Figure 4.4), Garuda flights are the least CO2 efficient of those 

examined in this study. This is because of the low density seating on their A330-200 (222 seats), 

which is 40% lower than Qantas (303seats). On the Sydney-Jakarta route (Figure 4.9), Garuda’s 

passenger load factor is above 70% but the low-density seating results in low passenger numbers 

and the worst CO2 efficiency in this study. 

On the long haul routes between Australia and UAE, Emirates, Etihad and Virgin Australia all use 

modern wide-bodied aircraft. Even though Emirates and Virgin Australia both use the 777-300ER, 

the former has higher density seating of 400 seats whereas the later has 361seats. The higher density 

seating in combination with the higher load factor on Emirates leads to higher passenger numbers 

and lower CO2 emitted per passenger-km flown. Emirates fly a combination of higher seat density 

777-300ER and A380 to produce the best CO2 efficiency on long haul routes between Australia and 

UAE (Figure 4.10). Etihad has the worse CO2 efficiency even though it has the highest load factor. 

This is because Etihad A340s are less fuel efficient than 777-300ER, has lower number of seats of 

between 240 and 286 and fewer passengers per flight (Figure 4.10 and Figure 4.11). 
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Figure 4.10 CO2 Efficiency on Australia-UAE 
Flights. 

 
Figure 4.11 Aircraft used on Australia-UAE 
Flight 

 

In 2012, passenger load factors on all international flight were on average above 70% but on short 

haul international flights the load factors on Emirates were the lowest of those estimated in this 

study (Figure 4.5). Flights between Australia and New Zealand are dominated by airlines based in 

both countries flying mainly narrow body A320s and 737s with load factors of 75% or more (Figure 

4.12). Emirates and Taiwan based China Airlines exercise their 5th freedom traffic rights and fly 

wide-bodied A380s, 777s and A330s between Australia and New Zealand (Figure 4.13). 5th 

freedom traffic rights allow foreign airlines to transport passengers between Australia and another 

country that is not the airline’s home country. These flights suffer from low passenger load factor of 

less than 62% and are CO2 inefficient when compared to other airlines on this route. These low 

passenger loads were also observed on international 5th freedom intra-EU flights serving UK (C. 

Miyoshi & Mason, 2009). Virgin Australia flying 737-800 and Emirates flying A380 and 777-

300ER has roughly the same number of seats between Australia and New Zealand (Figure 4.13) but 

Virgin Australia has higher passenger load factor of 76.7% versus 61.4%, lower amount of CO2 

emitted of 1.8E5t versus 2.3E5t and more CO2 efficient flights of 73.12g/passenger-km versus 

101.09g/passenger-km (Figure 4.12). 
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Figure 4.12 CO2 Profile on Australia-New Zealand Flights. 

 
Figure 4.13 Aircraft Used on Australia-New Zealand Flights. 

A more CO2 efficient flight needs to have higher passenger payload. To achieve this, airlines must 

have both higher load factors and higher density seating. The 5th freedom flights between Australia 

and New Zealand suffer from low passenger loads thus leading to some of the most CO2 inefficient 

flights. 

4.4.3 Amount of Cargo 

The payload on each flight is made up of passengers, bags and freight. CO2 efficiency is calculated 

by dividing the total amount of CO2 emitted on each flight between each passenger plus bags and 

freight. On routes between Malaysia and Australia, Malaysia Airline was not as CO2 efficient as 

AirAsia X even though it carried more cargo but fewer passengers. On medium haul flights (Figure 

4.4), Cathay Pacific achieves similar CO2 efficiency to AirAsia X and like AirAsia X; Cathay 

Pacific uses A330-300 on over 98% of its flights to Australia (Figure 4.14). Cathay Pacific has 

passenger load factor of 77.4% versus 77.53% on AirAsia X but uses lower density seating of 311-

314 which is over 60 seats less than on AirAsia X (Table 4.8). Cathay Pacific achieved the second 

best CO2 efficiency on medium haul routes by carrying more freight than AirAsia X on each flight 

(10.82t v 4.18t). The extra 6.64t of freight is equivalent to having an additional 60 passengers 

assuming each passenger and their checked bags weigh 110kg. The average payload on AirAsia X 

and Cathay Pacific flights is summarised in Table 4.8. 
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Figure 4.14 Aircraft used on AirAsia X v Cathay Pacific. 

 

Table 4.8 Payload comparison: AirAsia X versus Cathay Pacific. 

 AirAsia X Cathay 
CO2/pax-km (g/pax-km) 64.86 65.79 
CO2/payload-km(g/kg-km) 0.59 0.60 
Number of Flights 2719 7233 
Avg Distance/Flight (km) 5855.35 7165.27 
Number of Seats/flight 377-401 311-314 
Pax load/Flight (%) 77.53 77.4 
Num of Passengers/Flight 292-311 241-243 
Avg Cargo/Flight (t) 4.18 10.82 
Payload/Flight (t) 36.3-38.4 37.3-37.5 
 

These results show that an airline can still achieve higher CO2 efficiency by increasing it cargo 

payload to compensate for low passenger payload. 

4.5 Conclusions 

To determine the CO2 profile of all airlines operating in the Australian international market in 2012, 

a CO2 Profile Calculator was developed that uses airline’s aircraft characteristics, passenger and 

cargo load on each international flight. The calculator did not take into consideration the airlines’ 

business models but determines the airlines emissions efficiency relative to actual passengers and 

cargo carried. The methodology and results presented in this chapter can also be applied and 

extended to countries other than Australia that are also geographically isolated with relatively low 

and sparsely distributed populations (e.g. New Zealand, Island nations). 

As expected, Qantas (the largest carrier in the Australia international aviation market) was the 

largest emitter in 2012. On Australian long haul routes, selecting the “right” aircraft can greatly 

reduce the total amount of emissions from a flight. The 777-300ER was more CO2 efficient when 
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compared to other aircraft used on the same long haul routes. AirAsia X configured their A330-300 

with higher density seating, and when combined with high load factors, this approach achieved the 

best CO2 efficiency on Australian flights. Cathay Pacific shows that increasing the amount of cargo 

carried on a flight improved their CO2 efficiency to almost matching CO2 efficiency of AirAsia X 

on medium haul international routes without the use of high-density seating. Emirates and China 

Airlines exercising their 5th freedom traffic right between Australia and New Zealand suffer from 

low load factor and low CO2 efficiency.  

Airlines can reduce CO2 emissions and raise CO2 efficiency by adopting new technology, 

optimising their flight operations and improving the management of their fleet. In this context, new 

technology can involve renewing their fleet with more fuel efficient aircraft or retrofitting their fleet 

with performance enhancing technology such as winglets, engines updates and using bio fuels. 

During each stage of the flight, airlines can reduce fuel burnt by optimising the speed, altitude, rate 

of climb and rate of decent, taxi-in and taxi-out of the flight. Airlines can optimise fleet operations 

by matching aircraft to payload, increasing payload, reducing turnaround/idle times and maintaining 

aircraft in the best operating conditions. The adoption of any of these emission mitigation measures 

is highly dependent on the price of fuel, economic growth and the costs and ease of implementation 

of these measures.  

Additional research should be undertaken to determine the effects of pricing both CO2 emissions 

and CO2 efficiency on the cost of each emission mitigating measure for each airline. By knowing 

the CO2 emissions profile, the relative cost of each emission mitigation measure and the expected 

emissions and efficiency improvements, policy makers can focus on researching and developing 

policies that can assist airlines in adopting the most effective emission mitigation measures that are 

also politically feasible.  

Due to Australia’s geographic isolation and low population, there are certain emission mitigation 

measures that are not viable. For example, in regions with large population centres, short haul 

international flights can be replaced by high-speed rail and hub and spoke networks can be replaced 

by smaller more efficient direct flights. Smaller direct long haul international flight will become 

more prevalent as airlines upgrade to new smaller efficient long haul aircraft. At present the 

quickest and most cost-effective way for Australia to transport both passengers and cargo 

internationally is by air.  
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4.6 Supplementary data 

Table 4.9 Airport Locations. 

Country Country 
Code City Airport 

Code Latitude Longitude 

Australia AU Sydney SYD -33.9329 151.1799 
Australia AU Melbourne MEL -37.6696 144.8498 
Australia AU Brisbane BNE -27.403 153.109 
Australia AU Adelaide ADL -34.9382 138.5373 
Australia AU Perth PER -31.9336 115.9602 
Australia AU Gold Coast OOL -28.1661 153.5131 
Australia AU Cairns CNS -16.8765 145.754 
Australia AU Darwin DRW -12.4078 130.8775 
Australia AU Sunshine Coast MCY -26.6054 153.0882 
Australia AU Port Hedland PHE -20.3779 118.6316 
USA US Guam GUM 13.4928 144.8049 
USA US Los Angeles LAX 33.9434 -118.4083 
USA US San Francisco SFO 37.6152 -122.3899 
USA US Dallas DFW 32.8975 -97.0361 
USA US Honolulu HNL 21.3258 -157.9217 
Singapore SG Singapore SIN 1.3612 103.9902 
United Arab Emirates AE Dubai DXB 25.2487 55.3529 
United Arab Emirates AE Abu Dhabi AUH 24.4269 54.646 
New Zealand NZ Auckland AKL -37.0048 174.7835 
New Zealand NZ Christchurch CHC -43.4886 172.5389 
New Zealand NZ Wellington WLG -41.329 174.8122 
New Zealand NZ Queenstown ZQN -45.022 168.7391 
New Zealand NZ Rotorua ROT -38.1098 176.3175 
New Zealand NZ Dunedin DUD -45.9239 170.199 
New Zealand NZ Hamilton HLZ -37.8662 175.336 
Hong Kong (SAR) HK Hong Kong HKG 22.3152 113.9365 
Malaysia MY Kuala Lumpur KUL 2.7443 101.7173 
Malaysia MY Kota Kinabalu BKI 5.924 116.0507 
Indonesia ID Denpasar DPS -8.7481 115.1675 
Indonesia ID Jakarta CGK -6.1306 106.6555 
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Table 4.10 Modified CORINAIR fuel burn table showing total fuel burn for flight distance of 125 to 1000nm. 

Aircraft Fuel Burn (kg) 
Distance (nm) 
125.00 250.00 500.00 750.00 1000.00 

A320/A319/737-800/900 1713.46 2602.18 3814.35 4902.62 6280.37 
A321 1984.18 3013.32 4417.02 5677.23 7272.67 
A330 4093.66 5862.43 8615.45 11359.97 14121.50 
A340 5212.75 7709.96 11536.04 15382.76 19313.64 
A380 7312.15 10462.29 15482.27 20502.24 25522.22 
737-700 1522.97 2154.56 3432.19 4712.31 5987.43 
747-100/200/300 6564.83 9419.78 14308.04 19196.29 24084.55 
747-400/400ER 6330.86 9058.26 13404.56 17750.86 22097.16 
767 3242.43 4606.58 6939.14 9271.69 11604.25 
777-200/300/200ER 4819.58 7035.14 10130.36 13226.45 16363.80 
777-300ER/200LR 5397.93 7879.36 11346.00 14813.62 18327.45 

 

Table 4.11 Modified CORINAIR fuel burn table showing total fuel burn for flight distance of 1500 to 3500nm. 

Aircraft Fuel Burn (kg) 
Distance (nm) 
1500.00 2000.00 2500.00 3000.00 3500.00 

A320/A319/737-800/900 8681.96 11322.26 14005.80 16491.08  
A321 10053.71 13111.18 16218.71 19307.79  
A330 19790.45 25634.21 31714.79 38043.52 44311.94 
A340 27381.12 35740.53 44465.93 53196.16 62388.44 
A380 35714.41 46508.01 57149.66 68811.30 80720.97 
737-700 8728.29 11559.25 14580.25 17671.63 20883.05 
747-100/200/300 34170.53 44418.98 55255.17 66562.31 77909.24 
747-400/400ER 30921.57 40266.67 49480.22 59576.88 69888.28 
767 16487.19 21492.63 26540.70 32003.06 37705.80 
777-200/300/200ER 22576.41 29225.68 36026.67 43143.25 50294.63 
777-300ER/200LR 25285.58 32732.76 40349.88 48320.44 56329.98 

 

Table 4.12 Modified CORINAIR fuel burn table showing total fuel burn for flight distance of 4000 to 6000nm. 

Aircraft Fuel Burn (kg) 
Distance (nm) 
4000.00 4500.00 5000.00 5500.00 6000.00 

A330 51005.69 57425.09 64238.47   
A340 71937.45 81707.93 92030.77 102772.88 113821.10 
A380 93311.58 106244.41 119671.17 133463.74 148037.29 
747-100/200/300 90362.10 103265.90 116703.31 130411.02  
747-400/400ER 80789.24 91986.50 103611.40 115553.02 128170.81 
767 43475.10 49555.63 55862.56   
777-200/300/200ER 57904.29 65763.50 73655.15 82067.40 90693.23 
777-300ER/200LR 64852.81 73655.12 82493.76 91915.49 101576.42 
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Table 4.13 Modified CORINAIR fuel burn table showing total fuel burn for flight distance of 6500 to 8000nm. 

Aircraft Fuel Burn (kg) 
Distance (nm) 
6500.00 7000.00 7500.00 8000.00 

A340 127793.38 139720.63 151990.87  
A380 163148.65 184392.90 200999.41 218120.41 
747-400/400ER 141254.25 149606.45 162498.78 175734.10 
777-200/300/200ER 517800.95 566755.42 515489.06  
777-300ER/200LR 103957.55 112811.41 121836.76 131033.61 

 

Table 4.14 Aircraft Characteristics. 

Airlines Aircraft MTOW 
(kg) 

OEW 
(kg) 

MZFW 
(kg) 

Fuel 
Cap 
(L) 

Cargo 
Vol 
(m3) 

Qantas A330-200 233000 120559 170000 139090 132.4 
Qantas A330-300 212000 120311 164000 97530 158.4 
Qantas A380-800 560000 270015 361000 323546 175.2 
Qantas 737-400 68039 33643 53070 23827 31.1 
Qantas 737-800 79016 41413 62732 26022 44.1 
Qantas 747-400 396894 179752 247208 216824 181 
Qantas 747-400ER 412770 184567 251744 239363 151 
Qantas 767-300 172365 87924 126099 91380 114.1 
Virgin 737-700 69400 37648 54658 26022 27.4 
Virgin 737-800 78245 41413 61689 26022 44.1 
Virgin 777-300ER 351535 167829 237683 181283 213.8 
Virgin F-100 45810 24747 36740 13365 16.72 
Jetstar A320 77000 42000 60500 23859 37.42 
Jetstar A321 93000 49196 73800 26692 51.72 
Jetstar A330-200 233000 120559 170000 139090 132.4 
Singapore A330-300 230000 122200 173000 97530 158.4 
Singapore A380-800 560000 270015 361000 323546 175.2 
Singapore 747-400 362874 179015 242672 204333 181 
Singapore 777-200 263030 135600 195000 171170 160.3 
Singapore 777-200ER 297550 141880 199580 171170 160.3 
Singapore 777-300 299370 157800 224520 169210 213.9 
Singapore 777-300ER 351535 167829 237683 181283 213.8 
Emirates A380-800 560000 270281 361000 323546 175.2 
Emirates 777-200LR 347452 146690 209106 202570 160.2 
Emirates 777-300ER 351535 167829 237683 181283 213.8 
Delta 777-200LR 347452 145150 209106 181283 160.2 
United 737-700 69400 37648 54658 26022 27.4 
United 737-800 78245 41413 61689 26022 44.1 
United 747-400 396890 183520 251740 216840 181 
United 777-200ER 297550 144330 199580 171170 160.3 
AirAsia X A330-300 233000 130000 175000 97530 158.4 
Air NZ A320 73500 42100 61000 23859 37.42 
Air NZ 737-300 63276 32904 49714 23827 22.4 
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Airlines Aircraft MTOW 
(kg) 

OEW 
(kg) 

MZFW 
(kg) 

Fuel 
Cap 
(L) 

Cargo 
Vol 
(m3) 

Air NZ 747-400 362874 178756 242672 203521 181 
Air NZ 767-300 186880 90011 133810 91380 114.1 
Air NZ 777-200ER 297550 141880 199580 171170 160.3 
Air NZ 777-300ER 351535 167829 237683 181283 213.8 
Garuda A330-200 230000 119600 168000 139090 132.4 
Garuda A330-300 235000 126800 173000 97530 158.4 
Garuda 737-800 79016 41413 62732 26022 44.1 
Cathay A330-300 233000 130000 175000 97530 158.4 
Cathay A340-300 275000 136929 180000 140640 158.4 
Cathay 747-400 396894 179752 247208 216824 181 
Cathay 777-200 247200 137160 190500 117340 160.3 
Cathay 777-300 299370 157800 224530 169210 213.9 
Cathay 777-300ER 351535 167829 237683 181283 213.8 
Malaysia A330-200 230000 119600 168000 139090 132.4 
Malaysia A330-300 230000 122200 173000 97530 158.4 
Malaysia A380-800 560000 270015 361000 323546 175.2 
Malaysia 737-800 79016 41413 62732 26022 44.1 
Malaysia 747-400 396894 179015 246074 216824 181 
Malaysia 777-200ER 297550 141880 199580 171170 160.3 
Etihad A330-200 230000 119600 168000 139090 132.4 
Etihad A340-500 368000 170900 225000 214808 149.7 
Etihad A340-600 368000 177800 245000 195010 201.7 
Etihad 777-300ER 351535 167829 237683 181283 213.8 
Hawaiian A330-200 238000 119600 170000 139090 132.4 
Hawaiian 767-300 186880 90011 133810 91380 114.1 
China A330-300 230000 122200 173000 97530 158.4 
 
Table 4.15 2012 Emissions Profile 

Airlines Tot CO2 
(t) 

CO2/pax-distance 
(g/pax-km) 

CO2/payload-distance 
(g/kg-km) 

AirAsia X 344,078.45 64.86 0.59 
Cathay Pacific 1,134,113.79 65.79 0.60 
Air New Zealand 543,549.59 69.56 0.67 
Singapore Airlines 1,636,828.03 71.75 0.65 
Jetstar 530,579.78 73.18 0.71 
Virgin Australia 898,027.53 74.15 0.73 
Qantas Airways 3,378,303.70 77.35 0.73 
Malaysian Airlines 744,833.13 79.19 0.72 
Emirates 1,784,305.20 80.32 0.73 
Hawaiian Airlines 130,663.72 82.85 0.75 
Delta Air Lines 242,331.69 90.24 0.82 
Garuda 301,477.65 95.08 0.90 
Etihad 776,724.89 96.19 0.87 
United Airlines 663,079.30 106.62 0.98 
Total 13,108,896.43 75.68 0.71 
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Table 4.16 2012 Emissions Profile on Short Haul Routes 

Airlines Tot CO2 
(t) 

CO2/pax-distance 
(g/pax-km) 

CO2/payload-distance 
(g/kg-km) 

AirAsia X 76,634.43 65.05 0.59 
Air New Zealand 543,549.59 69.56 0.67 
Qantas Airways 418,014.56 69.78 0.69 
Singapore Airlines 329,298.35 70.77 0.64 
Jetstar 314,791.44 72.23 0.71 
Virgin Australia 327,498.07 73.51 0.73 
Malaysia Airlines 99,248.83 75.33 0.69 
Garuda 222,204.72 91.03 0.87 
United Airlines 5,905.91 89.14 0.89 
Emirates 233,250.85 101.09 0.92 
Total  2,570,396.74 73.81 0.72 

 

Table 4.17 2012 Emissions Profile on Medium Haul Routes 

Airlines Tot CO2 
(t) 

CO2/pax-distance 
(g/pax-km) 

CO2/payload-distance 
(g/kg-km) 

AirAsia X 267,444.03 64.78 0.59 
Cathay Pacific 1,134,113.79 65.79 0.60 
Emirates 391,841.87 69.53 0.63 
Singapore Airlines 1,307,529.68 72.19 0.66 
Jetstar 215,788.33 79.30 0.72 
Malaysia Airlines 645,584.29 80.20 0.73 
Hawaiian Airlines 130,663.72 82.85 0.75 
Qantas Airways 1,266,379.93 84.23 0.77 
Garuda 79,272.93 117.28 1.07 
Total 5,438,618.57 75.10 0.68 

 

Table 4.18 2012 Emissions Profile on Long Haul Routes 

Airlines Tot CO2 
(t) 

CO2/pax-distance 
 (g/pax-km) 

CO2/payload-distance 
(g/kg-km) 

Emirates 1,159,212.48 65.50 0.59 
Virgin Australia 570,529.46 78.26 0.71 
Delta Air Lines 242,331.69 90.24 0.82 
Qantas Airways 1,693,909.20 91.73 0.83 
Etihad 776,724.89 96.19 0.87 
United Airlines 657,173.39 108.69 0.99 
Total 5,099,881.11 86.07 0.78 
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Chapter 5. A study of the abatement options available to reduce 

carbon emissions from Australian international flights 

Yin, K.-s., Dargusch, P., & Halog, A. (2016). A study of the abatement options available to 

reduce carbon emissions from Australian international flights. International Journal of 

Sustainable Transportation, 10, 935-946. 

Chapter Summary 

In this chapter, five scenarios were developed to evaluate abatement options that have been or will 

be implemented by airlines flying on Australian international routes. Analysis reveals that by 

acquiring more efficient aircraft and increasing the average number of passengers per flight by 

10%, 15.6Mt and 29.2Mt of CO2 would likely be emitted in 2020 and 2033 respectively, with CO2 

emissions increasing at 6.1% per annum and CO2 efficiency dropping from 59.38g/pax-km in 2020 

to 51.02g/pax-km in 2033. To achieve carbon neutral growth after 2020, additional abatement 

options will be required to reduce CO2 emissions by a further 13.6Mt (i.e. 46.6%) in 2033. 

5.1 Introduction 

In 2012, 14 airlines transported 72% of international passengers into and out of Australia and 

generated a combined total of 13.1Mt of CO2 emissions. Even though almost 60% of Australian 

international flights are short haul (i.e. under 5600km), they account for around 20% of the 

emissions with long and medium haul flights i.e. flight over 5600km accounting for 10.5Mt. 

Australian carriers account for just over a third of the total emissions with Qantas producing the 

lion’s share at 3.4Mt (25.8%) of CO2 and Virgin Australia and Jetstar producing 898kt and 530kt 

respectively (Chapter 4 and Yin et al. (2015)). Between 2013 and 2033, passengers and freight in 

the Asia-Pacific region will increase by 6% and 5% per annum respectively (Airbus, 2014b; 

Boeing, 2014b). At this rate, passenger numbers and cargo will double by 2024 and 2026, and triple 

by 2031 and 2034 respectively. In this chapter the amount of CO2 emitted and CO2 efficiency from 

a business-as-usual (BAU) scenario and four other scenarios are presented. In each of these four 

scenarios, a number of abatement options were combined together to determine their effectiveness 

at reducing emissions. These abatement options are assumed to be independent and have no flow on 

effects on passenger and freight growth. 

International Air Transport Association (IATA) (2009) has committed to 1.5% fuel efficiency 

improvement from 2009 to 2020, carbon neutral growth from 2020, and 50% reduction in CO2 
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emissions by 2050 when compared to 2005 levels . In the airline-aviation industry, abatement 

options that are available for reducing CO2 emissions fall under the following categories: aircraft 

operations; infrastructure; aviation technologies; alternative fuels and behavioural change (Banbury, 

Behrens, Bowell, et al., 2009; Banbury, Behrens, Browell, et al., 2009; Braathen et al., 2012; 

Commonwealth of Australia, 2012; L. M. Dray et al., 2009; Farries & Eyers, 2008; Green et al., 

2005; Holland et al., 2011; Kar et al., 2010; Morris, Rowbotham, Morrell, et al., 2009; Sustainable 

Aviation, 2012). According to IATA, aviation technologies can reduce CO2 emissions by up to 

40%, infrastructure improvements could save up to 12%, efficient aircraft operations will add up to 

3% and radical technologies, biofuels and market based measures will be required to achieve carbon 

neutral growth after 2020 (Banbury, Behrens, Bowell, et al., 2009; International Air Transport 

Association (IATA), 2009; International Air Transport Association (IATA), Georgia Tech, & 

German Aerospace Center (DLR), 2013). Biofuels can reduce lifecycle emissions from between 

10% to 100% when compared to traditional aviation fuel but there are many challenges such as 

sufficient sustainably grown biomass, high refining costs, demand from other industries, lack of 

policy incentives and low cost of traditional aviation fuel, to name but a few (Commonwealth 

Scientific and Industrial Research Organisation (CSIRO), 2011; Gegg, Budd, & Ison, 2014; Gegg et 

al., 2015; Stratton et al., 2010). First generation biofuels are not suitable for aviation but 2nd and 

3rd generation 30-50% biofuels mix with a lifecycle emissions reduction of at least 50% has the 

potential to achieve up to 25% fleet wide CO2 reduction by 2050 (Farries & Eyers, 2008). 

According to Commonwealth Scientific and Industrial Research Organisation (CSIRO) (2011) if 

5% of all aviation fuel used in Australia and New Zealand were replaced with biofuel in 2020 and 

40% by 2050, their models showed that by 2030 there would be a 17% reduction in aviation 

greenhouse gas emissions. Australia’s Air Traffic Management (ATM) is at 98%-99% efficiency 

and further improvements to ATM will reduce extra fuel burned from flying on non-optimal routes, 

queuing or holding (Commonwealth of Australia, 2012). The rise in passenger and cargo traffic 

from 2013 to 2033 will lead to additional flights which in turn may increase queuing, holding and 

emissions. ATM improvements may require new equipment installed at airports and on aircraft and 

additional training for both airline’s crew and air traffic management’s staff. 

This chapter focuses on abatement options that airlines have recently implemented or will soon be 

implementing, like changing their operations, retrofitting their existing fleet or purchasing new 

aircraft. These abatement options will have minimal dependence on other stakeholders such as 

ATM and airport operators. Biofuels were excluded from this thesis since it is unclear what the 

lifecycle reduction for Australian aviation biofuel will be when they are introduced. The results in 

this chapter can easily be updated by reducing the CO2 generated according to the biofuels lifecycle 
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emissions savings. This chapter also assumes that the abatement options do not interact with each 

other in any way and that the adoption of one abatement option does not affect the effectiveness of 

any later adoption of other options. This of course might not be the case. For example some 

lightweight seats are integrated with lightweight inflight entertainment (IFE) systems and are 

narrower and thinner which could lead to an increase in the number of seats on each flight. 

Increasing seat count can lead to more passengers carried on each flight thereby reducing the need 

to purchase new aircraft. The objective of this chapter is to determine the maximum amount of 

emissions reduction for each of these abatement options and whether carbon neutral growth is 

achievable using only these abatement options after 2020. 

This chapter is organised as follows. The abatement options with their associated fuel and weight 

savings are presented in section 5.2. The amount of fuel saved as a function of weight saved for 

each aircraft type can be found in the section 5.6. The business-as-usual (BAU) and four alternative 

scenarios are introduced in section 5.3. Each scenario defines the timeline that a subset of 

abatement options will be implemented. This section also describes the updates made to the original 

model presented in Chapter 4 (and Yin et al. (2015)). In section 5.4, CO2 emissions profiles for five 

scenarios are presented. Finally conclusions are presented in section 5.5. 

5.2 Theory/Calculation 

5.2.1 Abatement Options 

To decrease the amount of fuel used for each passenger or each kg of payload, an airline can 

increase the payload (passengers and cargo) or decrease fuel used on each flight. Payload on each 

flight is dependent on many factors including but not limited to flight schedule, code-sharing 

agreements with other airlines, type of aircraft, business model, ticket prices, and general state of 

the economy. The amount of fuel an aircraft uses is also dependent on many factors including but 

not limited to the aircraft’s maintenance interval, weight, age and aerodynamic efficiency. 

Technologies can be retrofitted to an existing aircraft to reduce drag and improve fuel efficiency but 

these are limited to small changes such as adding winglets or riblets. Retrofitting with lightweight 

equipment such as seats, trolleys, galleys, carpets, IFE systems or removing non-essential 

equipment or more cleaning can reduce aircraft’s weight. Each kg of weight saved equates to 

$183.60 of fuel savings per year assuming a fuel cost of $1025/tonne and 4500 flying hours per year 

(Wren, 2011). New lightweight seats are slimmer or narrower and new lightweight cabin 

infrastructure such as smaller toilets and galleys will reduce space occupied thus allowing airlines to 

increase the number of seats on their aircraft. According to Farries and Eyers (2008) retrofitting an 
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existing fleet of aircraft usually result in less than 5% savings. Other technological improvements 

such as new engines and wings can result in larger efficiency improvements but can only be applied 

to newer versions of the same aircraft type and cannot be retrofitted onto existing aircraft. Retiring 

less efficient aircraft and introducing new or revolutionary equipment may achieve the largest fuel 

efficiency improvements. 

5.2.1.1 Modifying airline operations 

The range of airlines operations that can be modified and improved so as to reduce CO2 emissions 

may include using airport power instead of the aircraft’s Auxiliary Power Unit (APU), washing the 

engines more often, reducing the number engines used during taxi and towing aircraft between the 

gates and runways. The amount of CO2 emissions saved when airlines reduce the number of engines 

used during taxiing and washing their aircraft’s engines are included in this chapter because these 

options do not depend on new infrastructure or services provided by other stakeholders like airports 

or agreements with other airlines. Lufthansa claims that their Technik Cyclean Engine Wash 

process for cleaning aircraft engines reduces fuel burn by up to 1% whereas Jetstar and Virgin 

Australia both use Pratt & Whitney’s EcoPower Engine Wash process which reduces fuel burn by 

up to 1.2% (Lufthansa Technik, 2015; Pratt & Whitney, 2010). Reducing the number of engines 

used during the taxiing phase of the flight has shown to reduce fuel burn by 20 to 45% during that 

phase (Deonandan & Balakrishnan, 2010; Sustainable Aviation, 2010). 

Altering the flight schedule, joint ventures with other airlines, code sharing, choosing the correct 

sized aircraft for the route, adjusting ticket prices and modifying the airline’s business model can all 

have an effect on the payload on each flight. By increasing the payload on each flight, an airline can 

reduce the number of flights required. Payload increase is not tied to any specific abatement option 

and in this chapter passenger numbers on each flight were increased by 5% and 10% to determine 

the amount of CO2 saved. 

 

Table 5.1. Fuel saved by updating airline operations 

Abatement Options Fuel Saved 
Engine Wash (2-3 washes per year) Up to 1.2% 

Reduce Engine Taxi 20% during taxi phase 

5.2.1.2 Retrofitting fleet 

To improve the airline’s CO2 emissions profile on Australia international routes, airlines can reduce 

the fuel burned on each flight by reducing the aircraft’s weight. This can range from fitting 
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lightweight seats, interior, IFE systems, electronic flight bags (EFBs) and carpets to removing 

unnecessary weight like magazines, drinking water and equipment. In this thesis three light 

weighting options were considered namely replacing the paper-based flight bags with iPad based 

EFBs, installing lightweight seats and IFE systems. The amount of weight saved by selecting lighter 

equipment is highly dependent on equipment manufacturer, equipment selected and configuration 

that airlines have selected for their aircraft. For example the Recaro BL3520 seat saves 4.3kg per 

seat, Expliseat seat saves about 4kg per seat and Austrian Airlines saved at least 3kg per seat with 

their new Recaro seat (Eden, 2013; Gubisch, 2010; Kaminski-morrow, 2010). By using lightweight 

seats, airlines can increase seat count but in this thesis seat count is unchanged and each lightweight 

seat saves 4kg/seat. There are many manufacturers and types of IFE systems, this can range from 

wireless tablets based systems to large screen seat back system. Seat back IFE systems can be 

connected by hardwired cables with some of the hardware placed under the seats. New seat back 

systems are replacing these cable based systems with fibre or wireless based systems to improve not 

only the amount of entertainment programs but also to reduce weight. Lufthansa’s BoardConnect 

wireless IFE systems save 360kg on a 737, 500kg on a 767, 390kg on a A321 and 780kg on a 

A340-600 (Lufthansa Systems, 2012). Whereas Lumexis Fibre to the seat (FTTS) IFE systems 

weight 5.6lb instead of 14lbs/seat (Ramsey, 2011). Finally American Airlines replaced a 35lb 

traditional paper based flight bag with two iPads EFB on their planes (Hughes, 2013). Table 5.11 

and Table 5.12 summarise the fuel saved for the amount of weight reduced on each Boeing and 

Airbus aircraft respectively. 

The other abatement options involve retrofitting current fleet with drag reducing winglets. Fuel 

saving 767 winglets, 737 scimitar winglets and A320 Sharklets are the only aerodynamic “aids” that 

are included in this thesis (Airbus, 2012a; Aviation Partners Boeing, 2015). The amount of fuel 

saved is dependent on the aircraft and distance flown and can be up to 5.7% over the standard 

version of the aircraft. Table 5.2 summarises the weight and fuel saved by each abatement option 

used in the model. 
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Table 5.2. Fuel saved by modifying aircraft 

Abatement Options Weight Saved (kg) 
Lightweight Seats 4kg/seat 

iPad Electronic Flight Bag 14.65kg/iPad 

Lightweight IFE Lumexis FTTS saves 3.8kg/seat 

Abatement Options Fuel Saved (%) 
737NG scimitar winglets 1.0% @ 500nm 

1.6% @ 1000nm 
2.0% @ 2000nm 
2.2% @ 3000nm 

767-300 winglets 3.0% @ 1000nm 
4.0% @ 2000nm 
5.0% @ 4000nm 
5.7% @ 6000nm 

A320 Sharklets 2.5% @ 1000nm 
3.5% @ 2500nm 

5.2.1.3 Acquiring new aircraft 

Airliners can reduce CO2 emitted for each international passenger or kg of payload by acquiring 

more efficient aircraft to service the growth in passengers and cargo and also to replace less 

efficient aircraft in their fleet. Aircraft manufacturers tend to introduce new more efficient aircraft 

to supersede a similar sized less efficient aircraft. For example 787 supersedes the 767, 777-

300ER/747-8 supersedes 747-400, and A320NEO supersedes A320. Airlines can sometimes 

downsize to a smaller aircraft with similar range as their superseded aircraft but can maintain the 

same number of seats on the route by increasing the flight frequency. A newly designed aircraft that 

supersedes an older model will produce at least 20% fuel savings whereas adding new engines or 

wings to an older model will generate less than 20% fuel savings (Banbury, Behrens, Bowell, et al., 

2009; International Air Transport Association (IATA) et al., 2013). Abatement options in Table 5.3 

identify the more efficient aircraft acquired to renew the 2012 fleet and also to fly the growth in 

passengers and cargo from 2013 to 2033. 
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Table 5.3. Fuel saved by renewing fleet 

Abatement Options Fuel Saved Reference 
777-300ER (replace 747-
400) 

17% on short haul 
20% on medium haul 
25% on long haul compared 
to 777-300ER 

(European Environment 
Agency, 2006; Horton, 2010) 

787-8 (replace 767 and 
A330-200/300) 

20% of 767 (CAPA - Centre for 
Aviation, 2013; Trimble, 
2014) 

787-9 (replaces Qantas 747-
400) 

30% on long haul 
(30% of 747-400) 

(European Environment 
Agency, 2006; Qantas, 2015) 

A320NEO (replace 
A320/A321) 

15% of A320 (Roewe, 2014; Rothman, 
2014) 

737MAX (replace 737-800) 14% of 737NG (Teal, 2014) 

777-8X/9X (replace 777-
200LR/300ER) 

16% of 777-300ER 
 

(Norris, 2013) 

5.3 Method 

To transport the additional 6% increase in passenger and 5% increase in cargo traffic per annum in 

the Asia-Pacific region, airlines flying into and out of Australia will need to add extra flights, add 

extra seats on existing aircraft and/or increase payload on each flight. In this thesis, the number of 

seats on each flight will remain unchanged on the same or equivalent aircraft used for each short, 

medium or long haul flight but the number of flights and passenger numbers on each flight will 

increase to service this growth. The model used in (Chapter 4 and Yin et al. (2015)) in determining 

the 2012 carbon profile of Australian international flight was modified with the amount of fuel used 

by each aircraft type adjusted to reflect the fuel savings from each abatement option in Table 5.1 

and Table 5.2. Abatement options in Table 5.3 summarised the amount of fuel saved by these new 

aircraft over the superseded aircraft. To keep the model simple, the fuel used (CO2 emitted) on the 

routes flown by all superseded aircraft were reduced by the predicted % of fuel (CO2) savings. For 

example, Boeing claims 787 is approximately 20% more fuel efficient than the 767/A330, CO2 

emitted on routes flown by these two aircraft types were reduced by 20% when they were replaced 

by 787 in the model. The updated model shows the maximum % of emissions reduction if airlines 

implement these abatement options on all applicable aircraft at once even though it may take many 

years to install or renew their entire fleet in normal practice. In the USA, it can take between 10 

to15 years from when a new aircraft is introduced to when the entire US fleet is replaced (J. Lee & 

Mo, 2011). Finally the amount of fuel used on each flight was not adjusted to compensate for the 

age of the aircraft. 
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A business-as-usual (BAU) scenario and four alternative scenarios were studied (Table 5.4). These 

four alternative scenarios represent running the model with a subset of abatement options to 

determine their effectiveness at reducing the growth in CO2 and improving CO2 efficiency in the 

Australian international aviation market annually from 2013 to 2033. 

