
High Performance Density-based Clustering onMassive Data

Junhao Gan

Master of Engineering

A thesis submitted for the degree of Doctor of Philosophy at

The University of Queensland in 2017

School of Information Technology & Electrical Engineering

ii

Abstract

DBSCAN, a density-based clustering method for multi-dimensional points, was proposed in 1996.

Since then, it has received extensive applications, while its computational hardness is still unsolved to

this date. The original KDD’96 paper claimed an algorithm of O(n log n) “average run time complex-

ity” (where n is the number of data points) without a rigorous proof. In 2013, a genuine O(n log n)-

time algorithm was found in 2D space under the Euclidean distance. The hardness of dimensionality

d ≥ 3 has remained open ever since.

This thesis considers the problem of computing DBSCAN clusters from scratch (assuming no

existing indexes) under the Euclidean distance. We prove that, for d ≥ 3, the problem requires Ω(n4/3)

time to solve, unless very significant breakthroughs—ones widely believed to be impossible—could

be made in theoretical computer science. Motivated by this, we propose a relaxed version of the

problem called ρ-approximate DBSCAN, which returns the same clusters as DBSCAN, unless the

clusters are “unstable” (i.e., they change once the input parameters are slightly perturbed). The ρ-

approximate problem can be settled in O(n) expected time regardless of the constant dimensionality

d.

The thesis also enhances the previous result on the exact DBSCAN problem in 2D space. We show

that, if the n data points have been pre-sorted on each dimension (i.e., one sorted list per dimension),

the problem can be settled in O(n) worst-case time. As a corollary, when all the coordinates are

integers, the 2D DBSCAN problem can be solved in O(n log log n) time deterministically, improving

the existing O(n log n) bound.

Given the popular usage of density-based clustering approach in many applications demanding

data updates, this thesis further investigates the algorithmic principles for dynamic clustering by DB-

SCAN. Surprisingly, we prove that the ρ-approximate version suffers from the very same hardness

when the dataset is fully dynamic, namely, when both insertions and deletions are allowed. We also

show that this issue goes away as soon as tiny further relaxation is applied, yet still ensuring the same

quality of ρ-approximate DBSCAN. Our algorithms guarantee near-constant update processing, and

outperform existing approaches by a factor over two orders of magnitude.

The last part of the thesis targets the scenario that the dataset cannot fit in main memory. The

core contribution of this part is to show that, for any d-dimensional grid graph with n vertices, we

iii

can always compute in O(sort(n)) I/Os—where sort(n) is the I/O complexity of sorting n elements—a

multiway vertex separator that serves the same algorithmic purposes as the well-known separator of

[Maheshwari and Zeh, SICOMP’08] for a planar graph. This finding leads to (i) an algorithm that

performs L∞ density-based clustering (and hence, approximate Lp density-based clustering for any

constant p > 0) with near-linear I/Os in any fixed dimensionality, and (ii) improved algorithms for

several fundamental problems on 2D grid graphs: connected components (CC), single source shortest

path (SSSP), and breadth-first search (BFS). In particular, the improvement on the CC problem owes

also to disproving a common belief that 2D grid graphs were sparse under edge contractions.

iv

Declaration by Author

This thesis is composed of my original work, and contains no material previously published or

written by another person except where due reference has been made in the text. I have clearly stated

the contribution by others to jointly-authored works that I have included in my thesis.

I have clearly stated the contribution of others to my thesis as a whole, including statistical as-

sistance, survey design, data analysis, significant technical procedures, professional editorial advice,

and any other original research work used or reported in my thesis. The content of my thesis is the

result of work I have carried out since the commencement of my research higher degree candidature

and does not include a substantial part of work that has been submitted to qualify for the award of

any other degree or diploma in any university or other tertiary institution. I have clearly stated which

parts of my thesis, if any, have been submitted to qualify for another award.

I acknowledge that an electronic copy of my thesis must be lodged with the University Library and,

subject to the policy and procedures of The University of Queensland, the thesis be made available

for research and study in accordance with the Copyright Act 1968 unless a period of embargo has

been approved by the Dean of the Graduate School.

I acknowledge that copyright of all material contained in my thesis resides with the copyright

holder(s) of that material. Where appropriate I have obtained copyright permission from the copyright

holder to reproduce material in this thesis.

v

Publications during candidature

Journal papers:

• Junhao Gan and Yufei Tao. On the Hardness and Approximation of Euclidean DBSCAN. Ac-

cepted and to appear in ACM Transactions on Database Systems (TODS). (Best papers of SIG-

MOD 2015)

Conference papers:

• Junhao Gan and Yufei Tao. Dynamic Density Based Clustering. In Proceedings of ACM Con-

ference on Management of Data (SIGMOD), pages 1493-1507, 2017.

• Miao Qiao, Junhao Gan and Yufei Tao. Range Thresholding on Streams. In Proceedings of

ACM Conference on Management of Data (SIGMOD), pages 571-582, 2016.

• Junhao Gan and Yufei Tao. DBSCAN Revisited: Mis-Claim, Un-Fixability, and Approxima-

tion. In Proceedings of ACM Conference on Management of Data (SIGMOD), pages 519-530,

2015. (Winner of the Best Paper Award)

vi

Publications included in this thesis

Junhao Gan and Yufei Tao. On the Hardness and Approximation of Euclidean DBSCAN. Accepted

and to appear in ACM Transactions on Database Systems (TODS). (Best papers of SIGMOD 2015) -

incorporated as Chapter 2.

Contributor Statement of contribution

Junhao Gan (Candidate)

Designed algorithm (50%)

Wrote the paper (40%)

Designed experiments (70 %)

Proofreading the paper (50 %)

Yufei Tao

Designed algorithm (50%)

Wrote the paper (60%)

Designed experiments (30 %)

Proofreading the paper (50 %)

Junhao Gan and Yufei Tao. Dynamic Density Based Clustering. In Proceedings of ACM Conference

on Management of Data (SIGMOD), pages 1493-1507, 2017. - incorporated as Chapter 3.

Contributor Statement of contribution

Junhao Gan (Candidate)

Designed algorithm (50%)

Wrote the paper (40%)

Designed experiments (80 %)

Proofreading the paper (50 %)

Yufei Tao

Designed algorithm (50%)

Wrote the paper (60%)

Designed experiments (20 %)

Proofreading the paper (50 %)

vii

Contributions by others to the thesis

In all of the presented research in this thesis, Prof. Yufei Tao, as my principal advisor, has pro-

vided technical guidance for formulating the problems, refinement of ideas as well as reviewing and

polishing the presentation.

Statement of parts of the thesis submitted to qualify for the award of another degree

None.

viii

Acknowledgments:

This thesis is not only a milestone of my Ph.D study, but also a summary of an important chapter

of my life. I would like to give my sincere thanks to people who have supported and helped me

during my Ph.D study. It is a great pleasure to express my gratitude and thankfulness to them all in

my humble acknowledgment.

First and foremost, I would like to give my earnest gratitude to my advisor Prof. Yufei Tao for

the continuous support in my research and my life. His strictness and high standard in research have

helped me learn a lot, and his passion and fortitude in research have taught me to never give up

no matter what situation is. Without his careful guidance, all my papers that have been published

or submitted, as well as this thesis, would never have been completed or written. I could not have

imagined having a better advisor and mentor for my Ph.D study. Being a Ph.D student under his

supervision is one of the most wonderful things in my life.

I thank Prof. Hong Cheng from the bottom of my heart for her generous help since I was a research

assistant in her group before my Ph.D study. I still remember the words she said to me when I

was confused about the future, and her words have encouraged me to choose a tougher but better

path in my research. Furthermore, I could not exactly remember how many times she has written

recommendation letters for me.

I appreciate Dr. Xiaocheng Hu and Dr. Miao Qiao, who have provided me numerous of insightful

and fruitful discussions. Thank you to my good friends Dr. GuangYong Chen and Dr. Junjie Ye,

and my dear roommates Dr. Yu Rong and Mr. David Tong for bringing me such an enjoyable and

unforgettable life.

My great thankfulness also goes to Prof. Xiaofang Zhou, who is always nice and supportive, and

he has given me lots of constructive comments not only in research but also in life. I also thank

the DKE group very much, which has provided me a warm and delightful atmosphere just like a

big family. I acknowledge Prof. Xue Li for often sharing his study and life experience with me

during lunch time. An especial big thank you to Mr. Lei Li, Dr. Bolong Zheng, Dr. XingZhong Du,

Dr. Weiqing Wang and Ms. Zoe Zhang for our “Eating Group”, in which we often shared thoughts

and ideas. I also thank Ms. Dan He and Mr. PingFu Chao for their generous help in my daily life.

Last but not the least, my deepest gratitude goes to my dear family: my parents, my sister and

my wife. I profoundly thank my parents for giving birth to me and raising me with all the best that

ix

they could offer to me. I sincerely appreciate my sister, who has taken the responsibility to take care

of our parents these years, and thanks to her, I can pursue my dream without worrying too much

about them. My greatest thankfulness is owed to my wife, who has quit her job in China and come

to Australia with me. Without her, I would never be able to have delicious meals when I am back

to home after school everyday. Most importantly, it is my wife who lets me know that someone is

waiting for me at home and lets me realize that I owe someone a good future. My family is my most

precious possession in my life. Without my family’s endless support, I would never have been able to

complete my Ph.D study and write this thesis.

x

Keywords

dbscan, density-based clustering, dynamic, updates, hopcroft hard, algorithms, computational geom-

etry, multi-dimensional grid graphs, orthogonal separator, external memory

Australian and New Zealand Standard Research Classifications (ANZSRC)

ANZSRC code: 080604, Database Management, 100%

Fields of Research (FoR) Classification

FoR code: 0806, Information Systems, 100%

Contents

1 Introduction 1

1.1 Euclidean DBSCAN Revisited: Hardness and Approximation 2

1.2 Dynamic Euclidean DBSCAN: Hardness and Approximation 4

1.3 External Density-Based Clustering and Its Related Graph Problems 7

1.4 Organization of the Thesis . 9

2 On the Hardness of Euclidean DBSCAN and Its Approximation 11

2.1 Related Work . 11

2.1.1 Definitions . 12

2.1.2 The 2D Algorithm with Genuine O(n log n) Time 13

2.1.3 Some Geometric Results . 15

2.2 DBSCAN in Dimensionality 3 and Above . 17

2.2.1 Hardness of DBSCAN . 17

2.2.2 A New Exact Algorithm for d ≥ 3 . 19

2.3 ρ-Approximate DBSCAN . 21

2.3.1 Definitions . 21

2.3.2 A Sandwich Theorem . 23

2.3.3 Approximate Range Counting . 26

2.3.4 Solving ρ-Approximate DBSCAN . 28

2.4 New 2D Exact Algorithms . 30

2.4.1 DBSCAN from a Delaunay Graph . 30

2.4.2 Separation of Sorting from DBSCAN . 34

xi

xii Contents

2.5 Discussion on Practical Efficiency . 40

2.6 Experiments . 42

2.6.1 Datasets . 42

2.6.2 Characteristics of the Datasets . 45

2.6.3 Approximation Quality . 51

2.6.4 Computational Efficiency for d ≥ 3 . 55

2.6.5 Computational Efficiency for d = 2 . 56

2.7 Summary . 60

2.8 Appendix: Solving USEC with Line Separation . 61

2.8.1 Computing the Wavefront in Linear Time 62

2.8.2 Solving the USEC Problem . 65

3 Dynamic Euclidean DBSCAN 67

3.1 Preliminaries . 67

3.2 Problem Definition and State of the Art . 70

3.3 The Overall Framework . 73

3.3.1 A Grid Graph Approach . 73

3.3.2 Query Algorithm . 75

3.3.3 Graph Maintenance . 76

3.4 Semi-Dynamic Algorithms . 77

3.5 Dynamic Hardness and Double Approximation . 78

3.5.1 Hardness of Dynamic ρ-Approximation . 79

3.5.2 ρ-Double-Approximate DBSCAN and Sandwich Guarantee 81

3.6 Fully Dynamic Algorithms . 83

3.6.1 Approximate Bichromatic Close Pair . 83

3.6.2 Edges in the Grid Graph and aBCP . 84

3.6.3 The Core-Status Structure . 84

3.6.4 GUM . 85

3.6.5 Performance Guarantees . 85

3.7 Experiments . 85

Contents xiii

3.7.1 Setup . 86

3.7.2 Semi-Dynamic Results . 88

3.7.3 Fully-Dynamic Results . 91

3.8 Summary . 93

3.9 Appendix . 94

3.9.1 Proof of Theorem 3.1 . 94

3.9.2 Proof of Lemma 3.1 . 95

3.9.3 Proof of Theorem 3.3 . 95

3.9.4 Proof of Lemma 3.3 . 96

3.9.5 Proof of Theorem 3.4 . 98

4 External Density-Based Clustering and Multi-Dimensional Grid Graphs 101

4.1 Prelinmilary . 101

4.2 Main Results . 102

4.2.1 Main Application: Density-Based Clustering 104

4.2.2 Additional Applications: Terrains, Land Surfaces, and Road Networks . . . 106

4.2.3 Remarks on the Tall-Cache Assumption . 107

4.3 Orthogonal Separators . 107

4.3.1 Binary Separators . 108

4.3.2 Weak Multi-Way Separators . 110

4.3.3 Binary Boundary Separators . 111

4.3.4 Strong Multi-Way Separators . 114

4.4 Computing a Separator I/O-Efficiently . 115

4.4.1 One Split . 116

4.4.2 2Ω(log(M/B)) Splits . 119

4.4.3 The Overall Algorithm . 122

4.5 Density-Based Clustering . 122

4.5.1 Proof of Theorem 4.3 . 123

4.5.2 Proof of Corollary 4.3 . 125

4.6 New Results on 2D Grid Graphs . 126

xiv Contents

4.6.1 SSSP and BFS . 127

4.6.2 Disproving Edge-Contraction Sparsity . 128

4.7 Summary . 130

5 Conclusions 131

List of Figures

1.1 Examples of density-based clustering from [27] . 2

1.2 Dynamic density-based clustering . 5

1.3 Multidimensional grid graphs . 8

1.4 Contracting the edge between v1, v2 from the graph on the left produces the graph on

the right . 9

2.1 An example dataset (the two circles have radius ε; MinPts = 4) 13

2.2 DBSCAN with a grid (MinPts = 4) . 15

2.3 Three relevant geometric problems . 16

2.4 Density-reachability and ρ-approximate density-reachability (MinPts = 4) 22

2.5 Good and bad choices of ε . 24

2.6 Approximate range counting . 27

2.7 Illustration of our Step-2 Algorithm in Section 2.4.1 31

2.8 Correctness proof of our Step-2 algorithm . 33

2.9 USEC with line separation . 37

2.10 Deciding the existence of an edge by USEC with line separation 39

2.11 A small ε for the left cluster is large for the other two clusters 41

2.12 A 2D seed spreader dataset . 43

2.13 Optics diagrams for 5D synthetic data . 48

2.14 Optics diagrams for real datasets . 51

2.15 Comparison of the clusters found by exact DBSCAN and ρ-approximate DBSCAN . 52

2.16 Largest ρ in {0.001, 0.01, 0.1, 1} for our ρ-approximate DBSCAN algorithm to return

the same results as precise DBSCAN . 53

xv

xvi List of Figures

2.17 Running time vs. n (d ≥ 3) . 54

2.18 Running time vs. ε (d ≥ 3) . 57

2.19 Running time vs. ρ (d ≥ 3) . 57

2.20 Running time vs. MinPts (d ≥ 3) . 58

2.21 Running time vs. n (d = 2) . 58

2.22 Running time vs. ε (d = 2) . 59

2.23 Running time vs. MinPts (d = 2) . 60

2.24 Illustration of active region and upper arc . 61

2.25 Deciding the existence of an edge by USEC with line separation 62

2.26 Illustration of the Step-1 algorithm in Section 2.8.1 63

2.27 Illustration of the Step-3 algorithm in Section 2.8.1 64

3.1 Illustration of DBSCAN and ρ-approximate DBSCAN (ρ = 0.5,MinPts = 3) 68

3.2 Illustration of the IncDBSCAN method . 72

3.3 Our grid-graph framework (MinPts = 3) . 74

3.4 Flow of updates in our structures . 77

3.5 Illustration of our hardness proof . 80

3.6 Illustration of ρ-double approximation . 82

3.7 Performance of semi-dynamic algorithms in 2D . 88

3.8 Performance of semi-dynamic algorithms in d ≥ 3 dimensions 89

3.9 Semi-dynamic performance vs. ε . 90

3.10 Semi-dynamic performance vs. fqry . 90

3.11 Performance of fully-dynamic algorithms in 2D . 91

3.12 Performance of fully-dynamic algorithms in d ≥ 3 dimensions 92

3.13 Fully-dynamic performance vs. ε . 93

3.14 Fully-dynamic performance vs. %ins . 93

4.1 Density-based clustering. The square illustrates the value of ε (all the points in the

square are within L∞ distance ε from the white point), which determines the output of

3 clusters. 105

4.2 Contortion within a square . 128

List of Figures xvii

4.3 The designed grid graph for m = 4 (the black points are the cornerstones; the other

vertices are dotted along the curves, but are omitted for clarity) 129

xviii List of Figures

List of Tables

1.1 Dynamic hardness of DBSCAN variants . 7

2.1 Parameter values (defaults are in bold) . 44

2.2 Cluster quality under different (MinPts, ε): SS similar density 46

2.3 Cluster quality under different (MinPts, ε): SS varying density 47

2.4 Cluster quality under different (MinPts, ε): real data 49

2.5 Sizes of the 10 largest clusters: real data (unit: 103) 50

3.1 Variable parameter values (defaults in bolds) . 88

xix

xx List of Tables

Chapter 1

Introduction

Density-based clustering is one of the most fundamental topics in data mining. Given a set P of

n points in d-dimensional space Rd, the objective is to group the points of P into subsets—called

clusters—such that any two clusters are separated by “sparse regions”. Figure 1.1 shows two classic

examples taken from [27]: the left one contains 4 snake-shaped clusters, while the right one contains

3 clusters together with some noise. The main advantage of density-based clustering (over meth-

ods such as k-means) is its capability of discovering clusters with arbitrary shapes (while k-means

typically returns ball-like clusters).

Density-based clustering can be achieved using a variety of approaches, which differ mainly in

their (i) definitions of “dense/sparse regions”, and (ii) criteria of how dense regions should be con-

nected to form clusters. In this thesis, we concentrate on DBSCAN, which is an approach invented

by [27], and received the test-of-time award in KDD’14. DBSCAN characterizes “density/sparsity”

by resorting to two parameters:

• ε: a positive real value;

• MinPts: a small positive constant integer.

Let B(p, ε) be the d-dimensional ball centered at point p with radius ε, where the distance metric is

the Euclidean distance. B(p, ε) is “dense” if it covers at least MinPts points of P.

DBSCAN forms clusters based on the following rationale. If B(p, ε) is dense, all the points in

B(p, ε) should be added to the same cluster as p. This creates a “chained effect”: whenever a new

1

2 Introduction

Figure 1.1: Examples of density-based clustering from [27]

point p′ with a dense B(p′, ε) is added to the cluster of p, all the points in B(p′, ε) should also join the

same cluster. The cluster of p continues to grow in this manner to the effect’s fullest extent.

1.1 Euclidean DBSCAN Revisited: Hardness and Approxima-

tion

Previous Description of DBSCAN’s Running Time. The original DBSCAN algorithm of [27]

performs a region query for each point p ∈ P, which retrieves B(p, ε). Regarding the running time,

Ester et al. [27] wrote:

“The height an R*-tree is O(log n) for a database of n points in the worst case and a query

with a “small” query region has to traverse only a limited number of paths in the R*-tree.

Since the Eps-Neighborhoods are expected to be small compared to the size of the whole

data space, the average run time complexity of a single region query is O(log n). For each

of the points of the database, we have at most one region query. Thus, the average run time

complexity of DBSCAN is O(n log n).”

The underlined statement lacks scientific rigor:

• Consider a dataset where Ω(n) points coincide at the same location. No matter how small is

ε, for every such point p, B(p, ε) always covers Ω(n) points. Even just reporting the points

inside B(p, ε) for all such p already takes Θ(n2) time—this is true regardless of how good is the

underlying R*-tree or any other index deployed.

1.1 Euclidean DBSCAN Revisited: Hardness and Approximation 3

• The notion of “average run time complexity” in the statement does not seem to follow any

of the standard definitions in computer science (see, for example, Wikipedia1). There was no

clarification on the mathematical meaning of this notion in [27], and neither was there a proof

on the claimed complexity. In fact, it would have been a great result if an O(n log n) bound

could indeed be proved under any of those definitions.

The “O(n log n) average run time complexity” has often been re-stated with fuzzy or even no

description of the accompanying conditions. A popular textbook [33], for example, comments in

Chapter 10.4.1:

If a spatial index is used, the computational complexity of DBSCAN is O(n log n), where n

is the number of database objects. Otherwise, the complexity is O(n2).

Similar statements have appeared in many papers: [15] (Sec 3.1), [19] (Sec 2), [25] (Chapter 5, Sec

2), [41] (Sec 2), [45] (Sec 5.4), [50] (Sec 1), [56] (Sec 2), [61] (Sec 3.3), [70] (Sec 2.2.3), [71] (Sec

5.2), mentioning just 10 papers. Several works have even utilized the O(n log n) bound as a building-

brick lemma to derive new “results” incorrectly: see Sec D.1 of [42], Sec 3.2 of [57], and Sec 5.2

of [59]).

Gunawan [31] also showed that all of the subsequently improved versions of the original DB-

SCAN algorithm either do not compute the precise DBSCAN result (e.g., see [16, 43, 68]), or still

suffer from O(n2) running time [47]. As a partial remedy, he developed a new 2D algorithm which

truly runs in O(n log n) time, without assuming any indexes.

Hardness and Approximation of DBSCAN. The first part of our results was motivated by two

questions:

• For d ≥ 3, is it possible to design an algorithm that genuinely has O(n log n) time complexity?

To make things easier, is it possible to achieve time complexity O(n logc n) even for some very

large constant c?

• If the answer to the previous question is no, is it possible to achieve linear or near-linear run-

ning time by sacrificing the quality of clusters slightly, while still being able to give a strong

guarantee on the quality?

1Https://en.wikipedia.org/wiki/Average-case complexity

4 Introduction

We answer the above questions with the following results:

• We prove that the DBSCAN problem (computing the clusters from scratch, without assuming an

existing index) requires Ω(n4/3) time to solve in d ≥ 3, unless very significant breakthroughs—

ones widely believed to be impossible—can be made in theoretical computer science. Note that

n4/3 is arbitrarily larger than n logc n, regardless of constant c.

• We introduce a new concept called ρ-approximate DBSCAN which comes with strong assur-

ances in both quality and efficiency. For quality, its clustering result is guaranteed to be “sand-

wiched” between the results of DBSCAN obtained with parameters (ε,MinPts) and (ε(1 +

ρ),MinPts), respectively. For efficiency, we prove that ρ-approximate DBSCAN can be solved

in linear O(n) expected time, for any ε, arbitrarily small constant ρ, and in any fixed dimension-

ality d.

New 2D Algorithms. We also give a new algorithm that solves the exact DBSCAN problem in

2D space using O(n log n) time, but in a way substantially simpler than the solution of [31]. The

algorithm reveals an inherent geometric connection between (exact) DBSCAN and Delaunay graphs.

The connection is of independent interests.

Furthermore, we prove that the 2D exact DBSCAN problem can actually be settled in O(n)

time, provided that the n data points have been sorted along each dimension. In other words, the

“hardest” component of the problem turns out to be sorting the coordinates, whereas the cluster-

ing part is easy. Immediately, this implies that 2D DBSCAN can be settled in o(n log n) time when

the coordinates are integers, by utilizing fast integer-sorting algorithms [5, 34]: (i) deterministically,

we achieve O(n log log n) time—improving the O(n log n) bound of [31]; (ii) randomly, we achieve

O(n
√

log log n) time in expectation.

1.2 Dynamic Euclidean DBSCAN: Hardness and Approximation

Maintaining clustering results on a dynamic data set that can be updated by insertions and deletions,

is one of the most important application scenarios. An immediate question is how to properly ap-

proach the problem in the first place. An obvious attempt is to define the problem as: “an algorithm

1.2 Dynamic Euclidean DBSCAN: Hardness and Approximation 5

q1
q3

q2

q4

q5

q1
q3

q2

q4

q5

(a) A dataset of 3 clusters (b) 2 clusters merge after insertions

Figure 1.2: Dynamic density-based clustering

should support fast updates, and in the meantime be prepared to return all the clusters any time upon

requested”. However, the cluster reporting itself already demands Ω(n) cost, where n is the number

of points in P. This is at odds with the conventional database wisdom that “queries” should have

response time significantly shorter than O(n).

We eliminate the issue by introducing a novel query type called cluster-group-by (C-group-by),

which makes the dynamic clustering problem much more interesting:

Given an arbitrary subset Q of P, a C-group-by query groups the points of Q by the clusters

they belong to.

Figure 1.2a shows a query with Q = {q1, q2, q3, q4, q5}, which should return {q1}, {q2, q3}, and {q4, q5}

indicating how they should be divided based on the clustering. The same query on Figure 1.2b returns

{q1, q4, q5} and {q2, q3}.

By simply setting Q to P, the C-group-by query degenerates into returning all the clusters. In

practice, however, a user is rarely interested in the entire dataset. Instead, s/he is much more likely to

raise questions regarding selected objects, e.g., “are stocks X, Y in the same cluster?”, or “break the

10 stocks by the clusters that their profiles belong to in the entire stock database.” C-group-by queries

aim to answer these questions with time proportional only to |Q|, as opposed to |P|.

Hardness of Dynamic DBSCAN. As discussed in Section 1.1, when d ≥ 3, any DBSCAN algorithm

must incur Ω(n4/3) worst-case time to cluster n static points. Unfortunately, this implies that no

dynamic DBSCAN algorithm can be fast in both insertions and queries, as explained below.

Suppose, on the contrary, that an algorithm could process an insertion in Õ(1) time (where notation

Õ(·) hides a polylog factor), and a query in Õ(|Q|) time. We would be able to solve the static DBSCAN

problem using the dynamic algorithm by performing n insertions followed by a C-group-by query with

6 Introduction

Q = P. The total cost would be only Õ(n) which, however, is o(n4/3)—violating the impossibility

result! To be practically useful, a dynamic algorithm must support an update in Õ(1) time and a query

in Õ(|Q|) time. The above reduction suggests that no such algorithms can exist for DBSCAN, even if

all the updates are insertions.

Our Findings. Lack of understanding on the computational efficiency of dynamic DBSCAN has

become a serious issue, given the vast importance of this clustering technique, and the dynamic nature

of numerous practical datasets in modern applications. Motivated by this, we present a comprehensive

study on dynamic density-based clustering algorithms. Those results can be summarized as follows.

• Fully Dynamic 2D Exact Algorithm: When d = 2, we present an algorithm for (exact) DB-

SCAN that supports each insertion in Õ(1) amortized time, and answers a C-group-by query in

Õ(|Q|) time.

• Fast Insertion-Only ρ-Approximate Algorithms: A dataset is semi-dynamic, if data points are

only appended, but never deleted. In this case, we propose a ρ-approximate DBSCAN algorithm

that supports each insertion in Õ(1) amortized time, and answers a C-group-by query in Õ(|Q|)

time. The result holds for any fixed dimensionality d.

• Fully Dynamic ρ-Approximate DBSCAN Is Hard! A dataset is fully-dynamic, if data points can

be inserted and deleted arbitrarily. We prove that, when d ≥ 3, no ρ-approximate DBSCAN

algorithm can be efficient in both updates and C-group-by queries at the same time! Specifically,

such an algorithm must use Ω̃(n1/3) time either to process an update, or to answer a query—

neither complexity is acceptable in practice (notation Ω̃(.) hides a polylog factor). This is true

even if |Q| = 2 for all queries!

• ρ-Double-Approx. DBSCAN and Fully Dynamic: We show how to slightly relax ρ-approximate

DBSCAN—into what we call ρ-double-approximate DBSCAN—to remove the above compu-

tational hardness. The relaxation leads to a fully-dynamic algorithm that processes an update

in Õ(1) amortized time, and answers a C-group-by query in time Õ(|Q|). The new proposition

preserves the clustering quality of (exact) DBSCAN in the same way (known as the “sandwich

guarantee”) as ρ-approximate DBSCAN! In other words, the double approximation offers an

alternative way to reach the same goal as ρ-approximate DBSCAN, without sharing the latter’s

deficiencies. The result holds for any fixed dimensionality d.

1.3 External Density-Based Clustering and Its Related Graph Problems 7

method update C-group-by query remark

exact DBSCAN d = 2 Õ(1) Õ(|Q|) fully dynamic

exact DBSCAN d ≥ 3 either Ω(n1/3) insertion or Ω(|Q|4/3) query even if insertions only

ρ-approx. DBSCAN d ≥ 3 Õ(1) insertion Õ(|Q|) insertions only

ρ-approx. DBSCAN d ≥ 3 either Ω̃(n1/3) update or Ω̃(n1/3) query even if |Q| = 2 fully dynamic

ρ-double-approx. DBSCAN d ≥ 3 Õ(1) Õ(|Q|) fully dynamic

Table 1.1: Dynamic hardness of DBSCAN variants

The dynamic hardness of different DBSCAN variants is summarized in Table 1.1. With these results,

the dynamic tractability (i.e., polylog vs. polynomial) in all the fixed dimensionalities and update

schemes has become well understood.

1.3 External Density-Based Clustering and Its Related Graph

Problems

To support datasets that can not fit in the main memory, we study the density-based clustering problem

(see popular textbooks [33, 64]) in the external memory (EM) computation model [4]. In this model,

the machine is equipped with M words of (internal) memory, and a disk that has been formatted

into blocks, each of which has B words. The values of M and B satisfy M ≥ 2B. An I/O either

reads a block of data from the disk into memory, or writes B words of memory into a disk block.

The cost of an algorithm is measured in the number of I/Os performed. Define function sort(n) =

Θ((n/B) logM/B(n/B)), which is the I/O complexity of sorting n elements [4].

Interestingly, our techniques to achieve I/O-efficient algorithms for density-based clustering are of

independent interests. Specifically, we consider a class of graphs called d-dimensional grid graphs.

As defined by Nodine et al. [55], every member of the class is an undirected graph G = (V, E) with

two properties:

• Each vertex v ∈ V is a distinct point in space Nd, where N represents the set of integers.

• If E has an edge between v1, v2 ∈ V , then (i) the two vertices are distinct (i.e., no self-loops),

and (ii) they differ by at most 1 in their coordinates on every dimension.

8 Introduction

(a) A (traditional) 2-dimensional grid graph (b) A 3-dimensional grid graph

Figure 1.3: Multidimensional grid graphs

See Figure 1.3 for two illustrative examples. For d = O(1), such a graph is sparse, namely, |E| =

O(|V |), because each vertex can have a degree at most 3d = O(1).

Particularly, we are interested in certain vertex separators of a d-dimensional grid graph G =

(V, E). Specifically, given a positive integer r ≤ |V |, a set S ⊆ V is an r-separator if it satisfies:

• |S | = O(|V |/r1/d)

• Removing the vertices of S disconnects G into h = O(|V |/r) subgraphs Gi = (Vi, Ei) for i ∈ [1, h]

such that

– |Vi| = O(r);

– No vertex of Vi is adjacent to any vertex of V j, if i , j.

– The vertices of Vi are adjacent to O(r1−1/d) vertices of S (if a vertex v ∈ Vi is adjacent to

some vertex in S , v is said to be a boundary vertex of Gi).

Such separators are known [51, 63] to exist for any r ∈ [1, |V |]. Of special importance are M-

separators, which are crucial for several fundamental graph problems, as described shortly. A primary

contribution of Chapter 4 is an I/O-efficient algorithm for computing M-separator in O(sort(|V |)) I/Os,

which uses ideas different from those of [51, 63].

Our next result stems from an unexpected source. It has been stated [67, 73] that the CCs of a

2D grid graph G = (V, E) can be computed in O(sort(|V |)) I/Os. This is based on the belief that

a 2D grid graph has the property of being sparse under edge contractions. Specifically, an edge

contraction removes an edge between vertices v1, v2 from G, combines v1, v2 into a single vertex v,

replaces every edge adjacent to v1 or v2 with an edge adjacent to v, and finally removes duplicate

1.4 Organization of the Thesis 9

v1

v2 ⇒
v

Figure 1.4: Contracting the edge between v1, v2 from the graph on the left produces the graph on the right

edges thus produced—all these steps then create a new graph; see Figure 1.4. The aforementioned

property says that, if one performs any sequence of edge contractions to obtain a resulting graph

G′ = (V ′, E′), G′ must still be sparse, namely, |E′| = O(|V ′|). Surprising enough, the belief—perhaps

too intuitive—seemed to have been taken for granted, such that no proof has ever been documented.

We formally disprove this belief. Specifically, we show that there exists a 2D grid graph that

is not sparse under edge contractions. With the belief invalidated, the best existing deterministic

algorithm for computing the CCs of a 2D grid graph requires an I/O complexity that is the minimum

of O(sort(|V |) · log log B) [54] and O(sort(|V |) · log(|V |/|M|)) [37]. By our M-separator construction

algorithm, we improve this result with a O(sort(|V |))-I/O CC algorithm on d-dimensional grid graphs.

Equipped with our CC algorithm, the density-based clustering problem under L∞ norm can be

settled in O(sort(n)) I/Os for d = 2 and 3, and O((n/B) logd−2
M/B(n/B)) I/Os for d ≥ 4. As we will see

in Chapter 4, L∞ density-based clustering essentially is an approximation of density-based clustering

under Lp norm for any p > 0.

In addition, our M-separator construction algorithm also yeilds improved algorithms for the single

source shortest path (SSSP) problem and breadth first search (BFS) on 2D grid graphs. All these

algorithms are important for flow analysis [8, 9], nearest-neighbor queries [60, 72], and navigation

[44] on terrains [2, 8, 9], land surfaces [22, 44, 60, 72] and road networks.

1.4 Organization of the Thesis

The rest of the thesis is organized as follows. In Chapter 2, we revisit the DBSCAN problem, show

the hardness result of DBSCAN problem for d ≥ 3, propose the notion of ρ-approximate DBSCAN,

and give two new efficient algorithms in 2D space. In Chapter 3, we conduct a comprehensive study

10 Introduction

on the DBSCAN problem under semi-dynamic and fully dynamic settings, where both the hardness

results and the corresponding solutions are included. In Chapter 4, we study the density-based clus-

tering problem in EM model, propose an I/O efficient algorithm for constructing an M-separator on

d-dimensional grid graphs, and improve the state-of-the-art results on several related fundamental

problems. Finally, we conclude the thesis by a summary in Chapter 5.

