
1 
 

Antisense pre-treatment increases long-lasting benefit of gene therapy in 

dystrophic muscles 

 

Cécile Peccate1, Amédée Mollard1, Maëva Le Hir2, Laura Julien1, Graham McClorey3, Susan 

Jarmin4, Anita Le Heron4, George Dickson4, Sofia Benkhelifa-Ziyyat1, France Piétri-Rouxel1, 

Matthew J. Wood3, Thomas Voit15 and Stéphanie Lorain1* 

 

1Sorbonne Universités UPMC Univ Paris 06, Inserm, CNRS, Institut de Myologie, Centre de 

Recherche en Myologie (CRM), GH Pitié Salpêtrière, 105 bd de l'Hôpital, Paris 13, France. 

2Université de Versailles St-Quentin, INSERM U1179, LIA BAHN CSM, Montigny-le-

Bretonneux, France. 

3Department of Physiology, Anatomy and Genetics, South Parks Road, Oxford, OX1 3QX, 

UK. 

4School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 

0EX, UK. 

5New address: NIHR Biomedical Research Centre, Institute of Child Health, University 

College London, 30 Guilford Street, London, WC1N 1EH, UK. 

 

* Correspondence should be addressed to SL (stephanie.lorain@upmc.fr)  

 

 

Combined treatment for Duchenne muscular dystrophy 

AAV vector / Duchenne muscular dystrophy / Exon skipping / Gene therapy

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/84153518?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 
 

Abstract 

In preclinical models for Duchenne muscular dystrophy, dystrophin restoration during AAV-

U7-mediated exon-skipping therapy decreases drastically after one year in treated muscles. 

This decline in benefit is strongly correlated with loss of the therapeutic AAV genomes, 

probably due to alterations of the dystrophic myofiber membranes. To improve the 

membrane integrity of the dystrophic myofibers at the time of AAV-U7 injection, mdx muscles 

were pre-treated with a single dose of peptide-phosphorodiamidate morpholino (PPMO) 

antisense oligonucleotides that induced temporary dystrophin expression at the sarcolemma. 

The PPMO pre-treatment allowed efficient maintenance of AAV genomes in mdx muscles 

and enhanced the long-term effect of AAV-U7 therapy with a ten-fold increase of the protein 

level after six months. It is also beneficial to AAV-mediated gene therapy with transfer of 

micro-dystrophin cDNAs into muscles. This combined approach will allow the use of lower 

and thus safer vector doses while maximizing long-term therapeutic efficacy for Duchenne 

patients. 
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Introduction 

The dystrophinopathies are pathologies caused by anomalies in the DMD gene that encodes 

the sub-sarcolemmal protein dystrophin. This protein is absent or drastically diminished in 

Duchenne muscular dystrophy (DMD) while it is present but qualitatively and/or quantitatively 

altered in the Becker muscular dystrophy (BMD). The dystrophin structure (central rod-

domain made of 24 spectrin-like repeats) tolerates large internal deletions (Harper et al., 

2002) which led to the development of two main therapeutic strategies: gene therapy with 

transfer of micro-dystrophin cDNAs in muscles, and targeted exon skipping. Both 

approaches have shown encouraging results using adeno-associated viral (AAV) vectors, 

which allow efficient gene transfer into muscles. AAV-mediated delivery of micro-dystrophins 

into dystrophin-deficient mice has shown remarkable efficiency (Gregorevic et al., 2006; Koo 

et al., 2011; Shin et al., 2013) leading to the initiation of an early-phase clinical trial (Mendell 

et al., 2010).  

Exon skipping converts an out-of-frame mutation into an in-frame mutation leading to an 

internally deleted but partially functional dystrophin. This therapeutic approach has 

demonstrated some success using antisense oligonucleotides (AONs), but recent studies 

showed limited clinical benefit (Cirak et al., 2011; Goemans et al., 2011; Mendell et al., 2013; 

Voit et al., 2014). The novel generation of AON chemistries, in particular tricyclo-DNA 

(tcDNA) (Goyenvalle et al., 2015) and peptide-phosphorodiamidate morpholino 

oligonucleotide (PPMO) (Betts et al., 2012; Betts et al., 2015), display unprecedented 

degrees of dystrophin restoration in skeletal muscles, but also restore dystrophin expression 

in the heart and, to a lesser extent, in the brain for the tcDNAs. AONs have the enormous 

advantage of not being immunogenic but require regular administration to maintain 

therapeutic benefit.  