 

Table 5.4. Scenario overview 

Scenario Overview 
1 This is the BAU scenario, which assumes that all airlines flying Australian 

international routes will emit CO2 at the same rate as in 2012. 

2 In this scenario, current airlines’ fleet are retrofitted with emissions reducing 
technologies and airline operations are updated (Table 5.1, Table 5.2). Passenger 
and cargo growth will be serviced by acquiring and flying the most utilised 
aircraft in short, medium and long haul routes i.e. the 737NGs/A320s, A330s and 
777-300ERs from 2013 to 2033. These new aircraft will also have emissions 
reducing technologies installed and airline operations updated to reduce even 
more CO2 emissions. 

3 Scenario 3 is similar to Scenario 2 except that all non-Australian airlines’ 747 
flights are replaced by 777-300ER flights and all Qantas 747 flights are replaced 
by 787-9 flights. 

4 This scenario determines the effectiveness of renewing and flying the most 
efficient fleet at reducing CO2 emissions. In the current fleet, non-Australian 
airlines’ 747s are replaced by 777-300ERs, Qantas 747s are replaced by 787-9s, 
777-300ERs are replaced by 777Xs on long haul flights, 787s replaced both 
A330s and 767s on medium haul flights and in short haul flights, 737NGs/A320s 
are replaced by 737MAXs/A320NEOs. Passenger and cargo growth will be 
serviced by acquiring and flying the most utilised aircraft such as 737s/A320s, 
A330s and 777s before upgrading to even more efficient aircraft such as 777Xs, 
737MAXs, A320NEOs and 787s when they become available . These aircraft are 
introduced under the same timeline used to renew the 2012 fleet. No aircraft are 
retrofitted with additional emissions reducing technologies and airline operations 
are not updated. 

5 In this scenario the payload per flight in Scenario 2 to 4 are increased to determine 
the additional emissions saved in these 3 scenarios. The numbers of passengers 
per short, medium and long haul flight are increased by 5% and 10% thereby 
reducing the number of flights required to transport the same number of 
passengers. 

 

Scenarios 2 to 4 are simulated as a combination of modifications and improvements made to current 

fleet and the acquisition of a fleet of new aircraft to service passenger and cargo growth (Figure 

5.1). Since airlines will introduce improvements or acquire new aircraft at different times over the 

next 20 years, strategies in these two steps will indicate a timeline when these modifications or 

aircraft acquisitions will take place in 2013 to 2033. 
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Figure 5.1 Generate CO2 profiles 

5.3.1 Modifying fleet and improving airline operations (Step 1) 

In Step 1, three strategies for modifying the fleet and improving airline operations were studied. 

Abatement options are applied to as many of the 2012 fleet as possible to determine the maximum 

amount of emissions saved. In 2014, Alaska Airlines retrofitted 73 737s with lightweight seats and 

47 737s with scimitar winglets in 10 months (Alaska Airlines, 2014). Even though the planes 

deployed on Australian international routes in 2012 are mainly twin aisle aircraft, the model 

assumes that each airline can retrofit and modify their entire fleet that service Australian 

international routes in one year. For each strategy, the model was rerun to determine the annual CO2 

emitted from 2013 to 2033. 

In the first strategy, abatement options in Table 5.1 and Table 5.2 were applied to the current fleet 

starting in 2013. Jetstar and Air New Zealand received their first A320 with Sharklets in the middle 

2013 (Australian Aviation, 2013a, 2013b). Hawaiian Airlines and Air New Zealand installed 

winglets on their 767s to improve fuel efficiency in 2013 (Flightglobal, 2009; Kuhn, 2009). In this 

strategy, all 767s are retrofitted with winglets in 2013 and all 737NGs and A320s have winglets and 

Sharklets retrofitted a year later in 2014. 

Airline’s fleet renewal plans are closely guarded secret but most have to take into consideration at 

least the aircraft’s age, maintenance cost, fuel efficiency, fuel cost, lease conditions, passenger 
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traffic, current fleet composition, availability of new aircraft, cost of new aircraft and profitability. 

According to Morrell and Dray (2009), the age where 50% of both wide and narrow body aircraft 

has retired is 29.3 and 29.8 years respectively. Bazargan and Hartman (2012) modelled and 

analysed the aircraft replacement strategy for both low-cost carrier Air Tran Airways and legacy 

carrier Continental Airlines, they recommended selling aircraft at 12 years and older. In Table 5.13, 

airlines servicing the Australian international market in 2012 depreciated their fleet over a useful 

life of between 15 years for Singapore and Emirates to 30 years for United and Delta with most 

airlines depreciating their equipment between 20 to 25 years (Air New Zealand, 2012b; AirAsia, 

2012; Cathay Pacific, 2012; Delta Air Lines, 2012; Emirates, 2012; Garuda, 2012; Malaysia 

Airlines, 2012; Qantas, 2012a; Singapore Airlines, 2012; United Airlines, 2012). The useful life 

usually indicates how long an airline keeps their aircraft before renewal. 

In the second strategy, some of the oldest aircraft flown in 2012 were renewed in addition to the 

modifications and improvements introduced in the first strategy. Some of the oldest aircraft flown 

on long and medium haul Australian International routes were the 747-400s and 767s. Most non-

Australian airlines replaced their 747-400s with 777s and the larger A380s. Singapore Airlines and 

Air New Zealand retired its last 747-400 in 2012 and 2014 respectively and Malaysia and United 

replaced their 747-400 service to Australia in 2013 and 2014 respectively using more efficient 

aircraft (Australian Aviation, 2012; Chong, 2014; Flynn, 2013). This leaves Qantas as the only 

airline flying 747-400s on Australian international flights after 2014. Qantas recently announced the 

purchase of 8 787-9s to replace 5 747-400s in 2017 and retired their last 767 in 2014 with A330s 

taking over the medium haul routes (Frawley, 2014a; Qantas, 2015). In this strategy, all non-

Australian 747s were replaced by 777-300ERs in 2014 and all Qantas 747s were replaced by 787-9s 

in 2017. 

In the third strategy, instead of modifying or updating the current fleet and airline operations as in 

the previous two strategies, the fleet renewal started in strategy 2 was greatly expanded. Some of 

the most utilised aircraft in short, medium and long haul were renewed with more efficient aircraft 

when they become available. In 2012, 40% of short haul routes were flown by 737NGs with another 

30% flown by the A320s/A321s, over 70% of medium haul routes were flown on A330s and almost 

40% of the long haul routes were flown by 777s and 29% by older 747s. Virgin Australia’s 

737MAXs will be delivered in 2018, Jetstar’s A320NEOs will be delivered in 2017 and Emirates 

will upgrade their entire fleet of 777s to 777X starting from 2020. (Flynn, 2015a, 2015b; Frawley, 

2014b; Qantas, 2015). Jetstar introduced the 787 on their medium haul international routes in 2014 

(Qantas, 2013a). Even though some of the newer replacement aircraft can be configured with higher 

number of seats than the superseded aircraft, the model assumes the same seat count. Table 5.5 
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summarises the three strategies showing the year the current fleet were modified and renewed with 

new aircraft in the simulation. 

 

Table 5.5. Timeline for operational changes and fleet modifications 

Year Strategy 1 Strategy 2 Strategy 3 
2013 Perform 2-3 Engine 

washes per year 
Reduced Engine taxi 
Acquire iPad EFBs 
Install Lightweight IFE 
systems 
Install Lightweight seats 
Retrofit 767 winglets 

Perform 2-3 Engine 
washes per year 
Reduced Engine taxi 
Acquire iPad EFBs 
Install Lightweight IFE 
systems 
Install Lightweight seats 
Retrofit 767s winglets 

 

2014 Retrofit 737NGs with 
scimitar winglets. 
Retrofit A320s with 
Sharklets. 

Retrofit 737NGs with 
scimitar winglets. 
Retrofit A320s with 
Sharklets. 
Renew non-Australian 
airline 747-400s with 777-
300ERs. 

Renew A330s and 767s 
with 787s.  
Renew non-Australian 
airline 747-400s with 777-
300ERs. 

2017  Renew Qantas 747-400s 
with 787-9s. 

Renew Qantas 747-400s 
with 787-9s. 

2018   Renew 737NGs with 
737MAXs. 
Renew A320s with 
A320NEOs. 

2021   Renew 777-300ERs with 
777Xs. 

5.3.2 Acquiring new aircraft to service passenger and cargo growth (Step 2) 

In Step 2, two aircraft acquisition strategies were studied. Airlines will add additional flights to 

handle the 6% growth in passengers and 5% growth in cargo per year from 2013 to 2033. Since the 

aircraft acquired will be similar to the aircraft used to renew the current fleet, the aircraft acquisition 

timeline will also be similar to the timeline in strategy 3 in Step 1. In 2012, international short, 

medium and long haul flights were on average 2944.27km, 6847.42km and 12210.29km long 

respectively where each passenger including their luggage (i.e. passenger-mass) weighed 110kg on 

twin-aisle flights and 100kg on single-aisle flights (Yin et al., 2015). The number of additional 

(short, medium and long haul) flights can be deduced by assuming that the proportion of short, 

medium and long haul passenger numbers and the passenger load factors on each flight remain 

unchanged from 2012. On each flight, total payload is the combined weight of passenger-mass and 

cargo, the additional cargo was divided evenly amongst these new flights. The model was then 
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executed to determine the amount of CO2 emissions and CO2 efficiency associated with each 

aircraft acquisition strategy as passengers and cargo increased for each year starting from 2013 to 

2033. 

In the first strategy, airlines acquired and flew 737s/A320s, A330s and 777-300ERs to transport the 

additional passengers and cargo on short, medium and long haul flights respectively. These types of 

aircraft were selected because they accounted for the most Australian international short, medium 

and long haul flights in 2012. Since 737NGs/A320s, A330s and 777-300ERs were introduced prior 

to 2012, these aircraft flew the additional passengers and cargo from 2013 in this strategy. From 

2014, 737NGs with scimitar winglets and A320s with Sharklets would fly all new short haul routes. 

Additional abatement options namely additional engine washes, reduced engine taxi, iPad EFBs, 

lightweight IFE systems, and lightweight seats were also applied to these aircraft. 

In the second aircraft acquisition strategy, airlines flew some of the newest most efficient aircraft on 

short, medium and long haul flights. On short haul routes, 737NGs/A320s flew additional 

passengers and cargo starting from 2013, switching to the same aircraft with winglets in 2014 but 

from 2018 all additional passengers and cargo will be evenly split between A320NEOs and 

737MAXs. On long haul routes, 777-300ERs are flown up to 2020 before switching to 777Xs from 

2021. New aircraft introduced to handle passenger and cargo growth will not be renewed. For 

example, 777-300ERs introduced between 2013 and 2020 to cater to the growth in long haul traffic 

are not renewed with 777Xs after 2021 since they are only at most 8 years old. On medium haul 

routes, A330s will fly additional passengers and cargo in 2013 but from 2014 onward the additional 

passengers and cargo will be flown on 787s. Unlike the previous aircraft acquisition strategy, no 

other abatement options are applied to these aircraft. Table 5.6 summaries the two aircraft 

acquisition strategies showing the year new aircraft were acquired in the simulation. 
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Table 5.6 Timeline for Aircraft acquisition 

Year Strategy 1 Strategy 2 
2013 Acquire 737NGs/A320s for short haul 

flights for 2013. 
Acquire A330s for medium haul flights 
from 2013 to 2033. 
Acquire 777-300ERs on long haul flights 
from 2013 to 2033 
On these new aircraft  
Perform 2-3 Engine washes per yr 
Reduced Engine taxi 
Acquire iPad EFBs 
Install Lightweight IFE systems 
Install Lightweight seats 

Acquire 737NGs/A320s for short haul 
flights for 2013. 
Acquire A330s for medium haul flights 
for 2013. 
Acquire 777-300ERs on long haul flights 
from 2013 to 2020. 

2014 Acquire 737NGs with scimitar winglets 
and A320s with Sharklets for short haul 
flights from 2014 to 2033. 
On these new aircraft  
Perform 2-3 Engine washes per yr 
Reduced Engine taxi 
Acquire iPad EFBs 
Install Lightweight IFE systems 
Install Lightweight seats 

Acquire 737NGs with scimitar winglets 
and A320s with Sharklets for short haul 
flights from 2014 to 2017. 
Acquire 787s instead of A330s for 
medium haul flights from 2014 to 2033. 

2018  Acquire 737MAXs and A320NEOs 
instead of 737NGs/A320s for short haul 
flights from 2018 to 2033. 

2021  Acquire 777Xs instead of 777-300ERs 
for long haul flights from 2021 to 2033. 

5.3.3 CO2 profile for 2012 to 2033 (Step 3) 

The CO2 profiles for scenarios 2 to 4 are made up of results generated in the previous two steps. 

Table 5.7 shows the fleet improvement strategy and the aircraft acquisition strategy used to produce 

the CO2 profiles for Scenarios 2 to 4. 

 

Table 5.7 Generate CO2 profile for 2012 to 2033 

 Scenario 2 Scenario 3 Scenario 4 
Op changes & Fleet 
mods (Step 1) Strategy 1 of Step 1 Strategy 2 of Step 1 Strategy 3 of Step 1 

Aircraft acquisition 
(Step 2) Strategy 1 of Step 2 Strategy 1 of Step 2 Strategy 2 of Step 2 
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5.3.4 Scenario 5 – Increasing payload per flight 

In 2012, the average number of passengers per short, medium and long haul flight were 162.61, 

260.26 and 309.24, the average number of seats were 213.07, 334.16 and 375.46 and passenger load 

factors were 76.3%, 77.9% and 82.4% respectively . In scenario 5, the number of seats per flight 

were unchanged but the average number of passengers per flight in scenarios 2 to 4 were increased 

by 5% and 10% thereby increasing passenger loading factors to (80.2%, 81.8%, 86.5%) and 

(83.9%, 85.7%, 90.6%) respectively. By increasing the number of passengers per flight, the number 

of flights required was reduced. 

5.4 Results and Discussions 

5.4.1 Modifying fleet and improving airline operations - Results (Step 1-Results) 

Retrofitting the current fleet with emissions reduction technologies are limited to less than 5% 

saving according to Farries and Eyers (2008) and when all the abatement options in Table 5.1 and 

Table 5.2 are applied to the fleet flying on the 2012 Australian international routes, 400.2kt CO2 

emissions were reduced i.e. 3.05% saving (Table 5.8). The results from the model reflect the fidelity 

of fuel saving data associated with each abatement option. Due to a lack of detailed information on 

fuel savings from washing the aircraft engine, the model assumed a maximum savings of 1.2% for 

all flights. Whereas the more detailed fuel savings information associated with installing winglets 

on 767s, 737NGs and A320s and the smaller number of affected flights resulted in a relatively small 

combined savings of 0.25%. 
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Table 5.8 CO2 savings due to operational changes and fleet modifications 

Update operations and 
modify 2012 fleet 

Airlines Affected % CO2 
Saved 

CO2 
Saved 

Extra engine wash Qantas, Virgin, Garuda, Malaysia, United, 
Air NZ, Hawaiian, Emirates, Etihad, Delta, 
Jetstar, Singapore, Cathay, AirAsia X 

1.20% 157.3kt 

Reduce engine taxi Qantas, Virgin, Garuda, Malaysia, United, 
Air NZ, Hawaiian, Emirates, Etihad, Delta, 
Jetstar, Singapore, Cathay, AirAsia X 

0.37% 48.2kt 

iPad EFB Qantas, Virgin, Garuda, Malaysia, United, 
Air NZ, Hawaiian, Emirates, Etihad, Delta, 
Jetstar, Singapore, Cathay, AirAsia X 

0.01% 948.0t 

Lightweight IFE system Qantas, Virgin, Garuda, Malaysia, United, 
Air NZ, Hawaiian, Emirates, Etihad, Delta, 
Jetstar, Singapore, Cathay, AirAsia X 

0.60% 78.3kt 

Lightweight Seats Qantas, Virgin, Garuda, Malaysia, United, 
Air NZ, Hawaiian, Emirates, Etihad, Delta, 
Jetstar, Singapore, Cathay, AirAsia X 

0.63% 82.4kt 

767 winglets Air NZ, Hawaiian, Qantas 0.07% 9.2kt 

A320 Sharklets Air NZ, Jetstar 0.09% 12.3kt 

737NG scimitar winglets Qantas, Virgin, Garuda, Malaysia, United 0.09% 11.5kt 

 

By 2014 non-Australian airlines stopped flying 747-400s to Australia; most have replaced these 

flights with newer aircraft like 777s, A380s and A330s. In the model, non-Australian 747 flights 

were replaced by 777-300ER flights; which resulted in a reduction of 203.6kt CO2 emissions. 

Qantas announced the purchase of 787-9s to replace some of their 747-400s. If Qantas replaced 

their entire fleet of 747s with 787-9s, CO2 emissions would be reduced by 410.6kt. If airlines flying 

in 2012 Australian international routes implemented the fleet renewal strategy 3 specified in Table 

5.5, it resulted in CO2 reduction of over 15%. Even though almost 60% of international flights were 

short haul and 70% of these flights were flown with 737NGs and A320s, it accounted for less than 

20% of 2012 emissions so renewing to 737MAXs and A320NEOs respectively has a relatively 

small reduction of 159.78kt. Whereas medium and long haul flights accounted for the most 

emissions savings. Table 5.9 lists the maximum CO2 emissions reduction when each aircraft type 

was renewed on 2012 Australian international routes. 
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Table 5.9 CO2 savings due to fleet renewal strategy 

Aircraft renewal Airlines Affected % CO2 
Saved 

CO2 
Saved 

777-300ERs replace 747-
400s  

Singapore, Air NZ, Malaysia, United 1.55% 203.6kt 

787-9s replace 747-
400/400ERs 

Qantas 3.13% 410.6kt 

787s replace 767s, A330s  AirAsia X, Air NZ, Malaysia, Hawaiian, 
Qantas, Jetstar, Cathay, Garuda 

5.85% 767.2kt 

A320NEOs replace 
A320/A321s  

Jetstar, Air NZ 0.54% 71.1kt 

737MAXs replace 737NGs  Qantas, Virgin, Garuda, Malaysia, United 0.68% 88.6kt 

777Xs replace 777-300ERs Singapore, Air NZ, Malaysia, United, 
Virgin 

5.02% 658.3kt 

5.4.2 Acquiring new aircraft to service passenger and cargo growth – Results (Step 2-

Results) 

In 2012, 14 airlines transported 21.4M international passengers and 611.5Mkg of cargo into and out 

of Australia (Yin et al., 2015). Figure 5.2 shows the 6% and 5% per annum growth in additional 

passengers and cargo from 2013 to 2033, with passengers accounting for just over 80% of the 

additional payload weight. 

 
Figure 5.2.Passengers and cargo growth 

To cater to this growth, the model assumed that airlines will purchase or lease new aircraft for short, 

medium and long haul flights. The results for the two aircraft acquisition strategies (Table 5.6) and 

the BAU case, where each airline transported the additional passengers and cargo at the same CO2 

efficiency as in 2012 are presented in Figure 5.3. In the first aircraft acquisition strategy, 24.1Mt of 

CO2 was emitted in 2033, a saving of 5.7Mt when compared to BAU case. In the second aircraft 
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acquisition strategy, flying the newest aircraft instead of just the most utilised aircraft from 2012 

saved an additional 3.1Mt of CO2 by 2033. 

 
Figure 5.3. CO2 Emission due to additional passengers and cargo 

5.4.3 CO2 profile for 2012 to 2033 (Step3-Results) 

In 2012, 13.1Mt of CO2 was emitted by 14 airlines flying in the Australian international aviation 

market. These airline emitted CO2 at a rate of between 64.78g of CO2 per passenger-km to 117.28g 

of CO2 per passenger-km (0.59g of CO2 per kg of payload-km to 1.07g of CO2 per kg of payload-

km) (Yin et al., 2015). With annual passenger and cargo traffic increasing at 6% and 5% 

respectively, total passenger numbers and cargo will double by 2024 and 2026 respectively. Figure 

5.4 shows the amount of CO2 emitted from 2012 to 2033 for scenarios 1 to 4. In scenario 1 (i.e. 

BAU), if each airline operated with no improvements to their CO2 emissions efficiency, then CO2 

emissions will double by 2025 and by 2033 will reach 42.9Mt. In scenario 2, 2012 fleet was 

updated with a number of operational changes and fleet modifications plus the increase in passenger 

and cargo traffic from 2013 to 2033 will be serviced by 737NGs/A320s, A330s, and 777-300ERs 
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CO2 emissions from the 2012 flights. Since the only difference between scenario 2 and 3 was the 

renewal of 747s there was only a small drop in CO2 of 614.23kt in 2033 with CO2 emissions 

doubling by 2028. Both scenarios showed that a more aggressive strategy is needed to curb the 

increase in emissions due to traffic growth. In scenario 4, airlines deployed the latest aircraft for all 

new passenger and cargo traffic and also extensively renewed their current fleet. By 2033, CO2 

emissions dropped to 32.1Mt where over 80% of all long haul flights will be flown on 777s and 

over 90% of medium and short haul flights will be flown on 787s and 737MAXs/A320NEOs 
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respectively. This resulted in an additional saving of 4.04Mt of CO2 emissions by 2033, but CO2 

emissions will double by 2030. For airlines to stay carbon neutral after 2020, an additional 15.98Mt 

of CO2 emissions will need to be reduced. 

 
Figure 5.4. CO2 Emissions from 2012 to 2033 

In Figure 5.5, flying more-efficient aircraft helped to improve the average CO2 efficiency from 

75.68g of CO2 per passenger-km (0.71g of CO2 per kg of payload-km) in 2012 to 53.81g of CO2 per 

passenger-km (0.51g of CO2 per kg of payload-km) in 2033 in scenario 4 while carrying more than 

triple the number of passengers. In 2012, AirAsia X had the best CO2 efficiency of 64.86g of CO2 

per passenger-km (0.59g of CO2 per kg of payload-km); CO2 efficiency for all flights in scenario 2, 

3 and 4 matched AirAsia X’s efficiency by 2024, 2020 and 2017 respectively (Yin et al., 2015). 

 

 
Figure 5.5. CO2 Efficiency from 2012 to 2033 
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5.4.4 Scenario 5 - Increasing number of passengers per flight 

In scenario 1 to 4, the average number of passengers and seats on each short, medium and long haul 

flight remain unchanged from 2012. In scenario 5, the passenger numbers on each flight in scenario 

2 to 4 were increased, thereby reducing the number of flights required to transport the same number 

of passengers and cargo for each year. By increasing the number of passengers per flight by 10% an 

additional 9% of CO2 emissions were reduced (Table 5.10). 

 

Table 5.10.CO2 profile for higher load factors 

 Scenario 2 Scenario 3 Scenario 4 
Increase pax/flight by Increase pax/flight by Increase pax/flight by 

Year CO2 0% 5% 10% 0% 5% 10% 0% 5% 10% 
2020 Mt 18.7 17.8 17  18.1 17.2 16.4 17.2 16.3 15.6 

g/pax-km 66.94 66.17 65.53 64.72 63.91 63.23 60.62 59.94 59.38 
g/kg-km 0.63 0.63 0.62 0.61 0.60 0.60 0.57 0.57 0.56 

2033 Mt 36.8 35.0 33.4 36.2 34.5 32.9 32.1 30.6 29.2 
g/pax-km 61.7 59.99 58.49 60.66 58.91 57.38 53.81 52.32 51.02 
g/kg-km 0.59 0.57 0.56 0.58 0.56 0.54 0.51 0.50 0.49 

 

In the BAU scenario, CO2 grew at over 11% per annum and by 2033 CO2 emissions has increased 

to 42.9Mt. By applying an aggressive fleet acquisition and renewal strategy and increasing the 

number of passengers per flight by 10%, the results showed that CO2 emissions growing at 6.1% 

per annum and CO2 per passenger-km drops from 75.68g/pax-km in 2012 to 51.02g/pax-km in 

2033. Even though CO2 emissions are down to 29.2Mt, an additional 13.6Mt of CO2 needs to be 

trimmed from the Australian international flights to stay carbon neutral after 2020. These results 

also show a higher emission growth than the Australian Government’s 2.9% per annum and this is 

attributed to the Australian Government’s study using a lower passenger growth rate of 4% per 

annum and higher yearly drop of 2.3% in CO2 emitted per international passenger (Commonwealth 

of Australia, 2012).  

These results show that due to the growth in passengers and cargo, airlines have to attain an even 

higher drop in CO2 emitted per passenger-km (CO2 emitted per kg of payload-km) in order to 

achieve carbon neutral growth after 2020.  
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Addendum: 

In Scenario 5, the model does not factor in the additional fuel required to fly more passengers and 

freight when the load factor is increased by 5% and 10% on each flight. In Table 5.11 and Table 

5.12, the percentage of fuel saved when the weight of a 737NG, A330 and 777 is decreased by 1000 

lbs (454 kg) is 0.6%, 0.18% and 0.2%, respectively. Assuming a similar increase in fuel used when 

weight is increased, a 10% load factor increase on a 737NG, A330 and 777 equates to a weight 

increase of approximately 1990 kg, 3840 kg and 4500 kg, respectively, which translates to 2.6%, 

1.5% and 2.0% increase in fuel/emissions. 

If the increase in fuel used/emissions on each flight is factored in when load factors are increased by 

5% and 10% then by 2033 total emissions will drop by 3.9% and 7.4% instead of 4.7% and 9.1% 

that is presented in Table 5.10 and in Yin et al. (2016).  

5.5 Conclusions 

Airlines can modify their current operations, retrofit their fleet of aircraft with emissions reducing 

technologies, retire inefficient aircraft and acquire more efficient aircraft to reduce their emissions. 

To determine fuel savings for each abatement option, the fuel burn tables in CO2 profile calculator 

used to determine the 2012 CO2 profile for the Australian International Market was modified. From 

2013 to 2033, passenger and cargo traffic will increase at 6% and 5% per annum respectively and 

the model assumes that airlines will add additional flights on top of their 2012 flight schedule. 

Assuming airlines maintain their 2012 flight schedule, the CO2 emissions from 2013 to 2033 is the 

combination of emissions from 2012 flight schedules and emissions generated from flying the 

additional passengers and cargo. To determine the CO2 emissions due to the additional traffic, the 

model assumes the average short, medium and long haul flight distance and number of seats per 

flight remained the same as in 2012. The aircraft chosen to service the additional passenger and 

cargo traffic ranged from the most utilised aircraft type in 2012 such as 737NGs, A320s, A330s and 

777s to some of the latest aircraft introduced after 2012 such as the 737MAXs, A320NEOs, 787s 

and 777Xs. 

Five scenarios were studied with various abatement mitigation strategies, to determine the growth in 

CO2 emissions as passenger and cargo increased from 2013 to 2033. As expected, increasing the 

number of passengers per flight by 10%, applying an aggressive fleet renewal strategy by replacing 

the current fleet with the latest aircraft and adding the latest most efficient aircraft to service the 

additional traffic would reduce CO2 emissions growth to 6.1% per annum and produce the most 

CO2 emissions reduction when compared to the other scenarios. The results showed that airlines 
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will need additional abatement options such as implementing more operational changes, acquiring 

new technologies, refuelling with 2nd and 3rd generation biofuels, implementing some Market Based 

Measures (MBM) and behavioural changes in order to reduce an additional 13.6Mt from the 29.2Mt 

of CO2 (in 2033) to stay carbon neutral after 2020. 

The adoption of any abatement option is highly dependent on cost and ease of implementation, fuel 

prices and economic growth. The pricing of CO2 emissions and penalising poor CO2 efficiency and 

low load factor should be investigated to determine if it would increase the uptake of these 

abatement options. Additional research should be undertaken to facilitate the production of aviation 

biofuel, to improve airport infrastructure and air traffic management and to discourage unnecessary 

air travel.  
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5.6 Supplementary data 

Table 5.11 summarises the amount of fuel saved for each 1000lb/454kg reduction in weight for the 

following Boeing aircraft (Boeing, 2004). 

Table 5.11. Fuel Saved on Boeing Aircraft 

Aircraft type Fuel save per 1000lb (454 kg) decrease in weight (%) 
737-6/7/8/900 0.6% 
767-2/3/400 0.3% 
777-2/300 0.2% 
747-400 0.2% 

Table 5.12 summarises the fuel penalty in a typical sector for Airbus aircraft (Airbus, 2004). 

Table 5.12. Fuel Saved on Airbus Aircraft 

Aircraft 
type 

Typical 
Sector 
(nm) 

Fuel burn in 
Typical Sector 
from updated 
CORINAIR 
fuel burn table 
(kg) 

Weight 
Increase 
(kg) 

Fuel 
Penalty 
per 
sector 
(kg) 

Fuel saved per 1000lb (454 kg) 
decrease in weight (%) 

A320 1000 6280.37 735 60 0.59% =454/735 *60/6280.37 
A321 1000 7272.67 890 55 0.39% =454/890*55/7272.67 
A330-200 4000 51005.69 2300 460 0.18% =454/2300*460/51005.69 
A330-300 4000 51005.69 2300 440 0.17% =454/2300*440/51005.69 
A340-300 6000 113821.10 2535 1330 0.21% =454/2535*1330/113821.1 
A340-500 6000 113821.1 3680 1410 0.15% =454/3680)*1410/113821.1 
A340-600 6000 113821.1 3660 1420 0.15% =454/3660*1420/113821.1 

Since there is no data for the A380, in the model the fuel savings is assumed to be similar to the 747 

at 0.2%. 

Table 5.13. Airline depreciation  

Airline Useful Life 
(years) 

Annual 
Depreciation 
rate (%) 

Residual 
value (%) 

Reference 

Qantas/Jetstar 2.5-20 Not disclosed 0-10 (Qantas, 2012a) 
Virgin Not disclosed 5-25 Not disclosed (Virgin Australia, 2012a) 
Air NZ 5-22 Not disclosed Not disclosed (Air New Zealand, 2012b) 
AirAsia X 25 Not disclosed 10 (AirAsia, 2012) 
Cathay 20 Not disclosed 10 (Cathay Pacific, 2012) 
Delta 21-30 Not disclosed 5-10 (Delta Air Lines, 2012) 
Emirates 15 Not disclosed 10 (Emirates, 2012) 
Etihad Not disclosed Not disclosed Not disclosed (Etihad, 2012) 
Garuda 18-20 Not disclosed Not disclosed (Garuda, 2012) 
Malaysia 20 Not disclosed Not disclosed (Malaysia Airlines, 2012) 
Singapore 15 Not disclosed 10 (Singapore Airlines, 2012) 
United 27-30 Not disclosed Not disclosed (United Airlines, 2012) 
Hawaiian 20-25 Not disclosed 0-10 (Hawaiian Airlines, 2012) 
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Chapter 6. The cost of abatement options to reduce carbon 

emissions from Australian international flights 

Yin K-s, Ward A, Dargusch P, Halog A. (2016). The cost of abatement options to reduce 

carbon emissions from Australian international flights. (Under review at International 

Journal of Sustainable Transportation) 

Chapter Summary 

In 2012, a total of 13.1 million tonnes of carbon dioxide were emitted by 14 airlines when 

transporting 72 per cent of international passengers into and out of Australia in 2012. With 

passenger and cargo traffic growing at between five to six per cent annually from 2013 to 2033, 

acquiring more fuel efficient aircraft to both renew the existing fleet and to service growth have the 

greatest potential in reducing emissions over the next 20 years. The analysis shows that 

implementing carbon dioxide emissions abatement options such as installing light weight seats, 

iPad electronic flight bags, winglets, washing aircraft engines and reducing the number of engines 

used during taxiing, all offer net financial savings when considered over 20 years. Acquiring new 

fuel efficient aircraft has the biggest impact on emissions reduction. Low interest loans and longer 

loan repayment periods may incentivise airlines to acquire more fuel efficient aircraft to service 

traffic growth but other complimentary incentives and penalties are required to influence airlines to 

replace their current fleet with more fuel efficient aircraft. 

6.1 Introduction 

In 2012, 13.1 million tonnes of carbon dioxide (Mt CO2) was emitted by 14 airlines flying 21.4 

million international passengers into and out of Australia. Long and medium haul flights account 

for forty per cent of all international flights and eighty per cent of these emissions. Australia-based 

Qantas, Jetstar and Virgin Australia airlines accounted for just over a third of these emissions (Yin 

et al., 2015). According to Airbus and Boeing, passenger and cargo traffic are expected to grow at 

between five to six per cent annually from 2013 to 2033 (Airbus, 2012b; Boeing, 2012b). This 

increase in traffic will drive CO2 emissions up to 43Mt. However, by implementing a number of 

abatement strategies, emissions growth can be reduced to between 32.1Mt to 36.8Mt of CO2 where 

each strategy is a combination of a number of abatement options (Yin et al., 2016). The cost at 

which these abatement strategies are likely to be implemented was not specified; rather, Yin et al 

recommended that applying these strategies could broadly include modifying the current fleet, 
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changing current operations and renewing and adding newer more efficient aircraft to the fleet from 

2013 to 2033 (Yin et al., 2016). 

This chapter builds on Chapter 5 (and Yin et al. (2016)) and provide the marginal abatement cost 

for each abatement option. Here marginal abatement cost refers to abatement cost for each tonne of 

carbon dioxide saved estimated out to 2033 when compared against a baseline reference scenario 

where airlines retire and renew their current fleet at 25 years old. The results are presented 

graphically as Marginal Abatement Cost Curves (MACCs) that show the cost in US dollars per 

tonne of CO2 saved (US$/tCO2) and the total possible volume abated for each abatement option. 

MACCs aim to assist managers in identifying, ranking and prioritising the emission abatement 

options based on cost per tonne of carbon dioxide saved. 

Marginal abatement cost for both domestic and international aviation in other regions like European 

Union (EU) and countries such as the United Kingdom (UK) have being produced in studies by 

Holland et al. and Morris et al. (Holland et al., 2011; Morris, Rowbotham, Angus, Mann, & Pol, 

2009; Morris, Rowbotham, Morrell, et al., 2009). The objective of this chapter is to rank and 

prioritise the abatement options for each Australia-based airline, all non-Australia-based airline 

flights, and all the new aircraft that will service passenger traffic growth and determine if 

favourable loan terms will increase the likelihood that airlines will renew and acquire new aircraft. 

The results show that some of these abatement options in Chapter 5 (and Yin et al. (2016)) are not 

financially viable due to the high implementation cost and low savings in fuel and maintenance 

cost. Reducing the interest rate and extending the repayment period on loans on new aircraft can 

influence airlines in purchasing the latest most fuel efficient aircraft to service traffic growth. But 

this might not be enough to convince airlines to replace an aircraft in their fleet with one that is 

more fuel efficient.  

Our results show that if airlines implement only the financially viable abatement options where 

purchased aircraft are financed at six per cent and repaid over 12 years, CO2 emissions will be 

reduced to 33.6Mt in 2033. By decreasing interest rate to two per cent, additional abatement options 

become financially viable and CO2 emissions drop to 31.7Mt in 2033. This is lower than the 32.1Mt 

specified in Chapter 5 (and Yin et al. (2016)) which involved acquiring new aircraft to renew the 

current fleet and to service the growth. 

The chapter is organised as follows. Section 6.2 provides a review of the emissions calculator used 

in Chapter 4 (and Yin et al. (2015)), abatement options presented in Chapter 5 (and Yin et al. 

(2016)) and the associated fuel saved and marginal abatement cost. A description of how MACCs 

were produced for both Australian and non-Australian flights out to 2033. Capital cost of abatement 
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options, winglets list price, new aircraft list price, aircraft lease rates, aircraft maintenance cost, fuel 

price and inflation rate are also listed. The aircraft financing and recurring cost are also presented in 

this section. This cost data was used to produce the MACCs. Section 6.3 provides a description of 

the reference scenario used in the MACC. This section will estimate the number of aircraft and the 

average age of current fleet; and the number of aircraft servicing the growth in passenger and cargo 

to 2033. In Section 6.4, MACCs for all three Australian airlines, all non-Australian aircraft and 

aircraft acquired to transport the traffic growth are presented. Results will include sensitivity to 

interest rate and repayment period changes. Finally, conclusions are presented in Section 6.5. 