Chapter 2

On the Hardness of Euclidean DBSCAN and

Its Approximation

In this chapter, Section 2.1 reviews the previous work related to ours. Section 2.2 provides theoret-

ical evidence on the computational hardness of DBSCAN, and presents a sub-quadratic algorithm

for solving the problem exactly. Section 2.3 proposes ρ-approximate DBSCAN, elaborates on our

algorithm, and establishes its quality and efficiency guarantees. Section 2.4 presents new algorithms

for solving the exact DBSCAN problem in 2D space. Section 2.5 discusses several issues related to

the practical performance of different algorithms and implementations. Section 2.6 evaluates all the

exact and approximation algorithms with extensive experimentation. Finally, Section 2.7 concludes

the chapter with a summary of findings.

2.1 Related Work

Section 2.1.1 reviews the DBSCAN definitions as set out by [27]. Section 2.1.2 describes the 2D

algorithm in [31] that solves the problem genuinely in O(n log n) time. Section 2.1.3 points out several

results from computational geometry which will be needed to prove the intractability of DBSCAN

later.

11

12 On the Hardness of Euclidean DBSCAN and Its Approximation

2.1.1 Definitions

As before, let P be a set of n points in d-dimensional space Rd. Given two points p, q ∈ Rd, we denote

by dist(p, q) the Euclidean distance between p and q. Denote by B(p, r) the ball centered at a point

p ∈ Rd with radius r. Remember that DBSCAN takes two parameters: ε and MinPts.

Definition 2.1. A point p ∈ P is a core point if B(p, ε) covers at least MinPts points of P (including

p itself).

If p is not a core point, it is said to be a non-core point. To illustrate, suppose that P is the set of

points in Figure 2.1, where MinPts = 4 and the two circles have radius ε. Core points are shown in

black, and non-core points in white.

Definition 2.2. A point q ∈ P is density-reachable from p ∈ P if there is a sequence of points

p1, p2, ..., pt ∈ P (for some integer t ≥ 2) such that:

• p1 = p and pt = q

• p1, p2, ..., pt−1 are core points

• pi+1 ∈ B(pi, ε) for each i ∈ [1, t − 1].

Note that points p and q do not need to be different. In Figure 2.1, for example, o1 is density-

reachable from itself; o10 is density-reachable from o1 and from o3 (through the sequence o3, o2, o1, o10).

On the other hand, o11 is not density-reachable from o10 (recall that o10 is not a core point).

Definition 2.3. A cluster C is a non-empty subset of P such that:

• (Maximality) If a core point p ∈ C, then all the points density-reachable from p also belong to

C.

• (Connectivity) For any points p1, p2 ∈ C, there is a point p ∈ C such that both p1 and p2 are

density-reachable from p.

Definition 2.3 implies that each cluster contains at least a core point (i.e., p). In Figure 2.1,

{o1, o10} is not a cluster because it does not involve all the points density-reachable from o1. On the

other hand, {o1, o2, o3, ..., o10} is a cluster.

Ester et al. [27] gave a nice proof that P has a unique set of clusters, which gives rise to:

2.1 RelatedWork 13

o6

o7 o8

o9

o10 o11
o12

o13

o14

o15
o16

o17o1

o2

o3

o4
o5

o18

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Figure 2.1: An example dataset (the two circles have radius ε; MinPts = 4)

Problem 2.1. The DBSCAN problem is to find the unique set C of clusters of P.

Given the input P in Figure 2.1, the problem should output two clusters: C1 = {o1, o2, ..., o10} and

C2 = {o10, o11, ..., o17}.

Remark. A cluster can contain both core and non-core points. Any non-core point p in a cluster is

called a border point. Some points may not belong to any clusters at all; they are called noise points.

In Figure 2.1, o10 is a border point, while o18 is noise.

The clusters in C are not necessarily disjoint (e.g., o10 belongs to both C1 and C2 in Figure 2.1). In

general, if a point p appears in more than one cluster in C, then p must be a border point (see Lemma

2 of [27]). In other words, a core point always belongs to a unique cluster.

2.1.2 The 2D Algorithm with Genuine O(n log n) Time

Next, we explain in detail the algorithm of [31], which solves the DBSCAN problem in 2D space in

O(n log n) time. The algorithm imposes an arbitrary grid T in the data space R2, where each cell of

T is a (ε/
√

2) × (ε/
√

2) square. Without loss of generality, we assume that no point of P falls on any

boundary line of T (otherwise, move T infinitesimally to make this assumption hold). Figure 2.2a

shows a grid on the data of Figure 2.1. Note that any two points in the same cell are at most distance

ε apart. A cell c of T is non-empty if it contains at least one point of P; otherwise, c is empty. Clearly,

there can be at most n non-empty cells.

14 On the Hardness of Euclidean DBSCAN and Its Approximation

The algorithm then launches a labeling process to decide for each point p ∈ P whether p is core

or non-core. Denote by P(c) the set of points of P covered by c. A cell c is a core cell if P(c) contains

at least one core point. Denote by S core the set of core cells in T . In Figure 2.2a where MinPts = 4,

there are 6 core cells as shown in gray (core points are in black, and non-core points in white).

Let G = (V, E) be a graph defined as follows:

• Each vertex in V corresponds to a distinct core cell in S core.

• Given two different cells c1, c2 ∈ S core, E contains an edge between c1 and c2 if and only if there

exist core points p1 ∈ P(c1) and p2 ∈ P(c2) such that dist(p1, p2) ≤ ε.

Figure 2.2b shows the G for Figure 2.2a (note that there is no edge between cells c4 and c6).

The algorithm then proceeds by finding all the connected components of G. Let k be the number

of connected components, Vi (1 ≤ i ≤ k) be the set of vertices in the i-th connected component, and

P(Vi) be the set of core points covered by the cells of Vi. Then:

Lemma 2.1 ([31]). The number k is also the number of clusters in P. Furthermore, P(Vi) (1 ≤ i ≤ k)

is exactly the set of core points in the i-th cluster.

Figure 2.2b, k = 2, and V1 = {c1, c2, c3},V2 = {c4, c5, c6}. It is easy to verify the correctness of

Lemma 2.1 on this example.

Labeling Process. Let c1 and c2 be two different cells in T . They are ε-neighbors of each other if the

minimum distance between them is less than ε. Figure 2.2c shows in gray all the ε-neighbor cells of

the cell covering o10. It is easy to see that each cell has at most 21 ε-neighbors. If a non-empty cell c

contains at least MinPts points, then all those points must be core points.

Now consider a cell c with |P(c)| < MinPts. Each point p ∈ P(c) may or may not be a core point.

To find out, the algorithm simply calculates the distances between p and all the points covered by

each of the ε-neighbor cells of c. This allows us to know exactly the size of |B(p, ε)|, and hence,

whether p is core or non-core. For example, in Figure 2.2c, for p = o10, we calculate the distance

between o10 and all the points in the gray cells to find out that o10 is a non-core point.

Computation of G. Fix a core cell c1. We will explain how to obtain the edges incident on c1 in E.

Let c2 be a core cell that is an ε-neighbor of c1. For each core point p ∈ P(c1), we find the core point

2.1 RelatedWork 15

ǫ/
√
2

ǫ/
√
2

o10

.

..

c1

c2 c3

c4

c5

c6

.

o10

(a) Core cells (b) Graph G (c) ε-neighbor cells (in

are shown in gray gray) of the cell of o10

Figure 2.2: DBSCAN with a grid (MinPts = 4)

p′ ∈ c2 that is the nearest to p. If dist(p, p′) ≤ ε, an edge (c1, c2) is added to G. On the other hand, if

all such p ∈ P(c1) have been tried but still no edge has been created, we conclude that E has no edge

between c1, c2.

As a corollary of the above, each core cell c1 has O(1) incident edges in E (because it has O(1)

ε-neighbors). In other words, E has only a linear number O(n) of edges.

Assigning Border Points. Recall that each P(Vi) (1 ≤ i ≤ k) includes only the core points in the i-th

cluster of P. It is still necessary to assign each non-core point q (i.e., border point) to the appropriate

clusters. The principle of doing so is simple: if p is a core point and dist(p, q) ≤ ε, then q should

be added to the (unique) cluster of p. To find all such core points p, [31] adopted the following

simple algorithm. Let c be the cell where q lies. For each ε-neighbor cell c′ of c, simply calculate the

distances from q to all the core points in c′.

Running Time. Gunawan [31] showed that, other than the computation of G, the rest of the algorithm

runs in O(MinPts · n) = O(n) expected time or O(n log n) worst-case time. The computation of G

requires O(n) nearest neighbor queries, each of which can be answered in O(log n) time after building

a Voronoi diagram for each core cell. Therefore, the overall execution time is bounded by O(n log n).

2.1.3 Some Geometric Results

Bichromatic Closest Pair (BCP). Let P1, P2 be two sets of points in Rd for some constant d. Set

m1 = |P1| and m2 = |P2|. The goal of the BCP problem is to find a pair of points (p1, p2) ∈ P1 × P2

16 On the Hardness of Euclidean DBSCAN and Its Approximation

closest pair

(a) BCP (b) USEC (c) Hopcroft

Figure 2.3: Three relevant geometric problems

with the smallest distance, namely, dist(p1, p2) ≤ dist(p′1, p′2) for any (p′1, p′2) ∈ P1 × P2. Figure 2.3

shows the closest pair for a set of black points and a set of white points.

In 2D space, it is well-known that BCP can be solved in O(m1 log m1 + m2 log m2) time. The

problem is much more challenging for d ≥ 3, for which currently the best result is due to [3]:

Lemma 2.2 ([3]). For any fixed dimensionality d ≥ 4, there is an algorithm solving the BCP problem

in

O
(
(m1m2)1− 1

dd/2e+1 +δ′ + m1 log m2 + m2 log m1

)
expected time, where δ′ > 0 can be an arbitrarily small constant. For d = 3, the expected running

time can be improved to

O((m1m2 · log m1 · log m2)2/3 + m1 log2 m2 + m2 log2 m1)).

Spherical Emptiness and Hopcroft. Let us now introduce the unit-spherical emptiness checking

(USEC) problem:

Let S pt be a set of points, and S ball be a set of balls with the same radius, all in data space Rd,

where the dimensionality d is a constant. The objective of USEC is to determine whether

there is a point of S pt that is covered by some ball in S ball.

For example, in Figure 2.3b, the answer is yes.

Set n = |S pt| + |S ball|. In 3D space, the USEC problem can be solved in O(n4/3 · log4/3 n) ex-

pected time [3]. Finding a 3D USEC algorithm with running time o(n4/3) is a big open problem in

computational geometry, and is widely believed to be impossible; see [23].

Strong hardness results are known about USEC when the dimensionality d is higher, owing to an

established connection between the problem to the Hopcroft’s problem:

2.2 DBSCAN in Dimensionality 3 and Above 17

Let S pt be a set of points, and S line be a set of lines, all in data space R2 (note that the

dimensionality is always 2). The goal of the Hopcroft’s problem is to determine whether

there is a point in S pt that lies on some line of S line.

For example, in Figure 2.3c, the answer is no.

The Hopcroft’s problem can be settled in time slightly higher than O(n4/3) time (see [48] for the

precise bound), where n = |S pt| + |S line|. It is widely believed [23] that Ω(n4/3) is a lower bound on

how fast the problem can be solved. In fact, this lower bound has already been proved on a broad

class of algorithms [24].

It turns out that the Hopcroft’s problem is a key reason of difficulty for a large number of other

problems [23]. We say that a problem X is Hopcroft hard if an algorithm solving X in o(n4/3) time

implies an algorithm solving the Hopcroft’s problem in o(n4/3) time. In other words, a lower bound

Ω(n4/3) on the time of solving the Hopcroft’s problem implies the same lower bound on X.

In [24], Erickson proved the following relationship between USEC and the Hopcroft’s problem:

Lemma 2.3 ([24]). The USEC problem in any dimensionality d ≥ 5 is Hopcroft hard.

2.2 DBSCAN in Dimensionality 3 and Above

This section paves the way towards approximate DBSCAN, which is the topic of the next section. In

Section 2.2.1, we establish the computational hardness of DBSCAN in practice via a novel reduction

from the USEC problem (see Section 2.1.3). For practitioners that insist on applying this clustering

method with the utmost accuracy, in Section 2.2.2, we present a new exact DBSCAN algorithm that

terminates in a sub-quadratic time complexity.

2.2.1 Hardness of DBSCAN

We will prove:

Theorem 2.1. The following statements are true about the DBSCAN problem:

• It is Hopcroft hard in any dimensionality d ≥ 5. Namely, the problem requires Ω(n4/3) time to

solve, unless the Hopcroft problem can be settled in o(n4/3) time.

18 On the Hardness of Euclidean DBSCAN and Its Approximation

• When d = 3 (and hence, d = 4), the problem requires Ω(n4/3) time to solve, unless the USEC

problem can be settled in o(n4/3) time.

As mentioned in Section 2.1.3, it is widely believed that neither the Hopcroft problem nor the

USEC problem can be solved in o(n4/3) time—any such algorithm would be a celebrated breakthrough

in theoretical computer science.

Proof of Theorem 2.1. We observe a subtle connection between USEC and DBSCAN:

Lemma 2.4. For any dimensionality d, if we can solve the DBSCAN problem in T (n) time, then we

can solve the USEC problem in T (n) + O(n) time.

Proof. Recall that the USEC problem is defined by a set S pt of points and a set S ball of balls with equal

radii, both in Rd. Denote byA a DBSCAN algorithm in Rd that runs in T (m) time on m points. Next,

we describe an algorithm that deploys A as a black box to solve the USEC problem in T (n) + O(n)

time, where n = |S pt| + |S ball|.

Our algorithm is simple:

1. Obtain P, which is the union of S pt and the set of centers of the balls in S ball.

2. Set ε to the identical radius of the balls in S ball.

3. RunA to solve the DBSCAN problem on P with this ε and MinPts = 1.

4. If any point in S pt and any center of S ball belong to the same cluster, then return yes for the

USEC problem (namely, a point in S pt is covered by some ball in S ball). Otherwise, return no.

It is fundamental to implement the above algorithm in T (n) + O(n) time. Next, we prove its

correctness.

Case 1: We return yes. We will show that in this case there is indeed a point of S pt that is covered by

some ball in S ball.

Recall that a yes return means a point p ∈ S pt and the center q of some ball in S ball have been

placed in the same cluster, which we denote by C. By connectivity of Definition 2.3, there exists a

point z ∈ C such that both p and q are density-reachable from z.

2.2 DBSCAN in Dimensionality 3 and Above 19

By setting MinPts = 1, we ensure that all the points in P are core points. In general, if a core point

p1 is density-reachable from p2 (which by definition must be a core point), then p2 is also density-

reachable from p1 (as can be verified by Definition 2.2). This means that z is density-reachable from

p, which—together with the fact that q is density-reachable from z—shows that q is density-reachable

from p.

It thus follows by Definition 2.2 that there is a sequence of points p1, p2, ..., pt ∈ P such that (i)

p1 = p, pt = q, and (ii) dist(pi, pi+1) ≤ ε for each i ∈ [1, t − 1]. Let k be the smallest i ∈ [2, t] such

that pi is the center of a ball in S ball. Note that k definitely exists because pt is such a center. It thus

follows that pk−1 is a point from S pt, and that pk−1 is covered by the ball in S ball centered at pk.

Case 2: We return no. We will show that in this case no point of S pt is covered by any ball in S ball.

This is in fact very easy. Suppose on the contrary that a point p ∈ S pt is covered by a ball of

S ball centered at q. Thus, dist(p, q) ≤ ε, namely, q is density-reachable from p. Then, by maximality

of Definition 2.3, q must be in the cluster of p (recall that all the points of P are core points). This

contradicts the fact that we returned no. �

Theorem 2.1 immediately follows from Lemmas 2.3 and 2.4.

2.2.2 A New Exact Algorithm for d ≥ 3

It is well-known that DBSCAN can be solved in O(n2) time (e.g., see [64]) in any constant dimension-

ality d. Next, we show that it is possible to always terminate in o(n2) time regardless of the constant

d. Our algorithm extends that of [31] with two ideas:

• Use a d-dimensional grid T with an appropriate side length for its cells.

• Compute the edges of the graph G with a BCP algorithm (as opposed to nearest neighbor

search).

Next, we explain the details. T is now a grid on Rd where each cell of T is a d-dimensional hyper-

square with side length ε/
√

d. As before, this ensures that any two points in the same cell are within

distance ε from each other.

20 On the Hardness of Euclidean DBSCAN and Its Approximation

The algorithm description in Section 2.1.2 carries over to any d ≥ 3 almost verbatim. The only

difference is the way we compute the edges of G. Given core cells c1 and c2 that are ε-neighbors of

each other, we solve the BCP problem on the sets of core points in c1 and c2, respectively. Let (p1, p2)

be the pair returned. We add an edge (c1, c2) to G if and only if dist(p1, p2) ≤ ε.

The adapted algorithm achieves the following efficiency guarantee:

Theorem 2.2. For any fixed dimensionality d ≥ 4, there is an algorithm solving the DBSCAN problem

in O(n2− 2
dd/2e+1 +δ) expected time, where δ > 0 can be an arbitrarily small constant. For d = 3, the

running time can be improved to O((n log n)4/3) expected.

Proof. It suffices to analyze the time used by our algorithm to generate the edges of G. The other

parts of the algorithm use O(n) expected time, following the analysis of [31].

Let us consider first d ≥ 4. First, fix the value of δ in Theorem 2.2. Define: λ = 1
dd/2e+1 − δ/2.

Given a core cell c, we denote by mc the number of core points in c. Then, by Lemma 2.2, the time

we spend generating the edges of G is

∑
ε-neighbor

core cells c, c′

O
(
(mcmc′)1−λ + mc log mc′ + mc′ log mc

)
. (2.1)

To bound the first term, we derive

∑
ε-neighbor core cells c, c′

O
(
(mcmc′)1−λ

)
=

∑
ε-neighbor

core cells c, c′
s.t. mc ≤ mc′

O
(
(mcmc′)1−λ

)
+

∑
ε-neighbor

core cells c, c′
s.t. mc > mc′

O
(
(mcmc′)1−λ

)

=
∑

ε-neighbor
core cells c, c′
s.t. mc ≤ mc′

O
(
mc′ · m1−2λ

c

)
+

∑
ε-neighbor

core cells c, c′
s.t. mc > mc′

O
(
mc · m1−2λ

c′
)

=
∑

ε-neighbor
core cells c, c′
s.t. mc ≤ mc′

O
(
mc′ · n1−2λ

)
+

∑
ε-neighbor

core cells c, c′
s.t. mc > mc′

O
(
mc · n1−2λ

)

= O
(
n1−2λ

∑
ε-neighbor core cells c, c′

mc

)
= O(n2−2λ)

2.3 ρ-Approximate DBSCAN 21

where the last equality used the fact that c has only O(1) ε-neighbor cells as long as d is a constant

(and hence, mc can be added only O(1) times). The other terms in (2.1) are easy to bound:

∑
ε-neighbor core cells c, c′

O
(
mc log mc′ + mc′ log mc

)
=

∑
ε-neighbor core cells c, c′

O
(
mc log n + mc′ log n

)
= O(n log n).

In summary, we spend O(n2−2λ + n log n) = O(n2− 2
dd/2e+1 +δ) time generating the edges of E. This

proves the part of Theorem 2.2 for d ≥ 4. An analogous analysis based on the d = 3 branch of

Lemma 2.2 establishes the other part of Theorem 2.2. �

It is worth pointing out that the running time of our 3D algorithm nearly matches the lower bound

in Theorem 2.1.

2.3 ρ-Approximate DBSCAN

The hardness result in Theorem 2.1 indicates the need of resorting to approximation if one wants

to achieve near-linear running time for d ≥ 3. In Section 2.3.1, we introduce the concept of ρ-

approximate DBSCAN designed to replace DBSCAN on large datasets. In Section 2.3.2, we establish

a strong quality guarantee of this new form of clustering. In Sections 2.3.3 and 2.3.4, we propose an

algorithm for solving the ρ-approximate DBSCAN problem in time linear to the dataset size.

2.3.1 Definitions

As before, let P be the input set of n points in Rd to be clustered. We still take parameters ε and

MinPts, but in addition, also a third parameter ρ, which can be any arbitrarily small positive constant,

and controls the degree of approximation.

Next, we re-visit the basic definitions of DBSCAN in Section 2.1, and modify some of them to

their “ρ-approximate versions”. First, the notion of core/non-core point remains the same as Defini-

tion 2.1. The concept of density-reachability in Definition 2.2 is also inherited directly, but we will

also need:

22 On the Hardness of Euclidean DBSCAN and Its Approximation

o1

o2
o3

o4o5
ǫ

ǫρ

Figure 2.4: Density-reachability and ρ-approximate density-reachability (MinPts = 4)

Definition 2.4. A point q ∈ P is ρ-approximate density-reachable from p ∈ P if there is a sequence

of points p1, p2, ..., pt ∈ P (for some integer t ≥ 2) such that:

• p1 = p and pt = q

• p1, p2, ..., pt−1 are core points

• pi+1 ∈ B(pi, ε(1 + ρ)) for each i ∈ [1, t − 1].

Note the difference between the above and Definition 2.2: in the third bullet, the radius of the

ball is increased to ε(1 + ρ). To illustrate, consider a small input set P as shown in Figure 2.4. Set

MinPts = 4. The inner and outer circles have radii ε and ε(1 + ρ), respectively. Core and non-core

points are in black and white, respectively. Point o5 is ρ-approximate density-reachable from o3 (via

sequence: o3, o2, o1, o5). However, o5 is not density-reachable from o3.

Definition 2.5. A ρ-approximate cluster C is a non-empty subset of P such that:

• (Maximality) If a core point p ∈ C, then all the points density-reachable from p also belong to

C.

• (ρ-Approximate Connectivity) For any points p1, p2 ∈ C, there exists a point p ∈ C such that

both p1 and p2 are ρ-approximate density-reachable from p.

Note the difference between the above and the original cluster formulation (Definition 2.1): the

connectivity requirement has been weakened into ρ-approximate connectivity. In Figure 2.4, both

{o1, o2, o3, o4} and {o1, o2, o3, o4, o5} are ρ-approximate clusters.

2.3 ρ-Approximate DBSCAN 23

Problem 2.2. The ρ-approximate DBSCAN problem is to find a set C of ρ-approximate clusters of

P such that every core point of P appears in exactly one ρ-approximate cluster.

Unlike the original DBSCAN problem, the ρ-approximate version may not have a unique result.

In Figure 2.4, for example, it is legal to return either {o1, o2, o3, o4} or {o1, o2, o3, o4, o5}. Nevertheless,

any result of the ρ-approximate problem comes with the quality guarantee to be proved next.

2.3.2 A Sandwich Theorem

Both DBSCAN and ρ-approximate DBSCAN are parameterized by ε and MinPts. It would be perfect

if they can always return exactly the same clustering results. Of course, this is too good to be true.

Nevertheless, in this subsection, we will show that this is almost true: the result of ρ-approximate DB-

SCAN is guaranteed to be somewhere between the (exact) DBSCAN results obtained by (ε,MinPts)

and by (ε(1 + ρ),MinPts)! It is well-known that the clusters of DBSCAN rarely differ considerably

when ε changes by just a small factor—in fact, if this really happens, it suggests that the choice of ε

is very bad, such that the exact clusters are not stable anyway (we will come back to this issue later).

Let us define:

• C1 as the set of clusters of DBSCAN with parameters (ε,MinPts)

• C2 as the set of clusters of DBSCAN with parameters (ε(1 + ρ),MinPts).

• C as an arbitrary set of clusters that is a legal result of (ε, MinPts, ρ)-approx-DBSCAN.

The next theorem formalizes the quality assurance mentioned earlier:

Theorem 2.3 (Sandwich Quality Guarantee). The following statements are true:

1. For any cluster C1 ∈ C1, there is a cluster C ∈ C such that C1 ⊆ C.

2. For any cluster C ∈ C , there is a cluster C2 ∈ C2 such that C ⊆ C2.

Proof. To prove Statement 1, let p be an arbitrary core point in C1. Then, C1 is precisely the set

of points in P density-reachable from p.1 In general, if a point q is density-reachable from p in
1This should be folklore but here is a proof. By maximality of Definition 2.3, all the points density-reachable from p

are in C1. On the other hand, let q be any point in C1. By connectivity, p and q are both density-reachable from a point z.

As p is a core point, we know that z is also density-reachable from p. Hence, q is density-reachable from p.

24 On the Hardness of Euclidean DBSCAN and Its Approximation

ǫ1

ǫ3

ǫ2

(bad)

o

Figure 2.5: Good and bad choices of ε

(ε,MinPts)-exact-DBSCAN, q is also density-reachable from p in (ε,MinPts, ρ)-approx-DBSCAN.

By maximality of Definition 2.5, if C is the cluster in C containing p, then all the points of C1 must

be in C.

To prove Statement 2, consider an arbitrary core point p ∈ C (there must be one by Definition 2.5).

In (ε(1 + ρ),MinPts)-exact-DBSCAN, p must also be a core point. We choose C2 to be the cluster

of C2 where p belongs. Now, fix an arbitrary point q ∈ C. In (ε,MinPts, ρ)-approx-DBSCAN, by

ρ-approximate connectivity of Definition 2.5, we know that p and q are both ρ-approximate reachable

from a point z. This implies that z is also ρ-approximate reachable from p. Hence, q is ρ-approximate

reachable from p. This means that q is density-reachable from p in (ε(1+ρ),MinPts)-exact-DBSCAN,

indicating that q ∈ C2. �

Here is an alternative, more intuitive, interpretation of Theorem 2.3:

• Statement 1 says that if two points belong to the same cluster of DBSCAN with parameters

(ε,MinPts), they are definitely in the same cluster of ρ-approximate DBSCAN with the same

parameters.

• On the other hand, a cluster of ρ-approximate DBSCAN parameterized by (ε,MinPts) may also

contain two points p1, p2 that are in different clusters of DBSCAN with the same parameters.

However, this is not bad because Statement 2 says that as soon as the parameter ε increases to

ε(1 + ρ), p1 and p2 will fall into the same cluster of DBSCAN!

Figure 2.5 illustrates the effects of approximation. How many clusters are there? Interestingly, the

answer is it depends. As pointed out in the classic OPTICS paper [6], different ε values allow us to

2.3 ρ-Approximate DBSCAN 25

view the dataset from various granularities, leading to different clustering results. In Figure 2.5, given

ε1 (and some MinPts say 2), DBSCAN outputs 3 clusters. Given ε2, on the other hand, DBSCAN

outputs 2 clusters, which makes sense because at this distance, the two clusters on the right merge

into one.

Now let us consider approximation. The dashed circles illustrate the radii obtained with ρ-

approximation. For both ε1 and ε2, ρ-approximate DBSCAN will return exactly the same clusters, be-

cause these distances are robustly chosen by being insensitive to small perturbation. For ε3, however,

ρ-approximate DBSCAN may return only one cluster (i.e., all points in the same cluster), whereas

exact DBSCAN will return only two (i.e., the same two clusters as ε2). By looking at the figure

closely, one can realize that this happens because the dashed circle of radius (1 + ρ)ε3) “happens” to

pass a point—namely point o—which falls outside the solid circle of radius ε3. Intuitively, ε3 is a poor

parameter choice because it is too close to the distance between two clusters such that a small change

to it will cause the clustering results to be altered.

Next we present a useful corollary of the sandwich theorem:

Corollary 2.1. Let C1,C2, and C be as defined in Theorem 2.3. If a cluster C appears in both C1 and

C2, then C must also be a cluster in C .

Proof. Suppose, on the contrary, that C does not contain C. By Theorem 2.3, (i) C must contain a

cluster C′ such that C ⊆ C′, and (ii) C2 must contain a cluster C′′ such that C′ ⊆ C′′. This means

C ⊆ C′′. On the other hand, as C ∈ C2, it follows that, in C2, every core point in C belongs also to

C′′. This is impossible because a core point can belong to only one cluster. �

The corollary states that, even if some exact DBSCAN clusters have changed when ε increases by

a factor of 1 + ρ (i.e., ε is not robust), our ρ-approximation still captures all those clusters that do not

change. For example, imagine that the points in Figure 2.5 are part of a larger dataset such that the

clusters on the rest of the points are unaffected as ε3 increases to ε3(1 + ρ). By Corollary 2.1, all those

clusters are safely captured by ρ-approximate DBSCAN under ε3.

26 On the Hardness of Euclidean DBSCAN and Its Approximation

2.3.3 Approximate Range Counting

Let us now take a break from DBSCAN, and turn our attention to a different problem, whose solution

is vital to our ρ-approximate DBSCAN algorithm.

Let P still be a set of n points in Rd where d is a constant. Given any point q ∈ Rd, a distance

threshold ε > 0 and an arbitrarily small constant ρ > 0, an approximate range count query returns

an integer that is guaranteed to be between |B(q, ε)∩ P| and |B(q, ε(1 + ρ))∩ P|. For example, in

Figure 2.4, given q = o1, a query may return either 4 or 5.

Arya and Mount [10] developed a structure of O(n) space that can be built in O(n log n) time,

and answers any such query in O(log n) time. Next, we design an alternative structure with better

performance in our context:

Lemma 2.5. For any fixed ε and ρ, there is a structure of O(n) space that can be built in O(n) expected

time, and answers any approximate range count query in O(1) expected time.

Structure. Our structure is a simple quadtree-like hierarchical grid partitioning of Rd. First, impose

a regular grid on Rd where each cell is a d-dimensional hyper-square with side length ε/
√

d. For each

non-empty cell c of the grid (i.e., c covers at least 1 point of P), divide it into 2d cells of the same size.

For each resulting non-empty cell c′, divide it recursively in the same manner, until the side length of

c′ is at most ερ/
√

d.

We use H to refer to the hierarchy thus obtained. We keep only the non-empty cells of H, and for

each such cell c, record cnt(c) which is the number of points in P covered by c. We will refer to a cell

of H with side length ε/(2i
√

d) as a level-i cell. Clearly, H has only h = max{1, 1+dlog2(1/ρ)e} = O(1)

levels. If a level-(i + 1) cell c′ is inside a level-i cell c, we say that c′ is a child of c, and c a parent of

c′. A cell with no children is called a leaf cell.

Figure 2.6 illustrates the part of the first three levels of H for the dataset on the left. Note that

empty cells are not stored.

Query. Given an approximate range count query with parameters q, ε, ρ, we compute its answer ans

as follows. Initially, ans = 0. In general, given a non-empty level-i cell c, we distinguish three cases:

• If c is disjoint with B(q, ε), ignore it.

2.3 ρ-Approximate DBSCAN 27

root(18)

NW(2) NE(8) SW(8)

SE(2) NE(3) SW(5) NE(4) SW(4)

...

level 0

level 1

B(q, ǫ)

B(q, ǫ(1 + ρ))

number of points in this level-0 cella level-0 cell

Figure 2.6: Approximate range counting

• If c is fully covered by B(q, ε(1 + ρ)), add cnt(c) to ans.

• When neither of the above holds, check if c is a leaf cell in H. If not, process the child cells of

c in the same manner. Otherwise (i.e., c is a leaf), add cnt(c) to ans only if c intersects B(q, ε).

The algorithm starts from the level-0 non-empty cells that intersect with B(q, ε).

To illustrate, consider the query shown in Figure 2.6. The two gray cells correspond to nodes

SW(5) and NE(4) at level 2. The subtree of neither of them is visited, but the reasons are different.

For SW(5), its cell is disjoint with B(q, ε), so we ignore it (even though it intersects B(q, ε(1 + ρ))).

For NE(4), its cell completely falls in B(q, ε(1 + ρ)), so we add its count 4 to the result (even though

it is not covered by B(q, ε)).

Correctness. The above algorithm has two guarantees. First, if a point p ∈ P is inside B(q, ε), it is

definitely counted in ans. Second, if p is outside B(q, ε(1 +ρ)), then it is definitely not counted in ans.

These guarantees are easy to verify, utilizing the fact that if a leaf cell c intersects B(p, ε), then c must

fall completely in B(p, ε(1 + ρ)) because any two points in a leaf cell are within distance ερ. It thus

follows that the ans returned is a legal answer.

Time Analysis. Remember that the hierarchy H has O(1) levels. Since there are O(n) non-empty

cells at each level, the total space is O(n). With hashing, it is easy to build the structure level by level

in O(n) expected time.

To analyze the running time of our query algorithm, observe that each cell c visited by our al-

gorithm must satisfy one of the following conditions: (i) c is a level-0 cell, or (ii) the parent of c

intersects the boundary of B(q, ε). For type-(i), the O(1) level-0 cells intersecting B(q, ε) can be found

28 On the Hardness of Euclidean DBSCAN and Its Approximation

in O(1) expected time using the coordinates of q. For type-(ii), it suffices to bound the number of cells

intersecting the boundary of B(q, ε) because each such cell has 2d = O(1) child nodes.

In general, a d-dimensional grid of cells with side length l has O(1 + (θl)
d−1) cells intersecting the

boundary of a sphere with radius θ [10]. Combining this and the fact that a level-i cell has side length

ε/(2i
√

d), we know that the total number of cells (of all levels) intersecting the boundary of B(q, ε) is

bounded by:

h−1∑
i=0

O
1 +

(
ε

ε/(2i
√

d)

)d−1 = O
(
(2h)d−1

)
= O

(
1 + (1/ρ)d−1

)
which is a constant for any fixed ρ. This concludes the proof of Lemma 2.5.

2.3.4 Solving ρ-Approximate DBSCAN

We are now ready to solve the ρ-approximate DBSCAN problem by proving:

Theorem 2.4. There is a ρ-approximate DBSCAN algorithm that terminates in O(n) expected time,

regardless of the value of ε, the constant approximation ratio ρ, and the fixed dimensionality d.

Algorithm. Our ρ-approximate algorithm differs from the exact algorithm we proposed in Sec-

tion 2.2.2 only in the definition and computation of the graph G. We re-define G = (V, E) as follows:

• As before, each vertex in V is a core cell of the grid T (remember that the algorithm of Sec-

tion 2.2.2 imposes a grid T on Rd, where a cell is a core cell if it covers at least one core point).

• Given two different core cells c1, c2, whether E has an edge between c1 and c2 obeys the rules

below:

– yes, if there exist core points p1, p2 in c1, c2, respectively, such that dist(p1, p2) ≤ ε.

– no, if no core point in c1 is within distance ε(1 + ρ) from any core point in c2.

– don’t care, in all the other cases.