The antisense sequences can be expressed in skeletal or cardiac muscles via a small 

nuclear RNA such as U7snRNA or U1snRNA (Brun et al., 2003; Denti et al., 2006; 

Goyenvalle et al., 2004). These therapeutic molecules are vectorised in AAV particles which 

ensure a permanent production of the antisense in dystrophin-deficient murine models (Denti 
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et al., 2006;Goyenvalle et al., 2012;Goyenvalle et al., 2004), as well as in the dystrophin-

deficient dog GRMD (Bish et al., 2012; Le Guiner et al., 2014; Vulin et al., 2012). In all 

dystrophic models, a one-shot treatment of AAV-U7snRNA (AAV-U7) was sufficient to attain 

substantial levels of restored dystrophin, which is associated with a significant improvement 

of the muscle force (Denti et al., 2006; Goyenvalle et al., 2012; Goyenvalle et al., 2004; Le 

Guiner et al., 2014; Vulin et al., 2012).  

Despite the high efficiency of AAV-U7 strategy, we recently showed that dystrophin levels 

decreased significantly after one year in various skeletal muscles in the severely dystrophic 

dystrophin/utrophin knockout (dKO) mouse and in the GRMD dog (Le Hir et al., 2013; Vulin 

et al., 2012). This decline in dystrophin was strongly correlated with viral genome loss, most 

likely due to alterations of the dystrophic myofiber membranes. In the context of an AAV-U7 

clinical trial for DMD, AAV genome fate in dystrophic muscles is of major importance since 

the viral capsid immunogenicity currently limits repeated treatment (Lorain et al., 2008). We 

recently investigated the viral genome fate in muscles of the moderately dystrophic mdx 

mouse and showed that non-therapeutic viral genomes were lost quickly after the injection 

and that this loss was diminished when high doses of viral genomes restored dystrophin at 

the sarcolemma (Le Hir et al., 2013).  

The goal of the present study was to avoid viral genome loss by pre-conditioning the 

dystrophic muscles for AAV injections. We showed for the first time that an AAV-U7 

threshold dose was required to restore efficiently the dystrophin expression in the mdx 

mouse. We also demonstrated that therapeutic AAV genomes were lost from mdx muscle 

during the time interval between the AAV-U7 injection and the occurrence of dystrophin in 

sufficient quantity at the sarcolemma. Moreover, induction of transient high dystrophin 

expression at the sarcolemma of myofibers with peptide-phosphorodiamidate morpholino 

(PPMO) AONs allowed efficient preservation of AAV genomes in mdx muscles. Importantly, 

the efficacy of AAV-U7-mediated exon skipping as well as AAV-mediated micro-dystrophin 

gene therapy was markedly improved. Therefore, avoiding viral genome loss after AAV 
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injection by AON pre-treatment could help achieve a threshold dose of AAV genomes 

needed for efficient long-term restoration of dystrophin in mdx muscles.  

Considering that more than 80% of DMD mutations are eligible for the personalized medicine 

involving the skipping of a single or of multiple exons (Aartsma-Rus et al., 2009), this 

combined therapy approach could in theory benefit up to 80% of DMD patients.  

 

Results 

Dystrophin rescue kinetics highlight a threshold dose of AAV-U7  

We first investigated the kinetics of dystrophin rescue at different doses of therapeutic AAV1 

vector in muscles of mdx mice that carry a nonsense mutation in exon 23 of the Dmd gene 

(Sicinski et al., 1989). We used an AAV1 vector encoding an U7snRNA (AAV1-U7ex23) 

allowing efficient exon 23 skipping and therefore dystrophin rescue in mdx muscles 

(Goyenvalle et al., 2004). High (1E+11 viral genome or vg), intermediate (3E+10 vg) and low 