6.2 Methods 

6.2.1 Emission calculator 

In 2012, 13.1Mt of CO2 emissions was generated on Australian international routes transporting 

21.4million passengers and 1.68 MT freight (Yin et al., 2015). This was estimated using a carbon 

calculator that was based on the ICAO Carbon Calculator with modified Core Inventory of Air 

Emission (CORINAIR) fuel burn tables and does not take into consideration class of travel 

(European Environment Agency, 2006; Horton, 2010; ICAO, 2014b; Yin et al., 2015). The 

modified CORINAIR fuel burn tables are more accurate and has additional fuel burn tables for 

newer aircraft (European Environment Agency, 2006; Horton, 2010). The calculator assumes that 

aircraft will fly the great circle distance route between airports and to account for air traffic 

congestion an additional 50km to 125km was added to distance flown (ICAO, 2014b). Payload is 

made up of the weight of passengers, luggage and freight where the average passenger weight is 85 

kg with luggage of 15 kg on single isle aircraft that are used mainly on short haul international 

flight and 25 kg on twin aisle aircraft. Qantas was the largest emitter and AirAsia X and Cathay 

Pacific were two of the most CO2 efficient airlines while flying identical aircraft types to and from 

Australia in 2012 (Yin et al., 2015). Low cost carrier AirAsia X achieved a CO2 efficiency of 0.59 

grams (g) of CO2 for each kilogram (kg) of payload transported over a kilometre (km) by carrying 

more passengers whereas the traditional network carrier Cathay Pacific achieved a CO2 efficiency 

of 0.6 grams of CO2 for each kilogram of payload transported over a kilometre by carrying more 

freight on each flight (Yin et al., 2015). 

6.2.2 Abatement options 

Over the next 20 years, passenger and freight traffic in the Asia-Pacific region are expected to grow 

at an annual rate of six and five percent respectively and CO2 emissions will reach 42.9Mt by 2033 

(Airbus, 2014b; Boeing, 2014b; Yin et al., 2016). 
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Abatement options that are available for reducing CO2 emissions in the aviation-airline industry 

may include changes to aircraft operations; improvements to infrastructure; acquiring aviation 

technologies to improve efficiency; refuelling with alternative fuels and behavioural changes 

(Banbury, Behrens, Bowell, et al., 2009; Banbury, Behrens, Browell, et al., 2009; Braathen et al., 

2012; Commonwealth of Australia, 2012; L. M. Dray et al., 2009; Farries & Eyers, 2008; Green et 

al., 2005; Holland et al., 2011; Kar et al., 2010; Morris, Rowbotham, Morrell, et al., 2009; 

Sustainable Aviation, 2012). Australia based airlines have announced plans to implement or have 

implemented a number of abatement options which were specified in their Energy Efficiency 

Report to the Australian Government’s Department of Resource, Energy and Tourism (Qantas, 

2011, 2012b, 2013b; Virgin Australia, 2011, 2012b, 2013b). 

Yin et al. (2016) have shown that by implementing a limited number of abatement options that have 

minimal dependence on other stakeholders including options from the Energy Efficiency Report, 

airlines flying on Australian international routes can reduce CO2 emissions to 32.1Mt by 2033. 

These abatements options and associated fuel and weight savings are summarised in Table 6.1 and 

the amount fuel saved for each 1000lbs reduction are summarised in Table 6.2 (Airbus, 2004; 

Boeing, 2004; Yin et al., 2016): 

 

Table 6.1 Abatement options and associated fuel and weight saved 

Abatement option Fuel and weight saved 
Engine Wash 1.2% 

Reduce Engine Taxi 20% during taxi phase 

Lightweight Seats 4kg/seat 

iPad Electronic Flight Bag 14.65kg/iPad  

Lightweight IFE 3.8kg/seat 

737NG scimitar winglets 1.0 to 2.2% 

767-300 winglets 3.0 to 5.7% 

A320 Sharklets 2.5 to 3.5% 

777X 16% compared to 777-300ER 

777-300ER 17-25% compared to 747 

787-9 30% compared to 747 

787-8 20% compared to 767 

737MAX 14% compared to 737NG 

A320NEO 15% compared A320 
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Table 6.2 Fuel saved due to weight reduction 

Aircraft type Fuel saved per 1000lbs (454kg) weight reduction 
737NG 0.6% 

767 0.3% 

777-200/300 0.2% 

747-400 0.2% 

A320 0.59% 

A321 0.39% 

A330-200 0.18% 

A330-300 0.17% 

A340-300 0.21% 

A340-500 0.15% 

A340-600 0.15% 

6.2.3 Marginal Abatement Cost 

This chapter determines the marginal cost of each abatement options presented in Table 6.1. The 

marginal abatement cost will be graphically presented in Marginal Abatement Cost Curves. 

Marginal abatement cost presents the cost of additional emissions reduction associated with each 

abatement option under consideration when compared to a reference scenario. Marginal abatement 

cost for abatement option i in year y is: 

𝐴𝑃𝑃𝐴𝑖,𝑦 − 𝐴𝑃𝑃𝐴𝑟𝑟𝑟,𝑦

𝐶𝐶2𝑟𝑟𝑟,𝑦 − 𝐶𝐶2𝑖,𝑦
 

( 1 ) 

where 

costi,y is the total cost for abatement option i in year y 

costref,y is the total cost for the reference scenario in year y 

CO2i,y is the amount of CO2 generated for abatement option i in year y 

CO2ref,y is the amount of CO2 generated for the reference scenario in year y. 

A negative marginal abatement cost (equation ( 1 ) represents cost savings when compared to the 

reference scenario for each unit of CO2 emissions reduction in year y. 

To determine the cost effectiveness of abatement option i over the next N years, calculate the 

difference between the Net Present Value (NPV) for abatement option i and the NPV of the 

reference scenario divided by the amount of CO2 saved i.e. 
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𝑁𝑃𝑁𝑖 − 𝑁𝑃𝑁𝑟𝑟𝑟
𝐶𝐶2𝑟𝑟𝑟 − 𝐶𝐶2𝑖

 

( 2 ) 

where 

𝐶𝐶2𝑖 = � 𝐶𝐶2𝑖,𝑦
𝑦𝑁

𝑦=𝑦1
 

𝐶𝐶2𝑟𝑟𝑟 = � 𝐶𝐶2𝑟𝑟𝑟,𝑦

𝑦𝑁

𝑦=𝑦1
 

𝑁𝑃𝑁𝑖 = �
𝐴𝑃𝑃𝐴𝑖,𝑦

(1 + 𝑃𝐴𝑃𝐴𝑃𝑁𝐴𝑑𝐴𝐴𝑃)(𝑦−𝑦𝑜)

𝑦𝑁

𝑦=𝑦1
 

𝑁𝑃𝑁𝑟𝑟𝑟 = �
𝐴𝑃𝑃𝐴𝑟𝑟𝑟,𝑦

(1 + 𝑃𝐴𝑃𝐴𝑃𝑁𝑖𝐴𝑑𝐴𝐴𝑃)(𝑦−𝑦𝑜)

𝑦𝑁

𝑦=𝑦1
 

discountRate is the weighted average cost of capital (WACC). 

Between 2004 to 2011, the WACC was 7.7 per cent for both low cost and network carriers flying in 

the Asia Pacific region (B. Pearce, 2013). 

In this chapter, costi,y will include the cost of the acquisition which can be a lease or loan, 

maintenance, fuel, aircraft disposal and depreciation. CO2i,y is the CO2 emissions generated from 

the simulations of each abatement option using the model in Yin et al. (2016). In the model, the 

yearly discount rate is set to 7.7 per cent. 

6.2.4 Marginal Abatement Cost Curves 

MACCs have been used to graphically present marginal cost of abatement options for industries 

such as power generation, farming, to tree planting in New York City and aviation (Bockel, Sutter, 

Touchemoulin, & Jönsson, 2012; Hamamoto, 2013; Holland et al., 2011; Kovacs, Haight, Jung, 

Locke, & O'Neil-Dunne, 2013; Moran et al., 2011; Morris, Rowbotham, Angus, et al., 2009). 

There are two different graphical representations of MACCs namely as a histogram or curve. In this 

chapter, MACC histograms illustrate the impact of each CO2 emission abatement option where each 

option is ranked according to its marginal abatement cost i.e. the amount spent or saved for each 

tonne of CO2 abated. Options are ordered from left to right representing the lowest cost per unit 

CO2 save to the highest. A negative marginal abatement cost (below horizontal axis) represents 

financial savings even after spending the cost of implementing the abatement option, and vice versa 

for a positive cost (above horizontal axis) when compared to the reference scenario. The total CO2 

abated by each option is represented by the width along the horizontal axis in the MACC. 
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6.2.5 Cost of abatement options for existing aircraft fleet 

The cost of modifying the existing fleet with new equipment such as light weight aircraft seats, 

Inflight Entertainment systems (IFEs) and Electronic Flight Bags (EFBs) depends on the 

manufacturer selected. All equipment manufacturers contacted by the authors would not divulge 

their product prices and airlines were unable to disclose the actual price paid due to confidentially 

agreements. As such, the costing information used in the model was collected from press releases, 

magazine articles, trade publications and manufacturer’s websites. 

In 2012, Southwest Airlines retrofitted 372 737-700s with 143 light weight seats on each plane at a 

cost of US$110m i.e. US$2,068/seat (Maxon, 2012). Spirit airlines purchased 5,000 slim 

lightweight Acro seats at a cost of US$9.9m in 2014 i.e. US$1,980/seat (Kirby, 2014). IFEs in the 

1990 cost US$1,800 per seat but by 1999 this had increase to US$10,000 per seat (Alamdari, 1999). 

IFEs installed on Emirates aircraft can cost between US$10,000 to US$15,000 per seat (ifenews, 

2012; Trejos, 2013). Lumexis claims their IFEs are half the cost of typical IFE systems. (Aircraft 

Interior International, 2013). According to Mckenna (2013) iPad EFBs cost US$499 per unit with 

two tablets per plane. 

There are many companies that offer aircraft engine washing services and just like equipment 

manufacturers the cost is not published. According to Jet Fuel Intelligence (2009), engine washing 

cost about US$3,000 per wash with an aircraft requiring two to three washes per year. The cost will 

vary depending on the aircraft type and usage. Airlines will receive discounts on large winglet 

orders but this information is not publicly available (Aviation Partners Boeing, 2015; Wall, Norris, 

Anselmo, & Flottau, 2011). Reducing the number of engines used during taxiing will require 

additional training for pilots but no new equipment will be purchased. It’s unclear what this 

additional training cost will be or if there will be additional maintenance cost on the engines. 

Table 6.3 summaries the costs associated with the eight abatement options identified in Chapter 5 

(Yin et al. (2016)). The costs of these abatement options are adjusted at the rate of inflation over the 

simulation period of 2013 to 2033. 
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Table 6.3 Capital cost of abatement options 

Abatement option Year Cost (US$) 
Engine Wash (cost per wash) 2009 US$3,000 

Reduce Engine taxi NA US$NIL 

Lightweight seat (cost per seat) 2014 US$2,000 

Lightweight IFE (cost per seat) 2012 US$7,500 

iPad EFB (2x$500 per plane)  2012 US$1,000 

737NG Scimitar winglets (cost per plane) 2015 US$575,000 

767 winglets (cost per plane) 2015 US$2,400,000 

A320 Sharklets (cost per plane) 2011 US$950,000 

6.2.5.1 Recurring cost 

Companies tend to replace their laptop PCs more often due to the abuse they receive. The average 

life cycle of laptop is three years and desktop is four years but this can vary depending on the size 

of company and how often the systems and software are updated (Garretson, 2010). Since there are 

no guidelines on how often the iPad EFBs are to be replaced, the model assumes a three years 

renewal cycle with the cost of iPads adjusted at the rate of inflation. 

Aircraft seats and IFEs will need to be replaced due to obsolescence; and wear and tear. They are 

usually refurbished together when airlines perform major interior upgrade during major aircraft 

maintenance checks such as D-checks which occurs approximately after six years of flying 

(Lufthansa Technik, 2016). Virgin Australia refurbished their 777s after seven years whereas Air 

New Zealand 777s were refurbished at nine years (Air New Zealand, 2012a; Thomas, 2014). In the 

model, seats and IFEs are refurbished every seven years and costs are adjusted at the rate of 

inflation. 

As technology improves seats, IFEs and tablet computers may get lighter but in the model the 

weight savings are factored in only once during the initial upgrade and all subsequent refurbishment 

will not achieve any additional weight savings. Maintenance cost on seats, IFEs and iPads are not 

included in the model. 

6.2.6 Cost of new fuel efficient aircraft 

Airlines can reduce their emissions by acquiring new more fuel efficient aircraft. There are many 

ways in which an airline can acquire new aircraft. This can range from paying cash, obtaining a 

loan with some of these loans guaranteed by government credit agencies or leasing (Reuters, 2012). 

The published prices in Table 6.4 for both Airbus and Boeing aircraft have increased by 

approximately three per cent per annum (Airbus, 2013, 2014c, 2015; Boeing, 2015). Most airlines 
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and aircraft leasing companies receive discounts of up to 60 per cent on the list price based on the 

volume of their order but the actual price paid are rarely published (Michaels, 2012). 

In the model, aircraft list price is assumed to increase at a rate of three per cent annually from 2015 

to 2033. 

 

Table 6.4 Aircraft list price (in millions US$) 

Aircraft type 2013 2014 2015 
A320 $91.5m $93.9m $97.0m 

A320NEO $100.2m $102.8m $106.2m 

A330-200 $216.1m $221.7m $229.0m 

A330-300 $239.4m $245.6m $253.7m 

737-800 $90.5m $93.3m $96.0m 

737MAX8  $106.9m $110.0m 

787-8 $211.8m $218.3m $224.6m 

787-9  $257.1m $264.6m 

777-300ER $320.2m $330.0m $339.6m 

777-8  $360.5m $371.0m 

777-9  $388.7m $400.0m 

6.2.6.1 Financing aircraft acquisition 

Airlines can finance aircraft purchases from a manufacturer with a fixed or variable interest loan 

that covers between 70 and 90 per cent of the cost with a mortgage style amortization of up to 12 

years (Boeing, 2007; Reuters, 2012). The Commercial Interest Reference Rates (CIRRs) for civil 

aircraft (in US dollar) is between 1.6 and 3.9 per cent since 2012 for repayment period of less than 

15 years (OECD, 2016). The CIRRs are the export credit agencies such as the Export-Import Bank 

of the United States official lending rates but the actual interest rates paid by each airline will vary 

depending on the repayment terms (Export-import Bank of the United States, 2016). 

In the model, repayments are made yearly and each repayment is: 

𝐴𝑃𝑝𝐴𝑃𝑁𝑃𝑖𝐴 =  
𝑝𝐴𝐴𝑖𝐴𝐴𝑝𝐴𝑃0  ×  𝐴𝑖𝐴𝑃𝐴𝑃𝑃𝐴𝑑𝐴𝐴𝑃
1 − (1 + 𝐴𝑖𝐴𝑃𝐴𝑃𝑃𝐴𝑑𝐴𝐴𝑃)−𝑁  

( 3 ) 

where 

principle0 is the initial amount borrowed 
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interestRate is the yearly interest rate paid on the loan 

N is total number of yearly repayments 

The amount still owed after n (≤N) payments is: 

𝑝𝐴𝐴𝑖𝐴𝐴𝑝𝐴𝑃𝑛 = 𝑝𝐴𝐴𝑖𝐴𝐴𝑝𝐴𝑃0  ×  (1 + 𝐴𝑖𝐴𝑃𝐴𝑃𝑃𝐴𝑑𝐴𝐴𝑃)𝑛 − 𝐴𝑃𝑝𝐴𝑃𝑁𝑃𝑖𝐴 ×  
(1 + 𝐴𝑖𝐴𝑃𝐴𝑃𝑃𝐴𝑑𝐴𝐴𝑃)𝑛 − 1

𝐴𝑖𝐴𝑃𝐴𝑃𝑃𝐴𝑑𝐴𝐴𝑃
 

( 4 ) 

where 

n is the number of repayments made. 

 

Most airlines depreciates the value of their aircraft using a straight-line depreciation method over 15 

to 25 years with residue values between zero to 20 per cent (KPMG, 2007). The amount depreciated 

in each year: 

𝑃𝑃𝐴𝐴𝑃𝑃𝐷𝑃𝑝𝐴𝑃𝐴𝐴𝐴𝐴𝐴𝑃𝑖 =  
𝑁𝐴𝐴𝑘𝑃𝐴𝑁𝐴𝑃𝑁𝑃0 − 𝐴𝑃𝑃𝐴𝑃𝑁𝐴𝑃% ×  𝑁𝐴𝐴𝑘𝑃𝐴𝑁𝐴𝑃𝑁𝑃0

𝑃𝑃𝑝𝐴𝑃𝐴𝐴𝐴𝐴𝐴𝑃𝑖𝑃𝑃𝐴𝐴𝑃𝑃
 

( 5 ) 

The aircraft residual value i years after purchase: 

𝐴𝑃𝑃𝐴𝑃𝑁𝐴𝑃𝑁𝐴𝑃𝑁𝑃𝑖 = 𝑁𝐴𝐴𝑘𝑃𝐴𝑁𝐴𝑃𝑁𝑃0 − 𝑃𝑃𝐴𝐴𝑃𝑃𝐷𝑃𝑝𝐴𝑃𝐴𝐴𝐴𝐴𝐴𝑃𝑖 ×  𝐴 

( 6 ) 

where 

marketValue0 is the market value of the aircraft at the start of the loan  

residualValuei is the residual value after i years of depreciation 

depreciationPeriod is length of time that the aircraft will be depreciated 

residual% is the % of the initial market value remaining at the end of the depreciation period 

 

In 2012, airlines paid from just under one to eight per cent annually (summarised in Table 6.5) on 

loans on aircraft purchase (AirAsia, 2012; Delta Air Lines, 2012; Hawaiian Airlines, 2012; Virgin 

Australia, 2012a). 
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Table 6.5 Airline interest rate paid 

Airline Annual Interest Rates (%) Maturity period 
Delta 0.81 to 6.76 2013-2033 

Virgin Australia 0.79 to 6.32 2013-2024 

Hawaiian 5.31 to 8 2013-2024 

AirAsia X 6.16 to 6.65 2013-2022 

The model assumes that airlines puts down 10 per cent initial payment on new aircraft acquisitions, 

borrow the remaining 90 per cent of the aircraft’s (market) value, with repayments made yearly at a 

fixed interest rate. Airlines will also recoup the full residual value when aircraft is disposed. The 

aircraft’s market value is straight-line depreciated over a period of 25 years with a final residual 

value of 10 per cent. 

This chapter will present results where interest rate is set to two, four, six and eight per cent repaid 

over 12 and 15 years. 

6.2.6.2 Leasing aircraft 

A lease gives an airline exclusive use of an aircraft over a period of time for a specified payment. 

Lease terms will usually include a security deposit, repayment that varies with aircraft supply and 

demand, age and hours of operation, maintenance reserve that is dependent on hours of operations 

(Groenenboom et al., 2016). Airlines may also be responsible for the maintenance of their leased 

aircraft. Leases repayments can be made monthly, quarterly, annually or some other basis over the 

lease period. The repayment amount can be fixed or variable during the lease period with most 

leases in US dollars (Groenenboom et al., 2016). The lease period for newer aircraft can range from 

five to 10 years whereas the lease period for older aircraft is between four to five years. Lease rate 

factor (LRF) is the lease rate divide by the aircraft value and can range from 9.6 to 18 per cent per 

annum. Older aircraft are usually on higher LRF but shorter terms whereas newer aircraft are on 

lower LRF but longer terms (Timotijevic, 2013). By comparing the market value of each aircraft 

type to the list price, Schonland (2016) determined that each aircraft type were subject to at least 45 

per cent discount. According to Ascend (2013, 2014a, 2014b, 2015) discount on new aircraft can be 

as high as 60 per cent with LRF of between nine and 12 per cent (Table 6.6). 
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Table 6.6 List price, market value and lease rates 

Aircraft Year List price 
(Million$) 

Market value 
for newest 
(Million$) 

Market 
value / 
List price 
(%) 

Discount 
(%) 

Lease rate 
per annum 
for newest 
(Million$) 

LRF=lease 
rate /market 
value (%) 

A320 
2013 91.5m 40.5m 44.26 55.74 3.84m 9.48 
2014 93.9m 43m 45.79 54.21 4.32m 10.05 
2015 97m 44m 45.36 54.64 4.68m 10.64 

A330-
200 

2013 216.1m 87m 40.26 59.74 10.2m 11.72 
2014 221.7m 93.5m 42.17 57.83 10.32m 11.04 
2015 229m 93.5m 40.83 59.17 9.84m 10.52 

A330-
300 

2013 239.4m 91m 38.01 61.99 10.8m 11.87 
2014 245.6m 104m 42.34 57.66 10.92m 10.5 
2015 253.7m 105.m 41.39 58.61 11.04m 10.51 

737-800 
2013 90.5m 46m 50.83 49.17 4.32m 9.39 
2014 93.3 48m 51.45 49.55 4.8m 10 
2015 96m 48.3m 50.3 49.7 4.92m 10.19 

777-
300ER 

2013 320.2m 162m 50.59 49.41 18.6m 11.48 
2014 330m 166m 50.3 49.7 19.2m 11.57 
2015 339.6m 167m 49.17 50.83 18.6m 11.14 

787-8 2014 218.3m 115.5m 52.9 47.1 13.2m 11.43 
2015 224.6m 120m 53.43 46.57 13.2m 11 

In the model, the LRF is 10 per cent of the market value. The market value of a new aircraft is set at 

the discounted list price which is straight line depreciated over 25 years with a final 10% residual 

value. For current generation of aircraft such as 737NGs, A320s, A330s and 777-300ERs the list 

price is discounted by 50 per cent but for the next generation of aircraft such as 737MAXs, 

A320NEOs, 787s and 777Xs, the list price is discounted by 40 per cent (Reuters, 2012). The lease 

period is five years with lease rates recalculated at the end of the lease and airlines are responsible 

for the maintenance. Other lease costs such as a security deposit and maintenance reserve are not 

included in the simulation. 

6.2.7 Maintenance cost of aircraft 

According to International Air Transport Association (IATA), flying newer more fuel efficient 

aircraft lowers maintenance costs (M. Smyth & Pearce, 2006). The total maintenance costs of US 

airlines which include airframes, engines and overhead costs, increased at a rate of 17.6 per cent per 

annum during the first six years of a new aircraft and 3.5 per cent annually for aircraft between six 

and 12 years old (Dixon, 2006). The large increase in maintenance cost in the first six years was due 

to aircraft coming out of the new aircraft warranty and the airlines having to pay for all subsequent 

maintenance. For aircraft older than 12 years (i.e. after 2nd D-check) their results show a 0.7 per 

cent per annum growth i.e. as the aircraft ages, maintenance cost does not increase rapidly (Dixon, 
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2006). The age of the aircraft in their study were up to 25 years with US airlines disposing their 

aircraft at around 25 years. This closely matches the findings in the white paper published by 

Forsberg (2015) which states that the average retirement age of all commercial jets are around 25.7 

years. 

Maintenance cost of 787s are expected to be 15 per cent lower than 767s but aircraft such as the 

737MAXs, A320NEOs and 777Xs are expected to have maintenance cost similar to the superseded 

737NGs, A320s and 777-200LR/300ERs respectively (Forsberg & Mollan, 2013; Gubisch, 2013; 

Qiu, 2005). According to IATA, the average maintenance cost of 2,834 aircraft flown by 23 airlines 

in 2012 was US$3.26 million per aircraft (Markou & Cros, 2013). Table 6.7 summarises the annual 

maintenance cost for each aircraft type in 2012 (dollars). 

In the model, maintenance costs, which are in 2012 dollars, are adjusted for inflation over the 

simulation period of 2013 to 2033. 

 

Table 6.7 Maintenance cost in 2012 

Aircraft Aircraft 
numbers 

Average 
age (years) 

Maintenance 
cost (Billion$) 

Maintenance cost per 
Aircraft (Million$) 

A320 Family 596 7.3 $1.51bn $2.5m=1.51bn/596 

A330 171 5.9 $0.78bn $4.6m=0.78bn/171 

777 240 7.8 $1.49bn $6.2m=1.49bn/240 

737NG 510 6.8 $0.86bn $1.7m=0.86bn/510 

747-400 129 15.4 $0.89bn $6.9m=0.89bn/129 

767 233 17.6 $0.86bn $3.7m=0.86bn/233 

6.2.8 Fuel cost 

In 2015, fuel represented 27 per cent of airline operating costs and has stayed at approximately 30 

per cent since 2006 (International Air Transport Association (IATA), 2016). Table 6.8 summarises 

the cost of jet fuel from 2013 to 2015 and the predicted cost of jet fuel in 2013 dollars for the next 

20 years (U.S. Energy Information Administration, 2015a, 2015b). Each tonne of fuel is 

approximately 328 US gallons. 

In the model, costs of fuel which are in 2013 dollars are adjusted for inflation over the simulation 

period of 2013 to 2033. 

Table 6.8 Jet fuel cost 

Year 2013 2014 2015 2020 2025 2030 2035 
Fuel cost in 2013 US$/US gal $2.92 $2.69 $1.52 $2.17 $2.47 $2.88 $3.31 
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6.2.9 Inflation rate 

The US inflation rate is forecasted to be between two and 2.5 per cent up to 2060 (Knoema, 2015; 

U.S. Department of Labor, 2015). 

In the model, inflation is assumed to be increasing at a constant yearly rate of 2.25 per cent over the 

simulation period of 2013 to 2033. 

6.3 Scenarios definition 

6.3.1 Modify/improve current fleet 

In Scenarios 2 to 4 of Yin et al. (2016) the growth in emissions from 2013 to 2033 was simulated as 

a combination of emissions from airlines servicing routes from 2012 and from new aircraft acquired 

to service the passenger and cargo growth. 

Three strategies for modifying and improving the 2012 fleet were presented in Yin et al. (2016). 

Eight abatement options in Strategy 1 were applied to as many aircraft in 2012 fleet as possible, 

which resulted in just over three per cent emissions reduction by 2033. In Strategy 3, the current 

fleet of 737NGs, A320s, A330s, 767s, 747-400s, 777-200LRs and 777-300ERs were renewed, 

which resulted in over 15 per cent CO2 reduction by 2033. Strategy 2 combines Strategy 1 with 

renewing the current fleet of 747-400s with 777-300ERs and 787-9s and resulted in more than 

seven per cent reduction in CO2 emissions by 2033. 

In the model, the reference scenario will renew the 2012 fleet of 737NGs with 737MAXs, A320s 

with A320NEOs, A330s/767s with 787-8s, 777-200LR/300ERs with 777Xs, Qantas 747s with 787-

9s and non-Australian 747s with 777-300ERs when the current aircraft are 25 years old (Table 6.9). 

The cost of additional CO2 reduction for each abatement option (from Strategy 1 and aircraft 

renewal Strategy 3) will be compared to this reference scenario. The year these abatement options 

are implemented are also specified in Strategy 1 and Strategy 3 and are summarised in Table 6.9. 

MACCs for each Australian airline and for the entire non-Australian-based international fleet are 

produced. 
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Table 6.9 Modify/improve current fleet 

Reference Scenario Abatement options 
Renew 737NG @ 25 years old with 
737MAX. Renew A320 @ 25 years old 
with A320NEO. Renew A330/767 @ 25 
years old with 787-8. Renew 777-
200LR/300ER @ 25 years old with 777X. 
Renew Qantas 747 @ 25 years old with 
787-9. Renew non Australian 747 @ 25 
years old with 777-300ER 

Renew 737NG with 737MAX in 2018. 

RenewA320 with A320NEO in 2018. 
Renew A330/767 with 787-8 in 2014. 
Renew 777-200LR/300ER with 777X in 
2021. 
Renew Qantas 747 with 787-9 in 2017. 
Renew non Australian 747 747 to 777-
300ER in 2014. 
Wash Engines three times every year. 
Reduce Number of Engines used during 
Taxi. 
Install &renew Lightweight Seats every 7 
years. 
Install and renew iPad Electronic Flight 
Bag every 3 year. 
Install &renew Lightweight IFE every 7 
years. 
Install 737NG scimitar winglets in 2013. 
Install 767-300 winglets in 2013. 
Install A320 Sharklets in 2014. 

6.3.1.1 Aircraft number and age of current fleet 

The cost of each abatement option (in Table 6.9) will depend on the number of aircraft affected, 

type and age of aircraft, distance flown, and the year the abatement option was implemented. Since 

the study ends in 2033, the full abatement potential might only be realised beyond the end of the 

study period. The total number of aircraft, number of seats, number of 737NGs, A320s, 767s, 

A330s, 777-200LR/300ERs and 747s can be estimated from the 2012 flight schedule and airline’s 

annual reports.  

IATA published the daily utilisation of each aircraft family for 23 airlines. The flight hours per 

flight are short when compared to the length and flight times of Australian international flights. 

According to IATA, 777 flights are on average 5.3 hours long with daily utilization of 11.1 hours. 

This equates to just over two flights per day. The flight times for A320s and 737s are also shorter at 

1.9 and 2.3 hours respectively with daily utilization at 8.5 hours. This equates to just over four 

flights per day. The daily utilization for long and medium haul aircraft are all in excesses of 10 
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hours and only 8.5 hours for short haul and this can be attributed to the multiple take offs, landings 

and turnarounds per day. (Markou & Cros, 2013). 

Virgin Australia, Emirates and Etihad fly 777s in excess of 12 hours on their long haul Australian 

international flights. Since long haul flights are over 12 hours long, in the model airlines can only 

operate one long haul flight per day. A320s and 737s on Australian international flights are at least 

three hours long and are mainly flown between Australia and New Zealand. For example a Qantas 

737-800 flying between Brisbane and Auckland can perform two inbound and two outbound flights 

in one day. Depending on the length of the medium haul route, a 767 or A330 can perform one 

medium haul flight to Honolulu but can fly from Australia to Southeast Asia and back in one day. 

In 2012, average short, medium and long haul Australian international flights are approximately 

2,944km, 6,847km and 12,210km long and the model assumes that aircraft flown on short, medium 

and long haul routes can perform four, two and one flight per day respectively. 

Non-Australia-based airlines deploy only a fraction of their entire fleet for flights to and from 

Australia. In this thesis, MACCs are not produced for each individual non-Australia-based airline 

flying to and from Australia but grouped together. In 2012, the types and numbers of aircraft 

deployed and their average age are presented in Table 6.10 (Airfleets, 2016). The average age of 

A340s, A380s and 777-200/200ER/300s were not included in Table 6.10 since they will not be 

replaced by newer aircraft in this study. 

 

Table 6.10 Non-Australia-based fleet numbers and age in 2012 
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Total number of aircraft (round) 7 25 5 6 1 5 2 5 12 68 

Average age in years  6 7   5 15 16  3  

For Australia-based airlines, additional information from their annual reports is used to determine 

the number of aircraft in their international fleet. Qantas has a fleet of A380s and 747s, which are 

mainly used on their long and medium haul international flights. Qantas utilises 20 767s, 10 A330-

200s, 10 A330-300s and 66 737s on both medium and short haul international and domestic routes. 

Jetstar flies A330-200s on their medium haul international flights to Japan, Hawaii and Indonesia 

and almost 100 A320s and A321s on both domestic and international short haul routes (Qantas, 
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2013a). Virgin Australia flies only 777-300ERs on long haul international routes to USA and UAE 

and 737s on both domestic and international short haul to New Zealand and Indonesia (Virgin 

Australia, 2013a). 

Focusing on the 2012, international flights analysed in Yin et al. (2015), only a subset of Qantas 

737s, 767s and A330s, Jetstar A320s and Virgin 737s are included in this study. Table 6.11 shows 

the number of aircraft for each Australia-based airline and the average age of A320s, A321s, A330s, 

737s, 747s, and 777s (Airfleets, 2016). The average age of Qantas A380 was not included in Table 

6.11 since they will not be replaced by newer aircraft in this study. 

 

Table 6.11 Australia-based airline fleet numbers & age in 2012 
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Qantas 
Number of aircraft   3 6 12 8 10 6 2  47 
Average Age in 
years   3 8  2 19 9 19   

Virgin 
Australia 

Number of aircraft      11    5 16 
Average Age in 
years      6    3  

Jetstar 
Number of aircraft 9 2 10        21 
Average Age in 
years 4 6 5         

6.3.2 Aircraft acquisition for growth 

Two aircraft acquisition strategies to handle the growth in passenger and freight traffic were also 

presented in Yin et al. (2016). In the first, 777-300ERs, A330s and even numbers of 737NGs and 

A320s were acquired to service the growth in long, medium and short haul passengers and cargo. 

These aircraft were also modified with additional emissions abatements equipment (such as 

lightweight seats, IFEs). In the second more aggressive acquisition strategy, 777-300ERs, A330s, 

737NGs and A320s were acquired before switching to 777Xs, 787s, 737MAXs and A320NEOs for 

long, medium and short haul growth. 

In the model, the reference aircraft acquisition scenario is similar to the first aircraft acquisition 

strategy (in Yin et al. (2016)) where 777-300ERs, A330s, 737NGs and A320s were acquired to 

service long, medium and short haul traffic growth from 2013 to 2033. This reference scenario 

assumes that airlines will purchase 777-300ERs till 2021, A330s, 737NGs and A320s till 2018 
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before switching to leases since these aircraft will be out of production (Table 6.12). The year of 

manufacture for all leased 777-300ERs are 2020, A330s, A320s and 737NGs are 2017.  

The cost of additional CO2 reduction for each abatement options (in Table 6.12) such as acquiring 

new aircraft, reducing number of engines used in taxiing, performing engine washes, installing iPad 

EFBs, upgrading to light weight seats and IFEs will be compared against this reference aircraft 

acquisition scenario. 

 

Table 6.12 Aircraft acquisition for growth 

Reference aircraft acquisition scenario Abatement options 
Acquire 737NG and A320 for Short haul 
routes (Finance till 2017, lease from 2018). 
Acquire A330 for Medium Haul routes 
(Finance till 2017 and lease from 2018). 
Acquire 777-300ER for Long haul routes 
(Finance till 2020 and lease from 2021) 

Acquire 737NG and A320 for Short haul 
routes till 2017, then 737MAX and 
A320NEO from 2018. 

Acquire A330 for Medium Haul routes till 
2013 then 787-8 from 2014. 

Acquire 777-300ER for Long haul routes 
till 2020 then 777X from 2021. 

Wash Engines three times every year. 

Reduce Number of Engines used during 
Taxi. 

Install &renew Lightweight Seats every 7 
years. 

Install and renew iPad Electronic Flight 
Bag every 3 year. 

Install &renew Lightweight IFE every 7 
years. 

6.3.2.1 Number of additional aircraft 

The most popular aircraft used in 2012 were the 777-300ERs for long haul flights, A330s for 

medium haul flights and a combination of A320s and 737NGs for short haul flights (Yin et al., 

2015). These long, medium and short haul flights had approximately 309, 260 and 163 passengers 

on each flight respectively (Yin et al., 2015). Figure 6.1 show the number of additional short, 

medium and long haul aircraft required to service the growth in passenger and freight. 
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Figure 6.1 Number of additional aircraft to service traffic growth 

6.4 Results and Discussions 

6.4.1 Modify and/or improve 2012 fleet 

The reference scenario (Table 6.9) used in the model assumes that airlines will renew their 2012 

fleet of aircraft when they are 25 years old. The MACCs (Figure 6.2, Figure 6.3, Figure 6.4 and 

Figure 6.5) for Virgin Australia, Jetstar, Qantas, and non-Australian fleet shows marginal cost and 

CO2 abatement potential of these abatement options (Table 6.9) relative to this reference scenario 

between 2013 and 2033. The MACCs indicate that the cost of fuel saved by reducing number of 

engines used during taxiing, washing aircraft engines three times a year and installing iPad based 

EFB more than outweigh the cost of implementing these abatement options for all airlines. Whereas 

the cost of fuel saved by installing lightweight IFEs over the next 20 years cannot justify the high 

cost of installing and refurbishing every seven years for any airlines. Airlines install IFEs for many 

reasons other than just reducing fuel used and since some seats are closely integrated with IFEs 

there might be some cost advantages in installing them together that have not being modelled (D. 

Owen, 2014). 

Whether winglets are retrofitted on 767s, 737s and A320s will depend on the age of the aircraft, 

number of flights and if the cost of installation can be recouped before the aircraft’s retirement. 