2.3 ρ-Approximate DBSCAN 29

To compute G, our algorithm starts by building, for each core cell c in T , a structure of Lemma 2.5

on the set of core points in c. To generate the edges of a core cell c1, we examine each ε-neighbor cell

c2 of c1 in turn. For every core point p in c1, do an approximate range count query on the set of core

points in c2. If the query returns a non-zero answer, add an edge (c1, c2) to G. If all such p have been

tried but still no edge has been added, we decide that there should be no edge between c1 and c2.

Correctness. Let C be an arbitrary cluster returned by our algorithm. We will show that C satisfies

Definition 2.5.

Maximality. Let p be an arbitrary core point in C, and q be any point of P density-reachable from

p. We will show that q ∈ C. Let us start by considering that q is a core point. By Definition 2.2,

there is a sequence of core points p1, p2, ..., pt (for some integer t ≥ 2) such that p1 = p, pt = q, and

dist(pi+1, pi) ≤ ε for each i ∈ [1, t − 1]. Denote by ci the cell of T covering pi. By the way G is

defined, there must be an edge between ci and ci+1, for each i ∈ [1, t − 1]. It thus follows that c1 and ct

must be in the same connected component of G; therefore, p and q must be in the same cluster. The

correctness of the other scenario where q is a non-core point is trivially guaranteed by the way that

non-core points are assigned to clusters.

ρ-Approximate Connectivity. Let p be an arbitrary core point in C. For any point q ∈ C, we will show

that q is ρ-approximate density-reachable from p. Again, we consider first that q is a core point. Let

cp and cq be the cells of T covering p and q, respectively. Since cp and cq are in the same connected

component of G, there is a path c1, c2, ..., ct in G (for some integer t ≥ 2) such that c1 = cp and ct = cq.

Recall that any two points in the same cell are within distance ε. Combining this fact with how the

edges of G are defined, we know that there is a sequence of core points p1, p2, ..., pt′ (for some integer

t′ ≥ 2) such that p1 = p, pt′ = q, and dist(pi+1, pi) ≤ ε(1 + ρ) for each i ∈ [1, t′ − 1]. Therefore, q is

ρ-approximate density-reachable from p. The correctness of the other scenario where q is a non-core

point is again trivial.

Time Analysis. It takes O(n) expected time to construct the structure of Lemma 2.5 for all cells.

The time of computing G is proportional to the number of approximate range count queries issued.

For each core point of a cell c1, we issue O(1) queries in total (one for each ε-neighbor cell of c2).

Hence, the total number of queries is O(n). The rest of the ρ-approximate algorithm runs in O(n)

expected time, following the same analysis in [31]. This completes the proof of Theorem 2.4. It is

30 On the Hardness of Euclidean DBSCAN and Its Approximation

worth mentioning that, intuitively, the efficiency improvement of our approximate algorithm (over the

exact algorithm in Section 2.2.2) owes to the fact that we settle for an imprecise solution to the BCP

problem by using Lemma 2.5.

Remark. It should be noted that the hidden constant in O(n) is at the order of (1/ρ)d−1; see the proof

of Lemma 2.5. As this is exponential to the dimensionality d, our techniques are suitable only when

d is low. Our experiments considered dimensionalities up to 7.

2.4 New 2D Exact Algorithms

This section gives two new algorithms for solving the (exact) DBSCAN problem in R2. These algo-

rithms are based on different ideas, and are interesting in their own ways. The first one (Section 2.4.1)

is conceptually simple, and establishes a close connection between DBSCAN and Delaunay graphs.

The second one (Section 2.4.2) manages to identify coordinate sorting as the most expensive compo-

nent in DBSCAN computation.

2.4.1 DBSCAN from a Delaunay Graph

Recall from Section 2.1.2 that Gunawan’s algorithm runs in three steps:

1. Label each point of the input set P as either core or non-core.

2. Partition the set Pcore of core points into clusters.

3. Assign each non-core point to the appropriate cluster(s).

Step 2 is the performance bottleneck. Next, we describe a new method to accomplish this step.

Algorithm for Step 2. The Delaunay graph of Pcore can be regarded as the dual of the Voronoi

diagram of Pcore. The latter is a subdivision of the data space R2 into |Pcore| convex polygons, each of

which corresponds to a distinct p ∈ Pcore, and is called the Voronoi cell of p, containing every location

in R2 that finds p as its Euclidean nearest neighbor in Pcore. The Delaunay graph of Pcore is a graph

Gdln = (Vdln, Edln) defined as follows:

• Vdln = Pcore, that is, every core point is a vertex of Gdln.

2.4 New 2D Exact Algorithms 31

o1

o2
p
ε

(a) Voronoi diagram (b) Delaunay graph (c) Remainder graph after

edge removal

Figure 2.7: Illustration of our Step-2 Algorithm in Section 2.4.1

• Edln contains an edge between two core points p1, p2 if and only if their Voronoi cells are

adjacent (i.e., sharing a common boundary segment).

Gdln, in general, always has only a linear number of edges, i.e., |Edln| = O(|Pcore|).

Figure 2.7a demonstrates the Voronoi diagram defined by the set of black points shown. The

shaded polygon is the Voronoi cell of o1; the Voronoi cells of o1 and o2 are adjacent. The correspond-

ing Delaunay graph is given in Figure 2.7b.

Provided that Gdln is already available, we perform Step 2 using a simple strategy:

(2. 1) Remove all the edges (p1, p2) in Edln such that dist(p1, p2) > ε. Let us refer to the resulting

graph as the remainder graph.

(2. 2) Compute the connected components of the remainder graph.

(2. 3) Put the core points in each connected component into a separate cluster.

Continuing the example in Figure 2.7b, Figure 2.7c illustrates the remainder graph after the edge

removal in Step 2.1 (the radius of the circle centered at point p indicates the value of ε). There are

two connected components in the remainder graph; the core points in each connected component

constitute a cluster.

In general, the Delaunay graph of x 2D points can be computed in O(x log x) time [20]. Clearly,

Steps 2.1-2.3 require only O(|Pcore|) = O(n) time. Therefore, our Step 2 algorithm finishes in

O(n log n) time overall.

32 On the Hardness of Euclidean DBSCAN and Its Approximation

Correctness of the Algorithm. It remains to explain why the above simple strategy correctly clusters

the core points. Remember that a core point p ought to be placed in the same cluster as another core

point q if and only if there is a sequence of core points p1, p2, ..., pt (for some t ≥ 2) such that:

• p1 = p and pt = q

• dist(pi, pi+1) ≤ ε for each i ∈ [1, t − 1].

We now prove:

Lemma 2.6. Two core points p, q belong to the same cluster if and only if our Step-2 algorithm

declares so.

Proof. The If Direction. This direction is straightforward. Our algorithm declares p, q to be in the

same cluster only if they appear in the same connected component of the remainder graph obtained at

Step 2.1. This, in turn, suggests that the connected component has a path starting from p and ending

at q satisfying the aforementioned requirement.

The Only-If Direction. Let p, q be a pair of core points that should be placed in the same cluster. Next,

we will prove that our Step-2 algorithm definitely puts them in the same connected component of the

remainder graph.

We will first establish this fact by assuming dist(p, q) ≤ ε. Consider the line segment pq. Since

Voronoi cells are convex polygons, in moving on segment pq from p to q, we must be traveling

through the Voronoi cells of a sequence of distinct core points—let them be p1, p2, ..., pt for some

t ≥ 2, where p1 = p and pt = q. Our goal is to show that dist(pi, pi+1) ≤ ε for all i ∈ [1, t − 1].

This will indicate that the remainder graph must contain an edge between each pair of (pi, pi+1) for

all i ∈ [1, t − 1], implying that all of p1 = p, p2, ..., pt = q must be in the same connected component

at Step 2.3.

We now prove dist(pi, pi+1) ≤ ε for an arbitrary i ∈ [1, t − 1]. Let p̃i (for i ∈ [1, t − 1]) be the

intersection between pq and the common boundary of the Voronoi cells of pi and pi+1. Figure 2.8

illustrates the definition with an example where t = 7. We will apply triangle inequality a number of

times to arrive at our target conclusion. Let us start with:

dist(pi, pi+1) ≤ dist(pi, p̃i) + dist(pi+1, p̃i). (2.2)

2.4 New 2D Exact Algorithms 33

p
q

(p1)
(p7)

p2

p3

p4
p5

p6

p̃1 p̃2 p̃3 p̃4 p̃5

p̃6

Figure 2.8: Correctness proof of our Step-2 algorithm

Regarding dist(pi, p̃i), we have:

dist(pi, p̃i) ≤ dist(pi, p̃i−1) + dist(p̃i−1, p̃i)

= dist(pi−1, p̃i−1) + dist(p̃i−1, p̃i)

(note: dist(pi−1, p̃i−1) = dist(pi, p̃i−1) as p̃i−1 is on the

perpendicular bisector of segment pi pi−1)

≤ dist(pi−1, p̃i−2) + dist(p̃i−2, p̃i−1) + dist(p̃i−1, p̃i)

(triangle inequality)

= dist(pi−1, p̃i−2) + dist(p̃i−2, p̃i)

...

≤ dist(p2, p̃1) + dist(p̃1, p̃i)

= dist(p1, p̃1) + dist(p̃1, p̃i)

= dist(p1, p̃i). (2.3)

Following a symmetric derivation, we have:

dist(pi+1, p̃i) ≤ dist(p̃i, pt). (2.4)

The combination of (2.2)-(2.4) gives:

dist(pi, pi+1) ≤ dist(p1, p̃i) + dist(p̃i, pt)

= dist(p1, pt) ≤ ε

as claimed.

34 On the Hardness of Euclidean DBSCAN and Its Approximation

We now get rid of the assumption that dist(p, q) ≤ ε. This is fairly easy. By the given fact that

p and q should be placed in the same cluster, we know that there is a path p1 = p, p2, p3, ..., pt = q

(where t ≥ 2) such that dist(pi, pi+1) ≤ ε for each i ∈ [1, t − 1]. By our earlier argument, each pair

of (pi, pi+1) must be in the same connected component of our remainder graph. Consequently, all of

p1, p2, ..., pt are in the same connected component. This completes the proof. �

Remark. The concepts of Voronoi Diagram and Delaunay graph can both be extended to arbitrary

dimensionality d ≥ 3. Our Step-2 algorithm also works for any d ≥ 3. While this may be interesting

from a geometric point of view, it is not from an algorithmic perspective. Even at d = 3, a Delaunay

graph on n points can have Ω(n2) edges, necessitating Ω(n2) time for its computation. In contrast, in

Section 2.2.2, we already showed that the exact DBSCAN problem can be solved in o(n2) time for

any constant dimensionality d.

2.4.2 Separation of Sorting from DBSCAN

We say that the 2D input set P is bi-dimensionally sorted if the points therein are given in two sorted

lists:

• Px, where the points are sorted by x-dimension;

• Py, where the points are sorted by y-dimension.

This subsection will establish the last main result of this article:

Theorem 2.5. If P has been bi-dimensionally sorted, the exact DBSCAN problem (in 2D space) can

be solved in O(n) worst-case time.

The theorem reveals that coordinate sorting is actually the “hardest” part of the 2D DBSCAN

problem! This means that we can even beat the Ω(n log n) time bound for this problem in scenarios

where sorting can be done fast. The corollaries below state two such scenarios:

Corollary 2.2. If each dimension has an integer domain of size at most nc for an arbitrary positive

constant c, the 2D DBSCAN problem can be solved in O(n) worst-case time (even if P is not bi-

dimensionally sorted).

2.4 New 2D Exact Algorithms 35

Proof. Kirkpatrick and Reisch [40] showed that n integers drawn from a domain of size nc (regardless

of the constant c ≥ 1) can be sorted in O(n) time, by generalizing the idea of radix sort. Using their

algorithm, P can be made bi-dimensionally sorted in O(n) time. Then, the corollary follows from

Theorem 2.5. �

The above corollary is important because, in real applications, (i) coordinates are always discrete

(after digitalization), and (ii) when n is large (e.g., 106), the domain size of each dimension rarely

exceeds n2. The 2D DBSCAN problem can be settled in linear time in all such applications.

Corollary 2.3. If each dimension has an integer domain, the 2D DBSCAN problem can be solved

in O(n log log n) worst-case time or O(n
√

log log n) expected time (even if P is not bi-dimensionally

sorted).

Proof. Andersson et al. [5] gave a deterministic algorithm to sort n integers in O(n log log n) worst-

case time. Han and Thorup [34] gave a randomized algorithm to do so in O(n
√

log log n) expected

time. Plugging these results into Theorem 2.5 yields the corollary. �

Next, we provide the details of our algorithm for Theorem 2.5. The general framework is still the

3-step process as shown in Section 2.4.1, but we will develop new methods to implement Steps 1 and

2 in linear time, utilizing the property that P is bi-dimensionally sorted. Step 3 is carried out in the

same manner as in the Gunawan’s algorithm (Section 2.1.2), which demands only O(n) time.

Step 1

Recall that, for this step, Gunawan’s algorithm places an arbitrary grid T (where each cell is a square

with side length ε/
√

2) in R2, and then proceeds as follows:

(1. 1) For each non-empty cell c of T , compute the set P(c) of points in P that are covered by c.

(1. 2) For each non-empty cell c of T , identify all of its non-empty ε-neighbor cells c′ (i.e., the

minimum distance between c and c′ is less than ε).

(1. 3) Perform a labeling process to determine whether each point in P is a core or non-core point.

36 On the Hardness of Euclidean DBSCAN and Its Approximation

Our approach differs from Gunawan’s in Steps 1.1 and 1.2 (his solution to Step 1.3 takes only O(n)

time, and is thus sufficient for our purposes). Before continuing, note that Steps 1.1 and 1.2 can be

done easily with hashing using O(n) expected time, but our goal is to attain the same time complexity

in the worst case.

Step 1.1. We say that a column of T (a column contains all the cells of T sharing the same projection

on the x-dimension) is non-empty if it has at least one non-empty cell. We label the leftmost non-

empty column as 1, and the 2nd leftmost non-empty column as 2, and so on. By scanning Px once

in ascending order of x-coordinate, we determine, for each point p ∈ P, the label of the non-empty

column that contains p; the time required is O(n).

Suppose that there are ncol non-empty columns. Next, for each i ∈ [1, ncol], we generate a sorted

list Py[i] that arranges, in ascending of y-coordinate, the points of P covered by (non-empty) column

i. In other words, we aim to “distribute” Py into ncol sorted lists, one for each non-empty column.

This can be done in O(n) time as follows. First, initialize all the ncol lists to be empty. Then, scan Py

in ascending order of y-coordinate; for each point p seen, append it to Py[i] where i is the label of

the column containing p. The point ordering in Py ensures that each Py[i] thus created is sorted on

y-dimension.

Finally, for each i ∈ [1, ncol], we generate the target set P(c) for every non-empty cell c in column

i, by simply scanning Py[i] once in order to divide it into sub-sequences, each of which includes all

the points in a distinct cell (sorted by y-coordinate). The overall cost of Step 1.1 is therefore O(n).

As a side product, for every i ∈ [1, ncol], we have also obtained a list Li of all the non-empty cells in

column i, sorted in bottom-up order.

Step 1.2. We do so by processing each non-empty column in turn. First, observe that if a cell is in

column i ∈ [1, ncol], all of its ε-neighbor cells must appear in columns i− 2, i− 1, i, i + 1, and i + 2 (see

Figure 2.2c). Motivated by this, for each j ∈ {i−2, i−1, i, i+1, i+2} ∩[1, ncol], we scan synchronously

the cells of Li and L j in bottom-up order (if two cells are at the same row, break the tie by scanning

first the one from Li). When a cell c ∈ Li is encountered, we pinpoint the last cell c0 ∈ L j that was

scanned. Define:

• c−1 as the cell in L j immediately before c0;

2.4 New 2D Exact Algorithms 37

`

Figure 2.9: USEC with line separation

• c1 as the cell in L j immediately after c0;

• c2 as the cell in L j immediately after c1;

• c3 as the cell in L j immediately after c2;

The 5 cells2 c−1, c0, ..., c3 are the only ones that can be ε-neighbors of c in L j. Checking which of

them are indeed ε-neighbors of c takes O(1) time. Hence, the synchronous scan of Li and L j costs

O(|Li|+ |L j|) time. The total cost of Step 1.2 is, therefore, O(n), noticing that each Li (i ∈ [1, ncol]) will

be scanned at most 5 times.

Remark. By slightly extending the above algorithm, for each non-empty cell c, we can store the

points of P(c) in two sorted lists:

• Px(c), where the points of P(c) are sorted on x-dimension;

• Py(c), where the points are sorted on y-dimension.

To achieve this purpose, first observe that, at the end of Step 1.1, the sub-sequence obtained for each

non-empty cell c is precisely Py(c). This allows us to know, for each point p ∈ P, the id of the non-

empty cell covering it. After this, the Px(c) of all non-empty cells c can be obtained with just another

scan of Px: for each point p seen in Px, append it to Px(c), where c is the cell containing p. The

point ordering in Px ensures that each Px(c) is sorted by x-coordinate, as desired. The additional time

required is still O(n).

2If c0 = ∅ (namely, no cell in L j has been scanned), set c1, c2, c3 to the lowest 3 cells in L j.

38 On the Hardness of Euclidean DBSCAN and Its Approximation

Step 2

For this step, Gunawan’s algorithm generates a graph G = (V, E) where each core cell in T corre-

sponds to a distinct vertex in V . Between core cells (a.k.a., vertices) c1 and c2, an edge exists in E if

and only if there is a core point p1 in c1 and a core point p2 in c2 such that dist(p1, p2) ≤ ε. Once G

is available, Step 2 is accomplished in O(n) time by computing the connected components of G. The

performance bottleneck lies in the creation of G, to which Gunawan’s solution takes O(n log n) time.

We develop a new algorithm below that fulfills the purpose in O(n) time.

USEC with Line Separation. Let us introduce a special variant of the USEC problem defined in

Section 2.1.3, which stands at the core of our O(n)-time algorithm. Recall that in the 2D USEC

problem, we are given a set S ball of discs with the same radius ε, and a set S pt of points, all in the data

space R2. The objective is to determine whether any point in S pt is covered by any disc in S ball. In

our special variant, there are two extra constraints:

• There is a horizontal line ` such that (i) all the centers of the discs in S ball are on or below `,

and (ii) all the points in S pt are on or above `.

• The centers of the discs in S ball have been sorted by x-dimension, and so are the points in S pt.

Figure 2.9 illustrates an instance of the above USEC with line separation problem (where crosses

indicate disc centers). The answer to this instance is yes (i.e., a point falls in a disc).

Lemma 2.7. The USEC with line separation problem can be settled in linear time, namely, with cost

O(|S pt| + |S ball|).

An algorithm for achieving the above lemma is implied in [17]. However, the description in [17]

is rather brief, and does not provide the full details. In the appendix, we reconstruct their algorithm,

and prove its correctness (such a proof was missing in [17]). Nonetheless, we believe that credits

on the lemma should be attributed to [17]. The reader may also see [21] for another account of the

algorithm.

Generating G in O(n) Time. We now return to our endeavor of finding an O(n) time algorithm to

generate G. The vertices of G, which are precisely the core cells, can obviously be collected in O(n)

time (there are at most n core cells). It remains to discuss the creation of the edges in G.

2.4 New 2D Exact Algorithms 39

`

c1

c2

.

`

c1

c2

(a) Case 1 (b) Case 2

Figure 2.10: Deciding the existence of an edge by USEC with line separation

Now, focus on any two core cells c1 and c2 that are ε-neighbors of each other. Our mission is to

determine whether there should be an edge between them. It turns out that this requires solving at

most two instances of USEC with line separation. Following our earlier terminology, let P(c1) be the

set of points of P that fall in c1. Recall that we have already obtained two sorted lists of P(c1), that

is, Px(c1) and Py(c1) that are sorted by x- and y-dimension, respectively. Define P(c2), Px(c2), and

Py(c2) similarly for c2. Depending on the relative positions of c1 and c2, we proceed differently in the

following two cases (which essentially have represented all possible cases by symmetry):

• Case 1: c2 is in the same column as c1, and is above c1, as in Figure 2.10a. Imagine placing a

disc centered at each point in P(c1). All these discs constitute S ball. Set S pt directly to P(c2).

Together with the horizontal line ` shown, this defines an instance of USEC with line separation.

There is an edge between c1, c2 if and only if the instance has a yes answer.

• Case 2: c2 is to the northeast of c1, as in Figure 2.10b. Define S ball and S pt in the same manner

as before. They define an instance of USEC with line separation based on `. There is an edge

between c1, c2 if and only if the instance has a yes answer.

It is immediately clear from Lemma 2.7 that we can make the correct decision about the edge existence

between c1, c2 using O(|P(c1)| + |P(c2)|) time. Therefore, the total cost of generating all the edges in

G is bounded by:

∑
core cell c1

 ∑
ε-neighbor c2 of c1

O(|P(c1)| + |P(c2)|)

 =
∑

core cell c1

O(|P(c1)|) = O(n)

where the first equality used the fact that each core cell has O(1) ε-neighbors, and hence, can partici-

pate in only O(1) instances of USEC with line separation.

40 On the Hardness of Euclidean DBSCAN and Its Approximation

2.5 Discussion on Practical Efficiency

Besides our theoretical findings, we have developed a software prototype based on the proposed

algorithms. Our implementation has evolved beyond that of [29] by incorporating new heuristics.

Next, we will explain the most crucial heuristics adopted which apply to all of our algorithms (since

they are based on the same grid-based framework). Then, we will discuss when the original DBSCAN

algorithm of [27] is or is not expected to work well in practice. Finally, a qualitative comparison of

the precise and ρ-approximate DBSCAN algorithms will be presented.

Heuristics. The three most effective heuristics in our implementation can be summarized as follows:

• Recall that our ρ-approximate algorithm imposes a grid T on Rd. We manage all the non-empty

cells in a (main memory) R-tree which is constructed by bulkloading. This R-tree allows us

to efficiently find, for any cell c, all its ε-neighbor non-empty cells c′. Recall that such an

operation is useful in a number of scenarios: (i) in the labeling process when a point p falls in

a cell covering less than MinPts points, (ii) in deciding the edges of c in G, and (iii) assigning a

non-core point in c to appropriate clusters.

• For every non-empty cell c, we store all its ε-neighbor non-empty cells in a list, after they have

been computed for the first time. As each list has length O(1), the total space of all the lists

is O(n) (recall that at most n non-empty cells exist). The lists allow us to avoid re-computing

ε-neighbor non-empty cells of c.

• Theoretically speaking, we achieve O(n) expected time by first generating the edges of G and

then computing its connected components (CC). In reality, it is faster not to produce the edges,

but instead, maintain the CCs using a union-find structure [66].

Specifically, whenever an edge between non-empty cells c and c′ is found, we perform a “union”

operation using c and c′ on the structure. After all the edges have been processed like this, the

final CCs can be easily determined by issuing a “find” operation on every non-empty cell. In

theory, this approach entails O(n ·α(n)) time, where α(n) is the inverse of the Ackermann which

is extremely slow growing such that α(n) is very small for all practical n.

An advantage of this approach is that, it avoids a large amount of edge detection that was needed

2.5 Discussion on Practical Efficiency 41

Figure 2.11: A small ε for the left cluster is large for the other two clusters

in [29]. Before, such detection was performed for each pair of non-empty cells c and c′ that

were ε-neighbors of each other. Now, we can safely skip the detection if these cells are already

found to be in the same CC.

Characteristics of the KDD’96 Algorithm. As mentioned in Section 1.1, the running time of the

algorithm in [27] is determined by the total cost of n region queries, each of which retrieves B(p, ε)

for each p ∈ P. Our hardness result in Theorem 2.1 implies that, even if each B(p, ε) returns just p

itself, the cost of all n queries must still sum up to Ω(n4/3) for a hard dataset.

As reasonably argued by [27], on practical data, the cost of a region query B(p, ε) depends on how

many points are in B(p, ε). The KDD’96 algorithm may have acceptable efficiency when ε is small

such that the total number of points returned by all the region queries is near linear.

Such a value of ε, however, may not exist when the clusters have varying densities. Consider the

example in Figure 2.11 where there are three clusters. Suppose that MinPts = 4. To discover the

sparsest cluster on the left, ε needs to be at least the radius of the circles illustrated. For each point p

from the right (i.e., the densest) cluster, however, the B(p, ε) under such an ε covers a big fraction of

the cluster. On this dataset, therefore, the algorithm of [27] either does not discover all three clusters,

or must do so with expensive cost.

A Comparison. The preceding discussion suggests that the relative superiority between the KDD’96

algorithm and our proposed ρ-approximate algorithm depends primarily on two factors: (i) whether

the cluster densities are similar or varying, and (ii) whether the value of ε is small or large. For

a dataset with varying-density clusters, our algorithm is expected to perform better because, as ex-

plained, a good ε that finds all clusters must be relatively large for the dense clusters, forcing the

42 On the Hardness of Euclidean DBSCAN and Its Approximation

KDD’96 algorithm to entail high cost on those clusters.

For a dataset with similar-density clusters, the proposed algorithm is also expected to be the

winner unless ε is sufficiently small. In fact, our empirical experience indicates a pattern: when

the ρ-approximate algorithm is slower, the grid T it imposes on Rd has Ω(n) non-empty cells—more

specifically, we observe that the cutoff threshold is roughly n/
√

2 cells, regardless of d. This makes

sense because, in such a case, most non-empty cells have very few points (e.g., one or two), thus the

extra overhead of creating and processing the grid no longer pays off.

The above observations will be verified in the next section.

2.6 Experiments

The philosophy of the following experiments differs from that in the short version [29]. Specifically,

in [29], we treated DBSCAN clustering as a computer science problem, and aimed to demonstrate the

quadratic nature of the previous DBSCAN algorithms for d ≥ 3. In this work, we regard DBSCAN

as an application, and will focus on parameter values that are more important in practice.

All the experiments were run on a machine equipped with 3.4GHz CPU and 16 GB memory. The

operating system was Linux (Ubuntu 14.04). All the programs were coded in C++, and compiled

using g++ with -o3 turned on.

Section 2.6.1 describes the datasets in our experimentation, after which Section 2.6.2 explores

their clusters to understand what are the suitable parameter values. The evaluation of the proposed

techniques will then proceed in three parts. First, Section 2.6.3 assesses the clustering precision of ρ-

approximate DBSCAN. Section 2.6.4 demonstrates the efficiency gain achieved by our approximation

algorithm compared to exact DBSCAN in dimensionality d ≥ 3. Finally, Section 2.6.5 examines the

performance of exact DBSCAN algorithms for d = 2.

2.6.1 Datasets

In all datasets, the underlying data space had a normalized integer domain of [0, 105] for every di-

mension. We deployed both synthetic and real datasets whose details are explained next.

2.6 Experiments 43

Figure 2.12: A 2D seed spreader dataset

Synthetic: Seed Spreader (SS). A synthetic dataset was generated in a “random walk with restart”

fashion. First, fix the dimensionality d, take the target cardinality n, a restart probability ρrestart, and

a noise percentage ρnoise. Then, we simulate a seed spreader that moves about in the space, and spits

out data points around its current location. The spreader carries a local counter such that whenever

the counter reaches 0, the spreader moves a distance of rshift towards a random direction, after which

the counter is reset to creset. The spreader works in steps. In each step, (i) with probability ρrestart,

the spreader restarts, by jumping to a random location in the data space, and resetting its counter to

creset; (ii) no matter if a restart has happened, the spreader produces a point uniformly at random in

the ball centered at its current location with radius rvincinity, after which the local counter decreases by

1. Intuitively, every time a restart happens, the spreader begins to generate a new cluster. In the first

step, a restart is forced so as to put the spreader at a random location. We repeat in total n(1 − ρnoise)

steps, which generate the same number of points. Finally, we add n · ρnoise noise points, each of which

is uniformly distributed in the whole space.

Figure 2.12 shows a small 2D dataset which was generated with n = 1000 and 4 restarts; the

dataset will be used for visualization. The other experiments used larger datasets created with creset =

100, ρnoise = 1/104, ρrestart = 10/(n(1 − ρnoise)). In expectation, around 10 restarts occur in the

generation of a dataset. The values of rvincinity and rshift were set in two different ways to produce

clusters with either similar or varying densities:

• Similar-density dataset: Namely, the clusters have roughly the same density. Such a dataset was

obtained by fixing rvincinity = 100 and rshift = 50d.

44 On the Hardness of Euclidean DBSCAN and Its Approximation

Table 2.1: Parameter values (defaults are in bold)

parameter values

n (synthetic) 100k, 0.5m, 1m, 2m, 5m, 10m

d (synthetic) 2, 3, 5, 7

ε from 100 (or 40 for d = 2) to 5000

(each dataset has its own default)

MinPts 10, 20, 40, 60, 100

(each dataset has its own default)

ρ 0.001, 0.01, 0.02, ..., 0.1

• Varying-density dataset: Namely, the clusters have different densities. Such a dataset was ob-

tained by setting rvincinity = 100 · ((i mod 10) + 1) and rshift = rvincinity · d/2, where i equals the

number of restarts that have taken place (at the beginning i = 0). Note that the “modulo 10”

ensures that there are at most 10 different cluster densities.

The value of n ranged from 100k to 10 million, while d from 2 to 7; see Table 2.1. Hereafter, by SS-

simden-dD, we refer to a d-dimensional similar-density dataset (the default cardinality is 2m), while

by SS-varden-dD, we refer to a d-dimensional varying-density dataset (same default on cardinality).

Real. Three real datasets were employed in our experimentation:

• The first one, PAMAP2, is a 4-dimensional dataset with cardinality 3,850,505, obtained by

taking the first 4 principle components of a PCA on the PAMAP2 database [58] from the UCI

machine learning archive [13].

• The second one, Farm, is a 5-dimensional dataset with cardinality 3,627,086, which contains

the VZ-features [69] of a satellite image of a farm in Saudi Arabia3. It is worth noting that

VZ-feature clustering is a common approach to perform color segmentation of an image [69].

• The third one, Household, is a 7-dimensional dataset with cardinality 2,049,280, which includes

all the attributes of the Household database again from the UCI archive [13] except the temporal

columns date and time. Points in the original database with missing coordinates were removed.
3http://www.satimagingcorp.com/gallery/ikonos/ikonos-tadco-farms-saudi-arabia

2.6 Experiments 45

2.6.2 Characteristics of the Datasets

This subsection aims to study the clusters in each dataset under different parameters, and thereby,

decide the values of MinPts and ε suitable for the subsequent efficiency experiments.

Clustering Validation Index. We resorted to a method called clustering validation (CV) [52] whose

objective is to quantify the quality of clustering using a real value. In general, a set of good density-

based clusters should have two properties: first, the points in a cluster should be “tightly” connected;

second, any two points belonging to different clusters should have a large distance. To quantify the

first property for a cluster C, we compute a Euclidean minimum spanning tree (EMST) on the set of

core points in C, and then, define DSC(C) as the maximum weight of the edges in the EMST. “DSC”

stands for density sparseness of a cluster, a term used by [52]. Intuitively, the EMST is a “backbone”

of C such that if C is tightly connected, DSC(C) ought to be small. Note that the border points of C

are excluded because they are not required to have a dense vicinity. To quantify the second property,

define DSPC(Ci,C j) between two clusters Ci and C j as

min{dist(p1, p2) | p1 ∈ C1 and p2 ∈ C2 are core points}

where “DSPC” stands for density separation for a pair of clusters [52]. Let C = {C1,C2, ...,Ct} (where

t ≥ 2) be a set of clusters returned by an algorithm. For each Ci, we define (following [52]):

VC(Ci) =

(
min1≤ j≤t, j,i DSPC(Ci,C j)

)
− DSC(Ci)

max
{
DSC(Ci),min1≤ j≤t, j,i DSPC(Ci,C j)

}
Then, the CV index of C is calculated as in [52]:

t∑
i=1

|Ci|

n
VC(Ci)

where n is the size of the dataset. A higher validity index indicates better quality of C.

Moulavi et al. [52] computed DSC(Ci) and DSPC(Ci,C j) differently, but their approach requires

O(n2) time which is intolerably long for the values of n considered here. Our proposition follows the

same rationale, admits faster implementation (EMST is well studied [3, 11]), and worked well in our

experiments as shown below.

Influence of MinPts and ε on DBSCAN Clusters. For each dataset, we examined the quality of its

clusters under different combinations of MinPts and ε. For MinPts, we inspected values 10 and 100,

46 On the Hardness of Euclidean DBSCAN and Its Approximation

Table 2.2: Cluster quality under different (MinPts, ε): SS similar density
MinPts = 10 MinPts = 100

ε CV Index # clusters # noise pts CV Index # clusters # noise pts

40 0.978 10 325 0.555 230 309224

60 0.994 9 197 0.577 72 33489

80 0.994 9 197 0.994 9 506

100 0.994 9 197 0.994 9 197

200 0.994 9 197 0.994 9 197

(a) SS-simden-2D
MinPts = 10 MinPts = 100

ε CV Index # clusters # noise pts CV Index # clusters # noise pts

100 0.996 14 200 0.205 240 467

200 0.996 14 200 0.996 14 200

400 0.996 14 200 0.996 14 200

800 0.996 14 200 0.996 14 200

1000 0.996 14 200 0.996 14 200

(b) SS-simden-3D
MinPts = 10 MinPts = 100

ε CV Index # clusters # noise pts CV Index # clusters # noise pts

100 0.102 4721 219 0.583 19057 632

200 0.996 13 200 0.996 13 241

400 0.996 13 200 0.996 13 200

800 0.996 13 200 0.996 13 200

1000 0.996 13 200 0.996 13 200

(c) SS-simden-5D
MinPts = 10 MinPts = 100

ε CV Index # clusters # noise pts CV Index # clusters # noise pts

100 0.588 19824 215 0.705 19822 1000

200 0.403 14988 215 0.403 14976 998

400 0.992 17 200 0.992 17 200

800 0.984 17 200 0.984 17 200

1000 0.980 17 200 0.980 17 200

(d) SS-simden-7D

while for ε, we inspected a wide range starting from ε = 40 and 100 for d = 2 and d ≥ 3, respectively.

Only two values of MinPts were considered because (i) either 10 or 100 worked well on the synthetic

and real data deployed, and (ii) the number of combinations was already huge.

Table 2.2 presents some key statistics for SS-simden-dD datasets with d = 2, 3, 5 and 7, while

Table 2.3 shows the same statistics for SS-varden-dD. Remember that the cardinality here is n = 2m,

implying that there should be around 200 noise points. The number of intended clusters should not

exceed the number of restarts whose expectation is 10. But the former number can be smaller, because

the seed spreader may not necessarily create a new cluster after a restart, if it happens to jump into

the region of a cluster already generated.