(1E+10 vg) doses of this vector were injected into mdx Tibialis anterior (TA) muscles and 

dystrophin protein levels were quantified in these muscles by western blotting 3, 6 and 12 

weeks post-injection (Fig. 1a&b). The high dose of AAV1-U7ex23 allowed strong dystrophin 

expression (around 35% of normal dystrophin level) at 3 weeks after the injection, and 

reached a plateau (50-70%) by six weeks. At the intermediate dose, the kinetics of 

dystrophin restoration was delayed with only 3% of dystrophin expression at 3 weeks, 40% at 

6 weeks and 70% at 12 weeks. At the low dose, dystrophin rescue was around 2% at 3 

weeks and remained low even by 12 weeks post-injection. These data showed that the low 

dose of AAV1-U7ex23 was below a threshold level required for an effective restoration of 

dystrophin. 

 

The time interval between the AAV injection and the dystrophin rescue is decisive for 

viral genome maintenance 

In the kinetic experiments of dystrophin rescue, the number of viral genomes in TA muscles 

quantified by quantitative PCR (qPCR) was stable for each AAV1-U7ex23 dose between 3 
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and 12 weeks post-injection (Fig. 1c). The 3-fold increment applied between the three 

injected doses correlated to AAV genome levels with 2.5-fold more vg in the intermediate 

dose injected mdx muscles than in the low injected ones. A 5-fold higher factor was 

quantified between the high and intermediate dose injected muscles indicating that with 

higher dose more viral particles are retained in the target tissue. These results are consistent 

with our published observation that AAV1-U7ex23 genomes are maintained at high dose 3 

weeks post-injection in mdx muscles compared to wild-type (wt) muscles, while they are 

poorly preserved at low and intermediate doses (Le Hir et al., 2013). Therefore, the viral 

genome loss observed at low and intermediate doses in the mdx muscles occurred 

principally before three weeks, when dystrophin is not yet present at the sarcolemma, and 

not during the following weeks. In this sense, at the intermediate dose the delay observed in 

dystrophin rescue compared to high dose (Fig. 1a&b) might be responsible for the viral 

genome loss observed at this dose but not at high dose. Hence, the time interval between 

the AAV injection and the presence of a functional dystrophin in sufficient quantity at the 

sarcolemma is decisive for viral genome maintenance. 

 

Viral genomes are efficiently maintained in Pip6a-PMO rescued mdx muscles  

To avoid AAV genome loss following the AAV injection, dystrophin expression was induced 

temporarily at the sarcolemma of mdx TA myofibers by a single injection of Pip6a-PMO AON, 

a PPMO that is particularly efficient for mdx exon skipping (Betts et al., 2012). A non-

therapeutic vector carrying non-specific sequence (AAV-U7scr, 1E+11 vg) was injected in 

the same muscles two weeks after the PPMO injections (Fig. 2a) when dystrophin rescue 

was already optimal (Supplementary data 1). We previously showed that this high dose of 

non-therapeutic genomes was drastically lost after three weeks since the sequence is unable 

to rescue dystrophin expression (Le Hir et al., 2013). Following PPMO pre-treatment and 

three weeks after AAV1-U7scr injection, immunofluorescence analysis revealed a strong 

dystrophin restoration with appropriate sarcolemmal location in mdx injected muscles (Fig. 

2b), between 56 to 98% of normal dystrophin levels when quantified by western blotting 
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(Fig. 2c), illustrating the high PPMO efficiency for dystrophin restoration. The viral genome 

content was 6 times lower in non PPMO-treated mdx muscles than in wt muscles, as already 

shown (Le Hir et al., 2013). In contrast, the PPMO-treated mdx group had significantly 

increased numbers of viral genomes, with levels exceeding that of wt muscles, although not 

to significance (Fig. 2d). Therefore, a significant dystrophin expression induced by PPMO 

pre-treatment at the time of AAV1-U7scr injection protects against the rapid loss of AAV1-

U7scr genomes in mdx muscles comparable to what is observed in wt muscles. 