Qantas 767s are on average 19 years old and are used on a limited number of international flights. 

The cost of fuel saved from installing winglets on these 767s prior to retirement in six years’ time 

will not offset the cost of installation. On the other hand, 767s flown by non-Australian airlines are 

on average 16 years old and the cost of installing winglets will be recouped from the cost of fuel 

saved over the nine years prior to aircraft’s retirement. Virgin Australia 737NGs, Qantas 737NGs 
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and Jetstar A320s are between two and six years old in 2012 and the cost of retrofitting all with 737 

scimitar winglets and A320 Sharklets will be recouped and this is also true of non-Australia-based 

A320s used mainly by Air New Zealand but not so for the small number of older non-Australian 

737NGs. 

 
Figure 6.2 MACC for Virgin Australia (2013-2033) 

 
Figure 6.3 MACC for Jetstar (2013-2033) 
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Figure 6.4 MACC for Qantas (2013-2033) 

 
Figure 6.5 MACC for Non-Australia-airlines (2013-2033) 

Renewing the fleet with newer more fuel efficient aircraft will reap the most CO2 emissions 

reduction (Table 6.13, Table 6.16 and Table 6.19). The model assumed that airlines would finance 

the purchase of the new aircraft and airlines will pay up to eight per cent per annum in interest, 

which is up to four per cent higher than the Organisation for Economic Cooperation and 

Development (OECD) CIRR for aviation. Table 6.14, Table 6.15, Table 6.17, Table 6.18, Table 

6.20 and Table 6.21 show the change in cost of abating one tonne of CO2 as interest rates and 

repayment terms are varied. Airlines will have to weigh the cost of acquiring the new aircraft, 

residual value and amount still owing on the superseded aircraft against fuel cost saved and 

reduction in maintenance cost. The results show that there is no financial advantage for Virgin 
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Australia to replace their young international fleet of 737NGs and 777-300ERs (Table 6.14 and 

Table 6.15), whereas Qantas should renew 747-400s in 2017 (Table 6.20 and Table 6.21). Jetstar’s 

fleet of A330-200s and Qantas’s mixed fleet of A330-200s, A330-300s and older 767s should be 

replaced by 787-8s in 2014. As expected, marginal abatement cost for each option decreased as 

interest rates are decreased (Table 6.17, Table 6.18, Table 6.20 and Table 6.21). As the repayment 

period is increased from 12 years to 15 years, the expectation is that these abatement options will be 

cheaper. However, this is not always the case; for example by increasing the repayment term to 15 

years the NPV of acquiring 787-9 to replace Qantas 747s increased when compared to a repayment 

term of 12 years (Table 6.20 and Table 6.21). This is because most of the Qantas 747s are more 

than 15 years old and assumed to be paid for. 

 

Table 6.13 Virgin Australia – CO2 Saved 

 Renew 777-300ER with 777X Renew 737NG with 737MAX 
CO2 saved(kt) 1,186.7 636.6 
 

Table 6.14 Virgin Australia – Marginal Abatement Cost (US$/tCO2) 12 annual repayments 

Interest rate Renew 777-300ER with 777X Renew 737NG with 737MAX 
2% $34.98 $63.88 
4% $82.02 $125.02 
6% $131.86 $189.79 
8% $184.33 $257.98 
 

Table 6.15 Virgin Australia – Marginal Abatement Cost (US$/tCO2) 15 annual repayments 

Interest rate Renew 777-300ER with 777X Renew 737NG with 737MAX 
2% -$21.73 $49.91 
4% $23.16 $117.45 
6% $70.78 $189.21 
8% $120.87 $264.80 
 

Table 6.16 Jetstar – CO2 Saved 

 Renew A330 with 787-8 Renew A320 with A320NEO 
CO2 saved(kt) 1,224.8 489.4 
 

Table 6.17 Jetstar – Marginal Abatement Cost (US$/tCO2) 12 annual repayments 

Interest rate Renew A330 with 787-8 Renew A320 with A320NEO 
2% -$260.27 $43.42 
4% -$200.80 $121.51 
6% -$139.37 $203.78 
8% -$76.18 $289.93 
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Table 6.18 Jetstar - Marginal Abatement Cost (US$/tCO2) 15 annual repayments 

Interest rate Renew A330 with 787-8 Renew A320 with A320NEO 
2% -$264.26 $27.28 
4% -$203.24 $111.20 
6% -$140.39 $199.67 
8% -$76.02 $292.19 
 

Table 6.19 Qantas – CO2 Saved 

 Renew 747 with 787-9 Renew A330, 767 with 
787-8 

Renew 737NG with 
737MAX 

CO2 saved(kt) 2,361.1 1,721.4 561.4 
 

Table 6.20 Qantas – Marginal Abatement Cost (US$/tCO2) 12 annual repayments 

Interest rate Renew 747 with 787-9 Renew A330, 767 with 
787-8 

Renew 737NG with 
737MAX 

2% -$74.05 -$240.22 $12.51 
4% -$42.52 -$203.10 $59.73 
6% -$9.07 -$164.46 $108.53 
8% $26.20 -$124.43 $160.10 
 

Table 6.21 Qantas– Marginal Abatement Cost (US$/tCO2) 15 annual repayments 

Interest rate Renew 747 with 787-9 Renew A330, 767 with 
787-8 

Renew 737NG with 
737MAX 

2% -$64.17 -$235.69 $4.93 
4% -$24.85 -$196.33 $54.72 
6% $17.25 -$155.50 $106.67 
8% $61.94 -$113.42 $160.51 
 

Table 6.22 shows the amount of CO2 saved for renewing some of the non-Australian airlines’ fleet 

that served Australian routes in 2012. The cost of upgrading non-Australian 747s that are on 

average 15 years old to more efficient 777-300ERs cannot be recouped due to limited number of 

flights flown by these 747s. The marginal abatement cost did not improve by decreasing interest 

rates and increasing the repayment terms since 747s were paid for (Table 6.23 and Table 6.24). On 

the other hand replacing 747s with 777-300ERs and then all 777-200LR/300ERs with 777Xs in 

2021 appears to be the better economic option if the changeover costs can be kept low through low 

interest rate finance, longer repayment term and discounts on aircraft list price. 
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Table 6.22 Non-Australian airlines – CO2 Saved 

 Renew 747 
with 777-
300ER 

Renew 747 
with 777-
300ER and all 
777-200LR/ 
300ER with 
777X 

Renew A330, 
767 with 787-
8 

Renew A320 
with 
A320NEO 

Renew 737NG 
with 737MAX 

CO2 Saved 
(kt) 

687.0 5,411.4 9,799.9 558.5 121.4 

 

Table 6.23 Non-Australian airlines – Marginal Abatement Cost (US$/tCO2) 12 annual repayments 

Interest rate Renew 747 
with 777-
300ER 

Renew 747 
with 777-
300ER and all 
777-200LR/ 
300ER with 
777X 

Renew A330, 
767 with 787-
8 

Renew A320 
with 
A320NEO 

Renew 737NG 
with 737MAX 

2% $2481.65 -$36.79 -$175.74 $7.86 $147.00 
4% $2670.19 -$1.27 -$156.31 $50.66 $177.65 
6% $2870.24 $36.17 -$136.03 $95.99 $210.03 
8% $3081.19 $75.41 -$114.97 $143.71 $244.04 
 

Table 6.24 Non-Australian airlines – Marginal Abatement Cost (US$/tCO2) 15 annual repayments 

Interest rate Renew 747 
with 777-
300ER 

Renew 747 
with 777-
300ER and all 
777-200LR/ 
300ER with 
777X 

Renew A330, 
767 with 787-
8 

Renew A320 
with 
A320NEO 

Renew 737NG 
with 737MAX 

2% $2527.01 -$70.59 -$174.02 -$1.50 $139.11 
4% $2765.50 -$35.77 -$153.36 $45.66 $172.35 
6% $3021.82 $0.99 -$131.87 $95.74 $207.54 
8% $3294.78 $39.50 -$109.66 $148.47 $244.49 
 

6.4.2 Acquiring new aircraft to handle Passenger and Cargo growth 

Figure 6.6 shows the additional cost and CO2 reduction potential of each additional abatement 

option (in Table 6.12) relative to the reference aircraft acquisition scenario (in Table 6.12). It shows 

that the lightweight IFEs are not a financially viable option due to the high cost whereas reduced 

engine taxiing, engine washing, iPad EFBs and light weight seats should be considered. In the 

“aggressive” aircraft acquisition strategy, airlines acquire the most popular aircraft currently flown 

before switching to the next generation of long, medium and short haul aircraft. Table 6.25 shows 

the amount of CO2 saved when applying this “aggressive” aircraft acquisition strategy. This strategy 



K-s.Yin Page 119 

becomes more financially viable as interest rates decreased or repayment periods increased from 12 

years (Table 6.26) to 15 years (Table 6.27) on the assumption that airlines are receiving discounts of 

40 to 50 per cent on aircraft list price and financing 90 per cent of the purchase. Since the analysis 

ends in 2033 and A320NEOs/737MAXs are acquired in 2018 and 777Xs in 2021, the full 

abatement potential of these aircraft are not realised hence the higher cost for each ton of CO2 

abated when compared to 787s which are acquired in 2014. 

 
Figure 6.6 MACC for Additional aircraft for Traffic Growth (2013-2033) 

 

Table 6.25 Acquire additional aircraft for Traffic growth - CO2 Saved 

 Acquire 777-
300ER & 777X 

Acquire A330 & 
787 

Acquire 737NG 
& 737MAX 

Acquire A320 & 
A320NEO 

CO2 saved(kt) 7,305.3 18,463.6 3,094.1 3,081.4 

 

Table 6.26 Acquire additional aircraft for Traffic growth - Marginal Abatement Cost (US$/tCO2) 12 annual 

repayments 

Interest rate Acquire 777-300ER 
& 777X 

Acquire A330 & 
787 

Acquire 737NG 
& 737MAX 

Acquire A320 
& A320NEO 

2% -$2.26 -$113.19 -$39.94 -$62.30 
4% $36.28 -$96.27 -$17.78 -$40.83 
6% $77.18 -$78.32 $5.73 -$18.04 
8% $120.30 -$59.39 $30.52 $5.99 
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Table 6.27 Acquire additional aircraft for Traffic growth - Marginal Abatement Cost (US$/tCO2) 15 annual 

repayments 

Interest rate Acquire 777-300ER 
& 777X 

Acquire A330 & 
787 

Acquire 737NG 
& 737MAX 

Acquire A320 
& A320NEO 

2% -$56.05 -$133.35 -$67.14 -$88.68 
4% -$17.11 -$115.72 -$44.19 -$66.42 
6% $24.75 -$96.77 -$19.51 -$42.50 
8% $69.31 -$76.60 $6.77 -$17.03 

 

If airlines implemented all the financially viable abatement options where purchased aircraft are 

financed on six per cent interest repaid over 12 years then CO2 emissions would be 33.6Mt by 2033 

(Supplemental data Table 6.31) with emissions increasing at an average rate of 4.8 per cent 

annually from 2013 to 2033. By decreasing interest rate to two per cent, acquiring the latest 777X 

and 737 MAX (Table 6.26 and Table 6.27) to transport the growth in long and short haul passenger 

traffic became financially viable and emissions drop to 31.7Mt of CO2 in 2033 (Supplemental data 

Table 6.31) with emissions increasing at 4.5 per cent annually. This is lower than the 32.1Mt in Yin 

et al. (2016) which was achieved by only acquiring new fuel efficient aircraft to renew the current 

fleet and service the passenger and cargo growth. The slight decrease was achieved by also 

implementing other complimentary abatement options such as performing additional engine 

washing, reducing engine used during taxiing, installing iPad EFBs and light weight seats. 

The emission drop due to a drop in interest rate to 2 per cent was not uniformly distributed to all 

airlines. Jetstar saw only a 2 per cent drop in emissions in 2033 since it does not fly long haul and 

the model assumes all growth in short haul flights will be evenly split between A320s and 737s 

whereas Virgin and Qantas saw a drop of, 6.4 per cent and 4.6 per cent in CO2 emission 

respectively (Supplemental data Table 6.28, Table 6.29 and Table 6.30). In 2012, both Qantas and 

Virgin Australia were operating at a CO2 efficiency of 0.73g/kg-km while the average for all 

airlines was 0.71g/kg-km. By 2033 Qantas had improved its efficiency to match the average in 2033 

but Virgin Australia did not (Supplemental data Table 6.28, Table 6.29 and Table 6.30). Virgin 

Australia has very few long haul flights and acquiring 777X in 2021 will improve its CO2 profile 

but there is not enough flight to make its CO2 efficiency match the average by 2033. 

6.5 Conclusions 

Airlines can reduce CO2 emissions by retrofitting their current fleet with CO2 reducing 

technologies, by changing their operations, renewing their current fleet and by acquiring more fuel 

efficient aircraft. One of the many factors that will determine if an airline implements certain 

emission abatement options will be cost of acquisition, installation, maintenance and fuel over the 
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remaining useful life of each aircraft. Due to the high cost of new aircraft, most airlines will either 

lease or finance the cost of their purchase with the payment terms and interest rates dependent on 

each airline’s specific circumstances. Marginal abatement cost is the additional cost of each 

abatement option relative to a reference scenario. In the model, the reference scenario assumes that 

airlines will keep an aircraft in its fleet for 25 years before renewing. MACCs are used to 

graphically indicate the potential impact of each CO2 emission abatement option with each option 

ranked according to the amount spent/saved per tonne of CO2 saved. 

CO2 emissions from 2013 to 2033 were studied as a combination of emissions from airlines flying 

the 2012 schedule and also from a fleet of new aircraft acquired to transport the six per cent and 

five per cent growth in passengers and cargo respectively. MACCs were produced for all three 

Australia-based airlines and non-Australia-based aircraft flying into and out of Australia. A MACC 

was also produced for the fleet of new long, medium and short haul aircraft that will service the 

traffic growth. 

The MACCs show that installing lightweight IFEs are not a financially viable emissions abatement 

option whereas lightweight seats are (except for Jetstar). Seats and IFEs are tightly integrated 

together and are seen by airlines as a means to differentiate their product from their competitor and 

emission reduction might not be the only requirement in deciding if they are installed. Reducing the 

number of engines used during taxiing, washing the engines three times every year and installing 

iPad (tablet) based EFBs are emissions and financially saving options for both the current fleet and 

the fleet of new aircraft even after outlaying the implementation cost. Whether to retrofit winglets to 

767s, A320s and 737NGs will depend on the aircraft age and the amount of flying that airline will 

do with these modified aircraft. For Australia-based airlines, cost of retrofitting 737s and A320s 

with winglets will be recouped but due to the age of Qantas 767s and the limited number of 

international flights flown installing 767 winglets is not a financially viable emission reduction 

option. On the other hand non-Australian 767s are generally younger and the cost of winglets will 

be recouped. 

Even though renewing the current fleet and acquiring the latest aircraft to service growth will 

produce the highest CO2 emissions reduction, it was not always the most cost effective option 

especially if the superseded aircraft are relatively new or they are flown only on a few flights. For 

example 747-400s are flown by Qantas and non-Australia airlines on Australian international routes 

with Qantas using them extensively on long haul routes. The MACCs shows it makes more 

economic sense for Qantas to replace 747s in 2017 with 787-9s but not for non-Australia 747s, 

which account for low number of flights. Low interest financing and longer repayment period will 

increase the likelihood of airlines acquiring the latest aircraft to service traffic growth but has a 
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lower impact on airlines renewing the current fleet. The decision to renew the current fleet will 

dependent on not only the cost of acquiring the new aircraft but also the cost of disposing the 

superseded aircraft (i.e. residual and amount still owed), the savings in fuel and maintenance and 

the amount of flying done on these aircraft. 

This chapter focused on how costs influence how airlines are likely to implement certain emission 

abatement options. Australia-based airlines sometimes use the same aircraft on both international 

and domestic routes and a more specially derived MACC for those circumstances would need to 

include all aircraft and flights. Since non-Australia-based airlines flies only a fraction of their fleet 

to service Australian international flights, the MACC did not differentiate between airlines that are 

emissions efficient. Additional research should be undertaken to determine other cost incentives and 

penalties that would induce all airlines flying into and out of Australia to take on additional 

abatement options. Some of these incentives and penalties may include pricing CO2 emissions, tax 

incentives, subsidizing abatement options and penalizing poor CO2 efficiency and low load factors. 
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6.6 Supplementary data 

Table 6.28 Jetstar CO2 emissions profile 

 6% per annum 12 year 2% per annum 12 year 
Year Tot CO2 (t) g/kg-km Tot CO2 (t) g/kg-km 
2012 530,579.78 0.71 530,579.78 0.71 
2013 543,110.88 0.69 543,110.88 0.69 
2014 494,916.47 0.60 494,916.47 0.60 
2015 517,300.66 0.59 517,300.66 0.59 
2016 541,027.89 0.59 541,027.89 0.59 
2017 566,178.76 0.58 566,178.76 0.58 
2018 591,879.53 0.57 590,914.40 0.57 
2019 619,122.35 0.57 617,134.18 0.56 
2020 647,999.75 0.56 644,927.15 0.55 
2021 678,609.78 0.56 674,387.70 0.55 
2022 711,056.42 0.55 705,615.88 0.54 
2023 745,449.85 0.55 738,717.75 0.54 
2024 781,906.89 0.55 773,805.73 0.53 
2025 820,551.35 0.54 810,998.99 0.53 
2026 861,514.48 0.54 850,423.85 0.53 
2027 904,935.40 0.54 892,214.20 0.52 
2028 950,961.58 0.53 936,511.96 0.52 
2029 999,749.32 0.53 983,467.60 0.51 
2030 1,051,464.33 0.53 1,033,240.57 0.51 
2031 1,106,282.24 0.52 1,085,999.92 0.51 
2032 1,164,389.22 0.52 1,141,924.84 0.51 
2033 1,225,982.62 0.52 1,201,205.25 0.50 
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Table 6.29 Virgin Australia CO2 emissions profile 

 6% per annum 12 year 2% per annum 12 year 
Year Tot CO2 (t) g/kg-km Tot CO2 (t) g/kg-km 
2012 898,027.53 0.73 898,027.53 0.73 
2013 918,889.76 0.71 918,889.76 0.71 
2014 956,970.11 0.69 956,970.11 0.69 
2015 1,003,809.51 0.69 1,003,809.51 0.69 
2016 1,053,459.27 0.68 1,053,459.27 0.68 
2017 1,106,088.01 0.67 1,106,088.01 0.67 
2018 1,160,891.79 0.66 1,159,902.97 0.65 
2019 1,218,983.80 0.65 1,216,946.82 0.65 
2020 1,280,561.32 0.65 1,277,413.31 0.64 
2021 1,345,833.50 0.64 1,334,341.13 0.63 
2022 1,415,022.01 0.63 1,394,684.62 0.62 
2023 1,488,361.83 0.63 1,458,648.72 0.61 
2024 1,566,102.04 0.62 1,526,450.67 0.60 
2025 1,648,506.66 0.62 1,598,320.73 0.60 
2026 1,735,855.56 0.61 1,674,503.00 0.59 
2027 1,828,445.39 0.60 1,755,256.20 0.58 
2028 1,926,590.62 0.60 1,840,854.60 0.58 
2029 2,030,624.55 0.59 1,931,588.90 0.57 
2030 2,140,900.52 0.59 2,027,767.26 0.57 
2031 2,257,793.06 0.59 2,129,716.31 0.56 
2032 2,381,699.14 0.58 2,237,782.32 0.56 
2033 2,513,039.59 0.58 2,352,332.28 0.55 
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Table 6.30 Qantas CO2 emissions profile 

 6% per annum 12 year 2% per annum 12 year 
Year Tot CO2 (t) g/kg-km Tot CO2 (t) g/kg-km 
2012 3,378,303.70 0.73 3,378,303.70 0.73 
2013 3,449,114.40 0.71 3,449,114.40 0.71 
2014 3,478,393.83 0.67 3,478,393.83 0.67 
2015 3,630,171.61 0.66 3,630,171.61 0.66 
2016 3,791,056.06 0.65 3,791,056.06 0.65 
2017 3,550,962.53 0.58 3,550,962.53 0.58 
2018 3,730,351.08 0.57 3,728,961.25 0.57 
2019 3,920,502.95 0.57 3,917,639.89 0.56 
2020 4,122,063.92 0.56 4,117,639.25 0.56 
2021 4,335,718.56 0.56 4,311,807.03 0.55 
2022 4,562,192.47 0.56 4,517,624.87 0.54 
2023 4,802,254.82 0.55 4,735,791.79 0.54 
2024 5,056,720.90 0.55 4,967,048.72 0.53 
2025 5,326,454.96 0.55 5,212,181.07 0.53 
2026 5,612,373.05 0.55 5,472,021.36 0.53 
2027 5,915,446.23 0.54 5,747,452.07 0.52 
2028 6,236,703.81 0.54 6,039,408.62 0.52 
2029 6,577,236.83 0.54 6,348,882.56 0.52 
2030 6,938,201.84 0.54 6,676,924.94 0.52 
2031 7,320,824.75 0.54 7,024,649.86 0.51 
2032 7,726,405.03 0.53 7,393,238.27 0.51 
2033 8,156,320.13 0.53 7,783,942.00  0.51 
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Table 6.31 All airlines CO2 emissions profile 

 6% per annum 12 year 2% per annum 12 year 
Year Tot CO2 (t) g/kg-km Tot CO2 (t) g/kg-km 
2012 13,108,896.43  0.71 13,108,896.43  0.71 
2013 13,425,128.37  0.69 13,425,128.37  0.69 
2014 13,220,586.68  0.64 13,016,986.88  0.63 
2015 13,842,289.84  0.63 13,638,690.05  0.62 
2016 14,501,295.20  0.62 14,297,695.41  0.61 
2017 14,789,209.85  0.60 14,585,610.05  0.59 
2018 15,522,099.61  0.59 15,310,883.92  0.58 
2019 16,298,962.76  0.58 16,079,674.22  0.56 
2020 17,122,437.70  0.57 16,894,591.93  0.56 
2021 17,995,321.13  0.57 17,335,958.66  0.54 
2022 18,920,577.57  0.57 18,189,029.49  0.54 
2023 19,901,349.40  0.56 19,093,284.57  0.53 
2024 20,940,967.53  0.56 20,051,794.95  0.53 
2025 22,042,962.76  0.56 21,067,815.95  0.53 
2026 23,211,077.70  0.55 22,144,798.22  0.52 
2027 24,449,279.53  0.55 23,286,399.42  0.52 
2028 25,761,773.48  0.55 24,496,496.69  0.52 
2029 27,153,017.06  0.54 25,779,199.80  0.51 
2030 28,627,735.25  0.54 27,138,865.09  0.51 
2031 30,190,936.54  0.54 28,580,110.30  0.51 
2032 31,847,929.91  0.54 30,107,830.23  0.51 
2033 33,604,342.87  0.53 31,727,213.35  0.51 
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Chapter 7. ICAO’s Carbon Offsetting and Reduction Scheme for 

International Aviation Needs Improvement 

Chapter Summary 

At the 39th International Civil Aviation Organization (ICAO) Assembly, a global market-based 

measure in the form of a Carbon Offsetting and Reduction Scheme for International Aviation 

(CORSIA) was tabled. The scheme covers CO2 emissions from international aviation post 2020, 

taking into account special circumstance and capabilities of all States. Any emissions exceeding a 

baseline level will need to be offset. In this chapter, the CORSIA is applied to a simple example to 

show that the carbon offset scheme does not reward efficient airlines. An improvement to the 

CORSIA is recommended that more effectively reward aircraft operators that have attained fuel 

efficiency goals from 2020. 

7.1 Introduction 

At the 38th ICAO Assembly, members adopted global aspirational goals of carbon neutral growth 

from 2020 and 2% annual fuel efficiency improvement for international aviation (ICAO, 2013c). 

These goals are to be achieved through improvements in airline operations, acquisition of new 

aircraft technologies, refuelling with sustainable alternative fuels and implementing some global 

market-based measures (ICAO, 2016a). According to ICAO’s Committee on Aviation 

Environmental Protection (CAEP), the total amount of CO2 emissions that international aviation 

will need to offset would be up to 174 million tonnes by 2025 and up to 816 million tonnes by 

2040, in order to be carbon neutral after 2020 (ICAO, 2016b; ICAO CAEP, 2016). 

The global market-based measure (MBM) presented at the 39th ICAO Assembly in 2016 is a phased 

implementation of a single global Carbon Offsetting and Reduction Scheme for International 

Aviation (CORSIA). The pilot and first phase of the CORSIA begins in 2021 and 2024 respectively 

and over 65 states have volunteered to participate in the pilot phase (ICAO, 2016a, 2016d). 

Carbon offset obligations are assigned to aircraft operators operating between participating States. 

The CORSIA distribute offset obligations based on the aircraft operator’s share of the total 

emissions and success at meeting their individual emissions baseline. In this chapter, an 

enhancement to the formula used in the CORSIA for distributing offset obligations that takes into 

consideration an aircraft operator’s success at meeting fuel efficiency targets is presented. 
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7.2 Material and Methods 

Paragraph 11 of the 39th ICAO assembly resolution A39-3 defines how CO2 offsets are calculated 

for each aircraft operator (ICAO, 2016d) : 

11. Decides that the amount of CO2 emissions required to be offset by an aircraft operator in a 

given year from 2021 is calculated every year as follows: 

a) an aircraft operator’s offset requirement = [ % Sectoral × (an aircraft operator’s 

emissions covered by CORSIA in a given year × the sector’s growth factor in the given 

year)] + [ % Individual × (an aircraft operator’s emissions covered by CORSIA in a 

given year × that aircraft operator’s growth factor in the given year); 

b) where the sector’s growth factor = (total emissions covered by CORSIA in the given 

year – average of total emissions covered by CORSIA between 2019 and 2020) / total 

emissions covered by CORSIA in the given year; 

c) where the aircraft operator’s growth factor = (the aircraft operator’s total emissions 

covered by CORSIA in the given year – average of the aircraft operator’s emissions 

covered by CORSIA between 2019 and 2020 ) / the aircraft operator’s total emissions 

covered by CORSIA in the given year; 

d) where the % Sectoral = (100% – % Individual) and; 

e) where the % Sectoral and % Individual will be applied as follows: 

i) from 2021 through 2023, 100% sectoral and 0% individual, though each 

participating State may choose during this pilot phase whether to apply this to: 

a) an aircraft operator’s emissions covered by CORSIA in a given year, as 

stated above, or 

b) an aircraft operator’s emissions covered by CORSIA in 2020; 

ii) from 2024 through 2026, 100 % sectoral and 0% individual;  

iii) from 2027 through 2029, 100 % sectoral and 0% individual;  

iv) from 2030 through 2032, at least 20% individual, with the Council recommending 

to the Assembly in 2028 whether and to what extent to adjust the individual 

percentage; 

v) from 2033 through 2035, at least 70% individual, with the Council recommending 

to the Assembly in 2028 whether and to what extent to adjust the individual 

percentage; 

f) the aircraft operator’s emissions and the total emissions covered by CORSIA in the 

given year do not include emissions exempted from the scheme in that year; 
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g) the scope of emissions in paragraphs 11 b) and 11 c) above will be recalculated at the 

start of each year to take into account routes to and from all States that will be added 

due to their voluntary participation or the start of a new phase or compliance cycle 

Rewriting paragraph 11 of resolution A39-3 into the mathematical formulas for determining the 

amount of CO2 emissions to Offset for aircraft operator x in a given year y from 2021: 

AO(x, y) = [w1 × E(x, y) × SG(y)]���������������
𝑆𝑟𝑆𝑆𝑆𝑟𝑆𝑆

+ [w2 × E(x, y) × IG(x, y)]�����������������
𝐼𝑛𝐼𝑖𝐼𝑖𝐼𝐼𝑆𝑆

 

( 7 ) 

where 

E(x,y) is the emissions covered by the CORSIA for aircraft operator x in year y. 

Sector’s Growth Factor in year y is:  

SG(y) =
TE(y) − TE����

TE(y)  

( 8 ) 

where 

TE(y) is the total emissions for the N aircraft operators covered by the CORSIA in year y i.e. 

TE(y) =  � E(i, y)
N

i=1
 

TE���� is the average of the total emissions covered by the CORSIA between 2019 and 2020: 

TE���� =
TE(2019) + TE(2020)

2
 

TE(y) − TE���� is the total amount of emissions to be offset in year y. 

 

Aircraft operator’s Growth Factor (i.e. Individual Growth factor) for aircraft operator x in year y is:  

IG(x, y) =
E(x, y) − E(x)������

E(x, y)  

( 9 ) 

where 

E(x, y) − E(x)������ is the amount of emissions that aircraft operator x has diverged from its individual 

baseline emissions level 

E(x)������ is the baseline emissions level, which is the average emissions covered by the CORSIA 

between 2019 and 2020: 
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E(x)������ =
E(x, 2019) + E(x, 2020)

2
 

 

100% =  w1 + w2 

where 

% Sectoral is w1 =  �
100%, 2021 ≤ y ≤ 2029

80%, 2030 ≤ y ≤ 2032
30%, 2033 ≤ y ≤ 2035

 

% Individual is w2 =  �
0%, 2021 ≤ y ≤ 2029

20%, 2030 ≤ y ≤ 2032
70%, 2033 ≤ y ≤ 2035

 

7.3 Enhancement to the CORSIA 

Members of ICAO have adopted global aspirational goals of carbon neutral growth from 2020 and 

2% annual fuel efficiency improvement for international aviation (ICAO, 2013c). The CORSIA has 

included each individual aircraft operator’s success at meeting the baseline emissions level (which 

is the average emissions for 2019 and 2020) but fuel efficiency is not included when calculating 

each aircraft operator’s offset obligations. The CORSIA can be improved by also adjusting an 

aircraft operator’s offset obligation based on its success at meeting the target fuel efficiency. 

If eff(x,y) is the fuel efficiency of aircraft operator x in year y and effT(y) is the target fuel 

efficiency in year y then an aircraft operator that is more fuel efficient than the target fuel efficiency 

would emit less emissions than if it had operated at the target fuel efficiency level i.e. 

E(x,y) < eE(x,y) 

where 

eE(x,y) is the estimated amount of emissions generated if all aircraft operator x’s flights are flying 

at the target fuel efficiency. 

If all flights from the N aircraft operators covered by the CORSIA are operating at the target fuel 

efficiency then the total estimated emissions generated in year y is:  

TeE(y) = � eE(i, y)
N

i=1
 

And the total amount of emissions associated with the success or failure to meet the target fuel 

efficiency in year y is the difference between the total amount of emissions and the total estimated 

emissions if all flights were operating at the target fuel efficiency, i.e.: 
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TE(y) – TeE(y) 

An aircraft operator’s relative success or failure at meeting the yearly target fuel efficiency is 

denoted by the proportion of the total amount of emissions associated with deviating from the target 

fuel efficiency that the operator is responsible for i.e. Efficiency factor: 

E(x, y) − eE(x, y)
TE(y) − TeE(y)  

( 10 ) 

Since TE(y) − TE���� is the total amount of emissions to be offset in each year, an aircraft operator’s 

share of the yearly offset based on its success or failure at meeting the fuel efficiency target is: 

E(x, y) − eE(x, y)
TE(y) − TeE(y) × (TE(y) − TE����) 

( 11 ) 

 

In the improved offset scheme, the efficiency component denoted by equation ( 11 ) is incorporated 

into the CORSIA denoted by equation ( 7 ). The amount of CO2 emissions to Offset for aircraft 

operator x in a given year y from 2021 is: 

AO(x, y) = [w1 × E(x, y) × SG(y)]���������������
𝑆𝑟𝑆𝑆𝑆𝑟𝑆𝑆

+ [w2 × E(x, y) × IG(x, y)]�����������������
𝐼𝑛𝐼𝑖𝐼𝑖𝐼𝐼𝑆𝑆

+ �w3 ×
E(x, y) − eE(x, y)
TE(y) − TeE(y) × (TE(y) − TE����)�

���������������������������
𝐸𝑟𝑟𝑖𝑆𝑖𝑟𝑛𝑆𝑦

 

( 12 ) 

where 

TE(y) − TE���� is the total amount of emissions to be offset 

100% = w1 + w2 + w3 

w1 is % Sectoral 

w2 is % Individual 

w3 is % Efficiency 

NB: 

TE(y) – TeE(y) ≤ 0 implies that on average the N aircraft operators covered by the CORSIA in year 

y are more efficient than the target fuel efficiency. In this case w3 is set to 0%. 
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7.4 Results and Discussion 

In this chapter, fuel efficiency of aircraft operator x i.e. eff(x,y) is defined as the average amount of 

CO2 emitted while transporting a kilogram of payload over a kilometre on each of aircraft operator 

x’s flights. A more efficient aircraft operator will emit less CO2 while transporting each kilogram of 

payload over a kilometre. Payload is the combined weight of passengers, luggage and cargo. The 

formula for calculating the estimated amount of emissions eE(x,y) is : 

eE(x, y) = effT(y) × P(x, y) × D(x, y) × F(x, y) 

( 13 ) 

where 

effT(y) is the target efficiency for year y 

P(x,y) is the (average) payload on operator x’s flight in year y 

D(x,y) is the (average) distance flown by operator x’s flight in year y 

F(x,y) is the total number of flights for operator x in year y. 

To demonstrate how the improved carbon offset scheme denoted by equation ( 12 ) allocates offset 

obligations, consider the following simulated simple example. Assume that the carbon offset 

scheme covers four (N=4) aircraft operators whose emissions are listed in Table 7.1. Emissions are 

increasing, decreasing and stable from 2020 onwards for aircraft operators A, B and C respectively. 

Aircraft operator D has identical emissions to aircraft operator C.  

 

Table 7.1 Emissions for four aircraft operators 

CO2 Emission (kt) Baseline (Average 2019-2020) Year Y 
Operator A (increasing) 80 130 

Operator B (decreasing) 120 100 

Operator C (stable) 100 100 

Operator D (stable) 100 100 
Total Emissions 400 430 

 

All aircraft operators have 500 flights and each flight has an average distance of 8,000km. The 

average payload on each flight for aircraft operator A, B and C is 32,000kg and for aircraft operator 

D the payload is 28,000kg. The number of flights, average flight distance and average payload 

remains unchanged. In year Y (> 2020), aircraft operator A’s, B’s, C’s and D’s carbon efficiency is 
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1.02g/kg-km, 0.78g/kg-km, 0.78g/kg-km and 0.89g/kg-km respectively (Table 7.2) and carbon 

efficiency target effT(y) is set to 0.82g/kg-km. 

 

Table 7.2 CO2 Efficiency for four aircraft operators 

CO2 Efficiency (g/kg-km) Year Y 
Operator A 1.02 

Operator B 0.78 

Operator C 0.78 

Operator D  0.89 

 

In the improved carbon offset scheme, the weights (w1, w2, w3) in equation ( 12 ) are set to (100%, 

0%, 0%), (80%, 20%, 0%) and (70%, 20%, 10%) respectively. The CORSIA is equivalent to setting 

w3 to 0%. 

From 2021 to 2029, the CORSIA will only use the Sectoral factor to allocate offset. This is 

equivalent to setting weights w1, w2, and w3 in the improved offset scheme to 100%, 0% and 0%, to 

allocate offset obligations. Aircraft operator B, C and D have identical offset obligations in Table 

7.3 even though aircraft operator B’s emissions are below its baseline emissions level and aircraft 

operator C transported more payload than aircraft operator D and is therefore more efficient. This is 

because the Sectoral factor allocates offset obligations according to each aircraft operator’s share of 

the total emissions for each year. 

From 2030 to 2032, the CORSIA will use 80% of the Sectoral and 20% of the Individual factors to 

allocate offsets. The is equivalent to setting weights w1, w2, and w3 in the improved offset scheme 

to 80%, 20% and 0% respectively. In Table 7.1, aircraft operator A’s emissions are above its 

baseline level in year Y and the CORSIA will penalise aircraft operator A’s by increasing operator 

A’s offset obligations from 9.06kt to 17.26kt in Table 7.3. In year Y, aircraft operator B’s emissions 

are below its baseline level and the CORSIA rewards aircraft operator B with lower offset 

obligations. Aircraft operator B’s offset obligations has dropped from 6.98kt to 1.58kt in Table 7.3. 