2.6 Experiments 47

Table 2.3: Cluster quality under different (MinPts, ε): SS varying density
MinPts = 10 MinPts = 100

ε CV Index # clusters # noise pts CV Index # clusters # noise pts

100 0.480 1294 50904 0.457 164 774095

200 0.574 70 2830 0.584 153 250018

400 0.946 6 161 0.836 21 18383

800 0.904 6 154 0.939 6 154

1000 0.887 6 153 0.905 6 153

(a) SS-varden-2D
MinPts = 10 MinPts = 100

ε CV Index # clusters # noise pts CV Index # clusters # noise pts

100 0.321 1031 577830 0.055 114 1358330

200 0.698 1989 317759 0.403 100 600273

400 0.864 573 23860 0.751 91 383122

800 0.917 11 195 0.908 91 50711

1000 0.904 11 194 0.884 27 236

(b) SS-varden-3D
MinPts = 10 MinPts = 100

ε CV Index # clusters # noise pts CV Index # clusters # noise pts

400 0.244 5880 267914 0.523 10160 568393

800 0.755 286 200 0.858 4540 432

1000 0.952 12 200 0.903 1667 357

2000 0.980 8 200 0.980 8 200

3000 0.980 8 200 0.980 8 200

(c) SS-varden-5D
MinPts = 10 MinPts = 100

ε CV Index # clusters # noise pts CV Index # clusters # noise pts

400 0.423 7646 801947 0.450 6550 837575

800 0.780 9224 10167 0.686 5050 425229

1000 0.804 7897 200 0.860 8054 506

2000 0.781 1045 200 0.781 1044 400

3000 0.949 13 200 0.949 13 200

4000 0.949 13 200 0.949 13 200

(d) SS-varden-7D

Both MinPts = 10 and 100, when coupled with an appropriate ε, were able to discover all the

intended clusters—observe that the CV index stabilizes soon as ε increases. We set 10 as the default

for MinPts on the synthetic datasets, as it produced better clusters than 100 under most values of ε.

Notice that, for varying-density datasets, ε needed to be larger to ensure good clustering quality (com-

pared to similar-density datasets). This is due to the reason explained in Section 2.5 (c.f. Figure 2.11).

The bold ε values in Tables 2.2 and 2.3 were chosen as the default for the corresponding datasets (they

were essentially the smallest that gave good clusters).

Figure 2.13 plots the OPTICS diagrams4 for SS-simden-5D and SS-varden-5D, obtained with

4The OPTICS algorithm [6] requires a parameter called maxEps, which was set to 10000 in our expeirments.

48 On the Hardness of Euclidean DBSCAN and Its Approximation

MinPts = 10. In an OPTICS diagram [6], the data points are arranged into a sequence as given along

the x-axis. The diagram shows the area beneath a function f (x) : [1, n] → R, where f (x) can be

understood roughly as follows: if p is the x-th point in the sequence, then f (x) is the smallest ε value

which (together with the chosen MinPts) puts p into some cluster—in other words, p remains as a

noise point for ε < f (x). A higher/lower f (x) indicates that p is in a denser/sparser area. The ordering

of the sequence conveys important information: each “valley”—a subsequence of points between two

“walls”–corresponds to a cluster. Furthermore, the points of this valley will remain in a cluster under

any ε greater than the maximum f (x) value of those points.

Figure 2.13a has 13 valleys, matching the 13 clusters found by ε = 200. Notice that the points

in these valleys have roughly the same f (x) values (i.e., similar density). Figure 2.13b, on the other

hand, has 8 valleys, namely, the 8 clusters found by ε = 2000. Points in various valleys can have very

different f (x) values (i.e., varying density). The OPTICS diagrams for the other synthetic datasets are

omitted because they illustrate analogous observations about the composition of clusters.

Next, we turned to the real datasets. Table 2.4 gives the statistics for PAMAP2, Farm, and House-

hold. The CV indexes are much lower (than those of synthetic data), indicating that the clusters in

these datasets are less obvious. For further analysis, we chose MinPts = 100 as the default (because it

worked much better than MinPts = 10), using which Figure 2.14 presents the OPTICS diagrams for

the real datasets, while Table 2.5 details the sizes (unit: 1000) of the 10 largest clusters under each ε

value in Table 2.4. By combining all these data, we make the following observations:

 0

 100

 200

 300

 400

 500

0 0.5m 1m 1.5m 2m

OPTICS ordering

reachability distance

(a) SS-simden-5D

 0
 500

 1000
 1500
 2000
 2500
 3000

0 0.5m 1m 1.5m 2m

OPTICS ordering

reachability distance

(b) SS-varden-5D

Figure 2.13: Optics diagrams for 5D synthetic data

2.6 Experiments 49

Table 2.4: Cluster quality under different (MinPts, ε): real data
MinPts = 10 MinPts = 100

ε CV Index # clusters # noise pts CV Index # clusters # noise pts

100 0.174 6585 2578125 0.103 478 3369657

200 0.222 17622 1890108 0.210 818 2800524

400 0.092 11408 620932 0.226 1129 2396808

800 0.037 3121 215925 0.099 756 949167

1000 0.032 2530 159570 0.078 483 594075

2000 0.033 549 28901 0.126 237 209236

3000 0.237 110 5840 0.302 100 75723

4000 0.106 30 1673 0.492 31 24595

5000 0.490 9 673 0.506 12 9060

(a) PAMAP2
MinPts = 10 MinPts = 100

ε CV Index # clusters # noise pts CV Index # clusters # noise pts

100 0.002 925 3542419 0.001 3 3621494

200 0.005 3296 2473933 0.008 21 3404402

400 0.006 1420 1153340 0.191 13 1840989

700 0.004 962 514949 0.364 28 1039114

800 0.004 994 410432 0.198 18 859002

1000 0.005 689 273723 0.295 15 594462

2000 0.002 217 46616 0.120 13 181628

3000 0.001 55 15096 0.131 6 62746

4000 0.058 35 8100 0.764 3 24791

5000 0.024 27 5298 0.157 6 12890

(b) Farm
MinPts = 10 MinPts = 100

ε CV Index # clusters # noise pts CV Index # clusters # noise pts

100 0.057 3342 1702377 0.026 54 1944226

200 0.114 5036 1314498 0.074 87 1829873

400 0.085 4802 911088 0.088 165 1598323

800 0.048 2148 490634 0.257 47 974566

1000 0.045 1800 404306 0.227 55 829398

2000 0.129 601 139483 0.416 28 327508

3000 0.074 447 73757 0.241 48 193502

4000 0.007 195 34585 0.565 10 112231

5000 0.015 131 18059 0.649 8 68943

(c) Household

• PAMAP2: From Figure 2.14a, we can see that this dataset contains numerous “tiny valleys”,

which explains the large number of clusters as shown in Table 2.4(a). The most interesting

ε value is 4000, which discovers the two “high-level” clusters: the first one ranges from 0 to

3.5m on the x-axis of Figure 2.14a, while the other one from 3.5m to 3.8m (see the largest

two clusters in Table 2.5(a)). Notice from Table 2.4(a) that the CV index is relatively high at

ε = 4000.

• Farm: There are two clusters in the dataset. The first one is the valley between 2.6m and 2.8m

on the x-axis of Figure 2.14b, and the second one is the small dagger-shape valley at 3.5m. The

50 On the Hardness of Euclidean DBSCAN and Its Approximation

Table 2.5: Sizes of the 10 largest clusters: real data (unit: 103)

ε 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

100 18.8 16.9 11.9 10.2 9.72 8.10 7.00 5.57 5.54 5.54

200 25.9 21.6 20.0 18.9 18.8 18.2 18.2 17.4 16.9 15.5

400 66.9 54.9 39.1 35.2 29.1 28.1 23.8 21.7 20.0 19.4

800 2219 41.5 37.3 26.7 20.5 19.2 19.0 17.4 15.3 13.9

1000 2794 116 20.5 16.4 13.1 9.12 9.08 8.69 7.65 7.10

2000 3409 78.0 18.2 13.3 9.65 9.57 6.60 6.60 5.11 5.04

3000 3470 239 18.5 11.8 2.03 1.90 1.83 1.21 1.20 1.09

4000 3495 315 2.03 1.86 1.84 0.965 0.786 0.735 0.698 0.687

5000 3497 339 1.85 0.977 0.553 0.551 0.328 0.328 0.217 0.216
(a) PAMAP2

ε 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

100 4.10 1.34 0.150

200 195 18.0 3.93 0.868 0.717 0.647 0.529 0.393 0.391 0.303

400 1604 129 37.3 11.1 1.75 0.713 0.408 0.327 0.265 0.226

700 2282 218 44.1 17.0 10.4 4.27 3.59 1.12 1.09 0.863

800 2358 381 17.4 6.28 1.34 0.921 0.859 0.545 0.528 0.414

1000 3009 18.0 1.47 0.740 0.718 0.446 0.422 0.332 0.287 0.214

2000 3418 18.8 2.79 1.88 1.45 0.386 0.374 0.230 0.186 0.165

3000 3562 0.951 0.681 0.350 0.190 0.177

4000 3600 1.08 0.470

5000 3611 1.18 0.537 0.273 0.130 0.114
(b) Farm

ε 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

100 37.8 19.8 16.2 12.3 3.84 3.31 2.33 0.529 0.525 0.505

200 47.8 30.9 24.8 24.5 20.3 15.2 7.79 6.91 5.82 4.39

400 52.6 39.9 34.2 31.9 27.3 25.9 21.1 18.8 15.9 15.8

800 274 193 117 97.3 70.2 48.0 33.9 33.6 27.0 24.8

1000 294 198 158 99.7 94.5 81.7 51.6 30.8 27.2 25.0

2000 560 320 222 220 110 75.2 71.4 68.2 25.1 25.0

3000 586 337 243 221 111 91.8 85.0 69.7 26.6 26.1

4000 1312 575 17.0 10.9 9.98 7.07 3.71 0.381 0.197 0.100

5000 1918 22.2 14.9 13.3 11.2 0.299 0.101 0.100
(c) Household

Note: interesting clusters are underlined.

2.6 Experiments 51

 0

 1000

 2000

 3000

 4000

 5000

0 0.5m 1m 1.5m 2m 2.5m 3m 3.5m

OPTICS ordering

reachability distance

(a) PAMAP2

 0

 1000

 2000

 3000

 4000

 5000

0 0.5m 1m 1.5m 2m 2.5m 3m 3.5m

OPTICS ordering

reachability distance

(b) Farm

 0

 2000

 4000

 6000

 8000

 10000

0 0.5m 1m 1.5m 2m

OPTICS ordering

reachability distance

(c) Household

Figure 2.14: Optics diagrams for real datasets

best value of ε that discovers both clusters lies around 700—they are the 2nd and 4th largest

clusters at the row of ε = 700 in Table 2.5(b).

• Household: This is the “most clustered” real dataset of the three. It is evident that ε = 2000 is

an interesting value: it has a relatively high CV index (see Table 2.4(c)), and discovers most of

the important valleys in Figure 2.14, whose clusters are quite sizable as shown in Table 2.5(c).

Based on the above discussion, we set the default ε of each real dataset to the bold values in Table 2.5.

2.6.3 Approximation Quality

In this subsection, we evaluate the quality of the clusters returned by the proposed ρ-approximate

DBSCAN algorithm.

2D Visualization. To show directly the effects of approximation, we take the 2D dataset in Figure 2.12

as the input (note that the cardinality was deliberately chosen to be small to facilitate visualization),

and fixed MinPts = 20. Figure 2.15a demonstrates the 4 clusters found by exact DBSCAN with

ε = 5000 (which is the radius of the circle shown). The points of each cluster are depicted with

52 On the Hardness of Euclidean DBSCAN and Its Approximation

(a) Exact (ε = 5000) (b) ρ = 0.001, ε = 5000 (c) ρ = 0.01, ε = 5000 (d) ρ = 0.1, ε = 5000

(e) Exact (ε = 11300) (f) ρ = 0.001, ε = 11300(g) ρ = 0.01, ε = 11300(h) ρ = 0.1, ε = 11300

(i) Exact (ε = 12200) (j) ρ = 0.001, ε = 12200(k) ρ = 0.01, ε = 12200 (l) ρ = 0.1, ε = 12200

Figure 2.15: Comparison of the clusters found by exact DBSCAN and ρ-approximate DBSCAN

the same color and marker. Figures 2.15b, 2.15c, and 2.15d present the clusters found by our ρ-

approximate DBSCAN when ρ equals 0.001, 0.01, and 0.1, respectively. In all cases, ρ-approximate

DBSCAN returned exactly the same clusters as DBSCAN.

Making things more interesting, in Figure 2.15e, we increased ε to 11300 (again, ε is the radius

of the circle shown). This time, DBSCAN found 3 clusters (note that 2 clusters in Figure 2.15a have

merged). Figures 2.15f, 2.15g, and 2.15h give the clusters of ρ-approximate DBSCAN for ρ = 0.001,

0.01, and 0.1, respectively. Once again, the clusters of ρ = 0.001 and 0.01 are exactly the same as

DBSCAN. However, 0.1-approximate DBSCAN returned only 2 clusters. This can be understood by

observing that the circle in Figure 2.15e almost touched a point from a different cluster. In fact, it will,

once ε increases by 10%, which explains why 0.1-approximate DBSCAN produced different results.

2.6 Experiments 53

0

0.001

0.01

0.1

1

0.1 1 2 3 4 5
ε (10

3
)

error free ρ

0

0.001

0.01

0.1

1

0.1 1 2 3 4 5
ε (10

3
)

error free ρ

0

0.001

0.01

0.1

1

0.1 1 2 3 4 5
ε (10

3
)

error free ρ

(a) SS-simden-3D (b) SS-simden-5D (c) SS-simden-7D

0

0.001

0.01

0.1

1

0.1 1 2 3 4 5
ε (10

3
)

error free ρ

0

0.001

0.01

0.1

1

0.1 1 2 3 4 5
ε (10

3
)

error free ρ

0

0.001

0.01

0.1

1

0.1 1 2 3 4 5
ε (10

3
)

error free ρ

(d) SS-varden-3D (e) SS-varden-5D (f) SS-varden-7D

0

0.001

0.01

0.1

1

0.1 1 2 3 4 5
ε (10

3
)

error free ρ

0

0.001

0.01

0.1

1

0.1 1 2 3 4 5
ε (10

3
)

error free ρ

0

0.001

0.01

0.1

1

0.1 1 2 3 4 5
ε (10

3
)

error free ρ

(g) PAMAP2 (h) Farm (i) Household

Figure 2.16: Largest ρ in {0.001, 0.01, 0.1, 1} for our ρ-approximate DBSCAN algorithm to return the same
results as precise DBSCAN

Then we pushed ε even further to 12200 so that DBSCAN yielded 2 clusters as shown in Fig-

ure 2.15i. Figures 2.15j, 2.15k, and 2.15l illustrate the clusters of ρ-approximate DBSCAN for ρ =

0.001, 0.01, and 0.1, respectively. Here, both ρ = 0.01 and 0.1 had given up, but ρ = 0.001 still

churned out exactly the same clusters as DBSCAN.

Surprised by ρ = 0.01 not working, we examined the reason behind its failure. It turned out that

12200 was extremely close to the “boundary ε” for DBSCAN to output 2 clusters. Specifically, as

soon as ε grew up to 12203, the exact DBSCAN would return only a single cluster. Actually, this can

54 On the Hardness of Euclidean DBSCAN and Its Approximation

OurApprox OurExact KDD96CIT08 SkLearn

0.1

1

10

10
2

10
3

0.1 1 2 5 10
n (million)

time (sec)

0.1

1

10

10
2

10
3

0.1 1 2 5 10
n (million)

time (sec)

0.1

1

10

10
2

10
3

0.1 1 2 5 10
n (million)

time (sec)

(a) SS-simden-3D (b) SS-simden-5D (c) SS-simden-7D

0.01

0.1

1

10

10
2

10
3

0.1 1 2 5 10
n (million)

time (sec)

0.1

1

10

10
2

10
3

0.1 1 2 5 10
n (million)

time (sec)

0.1

1

10

10
2

10
3

0.1 1 2 5 10
n (million)

time (sec)

(d) SS-varden-3D (e) SS-varden-5D (f) SS-varden-7D

Figure 2.17: Running time vs. n (d ≥ 3)

be seen from Figure 2.15i—note how close the circle is to the point from the right cluster! In other

words, 12200 is in fact an “unstable” value for ε.

Dimensionalities d ≥ 3. We deployed the same methodology to study the approximation qual-

ity in higher dimensional space. Specifically, for a dataset and a value of ε, we varied ρ among

0.001, 0.01, 0.1 and 1 to identify the highest error-free ρ under which our ρ-approximate algorithm

returned exactly the same result as precise DBSCAN. Figure 2.16 plots the highest error-free ρ for

various datasets when ε grew from 100 to 5000. For example, by the fact that in Figure 2.16a the

(highest) error-free ρ is 1 at ε = 100, one should understand that our approximate algorithm also

returned the exact clusters at ρ = 0.001, 0.01, and 0.1 at this ε. Notice that in nearly all the cases,

0.01-approximation already guaranteed the precise results.

As shown in the next subsection, our current implementation was fast enough on all the tested

datasets even when ρ was set to 0.001. We therefore recommend this value for practical use, which

was also the default ρ in the following experiments. Recall that, by the sandwich theorem (Theo-

rem 2.3), the result of 0.001-approximate DBSCAN must fall between the results of DBSCAN with

2.6 Experiments 55

ε and 1.001ε, respectively. Hence, if 0.001-approximate DBSCAN differs from DBSCAN in the

outcome, it means that the (exact) DBSCAN clusters must have changed within the parameter range

[ε, 1.001ε].

2.6.4 Computational Efficiency for d ≥ 3

We now proceed to inspect the running time of DBSCAN clustering in dimensionality d ≥ 3 using

four algorithms:

• KDD96 [27]: the original DBSCAN algorithm in [27], which deployed a memory R-tree whose

leaf capacity was 12 and internal fanout was 4 (these values achieved the best performance);

• CIT08 [47]: the state of the art of exact DBSCAN, namely, the fastest existing algorithm able

to produce the same DBSCAN result as KDD96;

• SkLearn (http://scikit-learn.org/stable): the DBSCAN implementation in the popular machine

learning tool-kit scikit-learn;

• OurExact: the exact DBSCAN algorithm we developed in Theorem 2.2, except that we did

not use the BCP algorithm in Lemma 2.2; instead, we indexed the core points of each cell

with an R-tree, and solved the BCP problem between two cells by repetitive nearest neighbor

search [38] using the R-tree;

• OurApprox: the ρ-approximate DBSCAN algorithm we proposed in Theorem 2.4.

It is worth noting that, utilizing the heuristics in Section 2.5, our programs have improved efficiency

compared to those used in the short version [29].

Each parameter was set to its default value unless otherwise stated. Remember that the default

values of MinPts and ε may be different for various datasets; see Section 2.6.2.

Scalability with n. The first experiment examined how each method scales with the number n objects.

For this purpose, we used synthetic SS datasets by varying n from 100k to 10m, using the default ε

and MinPts values in Tables 2.2 and 2.3. The results are presented in Figure 2.17—note that the

y-axis is in log scale. If SkLearn does not have a result at a value of n, it ran out of memory on our

56 On the Hardness of Euclidean DBSCAN and Its Approximation

machine (same convention adopted in the rest of the evaluation). KDD96 and CIT08 had competitive

performance on similar-density datasets, but they were considerably slower (by a factor over an ordge

of magnitude) than OurApprox and OurExact on varying-density data, confirming the analysis in

Section 2.5.

Influence of ε. The next experiment aimed to understand the behavior of each method under the

influence of ε. Figure 2.18 plots the running time as a function of ε, when this parameter varied from

100 to 5000 (we refer the reader to [29] for running time comparison under ε > 5000).

KDD96 and CIT08 retrieve, for each data point p, all the points in B(p, ε). As discussed in

Section 2.5, these methods may be efficient when ε is small, but their performance deteriorates rapidly

as ε increases. This can be observed from the results in Figure 2.22. OurExact and OurApprox

(particularly the latter) offered either competitive or significantly better efficiency at a vast majority of

ε values. Such a property is useful in tuning this crucial parameter in reality. Specifically, it enables

a user to try out a large number of values in a wide spectrum, without having to worry about the

possibly prohibitive cost—note that KDD96 and CIT08 demanded over 1000 seconds at many values

of ε that have been found to be interesting in Section 2.6.2.

Influence of ρ. Figure 2.19 shows the running time of OurApprox as ρ changed from 0.001 to 0.1.

The algorithm—thanks to the union-find heuristic explained in Section 2.5—did not appear sensitive

to this parameter.

Influence of MinPts. The last set of experiments in this section measured the running time of each

method when MinPts increased from 10 to 100. The results are given in Figure 2.20. The impact of

this parameter was limited, and did not change any of the observations made earlier.

2.6.5 Computational Efficiency for d = 2

In this subsection, we will focus on exact DBSCAN in 2D space, and compare the following algo-

rithms:

• KDD96 and SkLearn: As introduced at the beginning of Section 2.6.4.

• G13 [31]: The O(n log n) time algorithm by Gunawan, as reviewed in Section 2.1.2.

2.6 Experiments 57

OurApprox OurExact KDD96CIT08 SkLearn

0.1

1

10

10
2

10
3

10
4

0.1 0.2 0.4 1 2 3 4 5
ε (10

3
)

time (sec)

1

10

10
2

10
3

10
4

0.1 0.2 0.4 1 2 3 4 5
ε (10

3
)

time (sec)

1

10

10
2

10
3

10
4

0.1 0.2 0.4 1 2 3 4 5
ε (10

3
)

time (sec)

(a) SS-simden-3D (b) SS-simden-5D (c) SS-simden-7D

0.1

1

10

10
2

10
3

10
4

0.1 0.2 0.4 1 2 3 4 5
ε (10

3
)

time (sec)

1

10

10
2

10
3

10
4

0.1 0.2 0.4 1 2 3 4 5
ε (10

3
)

time (sec)

1

10

10
2

10
3

0.1 0.2 0.4 1 2 3 4 5
ε (10

3
)

time (sec)

(d) SS-varden-3D (e) SS-varden-5D (f) SS-varden-7D

0
10

50

100

0.1 0.2 0.4 1 2 3 4 5
ε (10

3
)

time (sec)

0

500

1000

1500

2000

0.1 0.2 0.4 0.7 1 2 3 4 5
ε (10

3
)

time (sec)

0

200

400

600

800

1000

0.1 0.2 0.4 1 2 3 4 5
ε (10

3
)

time (sec)

(g) PAMAP2 (h) Farm (i) Household

Figure 2.18: Running time vs. ε (d ≥ 3)

1

10

10
2

0.001 0.02 0.04 0.06 0.08 0.1
ρ

time (sec)

SS-simden-3D
SS-simden-5D
SS-simden-7D

1

10

10
2

0.001 0.02 0.04 0.06 0.08 0.1
ρ

time (sec)

SS-varden-3D
SS-varden-5D
SS-varden-7D

1

10

10
2

10
3

10
4

10
5

0.001 0.02 0.04 0.06 0.08 0.1
ρ

time (sec)

PAMAP2
Farm

Household

(a) SS similar density data (b) SS varying density data (c) Real datasets

Figure 2.19: Running time vs. ρ (d ≥ 3)

58 On the Hardness of Euclidean DBSCAN and Its Approximation

OurApprox OurExact KDD96CIT08 SkLearn

 0

 15

 30

 45

 60

10 20 40 60 80 100
minPts

time (sec)

 20

 40

 60

 80

10 20 40 60 80 100
minPts

time (sec)

 20

 40

 60

 80

 100

 120

10 20 40 60 80 100
minPts

time (sec)

(a) SS-simden-3D (b) SS-simden-5D (c) SS-simden-7D

1

10

10
2

10
3

10 20 40 60 80 100
minPts

time (sec)

1

10

10
2

10
3

10 20 40 60 80 100
minPts

time (sec)

10

10
2

10
3

10 20 40 60 80 100
minPts

time (sec)

(d) SS-varden-3D (e) SS-varden-5D (f) SS-varden-7D

10

10
2

10
3

10 20 40 60 80 100
minPts

time (sec)

10
2

10
3

10
4

10 20 40 60 80 100
minPts

time (sec)

10

10
2

10
3

10 20 40 60 80 100
minPts

time (sec)

(g) PAMAP2 (h) Farm (i) Household

Figure 2.20: Running time vs. MinPts (d ≥ 3)

Wavefront Delaunay KDD96 SkLearnG13

0.01

0.1

1

10

10
2

0.1 1 2 5 10
n (million)

time (sec)

0.01

0.1

1

10

10
2

10
3

0.1 1 2 5 10
n (million)

time (sec)

(a) SS-simden-2D (b) SS-varden-2D

Figure 2.21: Running time vs. n (d = 2)

2.6 Experiments 59

Wavefront Delaunay KDD96 SkLearnG13

0.1

1

10

10
2

10
3

10 100 200 400 800
ε

time (sec)

0.1

1

10

10
2

10
3

10
4

0.1 1 2 3 4 5
ε (10

3
)

time (sec)

(a) SS-simden-2D (b) SS-varden-2D

Figure 2.22: Running time vs. ε (d = 2)

• Delaunay: Our algorithm as explained in Section 2.4.1, which runs in O(n log n) time.

• Wavefront: Our algorithm as in Theorem 2.5, assuming that the dataset has been bi-dimensionally

sorted—recall that this is required to ensure the linear-time complexity of the algorithm.

Once again, each parameter was set to its default value (see Table 2.1 and Section 2.6.2) unless

otherwise stated. All the experiments in this subsection were based on SS similar- and varying-density

datasets.

Results. In the experiment of Figure 2.21, we measured the running time of each algorithm as the

cardinality n escalated from 100k to 10m. Wavefront consistently outperformed all the other methods,

while Delaunay was observed to be comparable to G13. It is worth pointing out the vast difference

between the running time here and that shown in Figure 2.17 for d ≥ 3 (one can feel the difficulty gap

of the DBSCAN problem between d = 2 and d ≥ 3).

Next, we compared the running time of the five algorithms by varying ε. As shown in Figure 2.22,

the cost of Wavefront, Delaunay, and G13 actually improved as ε grew, whereas KDD96 and SkLearn

worsened. Wavefront was the overall winner by a wide margin.

Finally, we inspected the influence of MinPts on the running time. The results are presented in

Figure 2.23. In general, for a larger MinPts, Wavefront, Delaunay, and G13 require a higher cost in

labeling the data points as core or non-core points. The influence, however, is contained by the fact

that this parameter is set as a small constant compared to the dataset size. The relative superiority of

all the methods remained the same.

60 On the Hardness of Euclidean DBSCAN and Its Approximation

Wavefront Delaunay KDD96 SkLearnG13

0.1

1

10

10
2

10 20 40 60 80 100
minPts

time (sec)

0.1

1

10

10
2

10
3

10 20 40 60 80 100
minPts

time (sec)

(a) SS-simden-2D (b) SS-varden-2D

Figure 2.23: Running time vs. MinPts (d = 2)

2.7 Summary

DBSCAN is an effective technique for density-based clustering, which is very extensively applied

in data mining, machine learning, and databases. However, currently there has not been clear un-

derstanding on its theoretical computational hardness. All the existing algorithms suffer from a time

complexity that is quadratic to the dataset size n when the dimensionality d is at least 3.

In this chapter, we show that, unless very significant breakthroughs (ones widely believed to be

impossible) can be made in theoretical computer science, the DBSCAN problem requires Ω(n4/3)

time to solve for d ≥ 3 under the Euclidean distance. This excludes the possibility of finding an

algorithm of near-linear running time, thus motivating the idea of computing approximate clusters.

Towards that direction, we propose ρ-approximate DBSCAN, and prove both theoretical and exper-

imentally that the new method has excellent guarantees both in the quality of cluster approximation

and computational efficiency.

The exact DBSCAN problem in dimensionality d = 2 is known to be solvable in O(n log n)

time. This chapter further enhances that understanding by showing how to settle the problem in

O(n) time, provided that the data points have already been pre-sorted on each dimension. In other

words, coordinating sorting is in fact the hardest component of the 2D DBSCAN problem. The

result immediately implies that, when all the coordinates are integers, the problem can be solved in

O(n log log n) time deterministically, or O(n
√

log log n) expected time randomly.

2.8 Appendix: Solving USEC with Line Separation 61

2.8 Appendix: Solving USEC with Line Separation

We consider that all the discs in S ball intersect ` (any disc completely below ` can be safely discarded),

and that all discs are distinct (otherwise, simply remove the redundant ones).

For each disc s ∈ S ball, we define its portion on or above ` as its active region (because only

this region may contain points of S pt). Also, we use the term upper arc to refer to the portion of the

boundary of s that is strictly above `. See Figure 2.24 for an illustration of these notions (the upper

arc is in bold). Note that, as the center of s is on or below `, the active region and upper arc of s are

at most a semi-disc and a semi-circle, respectively. The following is a basic geometric fact:

Proposition 2.1. The upper arcs of any two discs in S ball can have at most one intersection point.

Define the coverage region—denoted by U—of S ball as the union of the active regions of all the

discs in S ball. Figure 2.25a demonstrates U for the example of Figure 2.9. Evidently, the answer of

the USEC instance is yes if and only if S pt has at least a point falling in U.

We use the term wavefront to refer to the part of the boundary of U that is strictly above `; see

the solid curve in Figure 2.25b. A disc in S ball is said to be contributing, if it defines an arc on the

wavefront. In Figure 2.25b, for instance, the wavefront is defined by 3 contributing discs, which are

shown in bold and labeled as s1, s3, s6 in Figure 2.25a.

It is rudimentary to verify the next three facts:

Proposition 2.2. U equals the union of the active regions of the contributing discs in S ball.

Proposition 2.3. Every contributing disc defines exactly one arc on the wavefront.

Proposition 2.4. The wavefront is x-monotone, namely, no vertical line can intersect it at two points.

`

s

upper arc of s
active region of s

Figure 2.24: Illustration of active region and upper arc

62 On the Hardness of Euclidean DBSCAN and Its Approximation

`

s1

s2

s3

s4
s5

s6

`

.

(a) Coverage region U (the shaded area) (b) Wavefront (solid curve)

Figure 2.25: Deciding the existence of an edge by USEC with line separation

2.8.1 Computing the Wavefront in Linear Time

Utilizing the property that the centers of the discs in S ball have been sorted by x-dimension, next we

explain how to compute the wavefront in O(|S ball|) time.

Label the discs in S ball as s1, s2, s3, ..., in ascending order of their centers’ x-coordinates. Let Ui

(1 ≤ i ≤ |S ball|) be the coverage region that unions the active regions of the first i discs. Apparently,

U1 ⊆ U2 ⊆ U3 ⊆ ..., and U|S ball | is exactly U. Define Wi to be the wavefront of Ui, namely, the por-

tion of the boundary of Ui strictly above `. Our algorithm captures Wi in a linked list L(Wi), which

arranges the defining discs (of Wi) in left-to-right order of the arcs (on Wi) they define (e.g., in Fig-

ure 2.10, L(W6) lists s1, s3, s6 in this order). By Proposition 2.3, every disc appears in L(Wi) at most

once. Our goal is to compute W|S ball |, which is sufficient for deriving U according to Proposition 2.2.

It is straightforward to obtain W1 from s1 in constant time. In general, provided that Wi−1 (i ≥ 2)

is ready, we obtain Wi in three steps:

1. Check if si defines any arc on Wi.

2. If the answer is no, set Wi = Wi−1.

3. Otherwise, derive Wi from Wi−1 using si.

Next, we describe how to implement Steps 1 and 3.

Step 1. We perform this step in constant time as follows. Compute the intersection of si and `. The

intersection is an interval on `, denoted as Ii. Let slast be the rightmost defining disc of Wi−1 (i.e., the

last disc in L(Wi−1)). If the right endpoint of Ii lies in slast, return no (that is, si does not define any

arc on Wi); otherwise, return yes.

2.8 Appendix: Solving USEC with Line Separation 63

`

s2

W1

I2 p

Figure 2.26: Illustration of the Step-1 algorithm in Section 2.8.1

As an example, consider the processing of s2 in Figure 2.25a. At this moment, W1 is as shown in

Figure 2.26, and includes a single arc contributed by s1. Point p is the right endpoint of I2. As p falls

in s1 (= slast), we declare that s2 does not define any arc on W2 (which therefore equals W1).

The lemma below proves the correctness of our strategy in general:

Lemma 2.8. Our Step-1 algorithm always makes the correct decision.

Proof. Consider first the case where the right endpoint p of Ii is covered by slast. Let Ilast be the

intersection between slast and `. By the facts that (i) the x-coordinate of the center of si is larger than

or equal to that of the center of slast, and (ii) si and slast have the same radius, it must hold that Ii is

contained in Ilast. This implies that the active region of si must be contained in that of slast (otherwise,

the upper arc of si needs to go out of slast and then back in, and hence, must intersect the upper arc of

slast at 2 points, violating Proposition 2.1). This means that si cannot define any arc on Wi; hence, our

no decision in this case is correct.

Now consider the case where p is not covered by slast. This implies that p is not covered by Ui−1,

meaning that Ii must define an arc on Wi (because at least p needs to appear in Ui). Our yes decision

is therefore correct. �

Step 3. We deriveL(Wi) by possibly removing several discs at the end ofL(Wi−1), and then eventually

appending si. Specifically:

(3. 1) Set L(Wi) to L(Wi−1).

(3. 2) Set slast to the last disc in L(Wi).

(3. 3) If the arc on Wi−1 defined by slast is contained in si, remove slast from L(Wi) and repeat from

Step 3.2.

64 On the Hardness of Euclidean DBSCAN and Its Approximation

`

arc defined by s1

s6

arc defined by s3

arc defined by s5

Figure 2.27: Illustration of the Step-3 algorithm in Section 2.8.1

(3. 4) Otherwise, append si to the end of L(Wi) and finish.

To illustrate, consider the processing of s6 in Figure 2.25a. At this moment, the wavefront W5 is as

shown in Figure 2.27, where the arcs are defined by s1, s3, and s5, respectively. Our Step-3 algorithm

starts by setting L(W6) to L(W5), which lists s1, s3, s5 in this order. Currently, slast = s5. As the arc

on W5 defined by s5 is covered by s6 (see Figure 2.27), we remove s5 from L(W6), after which slast

becomes s3. As the arc on W5 defined by s3 is not contained in s6, the algorithm terminates by adding

s6 to the end of L(W6), which now lists s1, s3, s6 in this order.

Now we prove the correctness of our algorithm:

Lemma 2.9. Our Step-3 algorithm always obtains the correct L(Wi).

Proof. If the arc on Wi−1 defined by slast is covered by si, the upper arc of slast must be covered by the

union of the discs in {s1, s2, ..., si} \ {slast}. Therefore, slast is not a defining disc of Wi and should be

removed.