 

Pip6a-PMO pre-treatment allows important dystrophin rescue at low AAV-U7ex23 dose 

after 6 months  

We then evaluated the long-term benefit of an AON pre-treatment on the dystrophin rescue 

via AAV1-U7ex23. Pip6a-PMO AONs were injected into mdx TAs two weeks before injection 

of low dose of AAV1-U7ex23 vector (1E+10 vg) (Fig. 3a), which without pre-treatment 

allowed only a weak dystrophin rescue (2%, Fig. 1a&b). Six months later, levels of exon 23 

skipping analysed by nested RT-PCR (Fig. 3b) and quantified by qPCR (Fig. 3c) in mdx TAs 

treated with AAV1-U7ex23 or PPMO alone were low as expected, respectively 9 and 6% of 

skipped transcripts, leading to the synthesis of rescued dystrophin around 2% of the normal 

level (Fig. 3e). Conversely, TAs treated sequentially with PPMOs then with AAV1-U7ex23 

showed 54% of skipped transcripts (Fig. 3c) and a dystrophin at 20% of the normal level of 

dystrophin (Fig. 3e). Moreover, the viral genome number was 8-fold higher in the combined 

PPMO/AAV1-U7ex23 treated muscles than in AAV1-U7ex23 only injected muscles (Fig. 3d). 

These data demonstrate that the PPMO pre-treatment induced maintenance of the 

therapeutic U7ex23 genomes in mdx muscles six months after the AAV-U7 injections and 

remarkably resulted in a 10-fold increase of the rescued dystrophin amount.  

 

Pip6a-PMO pre-treatment significantly increases the efficacy of AAV1 mediated micro-

dystrophin gene therapy  
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To evaluate the efficacy of an AON pre-treatment on AAV-micro-dystrophin gene therapy, we 

injected Pip6a-PMO AONs into mdx TAs two weeks before injection of AAV1-MD1 vector 

(1E+10 vg) expressing a murine micro-dystrophin under the control of the muscle-restrictive 

Spc5-12 promoter (Foster et al., 2008) (Fig.4a). Four weeks later, a strong dystrophin 

restoration was observed in PPMO-treated mdx TAs induced by the PPMO pre-treatment 

(Fig. 4c). AAV genome copy number and micro-dystrophin expression were 3-fold higher in 

the PPMO/AAV1-MD1 treated muscles than in AAV1-MD1 only treated muscles (Fig. 4b&c), 

illustrating the PPMO pre-treatment benefit on AAV-micro-dystrophin gene therapy. This 

experiment demonstrates that the AON pre-treatment is capable of enhancing all AAV-based 

gene therapies for DMD. 

 

Discussion 

We previously showed that therapeutic AAV genomes are rapidly lost from dystrophic 

muscles during AAV-U7-mediated exon-skipping therapy (Le Hir et al., 2013). However, a 

strong dystrophin rescue induced by high dose (1E+11 vg) of AAV-U7 in mdx muscles 

prevents this viral genome loss. We show here that, at this high dose, the dystrophin 

restoration was not only maximal but also rapid after the therapeutic injection. With a 3-fold 

lower viral genome dose (intermediate dose) injected in the dystrophic muscles, the 

dystrophin synthesis was delayed but became maximal with albeit a massive genome loss 

occuring during the first weeks post-injection. These data demonstrated that a delay in 

dystrophin synthesis is sufficient to cause a substantial viral genome loss that could 

significantly limit the long-term therapeutic benefit of AAV therapies for DMD. Therefore, the 

initial period between the therapeutic injection and the presence of a functional dystrophin at 

the myofiber sarcolemma is decisive for viral genome maintenance in dystrophic muscles; 

the sooner dystrophin is present at the sarcolemna, the more AAV genomes are maintained 

in mdx muscles. 

We demonstrate also that a low dose of AAV-U7ex23 was not sufficient to induce significant 

dystrophin restoration while the intermediate dose that contained only 3-fold more viral 
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genomes induced a high level of dystrophin restoration as just described. This observation 

suggests that the low dose of therapeutic vector is below a threshold necessary to restore 

significant dystrophin expression and thus to allow long-term maintenance of viral genomes. 

The existence of this threshold level is crucial for AAV-U7 therapy meaning that our goal is to 

reach and maintain this threshold dose of therapeutic viral genomes inside the dystrophic 

myofibers in order to obtain a sustainable therapeutic benefit. 