In year Y, both operators C and D’s emissions are equal to their baseline emissions level and since 

the weight w1 is set to 80% their offset obligations are reduced by 20% from 6.98kt to 5.58kt in 

Table 7.3. In summary, with weights w1, w2, and w3 set at 80%, 20% and 0%, the CORSIA adjusts 

the offset obligations based on each aircraft operator’s share of the total emissions and relative 

success at meeting their individual baseline emission level. Since the weight w3 is set to zero, 

aircraft operator C and D’s offset obligations are identical even though aircraft operator C is more 

efficient than aircraft operator D. 
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Table 7.3 Offset obligations for each aircraft operator under CORSIA  

Offsets in kt CORSIA with Weights 
(100%, 0%, 0%) 

CORSIA with Weights 
(80%, 20%, 0%) 

Operator A 9.07 17.26 

Operator B 6.98 1.58 

Operator C 6.98 5.58 

Operator D 6.98 5.58 
Total 30.0 30.0 

 

If the weights w1, w2, and w3 are set to 70%, 20% and 10% respectively, the improved carbon 

offsetting scheme allocate offset obligations based on the operator’s share of the total emissions, 

relative success at staying below the baseline emissions level and relative success at meeting the 

efficiency target i.e. A combination of the Sectoral, Individual and Efficiency factors. In year Y, 

aircraft operator C was more efficient than the efficiency target and the improved offset scheme 

rewards aircraft operator C by reducing its offset obligations from 5.58kt to 4.24kt (Table 7.4), 

whereas the offset obligations for aircraft operator D was increased from 5.58kt to 5.94kt (Table 

7.4), since operator D did not meet the efficiency target . Offset obligations for aircraft operator A 

are increased from 17.26kt to 19.58kt (Table 7.4) since its year Y emissions are higher than the 

baseline emissions levels and did not meet the target efficiency. Aircraft operator B’s offset 

obligations are reduced from 1.58kt to 0.24kt since its year Y emissions are lower than the baseline 

emisions level and surpass the target efficiency. 

 

Table 7.4 Offset obligations for each aircraft operator under improved carbon offset scheme 

Offsets in kt Improved CORSIA with Weights 
(70%, 20%, 10%) 

Operator A 19.58 

Operator B 0.24 

Operator C 4.24 

Operator D 5.94 
Total 30.0 

7.5 Conclusions and recommendations 

Since members of ICAO have adopted global aspirational goals of carbon neutral growth from 2020 

and 2% annual fuel efficiency improvement for international aviation, the relative success at 

attaining these goals need to be incorporated into the formula used in allocating carbon offset 
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obligations. The carbon offsetting and reduction scheme for international aviation (CORSIA) 

allocates offset obligations to aircraft operators based on Sectoral and Individual factors. The 

Sectoral approach allocated offset to an aircraft operator relative to its share of the total emissions 

and Individual approach allocates offsets to an aircraft operator relative to the amount of emissions 

it diverged from baseline emissions level. The baseline emissions level for each aircraft operator is 

the average total emissions in 2019 and 2020. The results in this chapter demonstrated that by 

incorporating the aircraft operator’s relative success or failure at meeting fuel efficiency targets, the 

improved offset scheme provides additional incentive for aircraft operators to be more fuel efficient. 

Additional research should be undertaken to determine when (i.e. in which year) and what the 

weight w3 of Efficiency factor should be when calculating the carbon offset obligations for each 

aircraft operator. 



K-s.Yin Page 136 

Chapter 8. Applying improved carbon offset scheme to Australian 

international aviation 

Chapter Summary 

If airlines serving the growth in passenger and cargo traffic in Australian international routes from 

2013 to 2033 implemented all the financially viable abatement options where new aircraft are 

financed at 2% per annum repaid over 12 years, then 31.7Mt of CO2 will be emitted and 15.2Mt 

will need to offset in 2033. This chapter shows the difference in the offset obligations calculated by 

ICAO’s CORSIA and the improved carbon offset scheme introduced in Chapter 7 for each airline 

servicing the Australian international routes from 2021 onwards. The results show that the 

improved carbon offset scheme would reward efficient airlines such as AirAsia X and Cathay 

Pacific with lower offset obligations and penalise less efficient airlines such as Etihad with more 

offset obligations than ICAO’s CORSIA. 

8.1 Introduction 

Between 2013 to 2033, passenger and cargo traffic increased at 6% and 5% per annum respectively 

and if airlines in Australian international routes implemented all the financially viable abatement 

options where 90% of the cost of newly acquired aircraft are financed at a yearly rate of 2% and 

repaid over 12 years then 16.1Mt, 16.9Mt and 31.7Mt of CO2 are emitted in 2019, 2020 and 2033 

respectively. In 2033, airlines will need to offset15.2Mt of CO2 where the baseline emissions level 

is the average emissions in 2019 and 2020. (Results in Chapter 6) 

This chapter builds on Chapter 6 to determine the offset obligations for each airline using ICAO’s 

CORSIA and the improved carbon offset scheme presented in Chapter 7. This chapter aims to show 

that the improved offset scheme will provide an additional incentive for airlines servicing 

Australian international routes to not only reduce their CO2 emissions but also to improve their CO2 

efficiency. 

8.2 Method 

In this chapter, it’s assumed that all the growth in passenger and cargo traffic from 2013 to 2033 

will be serviced by the 14 airlines that are currently servicing the Australian international market in 

2012. This will be modelled by distributing the additional fleet of fuel efficient small, medium and 

long haul aircraft acquired to handle the increase in passenger and cargo traffic (in Chapter 6) 
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amongst these 14 airlines (Yin et al., 2015; Yin et al., 2016). This distribution will be proportional 

to each airline’s share of the total short, medium and long haul payload in 2012.  

In the improved carbon offset scheme (i.e. equation ( 12 ) in Chapter 7), the target efficiency from 

2021 is set to the average CO2 efficiency in 2019 and 2020 with successive target efficiency set to 

improve at 2% per annum. 

8.3 Scenarios 

Three scenarios will be considered. 

In the first two scenarios, ICAO’s CORSIA will allocate offsets where the weights (w1, w2, w3) in 

equation ( 12 ) are set to (100%, 0%, 0%) and (80%, 20%, 0%). With weights w1, w2, and w3 set to 

100%, 0%, and 0%, offset obligations in each year is allocated based on only the Sectoral factor 

(i.e. equation ( 8 )). With weights w1, w2, and w3 set to 80%, 20% and 0%, offset obligations in each 

year are allocated based on Sectoral and Individual factors (i.e. equation ( 8 ) and ( 9 )).  

Finally the third scenario highlights the improved offset scheme where the weights w1, w2 and w3 in 

equation ( 12 ) is set 70%, 20% and 10% respectively. This will allocate offset obligations to each 

airline in each year based on Sectoral, Individual and Efficiency factors (i.e. equation ( 8 ), ( 9 ) and 

( 10 )). 

Under CORSIA, Sectoral and Individual factor will be used for calculating offset obligation from 

2030 onwards but in this chapter all three scenarios, will allocate offset starting in 2021 to highlight 

the difference in offset allocations. 

8.4 Results 

8.4.1 CO2 Emissions Profile 

The new aircraft acquired for fleet renewal and traffic growth will greatly improve the efficiency of 

the least efficient airlines in 2012 but will have less effect on airlines that are early adopters of more 

fuel efficient technology or practises and are already fairly efficient such as AirAsia X and Cathay 

Pacific (Table 8.1). In 2021, the efficiency of Emirates, Delta, Etihad and United all show a big 

improvement when compared 2020, this is because in 2021 777Xs replaced all 777 long haul flights 

in the model. 
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Table 8.1 CO2 Efficiency from 2012 – 2033 (Summary) 

CO2 Efficiency Eff(x,2012) Eff(x,2019) Eff(x,2020) Eff(x,2021) Eff(x,2033) 
 g/kg-km g/kg-km g/kg-km g/kg-km g/kg-km 
AirAsia X 0.59 0.46 0.46 0.46 0.46 

Cathay 0.60 0.47 0.47 0.47 0.47 

Air NZ 0.67 0.55 0.55 0.53 0.49 

Singapore 0.65 0.54 0.53 0.52 0.49 

Jetstar 0.71 0.56 0.55 0.55 0.50 

Virgin 0.73 0.65 0.64 0.63 0.55 

Qantas 0.73 0.56 0.56 0.55 0.51 

Malaysia 0.72 0.54 0.54 0.52 0.49 

Emirates 0.73 0.62 0.62 0.55 0.51 

Hawaiian 0.75 0.55 0.54 0.54 0.51 

Delta 0.82 0.75 0.75 0.62 0.58 

Garuda 0.90 0.63 0.62 0.61 0.54 

Etihad 0.87 0.79 0.78 0.73 0.64 

United 0.98 0.68 0.68 0.57 0.55 
Average 0.71  0.57 0.57  0.54 0.51 

 

With the introduction of 777Xs in 2021 to handle the growth in long haul traffic and to replace all 

777 flights to and from Australia, some airlines will see emissions drop below 2020 levels even 

with the growth in passenger and freight traffic. For example Delta, Emirates and United use 747s 

and 777s extensively on their 2012 Australian routes and all three airlines show a drop in emissions 

in 2021 even with the growth in traffic (Table 8.2). Emissions will drop for another year before 

emissions continue to rise due to the increase in passenger and cargo traffic. 
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Table 8.2 CO2 Emissions from 2012-2033 (Summary) 

 E(x,2012) E(x,2019) E(x,2020) E(x,2021) E(x,2033) 
 (t) (t) (t) (t) (t) 
AirAsia X 344,078.45 398,333.84 420,879.96 444,778.86 872,142.12 

Cathay 1,134,113.79 1,313,693.96 1,387,344.17 1,465,413.40 2,861,458.00 

Air NZ 543,549.59 689,831.04 722,233.30 746,234.85 1,360,421.83 

Singapore 1,636,828.03 2,059,707.26 2,159,121.10 2,248,180.48 4,132,576.35 

Jetstar 530,579.78 617,134.18 644,927.15 674,387.70 1,201,205.25 

Virgin 898,027.53 1,216,946.82 1,277,413.31 1,334,341.13 2,352,332.28 

Qantas 3,378,303.70 3,917,639.89 4,117,639.25 4,311,807.03 7,783,942.00 

Malaysia 744,833.13 853,132.34 895,617.02 919,702.44 1,725,002.50 

Emirates 1,784,305.20 2,524,253.39 2,662,295.23 2,595,975.33 4,900,702.83 

Hawaiian 130,663.72 133,149.48 138,952.05 145,102.78 255,090.99 

Delta 242,331.69 327,757.35 343,876.36 319,552.79 577,940.63 

Garuda 301,477.65 302,430.40 313,107.36 324,424.94 526,807.48 

Etihad 776,724.89 1,036,918.09 1,085,967.88 1,126,970.90 1,913,239.30 

United 663,079.30 688,746.18 725,217.78 679,086.04 1,264,351.79 
Total 13,108,896.43  16,079,674.22 16,894,591.93  17,335,958.66 31,727,213.35 

8.4.2 Offset obligations 

Delta and Garuda emits approximately the same amount of CO2 emissions in 2021 and under 

ICAO’s CORSIA based on only Sectoral factor (i.e. with w1, w2, and w3 set to 100%, 0% and 0% 

respectively) both airlines have similar offset obligations of 15.6 and 15.9kt (Table 8.3) even 

though Delta has less emissions in 2021 than the baseline which is the average emission in 2019 

and 2020.  

If both Sectoral and Individual factors (i.e. with w1, w2, and w3 set to 80%, 20% and 0% 

respectively) were taken into consideration in 2021 (instead of 2030), Delta’s offset obligations are 

reduced since it emitted less than its baseline emission level and vice versa for Garuda. Jetstar and 

United also emits approximately the same amount of emissions in 2021 and if CORSIA with 

weights w1, w2, and w3 are set to 80%, 20% and 0% in 2021, United will see offset obligations 

reduced from 33.2kt to 21.0kt since United emitted less than its baseline. 

In the model, the target CO2 efficiency improves at 2% per annum from 2021onwards and in 2021; 

the target CO2 efficiency is initialised to 0.57g/kg-km which is the average efficiency in 2019 and 

2020. Airlines achieve different carbon efficiencies for the short, medium and long haul flights, for 

example Emirates operates very CO2 efficient medium and long haul flights but some of the least 

CO2 efficient short haul flights due to low payload in 2012 (Yin et al., 2015). AirAsia X and Cathay 
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Pacific were two of the most efficient airlines in 2012 and in the model, both airlines continue to 

lead the pack for the next 20 years but the least efficient airlines such as United, Garuda and Etihad 

will see the most improvements (Table 8.1) with the addition of new efficient aircraft into its fleet 

(Yin et al., 2015). 

Under the improved carbon offset scheme where weights w1, w2, and w3 is set to 70%, 20% and 

10% respectively, efficient airlines will be rewarded with reduced offset obligations and vice versa. 

In 2021, Cathay Pacific emitted more emissions than Virgin Australia and under CORSIA (i.e. 

weights w1, w2, and w3 set to 100%, 0% and 0% or 80%, 20% and 0%), Cathay’s offset obligation 

is also more than Virgin’s even though Cathay is one of the most carbon efficient airlines (Table 

8.3). Under the improve carbon offset scheme where w1, w2, and w3 is set to 70%, 20% and 10% 

respectively, Cathay Pacific will be rewarded with lower offset obligations than Virgin Australia. 

AirAsia X is the most efficient and would also receive lower offset obligations from the improved 

carbon offset scheme. In 2021, Etihad is the least efficient followed by Virgin, Delta and Garuda 

(Table 8.1) and offset obligations are increased under the improved carbon offset scheme for all 4 

airlines. 

In 2021, the target efficiency is 0.57g/kg-km and both Qantas and Emirates attained an average 

efficiency of 0.55g/kg-km for all their flights but both were penalised with more offset obligations 

instead of rewarded with less. This inconsistency is because the efficiency factor (equation ( 10 )) in 

the improved offset scheme calculates offset obligations for Emirates and Qantas based on each 

airline’s average flight distance (equation ( 13 ) in Chapter 7). Emirates and Qantas have 

international flights than range from 2,000km to over 12,000km and the Efficiency factor in the 

improved carbon offset scheme underestimated the amount of emissions generated if each airline’s 

flights are operating at the target efficiency (i.e. underestimated eE(x,y)). 
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Table 8.3 Offset obligations in 2021 

Offsets in 
2021 

CORSIA 
(100%, 0%, 0%) 

CORSIA 
(80%, 20%, 0%) 

Improved scheme 
(70%, 20%, 10%) 

 (t) (t) (t) 
AirAsia X 21,777.84  24,456.66  18,835.95 

Cathay Pacific 71,751.46  80,380.04  58,645.81 

Air NZ 36,538.11 37,271.03 32,885.34 

Singapore 110,078.31 115,815.91 105,517.79 

Jetstar 33,020.24 35,087.60 34,934.49 

Virgin 65,333.73 69,699.20 84,065.43 

Qantas 211,120.26 227,729.70 254,778.24 

Malaysia 45,031.66 45,090.88 38,551.14 

Emirates 127,107.50 102,226.20 102,784.91 

Hawaiian 7,104.71 7,494.17 6,304.76 

Delta 15,646.36 9,264.27 9,393.47 

Garuda 15,884.91 16,039.14 17,005.33 

Etihad 55,180.20 57,249.75 64,312.92 

United 33,250.29 21,021.04 20,810.00 
Total 848825.59 848825.59 848825.59 

 

In 2033, the CO2 efficiency target is 0.45g/kg-km and all 14 airlines fail to meet the efficiency 

target (Table 8.1). The improved carbon offset scheme with w1, w2, and w3 set to 70%, 20% and 

10% respectively would allocate the 10% (w3) of the total emissions to be offset according to each 

airlines relative “failure” at meeting this target CO2 efficiency. 
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Table 8.4 Offset obligations in 2033 

Offsets in 
2033 

CORSIA 
(100%, 0%, 0%) 

CORSIA 
(80%, 20%, 0%) 

Improved scheme 
(70%, 20%, 10%) 

 (t) (t) (t) 
AirAsia X 418,931.09  427,651.91  405,876.53 

Cathay Pacific 1,374,493.53  1,401,782.61  1,294,043.05 

Air NZ 653,474.91 653,657.86 616,645.42 

Singapore 1,985,071.76 1,992,689.84 1,943,133.86 

Jetstar 576,995.66 575,631.44 567,773.97 

Virgin 1,129,936.38 1,124,979.55 1,196,349.76 

Qantas 3,738,995.28 3,744,456.71 3,871,219.62 

Malaysia 828,600.24 833,005.75 801,791.16 

Emirates 2,354,039.22 2,344,717.08 2,390,366.67 

Hawaiian 122,532.26 121,833.85 115,066.53 

Delta 277,612.20 270,514.52 269,639.46 

Garuda 253,050.53 246,248.15 246,318.58 

Etihad 919,019.27 905,574.68 925,729.87 

United 607,327.93 597,336.31 596,125.79 
Total 15,240,080.27 15,240,080.27 15,240,080.27 

 

The offset obligations for all 14 airlines from 2021 to 2033 are presented in Table 8.5 to Table 8.18 

(in section 8.6). 

8.5 Conclusion  

In this chapter, the improved carbon offset scheme presented in Chapter 7 is applied to the 14 

airlines that accounted for 72% of all international passengers into and out of Australia in 2012. 

These airlines will implement all the financially viable abatement options to reduce the growth in 

emissions over the next 20 s with new aircraft acquisition financed at 2% per annum over 12 years. 

To attain the aspirational goal of carbon neutral growth from 2021, CORSIA and the improved 

carbon offset scheme will determine the carbon offset obligations for each airline from 2021 

onwards. 

The results show that ICAO’s CORSIA should take into consideration Individual factors in 

calculating carbon offset from 2021 so as to provide additional incentive for airlines to emit less and 

reward airlines that have attained carbon neutral growth instead of waiting till 2030. The results also 

show that CO2 efficient airlines will not be rewarded for their efforts under the ICAO’s CORSIA. 

By incorporating CO2 efficiency targets, the improved carbon offset scheme provides an additional 
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incentive for airlines to not only emit less but also be more CO2 efficient. Since the target CO2 

efficiency is defined as the amount of CO2 emitted for each kilogram of payload flown over a 

kilometre, airlines have the freedom to choose the most appropriate abatement option such as fuel 

efficient technologies, operational changes and biofuels. 

Our results show that additional study is required to determine what the combination of Sectorial, 

Individual and Efficiency factors (i.e. weights w1, w2, and w3) should be and in which year these 

factors should be phased in when calculating offset obligations. Additional study is also required to 

determine if using multiple CO2 efficiency targets and/or average flight distance for short-, medium- 

and long-haul routes would improve the consistency of the efficiency factor in the offset allocation 

formula denoted by equation ( 10 ) in Chapter 7. Multiple CO2 efficiency targets can also be used to 

differentiate between countries with mature aviation markets, routes with high payload and 

developing nations with inefficient airlines that service routes to and from Australia. 
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8.6 Supplementary data 

Table 8.5 Air Asia X’s carbon offset obligations for servicing Australian international routes from 2021 to 2033 

Air Asia X 
Year CORSIA 

(100%, 0%, 0%) 
CORSIA 
(80%, 20%, 0%) 

Improved scheme 
(70%, 20%, 10%) 

2021 21777.84  24456.66  18835.95  
2022 43987.03  47290.58  37689.66  
2023 67833.52  71738.33  59104.63  
2024 93406.84  97889.78  82930.73  
2025 120801.72  125840.05  109092.41  
2026 150118.51  155689.90  137566.09  
2027 181463.48  187546.08  168366.13  
2028 214949.25  221521.72  201535.82  
2029 250695.23  257736.74  237141.55  
2030 288828.00  296318.29  275268.90  
2031 329481.85  337401.22  316020.09  
2032 372799.18  381128.53  359512.29  
2033 418931.09  427651.91  405876.53  

 

Table 8.6 Cathay Pacific’s carbon offset obligations for servicing Australian international routes from 2021 to 

2033 

Cathay Pacific 
Year CORSIA 

(100%, 0%, 0%) 
CORSIA 
(80%, 20%, 0%) 

Improved scheme 
(70%, 20%, 10%) 

2021 71,751.46  80,380.04  58,645.81  
2022 144,857.62  155,415.64  117,502.29  
2023 223,291.34  235,706.33  184,762.78  
2024 307,345.38  321,545.90  259,957.23  
2025 397,329.58  413,245.38  342,848.60  
2026 493,572.07  511,134.22  433,363.13  
2027 596,420.43  615,561.44  531,546.89  
2028 706,243.03  726,896.97  637,538.06  
2029 823,430.37  845,532.94  751,548.67  
2030 948,396.48  971,885.09  873,852.65  
2031 1,081,580.49  1,106,394.32  1,004,777.82  
2032 1,223,448.15  1,249,528.18  1,144,700.68  
2033 1,374,493.53  1,401,782.61  1,294,043.05  
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Table 8.7 Air NZ’s carbon offset obligations for servicing Australian international routes from 2021 to 2033 

Air New Zealand 
Year CORSIA 

(100%, 0%, 0%) 
CORSIA 
(80%, 20%, 0%) 

Improved scheme 
(70%, 20%, 10%) 

2021 36538.11 37271.03 32885.34 
2022 73229.62 73905.67 65793.21 
2023 112094.87 112716.19 101197.65 
2024 153265.10 153833.79 139164.74 
2025 196879.39 197397.54 179784.82 
2026 243085.22 243554.85 223167.66 
2027 292038.91 292462.00 269439.74 
2028 343906.13 344284.63 318742.56 
2029 398862.54 399198.35 371231.78 
2030 457094.30 457389.26 427076.76 
2031 518798.75 519054.65 486460.50 
2032 584185.05 584403.63 549579.77 
2033 653474.91 653657.86 616645.42 

 

Table 8.8 Singapore Airline’s carbon offset obligations for servicing Australian international routes from 2021 to 

2033 

Singapore Airlines 
Year CORSIA 

(100%, 0%, 0%) 
CORSIA 
(80%, 20%, 0%) 

Improved scheme 
(70%, 20%, 10%) 

2021 110078.31 115815.91 105517.79 
2022 220807.52 226739.55 208878.51 
2023 338275.32 344394.49 320513.96 
2024 462883.33 469182.44 440434.51 
2025 595057.20 601529.16 568787.96 
2026 735248.09 741885.96 705823.37 
2027 883934.21 890731.18 851868.88 
2028 1041622.45 1048571.88 1007318.00 
2029 1208850.12 1215945.54 1172621.08 
2030 1386186.78 1393421.88 1348280.07 
2031 1574236.20 1581604.84 1534845.57 
2032 1773638.37 1781134.61 1732915.32 
2033 1985071.76 1992689.84 1943133.86 
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Table 8.9 Jetstar’s carbon offset obligations for servicing Australian international routes from 2021 to 2033 

Jetstar 
Year CORSIA 

(100%, 0%, 0%) 
CORSIA 
(80%, 20%, 0%) 

Improved scheme 
(70%, 20%, 10%) 

2021 33020.24 35087.60 34934.49 
2022 66022.50 67735.04 67255.55 
2023 100831.81 102202.86 101273.88 
2024 137561.54 138604.24 137137.81 
2025 176331.96 177059.23 174991.71 
2026 217270.59 217695.11 214979.99 
2027 260512.66 260646.84 257249.81 
2028 306201.53 306057.49 301953.02 
2029 354489.15 354078.70 349247.57 
2030 405536.55 404871.22 399298.71 
2031 459514.40 458605.38 452279.99 
2032 516603.56 515461.68 508374.15 
2033 576995.66 575631.44 567773.97 

 

Table 8.10 Virgin Australia’s carbon offset obligations for servicing Australian international routes from 2021 to 

2033 

Virgin Australia 
Year CORSIA 

(100%, 0%, 0%) 
CORSIA 
(80%, 20%, 0%) 

Improved scheme 
(70%, 20%, 10%) 

2021 65333.73 69699.20 84065.43 
2022 130496.72 133898.29 158942.80 
2023 199099.30 201573.17 235210.90 
2024 271361.27 272943.14 313600.45 
2025 347515.87 348240.83 394709.94 
2026 427810.50 427712.99 479054.38 
2027 512507.50 511621.23 567096.32 
2028 601885.00 600242.90 659266.36 
2029 696237.78 693871.99 755977.20 
2030 795878.28 792820.07 857633.64 
2031 901137.56 897417.30 964639.99 
2032 1012366.38 1008013.56 1077405.67 
2033 1129936.38 1124979.55 1196349.76 
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Table 8.11 Qantas’s carbon offset obligations for servicing Australian international routes from 2021 to 2033 

Qantas 
Year CORSIA 

(100%, 0%, 0%) 
CORSIA 
(80%, 20%, 0%) 

Improved scheme 
(70%, 20%, 10%) 

2021 211120.26 227729.70 254778.24 
2022 422701.47 438158.24 485006.79 
2023 646415.28 660762.67 723299.70 
2024 883005.70 896286.39 971434.09 
2025 1133261.68 1145517.65 1230934.21 
2026 1398019.72 1409292.13 1503172.70 
2027 1678166.58 1688495.77 1789435.32 
2028 1974642.34 1984067.68 2090964.24 
2029 2288443.43 2297003.34 2408988.07 
2030 2620625.99 2628357.86 2744743.75 
2031 2972309.41 2979249.59 3099493.04 
2032 3344680.06 3350863.79 3474535.57 
2033 3738995.28 3744456.71 3871219.62 

 

Table 8.12 Malaysia Airline’s carbon offset obligations for servicing Australian international routes from 2021 to 

2033 

Malaysia Airlines 
Year CORSIA 

(100%, 0%, 0%) 
CORSIA 
(80%, 20%, 0%) 

Improved scheme 
(70%, 20%, 10%) 

2021 45031.66 45090.88 38551.14 
2022 90520.48 91029.09 79663.34 
2023 138957.85 139898.98 124681.96 
2024 190514.41 191871.41 173539.01 
2025 245370.94 247127.46 226244.41 
2026 303718.99 305858.97 282864.37 
2027 365761.56 368269.27 343508.01 
2028 431713.78 434573.88 408318.98 
2029 501803.74 505001.24 477470.04 
2030 576273.20 579793.53 551159.67 
2031 655378.52 659207.51 629609.89 
2032 739391.47 743515.38 713065.04 
2033 828600.24 833005.75 801791.16 
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Table 8.13 Emirate’s carbon offset obligations for servicing Australian international routes from 2021 to 2033 

Emirates 
Year CORSIA 

(100%, 0%, 0%) 
CORSIA 
(80%, 20%, 0%) 

Improved scheme 
(70%, 20%, 10%) 

2021 127107.50 102226.20 102784.91 
2022 255681.03 232408.51 234756.13 
2023 392753.74 371029.57 375997.17 
2024 538813.16 518577.77 526739.46 
2025 694375.67 675570.47 687324.76 
2026 859988.35 842555.88 858179.27 
2027 1036230.95 1020114.94 1039798.18 
2028 1223717.93 1208863.40 1232736.60 
2029 1423100.64 1409453.98 1437604.32 
2030 1635069.61 1622578.64 1655063.02 
2031 1860357.00 1848970.99 1885825.29 
2032 2099739.13 2089408.89 2130654.68 
2033 2354039.22 2344717.08 2390366.67 

 

Table 8.14 Hawaiian airline’s carbon offset obligations for servicing Australian international routes from 2021 to 

2033 

Hawaiian Airlines 
Year CORSIA 

(100%, 0%, 0%) 
CORSIA 
(80%, 20%, 0%) 

Improved scheme 
(70%, 20%, 10%) 

2021 7104.71 7494.17 6304.76 
2022 14186.90 14463.88 12360.82 
2023 21639.15 21807.87 18944.78 
2024 29485.23 29549.86 26044.29 
2025 37750.37 37715.00 33658.47 
2026 46461.33 46329.98 41794.68 
2027 55646.48 55423.09 50466.59 
2028 65335.91 65024.31 59692.88 
2029 75561.50 75165.45 69496.50 
2030 86357.04 85880.19 79904.09 
2031 97758.35 97204.24 90945.64 
2032 109803.36 109175.44 102654.37 
2033 122532.26 121833.85 115066.53 
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Table 8.15 Delta’s carbon offset obligations for servicing Australian international routes from 2021 to 2033 

Delta Air Lines 
Year CORSIA 

(100%, 0%, 0%) 
CORSIA 
(80%, 20%, 0%) 

Improved scheme 
(70%, 20%, 10%) 

2021 15646.36 9264.27 9393.47 
2022 31332.78 24876.70 25051.61 
2023 47924.29 41397.00 41565.84 
2024 65476.23 58880.47 59006.45 
2025 84047.27 77385.73 77442.47 
2026 103699.63 96974.95 96943.43 
2027 124499.25 117714.03 117580.53 
2028 146516.04 139672.80 139427.47 
2029 169824.10 162925.31 162561.14 
2030 194501.98 187550.03 187062.11 
2031 220632.92 213630.15 213015.11 
2032 248305.16 241253.84 240509.46 
2033 277612.20 270514.52 269639.46 

 

Table 8.16 Garuda’s airline’s carbon offset obligations for servicing Australian international routes from 2021 to 

2033 

Garuda 
Year CORSIA 

(100%, 0%, 0%) 
CORSIA 
(80%, 20%, 0%) 

Improved scheme 
(70%, 20%, 10%) 

2021 15884.91 16039.14 17005.33 
2022 31478.02 30912.96 32461.27 
2023 47655.84 46398.50 48293.82 
2024 64463.48 62540.50 64607.12 
2025 81948.94 79386.50 81490.94 
2026 100163.20 96987.00 99026.47 
2027 119160.40 115395.60 117290.06 
2028 138997.95 134669.13 136355.68 
2029 159736.69 154867.83 156296.64 
2030 181441.07 176055.50 177186.82 
2031 204179.33 198299.72 199101.62 
2032 228023.68 221672.03 222118.70 
2033 253050.53 246248.15 246318.58 
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Table 8.17 Etihad’s carbon offset obligations for servicing Australian international routes from 2021 to 2033 

Etihad 
Year CORSIA 

(100%, 0%, 0%) 
CORSIA 
(80%, 20%, 0%) 

Improved scheme 
(70%, 20%, 10%) 

2021 55180.20 57249.75 64312.92 
2022 109808.45 110273.87 122131.90 
2023 166931.89 165853.45 181170.61 
2024 226722.61 224159.69 241939.64 
2025 289363.38 285374.41 304862.18 
2026 355048.25 349690.52 370306.94 
2027 423983.06 417312.68 438609.15 
2028 496386.07 488457.85 510084.38 
2029 572488.62 563356.03 585038.09 
2030 652535.82 642250.90 663772.44 
2031 736787.33 725400.63 746591.37 
2032 825518.09 813078.69 833804.41 
2033 919019.27 905574.68 925729.87 

 

Table 8.18 United Airline’s carbon offset obligations for servicing Australian international routes from 2021 to 

2033 

United Airlines 
Year CORSIA 

(100%, 0%, 0%) 
CORSIA 
(80%, 20%, 0%) 

Improved scheme 
(70%, 20%, 10%) 

2021 33250.29 21021.04 20810.00 
2022 66786.28 54788.40 54402.52 
2023 102447.30 90672.09 90133.80 
2024 140357.61 128796.51 128126.33 
2025 180648.90 169293.48 168509.99 
2026 223460.69 212302.69 211422.67 
2027 268940.88 257972.20 257010.73 
2028 317246.21 306458.95 305429.55 
2029 368542.83 357929.28 356844.07 
2030 423006.89 412559.55 411429.39 
2031 480825.13 470536.69 469371.32 
2032 542195.51 532058.90 530867.04 
2033 607327.93 597336.31 596125.79 
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Chapter 9. Conclusion  

9.1 Overview 

For a geographically isolated nation such as Australia, there are very few alternative transport 

options other than aviation that can transport both passengers and freight internationally in a timely 

manner. International aviation emissions were excluded from Kyoto protocol and UNFCCC 

COP21, and ICAO was tasked to work with member states and industry groups in limiting and 

reducing international aviation emissions. Members of ICAO have committed to the aspirational 

goal of carbon neutral growth and 2% fuel efficiency improvement from 2020. At the 39th ICAO 

assembly in 2016, a global market-based measure for reducing international aviation emissions was 

tabled for implementation in 2021. To attain the aspiration goals, the global MBM will join other 

emissions mitigation measures namely sustainable fuels, and more efficient aircraft operations and 

aircraft technologies. 

Chapter 2 gives some background and highlights how governments have directly and indirectly 

influenced the development of the aviation industry. By knowing the CO2 emissions profile of 

airlines serving Australian international routes, the financial viability of emissions abatement 

options and the equitableness of the ICAO global MBM, this thesis identify additional 

environmental policy instruments that encourage airlines to emit less CO2 and be more productive. 

Chapter 4 presents the CO2 emissions profile for the 14 airlines that carried 72% of all international 

passengers into and out of Australia in 2012. Airline performance metrics such as available seat 

mile, revenue passenger kilometre, cost per seat mile, passenger load factor, fuel cost per passenger, 

fuel consumption per seat mile and many others focus on an airline’s performance with respect to 

the number of passengers, number of seats or weight of freight separately. C Miyoshi and Merkert 

(2015) defines an airline’s carbon efficiency as the amount of CO2 emitted per available tonne-

kilometre (ATK), where ATK is the available weight capacity for transporting passengers, freight 

and mail. Airlines with a more fuel-efficient fleet of aircraft will most likely have a lower CO2 per 

ATK, but this definition of carbon efficiency does not take into consideration the actual number of 

passengers, freight and/or mail that was transported (i.e. the utilised capacity). In this thesis, the 

airline’s fuel/CO2 efficiency metric is defined as the CO2 emitted for transporting the combined 

weight of passengers, luggage and freight (including mail) over a kilometre (i.e. grams of CO2 

emitted per kilogram-kilometre). An airline’s emissions profile is the total CO2 emissions, the 

amount of CO2 emissions for transporting a passenger over one kilometre and the amount of CO2 

emissions for transporting a kilogram of payload over one kilometre. In 2012, 13.1 Mt of CO2 
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emissions were generated at a carbon efficiency of 75.7 grams of CO2 per passenger-kilometre 

(75.7g/pax-km) or 0.71 grams of CO2 per kg of payload-kilometre (0.71g/kg-km). The results 

highlight the importance of freight when calculating the airlines carbon efficiency, where traditional 

network carriers such as Cathay Pacific can match the efficiency of a low-cost airline such as 

AirAsia X by transporting more cargo and fewer passengers while flying the same type of aircraft. 

In 2012, both airlines attain carbon efficiency of 0.6 g of CO2 per kg-km. Emirates exercising their 

5th freedom traffic rights between Australia and New Zealand has a low load factor, leading to low 

CO2 efficiency. Short-haul flights account for almost 60% of the international flight, but only 

around 20% of the emissions at 2.6 Mt. The results show that, due to Australia’s geographic 

isolation, selecting the “right” aircraft on long- and medium-haul routes can greatly reduce the total 

emissions and airlines can improve their carbon efficiency by emitting less and/or by increasing 

their payload. Australian airlines account for just over a third of all emissions, with Qantas 

responsible for just over a quarter of all emissions. These findings answer research question 1 

“What is the CO2 emissions profile of airlines operating in the Australian international routes?” 

Chapter 5 builds on Chapter 4 by modelling the change in the CO2 emissions profile as passengers 

and cargo traffic grows at 6% and 5% per annum respectively between 2013 and 2033. Airlines will 

implement a number of abatement options to curb the growth in CO2 emissions and the analysis 

show that, by acquiring the latest and more efficient aircraft, 17.2 Mt and 32.1 Mt of CO2 would be 

emitted in 2020 and 2033 respectively. By increasing the load factor by 10% and combining flights 

together, CO2 emissions will grow at 6.1% per annum with 15.6Mt and 29.2Mt emitted in 2020 and 

2033. Carbon efficiency has also improved from 0.71g of CO2 per kg-km to 0.56g/kg-km in 2020 

and 0.49g/kg-km in 2030. Airlines flying in Australian international routes will need additional 

abatement options in orders to stay carbon neutral after 2020 and not all of these abatement options 

are financially viable. 

Chapter 6 determines the acquisition, installation, maintenance and fuel cost associated with the 

abatement options presented in Chapter 5 over the remaining life of each aircraft for each airline. 