Otherwise, slast must be retained. Furthermore, in this case, si cannot touch the arc on Wi−1 defined

by any of the discs that are before slast in L(Wi). All those discs, therefore, should also be retained.

Finally, by Lemma 2.8 and the fact that the execution is at Step 3, we know that si defines an arc

on Wi, and thus, should be added to L(Wi). �

Running Time. It remains to bound the cost of our wavefront computation algorithm. Step 1 obvi-

ously takes O(|S ball|) time in total. Step 2 demands
∑n

i=1 O(1 + xi) time, where xi is the number of

discs deleted at Step 3.3 when processing disc si. The summation evaluates to O(|S ball|), noticing that∑n
i=1 xi ≤ n because every disc can be deleted at most once.

2.8 Appendix: Solving USEC with Line Separation 65

2.8.2 Solving the USEC Problem

Recall that the USEC instance has a yes answer if and only if a point of S pt is on or below the wave-

front. Proposition 2.4 suggests a simple planesweep strategy to determine the answer. Specifically,

imagine sweeping a vertical line from left to right, and at any moment, remember the (only) arc of

the wavefront intersecting the sweeping line. Whenever a point p ∈ S pt is swept by the line, check

whether it falls below the arc mentioned earlier. Because (i) the arcs of the wavefront have been listed

from left to right, and (ii) the points of S pt have been sorted on x-dimension, the planesweep can be

easily implemented in O(|S ball| + |S pt|) time, by scanning the arcs in the wavefront and the points of

S pt synchronously in ascending order of x-coordinate. This concludes the proof of Lemma 2.7, and

also that of Theorem 2.5.

66 On the Hardness of Euclidean DBSCAN and Its Approximation

Chapter 3

Dynamic Euclidean DBSCAN

The chapter is organized as follows. The next section reviews the basic concepts and properties of

DBSCAN and its ρ-approximate version. Then, Section 3.2 formally defines the dynamic clustering

problem studied in this work. Section 3.3 presents a generic framework that captures all the algorithms

proposed in this chapter. Section 3.4 elaborates on our semi-dynamic solutions to ρ-approximate

DBSCAN. Section 3.5 proves our impossibility result for fully dynamic ρ-approximate DBSCAN,

and introduces our “double-approximate” version of DBSCAN, for which Section 3.6 describes fast

fully-dynamic algorithms. Section 3.7 reports the results of our experimental evaluation. Finally,

Section 3.8 concludes this chapter with a summary of our findings.

3.1 Preliminaries

This section paves the foundation for our technical discussion by clarifying the basic concepts and

properties of DBSCAN and its ρ-approximate version.

Let P be a set of points in d-dimensional space Rd. Let us consider the dataset of 18 points in

Figure 3.1a, where ε is the radius of the inner solid circle, and MinPts = 3. The core points have been

colored black, while the non-core points colored white. The dashed circle can be ignored for the time

being.

A Graph-based Definition. Besides the defintion in Section 2.1.1, DBSCAN clusters can also be

equivalently defined in two steps. The first one focuses exclusively on the core points, and groups

67

68 Dynamic Euclidean DBSCAN

o6

o7 o8

o9

o10
o11
o12

o13

o14

o15

o16

o17

o18

ε

o1

o2

o3

o4
o5

(1 + ρ)ε

o6

o7 o8

o9

o10
o11

o12

o14

o15

o16

o17o1

o2

o3

o4
o5

o6

o7 o8

o9

o10
o11

o12

o14

o15

o16

o17o1

o2

o3

o4
o5

(a) Dataset (b) Core graph (c) One possible ρ-approximate core graph

Figure 3.1: Illustration of DBSCAN and ρ-approximate DBSCAN (ρ = 0.5,MinPts = 3)

them into preliminary clusters. The second step determines how the non-core points should be as-

signed to the clusters. Next, we explain the two steps in detail.

Step 1: Clustering Core Points. It will be convenient to imagine an undirected core graph G on P—

this graph is conceptual and need not be materialized. Specifically, each vertex of G corresponds to a

distinct core point in P. There is an edge between two core points (a.k.a. vertices) p1, p2 if and only

if dist(p1, p2) ≤ ε, where dist(·, ·) represents the Euclidean distance between two points. Figure 3.1b

shows the core graph for the dataset of Figure 3.1a.

Each connected component (CC) of G constitutes a preliminary cluster. In Figure 3.1b, there are

3 CCs (a.k.a. preliminary clusters). Note that every core point belongs to exactly one preliminary

cluster.

Step 2: Non-Core Assignment. This step augments the preliminary clusters with non-core points. For

each non-core point p, DBSCAN looks at every core point pcore ∈ B(p, ε), and assigns p to the (only)

preliminary cluster containing pcore. Note that, in this manner, p may be assigned to zero, one, or

more than one preliminary cluster. After all the non-core points have been assigned, the preliminary

clusters become final clusters.

It should be clear from the above that the DBSCAN clusters are uniquely defined by the parameters

ε and MinPts, but they are not necessarily disjoint. A non-core point may belong to multiple clusters,

while a core point must exist only in a single cluster. It is possible that a non-core point is not in any

cluster; such a point is called noise.

3.1 Preliminaries 69

In Figure 3.1a, there are two non-core points o13 and o18. Since B(o13, ε) covers o14, o13 is assigned

to the preliminary cluster of o14. B(o18, ε), however, covers no core points, indicating that o18 is noise.

The final DBSCAN clusters are {o1, o2, ..., o5}, {o6, o7, ..., o12}, {o13, o14, ..., o17}.

The ρ-Approximate Version. The ρ-approximate clusters can also be defined in the same two steps

as in exact DBSCAN, as explained below.

Step 1: Clustering Core Points. It will also be convenient to follow a graph-based approach. Let us

define an undirected ρ-approximate core graph Gρ on the dataset P—again, this graph is conceptual

and need not be materialized. Each vertex of Gρ corresponds to a distinct core point in P. Given two

core points p1, p2, whether or not Gρ has an edge between their vertices is determined as:

• The edge definitely exists if dist(p1, p2) ≤ ε.

• The edge definitely does not exist if dist(p1, p2) > (1 + ρ)ε.

• Don’t care, otherwise.

Each preliminary cluster is still a CC, but of Gρ. Unlike the core graph G, Gρ may not be unique. This

flexibility is the key to the vast improvement in time complexity.

To illustrate, consider the dataset of Figure 3.1a again with the ε shown and MinPts = 3, but also

with ρ = 0.5 (the radius of the dashed circle indicates the length of (1 + ρ)ε). Figure 3.1c illustrates

a possible ρ-approximate core graph. Attention should be paid to the edge (o4, o10). Note (from the

circles in Figure 3.1c) that ε < dist(o4, o10) < (1 + ρ)ε—this belongs to the “don’t-care” case meaning

that there may or may not be an edge (o4, o10). If the edge exists (as in Figure 3.1c), there are 2 CCs

(i.e., preliminary clusters); otherwise, the ρ-approximate core graph is the same as in Figure 3.1b,

giving 3 preliminary clusters.

Step 2: Non-Core Assignment. Each non-core point p may be assigned to zero, one, or multiple pre-

liminary clusters. Specifically, let S be a CC of Gρ. Whether p should be added to the preliminary

cluster of S is determined as:

• Yes, if S has a core point in B(p, ε).

• No, if S has no core point in B(p, (1 + ρ)ε).

• Don’t care, otherwise.

70 Dynamic Euclidean DBSCAN

The preliminary clusters after all the assignment constitute the final clusters.

As mentioned, o13 and o18 are the only two non-core points in Figure 3.1a. While o18 is still a

noise point, the case of o13 is more interesting. First, it must be assigned to the preliminary cluster of

o14, just like exact DBSCAN. Second, it may or may not be assigned to the preliminary cluster of o12

(also the cluster of o14). Either case is regarded as a correct result.

3.2 Problem Definition and State of the Art

The Problem of Dynamic Clustering. We now provide a formal formulation of dynamic clustering,

using the C-group-by query as the key stepping stone. Our approach is to define the problem in a way

that is orthogonal to the semantics of clusters, so that the problem remains valid regardless of whether

we have DBSCAN or any of its approximate versions in mind.

Let P be a set of points in Rd that is subject to updates, each of which inserts a new point to P, or

deletes an existing point from P. We are given a clustering description which specifies correct ways

to cluster P. The description is what distinguishes DBSCAN from, e.g., ρ-approximate DBSCAN.

Suppose that, by the clustering description, C(P) is a legal set of clusters on the current contents of

P. Without loss of generality, assume that C(P) = {C1,C2, ...,Cx}, where x is the number of clusters,

and Ci (1 ≤ i ≤ x) is a subset of P. Note that the clusters do not need to be disjoint.

Given an arbitrary subset Q of P, a cluster-group-by (C-group-by) query must return for every

Ci ∈ C(P) (i ∈ [1, x]):

• Nothing at all, if Ci ∩Q = ∅

• Ci ∩Q, otherwise.

This definition has several useful properties:

• It breaks only the points of Q by how they should appear together in the clusters of P. Points

in P \ Q are not reported at all, thus avoiding “cheating algorithms” that use “expensive report

time” as an excuse for high processing cost.

• When Q = P, the query result Q(P) is simply C(P).

3.2 Problem Definition and State of the Art 71

• All the query results must be based on the same C(P). This prevents another form of “cheating”

when the clustering description permits multiple legal possibilities of C(P). Specifically, the

algorithm can no longer argue that the results Q1(P) and Q2(P) of two queries Q1 and Q2

should both be “correct” because Q1(P) is defined on one possible C(P), while Q2(P) is defined

on another. Instead, they must be consistently defined on the same C(P)—the one output by the

query with Q = P.

Our objective is to design an algorithm that is fast in processing both updates and queries. We dis-

tinguish two scenarios: (i) semi-dynamic: where all the updates are insertions, and (ii) fully-dynamic,

where the updates can be arbitrary insertions and deletions.

We consider that the dimensionality d is small such that (
√

d)d is an acceptable hidden constant.

All our theoretical results will carry this constant, and hence, are suitable only for low dimensionality.

Our experiments run up to d = 7.

Dynamic Exact DBSCAN [26]. Dynamic maintenance of density-based clusters has been studied

by Ester et al. [26] for exact DBSCAN. Next, we review their method—named incremental DBSCAN

(IncDBSCAN)—assuming MinPts = 1 so that all the points of P are core points. This allows us to

concentrate on the main ideas without the relatively minor details of handling non-core points.

Insertion. Recall that, for exact DBSCAN, the clusters C(P) are uniquely determined by the input

parameters ε and MinPts. Given a new point pnew, the insertion algorithm retrieves all the points in

B(pnew, ε), and then merges the clusters of those points into one.

The correctness can be seen from the core graph G, where effectively an edge is added between

pnew and every other point in B(pnew, ε) (remember: this view is conceptual, and G does not need to

be materialized). Figure 3.2a shows the G before the insertion, which has two CCs. To insert point

o as in Figure 3.2b, the algorithm finds the points o11, o12, and o13 in B(pnew, ε). The two clusters of

those points are merged—the newly added edges (o, o11), (o, o12), (o, o13) in Figure 3.2b connect the

two CCs into one.

In merging the clusters, IncDBSCAN does not modify the cluster ids of the points in the affected

clusters, which can be prohibitively expensive because the number of such points can be exceedingly

high. Instead, it remembers the “merging history” of the cluster ids.

72 Dynamic Euclidean DBSCAN

o6

o7 o8

o9

o10
o11
o12

o14

o15

o16

o17

o13

ε

o6

o7 o8

o9

o10 o11

o12

o14

o15

o16

o17

o13

o

(a) Core graph without o (b) Core graph with o

Figure 3.2: Illustration of the IncDBSCAN method

Deletion. The deletion algorithm, in general, reverses the steps of insertion, except for a breadth first

search (BFS) that is needed to judge whether (and how) a cluster has split into several.

Let pold be the point being deleted. IncDBSCAN retrieves all the points in B(pold, ε). In (the

conceptual) G, all the edges between such points and pold are removed, after which the CC of pold

may or may not be broken into separate CCs (e.g., in Figure 3.2b, the CC is torn into two only if o13,

o14, or o is deleted). To find out, the deletion algorithm performs as many threads of BFS on G as

the number of points in B(pold, ε). If two threads “meet up”, they are combined into one because they

must still be in the same CC. As soon as only one thread is left, the algorithm terminates, being sure

that no cluster split has taken place. Otherwise, the remaining threads continue until the end, in which

case each thread has enumerated all the points in a new cluster that is spawned by the deletion. All

those points can now be labeled with the same cluster id.

For example, suppose that we delete o in Figure 3.2b, which starts three threads of BFS from

o11, o12 and o13, respectively. The resulting core graph reverts back to Figure 3.2a. The threads of o11

and o12 meet up into one, which eventually traverses the entire CC containing o11 and o12. Similarly,

the other thread traverses the entire CC containing o13.

When a thread of BFS needs the adjacent neighbors of a point p1 in G, the algorithm finds all the

other points p2 ∈ B(p1, ε) through a range query [14, 32]. Every such p2 is an adjacent neighbor of

p1. This essentially “fetches” the edge between p1 and p2.

Query. The algorithm of [26] can easily answer a C-group-by query Q by grouping the points of Q by

their cluster ids (some ids need to be obtained from the merging history).

3.3 The Overall Framework 73

Drawbacks of IncDBSCAN. Both insertion and deletion start with a range query to extract the points

in B(p, ε), which are called the seed points [26]. The query is expensive when p falls in a dense region

of P where there are many seed points. The issue is more serious in a deletion, because multiple range

queries are needed to perform BFS. The worst situation happens in a cluster split, where the number

of range queries is simply huge.

3.3 The Overall Framework

All the DBSCAN variants (including the new one to be proposed in Section 3.5.2) accept parameters

ε, MinPts, and ρ (for exact DBSCAN, ρ = 0). This permits us to extract a common structural

framework behind all our solutions, as we describe in this section. The components of the framework

will be instantiated differently in later sections for individual variants.

3.3.1 A Grid Graph Approach

The key idea behind our framework is to turn dynamic clustering into the problem of maintaining

CCs (connected components) of a special graph.

Grid and Cells. We impose an arbitrary grid D in the data space Rd, where each cell is a d-

dimensional square with side length ε/
√

d on every dimension. This ensures that any two points

in the same cell are within distance at most ε from each other.

Given a cell c of D, we denote by P(c) the set of points in P that are covered by c. We call c

• A non-empty cell if P(c) contains at least one point.

• A core cell if P(c) contains at least one core point.

• A dense cell if |P(c)| ≥ MinPts, and a sparse cell if 1 ≤ |P(c)| < MinPts.

Given two cells c1, c2, we say that they are ε-close if the smallest distance between the boundary of

c1 and that of c2 is at most ε.

Consider for instance the grid in Figure 3.3a, imposed on a set P of 18 points. Again, the radii of

the solid and dashed circles indicate ε and (1 + ρ)ε, respectively; and MinPts = 3. The only non-core

74 Dynamic Euclidean DBSCAN

o6

o7 o8

o9

o10 o11

o12

o13

o14

o15

o16

o17o1

o2

o3

o4
o5

ε

(1 + ρ)ε

ε

1 2 3 4 5 6 7

1

2

3

4

5

6

o18

1 2 3 4 5 6 7

1

2

3

4

5

6 CC id 1 CC id 2

non-core cells

(a) Grid and cells (b) A grid graph

Figure 3.3: Our grid-graph framework (MinPts = 3)

points are o13 and o18. The core cells are shaded in Figure 3.3b. The non-core cells are (5, 4) and

(7, 2); note that the minimum distance between the two cells is ε—hence, they are ε-close.

Grid Graph. In a grid graph G = (V,E), V is the set of core cells of D, while E is a set of edges

satisfying the following CC requirement:

Let p1, p2 be two core points of P, and c1 (or c2, resp.) be the core cell that contains p1 (or

p2, resp.). Then, p1 and p2 are in the same cluster if and only if c1 and c2 are in the same

CC of G.

The above requirement is fulfilled by using the following rules to decide if E should have an edge

between two core cells c1, c2 ∈ V:

• Yes, if there is a pair of core points (p1, p2) ∈ P(c1) × P(c2) satisfying dist(p1, p2) ≤ ε.

• No, if there is no pair of core points (p1, p2) ∈ P(c1) × P(c2) satisfying dist(p1, p2) ≤ (1 + ρ)ε.

• Don’t care, otherwise.

G differs significantly from the core graph G and the ρ-approximate core graph of Gρ as reviewed

in Section 3.1. G has at most n vertices because there are at most n non-empty cells. If G has an edge

between core cells c1, c2, they must be ε-close. A core cell can have O
((

ε

ε/
√

d

)d)
= O((

√
d)d) = O(1)

ε-close core cells (recall that our target is low dimensionality). Hence, G can have only O(n) edges,

which makes it suitable for materialization when the dimensionality d is low.

Figure 3.3b demonstrates the grid graph for the dataset in Figure 3.3a. Note that the edge between

cells (2, 4) and (3, 3) fall into the don’t-care case, because ε < dist(o4, o10) ≤ (1 +ρ)ε. That G satisfies

3.3 The Overall Framework 75

the CC requirement can be seen together with the ρ-approximate core graph in Figure 3.1c. For

example, o3 and o6 are in the same cluster, consistent with the fact that cells (2, 5) and (3, 1) are in

the same CC of G. Conversely, as cells (2, 5) and (6, 5) are in different CCs of G, we know o3 and o14

must be in different clusters.

3.3.2 Query Algorithm

All our solutions actually use the same algorithm to answer C-group-by queries. We explain the

algorithm in this subsection, as well as the necessary data structures.

Core-Status Structure. We explicitly record whether each point in P is a core or non-core point.

This structure maintains these core-status labels under insertions and deletions of the points in P. A

semi-dynamic structure only needs to support insertions.

ρ-Approximate ε-Emptiness. Given a point q and a core cell c, an emptiness query empty(q, c)

returns:

• 1, if P(c) has a core point p satisfying dist(p, q) ≤ ε.

• 0, if no core point p ∈ P(c) satisfies dist(p, q) ≤ (1 + ρ)ε.

• 1 or 0 (don’t care), otherwise.

As a furthermore requirement, if the output is 1, the query must also return a proof point p ∈ P(c),

which is a core point satisfying dist(q, p) ≤ (1 + ρ)ε.

For example, for q = o13 and c = cell (6, 5), the emptiness query must return 1 due to the presence

of o14. If c changes to cell (3, 2), then the query must return 0. Setting q = o4 and c = cell (3, 3) gives

a don’t-care case.

We maintain an emptiness structure on every core cell c to support (i) such queries efficiently,

and (ii) insertions/deletions of core points in P(c). Deletions are not needed if the structure is semi-

dynamic.

CC Structure. We maintain a structure on G to support:

• EdgeInsert(c1, c2): Add an edge between core cells c1, c2 to G.

• EdgeRemove(c1, c2): Remove the aforementioned edge.

76 Dynamic Euclidean DBSCAN

• CC-Id(c): Given a core cell c, return a unique id of the CC of G where c belongs.

If a CC structure is semi-dynamic, it does not need to support EdgeRemove.

C-Group-By Query. Next, we clarify how to answer a C-group-by query Q. Divide Q into a set Q1

of core points, and a set Q2 of non-core points. This takes O(|Q|) time using the core-status structure.

For every core point q ∈ Q1, we retrieve the core cell c covering q, perform CC-Id(c), and set the CC

id as the cluster id of q.

A non-core point q ∈ Q2, on the other hand, is “snapped” to the nearby core cells. Again, obtain

the cell c covering q. If c is a core cell, assign the cluster id CC-Id(c) to q. In any case, we enumerate

all the ε-close core cells c′ of c. For every c′, issue an emptiness query empty(q, c′). If the emptiness

query returns 1, assign the output of CC-Id(c′) as a cluster id of q. Note that q may get assigned

multiple cluster ids.

We can now group the points in Q by cluster id. A non-core point belongs to as many groups as

the number of its distinct cluster ids; if a non-core point has no cluster ids, it is a noise point.

Consider Q = {o13, o14, o8} in the dataset of Figure 3.3a. Q1 includes core points o14 and o8, which

are in cells (6, 5) and (3, 2), respectively. Invoking CC-Id on (6, 5) returns 2 (see Figure 3.3b), while

doing so to (3, 2) returns 1. Q2 has only a single non-core point, in cell (5, 4), whose ε-close core

cells are (4, 3), (3, 3), (3, 2), (6, 5), and (7, 5). We perform an emptiness query using o13 on each of

those 5 cells. Suppose that the emptiness queries on (4, 3) and (6, 5) return 1, while the others 0. We

thus assign two distinct CC ids to o13: 1 and 2. The final result of the C-group-by query is therefore

{o14, o13}, and {o8, o13}.

3.3.3 Graph Maintenance

To guarantee correctness, we must keep the grid graph G up-to-date along with the insertions and

deletions on the underlying dataset P. This is accomplished through the collaboration of the core-

status structure, GUM (see below), and the CC structure.

Graph Update Module (GUM). This module is responsible for maintaining the vertices and edges

in G.

Remark. Figure 3.4 illustrates the data flow in the internal workings of our update mechanism. The

3.4 Semi-Dynamic Algorithms 77

⇒
+

+

−
+

+

−
+

+

−updates on P

core-status structure

core cell updates

GUM

edge changes

CC structure

Figure 3.4: Flow of updates in our structures

point insertions and deletions in P are fed into the core-status structure, which informs GUM about

which cells have turned into core/non-core cells. Utilizing such information, GUM updates G by

generating the necessary edge changes, which are passed to the CC structure for properly maintaining

the CCs of G.

Overall, our design will focus on GUM and the core-status structure. CC and emptiness structures

have been well-studied in graph theory and computational geometry, respectively; it suffices to plug

in the best existing structures suiting our purposes.

3.4 Semi-Dynamic Algorithms

This section presents maintenance algorithms for exact/approximate DBSCAN clustering when all

the updates are insertions. We will do so by specializing the framework of the last section.

The Core-Status Structure. For each non-core point p ∈ P, we remember a vicinity count vincnt(p)

which equals the number of points of P covered by B(p, ε). By non-core definition, vincnt(p) <

MinPts. Once vincnt(p) reaches MinPts, p becomes a core point, after which we no longer keep track

of such a count.

Let us see how to maintain the above information when a new point pnew is inserted. Let cnew be

the cell of D that contains pnew. We start by checking if pnew is a core point as follows:

1 If cnew is dense, pnew must a core point (all the points in cnew are within distance ε from pnew).

2 Otherwise, we simply enumerate all the O(1) ε-close cells c of cnew, and calculate the dis-

tances from pnew to all the points in P(c). This way, we obtain the precise number of points in

B(pnew, ε), noticing that any point within distance ε from pnew must be in an ε-close cell. The

78 Dynamic Euclidean DBSCAN

core-status of pnew can now be decided.

The appearance of pnew may increase the vicinity count vincnt(p) of some non-core points p. Such

p must be covered in cells c that are (i) sparse, and (ii) ε-close to cnew. We find all these points by

simply visiting the P(c) of all such c.

GUM. In general, whenever we have a new core point pcore (it may be pnew, or a point p that just has

its vincnt(p) increased), G may need to be updated. Let ccore be the cell covering pcore. If ccore just

became a core cell, we add it into V. In any case, new edges are potentially added to E as follows:

1 For every ε-close cell c of ccore that currently has no edge with ccore in G

1.1 Perform an emptiness query empty(pcore, c).

1.2 If the query returns 1, add (c, ccore) to E and call EdgeInsert (c, ccore).

Performance Guarantees. Using the best CC and emptiness structures under the semi-dynamic

scheme, we prove in the appendix:

Theorem 3.1. For any fixed dimensionality d and fixed constant ρ > 0, there is a semi-dynamic ρ-

approximate DBSCAN algorithm that processes each insertion in Õ(1) amortized time, and answers

a C-group-by query Q in Õ(|Q|) time.

The same insertion and query efficiency can also be achieved in 2D space for exact DBSCAN.

3.5 Dynamic Hardness and Double Approximation

We now come to perhaps the most surprising section of the paper. Recall that ρ-approximate DB-

SCAN was proposed to address the computational hardness of DBSCAN on static datasets. In Sec-

tion 3.5.1, we will show that the ρ-approximate version suffers from the same hardness on fully dy-

namic datasets. Interestingly, the culprit this time is the definition of core point. This motivates the

proposition of ρ-double-approximate DBSCAN in Section 3.5.2, where we also prove that the new

proposition has a sandwich guarantee as strong as the ρ-approximate version.

3.5 Dynamic Hardness and Double Approximation 79

3.5.1 Hardness of Dynamic ρ-Approximation

USEC with Line Separation. Next, let us review the USEC with line separation (USEC-LS) prob-

lem, which has a subtle connection with ρ-approximate DBSCAN, as shown later.

In USEC-LS, we are given a set S red of red points and a set S blue of blue points in Rd, which are

separated by a d-dimensional plane ` perpendicular to the first dimension, such that all the red points

are on one side of `, and all the blue points on the other. All the points have distinct coordinates on

every dimension. The objective, as with USEC (see Section 3.1), is to determine whether there exist

pred ∈ S red and pblue ∈ S blue such that dist(pred, pblue) ≤ 1. We define n = |S red| + |S blue|. Figure 3.5a

shows an example where the answer is “yes”.

Recall from Section 3.1 that USEC is computationally hard. In the appendix, we prove that this is

also true for USEC-LS:

Lemma 3.1. If we can solve USEC-LS in o(n4/3) time, then we can solve USEC in o(n4/3) time.

Dynamic Hardness. Suppose that we have a ρ-approximate DBSCAN algorithm that handles an

update (insertion/deletion) in Tupd(n) amortized time, and answers a C-group-by query with |Q| = 2

in Tqry(n) amortized time. Then:

Lemma 3.2. We can solve the USEC-LS problem in O(n · (Tupd(n) + Tqry(n)) time.

Proof. Let x be the coordinate where the separation plane ` in USEC-LS intersects dimension 1.

Without loss of generality, let us assume that the red points are on the left of `, i.e., having coordinates

less than x on dimension 1. Conversely, the blue points are on the right of `. We solve USEC-LS

using the given dynamic ρ-approximate DBSCAN algorithm A as follows.

1. Initialize a ρ-approximate DBSCAN instance with ε = 1, MinPts = 3, and an arbitrary ρ ≥ 0.

Let P be the input set, which is empty at this moment.

2. Use A to insert all the red points into P.

3. For every blue point p = (x1, x2, ..., xd) (hence, x1 > x), carry out the following steps:

3.1 Use A to insert p into P.

80 Dynamic Euclidean DBSCAN

pred pblue

1

pred pblue p′ (dummy)

(a) USEC-LS (b) Reduction to dynamic clustering

Figure 3.5: Illustration of our hardness proof

3.2 Use A to insert a dummy point p′ = (x1 + 1, x2, ..., xd) into P. That is, p′ has the same

coordinates as p on all dimensions i ∈ [2, d], except for the first dimension where p′ has

coordinate x1 + 1. See Figure 3.5b for an illustration (where p = pblue).

3.3 Use A to answer a C-group-by query with Q = {p, p′}. If the query returns the same cluster

id for p and p′, terminate the algorithm, and return “yes” to the USEC-LS problem.

3.4 Use A to delete p′ and p from P.

4. Return “no” to the USEC-LS problem.

The running time of the algorithm is O(n ·(Tupd(n)+Tqry(n)) because we issue at most 2n insertions

and 2n deletions, as well as n queries, in total. Next, we prove that the algorithm is correct.

Consider Lines 3.1-3.4. A crucial observation is that the dummy point p′ must be a non-core

point, because B(p′, ε) contains only two points p, p′. Therefore, p′ and p are placed into the same

cluster by ρ-approximate DBSCAN if and only if p is a core point. However, p is a core point if and

only if B(p, ε) covers at least 3 points, which must include p, p′, and at least one point p′′ on the other

side of `—red point p′′ and blue point p are therefore within distance 1.

It is now straightforward to verify that our algorithm always returns the correct answer for USEC-

LS. �

Theorem 3.2. For any ρ ≥ 0 and any dimensionality d ≥ 3, any ρ-approximate DBSCAN algorithm

must incur Ω(n1/3) amortized time either to process an update, or to answer a C-group-by query (even

if |Q| = 2), unless the USEC problem in Rd could be solved in o(n4/3) time.

3.5 Dynamic Hardness and Double Approximation 81

Proof. Suppose that the algorithm were able to process an update and a query both in o(n1/3) amor-

tized time. By Lemma 3.2, we would solve USEC-LS in o(n4/3) time which, by Lemma 3.1, means

that we would solve USEC in o(n4/3) time. �

As explained in Section 3.1, for USEC, a lower bound of Ω(n4/3) is known [24] in d ≥ 5, whereas

beating the O(n4/3) bound in d = 3, 4 is a major open problem in theoretical computational geometry,

and believed to be impossible [23].

This is disappointing because DBSCAN succumbing to the hardness of USEC was what motivated

ρ-approximate DBSCAN. Theorem 3.2 shows that the latter suffers from the same hardness when

both insertions and deletions are allowed! Note that the theorem does not apply to the semi-dynamic

update scheme because the deletions at Line 3.4 are essential. In fact, Theorem 3.1 already proved

that efficient semi-dynamic algorithms exist for ρ-approximate DBSCAN.

Finally, it is worth pointing out that Theorem 3.2 holds even for ρ = 0, i.e., it is applicable to exact

DBSCAN as well.

3.5.2 ρ-Double-Approximate DBSCAN and Sandwich Guarantee

The New Proposition. To enable both (fully-dynamic) update and query efficiency, we propose ρ-

double-approximate DBSCAN, which takes the same parameters ε,MinPts, and ρ as ρ-approximate

DBSCAN. Whether a point p ∈ P is a core point is now decided in a relaxed manner:

• Definitely a core point if B(p, ε) covers at least MinPts points of P.

• Definitely not a core point if B(p, (1 + ρ)ε) covers less than MinPts points of P.

• Don’t care, otherwise.

A good example to illustrate this is point o13 in Figure 3.3a. Since B(o13, ε) covers 2 < MinPts = 3

points, o13 is not a core point under exact or ρ-approximate DBSCAN. Under double approximation,

however, it falls into the don’t-care case for ρ = 0.5, because B(p, (1 + ρ)ε) covers 7 points.

The clusters of ρ-double-approximate DBSCAN are defined by the same two-step approach of ρ-

approximate DBSCAN (see Section 3.1), but with respect to the above core-point semantics. Namely,

the only difference between the ρ-double-approximate and the ρ-approximate versions lies in the

82 Dynamic Euclidean DBSCAN

o6

o7 o8

o9

o10
o11

o12

o14

o15

o16

o17o1

o2

o3

o4
o5

o13

1 2 3 4 5 6 7

1

2

3

4

5

6
CC id 1 CC id 2

(a) One possible ρ-double-approx (b) Grid graph

core graph

Figure 3.6: Illustration of ρ-double approximation

core point definition. For example, swaying o13 into a core point, Figure 3.6a shows the ρ-double-

approximate core graph (defined precisely as the ρ-approximate version), while Figure 3.6b gives the

corresponding grid graph.

Sandwich Guarantee. Recall that this is an attractive feature of ρ-approximate DBSCAN. Next, we

prove that ρ-double-approximate DBSCAN provides just the same guarantee. Following the style

of [29], we define:

• C1 as the set of clusters of exact DBSCAN with parameters (ε,MinPts).

• C2 as the set of clusters of exact DBSCAN with parameters (ε(1 + ρ),MinPts).

• C as a set of clusters that is a legal result of ρ-double-approximate DBSCAN with parameters

ε, MinPts, and ρ.

Then, the sandwich guarantee is:

Theorem 3.3. The following statements are true: (i) For any cluster C1 ∈ C1, there is a cluster C ∈ C

such that C1 ⊆ C, and (ii) for any cluster C ∈ C , there is a cluster C2 ∈ C2 such that C ⊆ C2.

The proof can be found in the appendix. Note that the theorem is purposely worded exactly the

same as Theorem 2.3.

3.6 Fully Dynamic Algorithms 83

3.6 Fully Dynamic Algorithms

This section presents our algorithms for maintaining ρ-double-approximate DBSCAN clusters under

both insertions and deletions (again, exact DBSCAN is captured with ρ = 0). We will achieve the

purpose by instantiating the general framework in Section 3.3. The reader is reminded that the core-

point definition has changed to the one in Section 3.5.2.

3.6.1 Approximate Bichromatic Close Pair

We now take a short break from clustering to discuss a computational geometry problem which we

name the approximate bichromatic close pair (aBCP) problem. In this problem, we have two disjoint

axis-parallel squares c1, c2 in Rd. There is a set S (c1) of points in c1, and a set S (c2) of points in c2.

The two sets are subject to insertions and deletions. Let ε and ρ be positive real values. We are asked

to maintain a witness pair of (p∗1, p∗2) such that

• It may be an empty pair (i.e., p∗1 and p∗2 are null).

• If it is not empty, we must have dist(p∗1, p∗2) ≤ (1 + ρ)ε.

• The pair must not be empty, if there exist a point p1 ∈ S (c1) and a point p2 ∈ S (c2) such that

dist(p1, p2) ≤ ε. Note that the pair does not have to be (p1, p2) though.

We have at our disposal an emptiness structure (as defined in Section 3.3.2) on each cell, so that

an emptiness query (q, c) with c = c1 or c2 can be answered with cost Õ(τ) for some time function τ.

The objective is to minimize the cost of (i) finding an initial witness pair, and (ii) maintaining the pair

along with updates in S (c1) and S (c2).

Lemma 3.3. For the aBCP problem, an initial witness pair can be found in Õ(τ ·min{|S (c1)|, |S (c2)|})

time. After that, the pair can be maintained by Õ(τ) amortized time when a point is inserted or deleted

in S (c1) or S (c2).

The proof can be found in the appendix.

84 Dynamic Euclidean DBSCAN

3.6.2 Edges in the Grid Graph and aBCP

Returning to ρ-double-approximate DBSCAN clustering, let us recall that in the grid graph G, if

there is an edge between core cells c1 and c2, then the two cells must be ε-close. Such an edge may

disappear/re-appear as the core points of P(c1) and P(c2) are deleted/inserted. Maintaining this edge

can be regarded as an instance of the aBCP problem, where S (c1) is the set of core points in P(c1), and

S (c2) is the set of core points in P(c2)—the edge exists if and only if the witness pair is not empty!

We run a thread of the aBCP algorithm of Lemma 3.3 on every pair of ε-close core cells c1 and

c2. Those threads will be referred to as the aBCP instances of c1 (or c2). Whenever the edge between

c1 and c2 (re-)appears, we call EdgeInsert(c1, c2) of the CC structure; whenever it disappears, we call

EdgeRemove(c1, c2).