 

To slow down the loss of therapeutic viral genomes from dystrophic muscles and achieve 

long-term restoration of dystrophin expression, we previously proposed recurrent systemic 

injections of AONs to prevent the progressive reappearance of a dystrophic phenotype 

caused by the partial loss of AAV genomes over time (Le Hir et al., 2013). Instead of these 

successive therapies, we demonstrate here the synergistic benefit of the reciprocal treatment 

combination with first a single AON injection to restore dystrophin at the myofiber 

sarcolemma and secure membrane integrity followed by a single systemic injection of AAV-

U7 vector to induce a strong and long-lasting expression of dystrophin in muscles. A 

significant dystrophin rescue by PPMO pre-treatment at the time of AAV-U7 injections allows 

an efficient maintenance of the viral genomes in mdx muscles three weeks later. Additionally, 

this initial maintenance of viral genomes increases dystrophin restoration by AAV-U7, around 

8-fold at RNA level and 10-fold at protein level up to six months later. Of course, this does 

not rule out our previous hypothesis that AON administration subsequent to AAV treatment 

could supplement AAV-mediated dystrophin restoration and act so as to maintain or even 

increase dystrophin levels, especially as life-long treatment will be required in DMD patients.  

We showed also that an AON pre-treatment confers an increased benefit to AAV-mediated 

micro-dystrophin cDNA transfer into mdx muscles. Indeed, four weeks later, micro-dystrophin 

expression was already 3-fold higher in PPMO-treated mdx mouse compared to untreated 

one.  

The PPMO pre-treatment results in substantial dystrophin expression at the time of AAV-U7 

injection that likely reduces the membrane abnormalities leading to AAV genome loss before 
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AAV-U7 induced dystrophin expression occurs. Once established, an AAV-U7 mediated high 

dystrophin expression will be maintained because it will by itself prevent transgene loss (Le 

Hir et al., 2013). The same scenario is conceivable for micro-dystrophin gene therapy. By 

allowing the maintenance of high viral genome content in the decisive period between AAV 

injection and AAV-mediated transgene expression in the treated dystrophic muscles, PPMO-

mediated dystrophin restoration guarantees a higher therapeutic benefit of the AAV based 

therapy compared to direct AAV injection. Additionally, in condition of poor AAV transduction, 

especially with systemic delivery some muscles are less transduced than others (Louboutin 

et al., 2005), PPMO pre-treatment could help reaching in these muscles the threshold dose 

of AAV genomes needed to restore efficiently dystrophin in mdx muscles. 

The fact that the rescue effect on AAV genomes was relatively lower for AAV-MD1 as 

compared to AAV-U7 mediated treatment can likely be explained by the direct transcription 

and overexpression of the micro-dystrophin cDNA resulting in more rapid dystrophin-

mediated membrane sealing. In contrast, the U7-mediated exon skipping is dependent on 

the U7-antisense transcription and its action on intrinsically produced dystrophin mRNA 

which delays membrane sealing and thereby favours increased AAV genome loss. 

 

The viral genome loss is certainly due to the fragility of the dystrophic muscle fibers that 

undergo cycles of necrosis/generation as we observed a similar loss of vector genomes in 

cardiotoxin-treated normal muscles (Le Hir et al., 2013). However, other causes could 

participate to the process of viral genome loss from the dystrophic muscles. Dystrophic 

myofibers present abnormally leaky membranes that could passively loose the viral 

genomes, as exemplified by the creatine kinase (CK) activity greatly elevated in sera of 

Duchenne patients and preclinical animal models or conversely by Evans blue uptake into 

dystrophic muscle (Straub et al., 1997). In addition, AAV vectors were also found associated 

with exosomes termed vexosomes in culture media of AAV producer cells (Maguire et al., 

2012). Interestingly, lack of dystrophin at the sarcolemma of mdx myofibers was shown to 

lead to an increased excretion of exosomes that was partially restored by dystrophin rescue 
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(Duguez et al., 2013), suggesting that therapeutic viral vectors might also be lost through 

excretion via exosomes from the dystrophic myofibers. However, such secretion 

mechanisms of AAV vectors remain to be further investigated in vivo. Therefore, AON-

mediated dystrophin restoration could reduce these membrane abnormalities and thus 

further preserve the therapeutic viral genomes in the dystrophic myofibers.  