Because non-Australia-based airlines will utilise only a small fraction of their fleet to service the 

Australian market, a MACC was produced that combined all the foreign carriers’ aircraft used on 

Australian routes. MACCs for each of the three Australian-based airlines are also presented. Even 

though, acquiring new fuel-efficient aircraft will reduce the most emissions, this option is only 

financially viable if aircraft are purchased on favourable financial terms. If aircraft purchase is 

financed at 6% per annum and repaid over 12 years, and airlines implement all the financially 

viable abatement options, airlines flying into and out of Australia will emit 33.6 Mt of CO2, with a 

CO2 efficiency of 0.53 g/kg-km in 2033. The amount of CO2 emitted will drop to 31.7 Mt with a 
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CO2 efficiency of 0.46 g/kg-km if new aircraft purchases are financed at 2% per annum. In Chapter 

5, if the load factor on each flight was increased by 10% and flights are bundled together, an 

additional 3.1Mt CO2 can be reduced by 2033. According to Brueckner and Zhang (2010), charging 

for emissions will increase airfares, improve aircraft fuel efficiency, reduce flight frequency and 

increase passenger load factor. The increase in ticket price as a result of airlines passing the 

environmental cost to passengers can affect travel demand, as can pandemics and changes to GDP 

(Boeing, 2012a, 2016; Liu, Moss, & Zhang, 2011; Pagoni & Psaraki-Kalouptsidi, 2016). Because 

the change in passenger load factor depends on many factors (such as airfares, economy, security 

concerns, pandemics, frequent flyer programs) it is unclear what the abatement cost for increasing 

load factor will be, and so it was excluded from the costing model used to produce these four 

MACCs. 

These findings (in Chapter 5 and 6) answer research question 2: “What emissions abatement options 

are available to airlines on Australian international routes and what is the impact on the future CO2 

emissions profile? What are the marginal abatement costs and what is the impact of low-interest 

finance?” 

Chapter 7 reviews the CORSIA that was tabled at the 39th ICAO Assembly in 2016, and presented 

an improved carbon offset scheme. Members of ICAO have adopted the aspirational goals of 

carbon neutral growth and 2% fuel efficiency improvements from 2020 onwards. The CORSIA 

distributes offset obligations based on a combination of sectoral and individual factors. For each 

airline, the sectoral factor is the proportion of the total emission that each airline is responsible for, 

and the individual factor is an airline’s relative success or failure at meeting its baseline emissions 

level (where the baseline emissions level is the average of emissions in 2019 and 2020). The 

CORSIA does not take into consideration each airline’s relative success or failure at attaining the 

2% fuel efficiency improvements. In Chapter 4, carbon efficiency is defined as the amount of CO2 

emitted in order to fly each kilogram of payload over one kilometre. CO2 efficiency can be 

improved by reducing emissions on each flight, which can involve upgrading the aircraft/aircraft 

technology, flying more efficiently or refuelling with biofuel. CO2 efficiency can also be improved 

by increasing the payload on each flight where payload is defined as the combined weight of the 

passengers, luggage and freight. The improved carbon offset scheme also rewards carbon efficient 

airlines with reduced offset obligations if the airline surpasses or meets the yearly CO2 efficiency 

target and vice versa. 

In Chapter 8, the CORSIA and the improved carbon offset scheme presented in Chapter 7 are 

applied to the airlines servicing Australian international routes to determine each airline’s carbon 

offset obligations. The 14 airlines studied in Chapter 4 would acquire new aircraft to service all the 
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growth in passenger and cargo traffic. If the airlines implemented all the financially viable 

abatement options, financed the acquisition of new aircraft at 2% per annum repaid over 12-year 

period, and set the 2021 CO2 efficiency target to be the average CO2 efficiency in 2019 and 2020, 

with the target improving at a yearly rate of 2%, then 848.8 kt and 15.2 Mt of CO2 will need to be 

offset in 2021 and 2033, respectively. The results showed that the CORSIA does not reward 

efficient airlines such as AirAsia X and Cathay Pacific that are early adopters of fuel-efficient 

technologies or practices. The improved carbon offset scheme where sectoral, individual and 

efficiency factors are weighted at 70%, 20% and 10%, respectively, would reward these efficient 

airlines with lower offset obligations. These results show that by incorporating CO2 efficiency 

target into the CORSIA, airlines have an additional incentive not only to emit less but also to be 

more CO2 efficient. 

The results presented in Chapters 7 and 8 thus answer research question 3 “What integrative 

policies could facilitate more effective emissions outcomes on the Australian international routes?” 

9.2 Policy implications 

The results provide policy makers with a snapshot of the CO2 emission profiles (both quantity and 

efficiency) of airlines servicing Australian international routes in 2012 and estimated the change in 

emissions profile as airlines implement a number of abatement options over the next 20 years. This 

thesis has the following implications for policy makers: 

• Policy makers should consider performance standards that allow airlines the freedom to 

choose the most appropriate means of meeting their commitments. In this thesis the airline’s 

CO2 emitted for transporting the combined weight of passengers, luggage and freight 

(including mail) over one kilometre (i.e. grams of CO2 emitted per kilogram kilometre) 

provides a fairer assessment of an airline’s fuel/CO2 efficiency, irrespective of the airline’s 

business model, revenue, ATK or equipment used. Setting a fuel/CO2 efficiency target based 

on this metric would allow airlines the flexibility to choose more fuel-efficient equipment, 

increase payload and/or increase flight distance so as to meet this efficiency target. 

• Policy makers should consider incorporating CO2 efficiency targets into the ICAO’s 

CORSIA. This will provide airlines with additional incentives to be more CO2 efficient. 

• The cost of emissions abatement options in aviation can be high, and policy makers should 

consider an aviation “green” credit agency similar to export credit agencies to assist in 

financing the acquisition and implementation of these abatement options. (However 

additional research will be needed because government intervention in the credit market 

would be welcome by airlines that benefit the most from the intervention but could be seen 
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as “government welfare” if the intervention involve the use of public funds. By producing 

MACCs for each airline, policy makers can determine which airlines benefit the most and 

least, and also identify likely source of objections to such an intervention. Arul (2014) 

presented four methods to raise funds from passengers and airlines for emissions reduction 

projects. These methods “monetise” GHG emissions which takes into consideration load 

factors and emissions per passenger-mile). 

9.3 Limitations 

There are limitations to this research. Mostly these relate to the high traffic growth rate in the Asia-

Pacific region, the input data that was used in the emission model and costing model, and also to 

some of the assumptions and data used when constructing these models. 

Because the Asia-Pacific region is experiencing some of the highest growth in air travel, the number 

of airlines, flights, routes and international passengers into and out of Australia, and the resultant 

emissions profile, will change (Air Transport Action Group (ATAG), 2016). In Chapter 4, the 2012 

airlines emissions profiles excluded flights to and from China (the ninth highest source of 

passengers to Australia) since China-based airlines did not play a significant role in the Australian 

international market at that time. In 2016, China became the second highest source of visitors to 

Australia and will overtake New Zealand in 2017 (Austrade, 2016). In 2012, three major Chinese 

airlines flew between their respective hubs in Beijing, Shanghai and Guangzhou to and from 

Australia, but by 2016 this has doubled to six airlines and from 12 Chinese cities (CAPA - Centre 

for Aviation, 2016). All three major Chinese carriers and their respective hub airports in Beijing, 

Shanghai and Guangzhou also handle some of the highest volumes of air freight (Woods, 2016a, 

2016b). 

In Chapter 4, the International airline activity data that was collected and published by the BITRE 

which was used to determine the emissions profile, showed passenger and freight traffic for each 

airline flying between Australia and destination country in each month. Ideally, this passenger and 

freight traffic load should be between each Australian and international city pairs, so as to improve 

the fidelity of the model. In the model, the weight of each passenger’s luggage is set at 15 kg for 

short-haul international flight and 25 kg on medium- and long-haul flights. On certain airlines, the 

complimentary luggage allowance from flights to USA starts at 46kg for each passenger, which is 

almost double the amount used in the simulation. An increase in passenger luggage can improve 

CO2 efficiency, but it could also lower amount of freight that can be carried on each flight. 
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Abatement options modelled in Chapter 5 were assumed to have no interaction with each other, and 

implementing one option has no effect on later adoption of other abatement options, and there are 

no flow-on effects that could affect the passenger and freight growth rate. This, of course, is not 

accurate; for example, some airlines have retrofitted their aircraft with new light-weight thin seats, 

which require less space and have allowed airlines to install additional seats. This allowed these 

airlines to transport additional passengers, thus increasing the payload and improving the CO2 

efficiency on each flight. The model also assumed that all airlines that service Australian 

international routes could implement or retrofit their fleet with each abatement option in one year. 

Renewing and retiring an airline’s fleet can take many years and will depend on many factors, such 

as the aircraft manufacturer, traffic growth, fuel cost and maintenance cost. Finally, the model 

assumes the average distance flown and the average number of seats per flight remains unchanged 

on all flights over the next 20 years. However, new aircraft models are usually more fuel efficient, 

may have a better range and have increased payload capacity than the superseded model. 

The assumptions and data used to construct aircraft purchase, lease, residual and maintenance cost 

models in Chapter 6 have a number of limitations. The aircraft purchase cost model assumed that 

airlines will finance 90% of the aircraft’s cost over 12 and 15 years, with aircraft list prices 

discounted at 40% for the latest generation of aircraft (777X, 737MAX) and 50% for all other 

aircraft. The actual discounts are very rarely published, and the model estimated the discount based 

on the published market value of aircraft in the leasing company’s portfolios. The exact terms that 

airlines finance their aircraft purchases are also not publicly available. The aircraft leasing cost 

model had assumed a fixed lease period of 5 years, with a lease rate factor of 10% per annum, but 

lease rates and period are dependent on many factors, ranging from aircraft demand, economy, 

aircraft market value and aircraft age. The residual cost model assumed that all aircraft are straight-

line depreciated over 25 years, with a final 10% residual value, and that airlines retire their fleet 

when aircraft are  25 years old. Airlines serving the Australian market depreciate their fleet over a 

period of between 15 and 25 years, with some airlines, such as Singapore and Emirates retiring their 

aircraft earlier than their competitors. The amount airlines receive when an aircraft is disposed is 

dependent on many factors, including the age of aircraft, availability of new aircraft, passenger 

growth rate and freight growth rate. Maintenance cost for each aircraft type used in the model were 

extracted from maintenance cost graphs in the executive commentary by Markou and Cros (2013). 

The accuracy of the maintenance cost model can be improved by acquiring the raw data used to 

produce these graphs in the executive commentary. Lost revenue when an aircraft is taken out of 

service and modification performed was not modelled because this will vary for each airline and 

route. 
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9.4 Future research 

The intention of this thesis was to provide a better understanding of airlines emissions and airline 

efficiency and to determine how best to incorporate this knowledge into environmental policy 

instruments for reducing international aviation emissions. 

This sets the stage for further research in the following areas. Chapter 5 showed that the increase in 

the passenger load on each flight and combining flights led to reduction in the number of flights and 

emissions and improvements in CO2 efficiency. Research is required to determine the factors and 

identify the financial instruments, or other policy instruments, that can be used to increase the 

passenger load factor and freight on each flight. Chapter 6 showed that favourable finance increased 

the likelihood that airlines will acquire new aircraft. Further research is needed to investigate 

“green” financing that can help the aviation industry research, develop and implement additional 

abatement options to reduce additional emissions from the aviation industry. Chapter 8, showed that 

the efficiency factor in the improved carbon offset scheme needs further study to remove some 

inconsistent behaviour. The “right” and/or multiple CO2 efficiency target should allow airlines the 

flexible to choose the appropriate abatement options (i.e. technology, airline practice, business 

model and routes) to improve their emissions profile. Finally, the CORSIA and the improved 

carbon offset scheme are seeking to offset aviation emissions growth that exceeded the average of 

2019 and 2020 emissions level, but offsetting does not decarbonise the aviation industry. 

In conclusion, this thesis has shown that Australian long- and medium-haul flights are some of the 

biggest contributors to CO2 emissions. Some of the most efficient airlines are already serving these 

Australian international routes. On some of these routes, freight plays an important component of 

the total payload and a more accurate measure of an airline’s fuel/CO2 efficiency is to determine the 

amount of CO2 emitted for transporting the combined weight of passengers, luggage and freight 

over each kilometre. Non-Australian carriers exercising their 5th freedom traffic rights on NZ routes 

are some of the least CO2 efficient airlines. It is hoped that policy makers can use the results of this 

thesis to improve the ICAO’s CORSIA. Due to the high cost of research, development and 

implementation of certain abatement options, it is also hoped that policy makers can establish a 

“green” aviation credit/finance for the aviation industry. 



K-s.Yin Page 158 

Chapter 10. References 

Air New Zealand. (2012a). Air New Zealand invests in B777-200ER upgrade programme. from 
http://www.airnewzealand.com.au/press-release-2012-airnz-invests-in-b777-200er-upgrade-
programme 

Air New Zealand. (2012b). Annual Financial Result. from 
http://www.airnewzealand.com.au/assets/PDFs/2012-annual-financial-report.pdf 

Air Transport Action Group (ATAG). (2016). Aviation Benefits Beyond Borders. from 
http://aviationbenefits.org/media/149668/abbb2016_full_a4_web.pdf 

AirAsia. (2012). Annual Report. from http://www.airasia.com/iwov-
resources/my/common/pdf/AirAsia/IR/annual-report-2012.pdf 

Airbus. (2004). Getting to grips with Fuel Economy. from 
http://ansperformance.eu/references/library/airbus-fuel-economy.pdf 

Airbus (Producer). (2012a). A320 Sharklet Entry into Service. Retrieved from 
http://www.globalaviationpartners.com/wp-
content/uploads/2014/09/p_Sharklet_Entry_into_Service.pdf 

Airbus. (2012b). Airbus Global Market Forecast 2012-2031. Airbus, 1-64. 
http://www.airbusgroup.com/dam/assets/airbusgroup/int/en/investor-
relations/documents/2012/presentations/2012-31-Global-Market-
Forecast/Global+Market+Forecast+2012-2031.pdf 

Airbus. (2013). New Airbus aircraft list price for 2013. from 
http://www.airbus.com/presscentre/pressreleases/press-release-detail/detail/new-airbus-aircraft-list-
prices-for-2013/ 

Airbus. (2014a). Airbus Aircraft Families. 2014, from 
http://www.airbus.com/aircraftfamilies/passengeraircraft/ 

Airbus. (2014b). Airbus GMF booklet 2014-2033. from 
http://www.airbus.com/company/market/forecast/ 

Airbus. (2014c). New Airbus aircraft list prices for 2014. from 
http://www.airbus.com/presscentre/pressreleases/press-release-detail/detail/new-airbus-aircraft-list-
prices-for-2014/ 

Airbus. (2015). New Airbus aircraft list prices for 2015. from 
http://www.airbus.com/presscentre/pressreleases/press-release-detail/detail/new-airbus-aircraft-list-
prices-for-2015/ 

Airbus. (2016a). Global Market Forecast 2016-2035. from 
http://www.airbus.com/company/market/global-market-forecast-2016-2035/ 

Airbus. (2016b). Lufthansa takes delivery of the world’s first Airbus A320neo as launching 
customer. http://www.airbus.com/presscentre/pressreleases/press-release-detail/detail/lufthansa-
takes-delivery-of-the-worlds-first-airbus-a320neo-as-launching-customer/ 

Aircraft Interior International. (2013). Fibre provider. Aircraft Interior International. 2015, from 
http://www.lumexis.com/press/aix-article-2013-1-31/ 

Airfleets. (2016). Airlines Fleet. from http://www.airfleets.net/recherche/airline.htm 

Alamdari, F. (1999). Airline in-flight entertainment: the passengers’ perspective. Journal of Air 
Transport Management, 5(4), 203-209. doi: http://dx.doi.org/10.1016/S0969-6997(99)00014-9 

http://www.airnewzealand.com.au/press-release-2012-airnz-invests-in-b777-200er-upgrade-programme
http://www.airnewzealand.com.au/press-release-2012-airnz-invests-in-b777-200er-upgrade-programme
http://www.airnewzealand.com.au/assets/PDFs/2012-annual-financial-report.pdf
http://aviationbenefits.org/media/149668/abbb2016_full_a4_web.pdf
http://www.airasia.com/iwov-resources/my/common/pdf/AirAsia/IR/annual-report-2012.pdf
http://www.airasia.com/iwov-resources/my/common/pdf/AirAsia/IR/annual-report-2012.pdf
http://ansperformance.eu/references/library/airbus-fuel-economy.pdf
http://www.globalaviationpartners.com/wp-content/uploads/2014/09/p_Sharklet_Entry_into_Service.pdf
http://www.globalaviationpartners.com/wp-content/uploads/2014/09/p_Sharklet_Entry_into_Service.pdf
http://www.airbusgroup.com/dam/assets/airbusgroup/int/en/investor-relations/documents/2012/presentations/2012-31-Global-Market-Forecast/Global+Market+Forecast+2012-2031.pdf
http://www.airbusgroup.com/dam/assets/airbusgroup/int/en/investor-relations/documents/2012/presentations/2012-31-Global-Market-Forecast/Global+Market+Forecast+2012-2031.pdf
http://www.airbusgroup.com/dam/assets/airbusgroup/int/en/investor-relations/documents/2012/presentations/2012-31-Global-Market-Forecast/Global+Market+Forecast+2012-2031.pdf
http://www.airbus.com/presscentre/pressreleases/press-release-detail/detail/new-airbus-aircraft-list-prices-for-2013/
http://www.airbus.com/presscentre/pressreleases/press-release-detail/detail/new-airbus-aircraft-list-prices-for-2013/
http://www.airbus.com/aircraftfamilies/passengeraircraft/
http://www.airbus.com/company/market/forecast/
http://www.airbus.com/presscentre/pressreleases/press-release-detail/detail/new-airbus-aircraft-list-prices-for-2014/
http://www.airbus.com/presscentre/pressreleases/press-release-detail/detail/new-airbus-aircraft-list-prices-for-2014/
http://www.airbus.com/presscentre/pressreleases/press-release-detail/detail/new-airbus-aircraft-list-prices-for-2015/
http://www.airbus.com/presscentre/pressreleases/press-release-detail/detail/new-airbus-aircraft-list-prices-for-2015/
http://www.airbus.com/company/market/global-market-forecast-2016-2035/
http://www.airbus.com/presscentre/pressreleases/press-release-detail/detail/lufthansa-takes-delivery-of-the-worlds-first-airbus-a320neo-as-launching-customer/
http://www.airbus.com/presscentre/pressreleases/press-release-detail/detail/lufthansa-takes-delivery-of-the-worlds-first-airbus-a320neo-as-launching-customer/
http://www.lumexis.com/press/aix-article-2013-1-31/
http://www.airfleets.net/recherche/airline.htm
http://dx.doi.org/10.1016/S0969-6997(99)00014-9


K-s.Yin Page 159 

Alaska Airlines. (2014). Alaska Air Group Sustainability Highlights. Strategies to Improve 
Aerodynamics. from https://www.alaskaair.com/content/about-us/sustainability-report.aspx 

http://www.alaskaair.com/content/about-us/sustainability-report/2014-highlights 

http://www.prnewswire.com/news-releases/alaska-air-group-reduced-its-emissions-intensity-by-30-
percent-over-the-past-10-years-2014-accomplishments-detailed-in-third-annual-sustainability-
report-300086201.html 

Ali, S., Hampson, N., Inglis, W., Sargeant, A., & Ali, A. (2013). Aviation Finance: Fastern your 
seatbelts. from https://www.pwc.com/en_GX/gx/aerospace-defence/publications/assets/pwc-
aviation-finance-fastern-your-seat-belts-pdf.pdf 

Alonso, G., Benito, A., Lonza, L., & Kousoulidou, M. (2014). Investigations on the distribution of 
air transport traffic and CO2 emissions within the European Union. Journal of Air Transport 
Management, 36, 85-93. doi: 10.1016/j.jairtraman.2013.12.019 

Arul, S. G. (2014). Methodologies to monetize the variations in load factor and GHG emissions per 
passenger-mile of airlines. Transportation Research Part D: Transport and Environment, 32, 411-
420. doi: 10.1016/j.trd.2014.08.018 

Ascend. (2013). Lease Rates. from http://www.airliners.net/aviation-
forums/general_aviation/read.main/5884179/2/269261039#20 

http://www.airliners.net/aviation-forums/general_aviation/read.main/5763316/2/1533312475#39 

Ascend (Producer). (2014a). The 100 billion dollar baby! Retrieved from 
http://www.ascendworldwide.com/download/AscendGlobalWebcast_Feb2014.pdf 

Ascend. (2014b). Lease Rates. from http://www.airliners.net/aviation-
forums/general_aviation/read.main/5970415/2/1001471833#38 

http://www.airliners.net/aviation-forums/general_aviation/read.main/6134182/2/#1 

Ascend. (2015). Lease rates. from http://www.airliners.net/aviation-
forums/general_aviation/read.main/6360438/2/829350324#58 

Asia and Pacific Initiative to Reduce Emissions (ASPIRE). (2012). ASPIRE Annual Report. 

Austrade. (2016). International visitors to Australia. from 
http://www.tra.gov.au/documents/ivs/International_Visitors_in_Australia_June_2016_quarterly_res
ults_of_the_International_Visitor_Survey.html#TopmarketsVisitorsChart 

Australian Aviation (Producer). (2012). SIA’s Queen bids adieu. Australian Aviation. Retrieved 
from http://australianaviation.com.au/2012/03/sias-queen-bids-adieu/ 

Australian Aviation (Producer). (2013a). Jetstar Group celebrates 100 aircraft. Australian Aviation. 
Retrieved from http://australianaviation.com.au/2013/04/jetstar-group-celebrates-100-aircraft/ 

Australian Aviation (Producer). (2013b). Launch customer Air New Zealand gets its first A320 with 
Sharklets. Australian Aviation. Retrieved from http://australianaviation.com.au/2013/06/launch-
customer-air-new-zealand-gets-its-first-a320-with-sharklets/ 

Aviation Partners Boeing. (2015). Aviation Partners Boeing Blended Winglets.   Retrieved 24-
April, 2015, from http://www.aviationpartnersboeing.com/products.php 

Bachman, J., & Schlangenstein, M. (2017). Southwest is launch customer for Boeing 737 MAX but 
won’t get the first delivery, Seattle Times. Retrieved from 
http://www.seattletimes.com/business/southwest-is-launch-customer-for-boeing-737-max-but-wont-
get-the-first-delivery/ 

http://www.alaskaair.com/content/about-us/sustainability-report.aspx
http://www.alaskaair.com/content/about-us/sustainability-report/2014-highlights
http://www.prnewswire.com/news-releases/alaska-air-group-reduced-its-emissions-intensity-by-30-percent-over-the-past-10-years-2014-accomplishments-detailed-in-third-annual-sustainability-report-300086201.html
http://www.prnewswire.com/news-releases/alaska-air-group-reduced-its-emissions-intensity-by-30-percent-over-the-past-10-years-2014-accomplishments-detailed-in-third-annual-sustainability-report-300086201.html
http://www.prnewswire.com/news-releases/alaska-air-group-reduced-its-emissions-intensity-by-30-percent-over-the-past-10-years-2014-accomplishments-detailed-in-third-annual-sustainability-report-300086201.html
http://www.pwc.com/en_GX/gx/aerospace-defence/publications/assets/pwc-aviation-finance-fastern-your-seat-belts-pdf.pdf
http://www.pwc.com/en_GX/gx/aerospace-defence/publications/assets/pwc-aviation-finance-fastern-your-seat-belts-pdf.pdf
http://www.airliners.net/aviation-forums/general_aviation/read.main/5884179/2/269261039#20
http://www.airliners.net/aviation-forums/general_aviation/read.main/5884179/2/269261039#20
http://www.airliners.net/aviation-forums/general_aviation/read.main/5763316/2/1533312475#39
http://www.ascendworldwide.com/download/AscendGlobalWebcast_Feb2014.pdf
http://www.airliners.net/aviation-forums/general_aviation/read.main/5970415/2/1001471833#38
http://www.airliners.net/aviation-forums/general_aviation/read.main/5970415/2/1001471833#38
http://www.airliners.net/aviation-forums/general_aviation/read.main/6134182/2/#1
http://www.airliners.net/aviation-forums/general_aviation/read.main/6360438/2/829350324#58
http://www.airliners.net/aviation-forums/general_aviation/read.main/6360438/2/829350324#58
http://www.tra.gov.au/documents/ivs/International_Visitors_in_Australia_June_2016_quarterly_results_of_the_International_Visitor_Survey.html#TopmarketsVisitorsChart
http://www.tra.gov.au/documents/ivs/International_Visitors_in_Australia_June_2016_quarterly_results_of_the_International_Visitor_Survey.html#TopmarketsVisitorsChart
http://australianaviation.com.au/2012/03/sias-queen-bids-adieu/
http://australianaviation.com.au/2013/04/jetstar-group-celebrates-100-aircraft/
http://australianaviation.com.au/2013/06/launch-customer-air-new-zealand-gets-its-first-a320-with-sharklets/
http://australianaviation.com.au/2013/06/launch-customer-air-new-zealand-gets-its-first-a320-with-sharklets/
http://www.aviationpartnersboeing.com/products.php
http://www.seattletimes.com/business/southwest-is-launch-customer-for-boeing-737-max-but-wont-get-the-first-delivery/
http://www.seattletimes.com/business/southwest-is-launch-customer-for-boeing-737-max-but-wont-get-the-first-delivery/


K-s.Yin Page 160 

Backx, M., Carney, M., & Gedajlovic, E. (2002). Public, private and mixed ownership and the 
performance of international airlines. Journal of Air Transport Management, 8(4), 213-220. doi: 
http://dx.doi.org/10.1016/S0969-6997(01)00053-9 

Banbury, J., Behrens, D., Bowell, Q., Campos, N., Cirilo, C., Choi, T. P., . . . Toepoel, V. R. (2009). 
The  IATA Technology Roadmap Report. 
https://www.iata.org/whatwedo/environment/Documents/technology-roadmap-2009.pdf 

Banbury, J., Behrens, D., Browell, Q., Campos, N., Cirilo, C., Markou, C., . . . Stumpf, E. (2009). 
IATA Technology Roadmap - Technical Annex. 
https://www.iata.org/whatwedo/environment/Documents/technology-roadmap-annex.pdf 

Barker, T., Bashmakov, I., Bernstein, L., Bogner, J. E., Bosch, P. R., Dave, R., . . . Zhou, D. (2007). 
Technical Summary. In: Climate Change 2007: Mitigation. Contribution of Working Group III to 
the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. from 
http://www.ipcc.ch/publications_and_data/ar4/wg3/en/ts.html 

Bazargan, M., & Hartman, J. (2012). Aircraft replacement strategy: Model and analysis. Journal of 
Air Transport Management, 25, 26-29. doi: http://dx.doi.org/10.1016/j.jairtraman.2012.05.001 

Bednarek, J. R. (2016). Airports, Cities and the Jet Age 
US Airports Since 1945 Palgrave Studies in the History of Science and Technology J. Fleming & R. 
Launius (Eds.),    
Berdowski, Z., Broek-Serle, F. N. v. d., Jetten, J. T., Kawabata, Y., Schoemaker, J. T., & Versteegh, 
R. (2009). Survey on Standard Weights of Passengers and Baggage   Retrieved from 
https://www.easa.europa.eu/system/files/dfu/Weight%20Survey%20R20090095%20Final.pdf  

Berglund, T. (2008). Evaluation of Fuel Saving for an Airline. (Bachelor in Aeronautical 
Engineering), Malardalen University. Retrieved from http://www.diva-
portal.org/smash/get/diva2:121168/FULLTEXT01.pdf  
(MDH.IDT.FLYG.0188.2008.GN300.15HP.FP) 

Bockel, L., Sutter, P., Touchemoulin, O., & Jönsson, M. (2012). Using Marginal Abatement Cost 
Curves to Realize the Economic Appraisal of Climat Smart Agriculture Policy Options. from 
http://www.fao.org/docs/up/easypol/906/ex-act_MACC_116EN.pdf 

Boeing. (2004). Fuel Conservation Flight Operations Engineering. from 
http://www.phenom.aero/resources/library/fuel_conservation.pdf 

Boeing. (2007). Financing Aircraft. from 
http://www.boeing.com/resources/boeingdotcom/company/about_bca/pdf/Financing_Options.pdf 

Boeing. (2009). 777 Perf Summary. Seattle, USA. 

Boeing (Producer). (2012a, Jan 2012). Aviation Policy and Geopolitics 2012. Boeing. Retrieved 
from www.boeing.com/commercial/pdf/geopolitical_trends.pdf 

Boeing. (2012b). Boeing Current Market Outlook 2012 Boeing (pp. 1-43). Boeing. 

Boeing. (2014a). Boeing Commercial Aircraft Chracteristics. 2014, from 
http://www.boeing.com/boeing/commercial/products.page 

Boeing. (2014b). Boeing Current Market Outlook 2014. from 
http://www.boeing.com/boeing/commercial/cmo/ 

Boeing. (2015). Airplane Prices. from http://www.boeing.com/company/about-bca/ 

Boeing. (2016). Current market outlook 2016-2035. from 
http://www.boeing.com/resources/boeingdotcom/commercial/about-our-
market/assets/downloads/cmo_print_2016_final_updated.pdf 

http://dx.doi.org/10.1016/S0969-6997(01)00053-9
http://www.iata.org/whatwedo/environment/Documents/technology-roadmap-2009.pdf
http://www.iata.org/whatwedo/environment/Documents/technology-roadmap-annex.pdf
http://www.ipcc.ch/publications_and_data/ar4/wg3/en/ts.html
http://dx.doi.org/10.1016/j.jairtraman.2012.05.001
http://www.easa.europa.eu/system/files/dfu/Weight%20Survey%20R20090095%20Final.pdf
http://www.diva-portal.org/smash/get/diva2:121168/FULLTEXT01.pdf
http://www.diva-portal.org/smash/get/diva2:121168/FULLTEXT01.pdf
http://www.fao.org/docs/up/easypol/906/ex-act_MACC_116EN.pdf
http://www.phenom.aero/resources/library/fuel_conservation.pdf
http://www.boeing.com/resources/boeingdotcom/company/about_bca/pdf/Financing_Options.pdf
http://www.boeing.com/commercial/pdf/geopolitical_trends.pdf
http://www.boeing.com/boeing/commercial/products.page
http://www.boeing.com/boeing/commercial/cmo/
http://www.boeing.com/company/about-bca/
http://www.boeing.com/resources/boeingdotcom/commercial/about-our-market/assets/downloads/cmo_print_2016_final_updated.pdf
http://www.boeing.com/resources/boeingdotcom/commercial/about-our-market/assets/downloads/cmo_print_2016_final_updated.pdf


K-s.Yin Page 161 

Bognár, V. (2012). Carbon leakage and distortion of competition between EU and non-EU airlines 
and hub airports The negative impact of the inclusion of aviation in the EU ETS. (Master of Arts in 
European Economic Studies Masters), College of Europe.    

Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., . . . Zender, 
C. S. (2013). Bounding the role of black carbon in the climate system: A scientific assessment. 
Journal of Geophysical Research: Atmospheres, 118(11), 5380-5552. doi: 10.1002/jgrd.50171 

Borggren, C., Moberg, Å., Räsänen, M., & Finnveden, G. (2013). Business meetings at a distance – 
decreasing greenhouse gas emissions and cumulative energy demand? Journal of Cleaner 
Production, 41, 126-139. doi: http://dx.doi.org/10.1016/j.jclepro.2012.09.003 

Borken-Kleefeld, J., Fuglestvedt, J., & Berntsen, T. (2013). Mode, Load, And Specific Climate 
Impact from Passenger Trips. Environ Sci Technol, 47(14), 7608-7614. doi: 10.1021/es4003718 

Braathen, N. A., Philippe Crist, Delzeit, R., Hood, C., Searchinger, T., Eisentraut, A., & Steenblik, 
R. (2012). Green Growth and the Futurn of Aviation. Paper presented at the 27th Round Table on 
Sustainable Development, OECD Headquarters, Paris,  France. https://www.oecd.org/sd-
roundtable/papersandpublications/49482790.pdf 

Brueckner, J. K., & Zhang, A. (2010). Airline emission charges: Effects on airfares, service quality, 
and aircraft design. Transportation Research Part B: Methodological, 44(8–9), 960-971. doi: 
http://dx.doi.org/10.1016/j.trb.2010.02.006 

Bureau of Infrastructure Transport and Regional Economics (BITRE). (2014). International Airline 
Activity - Monthly Publications. 2014, from 
http://www.bitre.gov.au/publications/ongoing/international_airline_activity-
monthly_publications.aspx 

Bureau of Infrastructure Transport and Regional Economics (BITRE). (2017). Australia's Air 
Services Agreements/Arrangements. from 
https://infrastructure.gov.au/aviation/international/agreements.aspx 

Burniaux, J.-M., Chateau, J., Dellink, R., Duval, R., Jamet, S., & Alain de Serres (Producer). 
(2009). The Economics of Climate Change Mitigation Policies and Options for Global Action 
Beyond 2012. Retrieved from 
http://www.oecd.org/env/cc/theeconomicsofclimatechangemitigationpoliciesandoptionsforglobalact
ionbeyond2012.htm 

Button, K., & McDougall, G. (2006). Institutional and structure changes in air navigation service-
providing organizations. Journal of Air Transport Management, 12(5), 236-252. doi: 
http://dx.doi.org/10.1016/j.jairtraman.2006.07.001 

CAPA - Centre for Aviation. (2013). Airbus A330 continues to pull in sales even as the 787 
Dreamliner recovers momentum. http://centreforaviation.com/analysis/airbus-a330-continues-to-
pull-in-sales-even-as-the-787-dreamliner-recovers-momentum-111317 

CAPA - Centre for Aviation. (2016). China-Australia aviation: one million visitors & flights on 21 
city-pairs from 12 Chinese cities. from http://centreforaviation.com/analysis/china-australia-
aviation-one-million-visitors-flights-on-21-city-pairs-from-12-chinese-cities-261773 

Carbon Footprint. (2014). Flight carbon footprint calculator.   Retrieved 29 Sept, 2014, from 
http://calculator.carbonfootprint.com/calculator.aspx?tab=3 

Carbon Neutral. (2014). Air Travel Carbon Calculator.   Retrieved 30 Sept, 2014, from 
http://www.carbonneutral.com.au/carbon-calculator/air-travel.html 

Cathay Pacific. (2012). Annual Report. from https://www.cathaypacific.com/content/dam/cx/about-
us/investor-relations/interim-annual-reports/en/2012_annual-report_en.pdf 

http://dx.doi.org/10.1016/j.jclepro.2012.09.003
http://www.oecd.org/sd-roundtable/papersandpublications/49482790.pdf
http://www.oecd.org/sd-roundtable/papersandpublications/49482790.pdf
http://dx.doi.org/10.1016/j.trb.2010.02.006
http://www.bitre.gov.au/publications/ongoing/international_airline_activity-monthly_publications.aspx
http://www.bitre.gov.au/publications/ongoing/international_airline_activity-monthly_publications.aspx
http://www.oecd.org/env/cc/theeconomicsofclimatechangemitigationpoliciesandoptionsforglobalactionbeyond2012.htm
http://www.oecd.org/env/cc/theeconomicsofclimatechangemitigationpoliciesandoptionsforglobalactionbeyond2012.htm
http://dx.doi.org/10.1016/j.jairtraman.2006.07.001
http://centreforaviation.com/analysis/airbus-a330-continues-to-pull-in-sales-even-as-the-787-dreamliner-recovers-momentum-111317
http://centreforaviation.com/analysis/airbus-a330-continues-to-pull-in-sales-even-as-the-787-dreamliner-recovers-momentum-111317
http://centreforaviation.com/analysis/china-australia-aviation-one-million-visitors-flights-on-21-city-pairs-from-12-chinese-cities-261773
http://centreforaviation.com/analysis/china-australia-aviation-one-million-visitors-flights-on-21-city-pairs-from-12-chinese-cities-261773
http://calculator.carbonfootprint.com/calculator.aspx?tab=3
http://www.carbonneutral.com.au/carbon-calculator/air-travel.html
http://www.cathaypacific.com/content/dam/cx/about-us/investor-relations/interim-annual-reports/en/2012_annual-report_en.pdf
http://www.cathaypacific.com/content/dam/cx/about-us/investor-relations/interim-annual-reports/en/2012_annual-report_en.pdf


K-s.Yin Page 162 

Cebreiro-Gómez, A., Heady, C., Vassnes, E., Ashiabor, H., Barde, J.-P., Braathen, N. A., & 
Scapecchi, P. (2006). The Political Economy of Environmentally Related Taxes (pp. 203).  
Retrieved from http://www.oecd.org/env/tools-
evaluation/thepoliticaleconomyofenvironmentallyrelatedtaxes.htm  

Cherry, T. L., García, J. H., Kallbekken, S., & Torvanger, A. (2014). The development and 
deployment of low-carbon energy technologies: The role of economic interests and cultural 
worldviews on public support. Energy Policy(0), 1-5. doi: 
http://dx.doi.org/10.1016/j.enpol.2014.01.018 

Choi, A. S., & Ritchie, B. W. (2014). Willingness to pay for flying carbon neutral in Australia: an 
exploratory study of offsetter profiles. Journal of Sustainable Tourism, 22(8), 1236-1256. doi: 
10.1080/09669582.2014.894518 

Chong, J. (2014). Air New Zealand farewells the 747. Australian Aviation. 
http://australianaviation.com.au/2014/09/air-new-zealand-farewells-the-747/ 

Clark, P. (2010). Stormy Skies: Airlines in Crisis. Burlington, VT: Ashgate. 