3.6.3 The Core-Status Structure

Given a point q, an approximate range count query returns an integer k that falls between |B(q, ε)| and

|B(q, (1+ρ)ε)|. The query can be answered in Õ(1) time by a structure that can be updated in Õ(1) time

per insertion and deletion [53]. Under the relaxed core-point definition of ρ-double-approximation,

whether a point p ∈ P is a core point can be decided directly by issuing such a query with p. If the

query returns k, we declare p a core point if and only if k ≥ MinPts.

Leveraging this fact, next we describe how to explicitly update the core-status of all points in P

along with insertions and deletions:

• To insert a point pnew in cell cnew, we first check whether pnew itself is a core point. Remember

that the insertion may turn some existing non-core points into core points. To identify such

points, we look at each of the O(1) ε-close sparse cells c of cnew. Simply check all the points

p ∈ P(c) to see if p is currently a core point.

• The deletion of a point pold from cell cold may turn some existing core points into non-core

points. Following the same idea in insertion, we look at every ε-close sparse cell c of cold, and

check all the points p ∈ P(c) for their current core status.

3.7 Experiments 85

3.6.4 GUM

When a point pcore (say, in cell ccore) has turned into a core point, we check whether ccore is already in

V:

• If so, simply insert pcore into every aBCP instance (Lemma 3.3) of ccore—as explained in Sec-

tion 3.6.2, this properly maintains the edges of ccore.

• Otherwise, it must hold that |P(ccore)| ≤ MinPts = O(1). We add ccore to V. Then, for every

ε-close core cell c of ccore, decide whether to create an edge between c and ccore by using the

algorithm of Lemma 3.3 to find an initial witness pair (thereby starting the aBCP instance on

ccore and c).

Consider now the scenario where a core point p in cell ccore has turned into a non-core point. If

ccore is still a core cell, we remove p from all the aBCP instances of ccore. Otherwise, we simply

remove ccore from V, and destroy all its aBCP instances.

3.6.5 Performance Guarantees

Utilizing the best CC and emptiness structures under the fully-dynamic scheme, we prove in the

appendix our last main result:

Theorem 3.4. For any fixed dimensionality d and fixed constant ρ > 0, there is a fully-dynamic ρ-

double-approximate DBSCAN algorithm that processes each insertion and deletion in Õ(1) amortized

time, and answers a C-group-by query Q in Õ(|Q|) time.

The same update and query efficiency can also be achieved in 2D space for exact DBSCAN.

3.7 Experiments

Section 3.7.1 describes the setup of our empirical evaluation. Then, Sections 3.7.2 and 3.7.3 report

the results on semi-dynamic and fully-dynamic algorithms, respectively.

86 Dynamic Euclidean DBSCAN

3.7.1 Setup

Workload. We evaluate a clustering algorithm by its efficiency in processing a workload, which

is a mixed sequence of updates and queries. Each update or query is collectively referred to as an

operation. A workload is characterized by several parameters:

• N: the total number of updates.

• %ins: the percentage of insertions. In other words, the workload has N · %ins insertions, and

N(1 −%ins) deletions. This parameter is fixed to 1 in semi-dynamic scenarios.

• fqry: the query frequency, which is an integer controlling how often a C-group-by query is

issued.

The production of a workload involves 3 steps, as explained below.

Step 1: Insertions. The sequence of insertions is obtained by first generating a “static dataset” of

I = N · %ins points, and then, randomly permuting these points (i.e., if a point stands at the i-th

position, it is the i-th inserted). We generate static datasets whose clusters are the outcome of a

“random walk with restart”, as was the approach suggested in [29], and will be reviewed shortly.

Note that the random permutation mentioned earlier allows the clusters to form up even at an early

stage of the workload.

The data space is a d-dimensional square that has range [0, 105] on each dimension. A static

dataset is created using the seed spreader technique in Section 2.6, which generates around 10 clusters

and 0.0001 · I noise points as follows. First, place a spreader at a random location p of the data space.

At each time tick, the spreader adds to the dataset a point that is uniformly distributed in B(p, 25).

Whenever the spreader has generated 100 points while stationed at the same p, it is forced to move

towards a random direction by a distance of 50. Finally, with probability 10/(0.9999I), the spreader

“restarts” by jumping to another random location of the data space. Regardless of whether a restart

happens, the current time tick finishes, and the next one starts. The spreader works for 0.9999I time

ticks (thus producing 0.9999I points). After that, 0.0001 · I random points are added to the dataset as

noise.

Step 2: Deletions. First, append to the insertion sequence D = N− I deletion tokens, where each token

is simply a “place-holder” into which we will later fill a concrete point to delete. Then, randomly

3.7 Experiments 87

permute the resulting sequence (which has length N). Check whether the permutation is bad, namely,

if any of its prefixes has more tokens than insertions. If so, we attempt another random permutation

until a good one is obtained.

Now we have a good sequence of insertions and deletion tokens. To fill in the tokens, scan down

the sequence, and add each inserted point into S , until coming across the first token. Select a random

point in S as the one deleted by the token, and then remove the point from S . The scan continues in

this fashion until all the tokens have been filled.

Step 3: Queries. We simply insert a C-group-by query after every fqry updates in the sequence. Recall

that the query specifies a parameter Q, which is generated as follows. Let S be the set of “alive”

points that have been inserted, but not yet deleted before the query. We first decide the value of |Q|

by choosing an integer uniformly at random from [2, 100]. Then, Q is populated by random sampling

|Q| points from S without replacement.

DBSCAN Algorithms. Our experimentation examined:

• IncDBSCAN [26]: the state-of-the-art dynamic algorithm for exact DBSCAN, as reviewed in

Section 3.2.

• 2d-Semi-Exact: our semi-dynamic algorithm in Theorem 3.1 for exact DBSCAN in 2D space.

• Semi-Approx: our semi-dynamic algorithm in Theorem 3.1 for ρ-approximate DBSCAN in

d-dimensional space with d ≥ 2.

• 2d-Full-Exact: our fully-dynamic algorithm in Theorem 3.4 for exact DBSCAN in 2D space.

• Double-Approx: our fully-dynamic algorithm in Theorem 3.4 for ρ-double-approximate DB-

SCAN in d-dimensional space with d ≥ 2.

All the algorithms were implemented in C++, and compiled with gcc version 4.8.4.

Parameters and Machine. We fixed N to 10 million, namely, each workload contains this number of

updates. The value of MinPts in all the DBSCAN variants was 10. The value of ρ in the approximate

variants was set to 0.001, under which ρ-double-approximate DBSCAN is required to return precisely

the same clusters as ρ-approximate DBSCAN.

88 Dynamic Euclidean DBSCAN

parameter value

d 2, 3, 5, 7

ε 50d, 100d, 200d, 400d, 800d

%ins
2
3 ,

4
5 , 5/6, 8

9 ,
10
11

fqry 0.01N, 0.02N, 0.03N, ..., 0.1N

Table 3.1: Variable parameter values (defaults in bolds)

Semi-Approx IncDBSCAN2d-Semi-Exact

1

10

10
2

10
3

0 2 5 8 11

number of operations (million)

average cost per operation (microsec)

(a) Average operation cost vs. time

10

10
2

10
3

10
4

10
5

0 2 5 8 11

number of operations (million)

maximum update cost (microsec)

(b) Max update cost vs. time

Figure 3.7: Performance of semi-dynamic algorithms in 2D

The other parameters were varied in different experiments. Their values are as shown in Table 3.1;

unless otherwise stated, a parameter was set to its default as shown in bolds. Note that %ins = 5/6

indicates on average 1 deletion every 5 insertions.

Finally, all the experiments were run on a machine equipped with an Intel Core i7-6700 CPU @

3.40GHz × 8 and 16GB memory. The operating system was Linux (Ubuntu 14.04.1).

3.7.2 Semi-Dynamic Results

This subsection will focus on insertion-only workloads. Consider executing an algorithm on such a

workload. We define the algorithm’s average cost as a function of time: avgcost(t) = 1
t

∑t
i=1 cost[i],

where cost[i] is the overhead of the algorithm in processing the i-th operation of the workload. Simi-

larly, define the algorithm’s max update cost as: maxupdcost(t) = maxx
i=1 updcost[i], where (i) x is the

3.7 Experiments 89

Semi-Approx avgcost Semi-Approx maxupdcost IncDBSCAN avgcost IncDBSCAN maxupdcost

1

10
2

10
3

10
4

10
5

0 2 5 8 11

number of operations (million)

cost (microsec)

(a) 3D

1

10
10

2
10

3
10

4
10

5

0 2 5 8 11

number of operations (million)

cost (microsec)

(b) 5D

1

10
10

2
10

3
10

4
10

5

0 2 5 8 11

number of operations (million)

cost (microsec)

(c) 7D

Figure 3.8: Performance of semi-dynamic algorithms in d ≥ 3 dimensions

number of updates by the end of the t-th operation, and (ii) updcost[i] is the overhead of the algorithm

for the i-th update. Notice that query time is registered in avgcost but not maxupdcost.

Focusing on 2D space, Figure 3.7a plots the average cost of IncDBSCAN, 2d-Semi-Exact, and

Semi-Approx, whereas Figure 3.7b plots their max update cost. 2d-Semi-Exact and Semi-Approx fin-

ished the workload significantly faster than IncDBSCAN, achieving an improvement of two orders of

magnitude! Moreover, while the average cost of IncDBSCAN deteriorated continuously, the perfor-

mance of 2d-Semi-Exact and Semi-Approx remained stable throughout the workload. This is expected

because IncDBSCAN must perform a range query per insertion (see Section 3.2), which tends to re-

trieve more data points as time progresses. Our solutions do not suffer from this drawback.

Turning to 3D space—where the competing methods are IncDBSCAN and Semi-Approx— Fig-

ure 3.8a compares their average cost and max update cost simultaneously. Figures 3.8b and 3.8c

present the same results for d = 5 and 7, respectively. In all dimensionalities, Semi-Approx consis-

tently outperformed IncDBSCAN by a wide margin even in logarithmic scale.

Interestingly, all the methods exhibited similar behavior when it comes to the maxupdcost metric.

90 Dynamic Euclidean DBSCAN

Semi-Approx IncDBSCAN2d-Semi-Exact

Semi-Approx 7d IncDBSCAN 7d

Semi-Approx 5d IncDBSCAN 5d

Semi-Approx 3d IncDBSCAN 3d

1

10

10
2

10
3

10
4

50 200 400 800

ε / d

average workload cost (microsec)

1

10

10
2

10
3

10
4

50 200 400 800

ε / d

average workload cost (microsec)

(a) d = 2 (b) d = 3, 5, 7

Figure 3.9: Semi-dynamic performance vs. ε

Semi-Approx IncDBSCAN2d-Semi-Exact

Semi-Approx 7d IncDBSCAN 7d

Semi-Approx 5d IncDBSCAN 5d

Semi-Approx 3d IncDBSCAN 3d

1

10

10
2

10
3

10
4

0.1 0.4 0.6 0.8 1

query frequency (million)

average workload cost (microsec)

1

10

10
2

10
3

10
4

0.1 0.4 0.6 0.8 1

query frequency (million)

average workload cost (microsec)

(a) d = 2 (b) d = 3, 5, 7

Figure 3.10: Semi-dynamic performance vs. fqry

We will return to this issue later when we discuss the fully dynamic scenario, where contrasting

phenomena will be observed.

We define an algorithm’s average workload cost as avgcost(W), where W is the total number of

operations in the workload of concern. The next experiment demonstrates the effect of ε on the cost

of cluster maintenance—as discussed in Chapter 2 and [6], an algorithm of density-based clustering

should be able to find clusters at different granularities of ε. Figure 3.9 shows the average workload

cost of each applicable method as a function of ε, for d = 2, 3, 5, 7, respectively. It is evident that

IncDBSCAN became prohibitively expensive as ε increases. On the other hand, our solutions actually

performed even better for larger ε! This is not surprising because a greater ε actually reduces the

3.7 Experiments 91

Double-Approx IncDBSCAN2d-Full-Exact

1

10

10
2

10
3

0 2 5 8 11

number of operations (million)

average cost per operation (microsec)

(a) Average operation cost vs. time

10
2

10
3

10
4

10
5

10
6

0 2 5 8 11

number of operations (million)

maximum update cost (microsec)

(b) Max update cost vs. time

Figure 3.11: Performance of fully-dynamic algorithms in 2D

number of edges in the grid graph, which in turn leads to substantial cost savings.

We conclude this subsection by giving the average workload cost of all methods as a function of

fqry in Figure 3.10. In general, query cost is negligible compared to update overhead.

3.7.3 Fully-Dynamic Results

We now proceed to evaluate the algorithms that can handle both insertions and deletions. Our strategy

is similar to that in the previous subsection. Average cost and max update cost are defined in the same

way as before, except that operations/updates obviously also include deletions here.

Figure 3.11 shows the results in experiments corresponding to those in Figure 3.7, with respect to

IncDBSCAN, 2d-Full-Exact, and Double-Approx. Similarly, Figure 3.12 corresponds to Figure 3.8,

with respect to IncDBSCAN and Double-Approx. As before, our solutions were two orders of mag-

nitude faster than IncDBSCAN in average cost. What is new, however, is that they also improved

IncDBSCAN by nearly 10 times in max update cost as well!

What has triggered the separation in maxupdcost? The hardness of deletions! Recall from Sec-

tion 3.2 that IncDBSCAN requires only one range query (to find the seed objects) in an insertion,

whereas in a deletion, it demands multiple—actually perhaps many—such queries to perform BFS.

This stands in sharp contrast to Double-Approx, which completely gets rid of BFS by novel ideas, in

particular, deploying an aBCP algorithm (Lemma 3.3) to convert cluster maintenance to updating the

92 Dynamic Euclidean DBSCAN

Double-Approx avgcost Double-Approx maxupdcost IncDBSCAN avgcost IncDBSCAN maxupdcost

1

10
3

10
5

10
7

0 2 5 8 11

number of operations (million)

cost (microsec)

(a) 3D

1

10
3

10
5

10
7

0 2 5 8 11

number of operations (million)

cost (microsec)

(b) 5D

1

10
3

10
5

10
7

0 2 5 8 11

number of operations (million)

cost (microsec)

(c) 7D

Figure 3.12: Performance of fully-dynamic algorithms in d ≥ 3 dimensions

CCs of the grid graph (which has only O(n) edges). In all scenarios, our algorithms ensured process-

ing an update in less than 0.1 seconds! The reader may have noticed that IncDBSCAN did not finish

the 5D and 7D workloads. Indeed, we terminated it after 3 hours when its deficiencies had become

apparent.

Figure 3.13 presents the results that are the counterparts of Figure 3.9, confirming that IncDB-

SCAN is essentially inapplicable for large ε. Note, again, that this method has no results for d = 5

and 7.

The last set of experiments inspected the average workload cost of these algorithms as the insertion

percentage increased from 2/3 to 10/11. The results are reported in Figure 3.14. In general, the

efficiency of each method improved as insertions accounted for a higher percent of the workload. Our

new algorithms were the clear winners in all situations.

3.8 Summary 93

Semi-Approx IncDBSCAN2d-Semi-Exact

Semi-Approx 3d IncDBSCAN 3d
Semi-Approx 5dSemi-Approx 7d

1

10

10
2

10
3

10
4

50 200 400 800

ε / d

average workload cost (microsec)

1

10

10
2

10
3

10
4

50 200 400 800

ε / d

average workload cost (microsec)

(a) d = 2 (b) d = 3, 5, 7

Figure 3.13: Fully-dynamic performance vs. ε

Semi-Approx IncDBSCAN2d-Semi-Exact

Semi-Approx 3d IncDBSCAN 3d
Semi-Approx 5dSemi-Approx 7d

1

10

10
2

10
3

2/3 4/5 5/6 8/9 10/11

insertion percentage

average workload cost (microsec)

1

10

10
2

10
3

2/3 4/5 5/6 8/9 10/11

insertion percentage

average workload cost (microsec)

(a) d = 2 (b) d = 3, 5, 7

Figure 3.14: Fully-dynamic performance vs. %ins

3.8 Summary

This chapter has presented a systematic study on dynamic density based clustering under the theme of

DBSCAN. Our findings reveal considerable new insight into the characteristics of the topic, by pro-

viding a complete picture of the computational hardness in various update schemes. Perhaps the most

surprising result is that ρ-approximate DBSCAN, which was proposed to address the worst-case com-

putational intractability of exact DBSCAN, suffers from the same hardness when both insertions and

deletions are allowed. We have also shown how to eliminate the issue elegantly with a tiny relaxation,

which has led to the development of ρ-double-approximate DBSCAN. Our algorithmic contributions

94 Dynamic Euclidean DBSCAN

involve a suite of new algorithms that achieve near-constant update time in cluster maintenance es-

sentially in all the update schemes where this is possible. The practical efficiency of our solutions has

also been confirmed with extensive experiments.

3.9 Appendix

3.9.1 Proof of Theorem 3.1

We will prove the theorem first for ρ-approximate DBSCAN, and then for 2D exact DBSCAN.

Implementing the CC-structure as the union-find structure of Tarjan [65], we can support both the

EdgeInsert and CC-Id operations in Õ(1) time amortized. For the emptiness structure of every core

cell, we can use the approximate nearest neighbor structure of Arya et al. [12], which answers an

emptyness query in Õ(1) time, and can be updated in Õ(1) time.

Next, we prove that the algorithm processes n insertions in Õ(n) time, that is, Õ(1) amortized time

per insertion:

• In the core-status structure, Step 1 takes Õ(1) time per insertion by resorting to a standard

dictionary-search structure (e.g., a binary search tree) on the non-empty cells.

• The total cost of Step 2 for the whole update sequence is O(n). To see this, notice that a cell c

is involved in this step only if it is an ε-close cell of cnew. Hence, with respect to the same cnew,

c can be involved only MinPts = O(1) times (after which cnew becomes a core cell, and will not

require Step 2 again). As c has O(1) ε-close cells, the total number of times that c is involved

for all the cnew is O(1).

• The same reasoning also explains that, the total cost incurred by the execution of the paragraph

below Step 2 is O(n) in the whole algorithm.

• In GUM, Steps 1, 1.1, and 1.2 can insert O(n) edges in total, and therefore, entails Õ(n) cost

overall.

The query algorithm performs only O(|Q|) CC-Id operations, and therefore, requires only Õ(|Q|)

time.

3.9 Appendix 95

The above proof holds verbatim also for 2D exact DBSCAN, with the only difference that the

structure of [12] should be replaced by the 2D nearest neighbor structure of Chan [18].

3.9.2 Proof of Lemma 3.1

Suppose that A is an algorithm settling USEC-LS in T (n) time. We can solve the USEC problem on

a set P of n points (each red or blue) using divide and conquer as follows. Divide P using a plane `

orthogonal to dimension 1 into P1 and P2 each of which has n/2 points. Then, we recursively solve

the USEC problem on P1, and do the same on P2. If either of these sub-problems returns “yes” (i.e.,

a red point within distance 1 from a blue point), we return “yes” immediately.

If both sub-problems return “no”, we run A twice to solve two instances of USEC-LS. Divide P1

into the set P1red of red points, and the set P1blue of blue points. Let P2red and P2blue be defined similarly

with respect to P2. The first USEC-LS instance is defined on P1red and P2blue, whereas the second on

P1blue and P2red. If either instance returns “yes”, we return “yes”; otherwise, we return “no”.

Denote by f (n) the running time of our USEC algorithm. The above description shows that

f (n) = 2 f (n/2) + 2T (n)

with f (n) = O(1) when n = 1. It is rudimentary to verify that when T (n) = o(n4/3), then f (n) = o(n4/3).

3.9.3 Proof of Theorem 3.3

Let Gε be the core graph of (ε,MinPts) exact DBSCAN, and G(1+ρ)ε be the core graph of ((1 +

ρ)ε,MinPts) exact DBSCAN. Also, denote by Gε,ρ the ρ-approximate core graph of ρ-double-approximate

DBSCAN with the same ε and MinPts. A useful observation is that every edge in Gε exists in Gε,ρ,

and likewise, every edge in Gε,ρ exists in G(1+ρ)ε .

Proof of Statement (i). Consider an arbitrary core point p1 in C1. Let C be the (only) cluster in C that

contains p1. Next, we will prove that C1 ⊆ C.

Denote by S ε the CC of Gε containing p1, and by S ε,ρ the CC of Gε,ρ containing p1. Clearly,

S ε ⊆ S ε,ρ. This means that all the core points of C1 also belong to C.

Consider now an arbitrary non-core point p2 in C1. There must exist a core point p3 ∈ C1 such

96 Dynamic Euclidean DBSCAN

that p3 is covered by B(p2, ε). Since p3 ∈ S ε ⊆ S ε,ρ, we know that p2 must also have been assigned to

the cluster of S ε,ρ, namely, C.

Proof of Statement (ii). Consider an arbitrary core point p1 in C. Let C2 be the (only) cluster in C2

that contains p1. Next, we will prove that C ⊆ C2.

Denote by S ε,ρ the CC of Gε,ρ containing p1, and by S (1+ρ)ε the CC of G(1+ρ)ε containing p1.

Clearly, S ε,ρ ⊆ S (1+ρ)ε . This means that all the core points of C also belong to C2.

Consider now an arbitrary non-core point p2 in C. There must exist a core point p3 ∈ C such that

p3 is covered by B(p2, (1 + ρ)ε). Since p3 ∈ S ε,ρ ⊆ S (1+ρ)ε , we know that p2 must also have been

assigned to the cluster of S (1+ρ)ε , namely, C2.

3.9.4 Proof of Lemma 3.3

Finding the Initial Pair. Suppose, without loss of generality, that |S (c1)| ≤ |S (c2)|. For every point

p∗1 ∈ S (c1), we run an emptiness query empty(p∗1, c2). If the query returns 1 with a proof point p∗2, we

have found a witness pair (p∗1, p∗2), and hence, can terminate immediately. The cost is clearly that of

Õ(|S (c1)|) emptiness queries.

We prove that the algorithm is correct. This is obvious if it finds a pair. Consider, instead, that

it does not, in which case we are wrong only if there is a pair (p1, p2) ∈ S (c1) × S (c2) such that

dist(p1, p2) ≤ ε. However, this means that empty(p1, c2) must return 1, thus contradicting the fact that

we did not found a pair.

Maintaining the Pair. We store in a list L the points that have been subsequently inserted in S (c1) ∪

S (c2) (the point ordering can be arbitrary). Each point of L will be de-listed—the meaning of which

will be clear shortly—once, after which the point is removed from L. Furthermore, we enforce the

rule that, if the witness pair is empty, L must be ∅.

Basic Operation: De-listing. This operation can only be performed when the witness pair is empty—

it will attempt to find such a pair by issuing one emptiness query. For this purpose, the operation starts

by removing the first point p from L; assume, without loss of generality, that p ∈ S (c1). It then issues

empty(p, c2). If the query returns 1 with a proof point p′ ∈ S (c2), (p, p′) is taken as the witness pair.

Otherwise, the witness pair remains empty.

3.9 Appendix 97

Insertion. Consider that a point p has been inserted in S (c1) (the case with S (c2) is symmetric).

Append p to L. If the witness pair is not empty, we do nothing else. Otherwise, p must now be the

only element in L, in which case we perform a de-listing and finish.

Deletion. Consider that a point p has been deleted from S (c1) (a symmetric algorithm works for

S (c2)). Remove from L the entry of p (if found). If the witness pair (p∗1, p∗2) is not empty and p , p∗1,

the deletion does not affect the pair; and we are done. Otherwise, we proceed as follows:

1. Issue empty(p∗2, c1). If it returns 1 with a proof point p′, set (p′, p∗2) as the new witness pair, and

return.

2. Otherwise, do the following until L is empty or the algorithm decides to return:

2.1 Perform a de-listing.

2.2 If the de-listing finds a witness pair, return.

3. (Now L is empty) set the witness pair to empty.

Correctness. Our algorithm is always correct if it finds a witness pair Let us look at the case where it

does not. This is wrong only if there exists a pair (p1, p2) ∈ S (c1)×S (c2) such that dist(p1, p2) ≤ ε. At

least one of p1, p2 must have been inserted after the initial pair was found. Without loss of generality,

assume that p2 is the one; and if both are, then assume that p2 was de-listed after p1.

Consider the moment when our algorithm de-listed p2 from L. Since p1 was present in S (c1), the

query empty(p2, c1) we issued must have returned a proof point p′. The witness (p′, p2) must have

disappeared because p′ was deleted. But in this case, our algorithm would immediately issue another

empty(p2, c1), which (again because p1 was present in S (c1)) must have returned another proof point.

The situation repeats itself, with the consequence that we must be holding a witness pair, thus creating

a contradiction.

Efficiency. Clearly, the total number of emptiness queries is at most the number of point insertions

and deletions in S (c1) ∪ S (c2). This concludes the proof of the lemma.

Remark: No Materialization of L. At first glance, it may seem that a point of S (c1) (or S (c2)) needs to

be duplicated in L. Such duplication is space consuming if c1 is involved in many instances of aBCP

98 Dynamic Euclidean DBSCAN

simultaneously. In fact, L does not need to be materialized, and instead can be represented using only

O(1) memory.

Let us store the points of S (c1) in a list, sorted by insertion order. We can de-list these points by

the sorted order, so that at any moment the points not yet de-listed—namely, those in L—constitute a

suffix of the list. The suffix can be identified by remembering only the first point in the suffix, which

only needs a single pointer. The same also holds for S (c2). Thus, two pointers suffice for L. To

de-list a point, simply pick the point referenced by either pointer, and then shift the pointer down one

position.

It is now evident that, no matter how many instances of aBCP c1 is involved in, S (c1) is stored just

once, by keeping one pointer for each instance.

3.9.5 Proof of Theorem 3.4

We prove only the update efficiency because the C-group-by query time is obvious. We will consider

first ρ-approximate DBSCAN, and then 2D exact DBSCAN.

Implementing the CC-structure as the structure of Holm et al. [39], we can support EdgeInsert,

EdgeRemove, and CC-Id all in Õ(1) amortized time. For the emptiness structure, we can still use the

approximate nearest neighbor structure of [12], which answers an emptyness query in Õ(1) time, and

can be updated in Õ(1) time per insertion and deletion.

Let us now analyze the update cost of the core-status structure. Consider first the insertion of a

point pnew. Let cnew be the cell of pnew. In the worst case, we will check all the O(1) ε-close sparse

cells c of cnew. As c has at most MinPts = O(1) points, we need at most O(1) approximate range count

queries, whose total overhead is Õ(1). An analogous argument shows that each deletion entails Õ(1)

time.

To account for the cost of GUM, we analyze how many of the following events may happen during

an insertion/deletion on P:

• J1: the number of aBCP instances created;

• J2: the number of aBCP instances destroyed;

• K: the number of aBCP insertions/deletions.

3.9 Appendix 99

An insertion on P can turn at most O(1) points into core points—as mentioned, they must be in cnew

or the O(1) ε-close sparse cells of cnew, while each of these cells has at most MinPts = O(1) points.

As c has at most O(1) aBCP instances, a new core point in a cell c can trigger at most O(1) new aBCP

instances and O(1) aBCP insertions. Similarly, a deletion on P can destroy O(1) aBCP instances and

trigger O(1) aBCP core deletions. We thus conclude that J1, J2 and K are all bounded by O(1).

The initialization of an aBCP instance takes Õ(1) time as it requires O(1) emptiness queries by

Lemma 3.3 and the fact that cnew has O(1) points. Destroying an aBCP instance also takes only O(1)

time because it requires only discarding two pointers (see the remark in the proof of Lemma 3.3).

Furthermore, by Lemma 3.3, the cost of the aBCP algorithm is proportional to K, now that each

emptiness query takes τ = Õ(1) time. Thus, J1, J2,K all bounded by O(1) indicates that GUM entails

Õ(1) amortized cost in each update.

Finally, the above discussion shows that an update can add/remove O(1) edges of G. Therefore,

the cost from the CC-structure is Õ(1) time amortized per update. We thus conclude the whole proof

for ρ-double-approximate DBSCAN.

The above proof holds verbatim also for 2D exact DBSCAN, with the only difference that the

structure of [12] should be replaced by the 2D nearest neighbor structure of Chan [18].

100 Dynamic Euclidean DBSCAN

Chapter 4

External Density-Based Clustering and

Multi-Dimensional Grid Graphs

4.1 Prelinmilary

Firstly, let us review some basic concepts.

External Memory (EM) Computational Model. In EM model, the machine is equipped with M

words of (internal) memory, and a disk that has been formatted into blocks, each of which has B

words. The values of M and B satisfy M ≥ 2B. An I/O either reads a block of data from the disk

into memory, or writes B words of memory into a disk block. The cost of an algorithm is measured

in the number of I/Os performed. Define function sort(n) = Θ((n/B) logM/B(n/B)), which is the I/O

complexity of sorting n elements [4].

Multi-Dimensioanl Grid Graphs. Recall that a d-dimensional grid graph is an undirected graph

G = (V, E) with two properties:

• Each vertex v ∈ V is a distinct point in space Nd, where N represents the set of integers.

• If E has an edge between v1, v2 ∈ V , then (i) the two vertices are distinct (i.e., no self-loops),

and (ii) they differ by at most 1 in their coordinates on every dimension.

See Figure 1.3 for two illustrative examples. For d = O(1), such a graph is sparse, namely, |E| =

O(|V |), because each vertex can have a degree at most 3d = O(1).

101

102 External Density-Based Clustering andMulti-Dimensional Grid Graphs

Vertex Separator. Given a positive integer r ≤ |V |, a set S ⊆ V is an r-separator of a d-dimensional

grid graph G = (V, E) if it satisfies:

• |S | = O(|V |/r1/d)

• Removing the vertices of S disconnects G into h = O(|V |/r) subgraphs Gi = (Vi, Ei) for i ∈ [1, h]

such that

– |Vi| = O(r);

– No vertex of Vi is adjacent to any vertex of V j, if i , j.

– The vertices of Vi are adjacent to O(r1−1/d) vertices of S (if a vertex v ∈ Vi is adjacent to

some vertex in S , v is said to be a boundary vertex of Gi).

Such separators are known [51, 63] to exist for any r ∈ [1, |V |]. Of special importance are M-

separators, which are crucial for several fundamental graph problems, as described shortly.

4.2 Main Results

A primary contribution of this chapter is an algorithm for computing such a separator I/O-efficiently:

Theorem 4.1. Let G = (V, E) be a d-dimensional grid graph for any constant d. We can compute an

M-separator, as well as the corresponding subgraphs G1, ...,Gh as stated earlier, in O(sort(|V |)) I/Os.

Our proof of the theorem uses ideas different from those of [51, 63]1. Interestingly, as a side

product, our proof presents a new type of r-separators that can be obtained by a recursive binary

orthogonal partitioning of Nd, i.e., split Nd using an axis-parallel plane, and then recur in the “data

spaces” on each side of the plane. All the vertices on all the cutting planes constitute our separator S .

1The r-separators of [51,63] are constructed by repetitively partitioning a d-dimensional grid graph with “surface cuts”.

Specifically, each cut is performed with a closed d-dimensional surface (which is a sphere in [51] and an axis-parallel

rectangle in [63]). All vertices near the surface are added to the separator, while the process is carried out recursively

inside and outside the surface, respectively. It remains a challenging open problem to compute such M-separators in

O(sort(|V |)) I/Os.

4.2 Main Results 103

Our algorithm of Theorem 4.1 works for all values of M, B satisfying M ≥ 2B. This is a notable

property, because of which Theorem 4.1 yields an improved algorithm for the single source shortest

path (SSSP) problem on 2D grid graphs:

Corollary 4.1. The SSSP problem on a 2D grid graph G = (V, E) can be settled in O(|V |/
√

M +

sort(|V |)) I/Os.

Previously, the best I/O-efficient SSSP algorithm [36] on 2D grid graphs relies on the planar

separator algorithm of [46], which is efficient only under the tall cache assumption M = Ω(B2).

Specifically, with that assumption, the algorithm of [36] matches the performance guarantee in Corol-

lary 4.1. For M = o(B2), however, the I/O-complexity of [36] becomes O((|V |/
√

M) · logM |V |), which

we strictly improve.

Corollary 4.1 also implies a new algorithm for breadth first search (BFS) on 2D grid graphs:

Corollary 4.2. We can perform BFS on a 2D grid graph G = (V, E) in O(|V |/
√

M + sort(|V |)) I/Os.

The corollary nicely bridges the previous state of the art, which runs either the SSSP algorithm

of [36], or the best BFS algorithm [49] for general graphs that performs O(|V |/
√

B + sort(|V |)) I/Os.

In particular, the corollary improves the winner of those two algorithms when M is between ω(B) and

o(B2).

Our next result stems from an unexpected source. It has been stated [67, 73] that the connected

components (CCs) of a 2D grid graph G = (V, E) can be computed in O(sort(|V |)) I/Os. This is

based on the belief that a 2D grid graph has the property of being sparse under edge contractions.

Specifically, an edge contraction removes an edge between vertices v1, v2 from G, combines v1, v2

into a single vertex v, replaces every edge adjacent to v1 or v2 with an edge adjacent to v, and finally

removes duplicate edges thus produced—all these steps then create a new graph; see Figure 1.4. The

aforementioned property says that, if one performs any sequence of edge contractions to obtain a

resulting graph G′ = (V ′, E′), G′ must still be sparse, namely, |E′| = O(|V ′|). Surprising enough, the

belief—perhaps too intuitive—seemed to have been taken for granted, such that no proof has ever

been documented.

We formally disprove this belief:

Theorem 4.2. There exists a 2D grid graph that is not sparse under edge contractions.

104 External Density-Based Clustering andMulti-Dimensional Grid Graphs

With the belief invalidated, the best existing deterministic algorithm for computing the CCs of

a 2D grid graph requires an I/O complexity that is the minimum of O(sort(|V |) · log log B) [54] and

O(sort(|V |) · log(|V |/|M|)) [37]. Equipped with Theorem 4.1, we improve this result:

Corollary 4.3. The CCs of a d-dimensional grid graph G = (V, E) with any constant d can be com-

puted in O(sort(|V |)) I/Os.

4.2.1 Main Application: Density-Based Clustering

Density-based clustering is an important problem in data mining (see popular textbooks [33,64]). The

input consists of

• A real value ε > 0, and

• A set P of n points in Rd, where R denotes the set of real values, and the dimensionality d is a

constant integer at least 2.

The input defines a neighbor graph G as follows. First, G has n vertices, each corresponding to a

distinct point in P. Second, there is an edge between two vertices (a.k.a., points) p1, p2 if:

• dist(p1, p2) ≤ ε, where function dist gives the distance between p1 and p2.

The goal of the problem is to output the connected components of G, each of which forms a cluster.