Recently, transcripts derived from AAV vectors have been shown to be destabilized by 

oxidative damage caused by free radicals, reducing the transgene expression in dystrophic 

muscles (Dupont et al., 2015). Interestingly, high expression of micro-dystrophin was able to 

significantly reduce the proportion of oxidized transcripts in GRMD dog muscles showing a 

direct correlation between the oxidative stress of the myofibers and the dystrophic 

phenotype. Hence, lowering the oxidative status by AON pre-treatment might also facilitate a 

high AAV transgene expression and help reaching the threshold of therapeutic viral genome 

number necessary to allow a long-lasting benefit of AAV therapies. 

On the eve of clinical trials using AAV-based therapies for DMD patients, this study 

underscores the strong impact of combined approaches to improve the benefit of AAV-based 

therapies allowing the use of lower and thus safer vector doses for a larger level of 

dystrophin expression in the long term.  

 

Materials and Methods 

Viral vector production and animal experiments 

A three-plasmid transfection protocol was used with pAAV(U7smOPT-SD23/BP22) 

(Goyenvalle et al., 2004), pAAV(U7smOPT-scr) (Le Hir et al., 2013) and codon optimized 

pΔR4-R23/ΔCT (MD1) (Foster et al., 2008) plasmids for generation of single-strand AAV1-

U7ex23, AAV1-U7scr and AAV1-MD1 vectors. Three-month-old mdx mice were injected into 

the Tibialis anterior (TA) muscles with 1 nmole of Pip6a-PMO oligonucleotides 

(GGCCAAACCTCGGCTTACCTGAAAT) (Betts et al., 2012). Additionally, 50µl of AAV1-

U7scr, AAV1-U7ex23 or AAV1-MD1 containing 1E+10, 3E+10 or 1E+11 viral genomes (vg) 

were injected into C57BL/6 (wt) or mdx TAs. These animal experiments were performed at 
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the Myology Research Center, Paris, France, according to the guidelines and protocols 

approved by the Institutional Review Board. A minimum of four mice were injected per group 

for each experiment. At sacrifice, muscles were collected, snap-frozen in liquid nitrogen-

cooled isopentane and stored at -80°C. 

 

Viral genome quantification 

Genomic DNA was extracted from mouse muscles using Puregene Blood kit (Qiagen). Copy 

number of AAV genomes and genomic DNA were measured on 100ng of genomic DNA by 

absolute quantitative real-time PCR on a StepOnePlusTM (Applied Biosystems) using the 

TaqmanR Universal Master Mix (Applied Biosystems). Primers (forward: 

CTCCATCACTAGGGGTTCCTTG and reverse: GTAGATAAGTAGCATGGC) and probe 

(TAGTTAATGATTAACCC) were used to specifically amplify the viral genome sequence. As 

a reference sample, a pAAV plasmid was 10-fold serially diluted (from 107 to 101 copies). All 

genomic DNA samples were analysed in duplicates. 

 

RT-PCR analysis  

Total RNA was isolated from mouse muscle with NucleoSpin® RNA II (Macherey-Nagel), 

and reverse transcription (RT) performed on 200ng of RNA by using the Superscript™ II and 

random primers (Life technologies). Non-skipped and skipped dystrophin transcripts were 

detected by nested PCR and quantified as described (Goyenvalle et al., 2012).  

 

Western blot analysis 

Protein extracts were obtained from pooled muscle sections treated with 125 mM sucrose, 5 

mM Tris-HCl pH 6.4, 6% of XT Tricine Running Buffer (Bio-Rad), 10% SDS, 10% Glycerol, 

5% β-mercaptoethanol. The samples were purified with the Pierce Compat-Able™ Protein 

Assay Preparation Reagent Set (Thermo Scientific) and the total protein concentration was 

determined with the Pierce BCA Protein Assay Kit (Thermo Scientific). Samples were 

denatured at 95°C for 5 minutes and 100 µg of protein were loaded onto Criterion XT Tris-
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acetate precast gel 3-8% (Bio-Rad). Membrane was probed with primary monoclonal 

antibodies directed against dystrophin (NCL-DYS1, 1:50, Leica Biosystems; or 

MANEX1011B, 1:50, kindly gifted by The Muscular Dystrophy Association Monoclonal 

Antibody Resource (Bartlett et al., 2000)) and α-actinin (1:1000, Sigma-Aldrich), followed by 

incubation with a sheep anti-mouse secondary antibody (horseradish peroxidase conjugated; 

1:15000) and Pierce ECL Western Blotting Substrate (Thermo Scientific). 