Commonwealth of Australia. (2012). Managing the Carbon Footprint of Australian Aviation. 
http://www.icao.int/environmental-protection/Lists/ActionPlan/Attachments/1/Australia_en.pdf 

Commonwealth Scientific and Industrial Research Organisation (CSIRO). (2011). Flight path 
Sustainable Aviation. .  Canberra: CSIRO Retrieved from 
https://publications.csiro.au/rpr/pub?list=BRO&pid=csiro:EP107203&sb=RECENT&n=1&rpp=25
&page=294&tr=189421&dr=all 

https://publications.csiro.au/rpr/download?pid=csiro:EP107203&dsid=DS3. 

Davies, Z. G., & Armsworth, P. R. (2010). Making an impact: The influence of policies to reduce 
emissions from aviation on the business travel patterns of individual corporations. Energy Policy, 
38(12), 7634-7638. doi: http://dx.doi.org/10.1016/j.enpol.2010.09.007 

Delta Air Lines. (2012). Annual Report. from http://www.delta.com/content/dam/delta-
www/pdfs/about-financial/DeltaAirLines_10K_2012.pdf 

Deonandan, I., & Balakrishnan, H. (2010). Evaluation of Strategies for Reducing Taxi-out 
Emissions at Airports. Paper presented at the 10th AIAA Aviation Technology, Integration, and 
Operations (ATIO) Conference, Fort Worth, Texas. 
http://www.mit.edu/~hamsa/pubs/DeonandanBalakrishnanATIO2010.pdf 

deSerres, A., Llewellyn, J., & Llewellyn, P. (2011). The Political Economy of Climate Change 
Mitigation Policies: How to Build a Constituency to Address Global Warming? OECD Economics 
Department Working Papers No. 887   Retrieved from http://www.oecd-
ilibrary.org/docserver/download/5kg5d5nhcnkb-
en.pdf?expires=1481668808&id=id&accname=guest&checksum=F99DDFEE440B1E49988A33C
B48389BF4 doi:10.1787/5kg5d5nhcnkb-en 

Dillingham, G. L., Merritt, Z. D., Aussendorf, P., Wasleski, M. K., Colwell, W., Dickerson, L., . . . 
Wood, E. (2014). Alternative Jet Fuels. 441 G St. N.W. 

Washington, DC 20548: US Government Accountability Office. 

Dixon, M. C. (2006). The maintenance costs of aging aircraft : insights from commercial aviation. 
from http://www.rand.org/content/dam/rand/pubs/monographs/2006/RAND_MG486.pdf 

Dray, L. (2013). An analysis of the impact of aircraft lifecycles on aviation emissions mitigation 
policies. Journal of Air Transport Management, 28, 62-69. doi: 10.1016/j.jairtraman.2012.12.012 

http://www.oecd.org/env/tools-evaluation/thepoliticaleconomyofenvironmentallyrelatedtaxes.htm
http://www.oecd.org/env/tools-evaluation/thepoliticaleconomyofenvironmentallyrelatedtaxes.htm
http://dx.doi.org/10.1016/j.enpol.2014.01.018
http://australianaviation.com.au/2014/09/air-new-zealand-farewells-the-747/
http://www.icao.int/environmental-protection/Lists/ActionPlan/Attachments/1/Australia_en.pdf
http://dx.doi.org/10.1016/j.enpol.2010.09.007
http://www.delta.com/content/dam/delta-www/pdfs/about-financial/DeltaAirLines_10K_2012.pdf
http://www.delta.com/content/dam/delta-www/pdfs/about-financial/DeltaAirLines_10K_2012.pdf
http://www.mit.edu/~hamsa/pubs/DeonandanBalakrishnanATIO2010.pdf
http://www.oecd-ilibrary.org/docserver/download/5kg5d5nhcnkb-en.pdf?expires=1481668808&id=id&accname=guest&checksum=F99DDFEE440B1E49988A33CB48389BF4
http://www.oecd-ilibrary.org/docserver/download/5kg5d5nhcnkb-en.pdf?expires=1481668808&id=id&accname=guest&checksum=F99DDFEE440B1E49988A33CB48389BF4
http://www.oecd-ilibrary.org/docserver/download/5kg5d5nhcnkb-en.pdf?expires=1481668808&id=id&accname=guest&checksum=F99DDFEE440B1E49988A33CB48389BF4
http://www.oecd-ilibrary.org/docserver/download/5kg5d5nhcnkb-en.pdf?expires=1481668808&id=id&accname=guest&checksum=F99DDFEE440B1E49988A33CB48389BF4
http://www.rand.org/content/dam/rand/pubs/monographs/2006/RAND_MG486.pdf


K-s.Yin Page 163 

Dray, L. M., Evans, A., Reynolds, T. G., Schäfer, A., & Vera-Morales, M. (2009). Opportunities 
for Reducing Aviation-Related GHG Emissions: A Systems Analysis for Europe   Retrieved from 
http://www.verifavia.com/bases/ressource_pdf/125/OMEGA-Reducing-Aviation-GHG.pdf  

Duval, R. (2008). A Taxonomy of Instruments to Reduce Greenhouse Gas Emissions and their 
Interaction. http://www.oecd-
ilibrary.org/docserver/download/236846121450.pdf?expires=1481669115&id=id&accname=guest
&checksum=A2FDE48F3526A78427F49AA51CB59F9A doi:10.1787/236846121450 

Eden, P. (2013). Less is more. Aircraft Cabin Management, 2. 
http://www.aircraftcabinmanagement.com/feature/weight-reduction-in-airline-
seats?session_id=omd4ajn3cgsrqa6k5u2uf9c9e7 

Emirates. (2012). Annual Report. from http://www.theemiratesgroup.com/english/facts-
figures/archive/2011-2012.aspx 

Etihad. (2012). Annual Report. from 
http://www.etihad.com/Documents/PDFs/Corporate%20profile/Corporate%20reports%20and%20C
SR/annual-2012-en.pdf 

European Environment Agency (Producer). (2006). EMEP/CORINAIR Emission Inventory 
Guildbook - 2006/ Group 8: Other mobile sources and machinery (B851 Annex). Retrieved from 
http://www.eea.europa.eu/publications/EMEPCORINAIR3/page017.html, 
www.eea.europa.eu/publications/EMEPCORINAIR3/B851vs2.4.pdf, 
http://www.eea.europa.eu/publications/technical_report_2001_3/B851vs2.3spreadsheet1.pdf 

European Union Court of Justice. (2011). European Court Justice Press Release No 139/11. 
http://europa.eu/rapid/press-release_CJE-11-139_en.htm?locale=en 

Export-import Bank of the United States. (2012). The Aviation Exports policy.   Retrieved 17 Feb, 
2014, from http://www.exim.gov/generalbankpolicies/aviation-exports.cfm 

Export-import Bank of the United States. (2016). About CIRR. from http://www.exim.gov/tools-
for-exporters/commercial-interest-reference-rates/about-cirr-rates 

Farries, P., & Eyers, C. (2008). Aviation CO2 Emissions Abatement Potential from Technology 
Innovation Building a low-carbon economy-the UK's contribution to tackling climate change   
Retrieved from 
https://www.theccc.org.uk/archive/aws2/Aviation%20Report%2009/QinetiQ_aviation_report_for_t
he_CCC.pdf  

Fischer, C., & Newell, R. G. (2008). Environmental and technology policies for climate mitigation. 
Journal of Environmental Economics and Management, 55(2), 142-162. doi: 
10.1016/j.jeem.2007.11.001 

Flightglobal. (2009). Picture: First Air New Zealand 767-300ER with new blended winglets. 
Flightglobal. http://www.flightglobal.com/news/articles/picture-first-air-new-zealand-767-300er-
with-new-blended-329612/ 

Flottau, J., Broderick, S., Unnikrishnan, M., & Schofield, A. (2015). Drop In Oil Prices Means An 
Airline Profitability Boost Now, But... Aviation Week & Space Technology. from 
http://aviationweek.com/commercial-aviation/drop-oil-prices-means-airline-profitability-boost-now 

Flynn, D. (2013). United to operate 777s on Australia routes. Australian Business Traveller. 
http://www.ausbt.com.au/united-upgrades-sydney-flights-to-boeing-777s 

Flynn, D. (2015a). Emirates to replace entire Boeing 777 fleet with 777X jets. Australian Business 
Traveller. http://www.ausbt.com.au/emirates-to-replace-boeing-777-fleet-with-777-8x-777-9x-jets 

http://www.verifavia.com/bases/ressource_pdf/125/OMEGA-Reducing-Aviation-GHG.pdf
http://www.oecd-ilibrary.org/docserver/download/236846121450.pdf?expires=1481669115&id=id&accname=guest&checksum=A2FDE48F3526A78427F49AA51CB59F9A
http://www.oecd-ilibrary.org/docserver/download/236846121450.pdf?expires=1481669115&id=id&accname=guest&checksum=A2FDE48F3526A78427F49AA51CB59F9A
http://www.oecd-ilibrary.org/docserver/download/236846121450.pdf?expires=1481669115&id=id&accname=guest&checksum=A2FDE48F3526A78427F49AA51CB59F9A
http://www.aircraftcabinmanagement.com/feature/weight-reduction-in-airline-seats?session_id=omd4ajn3cgsrqa6k5u2uf9c9e7
http://www.aircraftcabinmanagement.com/feature/weight-reduction-in-airline-seats?session_id=omd4ajn3cgsrqa6k5u2uf9c9e7
http://www.theemiratesgroup.com/english/facts-figures/archive/2011-2012.aspx
http://www.theemiratesgroup.com/english/facts-figures/archive/2011-2012.aspx
http://www.etihad.com/Documents/PDFs/Corporate%20profile/Corporate%20reports%20and%20CSR/annual-2012-en.pdf
http://www.etihad.com/Documents/PDFs/Corporate%20profile/Corporate%20reports%20and%20CSR/annual-2012-en.pdf
http://www.eea.europa.eu/publications/EMEPCORINAIR3/page017.html
http://www.eea.europa.eu/publications/EMEPCORINAIR3/B851vs2.4.pdf
http://www.eea.europa.eu/publications/technical_report_2001_3/B851vs2.3spreadsheet1.pdf
http://europa.eu/rapid/press-release_CJE-11-139_en.htm?locale=en
http://www.exim.gov/generalbankpolicies/aviation-exports.cfm
http://www.exim.gov/tools-for-exporters/commercial-interest-reference-rates/about-cirr-rates
http://www.exim.gov/tools-for-exporters/commercial-interest-reference-rates/about-cirr-rates
http://www.theccc.org.uk/archive/aws2/Aviation%20Report%2009/QinetiQ_aviation_report_for_the_CCC.pdf
http://www.theccc.org.uk/archive/aws2/Aviation%20Report%2009/QinetiQ_aviation_report_for_the_CCC.pdf
http://www.flightglobal.com/news/articles/picture-first-air-new-zealand-767-300er-with-new-blended-329612/
http://www.flightglobal.com/news/articles/picture-first-air-new-zealand-767-300er-with-new-blended-329612/
http://aviationweek.com/commercial-aviation/drop-oil-prices-means-airline-profitability-boost-now
http://www.ausbt.com.au/united-upgrades-sydney-flights-to-boeing-777s
http://www.ausbt.com.au/emirates-to-replace-boeing-777-fleet-with-777-8x-777-9x-jets


K-s.Yin Page 164 

Flynn, D. (2015b). Virgin Australia boosts Boeing 737 MAX order, via delayed 737s. Australian 
Business Traveller. http://www.ausbt.com.au/virgin-australia-boosts-boeing-737-max-order-via-
delayed-737s 

Forsberg, D. (2015). Aircraft Retirement and Storage Trends. http://avolon.aero/wp/wp-
content/uploads/2015/03/Avolon-White-Paper-FInal-30-March-2015.pdf 

Forsberg, D., & Mollan, L. (2013). Transitioning to Neo and Max: An Investor's Guide. 
http://avolon.aero/wp/wp-content/uploads/2014/05/Avolon_Transition_Paper_Final.pdf 

Frawley, G. (2014a). End of an era as Qantas farewells the 767. Australian Aviation. 
http://australianaviation.com.au/2014/12/end-of-an-era-as-qantas-farewells-the-767/ 

Frawley, G. (2014b). Qantas to consider new narrowbody options in the “medium term”. Australian 
Aviation. http://australianaviation.com.au/2014/11/qantas-to-consider-new-narrowbody-options-in-
the-medium-term/ 

Freed, J. (2016). How the airline industry is managing the 'good oil'. The Sydney Morning Herald. 
from http://www.smh.com.au/business/aviation/how-the-airline-industry-is-managing-the-good-oil-
20160224-gn2em2.html 

Gans, J. S. (2012). Innovation and Climate Change Policy. American Economic Journal: Economic 
Policy, 4(4), 125-145. doi: 10.1257/pol.4.4.125 

Garretson, C. (2010). Pulling the plug on old hardware: Life-cycle management explained. 
ComputerWorld. from http://www.computerworld.com/article/2517337/computer-
hardware/pulling-the-plug-on-old-hardware--life-cycle-management-explained.html?page=2 

Garuda. (2012). Annual Report. from https://www.garuda-indonesia.com/files/pdf/AR-GA-
2012.pdf 

Gegg, P., Budd, L., & Ison, S. (2014). The market development of aviation biofuel: Drivers and 
constraints. Journal of Air Transport Management, 39, 34-40. doi: 
10.1016/j.jairtraman.2014.03.003 

Gegg, P., Budd, L., & Ison, S. (2015). Stakeholder Views of the Factors Affecting 
theCommercialization of Aviation Biofuels in Europe. International Journal of Sustainable 
Transportation, 9(8), 542-550.  

Gillen, D. (2011). The evolution of airport ownership and governance. Journal of Air Transport 
Management, 17(1), 3-13. doi: 10.1016/j.jairtraman.2010.10.003 

Goulder, L. H., & Parry, I. W. H. (2008). Instrument Choice in Environmental Policy. Review of 
Environmental Economics and Policy, 2(2), 152-174. doi: 10.1093/reep/ren005 

Graham, W. R., Hall, C. A., & Vera Morales, M. (2014). The potential of future aircraft technology 
for noise and pollutant emissions reduction. Transport Policy, 34, 36-51. doi: 
http://dx.doi.org/10.1016/j.tranpol.2014.02.017 

Green, J., Leitch, S.-A., Beesley, C., Bickerstaff, C., Collins, P., Eyers, C., . . . Wrede, R. v. (2005). 
Air Travel – Greener by Design. In R. A. Society (Series Ed.) Mitigating the Environmental Impact 
of Aviation: Opportunities and Priorities   Retrieved from 
https://www.aerosociety.com/Assets/Docs/About_Us/Greener%20By%20Design/GbD%20-
%202005%20Science%20and%20Technology%20Report.pdf  

Grewe, V., Champougny, T., Matthes, S., Frömming, C., Brinkop, S., Søvde, O. A., . . . Halscheidt, 
L. (2014). Reduction of the air traffic's contribution to climate change: A REACT4C case study. 
Atmospheric Environment, 94, 616-625. doi: http://dx.doi.org/10.1016/j.atmosenv.2014.05.059 

http://www.ausbt.com.au/virgin-australia-boosts-boeing-737-max-order-via-delayed-737s
http://www.ausbt.com.au/virgin-australia-boosts-boeing-737-max-order-via-delayed-737s
http://avolon.aero/wp/wp-content/uploads/2015/03/Avolon-White-Paper-FInal-30-March-2015.pdf
http://avolon.aero/wp/wp-content/uploads/2015/03/Avolon-White-Paper-FInal-30-March-2015.pdf
http://avolon.aero/wp/wp-content/uploads/2014/05/Avolon_Transition_Paper_Final.pdf
http://australianaviation.com.au/2014/12/end-of-an-era-as-qantas-farewells-the-767/
http://australianaviation.com.au/2014/11/qantas-to-consider-new-narrowbody-options-in-the-medium-term/
http://australianaviation.com.au/2014/11/qantas-to-consider-new-narrowbody-options-in-the-medium-term/
http://www.smh.com.au/business/aviation/how-the-airline-industry-is-managing-the-good-oil-20160224-gn2em2.html
http://www.smh.com.au/business/aviation/how-the-airline-industry-is-managing-the-good-oil-20160224-gn2em2.html
http://www.computerworld.com/article/2517337/computer-hardware/pulling-the-plug-on-old-hardware--life-cycle-management-explained.html?page=2
http://www.computerworld.com/article/2517337/computer-hardware/pulling-the-plug-on-old-hardware--life-cycle-management-explained.html?page=2
http://www.garuda-indonesia.com/files/pdf/AR-GA-2012.pdf
http://www.garuda-indonesia.com/files/pdf/AR-GA-2012.pdf
http://dx.doi.org/10.1016/j.tranpol.2014.02.017
http://www.aerosociety.com/Assets/Docs/About_Us/Greener%20By%20Design/GbD%20-%202005%20Science%20and%20Technology%20Report.pdf
http://www.aerosociety.com/Assets/Docs/About_Us/Greener%20By%20Design/GbD%20-%202005%20Science%20and%20Technology%20Report.pdf
http://dx.doi.org/10.1016/j.atmosenv.2014.05.059


K-s.Yin Page 165 

Griffiths, E. (2014). Qantas forcing Government to consider assistance, Treasurer Joe Hockey says. 
http://www.abc.net.au/news/2014-02-13/qantas-forcing-government-to-consider-funding-joe-
hockey-says/5258446 

Groenenboom, J., Bruinsma, R., Beechcroft-Kay, M., Markou, C., Cros, G., Margeirsson, E., & 
Pascalis, T. (2016). Guidance Material and Best Practices for Aircraft Leases   Retrieved from 
https://www.iata.org/whatwedo/workgroups/Documents/ALAG/AC-leases-2nd-edition.pdf  

Gubisch, M. (2010). New Lufthansa seat saves nearly 30% in weight. Flightglobal. 
https://www.flightglobal.com/news/articles/new-lufthansa-seat-saves-nearly-30-in-weight-350995/ 

Gubisch, M. (2013). Boeing plans first B777X flight in 2019. Flightglobal. 
https://www.flightglobal.com/news/articles/dubai-boeing-plans-first-777x-flight-in-2019-393206/ 

Hamamoto, M. (2013). Energy-saving behavior and marginal abatement cost for household CO2 
emissions. Energy Policy(0), 1-5. doi: http://dx.doi.org/10.1016/j.enpol.2013.08.082 

Hammar, H., Lofgren, A., & Sterner, T. (2004). Political Economy Obstacles to Fuel Taxation. The 
Energy Journal, 25(3), 1-17.  

Hawaiian Airlines. (2012). Annual Report. from 
https://newsroom.hawaiianairlines.com/internal_redirect/cms.ipressroom.com.s3.amazonaws.com/2
49/files/20156/Hawaiian%20Holdings%2010-K%20Annual%20Report.pdf 

Hileman, J. I., De la Rosa Blanco, E., Bonnefoy, P. A., & Carter, N. A. (2013). The carbon dioxide 
challenge facing aviation. Progress in Aerospace Sciences, 63, 84-95. doi: 
http://dx.doi.org/10.1016/j.paerosci.2013.07.003 

Hofer, C., Dresner, M. E., & Windle, R. J. (2010). The environmental effects of airline carbon 
emissions taxation in the US. Transportation Research Part D: Transport and Environment, 15(1), 
37-45. doi: https://doi.org/10.1016/j.trd.2009.07.001 

Holland, M., Mann, M., Ralph, M., Owen, B., Lee, D., Horton, G., . . . Kollamthodi, S. (2011). A 
Marginal Abatment Cost Curve Model for the UK Aviation Sector. 
http://www.icao.int/environmental-protection/Documents/ActionPlan/UK_AbatementModel_en.pdf 

Horton, G. (2010). Future Aircraft Fuel Efficiencies - Final Report (pp. 1-97).  Retrieved from 
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/4515/future-aircraft-
fuel-efficiency.pdf  

Hughes, N. (2013). Apple's iPad now in use in all American Airlines cockpits.   Retrieved 23-April, 
2015, from http://appleinsider.com/articles/13/06/24/apples-ipad-now-in-use-in-all-american-
airlines-cockpits 

http://hub.aa.com/en/nr/pressrelease/american-airlines-completes-electronic-flight-bag-
implementation 

Huppes, G., & Simonis, U. E. (2009). Environmental Policy Instruments. In J. Boersema & L. 
Reijnders (Eds.), Principles of Environmental Sciences (pp. 239-280): Springer Netherlands. 
Retrieved from http://dx.doi.org/10.1007/978-1-4020-9158-2_13. doi: 10.1007/978-1-4020-9158-
2_13 

ICAO. (2008). Guidance on the Use of Emissions Trading for Aviation   Retrieved from 
http://www.icao.int/environmental-protection/Pages/EmissionsTrading.aspx  

ICAO. (2009). Civil Aviation Statistics - Available Capacity and Average Passenger Mass. 
http://www.icao.int/Meetings/STA10/Documents/Sta10_Wp005_en.pdf 

ICAO. (2010). Environmental Report Aviation Outlook. http://www.icao.int/environmental-
protection/Documents/EnvironmentReport-2010/ICAO_EnvReport10-Outlook_en.pdf 

http://www.abc.net.au/news/2014-02-13/qantas-forcing-government-to-consider-funding-joe-hockey-says/5258446
http://www.abc.net.au/news/2014-02-13/qantas-forcing-government-to-consider-funding-joe-hockey-says/5258446
http://www.iata.org/whatwedo/workgroups/Documents/ALAG/AC-leases-2nd-edition.pdf
http://www.flightglobal.com/news/articles/new-lufthansa-seat-saves-nearly-30-in-weight-350995/
http://www.flightglobal.com/news/articles/dubai-boeing-plans-first-777x-flight-in-2019-393206/
http://dx.doi.org/10.1016/j.enpol.2013.08.082
http://dx.doi.org/10.1016/j.paerosci.2013.07.003
http://www.icao.int/environmental-protection/Documents/ActionPlan/UK_AbatementModel_en.pdf
http://www.gov.uk/government/uploads/system/uploads/attachment_data/file/4515/future-aircraft-fuel-efficiency.pdf
http://www.gov.uk/government/uploads/system/uploads/attachment_data/file/4515/future-aircraft-fuel-efficiency.pdf
http://appleinsider.com/articles/13/06/24/apples-ipad-now-in-use-in-all-american-airlines-cockpits
http://appleinsider.com/articles/13/06/24/apples-ipad-now-in-use-in-all-american-airlines-cockpits
http://hub.aa.com/en/nr/pressrelease/american-airlines-completes-electronic-flight-bag-implementation
http://hub.aa.com/en/nr/pressrelease/american-airlines-completes-electronic-flight-bag-implementation
http://dx.doi.org/10.1007/978-1-4020-9158-2_13
http://www.icao.int/environmental-protection/Pages/EmissionsTrading.aspx
http://www.icao.int/Meetings/STA10/Documents/Sta10_Wp005_en.pdf
http://www.icao.int/environmental-protection/Documents/EnvironmentReport-2010/ICAO_EnvReport10-Outlook_en.pdf
http://www.icao.int/environmental-protection/Documents/EnvironmentReport-2010/ICAO_EnvReport10-Outlook_en.pdf


K-s.Yin Page 166 

ICAO. (2013a). Assembly—38th Session Report of the Executive Commitee on Agenda Item 17 
(Section on Climate Change). http://www.icao.int/Meetings/a38/Documents/WP/wp430_en.pdf 

ICAO. (2013b). Glossary v1 2. www.icao.int/dataplus_archive/Documents/GLOSSARY.docx 

ICAO. (2013c). Resolutions adopted by the Assembly. from 
http://www.icao.int/Meetings/a38/Documents/Resolutions/a38_res_prov_en.pdf 

ICAO. (2014a). Carbon Emissions Calculator.   Retrieved 29 Sept, 2014, from 
http://www.icao.int/environmental-protection/CarbonOffset/Pages/default.aspx 

ICAO. (2014b). Methodology ICAO Carbon Calculator V7. http://www.icao.int/environmental-
protection/CarbonOffset/Documents/Methodology%20ICAO%20Carbon%20Calculator_v7-
2014.pdf 

ICAO. (2015). ICAO Welcomes COP21 Agreement, Will Continue to Provide Leadership and 
Coordinate Action on International Aviation's Environmental Goals. from 
http://www.icao.int/Newsroom/Pages/ICAO-Welcomes-COP21-Agreement.aspx 

ICAO. (2016a). Environmental Protection-Global Market-Based Measure Scheme. from 
http://www.icao.int/Meetings/a39/workshops/Documents/A39%20Workshop%20-%20GMBM.pdf 

ICAO. (2016b). ICAO Environmental Report. from http://www.icao.int/environmental-
protection/Documents/ICAO%20Environmental%20Report%202016.pdf 

ICAO. (2016c). ICAO High-level Meeting on a Global Market-Based Measure (MBM) Scheme. 
from http://www.icao.int/Meetings/HLM-MBM/Pages/HLM_briefing.aspx 

http://www.icao.int/Meetings/HLM-MBM/Documents/20160504_HLM_Pre-
Event_Overview%20of%20ICAOs%20Work%20on%20GMBM_V04.pdf 

http://www.icao.int/Meetings/HLM-MBM/Documents/20160504_HLM_Pre-
Event_Draft%20AR%20text_V05.pdf 

http://www.icao.int/Meetings/HLM-MBM/Documents/20160504_HLM_Pre-
Event_Role%20of%20Carbon%20Markets%20in%20ICAO%20global%20MBM_V04.pdf 

ICAO. (2016d). Resolution A39-3: Consolidated statement of continuing ICAO policies and 
practices related to environmental protection – Global Market-based Measure (MBM) scheme from 
http://www.icao.int/environmental-protection/Documents/Resolution_A39_3.pdf 

ICAO. (2017). International Civil Aviation Organization. from http://www.icao.int/about-
icao/Pages/default.aspx 

ICAO CAEP. (2016). ICAO Environment Advisory Group Meeting (EAG/15). from 
http://www.icao.int/Meetings/HLM-
MBM/Documents/EAG15_CAEP%20Technical%20Analyses.pdf 

http://www.icao.int/Meetings/HLM-
MBM/Documents/EAG15_CAEP%20Technical%20Analyses_Appendix.pdf 

ifenews. (2012). Emirates Showcase New In-Flight Entertainment System. from 
https://ifenews.wordpress.com/2012/07/02/emirates-showcase-new-in-flight-entertainment-system-
3/ 

Innovata. (2014). Flight Schedules Database. 2014, from http://www.innovata-llc.com/data/flight-
schedules-database/ 

International Air Transport Association (IATA). (2009). A Global Approach to Reducing Aviation 
Emissions. 1-8. http://corporate.airfrance.com/fileadmin/dossiers/img_rte_fr/IATA.pdf 

http://www.icao.int/Meetings/a38/Documents/WP/wp430_en.pdf
http://www.icao.int/dataplus_archive/Documents/GLOSSARY.docx
http://www.icao.int/Meetings/a38/Documents/Resolutions/a38_res_prov_en.pdf
http://www.icao.int/environmental-protection/CarbonOffset/Pages/default.aspx
http://www.icao.int/environmental-protection/CarbonOffset/Documents/Methodology%20ICAO%20Carbon%20Calculator_v7-2014.pdf
http://www.icao.int/environmental-protection/CarbonOffset/Documents/Methodology%20ICAO%20Carbon%20Calculator_v7-2014.pdf
http://www.icao.int/environmental-protection/CarbonOffset/Documents/Methodology%20ICAO%20Carbon%20Calculator_v7-2014.pdf
http://www.icao.int/Newsroom/Pages/ICAO-Welcomes-COP21-Agreement.aspx
http://www.icao.int/Meetings/a39/workshops/Documents/A39%20Workshop%20-%20GMBM.pdf
http://www.icao.int/environmental-protection/Documents/ICAO%20Environmental%20Report%202016.pdf
http://www.icao.int/environmental-protection/Documents/ICAO%20Environmental%20Report%202016.pdf
http://www.icao.int/Meetings/HLM-MBM/Pages/HLM_briefing.aspx
http://www.icao.int/Meetings/HLM-MBM/Documents/20160504_HLM_Pre-Event_Overview%20of%20ICAOs%20Work%20on%20GMBM_V04.pdf
http://www.icao.int/Meetings/HLM-MBM/Documents/20160504_HLM_Pre-Event_Overview%20of%20ICAOs%20Work%20on%20GMBM_V04.pdf
http://www.icao.int/Meetings/HLM-MBM/Documents/20160504_HLM_Pre-Event_Draft%20AR%20text_V05.pdf
http://www.icao.int/Meetings/HLM-MBM/Documents/20160504_HLM_Pre-Event_Draft%20AR%20text_V05.pdf
http://www.icao.int/Meetings/HLM-MBM/Documents/20160504_HLM_Pre-Event_Role%20of%20Carbon%20Markets%20in%20ICAO%20global%20MBM_V04.pdf
http://www.icao.int/Meetings/HLM-MBM/Documents/20160504_HLM_Pre-Event_Role%20of%20Carbon%20Markets%20in%20ICAO%20global%20MBM_V04.pdf
http://www.icao.int/environmental-protection/Documents/Resolution_A39_3.pdf
http://www.icao.int/about-icao/Pages/default.aspx
http://www.icao.int/about-icao/Pages/default.aspx
http://www.icao.int/Meetings/HLM-MBM/Documents/EAG15_CAEP%20Technical%20Analyses.pdf
http://www.icao.int/Meetings/HLM-MBM/Documents/EAG15_CAEP%20Technical%20Analyses.pdf
http://www.icao.int/Meetings/HLM-MBM/Documents/EAG15_CAEP%20Technical%20Analyses_Appendix.pdf
http://www.icao.int/Meetings/HLM-MBM/Documents/EAG15_CAEP%20Technical%20Analyses_Appendix.pdf
http://www.innovata-llc.com/data/flight-schedules-database/
http://www.innovata-llc.com/data/flight-schedules-database/
http://corporate.airfrance.com/fileadmin/dossiers/img_rte_fr/IATA.pdf


K-s.Yin Page 167 

International Air Transport Association (IATA). (2013a). Annual General Meeting (AGM) 
Resolution -  Carbon Neutral Growth. IATA AGM. 
https://www.iata.org/pressroom/pr/Documents/agm69-resolution-cng2020.pdf 

International Air Transport Association (IATA). (2013b). New Year’s Day 2014 marks 100 Years 
of Commercial Aviation from http://www.iata.org/pressroom/pr/Pages/2013-12-30-01.aspx 

International Air Transport Association (IATA). (2016). Fact Sheet - Fuel. from 
https://www.iata.org/pressroom/facts_figures/fact_sheets/Documents/fact-sheet-fuel.pdf 

International Air Transport Association (IATA), Georgia Tech, & German Aerospace Center 
(DLR). (2013). IATA Technology Roadmap. In IATA (Series Ed.)   Retrieved from 
https://www.iata.org/whatwedo/environment/Documents/technology-roadmap-2013.pdf  

International Airlines Group Legal Department. (2011). Response of the IAG group to EC's request 
for consultation on a review of short-term export credit insurance. 
http://ec.europa.eu/competition/consultations/2011_export_credit/iag_en.pdf 

IPCC. (1999). IPCC Special Report Aviation and the Global Atmosphere Summary for 
Policymakers (pp. 1-23).  Retrieved from https://www.ipcc.ch/pdf/special-reports/spm/av-en.pdf  

IPCC. (2007). Contribution of Working Group III to the Fourth Assessment Report of the 
Intergovernmental Panel on Climate Change   Retrieved from 
http://www.ipcc.ch/publications_and_data/ar4/wg3/en/contents.html  

Jardine, C. N. (2009). Calculating The Carbon Dioxide Emissions Of Flights. 1-20. 
http://www.eci.ox.ac.uk/research/energy/downloads/jardine09-carboninflights.pdf 

Jet Fuel Intelligence. (2009). Benefits Of Engine Washing Climb Along With Fuel Costs. Jet Fuel 
Intelligence. http://search.proquest.com/docview/199408948?accountid=14723 

http://cf5pm8sz2l.search.serialssolutions.com/?&genre=article&sid=ProQ:&atitle=Benefits+Of+En
gine+Washing+Climb+Along+With+Fuel+Costs&title=Jet+Fuel+Intelligence&issn=15281183&da
te=2009-07-06&volume=&issue=&spage=&author=Anonymous 

Kaminski-morrow, D. (2010). Austrian to refit 32 A320s and 737s with new seats. Flight Global. 
https://www.flightglobal.com/news/articles/austrian-to-refit-32-a320s-and-737s-with-new-seats-
350030/ 

Kar, R., Bennefoy, P. A., & Hansman, R. J. (2010). Dynamics of Implementation of Mitigating 
Measures to Reduce CO2 Emissions from Commercial Aviation   Retrieved from 
https://dspace.mit.edu/bitstream/handle/1721.1/56268/Kar_et_al_ICAT_Report.pdf  

Kirby, M. (2014). Spirit Airlines taps Acro for 5,000 slim seats.   Retrieved 23-April, 2015, from 
http://www.runwaygirlnetwork.com/2014/01/10/spirit-airlines-taps-acro-5000-slim-seats/ 

Kirchgassner, G., & Schneider, F. (2003). On the Political Economy of Environmental Policy. 
Public Choice, 115, 369-396.  

Kling, M., & Hough, I. (2010). Carbon Modeling Methodology (pp. 1-41).  Retrieved from 
http://numbers.brighterplanet.com/2010/06/29/emissions-modeling-methodology-published/  

Kling, M., & Hough, I. (2011). Air Travel Carbon and Energy Efficiency. 1-25. 
http://www.climateaccess.org/sites/default/files/Kling_Air%20Travel%20Carbon%20and%20Energ
y%20Efficiency.pdf 

Knoema. (2015). US Inflation Forecast.   Retrieved 24 Nov, 2015, from 
http://knoema.com/kyaewad/us-inflation-forecast-2015-2020-and-up-to-2060-data-and-charts 

http://www.iata.org/pressroom/pr/Documents/agm69-resolution-cng2020.pdf
http://www.iata.org/pressroom/pr/Pages/2013-12-30-01.aspx
http://www.iata.org/pressroom/facts_figures/fact_sheets/Documents/fact-sheet-fuel.pdf
http://www.iata.org/whatwedo/environment/Documents/technology-roadmap-2013.pdf
http://ec.europa.eu/competition/consultations/2011_export_credit/iag_en.pdf
http://www.ipcc.ch/pdf/special-reports/spm/av-en.pdf
http://www.ipcc.ch/publications_and_data/ar4/wg3/en/contents.html
http://www.eci.ox.ac.uk/research/energy/downloads/jardine09-carboninflights.pdf
http://search.proquest.com/docview/199408948?accountid=14723
http://cf5pm8sz2l.search.serialssolutions.com/?&genre=article&sid=ProQ:&atitle=Benefits+Of+Engine+Washing+Climb+Along+With+Fuel+Costs&title=Jet+Fuel+Intelligence&issn=15281183&date=2009-07-06&volume=&issue=&spage=&author=Anonymous
http://cf5pm8sz2l.search.serialssolutions.com/?&genre=article&sid=ProQ:&atitle=Benefits+Of+Engine+Washing+Climb+Along+With+Fuel+Costs&title=Jet+Fuel+Intelligence&issn=15281183&date=2009-07-06&volume=&issue=&spage=&author=Anonymous
http://cf5pm8sz2l.search.serialssolutions.com/?&genre=article&sid=ProQ:&atitle=Benefits+Of+Engine+Washing+Climb+Along+With+Fuel+Costs&title=Jet+Fuel+Intelligence&issn=15281183&date=2009-07-06&volume=&issue=&spage=&author=Anonymous
http://www.flightglobal.com/news/articles/austrian-to-refit-32-a320s-and-737s-with-new-seats-350030/
http://www.flightglobal.com/news/articles/austrian-to-refit-32-a320s-and-737s-with-new-seats-350030/
http://www.runwaygirlnetwork.com/2014/01/10/spirit-airlines-taps-acro-5000-slim-seats/
http://numbers.brighterplanet.com/2010/06/29/emissions-modeling-methodology-published/
http://www.climateaccess.org/sites/default/files/Kling_Air%20Travel%20Carbon%20and%20Energy%20Efficiency.pdf
http://www.climateaccess.org/sites/default/files/Kling_Air%20Travel%20Carbon%20and%20Energy%20Efficiency.pdf
http://knoema.com/kyaewad/us-inflation-forecast-2015-2020-and-up-to-2060-data-and-charts


K-s.Yin Page 168 

Knorr, A., Bellmann, J., & Schomaker, R. (2012). Subsidies in Civil Aircraft Manufacturing: The 
World Trade Organization (WTO) and the Boeing Airbus Dispute. European State Aid Law 
Quarterly : EStAL, 11(3), 585-599.  