Figure 4.1 illustrates an example where the distance metric is L∞ norm. Note that there can be

Ω(n2) edges in G (for simplicity, no edges are given in the example, but the square as shown should

make it easy to imagine which edges are present). Thus, one should not hope to solve the problem

efficiently by materializing all the edges.

Using our results on d-dimensional grid graph, we prove that the problem can be settled in near-

linear I/Os, when dist is L∞ norm:

Theorem 4.3. The density-based clustering problem under L∞ norm can be settled in

• O(sort(n)) I/Os for d = 2 and 3;

• O((n/B) logd−2
M/B(n/B)) I/Os for d ≥ 4.

4.2 Main Results 105

square with side length 2ε

cluster 1

cluster 2

cluster 3

Figure 4.1: Density-based clustering. The square illustrates the value of ε (all the points in the square are
within L∞ distance ε from the white point), which determines the output of 3 clusters.

Why L∞—especially when the “textbook metric” is L2 norm? There are two primary reasons.

First, the problem is known to be hard under L2 norm: it demands Ω(n4/3) time to solve for d ≥ 3 (by

Theorem 2.1), unless the Hopcroft’s problem [24] could be settled in o(n4/3) time, which is commonly

believed to be impossible [23,24]. Consequently, L2 norm is unlikely to admit an EM algorithm with

near linear I/O complexity (otherwise, one could obtain an efficient RAM algorithm by setting M and

B to constants). Theorem 4.3, therefore, separates L∞ norm (and hence, also L1 norm) from L2 norm,

subject to the Hopcroft-hard conjecture.

An interesting question arises: apart from p = ∞ and 1, is there any other Lp norm admitting

an efficient algorithm for density-based clustering? Intuitively, L∞ and L1 norms are easy due to the

orthogonal nature of a “sphere” (i.e., it is a hyper-square). Do fast algorithms exist when a sphere

becomes “curvy”, as is the case for almost all other values of p > 1? Unfortunately, till this day, the

question still remains open.

However, the question disappears as long as mild approximation can be accepted. This is the

second reason for studying L∞ norm: the precise L∞ clusters (produced by Theorem 4.3) directly serve

as an O(1)-approximation for any Lp norm with p > 0, according to the formulation in Section 2.3,

which we explain below.

Our approximate notion—in essence—defined an approximate neighbor graph G′ as follows. As

in G, the vertex set of G′ is just P itself. Whether there should be an edge between two vertices p1, p2

is decided by:

• The edge definitely exists if dist(p1, p2) ≤ ε.

• The edge must not exist if dist(p1, p2) > (1 + ρ)ε.

106 External Density-Based Clustering andMulti-Dimensional Grid Graphs

• Otherwise, don’t care: the edge may or may not exist.

The objective of ρ-approximate density-based clustering is to compute the connected components

of G′. Note that G′ is not unique because of the don’t-care option. Leveraging this flexibility, we

managed to give an O(n)-expected-time algorithm to settle the problem, even for L2 norm. Notice

that the original, precise, clustering problem essentially sets ρ = 0.

If two points p1, p2 have L∞-distance x for any p > 0, then their Lp-distance must fall in [x, x·d1/p].

This implies that, given the same ε, the precise neighbor graph G under L∞ is also an approximate

neighbor graph G′ under Lp with 1 + ρ = d1/p. Therefore, the L∞ clusters obtained from Theorem 4.3

constitute an O(1)-approximate result under Lp norm for all p > 0 simultaneously.

As a remark, the above observation partially explains the phenomenon that density-based cluster-

ing often yields similar results in practice regardless of the Lp norm adopted.

4.2.2 Additional Applications: Terrains, Land Surfaces, and Road Networks

To our knowledge, in the database field, I/O-efficient algorithms on d-dimensional grid graphs first

appeared in 1993, when Nodine et al. [55] studied path blocking, i.e., how to store the edges in disk

blocks (perhaps with duplication) so that every path of length B is covered by a small number of

blocks.

The subsequent research seemed to have focused on 2D grid graphs, largely motivated by the

analysis of terrains [2, 8, 9], also known as land surfaces [22, 44, 60, 72]. Such analysis is enabled by

remote sensing, which produces a function f : R2 → R that maps every point on the earth’s longitude-

altitude plane to an elevation. To represent the function approximately, the plane is discretized into a

grid, such that function values are stored only at the grid points. Real-world objects (such as roads,

paths, waterways, etc.) are represented by edges that give rise to a 2D grid graph. The length of an

edge (u, v) captures the 3D distance between the points f (u) and f (v). Solving fundamental problems

such as BFS, SSSP, and CC on such graphs is important for flow analysis [8, 9], nearest-neighbor

queries [60, 72], and navigation [44].

It would be reasonable to assume that a 2D grid graph serves as an accurate model of the road

network in an urban area. In that case, our SSSP algorithm would find use in applications that require

path planning. In fact, our results can be strengthened to provide better support of these applications.

4.3 Orthogonal Separators 107

Recall that, if an edge exists between two vertices v1, v2 in a grid graph, their coordinates must differ

by at most c = 1 on every dimension. The value c can actually be relaxed to an arbitrary constant,

without affecting the correctness of Theorem 4.3, and Corollaries 4.1-4.3. The resulting “generalized”

2D grid graph is expected to model an urban road network with enhanced accuracy.

4.2.3 Remarks on the Tall-Cache Assumption

We note that some success has been achieved by [9, 35] in eliminating the tall-cache assumption,

but only on restricted 2D grid graphs where the x- and y-coordinates of all vertices are confined to

the range [1,
√
|V |]. The results in this paper do not have such a limitation, and apply to vertices of

arbitrary coordinates.

An algorithm was presented in [37] to perform depth-first search (DFS) on a 2D grid graph in

O(sort(|V |) · log(|V |/|M|)) I/Os as long as M ≥ 2B. It can therefore be used to compute CCs with

the same cost. We did not manage to improve their bound on DFS, but as far as the CC problem is

concerned, Corollary 4.3 is more superior in terms of both efficiency and applicability (by supporting

all constant d).

With a few exceptions (e.g., the Google file system uses a block size of B = 64MB [30], rendering

B2 too large a size for main memory), the tall-cache assumption can be satisfied in many practical sce-

narios nowadays. Nevertheless, its final elimination has been a grand wish of the theory community

for a long time. We feel that it makes a fundamental contribution to prove the possibility of computing

an M-separator of a d-dimensional grid graph using near-linear I/Os without the assumption. This,

for instance, allows us to obtain Theorem 4.3 without “any strings attached” on the memory size.

4.3 Orthogonal Separators

We now embark on the journey towards proving Theorem 4.1, which paves the foundation for all the

other results of this paper. As mentioned earlier, the proposed r-separator is obtained by recursively

splitting the data space Nd with an axis-parallel plane. In this section, we will focus on showing the

existence of such an “orthogonal r-separator”. Our algorithm for computing it, as is given in the next

section, re-uses many of the ideas needed to prove the existence. Clarifying those ideas first will

108 External Density-Based Clustering andMulti-Dimensional Grid Graphs

simplify the presentation of that algorithm considerably.

Formally, we define an orthogonal separator of a d-dimensional grid graph G = (V, E) as a subset

S of V that can be obtained by the following recursive process:

1. Initially, S = ∅.

2. Find a plane π—called a cutting plane—that is perpendicular to one of the d dimensions. Add

to S all the vertices of V on π.

3. Let S ′ be the set of vertices on the cutting plane. Removing S ′ (this includes deleting the

edges incident on the vertices of S ′) disconnects G into two subgraphs G1 and G2. If necessary,

perform Step 2 on G1, G2, or both.

It is worth pointing out that, if we remove all the cutting planes used in the above process, the re-

maining portion of the data space is divided into disjoint (d-dimensional) rectangles, each of which

will be called a residue rectangle. The graph induced by the vertices of V in each residue rectangle is

precisely a subgraph that results from deleting all the vertices in S from G. Those subgraphs are said

to be induced by removing S .

If an r-separator is simultaneously an orthogonal separator, we call it an orthogonal r-separator.

Neither of the r-separators in [51, 63] is an orthogonal r-separator. The objective of this section is to

prove:

Lemma 4.1. Any d-dimensional grid graph G = (V, E) admits an orthogonal r-separator for any

integer r ∈ [1, |V |].

4.3.1 Binary Separators

Recall that an r-separator can be multi-way because it may induce any number h = O(|V |/r) of

subgraphs. In this subsection, we prove the existence of an orthogonal separator with h = 2:

Lemma 4.2. Let G = (V, E) be a d-dimensional grid graph satisfying

|V | ≥ 2d · (2d + 1)d+1.

There exists an orthogonal separator S ⊆ V such that:

4.3 Orthogonal Separators 109

• |S | ≤ (2d + 1)1/d · |V |1−1/d

• Removing S induces subgraphs G1 = (V1, E1) and G2 = (V2, E2) with |Vi| ≥ |V |/(4d + 2) for

i = 1, 2.

Given a point p ∈ Nd, denote by p[i] its coordinate on dimension i ∈ [1, d]. Given a vertex v ∈ V ,

an integer x, and a dimension i, v is on the left of x on dimension i if v[i] < x, and similarly, on the

right of x on dimension i if v[i] > x. We define the V-occupancy of x on dimension i as the number of

vertices v ∈ V satisfying v[i] = x.

To find the S of Lemma 4.2, our strategy is to identify an integer x and a dimension i such that

(i) the V-occupancy of x on dimension i is at most (2d + 1)1/d · |V |1−1/d, and (ii) there are at least

|V |/(4d + 2) points on the left and right of x on dimension i, respectively. Choosing S as the set of

vertices v ∈ V with v[i] = x will satisfy the requirements of Lemma 4.2. We will prove that such a

pair of x and i definitely exists.

For each j ∈ [1, d], define y j to be the largest integer y such that V has at most |V |/(2d +1) vertices

on the left of y on dimension j, and similarly, z j to be the smallest integer z such that V has at most

|V |/(2d + 1) vertices on the right of z on dimension j. It must hold that y j ≤ z j.

Consider the axis-parallel box whose projection on dimension j ∈ [1, d] is [y j, z j]. By definition

of y j, z j, the box must contain at least

|V |
(
1 −

2d
2d + 1

)
= |V | ·

1
2d + 1

vertices. This implies that the box must contain at least |V |/(2d + 1) points in Nd, namely:

d∏
j=1

(z j − y j + 1) ≥
|V |

2d + 1

Therefore, there is at least one j satisfying

z j − y j + 1 ≥

(
|V |

2d + 1

)1/d

.

Set i to this j. Since the box apparently contains at most |V | vertices, there is one integer x ∈ [yi, zi]

such that the V-occupancy of x on dimension i is at most

|V |
|V |1/d/(2d + 1)1/d = (2d + 1)1/d · |V |1−1/d.

110 External Density-Based Clustering andMulti-Dimensional Grid Graphs

We now argue that there must be at least |V |/(4d + 2) vertices on the left of x on dimension i. For

this purpose, we distinguish two cases:

• x = yi: By definition of yi and x, the number of vertices on the left of x on dimension i must be

at least

|V |
2d + 1

− (2d + 1)1/d · |V |1−1/d

which is at least |V |/(4d + 2) for |V | ≥ 2d(2d + 1)d+1.

• x > yi: By definition of yi, there are at least |V |/(2d+1) vertices whose coordinates on dimension

i are at most yi. All those vertices are on the left of x on dimension i.

A symmetric argument shows that at least |V |/(4d + 2) vertices are on the right of x on dimension

i. This finishes the proof of Lemma 4.2.

4.3.2 Weak Multi-Way Separators

In this subsection, we prove:

Lemma 4.3. Let G = (V, E) be a d-dimensional grid graph. For any positive integer r satisfying

2d · (2d + 1)d+1 ≤ r (4.1)

there exists an orthogonal separator S ⊆ V with |S | = O(|V |/r1/d) such that removing S induces

O(|V |/r) subgraphs each of which has at most r vertices.

Note that the lemma does not necessarily yield an r-separator because each subgraph induced by

the removal of S may not have a small number of boundary vertices.

Motivated by [28], we perform the binary split enabled by Lemma 4.2 recursively until every

subgraph has at most r vertices. In total, Lemma 4.2 is applied O(|V |/r) times (each with a cutting

plane). Denote by S the union of the separators produced by all those applications (i.e., the vertices

of V on the O(|V |/r) cutting planes). We complete the proof of Lemma 4.3 with:

Lemma 4.4. |S | = O(|V |/r1/d).

4.3 Orthogonal Separators 111

Proof. Define function f (n) which gives the maximum possible |S | when the original graph has n =

|V | vertices. If r
4d+2 ≤ n ≤ r, f (n) = 0. Otherwise, Lemma 4.2 indicates

f (n) ≤ β · n1−1/d +
4d+1
4d+2max

α= 1
4d+2

f (αn) + f ((1 − α)n)

where β = (2d + 1)1/d. It is rudimentary to verify that f (n) = O(n/r1/d) for n > r. �

Remark. Define the minimum bounding box of G—denoted as MBB(G)—as the d-dimensional rect-

angle whose projection on dimension i ∈ [1, d] is [xi, yi], where xi (yi, resp.) is the smallest (largest,

resp.) coordinate on this dimension of the vertices in G.

Consider any subgraph G′ induced by removing the S of Lemma 4.3. The above proof implies a

useful bounding box property: each boundary vertex of G′ must be on the boundary faces of MBB(G′).

4.3.3 Binary Boundary Separators

This subsection presents a variant of Lemma 4.2, which is crucial for us to strengthen the separator S

in Lemma 4.3 into an r-separator. We say that a d-dimensional grid graph G = (V, E) is r-colored if

• |V | ≤ r;

• Every vertex in V is colored either black or white;

• There are at least r1−1/d black vertices, all of which are on the boundary faces of MBB(G).

We will show:

Lemma 4.5. Let r be a positive integer such that

(32d3)d(d−1) ≤ r. (4.2)

Let G = (V, E) be an r-colored d-dimensional grid graph with b black vertices. There exists a set

S ⊆ V satisfying:

• |S | ≤ (4d3)1/(d−1) · r1−1/d

• Removing S induces subgraphs G1,G2 each of which has at least b/(32d3) black vertices.

112 External Density-Based Clustering andMulti-Dimensional Grid Graphs

We prove the lemma with a careful execution of the strategy in Section 4.3.1. Since MBB(G)

has 2d faces, one of them contains at least b/(2d) black vertices. Fix R to be this face, which is a

(d − 1)-dimensional rectangle. Assume, without loss of generality, that R is orthogonal to dimension

d.

Given a coordinate x on dimension i ∈ [1, d − 1], we define the black R-occupancy of x on

dimension i as the number of black vertices v ∈ V satisfying (i) v is in R, and (ii) v[i] = x. The reader

should distinguish this notion from “V-occupancy” as defined at the beginning of Section 4.3.

We proceed differently depending on:

• Case 1: There does not exist a pair of x and k ∈ [1, d − 1] such that the black R-occupancy of x

on dimension k is at least b
2d/(4d).

• Case 2: Such a pair of x and k exists. This case can happen only for d ≥ 3.

Case 1. For each j ∈ [1, d − 1], define y j to be the largest integer y such that R has at most b
2d/(2d)

black vertices on the left of y on dimension j, and similarly, z j to be the smallest integer z such that R

has at most b
2d/(2d) black vertices on the right of z on dimension j. It must hold that y j ≤ z j.

Consider the axis-parallel box in R whose projection on dimension j ∈ [1, d − 1] is [y j, z j]. By

definition of y j, z j, the box must contain at least

b
2d

(
1 −

2(d − 1)
2d

)
=

b
2d
·

1
d

black vertices. Therefore, there is at least one dimension j ∈ [1, d − 1] on which the projection of the

box covers at least (
b

2d2

)1/(d−1)

coordinates. Set i to this j. Since the box apparently contains at most |V | ≤ r vertices, there is one

integer x ∈ [yi, zi] such that the V-occupancy of x on dimension i is at most

r
b1/(d−1) · (2d2)1/(d−1) ≤ r1−1/d · (2d2)1/(d−1)

applying b ≥ r1−1/d.

4.3 Orthogonal Separators 113

By definition of Case 1, there must be at least b/(8d2) black vertices on the left and right of x

on dimension i, respectively. Therefore, setting S = {v ∈ V | v[i] = x} fulfills the requirements of

Lemma 4.5.

Case 2. Without loss of generality, suppose that k = d − 1. Consider a “slice” of R at coordinate x on

dimension k: R′ = {p ∈ R | p[k] = x}, which is a (d − 2)-dimensional rectangle. By definition of Case

2, R′ contains at least b/(8d2) black vertices.

For each j ∈ [1, d − 2], define y j to be the largest integer y such that R′ has at most b
8d2 /(2d) black

vertices on the left of y on dimension j, and similarly, z j to be the smallest integer z such that R′ has

at most b
8d2 /(2d) black vertices on the right of z on dimension j. It must hold that y j ≤ z j.

Consider the axis-parallel box in R′′ whose projection on dimension j ∈ [1, d − 2] is [y j, z j]. The

box must contain at least

b
8d2

(
1 −

2(d − 2)
2d

)
=

b
4d3

black vertices. Hence, there is at least one dimension j ∈ [1, d− 2] on which the projection of the box

covers at least (
b

4d3

)1/(d−2)

coordinates. Set i to this j. There is one integer x ∈ [yi, zi] such that the V-occupancy of x on

dimension i is at most

r
b1/(d−2) · (4d3)

1
d−2 ≤ r

d2−3d+1
d(d−2) · (4d3)

1
d−2 (4.3)

< r1−1/d · (4d3)
1

d−2

where the first inequality applied b ≥ r1−1/d.

We choose S as the set of vertices v ∈ V with v[i] = x. To show that there must be at least b/(32d3)

black vertices on the left of x on dimension i, we distinguish several cases:

• x = yi: By (4.3) and the definitions of yi and x, the number of black vertices on the left of x on

dimension i must be at least

b
16d3 − r

d2−3d+1
d(d−2) · (4d3)

1
d−2

which is at least b/(32d3) when r satisfies (4.2).

114 External Density-Based Clustering andMulti-Dimensional Grid Graphs

• x > yi: The definitions of yi and x imply at least b/(16d3) black vertices on the left of x on

dimension i.

A symmetric argument shows that there must be at least b/(32d3) black vertices on the right of x

on dimension i. This completes the proof of Lemma 4.5.

4.3.4 Strong Multi-Way Separators

This subsection will complete the proof of Lemma 4.1.

Large r. Let us first consider the case where r satisfies (4.2), and hence, also (4.1). To find the desired

separator S , we first apply Lemma 4.3 on G. Let S ′ be the separator output by this application, which

induces h′ = O(|V |/r) subgraphs. Our algorithm in Section 4.3.2 ensures that each subgraph has at

most r vertices. We say that a subgraph is bad if it has more than

33d3 · (4d3)1/(d−1) · r1−1/d

boundary vertices.

Motivated by [28], we deploy Lemma 4.5 to eliminate all the bad subgraphs. Specifically, given a

bad subgraph Gbad, we color all its boundary vertices black, and the other vertices white, after which

Gbad becomes r-colored. Apply Lemma 4.5 to split it into Gbad1 and Gbad2. The application produces

a binary separator, where all the vertices are added to S ′. Recur on Gbad1 (and similarly, Gbad2) if it is

still bad. When there are no more bad subgraphs, the current S ′ becomes our final separator S . Call

the above process the elimination phase.

Lemma 4.6. Let Gbad be a bad subgraph with b boundary vertices. The elimination phase generates

O(b/r1−1/d) subgraphs from Gbad.

Proof. Define function f (n) which gives the maximum number of subgraphs that can be generated

from Gbad when Gbad has n black vertices. Set β = (4d3)1/(d−1).

If n ≤ 33d3βr1−1/d, f (n) = 1. Otherwise, Lemma 4.5 indicates:

f (n) ≤
1− 1

32d3
max
α= 1

32d3

(
f
(
αn + βr1−1/d) +

+ f
(
(1 − α)n + βr1−1/d) − 1

)
.

4.4 Computing a Separator I/O-Efficiently 115

It is rudimentary to verify that f (n) = O(n/r1−1/d) for n > 33d3βr1−1/d. �

Let bi (1 ≤ i ≤ h′) be the number of boundary vertices of the i-th subgraph produced from the

application of Lemma 4.3 (i.e., right before the elimination phase starts). From Lemma 4.4 and the

fact that each vertex in a d-dimensional grid graph has degree O(1), we know

h′∑
i=1

bi = O(|V |/r1/d).

Combining this with Lemma 4.6 shows that the elimination phase introduces at most

O
(
|V |
r1/d ·

1
r1−1/d

)
= O(|V |/r)

new subgraphs. Therefore, in total there are h′ + O(|V |/r) = O(|V |/r) subgraphs at the end.

The above analysis also indicates that the elimination phase can apply Lemma 4.5 no more than

O(|V |/r) times, each of which adds O(r1−1/d) vertices into S . Therefore, the final separator S has size

at most

|S ′| + O
(
|V |
r
· r1−1/d

)
= O(|V |/r1/d).

Small r. For r < (32d3)d(d−1), it suffices to manually increase r to (32d3)d(d−1), and return directly the

separator S obtained with the above “large-r” algorithm. This is a valid orthogonal r-separator also

for the original r due to the fact that d is a constant. We now conclude the proof of Lemma 4.1.

4.4 Computing a Separator I/O-Efficiently

This section will prove Theorem 4.1 by giving an algorithm to construct an M-separator. Our proof is

essentially an efficient implementation of the strategy explained in Section 4.3 for finding an orthogo-

nal M-separator. Recall that the strategy involves two phases: (i) Lemma 4.3, and (ii) the elimination

phase in Section 4.3.4. The second phase, as far as algorithm design is concerned, is trivial. Every

subgraph produced by the first phase has—by definition of M-separator—O(M) edges, which can

therefore be loaded into memory so that the algorithm in Section 4.3.4 runs with no extra I/Os. In

other words, the second phase can be accomplished in only O(|V |/B) I/Os.

116 External Density-Based Clustering andMulti-Dimensional Grid Graphs

Henceforth, we will focus exclusively on the first phase, assuming

M ≥ 2d · (4d + 2)2d · B. (4.4)

Note that this assumption is made without loss of generality as long as d is a constant. It is folklore

that, in general, any algorithm assuming M ≥ cB for any constant c > 2 can be adapted to work under

M ≥ 2B, with only a constant blowup in the I/O cost.

The construction algorithm of Lemma 4.3 recursively binary splits the input graph, until all the

obtained subgraphs have at most M vertices. This process can be imagined as a split tree, where

G = (V, E) is the parent of G1 = (V1, E1), G2 = (V2, E2) if the splitting of G spawns G1 and G2. The

split is balanced in the sense that both |V1| and |V2| are at least |V |/(4d + 2). Hence, the split tree has

a height of O(log(|V |/M)).

It should be rather rudimentary to implement the algorithm in O((|V |/B) log(|V |/M)) I/Os—note

that the logarithm base is 2—by implementing the splitting of G = (V, E) in O(|V |/B) I/Os. Our goal,

as stated in Theorem 4.1, is to lower the cost by a factor of Θ(log(M/B)) to O(sort(|V |)).

We achieve the purpose by performing 2Ω(log(M/B)) splits on G still in O(|V |/B) I/Os, thus effectively

generating Ω(log(M/B)) levels of the split tree underneath G. This is reminiscent of the bulkloading

algorithm of Agarwal et al. [1] for the kd-tree. However, unlike the kd-tree where a split involves

mainly finding the median from a sorted list, the split process in our context is much more sophisti-

cated. This renders our construction algorithm to be drastically different from that of [1].

4.4.1 One Split

Given a d-dimensional grid graph G = (V, E) with |V | > M, we in this subsection describe an algo-

rithm for performing one split on G = (V, E) that finishes in sublinear I/Os, assuming that certain

preprocessing has been done. This algorithm will play an essential role in our final solution.

Recall that, given a coordinate x on dimension i ∈ [1, d], the V-occupancy of x is the number of

vertices v ∈ V with v[i] = x. We now extend this concept to an interval σ = [x1, x2] on dimension i:

the average V-occupancy of σ equals

|{v ∈ V | v[i] ∈ σ}|
x2 − x1 + 1

.

4.4 Computing a Separator I/O-Efficiently 117

Preprocessing Assumed. Prior to invoking the algorithm below, each dimension i ∈ [1, d] should

have been partitioned into at most s disjoint intervals—called slabs—where

s = (M/B)1/d. (4.5)

A slab σ of dimension i is said to cover a vertex v ∈ V if v[i] ∈ σ. We call σ heavy if it covers more

than |V |/(4d + 2) vertices. Our algorithm demands an important heavy-singleton property:

If a slabσ = [x1, x2] of any dimension is heavy, it must hold that x1 = x2, namely, σ is a singleton

slab containing only a single coordinate.

All the slabs naturally define a d-dimensional histogram H. Specifically, H is the d-dimensional

grid with at most sd cells, each of which is a d-dimensional rectangle whose projection on dimension

i ∈ [1, d] is a slab on that dimension. For each cell φ of H, the following information should already

be available:

• A vertex count, equal to the number of vertices v ∈ V that φ contains (i.e, the point v falls in φ).

Denote by φ(V) the set of these vertices.

• d vertex lists, where the i-th (1 ≤ i ≤ d) one sorts all the vertices of φ(V) by dimension i. This

means that a vertex v ∈ φ(V) is duplicated d times. We store with each copy of v all its O(1)

adjacent edges.

All the vertex counts are kept in the memory. The sorted vertex lists in all the cells, on the other hand,

occupy O(sd + |V |/B) = O(|V |/B) blocks in the disk.

Given a slab σ on any dimension, we denote by σ(V) the set of vertices covered by σ. The vertex

counts in H allow us to obtain |σ(V)| precisely, and hence, the average V-occupancy of σ precisely,

without any I/Os. Define

K = max
non-singleton σ

|σ(V)| (4.6)

Note that the maximum ranges over all non-singleton slabs of all dimensions.

As in Section 4.3.1, our aim is to find a dimension i and a coordinate x such that (i) the V-

occupancy of x is at most (2d + 1)1/d|V |1−1/d, and (ii) at least |V |/(4d + 2) vertices are on the left and

right of x on dimension i, respectively. Our algorithm will perform O((M/B)1−1/d + K/B) I/Os.

118 External Density-Based Clustering andMulti-Dimensional Grid Graphs

Algorithm. Suppose that the slabs on dimension i are numbered from left to right, i.e., the leftmost

one is numbered 1, the next 2, and so on. For dimension j ∈ [1, d], let y j be the largest integer y such

that at most |V |/(2d + 1) points are covered by the slabs on this dimension whose numbers are less

than y, and similarly, let z j be the smallest integer z such that at most |V |/(2d + 1) points are covered

in the slabs on this dimension whose numbers are greater than z. It must hold that y j ≤ z j.

Let R be the d-dimensional rectangle whose projection on dimension i is the union of the slabs

numbered y j, y j + 1, ..., z j. As R contains at least |V |/(2d + 1) vertices, its projection on at least one

dimension covers at least (|V |/(2d + 1))1/d coordinates. Fix i to be this dimension. Note that the

projection of R on dimension i (i.e., an interval on the dimension) has an average V-occupancy of at

most (2d + 1)1/d|V |1−1/d. Therefore, at least one of the slabs numbered yi, yi + 1, ..., zi on dimension i

has an average V-occupancy at most (2d + 1)1/d|V |1−1/d. Let σ be this slab.

It thus follows that at least one coordinate x withinσ has V-occupancy of at most (2d+1)1/d|V |1−1/d.

If σ is a singleton slab, then x is the (only) coordinate contained in σ. Otherwise, to find such an x, we

scan the vertices of σ(V) in ascending order of their coordinates on dimension i. This can be achieved

by merging the vertex lists of all the at most sd−1 cells in σ—more specifically, the lists sorted by

dimension i. The scan takes

O(sd−1 + |σ(V)|/B) = O((M/B)1−1/d + K/B)

I/Os, by keeping a memory block as the reading buffer for each cell in σ.

To prove the algorithm’s correctness, we first argue that at least |V |/(4d + 2) vertices are on the

left of x on dimension i. By |V | > M and (4.4), it holds that

(2d + 1)1/d|V |1−1/d ≤
|V |

4d + 2
.

This implies that σ—the slab which x comes from—cannot be heavy. Therefore, by definition of yi,

there must be at least

|V |
2d + 1

−
|V |

4d + 2
=

|V |
4d + 2

vertices in the slabs of dimension i whose numbers are less than yi. All those vertices are on the left

of x on dimension i. A symmetric argument shows that at least |V |/(4d + 2) vertices are on the right

of x on dimension i.

4.4 Computing a Separator I/O-Efficiently 119

4.4.2 2Ω(log(M/B)) Splits

Let G = (V, E) be a d-dimensional grid graph with |V | > M that is stored as follows. First, V is

duplicated in d lists, where the i-th (1 ≤ i ≤ d) one sorts all the vertices v ∈ V by dimension i.

Second, each copy of v is associated with all the O(1) edges adjacent to v.

In this section, we present an algorithm that achieves the following purpose in O(|V |/B) I/Os:

recursively split G using the one-split algorithm of Section 4.4.1 such that, in each resulting subgraph,

the number of vertices is at most

max
{

M,O
(

|V |
2Ω(log(M/B))

)}
.

but at least M/(4d + 2).

Define

t = (M/B)1/d/2

Partition each dimension i ∈ [1, d] into disjoint intervals (a.k.a., slabs) σ = [x1, x2] satisfying two

conditions:

• If σ covers more than |V |/t vertices, it must hold that x1 = x2, i.e., σ is a singleton slab.

• If σ is not the rightmost slab on this dimension, more than |V |/t vertices v ∈ V satisfy v[i] ∈

[x1, x2 + 1].

These conditions can be understood intuitively as follows. To create a slab of dimension i starting at

coordinate x1, one should set its right endpoint x2 (≥ x1) as large as possible, provided that the slab

still covers at most |V |/t points. But such an x2 does not exist if x1 itself already has a V-occupation

of more than |V |/t; in this case, create a singleton slab containing only x1. It is easy to obtain these

slabs in O(|V |/B) I/Os from the vertex list of V sorted by dimension i.

Proposition 4.1. Each dimension has less than 2t slabs.

Proof. The union of any two consecutive slabs must cover more than |V |/t vertices. Consider the

following pairs of consecutive slabs: (1st, 2nd), (3rd, 4th), ..., leaving out possibly the rightmost slab.

A vertex is covered by the union of at most one such pair. Therefore, there can be at most⌊
|V |

b|V |/tc + 1

⌋
≤ t − 1

120 External Density-Based Clustering andMulti-Dimensional Grid Graphs

pairs, making the number of slabs at most 2(t − 1) + 1 = 2t − 1. �

Proposition 4.2. On any dimension, a non-singleton slab covers at most |V |/t vertices.

Proof. Follows immediately from how the slabs are constructed. �

Construct the histogram H on G as defined in Section 4.4.1. This can be accomplished in O(|V |/B)

I/Os. To understand this, observe that the total number of cells in the histogram is at most (2t)d ≤

M/B, which allows us to allocate one memory block to each cell. Using these blocks as writing

buffers, we can create all the cells’ vertex lists on a dimension by scanning the vertex list of V on the

same dimension only once.

Recursive One-Splits. We invoke the one-split algorithm on G—noticing that all its preprocessing

requirements have been fulfilled—which returns a coordinate x and dimension i. The I/O cost is

O((M/B)1−1/d + |V |/(tB)) I/Os, because Proposition 4.2 ensures that the value of K in (4.6) is at most

|V |/t.

The pair x and i defines a separator S , which consists of all the vertices v ∈ V with v[i] = x.

Removing S splits G into G1 = (V1, E1) and G2 = (V2, E2). Let σ be the slab on dimension i

containing x. Extracting S from σ requires O(1 + |S |/B + |σ(V)|/B) = O(|S |/B + |V |/(tB)) I/Os.

We will then recursively apply the one-split algorithm on G1 and G2, respectively, before which,

however, we need to prepare their histograms H1,H2. If σ is singleton, H1 and H2 can be obtained

trivially with no I/Os: H1 (or H2, resp.) includes all the cells of H on the left (or right, resp.) of x on

dimension i.

If σ is non-singleton, each cell φ in σ needs to be split (at x on dimension i) into φ1, φ2, whose in-

formation is not readily available yet. We can produce the information of all such φ1, φ2 by inspecting

each φ as follows:

1. Assign the vertices in φ—if not in S —to φ1 or φ2.

2. Prepare the d sorted lists of φ1 and φ2 by splitting the corresponding lists of φ.

As there are O((M/B)1−1/d) cells in σ, the above steps finish in O((M/B)1−1/d + |V |/(tB)) I/Os.

If |V1| > M (or |V2| > M), we now apply the one-split algorithm on G1 (or G2, resp.)—descending

one level from G in the split tree—which is recursively processed in the same manner. The recursion

4.4 Computing a Separator I/O-Efficiently 121

ends after we have moved

` =
⌊
(log4d+2 t) − 1

⌋
(4.7)

levels down in the split tree from G. It can be verified that ` ≥ 1 (applying (4.4)) and 2` = O(t).

Recall that the one-split algorithm requires the heavy-singleton property to hold. We now prove

that this property is always satisfied during the recursion. Let G′ = (V ′, E′) be a graph processed by

the one-split algorithm. Since G′ is at most ` levels down in the split tree from G, we know (by the

fact that each split is balanced) that

|V ′| ≥
|V |

(4d + 2)`

which together with (4.7) shows

|V ′|
4d + 2

≥
|V |
t
.

Therefore, a heavy slab σ′ of any dimension for G′ must contain more than |V |/t vertices. On the

other hand, σ′ must be within a slab σ defined for G, which thus also needs to cover more than |V |/t

vertices. By our construction, σ must be singleton, and therefore, so must σ′.

Finally, it is worth pointing out that each split will generate O((M/B)1−1/d) cells, and hence, de-

mands the storage of this many extra vertex counts in memory. This is fine because the total number

of vertex counts after 2` = O(t) splits is O((M/B)1−1/d · t) = O(M/B).

Bounding the Total Cost. The one-split algorithm is invoked at most 2` times in total. By the above

analysis, the overall I/O cost is

O
(
|S |
B

+

((M
B

)1−1/d

+
|V |
tB

)
· 2`

)
= O

(
|S |
B

+

((M
B

)1−1/d

+
|V |
tB

)
· t

)
= O

(
|S |
B

+
M
B

+
|V |
B

)
= O

(
|V |
B

)
utilizing two facts: (i) every vertex v contributes to the |S |/B term at most once—once included in a

separator, v is removed from further consideration in the rest of the recursion, and (ii) a non-singleton

slab of any histogram throughout the recursion is within a non-singleton slab of H (the histogram of

G), and hence, covers no more than |V |/t vertices by Proposition 4.2.