 

Immunohistochemistry 

TA sections of 12 µm were cut and examined for dystrophin expression using the NCL-DYS2 

monoclonal antibody (1:50; Leica Biosystems) and a goat anti-mouse secondary antibody 

Alexa 488 (1:1000; Life technologies). 
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The Paper Explained 

PROBLEM:  

AAV-U7-mediated exon-skipping strategy is a very promising therapy for Duchenne muscular 

dystrophy. However, in preclinical models dystrophin restoration decreases drastically after 

one year in treated muscles. This decline in benefit is strongly correlated with loss of the 

therapeutic AAV genomes, probably due to alterations of the dystrophic myofiber 

membranes. In the context of an AAV-U7 clinical trial for DMD, AAV genome fate in 

dystrophic muscles is of major importance since the viral capsid immunogenicity currently 

limits repeated treatment. 

 

RESULTS:  

To improve the membrane integrity of the dystrophic myofibers at the time of AAV-U7 

injection, mdx muscles were pre-treated with a single dose of peptide-phosphorodiamidate 

morpholino (PPMO) antisense oligonucleotides that induced temporary dystrophin 

expression at the sarcolemma. The PPMO pre-treatment allowed efficient maintenance of 

AAV genomes in mdx muscles and enhanced the long-term effect of AAV-U7 therapy with a 

ten-fold increase of the protein level after six months. It is also beneficial to AAV-mediated 

gene therapy with transfer of micro-dystrophin cDNAs into muscles. 

 

IMPACT:  

This combined approach will allow the use of lower and thus safer vector doses while 

maximizing long-term therapeutic efficacy for Duchenne patients. Considering that more than 

80% of DMD mutations are eligible for the personalized medicine involving the skipping of a 
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single or of multiple exons, this combined therapy approach could in theory benefit up to 80% 

of DMD patients. 
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Figure legends 

Fig. 1. Kinetics of dystrophin restoration at different AAV1-U7ex23 doses. Tibialis 

anterior (TA) muscles of mdx mice were injected with 1E+11 viral genomes (vg) (High dose), 

3E+10 vg (Intermediate dose) or 1E+10 vg (Low dose) of AAV1-U7ex23. Three mdx TAs 

were injected per group. The mice were sacrificed 3, 6 and 12 weeks later (3, 6 or 12w). (a) 

Dystrophin restoration was evaluated by western blotting with NCL-DYS1 monoclonal 

antibodies (upper panel) on whole protein extracts from the treated muscles (lower panel: α-

actinin). The result of one representative TA is shown per condition. (b) Dystrophin 

restoration was quantified by ImageJ software and expressed as the percentage of 

dystrophin expression in wild-type (wt) muscle. (c) Quantification of AAV vg by absolute 

Taqman qPCR in injected mdx TAs. AAV genome content is expressed as the AAV genome 
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number relative to the value obtained for the mdx muscles injected with low dose of AAV1-

U7ex23 at three weeks post-injection. The data presented in (b) and (c) represent the mean 

values of the three TAs per group ± SEM. One of two representative experiments is shown. 

n.s., non-significant, ***P≤0.0001, Student’s t-test.  

 

Fig. 2. Effect of dystrophin restoration by Pip6a-PMO pre-treatment on viral genome 

maintenance. (a) TAs from mdx and wt mice were injected with 1 nmole of Pip6a-PMO two 

weeks (-2w) before the injection of 1E+11 vg of the non-therapeutic AAV1-U7scr vector (day 

0, d0). Control mdx and wt TAs were injected with AAV1-U7scr vector alone. Four TAs were 

injected per group. The mice were sacrificed 3 weeks later (3w). (b) Dystrophin rescue 

monitored by immunostaining with the NCL-DYS2 monoclonal antibody on transverse 

sections of TA muscles. One representative immunostained section is shown per condition. 