Kohler, A. (2001). Air New Zealand to be re-nationalised. 
http://www.abc.net.au/7.30/content/2001/s382720.htm 

Kovacs, K. F., Haight, R. G., Jung, S., Locke, D. H., & O'Neil-Dunne, J. (2013). The marginal cost 
of carbon abatement from planting street trees in New York City. Ecological Economics, 95, 1-10. 
doi: 10.1016/j.ecolecon.2013.08.012 

KPMG. (2007). Components of Aircraft Acquisition Cost, Associated Depreciation and Impairment 
Testing in the Global Airline Industry. from 
https://www.kpmg.com/Global/en/IssuesAndInsights/ArticlesPublications/Documents/components-
of-aircraft-acquisition.pdf 

Kuhn, M. (2009). PICTURES: Winglet installation underway for Hawaiian 767s. Flightglobal. 
http://www.flightglobal.com/news/articles/pictures-winglet-installation-underway-for-hawaiian-
334475/ 

Lee, D. S., Fahey, D. W., Forster, P. M., Newton, P. J., Wit, R. C. N., Lim, L. L., . . . Sausen, R. 
(2009). Aviation and global climate change in the 21st century. Atmospheric Environment, 43(22-
23), 3520-3537. doi: 10.1016/j.atmosenv.2009.04.024 

Lee, J., & Mo, J. (2011). Analysis of Technological Innovation and Environmental Performance 
Improvement in Aviation Sector. International Journal of Environmental Research and Public 
Health, 3777-3795. doi: 10.3390/ijerph8093777 

Li, Y., Wang, Y.-z., & Cui, Q. (2016). Has airline efficiency affected by the inclusion of aviation 
into European Union Emission Trading Scheme? Evidences from 22 airlines during 2008–2012. 
Energy, 96, 8-22. doi: https://doi.org/10.1016/j.energy.2015.12.039 

Liu, j., Moss, S., & Zhang, J. (2011). The Life Cycle of a Pandemic Crisis: SARS Impact on Air 
Travel. Journal of International Business Research, 63-78.  

Lovegren, J. A., & Hansman, R. J. (2011). Estimation of Potential Aircraft Fuel Burn reduction in 
Cruise via Speed and Altitude Optimization Strategy: Massachusetts Institute of Technology. 

Lu, J.-L., & Shon, Z. Y. (2012). Exploring airline passengers’ willingness to pay for carbon offsets. 
Transportation Research Part D: Transport and Environment, 17(2), 124-128. doi: 
https://doi.org/10.1016/j.trd.2011.10.002 

Lufthansa Systems. (2012). BoardConnect: Run the future, not cables. Revolutionizing in-flight 
entertainment. from https://www.lhsystems.com/solutions-services/airline-solutions-
services/inflight-entertainment/boardconnect.html 

Lufthansa Technik. (2015). Cyclean Engine Wash.   Retrieved 24/9/2015, from 
http://www.lufthansa-technik.com/cyclean 

Lufthansa Technik. (2016). Aircraft Maintenance.   Retrieved 24/Jun/2016, 2016, from 
http://www.lufthansa-technik.com/aircraft-maintenance 

Lyon, T. P., & Maxwell, J. W. (2003). Self-regulation, taxation and public voluntary environmental 
agreements. Journal of Public Economics, 87(7–8), 1453-1486. doi: 
http://dx.doi.org/10.1016/S0047-2727(01)00221-3 

Malaysia Airlines. (2012). Annual Report. from 
http://ir.chartnexus.com/mas/website_HTML/attachments/attachment_32862_1366604341.pdf 

http://www.abc.net.au/7.30/content/2001/s382720.htm
http://www.kpmg.com/Global/en/IssuesAndInsights/ArticlesPublications/Documents/components-of-aircraft-acquisition.pdf
http://www.kpmg.com/Global/en/IssuesAndInsights/ArticlesPublications/Documents/components-of-aircraft-acquisition.pdf
http://www.flightglobal.com/news/articles/pictures-winglet-installation-underway-for-hawaiian-334475/
http://www.flightglobal.com/news/articles/pictures-winglet-installation-underway-for-hawaiian-334475/
http://www.lhsystems.com/solutions-services/airline-solutions-services/inflight-entertainment/boardconnect.html
http://www.lhsystems.com/solutions-services/airline-solutions-services/inflight-entertainment/boardconnect.html
http://www.lufthansa-technik.com/cyclean
http://www.lufthansa-technik.com/aircraft-maintenance
http://dx.doi.org/10.1016/S0047-2727(01)00221-3
http://ir.chartnexus.com/mas/website_HTML/attachments/attachment_32862_1366604341.pdf


K-s.Yin Page 169 

Mangla, I. (2015). Germanwings 9525: How Does An Airline Decide A Plane Is Too Old To Fly? 
International Business Times. http://www.ibtimes.com/germanwings-9525-how-does-airline-
decide-plane-too-old-fly-1857746 

Marbaix, P., Ferrone, A., & Matthews, B. (2008). Inclusion of Non CO2 effects of Aviation in the 
ETS. 1-11. 
http://dev.ulb.ac.be/ceese/ABC_Impacts/documents_abc/Note_to_stakeholders_aviation_nonco2.pd
f 

Markou, C., & Cros, G. (2013). Airline Maintenance Cost Executive Commentary (FY2012). 
Montreal, Canada: IATA. 

Maxon, T. (2012). Southwest Airlines revamps and adds seats.   Retrieved 22-April, 2015, from 
http://www.dallasnews.com/business/airline-industry/20120117-southwest-airlines-adds-seats-to-
expand-capacity-without-adding-airplanes.ece 

http://aviationblog.dallasnews.com/2012/01/southwest-airlines-to-revamp-i.html/ 

McConnachie, D. A. T. (2012). Climate Policy and the Airline Industry: Emissions Trading and 
Renewable Jet Fuel Vol. MSc. Engineering Systems Division   Retrieved from 
https://dspace.mit.edu/handle/1721.1/72902  

Mckenna, E. (2013). Product Focus: Electronic Flight Bags. Avionics Today. from 
http://www.aviationtoday.com/av/issue/cover/Product-Focus-Electronic-Flight-
Bags_80135.html#.VThcyZPqVKh 

Michaels, D. (2012). The Secret Price of a Jet Airliner. The Wall Street Journal. from 
http://www.wsj.com/articles/SB10001424052702303649504577494862829051078 

Miyoshi, C., & Mason, K. J. (2009). The carbon emissions of selected airlines and aircraft types in 
three geographic markets. Journal of Air Transport Management, 15(3), 138-147. doi: 
10.1016/j.jairtraman.2008.11.009 

Miyoshi, C., & Merkert, R. (2015). The Economic and CO2 Emissions Performance in Aviation: 
An Empirical Analysis of Major European Airlines. In B. Fahimnia, M. G. H. Bell, D. A. Hensher 
& J. Sarkis (Eds.), Green Logistics and Transportation A Sustainable Supply Chain Perspective (pp. 
175-190): Springer Verlag.  

Moran, D., Macleod, M., Wall, E., Eory, V., McVittie, A., Barnes, A., . . . Moxey, A. (2011). 
Marginal Abatement Cost Curves for UK Agricultural Greenhouse Gas Emissions. Journal of 
Agricultural Economics, 62(1), 93-118. doi: 10.1111/j.1477-9552.2010.00268.x 

Morrell, P. (2009). The potential for European aviation CO2 emissions reduction through the use of 
larger jet aircraft. Journal of Air Transport Management, 15(4), 151-157. doi: 
10.1016/j.jairtraman.2008.09.021 

Morrell, P., & Dray, L. (2009). Environmental aspects of fleet turnover, retirement and life cycle 
(Final Report). 
http://www.obsa.org/Lists/Documentacion/Attachments/274/Environmental_aspects_fleet_turnover
_retirement_life_cycle_EN.pdf 

Morris, J., Rowbotham, A., Angus, A., Mann, M., & Pol, I. (2009). A Framework for Estimating 
the Marginal Costs of Environmental Abatement for the Aviation Sector. OMEGA Project 14 - 
Draft Final Report. http://www.cate.mmu.ac.uk/wp-content/uploads/2012/06/Framework-for-
marginal-costs-of-abatement.pdf 

http://www.cate.mmu.ac.uk/wp-content/uploads/2012/06/omega-14-final-draft-v2-020309.pdf 

Morris, J., Rowbotham, A., Morrell, P., Foster, A., Poll, I., Owen, B., . . . Ralph, M. (2009). UK 
Aviation: Carbon Reduction Futures. 

http://www.ibtimes.com/germanwings-9525-how-does-airline-decide-plane-too-old-fly-1857746
http://www.ibtimes.com/germanwings-9525-how-does-airline-decide-plane-too-old-fly-1857746
http://dev.ulb.ac.be/ceese/ABC_Impacts/documents_abc/Note_to_stakeholders_aviation_nonco2.pdf
http://dev.ulb.ac.be/ceese/ABC_Impacts/documents_abc/Note_to_stakeholders_aviation_nonco2.pdf
http://www.dallasnews.com/business/airline-industry/20120117-southwest-airlines-adds-seats-to-expand-capacity-without-adding-airplanes.ece
http://www.dallasnews.com/business/airline-industry/20120117-southwest-airlines-adds-seats-to-expand-capacity-without-adding-airplanes.ece
http://aviationblog.dallasnews.com/2012/01/southwest-airlines-to-revamp-i.html/
http://www.aviationtoday.com/av/issue/cover/Product-Focus-Electronic-Flight-Bags_80135.html#.VThcyZPqVKh
http://www.aviationtoday.com/av/issue/cover/Product-Focus-Electronic-Flight-Bags_80135.html#.VThcyZPqVKh
http://www.wsj.com/articles/SB10001424052702303649504577494862829051078
http://www.obsa.org/Lists/Documentacion/Attachments/274/Environmental_aspects_fleet_turnover_retirement_life_cycle_EN.pdf
http://www.obsa.org/Lists/Documentacion/Attachments/274/Environmental_aspects_fleet_turnover_retirement_life_cycle_EN.pdf
http://www.cate.mmu.ac.uk/wp-content/uploads/2012/06/Framework-for-marginal-costs-of-abatement.pdf
http://www.cate.mmu.ac.uk/wp-content/uploads/2012/06/Framework-for-marginal-costs-of-abatement.pdf
http://www.cate.mmu.ac.uk/wp-content/uploads/2012/06/omega-14-final-draft-v2-020309.pdf


K-s.Yin Page 170 

https://dspace.lib.cranfield.ac.uk/bitstream/1826/3577/1/UK_Aviation_Carbon_Reduction_Futures-
2009.pdf 

Morrison, S. A., & Winston, C. (1989). Airline Deregulation and Public Policy. Science, 245(4919), 
707.  

myClimate. (2014). Offset your flight emissions.   Retrieved 30 Sept, 2014, from 
https://co2.myclimate.org/en/flight_calculators/new 

National Research Council, Transport Research Board, Airport Cooperative Research Program, 
Administration, U. S. F. A., Camp Dresser & McKee, & Synergy Consulting Services. (2011). 
Handbook for considering practical greenhouse gas emission reduction strategies for airports. 
Washington D.C. 

Norris, G. (2013). Boeing Launches 777X In Dubai Order Boom. Aviation Week. 
http://aviationweek.com/commercial-aviation/boeing-launches-777x-dubai-order-boom 

Oates, W. E., & Portney, P. R. (2003). The political economy of environmental policyHandbook of 
Environmental Economics (pp. 325-354).  

OECD. (2007). Instrument Mixes for Environmental Policy Analysis of Current Use of Instrument  
Policy (pp. 238). paris: OECD Publishing. 

OECD (Producer). (2016). Historical Commercial Interest Reference Rate (CIRR) Retrieved from 
http://www.oecd.org/tad/xcred/xls-historical_1993_today.xlsx 

Official Airline Guide (OAG). (2014). Aviation data. from http://www.oag.com/Aviation-Data 

Owen, B., Lee, D. S., & Lim, L. (2010). Flying into the Future: Aviation Emissions Scenarios to 
2050. Environ Sci Technol, 44(7), 2255-2260.  

Owen, D. (2014). Game of Thrones: How airlines woo the one per cent. The New Yorker. from 
http://www.newyorker.com/magazine/2014/04/21/game-of-thrones 

Pagoni, I., & Psaraki-Kalouptsidi, V. (2016). The impact of carbon emission fees on passenger 
demand and air fares: A game theoretic approach. Journal of Air Transport Management, 55, 41-51. 
doi: 10.1016/j.jairtraman.2016.04.004 

Pearce, B. (2013). Profitability and the air transport value chain   Retrieved from 
https://www.iata.org/whatwedo/Documents/economics/profitability-and-the-air-transport-
value%20chain.pdf  

Pearce, D. (2005). Th UK Climate Change Levy: A Study in Political Economy   Retrieved from 
http://www.oecd-
ilibrary.org/docserver/download/0205051ec003.pdf?expires=1481674708&id=id&accname=ocid17
7546&checksum=2FCD630DE5226C9355447381869A3D3B  

Poll, D. I. A. (2014). On the application of light weight materials to improve aircraft fuel burn - 
reduce weight or improve aerodynamic efficiency? Aeronautical Journal, 118(1206), 903-934.  

Pratt & Whitney. (2010). Jetstar Airways Selects Pratt & Whitney EcoPower® Engine Wash. 
AviTrader. http://www.pw.utc.com/Press/Story/20101103-0100/2010/All%20Categories 

http://www.avitrader.com/2010/11/03/jetstar-airways-selects-pratt-whitney-ecopower-engine-wash/ 

Qantas. (2010). The Qantas Group at a Glance. from 
https://www.qantas.com.au/infodetail/about/FactFiles.pdf 

Qantas (Producer). (2011). Energy Efficiency Opportunities. Retrieved from 
https://www.qantas.com.au/infodetail/about/investors/qantasEEOReport2011.pdf 

http://aviationweek.com/commercial-aviation/boeing-launches-777x-dubai-order-boom
http://www.oecd.org/tad/xcred/xls-historical_1993_today.xlsx
http://www.oag.com/Aviation-Data
http://www.newyorker.com/magazine/2014/04/21/game-of-thrones
http://www.iata.org/whatwedo/Documents/economics/profitability-and-the-air-transport-value%20chain.pdf
http://www.iata.org/whatwedo/Documents/economics/profitability-and-the-air-transport-value%20chain.pdf
http://www.oecd-ilibrary.org/docserver/download/0205051ec003.pdf?expires=1481674708&id=id&accname=ocid177546&checksum=2FCD630DE5226C9355447381869A3D3B
http://www.oecd-ilibrary.org/docserver/download/0205051ec003.pdf?expires=1481674708&id=id&accname=ocid177546&checksum=2FCD630DE5226C9355447381869A3D3B
http://www.oecd-ilibrary.org/docserver/download/0205051ec003.pdf?expires=1481674708&id=id&accname=ocid177546&checksum=2FCD630DE5226C9355447381869A3D3B
http://www.pw.utc.com/Press/Story/20101103-0100/2010/All%20Categories
http://www.avitrader.com/2010/11/03/jetstar-airways-selects-pratt-whitney-ecopower-engine-wash/
http://www.qantas.com.au/infodetail/about/FactFiles.pdf
http://www.qantas.com.au/infodetail/about/investors/qantasEEOReport2011.pdf


K-s.Yin Page 171 

Qantas. (2012a). Annual Report. from 
https://www.qantas.com.au/infodetail/about/investors/2012AnnualReport.pdf 

Qantas (Producer). (2012b). Energy Efficiency Opportunities. Retrieved from 
https://www.qantas.com.au/infodetail/about/investors/qantasEEOReport2012.pdf 

Qantas. (2013a). Annual Report. from 
https://www.qantas.com.au/infodetail/about/investors/2013AnnualReport.pdf 

Qantas (Producer). (2013b). Energy Efficiency Opportunities. Retrieved from 
https://www.qantas.com.au/infodetail/about/investors/qantasEEOReport2013.pdf 

Qantas. (2014). Offset My Flight.   Retrieved 29 Sept, 2014, from 
https://www.qantas.com.au/travel/airlines/offset-my-flight/global/en 

Qantas. (2015). QANTAS Dreamliners Symbolise new era for National Carrier. .   Retrieved 
24/9/2015, from http://www.qantasnewsroom.com.au/media-releases/qantas-dreamliners-
symbolise-new-era-for-national-carrier/ 

http://www.ausbt.com.au/qantas-to-buy-boeing-787-first-flights-from-2017 

http://australianaviation.com.au/2015/08/joyce-says-787-9-represents-hugely-exciting-
opportunities-for-qantas/ 

Qiu, Y. (2005). Can the 787 & A350 transform the economics of long-haul services? Aircraft 
Commerce, (39). http://www.aircraft-
commerce.com/sample_articles/sample_articles/fleet_planning_sample.pdf 

Ramos-Pérez, D. (2016). State aid to airlines in Spain: An assessment of regional and local 
government support from 1996 to 2014. Transport Policy, 49, 137-147. doi: 
http://dx.doi.org/10.1016/j.tranpol.2016.05.004 

Ramsey, J. (2011). In-Flight Entertainment. Avionics. 
http://www.aviationtoday.com/av/communications/In-Flight-Entertainment_74212.html#.VX-
G70bqVKg 

Reuters. (2012). How can an airline pay $20 billion for new planes? . 
http://www.traveller.com.au/how-can-an-airline-pay-20-billion-for-new-planes-1tnbg 

Reyd, J. V. d., & Wouters, M. (2005). Air Cargo Density Research. http://www.pdfdrive.net/air-
cargo-density-final-e4257838.html 

Ribeiro, S. K., Kobayashi, S., Beuthe, M., Gasca, J., Greene, D., D. S. Lee, . . . Zhou, P. J. (2007). 
Transport and its infrastructure. In Climate Change 2007: Mitigation. Contribution of Working 
Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 
323-386). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. 
Retrieved from http://www.ipcc.ch/publications_and_data/ar4/wg3/en/ch5.html.  

Roewe, K. (2014). A320neo Unbeatable fuel efficiency. 
http://www.airbus.com/presscentre/pressreleases/press-release-detail/detail/a320neo-family-sets-
new-standards-with-20-reduced-fuel-burn/ 

Rothman, A. (2014). Airbus Seeks 15,000 A320neo Sales in 20 Years to Lower Fuel. 
BloombergBusiness. http://www.bloomberg.com/news/articles/2014-09-25/airbus-seeks-15-000-
a320neo-sales-in-20-years-to-drive-savings 

Schonland, A. (2016). Aircraft pricing - List vs. Market.   Retrieved 5-May-2016, 2016, from 
http://airinsight.com/2016/05/16/aircraft-pricing-list-vs-market/ 

Sijm, J. (2005). The interaction between the EU emissions trading scheme and national energy 
policies. Climate Policy, 5(1), 79-96. doi: 10.1080/14693062.2005.9685542 

http://www.qantas.com.au/infodetail/about/investors/2012AnnualReport.pdf
http://www.qantas.com.au/infodetail/about/investors/qantasEEOReport2012.pdf
http://www.qantas.com.au/infodetail/about/investors/2013AnnualReport.pdf
http://www.qantas.com.au/infodetail/about/investors/qantasEEOReport2013.pdf
http://www.qantas.com.au/travel/airlines/offset-my-flight/global/en
http://www.qantasnewsroom.com.au/media-releases/qantas-dreamliners-symbolise-new-era-for-national-carrier/
http://www.qantasnewsroom.com.au/media-releases/qantas-dreamliners-symbolise-new-era-for-national-carrier/
http://www.ausbt.com.au/qantas-to-buy-boeing-787-first-flights-from-2017
http://australianaviation.com.au/2015/08/joyce-says-787-9-represents-hugely-exciting-opportunities-for-qantas/
http://australianaviation.com.au/2015/08/joyce-says-787-9-represents-hugely-exciting-opportunities-for-qantas/
http://www.aircraft-commerce.com/sample_articles/sample_articles/fleet_planning_sample.pdf
http://www.aircraft-commerce.com/sample_articles/sample_articles/fleet_planning_sample.pdf
http://dx.doi.org/10.1016/j.tranpol.2016.05.004
http://www.aviationtoday.com/av/communications/In-Flight-Entertainment_74212.html#.VX-G70bqVKg
http://www.aviationtoday.com/av/communications/In-Flight-Entertainment_74212.html#.VX-G70bqVKg
http://www.traveller.com.au/how-can-an-airline-pay-20-billion-for-new-planes-1tnbg
http://www.pdfdrive.net/air-cargo-density-final-e4257838.html
http://www.pdfdrive.net/air-cargo-density-final-e4257838.html
http://www.ipcc.ch/publications_and_data/ar4/wg3/en/ch5.html
http://www.airbus.com/presscentre/pressreleases/press-release-detail/detail/a320neo-family-sets-new-standards-with-20-reduced-fuel-burn/
http://www.airbus.com/presscentre/pressreleases/press-release-detail/detail/a320neo-family-sets-new-standards-with-20-reduced-fuel-burn/
http://www.bloomberg.com/news/articles/2014-09-25/airbus-seeks-15-000-a320neo-sales-in-20-years-to-drive-savings
http://www.bloomberg.com/news/articles/2014-09-25/airbus-seeks-15-000-a320neo-sales-in-20-years-to-drive-savings
http://airinsight.com/2016/05/16/aircraft-pricing-list-vs-market/


K-s.Yin Page 172 

Singapore Airlines. (2012). Annual Report. from https://www.singaporeair.com/saar5/pdf/Investor-
Relations/Annual-Report/annualreport1112.pdf 

Smithsonian National Air and Space Museum. (2007). Deregulation: A Watershed Event.   
Retrieved 17 feb, 2014, from https://airandspace.si.edu/exhibitions/america-by-
air/online/jetage/jetage08.cfm 

Smithsonian National Postal Museum. (2004). Airmail Creates an Industry: Postal Act Facts.   
Retrieved 17 Feb, 2014, from 
http://www.postalmuseum.si.edu/airmail/airmail/public/airmail_public_postal_long.html 

http://www.postalmuseum.si.edu/airmail/airmail/airmail.html 

Smyth, A., Christodoulou, G., Dennis, N., Al-Azzawi, M., & Campbell, J. (2012). Is air transport a 
necessity for social inclusion and economic development? Journal of Air Transport Management, 
22, 53-59. doi: 10.1016/j.jairtraman.2012.01.009 

Smyth, M., & Pearce, B. (Producer). (2006). IATA Economics Briefing No. 5 'Airline Cost 
Performance'. Retrieved from 
https://www.iata.org/whatwedo/Documents/economics/airline_cost_performance.pdf 

https://www.iata.org/publications/economics/Documents/890200-airline-cost-
performanceSummary-report.pdf 

https://www.iata.org/whatwedo/Documents/economics/IATA_Economic_Briefing_Airline_Cost_P
erformance_Update.pdf 

Sorrell, S. R., & Sijm, J. (2003). Carbon Trading in the Policy Mix. Oxford Review of Economic 
Policy, 19(3), 420-437.  

Søvde, O. A., Matthes, S., Skowron, A., Iachetti, D., Lim, L., Owen, B., . . . Isaksen, I. S. A. (2014). 
Aircraft emission mitigation by changing route altitude: A multi-model estimate of aircraft NOx 
emission impact on O3 photochemistry. Atmospheric Environment, 95, 468-479. doi: 
http://dx.doi.org/10.1016/j.atmosenv.2014.06.049 

Steven, M., & Merklein, T. (2013). The influence of strategic airline alliances in passenger 
transportation on carbon intensity. Journal of Cleaner Production, 56, 112-120. doi: 
http://dx.doi.org/10.1016/j.jclepro.2012.03.011 

Stratton, R. W., Wong, H., & Hileman, J. I. (2010). Life Cycle Greenhouse Gas Emissions from 
Alternative Jet Fuels Partnership for Air Transportation Noise and Emissions Reduction Project 28   
Retrieved from http://web.mit.edu/aeroastro/partner/reports/proj28/partner-proj28-2010-001.pdf  

Sustainable Aviation. (2010). Aircraft in the Ground CO2 Reduction Programme. from 
http://www.sustainableaviation.co.uk/wp-content/uploads/2015/09/Aircraft-On-the-Ground-CO2-
Reduction-Programme-Best-Practice-Guidance.pdf 

Sustainable Aviation. (2012). CO2 Road Map. from http://www.sustainableaviation.co.uk/wp-
content/uploads/SA-CO2-Road-Map-full-report-280212.pdf 

Teal, M. (2014). New 737 Max: Improved Fuel Efficiency and Performance. Aero, 5-12. 
www.boeing.com/boeingedge/aeromagazine 

Thomas, G. (2014). Virgin unveils new “business/first” seat. Australian Aviation. from 
http://australianaviation.com.au/2014/09/virgin-unveils-new-businessfirst-seat/ 

Timilsina, G. R., & Shrestha, A. (2009). Transport sector CO2 emissions growth in Asia: 
Underlying factors and policy options. Energy Policy, 37(11), 4523-4539. doi: 
http://dx.doi.org/10.1016/j.enpol.2009.06.009 

http://www.singaporeair.com/saar5/pdf/Investor-Relations/Annual-Report/annualreport1112.pdf
http://www.singaporeair.com/saar5/pdf/Investor-Relations/Annual-Report/annualreport1112.pdf
http://www.postalmuseum.si.edu/airmail/airmail/public/airmail_public_postal_long.html
http://www.postalmuseum.si.edu/airmail/airmail/airmail.html
http://www.iata.org/whatwedo/Documents/economics/airline_cost_performance.pdf
http://www.iata.org/publications/economics/Documents/890200-airline-cost-performanceSummary-report.pdf
http://www.iata.org/publications/economics/Documents/890200-airline-cost-performanceSummary-report.pdf
http://www.iata.org/whatwedo/Documents/economics/IATA_Economic_Briefing_Airline_Cost_Performance_Update.pdf
http://www.iata.org/whatwedo/Documents/economics/IATA_Economic_Briefing_Airline_Cost_Performance_Update.pdf
http://dx.doi.org/10.1016/j.atmosenv.2014.06.049
http://dx.doi.org/10.1016/j.jclepro.2012.03.011
http://web.mit.edu/aeroastro/partner/reports/proj28/partner-proj28-2010-001.pdf
http://www.sustainableaviation.co.uk/wp-content/uploads/2015/09/Aircraft-On-the-Ground-CO2-Reduction-Programme-Best-Practice-Guidance.pdf
http://www.sustainableaviation.co.uk/wp-content/uploads/2015/09/Aircraft-On-the-Ground-CO2-Reduction-Programme-Best-Practice-Guidance.pdf
http://www.sustainableaviation.co.uk/wp-content/uploads/SA-CO2-Road-Map-full-report-280212.pdf
http://www.sustainableaviation.co.uk/wp-content/uploads/SA-CO2-Road-Map-full-report-280212.pdf
http://www.boeing.com/boeingedge/aeromagazine
http://australianaviation.com.au/2014/09/virgin-unveils-new-businessfirst-seat/
http://dx.doi.org/10.1016/j.enpol.2009.06.009


K-s.Yin Page 173 

Timotijevic, D. (2013). Aviation Leasing as part of a Broader Investment Portfolio. from 
https://www.investec.com.au/content/dam/investec/investec-
aus/Misc/Investec_Report_Aviation_Leasing_as_Part_of_a_Broader_Investment_Portfolio.pdf 

Townend, S. (2011). NEW AIRCRAFT BUSINESS BOOMING BUT MARKET IS volatile. 
InFinance, 125(2), 54-55.  

Travis, D. J., Carleton, A. M., & Lauritsen, R. G. (2004). Regional Variations in US Diurnal 
Temperature Range for the 11-14 September 2001 Aircraft Groundings. Journal of Climate, 17, 
1123-1134.  

Trejos, N. (2013). Will iPads revolutionize in-flight entertainment? USA Today. from 
http://www.usatoday.com/story/travel/flights/2012/12/20/will-ipads-revolutionize-in-flight-
entertainment/1782809/ 

Trimble, S. (2014). Analysis: After three years in service, how is 787 performing? Flight Global.  
Retrieved 26/July/2015, 2015, from http://www.flightglobal.com/news/articles/analysis-after-three-
years-in-service-how-is-787-performing-405814/ 

U.S. Department of Labor. (2015). CPI  Inflation Calculator.   Retrieved 19-May, 2015, from 
http://www.bls.gov/data/inflation_calculator.htm 

U.S. Energy Information Administration. (2015a). The Annual Energy Outlook 2015 with 
projections to 2040. from http://www.eia.gov/forecasts/aeo/pdf/0383%282015%29.pdf 

U.S. Energy Information Administration. (2015b). U.S. Gulf Coast Kerosene-Type Jet Fuel Spot 
Price FOB. from http://www.eia.gov/dnav/pet/pet_pri_spt_s1_d.htm 

U.S. Federal Aviation Administration (FAA). (2005). Advisory Circular: Aircraft Weight and 
Balance Control. https://www.faa.gov/documentLibrary/media/Advisory_Circular/AC120-27E.pdf 

U.S. Federal Aviation Administration (FAA). (2015). Aviation Emissions, Impact & Mitigation: A 
Primer. 

United Airlines. (2012). Annual Report. from 
http://www.sec.gov/Archives/edgar/data/319687/000119312512073010/d260625d10k.htm 

United Nations (UN). (1998). Kyoto Protocol to United Nations Framework Convention on Climate 
Change (UNFCCC). 1-20. http://unfccc.int/kyoto_protocol/items/2830.php 

van Renssen, S. (2012). Saving EU climate policy. Nature Climate Change, 2(6), 392-393. doi: 
10.1038/nclimate1561 

Vasigh, B., Fleming, K., & Tacker, T. (2013). Introduction to Air Transport Economics: From 
Theory to Applications -- 2nd ed. (Second ed.). Burlington, USA: Ashgate Publishing Company. 

Virgin Australia (Producer). (2011). Energy Efficiency Opportunities. Retrieved from 
https://www.virginaustralia.com/cs/groups/internetcontent/@wc/documents/webcontent/~edisp/u_0
23884.pdf 

Virgin Australia. (2012a). Annual Report. from 
http://www.virginaustralia.com/cs/groups/internetcontent/@wc/documents/webcontent/~edisp/annu
al-rpt-2012.pdf 

Virgin Australia (Producer). (2012b). Energy Efficiency Opportunities. Retrieved from 
https://www.virginaustralia.com/cs/groups/internetcontent/@wc/documents/webcontent/~edisp/eeo
_2012.pdf 

Virgin Australia. (2013a). Annual Report. from 
http://www.virginaustralia.com/cs/groups/internetcontent/@wc/documents/webcontent/~edisp/annu
al-rpt-2013.pdf 

http://www.investec.com.au/content/dam/investec/investec-aus/Misc/Investec_Report_Aviation_Leasing_as_Part_of_a_Broader_Investment_Portfolio.pdf
http://www.investec.com.au/content/dam/investec/investec-aus/Misc/Investec_Report_Aviation_Leasing_as_Part_of_a_Broader_Investment_Portfolio.pdf
http://www.usatoday.com/story/travel/flights/2012/12/20/will-ipads-revolutionize-in-flight-entertainment/1782809/
http://www.usatoday.com/story/travel/flights/2012/12/20/will-ipads-revolutionize-in-flight-entertainment/1782809/
http://www.flightglobal.com/news/articles/analysis-after-three-years-in-service-how-is-787-performing-405814/
http://www.flightglobal.com/news/articles/analysis-after-three-years-in-service-how-is-787-performing-405814/
http://www.bls.gov/data/inflation_calculator.htm
http://www.eia.gov/forecasts/aeo/pdf/0383%282015%29.pdf
http://www.eia.gov/dnav/pet/pet_pri_spt_s1_d.htm
http://www.faa.gov/documentLibrary/media/Advisory_Circular/AC120-27E.pdf
http://www.sec.gov/Archives/edgar/data/319687/000119312512073010/d260625d10k.htm
http://unfccc.int/kyoto_protocol/items/2830.php
http://www.virginaustralia.com/cs/groups/internetcontent/@wc/documents/webcontent/~edisp/u_023884.pdf
http://www.virginaustralia.com/cs/groups/internetcontent/@wc/documents/webcontent/~edisp/u_023884.pdf
http://www.virginaustralia.com/cs/groups/internetcontent/@wc/documents/webcontent/~edisp/annual-rpt-2012.pdf
http://www.virginaustralia.com/cs/groups/internetcontent/@wc/documents/webcontent/~edisp/annual-rpt-2012.pdf
http://www.virginaustralia.com/cs/groups/internetcontent/@wc/documents/webcontent/~edisp/eeo_2012.pdf
http://www.virginaustralia.com/cs/groups/internetcontent/@wc/documents/webcontent/~edisp/eeo_2012.pdf
http://www.virginaustralia.com/cs/groups/internetcontent/@wc/documents/webcontent/~edisp/annual-rpt-2013.pdf
http://www.virginaustralia.com/cs/groups/internetcontent/@wc/documents/webcontent/~edisp/annual-rpt-2013.pdf


K-s.Yin Page 174 

Virgin Australia (Producer). (2013b). Energy Efficiency Opportunities. Retrieved from 
https://www.virginaustralia.com/cs/groups/internetcontent/@wc/documents/webcontent/~edisp/va_
public_report_20140801.pdf 

Virgin Australia. (2017). Fly Carbon Neutral. from https://www.virginaustralia.com/au/en/about-
us/sustainability/carbon-offset-program/ 

Wall, R., Norris, G., Anselmo, J. C., & Flottau, J. (2011, 27/7/2011). Sellers' Market. Aviation Week 
& Space Technology. from http://aviationweek.com/site-
files/aviationweek.com/files/uploads/2015/05/aw_paris_2011.pdf 

Woods, R. (2016a). The Big 20: Top cargo airport rankings. 2016, from 
http://aircargoworld.com/the-big-20-top-cargo-airport-rankings/3/ 

Woods, R. (2016b). Freight 50: The top 50 cargo carriers. 2016, from 
http://aircargoworld.com/freight-50-the-top-50-cargo-carriers/ 

Wren, C. (2011). Less is More. GreenSky - Aviation and the Environment. 
http://www.amsafe.com/wp-content/uploads/GS_October11_AmSafe.pdf 

Yin, K.-s., Dargusch, P., & Halog, A. (2015). An analysis of the greenhouse gas emissions profile 
of airlines flying the Australian international market. Journal of Air Transport Management, 47, 
218-229. doi: http://dx.doi.org/10.1016/j.jairtraman.2015.06.005 

Yin, K.-s., Dargusch, P., & Halog, A. (2016). A study of the abatement options available to reduce 
carbon emissions from Australian international flights. International Journal of Sustainable 
Transportation, 10, 935-946. doi: 10.1080/15568318.2016.1190882 

 

 

  

http://www.virginaustralia.com/cs/groups/internetcontent/@wc/documents/webcontent/~edisp/va_public_report_20140801.pdf
http://www.virginaustralia.com/cs/groups/internetcontent/@wc/documents/webcontent/~edisp/va_public_report_20140801.pdf
http://www.virginaustralia.com/au/en/about-us/sustainability/carbon-offset-program/
http://www.virginaustralia.com/au/en/about-us/sustainability/carbon-offset-program/
http://aviationweek.com/site-files/aviationweek.com/files/uploads/2015/05/aw_paris_2011.pdf
http://aviationweek.com/site-files/aviationweek.com/files/uploads/2015/05/aw_paris_2011.pdf
http://aircargoworld.com/the-big-20-top-cargo-airport-rankings/3/
http://aircargoworld.com/freight-50-the-top-50-cargo-carriers/
http://www.amsafe.com/wp-content/uploads/GS_October11_AmSafe.pdf
http://dx.doi.org/10.1016/j.jairtraman.2015.06.005


K-s.Yin Page 175 

 AnyLogic Model Appendix A.
Screenshot of the AnyLogic model 
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 Input data set for the AnyLogic model (six Excel Appendix B.
spreadsheets). 

Below are screenshots of each Excel input data set. 

Airport Location 

 

 

Airline Load Factor in 2012 
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Airline Timetable in 2012 

 

 

Aircraft Characteristics 

 

 

Fuel Burn tables from CORINAIR 
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Fuel saved due to weight savings according to Boeing and Airbus 
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