122 External Density-Based Clustering andMulti-Dimensional Grid Graphs

4.4.3 The Overall Algorithm

We are ready to describe how to compute an M-separator on a d-dimensional grid graph G = (V, E)

in O(sort(|V |)) I/Os which, according to the discussion at the beginning of Section 4.4, will complete

the proof of Theorem 4.1.

First, sort the vertices of V d times, each by a different dimension, thus generating d sorted lists of

V . We associate with each copy of v all its O(1) edges. The production of these lists takes O(sort(|V |))

I/Os.

We now invoke the algorithm of Section 4.4.2 on G. For each subgraph G′ = (V ′, E′) thus ob-

tained, we materialize it into d sorted lists, where the i-th (1 ≤ i ≤ d) one sorts V ′ by dimension i,

ensuring that each copy of a vertex is stored along with its O(1) edges. This can be done in O(|V ′|/B)

I/Os as follows. Recall that the algorithm maintains a histogram of at most M/B cells. By allocating a

memory block as the writing buffer for each cell, we can generate the sorted list of V ′ on a dimension

by one synchronous scan of the corresponding vertex lists of all cells for the same dimension. The

cost is O(M/B + |V ′|/B) = O(|V ′|/B) because |V ′| ≥ M/(4d + 2).

Finally, if |V ′| > M, we recursively apply the algorithm of Section 4.4.2 on G′, noticing that the

preprocessing requirements of the algorithm have been fulfilled on G′.

Now we prove that the total cost of the whole algorithm is O(sort(|V |)). One application of the

algorithm of Section 4.4.2 on a graph G′ = (V ′, E′) costs O(|V ′|/B) I/Os, i.e., each vertex in V ′ is

amortized O(1/B) I/Os. The vertex can be charged O(logM/B(|V |/M)) times, adding up to O(sort(|V |))

I/Os overall for all vertices.

4.5 Density-Based Clustering

In this section, we attend to the density-based clustering problem that motivated this work in the

first place. Besides establishing Theorem 4.3, the proposed algorithm, as presented in Section 4.5.1,

demonstrates an elegant geometric application of our results on d-dimensional grid graphs. The algo-

rithm leverages Corollary 4.3, which we prove in Section 4.5.2.

4.5 Density-Based Clustering 123

4.5.1 Proof of Theorem 4.3

Maxima/Minima. Let us first mention a relevant result on the maxima/minima problem. Let P be

a set of n distinct points in Rd. A point p1 ∈ P dominates another p2 ∈ P if p1[i] ≥ p2[i] for all

dimensions i ∈ [1, d]—recall that p[i] denotes the coordinate of p on dimension i. The maxima set of

P is the set of points p ∈ P such that p is not dominated by any point in P. Conversely, the minima set

of P is the set of points p ∈ P such that p does not dominate any point in P. A point in the maxima or

minima set is called a maximal or minimal point of P, respectively.

In EM, both the maxima and minima sets of P can be found in O(sort(n)) I/Os for d = 2, 3, and

O((n/B) logd−2
M/B(n/B)) I/Os for d ≥ 4 [62].

Clustering. Recall that the input to the problem involves (i) a real value ε > 0, and (ii) a set P of n

points in Rd.

We impose an arbitrary regular grid G on Rd, where each cell is an axis-orthogonal d-dimensional

square with side length ε. Assign each point p ∈ P to the cell of G containing it; if p happens to be

on the boundary of multiple cells, assign it to all those (at most 2d = O(1)) cells. For each cell φ of

G, denote by φ(P) the set of points assigned to φ. If φ(P) is non-empty, φ is a non-empty cell. There

can be obviously at most n non-empty cells, all of which can be easily found in O(sort(n)) I/Os.

It is clear that two points assigned to the same cell φ must belong to the same cluster. This allows

us to “sparsify” P by computing the clusters at the cell level. For this purpose, we define a graph

G = (V, E) as follows:

• Each vertex V corresponds to a non-empty cell.

• Two different vertices (a.k.a. cells) φ1, φ2 ∈ V are connected by an edge if and only if there

exists a point p1 ∈ φ1(P) and a point p2 ∈ φ2(P) such that dist(p1, p2) ≤ ε.

We will explain later how to generate G efficiently, but a crucial observation at the moment is

that G is a d-dimensional grid graph. To see this, embed the grid G naturally in a space Nd with

one-one mapping between the cells of G and the points of Nd. It is easy to verify that there can be

an edge between two non-empty cells φ1 and φ2 only if their coordinates differ by at most 1 on every

dimension.

124 External Density-Based Clustering andMulti-Dimensional Grid Graphs

Now we can solve the clustering problem easily by computing the CCs (connected components)

of G. For each connected component, collect the union of φ(P) for each vertex (i.e., cell) φ therein.

The union corresponds to precisely one final cluster of P. Corollary 4.3 permits us to achieve the

purpose in O(sort(n)) I/Os.

We now discuss the generation of G. We say that a non-empty cell φ is sparse if |φ(P)| ≤ B;

otherwise, φ is dense. Also, another cell φ′ is a neighbor of φ if the two cells differ in their coordinates

by at most 1 on every dimension (in the embedded space Nd). Note that a cell has less than 3d = O(1)

neighbors.

The non-empty neighbors of all non-empty cells can be produced in O(sort(n)) I/Os as follows.

For each non-empty cell φ, generate 3d − 1 pairs (φ, φ′) for all its neighbors φ′, regardless of whether

φ′ is empty. Put all such pairs together, and join them with the list of non-empty cells to eliminate all

such pairs (φ, φ′) where φ′ is empty. The non-empty neighbors of each non-empty cell can then be

easily derived from the remaining pairs.

Define the neighbor point set of a non-empty cell φ—denoted as Nφ—to be the multi-set that

gathers the φ′(P) of all non-empty neighbors φ′ of φ. We emphasize that Nφ is a multi set because a

point may belong to the φ′(P) of several φ′. Since we already have the non-empty neighbors of all

non-empty cells, it is easy to create the Nφ of all φ in O(sort(n)) I/Os. In doing so, we also ensure

that the points of Nφ are sorted by which φ′(P) they come from. Note that all the neighbor point sets

occupy O(n/B) blocks in total.

Given a non-empty cell φ, we now elaborate on how to obtain its edges in G. This is easy if φ is

sparse, in which case we can achieve the purpose by simply loading the entire φ(P) in memory and

scanning through Nφ. The I/O cost of doing so for all the sparse cells is therefore O(n/B).

Consider instead φ to be a dense cell. We examine every non-empty neighbor φ′ of φ, in ascending

order of the appearance of φ′(P) in Nφ. Let us assume—without loss of generality due to symmetry—

that the coordinate of φ is at most that of φ′ on every dimension of Nd. We determine whether there

is an edge in G between φ and φ′ by solving three d-dimensional maxima/minima problems, each on

no more than |φ(P)| + |φ′(P)| points:

1. Find the maxima set Σ1 of φ(P), and the minima set Σ2 of φ′(P).

4.5 Density-Based Clustering 125

2. Construct a set Π of points as follows: (i) add all points of Σ1 to Π, and (ii) for each point

p ∈ Σ2, decrease its coordinate by ε on every dimension, and add the resulting point to Π.

3. If Π contains two points with the same coordinates, declare yes (i.e., there is an edge between

φ and φ′), and finish. This implies the existence of p1 ∈ Σ1 and p2 ∈ Σ2 with p1[i] + ε = p2[i]

for all i ∈ [1, d].

4. Find the minima set Σ3 of Π.

5. If any point of Σ1 is absent from Σ3, declare yes; otherwise, declare no.

To see the correctness, suppose first that there should be an edge. Then, there must be a maximal

point p1 of φ(P) and a minimal point p2 of φ′(P) that have L∞ distance at most ε. Let p′2 be the point

shifted from p2 after decreasing its coordinate by ε on all dimensions; p′2 either is dominated by p1 or

coincides with p1. It follows that p1 will not appear in Σ3 if the execution comes to Step 5, prompting

the algorithm to output yes. Similarly, one can show that if there should not be an edge, the algorithm

definitely reports no.

For d = 2, 3, running the above algorithm for all dense cells φ and their non-empty neighbors φ′

entails I/O cost (applying the aforementioned result of [62] on the minima/maxima problem)∑
dense φ, neighbor φ′

O(sort(|φ(V)| + |φ′(V)|)) = O(sort(n))

using the fact that each cell φ can be a neighbor of less than 3d = O(1) dense cells. This proves the

first bullet of Theorem 4.3, while the second bullet can be established in the same fashion using the

d ≥ 4 result of [62], all subject to Corollary 4.3, which we prove right away in the next subsection.

4.5.2 Proof of Corollary 4.3

Given a d-dimensional grid graph G = (V, E), apply Theorem 4.1 to compute an M-separator S ,

as well as its induced subgraphs G1 = (V1, E1), ..., Gh = (Vh, Eh) where h = O(|V |/M). For each

i ∈ [1, h], define G+
i as an extended subgraph whose

• Vertices include (i) those in Vi and (ii) the separator vertices (i.e., vertices in S) that are adjacent

to any boundary vertices of Gi. There are O(M1−1/d) such separator vertices, i.e., same order as

the number of boundary vertices.

126 External Density-Based Clustering andMulti-Dimensional Grid Graphs

• Edges include (i) those in Ei, and (ii) the edges between the boundary vertices of Gi and sepa-

rator vertices. G+
i has O(M) edges in total.

All these graphs can be generated in O(sort(|V |)) I/Os.

Construct a graph G′ = (V ′, E′) with V ′ = S as follows. First, E′ includes all the edges in E among

the separator vertices of S . O(|S |) = O(|V |/M1/d) edges are added this way. Second, we add to E′

additional edges that reflect the connectivity of the separator vertices within each extended subgraph.

Specifically, for each i ∈ [1, h], load into memory G+
i and compute its CCs. If a CC contains x ≥ 2

separator vertices, add to E′ x − 1 edges that form a tree connecting those vertices. The total number

of edges inserted to E′ in the second step is O((|V |/M) · M1−1/d) = O(|V |/M1/d). Both steps can be

done in O(|V |/B) I/Os.

Invoke the algorithm of [54]2 to compute the CCs of G′ in

O
(
|E′|
B

logM/B
|E′|
B
· log log B

)
= O

(
|V |

BM1/d logM/B
|V |
B
· log log B

)
= O(sort(|V |))

I/Os. Label the vertices of V ′ (i.e., S) so that vertices in a CC receive the same unique label.

Finally, for i ∈ [1, h], load G+
i into memory again. For each non-separator vertex vi, give it the

same label as any separator vertex that vi can reach in G+
i . If no such separator vertex exists, vi is in

a CC that does not involve any separator vertex; all the vertices in the CC are thus given a new label.

Doing so for all i entails O(|V |/B) extra I/Os.

4.6 New Results on 2D Grid Graphs

This section will concentrate on d = 2. Section 4.6.1 will demonstrate additional applications of

our Theorem 4.1 by revisiting the SSSP and BFS problems and proving Corollaries 4.1 and 4.2.

Section 4.6.2 will disprove the “sparsity under edge contraction” belief by establishing Theorem 4.2.

2In general, the algorithm of [54] finds the CCs of a graph G = (V, E) in O(sort(|V |) + sort(|E|) log log(|V |B/|E|)) I/Os.

4.6 New Results on 2D Grid Graphs 127

4.6.1 SSSP and BFS

Consider a grid graph G = (V, E) where each edge in E is associated with a non-negative weight.

Given two vertices v1, v2, a path from v1 to v2 is a sequence of edges in E that allows us to walk from

v1 to v2 without leaving the graph. The length of a path is the sum of the weights of all its edges. The

shortest path from v1 to v2 is a path from v1 to v2 with the smallest length; the length of the path is the

shortest distance from v1 to v2.

In the SSSP problem, besides G, we are also given a source vertex vsrc, and need to output the

shortest paths and distances from vsrc to all the other vertices in V . In particular, all the shortest paths

must be reported space-economically in a shortest path tree where (i) each node corresponds to a

distinct vertex in V , (ii) vsrc is the root, and (iii) the shortest path from vsrc to any other vertex v in G

goes through the same sequence of vertices as in the path from vsrc to v in the tree. The tree should

be stored in the disk using the child adjacency format where each node is associated with a list of its

children.

Consider an M-separator S of G and its h = O(|V |/M) subgraphs G1, ...,Gh. Given a separator

vertex v ∈ S , its adjacent set is the set of all Gi (i ∈ [1, h]) such that E has an edge between v and at

least one vertex in Gi. Arge et al. [7] proved that the SSSP problem can be solved in O(|V |/
√

M +

sort(|V |)) I/Os, as long as S fulfills the following separator-decomposition requirement:

S has been divided into g = O(|V |/M) disjoint subsets S 1, ..., S g such that the vertices in each S i

(1 ≤ i ≤ g) have the same adjacent set.

Our objective is to strengthen Theorem 4.1 to satisfy the requirement in O(sort(|V |) I/Os.

Let S and G1, ...,Gh be the separator and subgraphs that Theorem 4.1 returns for G. Recall that

our algorithm of Theorem 4.1 recursively performs binary splits, where the cutting planes are just

vertical/horizontal lines segments in N2. It must hold that (i) separator vertices can fall only on these

line segments, and (ii) all the vertices of each Gi (i ≤ [1, h]) are contained in one of the residue rect-

angles (see definition at the beginning of Section 4.3). This property motivates a simple algorithm for

dividing S to satisfy the separator-decomposition requirement. First, label the subgraphs arbitrarily

from 1 to h. For each vertex v ∈ S , generate a label list that sorts in ascending order the labels of the

subgraphs in the adjacent set of v. The list has length O(1). We now partition S into disjoint subsets,

where the vertices in each subset have the same label list. The aforementioned property implies that

128 External Density-Based Clustering andMulti-Dimensional Grid Graphs

xx− 1 x + 1

y − 1

y

y + 1

xx− 1 x + 1

y − 1

y

y + 1

(a) Before (b) After

Figure 4.2: Contortion within a square

there are only O(|V |/M) subsets. The partitioning can be easily done by sorting in O(sort(|V |)) I/Os,

thus establishing Corollary 4.1.

The BFS problem is, essentially, an instance of SSSP on a grid graph where all edges have the

same weight. In particular, the shortest path tree corresponds to the BFS tree. Corollary 4.1 immedi-

ately implies Corollary 4.2.

4.6.2 Disproving Edge-Contraction Sparsity

This subsection serves as a proof of Theorem 4.2. Recall that a graph G = (V, E) is sparse if |E| ≤ c|V |,

for some constant c > 0. Given any integer m ≥ 2, we will design a grid graph that can be edge-

contracted into a clique of m vertices. The clique is not sparse when m > 2c + 1. Thus, regardless of

the choice of c, there is always a grid graph that is not sparse under edge contraction.

Before proceeding, let us point out a basic geometric fact that will be useful in our design. Let

p1 = (x1, y1) and p2 = (x2, y2) be two distinct points in R2 such that x1, y1, x2, y2 are all even integers.

Let `1 be the line with slope 1 passing p1, and `2 be the line with slope −1 passing p2. Then, the

intersection of `1 and `2 must be a point whose coordinates on both dimensions are integers.

Given integers i, j satisfying i ∈ [0,m − 1] and j ∈ [0,m − 2], function F(i, j) returns the point

(1000m · i, 100 j) in R2. Call these m(m − 1) points cornerstones.

For each pair of i ∈ [0,m−1] and j ∈ [0,m−2] satisfying i ≤ j—there are m(m−1)/2 such pairs—

define a wedge path between cornerstones F(i, j) and F(j + 1, i) as follows. Shoot a ray with slope 1

emanated from F(i, j), and a ray with slope −1 emanated from F(j + 1, i). Let p be the intersection

of the two rays; p must have integer coordinates. The wedge path consists of two segments: the first

4.6 New Results on 2D Grid Graphs 129

i = 0 1 2 3
j = 0
1
2

Figure 4.3: The designed grid graph for m = 4 (the black points are the cornerstones; the other vertices are
dotted along the curves, but are omitted for clarity)

one connects F(i, j) and p, while the second connects p and F(j + 1, i).

The above definition has yielded m(m − 1)/2 wedge paths. Two such paths may intersect each

other; and the intersection point has integer coordinates—a property that is not desired. Next, we

will contort some paths a little to ensure the following guarantee: any two resulting paths are either

disjoint or intersect only at a point with fractional coordinates on both dimensions.

Let Pintr be the set of intersection points among the wedge paths. For each point p = (x, y) in Pintr,

place a square [x− 1, x + 1]× [y− 1, y + 1] centered at p. The constants 1000 and 100 in the definition

of F(i, j) ensure that: (i) the |Pintr| squares are disjoint from each other, and (ii) all of them are above

the line y = 100(m − 2), i.e., higher than all cornerstones.

Focus now on one such square, as shown on Figure 4.2a, where the two lines illustrate the inter-

secting wedge paths. We contort one of the two paths as shown in Figure 4.2b, so that the two paths

now intersect at the point (x − 1/2, y − 1/2). Apply the same contortion in all squares.

For each i ∈ [0,m − 1], we add a vertical path from cornerstone F(i, 0) through F(i,m − 2).

These m paths and the m(m − 1)/2 wedge paths (possibly contorted) give rise to the edges in our grid

graph G—notice that every path uses only segments each connecting two points whose coordinates

are integers differing by at most 1 on each dimension. To complete the graph with vertices, we simply

place a vertex at every point p of R2 such that (i) p has integer coordinates on both dimensions, and

(ii) p is on one of those m + m(m − 1)/2 paths. See Figure 4.3 for such the final G with m = 4.

It remains to explain how to perform edge contractions to convert G into a clique of m vertices.

First, contract every vertical path into a “super vertex”. Between each pair of super vertices, there

remains a sequence of edges corresponding to one unique wedge path. The m(m−1)/2 edge sequences

130 External Density-Based Clustering andMulti-Dimensional Grid Graphs

do not share any vertices except, of course, the super vertices. Contracting each wedge path down to

the last edge gives the promised clique.

4.7 Summary

This chapter has proved that any d-dimensional grid graph G = (V, E) admits a vertex separator that

(i) resembles the well-known multi-way vertex separator of a planar graph, and (ii) can be obtained

solely by dividing the space recursively with perpendicular planes, and collecting the vertices on those

planes. Furthermore, we have shown that such separators can be computed in O(sort(|V |)) I/Os, even

if the memory can accommodate only two blocks.

A major application of the above findings is that they lead to an algorithm that performs density-

based clustering in d-dimensional space with near-linear I/Os, when the distance metric is L∞ norm—

and hence, also O(1)-approximate density-based clustering with the same I/O bound under Lp norm

for any p > 0. Our techniques also lead to improved results on three fundamental problems: CC,

SSSP, and BFS. Specifically, the CC problem has been settled in O(sort(|V |)) I/Os for any d-dimensional

grid graph G = (V, E). Our improvement on SSSP and BFS, however, is less significant, and concerns

only small values of M.

We close the chapter with two open questions. First, is it possible utilize our separator-computation

algorithm to improve the I/O complexity of the DFS algorithm in [37]? Second, does BFS on a 2D

grid graph require Ω(|V |/
√

M) I/Os in the worst case, thus making the result of Corollary 4.2 optimal?

Chapter 5

Conclusions

DBSCAN is an effective technique for density-based clustering, which is very extensively applied

in data mining, machine learning, and databases. However, currently there has not been clear un-

derstanding on its theoretical computational hardness. All the existing algorithms suffer from a time

complexity that is quadratic to the dataset size n when the dimensionality d is at least 3.

In this thesis, we have shown that, unless very significant breakthroughs (ones widely believed to

be impossible) can be made in theoretical computer science, the DBSCAN problem requires Ω(n4/3)

time to solve for d ≥ 3 under the Euclidean distance. This excludes the possibility of finding an

algorithm of near-linear running time, thus motivating the idea of computing approximate clusters.

Towards that direction, we proposed ρ-approximate DBSCAN, and proved both theoretical and exper-

imentally that the new method has excellent guarantees both in the quality of cluster approximation

and computational efficiency.

The exact DBSCAN problem in dimensionality d = 2 is known to be solvable in O(n log n) time.

We have further enhanced that understanding by showing how to settle the problem in O(n) time,

provided that the data points have already been pre-sorted on each dimension. In other words, coordi-

nating sorting is in fact the hardest component of the 2D DBSCAN problem. The result immediately

implies that, when all the coordinates are integers, the problem can be solved in O(n log log n) time

deterministically, or O(n
√

log log n) expected time randomly.

Moreover, we have presented a systematic study on dynamic density based clustering under the

theme of DBSCAN. Our findings reveal considerable new insight into the characteristics of the topic,

131

132 Conclusions

by providing a complete picture of the computational hardness in various update schemes. Perhaps the

most surprising result is that ρ-approximate DBSCAN, which was proposed to address the worst-case

computational intractability of exact DBSCAN, suffers from the same hardness when both insertions

and deletions are allowed. We have also shown how to eliminate the issue elegantly with a tiny

relaxation, which has led to the development of ρ-double-approximate DBSCAN, and designed a

suite of new algorithms that achieve near-constant update time in cluster maintenance essentially in

all the update schemes where this is possible.

To support datasets that can not fit in main memory, we studied the density-based clustering and

its related graph problems in external memory model. We proved that any d-dimensional grid graph

G = (V, E) admits a vertex separator that (i) resembles the well-known multi-way vertex separator of

a planar graph, and (ii) can be obtained solely by dividing the space recursively with perpendicular

planes, and collecting the vertices on those planes. Then, we showed that such separators can be

computed in O(sort(|V |)) I/Os, even if the memory can accommodate only two blocks.

A major application of the above findings is that they lead to an algorithm that performs density-

based clustering in d-dimensional space with near-linear I/Os, when the distance metric is L∞ norm—

and hence, also O(1)-approximate density-based clustering with the same I/O bound under Lp norm

for any p > 0. Our techniques also lead to improved results on three fundamental problems: CC,

SSSP, and BFS. Specifically, the CC problem has been settled in O(sort(|V |)) I/Os for any d-dimensional

grid graph G = (V, E). Our improvement on SSSP and BFS, however, is less significant, and concerns

only small values of M.

References

[1] P. K. Agarwal, L. Arge, O. Procopiuc, and J. S. Vitter. A framework for index bulk loading

and dynamization. In Proceedings of International Colloquium on Automata, Languages and

Programming (ICALP), pages 115–127, 2001.

[2] P. K. Agarwal, L. Arge, and K. Yi. I/O-efficient batched union-find and its applications to terrain

analysis. 7(1):11, 2010.

[3] P. K. Agarwal, H. Edelsbrunner, and O. Schwarzkopf. Euclidean minimum spanning trees and

bichromatic closest pairs. Discrete & Computational Geometry, 6:407–422, 1991.

[4] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related problems.

Communications of the ACM (CACM), 31(9):1116–1127, 1988.

[5] A. Andersson, T. Hagerup, S. Nilsson, and R. Raman. Sorting in linear time? Journal of

Computer and System Sciences (JCSS), 57(1):74–93, 1998.

[6] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander. OPTICS: Ordering points to identify

the clustering structure. In Proceedings of ACM Management of Data (SIGMOD), pages 49–60,

1999.

[7] L. Arge, G. S. Brodal, and L. Toma. On external-memory mst, SSSP and multi-way planar

graph separation. J. Algorithms, 53(2):186–206, 2004.

[8] L. Arge, J. S. Chase, P. N. Halpin, L. Toma, J. S. Vitter, D. Urban, and R. Wickremesinghe.

Efficient flow computation on massive grid terrain datasets. GeoInformatica, 7(4):283–313,

2003.

133

134 References

[9] L. Arge, L. Toma, and J. S. Vitter. I/O-efficient algorithms for problems on grid-based terrains.

ACM Journal of Experimental Algorithmics, 6:1, 2001.

[10] S. Arya and D. M. Mount. Approximate range searching. Computational Geometry, 17(3-

4):135–152, 2000.

[11] S. Arya and D. M. Mount. A fast and simple algorithm for computing approximate euclidean

minimum spanning trees. In Proceedings of the Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA), pages 1220–1233, 2016.

[12] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. An optimal algorithm

for approximate nearest neighbor searching fixed dimensions. Journal of the ACM (JACM),

45(6):891–923, 1998.

[13] K. Bache and M. Lichman. UCI machine learning repository, 2013.

[14] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The R*-tree: An efficient and robust ac-

cess method for points and rectangles. In Proceedings of ACM Management of Data (SIGMOD),

pages 322–331, 1990.

[15] C. Böhm, K. Kailing, P. Kröger, and A. Zimek. Computing clusters of correlation connected

objects. In Proceedings of ACM Management of Data (SIGMOD), pages 455–466, 2004.

[16] B. Borah and D. K. Bhattacharyya. An improved sampling-based DBSCAN for large spatial

databases. In Proceedings of Intelligent Sensing and Information Processing, pages 92–96,

2004.

[17] P. Bose, A. Maheshwari, P. Morin, J. Morrison, M. H. M. Smid, and J. Vahrenhold. Space-

efficient geometric divide-and-conquer algorithms. Computational Geometry, 37(3):209–227,

2007.

[18] T. M. Chan. A dynamic data structure for 3-d convex hulls and 2-d nearest neighbor queries.

Journal of the ACM (JACM), 57(3), 2010.

References 135

[19] V. Chaoji, M. A. Hasan, S. Salem, and M. J. Zaki. Sparcl: Efficient and effective shape-based

clustering. In Proceedings of International Conference on Management of Data (ICDM), pages

93–102, 2008.

[20] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry: Algo-

rithms and Applications. Springer-Verlag, 3 edition, 2008.

[21] M. de Berg, C. Tsirogiannis, and B. T. Wilkinson. Fast computation of categorical richness on

raster data sets and related problems. pages 18:1–18:10, 2015.

[22] K. Deng, X. Zhou, H. T. Shen, Q. Liu, K. Xu, and X. Lin. A multi-resolution surface distance

model for k-nn query processing. The VLDB Journal, 17(5):1101–1119, 2008.

[23] J. Erickson. On the relative complexities of some geometric problems. In Proceedings of the

Canadian Conference on Computational Geometry (CCCG), pages 85–90, 1995.

[24] J. Erickson. New lower bounds for Hopcroft’s problem. Discrete & Computational Geometry,

16(4):389–418, 1996.

[25] M. Ester. Density-based clustering. In Data Clustering: Algorithms and Applications, pages

111–126. 2013.

[26] M. Ester, H. Kriegel, J. Sander, M. Wimmer, and X. Xu. Incremental clustering for mining

in a data warehousing environment. In Proceedings of Very Large Data Bases (VLDB), pages

323–333, 1998.

[27] M. Ester, H. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters

in large spatial databases with noise. In Proceedings of ACM Knowledge Discovery and Data

Mining (SIGKDD), pages 226–231, 1996.

[28] G. N. Frederickson. Fast algorithms for shortest paths in planar graphs, with applications. SIAM

Journal of Computing, 16(6):1004–1022, 1987.

[29] J. Gan and Y. Tao. DBSCAN revisited: Mis-claim, un-fixability, and approximation. In Pro-

ceedings of ACM Management of Data (SIGMOD), pages 519–530, 2015.

136 References

[30] S. Ghemawat, H. Gobioff, and S. Leung. The google file system. pages 29–43, 2003.

[31] A. Gunawan. A faster algorithm for DBSCAN. Master’s thesis, Technische University Eind-

hoven, March 2013.

[32] A. Guttman. R-trees: a dynamic index structure for spatial searching. In Proceedings of ACM

Management of Data (SIGMOD), pages 47–57, 1984.

[33] J. Han, M. Kamber, and J. Pei. Data Mining: Concepts and Techniques. Morgan Kaufmann,

2012.

[34] Y. Han and M. Thorup. Integer sorting in 0(n sqrt (log log n)) expected time and linear space. In

Proceedings of Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages

135–144, 2002.

[35] H. J. Haverkort. I/O-optimal algorithms on grid graphs. CoRR, abs/1211.2066, 2012.

[36] H. J. Haverkort and L. Toma. I/O-efficient algorithms on near-planar graphs. J. Graph Algo-

rithms Appl., 15(4):503–532, 2011.

[37] J. Her and R. S. Ramakrishna. An external-memory depth-first search algorithm for general grid

graphs. Theoretical Computer Science, 374(1-3):170–180, 2007.

[38] G. R. Hjaltason and H. Samet. Distance browsing in spatial databases. ACM Transactions on

Database Systems (TODS), 24(2):265–318, 1999.

[39] J. Holm, K. de Lichtenberg, and M. Thorup. Poly-logarithmic deterministic fully-dynamic al-

gorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. Journal of the

ACM (JACM), 48(4):723–760, 2001.

[40] D. G. Kirkpatrick and S. Reisch. Upper bounds for sorting integers on random access machines.

Theoretical Computer Science, 28:263–276, 1984.

[41] M. Klusch, S. Lodi, and G. Moro. Distributed clustering based on sampling local density esti-

mates. In Proceedings of the International Joint Conference of Artificial Intelligence (IJCAI),

pages 485–490, 2003.

References 137

[42] Z. Li, B. Ding, J. Han, and R. Kays. Swarm: Mining relaxed temporal moving object clusters.

Proceedings of the VLDB Endowment (PVLDB), 3(1):723–734, 2010.

[43] B. Liu. A fast density-based clustering algorithm for large databases. In Proceedings of Inter-

national Conference on Machine Learning and Cybernetics, pages 996–1000, 2006.

[44] L. Liu and R. C. Wong. Finding shortest path on land surface. In Proceedings of ACM Manage-

ment of Data (SIGMOD), pages 433–444, 2011.

[45] E. H.-C. Lu, V. S. Tseng, and P. S. Yu. Mining cluster-based temporal mobile sequential patterns

in location-based service environments. IEEE Transactions on Knowledge and Data Engineer-

ing (TKDE), 23(6):914–927, 2011.

[46] A. Maheshwari and N. Zeh. I/O-efficient planar separators. SIAM Journal of Computing,

38(3):767–801, 2008.

[47] S. Mahran and K. Mahar. Using grid for accelerating density-based clustering. In Proceedings of

IEEE International Conference on Computer and Information Technology (CIT), pages 35–40,

2008.

[48] J. Matousek. Range searching with efficient hiearchical cutting. Discrete & Computational

Geometry, 10:157–182, 1993.

[49] K. Mehlhorn and U. Meyer. External-memory breadth-first search with sublinear I/O. In Pro-

ceedings of European Symposium on Algorithms (ESA), pages 723–735, 2002.

[50] B. L. Milenova and M. M. Campos. O-Cluster: Scalable clustering of large high dimensional

data sets. In Proceedings of International Conference on Management of Data (ICDM), pages

290–297, 2002.

[51] G. L. Miller, S. Teng, and S. A. Vavasis. A unified geometric approach to graph separators. In

Proceedings of Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages

538–547, 1991.

[52] D. Moulavi, P. A. Jaskowiak, R. J. G. B. Campello, A. Zimek, and J. Sander. Density-based

clustering validation. In International Conference on Data Mining, pages 839–847, 2014.

138 References

[53] D. M. Mount and E. Park. A dynamic data structure for approximate range searching. In

Proceedings of Symposium on Computational Geometry (SoCG), pages 247–256, 2010.

[54] K. Munagala and A. G. Ranade. I/O-complexity of graph algorithms. In Proceedings of the

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 687–694, 1999.

[55] M. H. Nodine, M. T. Goodrich, and J. S. Vitter. Blocking for external graph searching. In

Proceedings of ACM Symposium on Principles of Database Systems (PODS), pages 222–232,

1993.

[56] M. M. A. Patwary, D. Palsetia, A. Agrawal, W. Liao, F. Manne, and A. N. Choudhary. A new

scalable parallel DBSCAN algorithm using the disjoint-set data structure. In Conference on

High Performance Computing Networking, Storage and Analysis, page 62, 2012.

[57] T. Pei, A.-X. Zhu, C. Zhou, B. Li, and C. Qin. A new approach to the nearest-neighbour method

to discover cluster features in overlaid spatial point processes. International Journal of Geo-

graphical Information Science, 20(2):153–168, 2006.

[58] A. Reiss and D. Stricker. Introducing a new benchmarked dataset for activity monitoring. In

International Symposium on Wearable Computers, pages 108–109, 2012.

[59] S. Roy and D. K. Bhattacharyya. An approach to find embedded clusters using density based

techniques. In Proceedings of Distributed Computing and Internet Technology, pages 523–535,

2005.

[60] C. Shahabi, L. A. Tang, and S. Xing. Indexing land surface for efficient knn query. PVLDB,

1(1):1020–1031, 2008.

[61] G. Sheikholeslami, S. Chatterjee, and A. Zhang. Wavecluster: A wavelet based clustering ap-

proach for spatial data in very large databases. The VLDB Journal, 8(3-4):289–304, 2000.

[62] C. Sheng and Y. Tao. Finding skylines in external memory. In Proceedings of ACM Symposium

on Principles of Database Systems (PODS), pages 107–116, 2011.

References 139

[63] W. D. Smith and N. C. Wormald. Geometric separator theorems & applications. In Proceed-

ings of Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 232–243,

1998.

[64] P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining. Pearson, 2006.

[65] R. E. Tarjan. Efficiency of a good but not linear set union algorithm. Journal of the ACM

(JACM), 22(2):215–225, 1975.

[66] R. E. Tarjan. A class of algorithms which require nonlinear time to maintain disjoint sets.

Journal of Computer and System Sciences (JCSS), 18(2):110–127, 1979.

[67] L. Toma and N. Zeh. I/O-efficient algorithms for sparse graphs. In Algorithms for Memory

Hierarchies, Advanced Lectures, pages 85–109, 2002.

[68] C.-F. Tsai and C.-T. Wu. GF-DBSCAN: A new efficient and effective data clustering technique

for large databases. In Proceedings of International Conference on Multimedia Systems and

Signal Processing, pages 231–236, 2009.

[69] M. Varma and A. Zisserman. Texture classification: Are filter banks necessary? In Proceed-

ings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 691–698,

2003.

[70] W. Wang, J. Yang, and R. R. Muntz. STING: A statistical information grid approach to spatial

data mining. In Proceedings of Very Large Data Bases (VLDB), pages 186–195, 1997.

[71] J.-R. Wen, J.-Y. Nie, and H. Zhang. Query clustering using user logs. ACM Transactions on

Information Systems (TOIS), 20(1):59–81, 2002.

[72] S. Xing, C. Shahabi, and B. Pan. Continuous monitoring of nearest neighbors on land surface.

Proceedings of the VLDB Endowment (PVLDB), 2(1):1114–1125, 2009.

[73] N. Zeh. I/O-efficient graph algorithms. Technical report, Dalhousie University, 2002.