(c) Dystrophin restoration evaluated by western blotting with NCL-DYS1 monoclonal 

antibodies (upper panel) on whole protein extracts from the PPMO-treated muscles (lower 

panel: α-actinin). Dystrophin restoration was quantified by ImageJ software and expressed 

as the percentage of dystrophin expression in wt muscle. (d) Quantification of AAV viral 

genomes by absolute Taqman qPCR. AAV genome content is expressed as the AAV 

genome number relative to the value obtained for the non PPMO-treated mdx muscles. The 

data represent the mean values of 4 muscles per group ± SEM. n. s.: non-significant, ***p < 

0.001, Student’s t-test. One of two representative experiments is shown.  

 

Fig. 3. Effect of Pip6a-PMO pre-treatment on long-term dystrophin rescue by low dose 

of AAV-U7ex23. (a) Mdx TAs were injected with 1 nmole of Pip6a-PMO two weeks (-2w) 

before the injection of 1E+10 vg of therapeutic AAV1-U7ex23 vector (day 0, d0). Control mdx 

TAs were injected with PPMO or AAV1-U7ex23 vector alone. Four TAs were injected per 

group. The mice were sacrificed 6 months later (6m). (b) Level of exon 23 skipping estimated 

by nested RT-PCR. The 901 bp PCR product corresponds to full-length dystrophin 

transcripts whereas the 688 bp product corresponds to transcripts lacking exon 23. (c) 
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Quantification of exon 23 skipping performed by relative TaqMan qPCR and expressed as a 

percentage of total dystrophin transcripts. (d) Quantification of AAV viral genomes by 

absolute Taqman qPCR. AAV genome content is expressed as the AAV genome number 

relative to the value obtained for the non PPMO-treated mdx muscles. The data presented in 

(c) and (d) represent the mean values of the four TAs per group ± SEM. *p < 0.05, ***p < 

0.001, Student’s t-test. (e) Dystrophin restoration evaluated by western blotting with NCL-

DYS1 monoclonal antibodies (upper panel) on whole protein extracts from the treated 

muscles (lower panel: α-actinin). Dystrophin restoration was quantified by ImageJ software 

and expressed as the percentage of dystrophin expression in wt muscle.  

 

Fig. 4. Effect of Pip6a-PMO pre-treatment on AAV1 mediated micro-dystrophin gene 

therapy. (a) Mdx TAs were injected with 1 nmole of Pip6a-PMO two weeks (-2w) before 

injection of 1E+10 vg of AAV1-MD1 micro-dystrophin expressing vector (day 0, d0). Control 

mdx TAs were injected with PPMO or AAV1-MD1 vector alone. Five TAs were injected per 

group. The mice were sacrificed 4 weeks later (4w). (b) Quantification of AAV viral genomes 

by absolute Taqman qPCR. AAV genome content is expressed as the AAV genome number 

relative to the value obtained for the non PPMO-treated mdx muscles. The data represent 

the mean values of the 5 muscles per group ± SEM. *p < 0.05, Student’s t-test. (c) 

Expression of PPMO-induced dystrophin (DYS, 427kDa) and micro-dystrophin (µDYS, 

132kDa) evaluated by western blotting with MANEX1011B monoclonal antibodies (upper 

panel) on whole protein extracts from the treated muscles (lower panel: α-actinin).  
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Supplementary data 1. Kinetics of dystrophin restoration by a single Pip6a-PMO intramuscular injection 
Two Tibialis anterior (TA) muscles of mdx mice were injected per group with 1nmole of Pip6a-PMO. Dystrophin 
expression was evaluated after 2 weeks (2w), 5 weeks (5w), 3 months (3m) and 6 months (6m), by western blotting 
with NCL-DYS1 monoclonal antibodies (upper panel) on whole protein extracts from the treated muscles (lower 
panel: α-actinin). Dystrophin restoration was quantified by ImageJ software and expressed as the percentage of wild-
type (wt) dystrophin expression. 
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