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Abstract

Is the Pareto optimality of matching mechanisms robust to the introduction of boundedly

rational behavior? To address this question I define a restrictive and a permissive notion

of Pareto optimality and consider the large set of hierarchical exchange mechanisms which

contains serial dictatorship as well as Gale’s top trading cycles. Fix a housing problem

with boundedly rational agents and a hierarchical exchange mechanism. Consider the set

of matchings that arise with all possible assignments of agents to initial endowments in the

given mechanism. I show that this set is nested between the sets of Pareto optima according

to the restrictive and the permissive notion. These containment relations are generally strict,

even when deviations from rationality are minimal. In a similar vein, minimal deviations

from rationality suffice for the set of outcomes of Gale’s top trading cycles with all possible

initial endowments to differ from the set of outcomes of serial dictatorship with all possible

orders of agents as dictators.

Keywords: Fundamental Theorems of Welfare, House Allocation Problems, Bounded Ra-

tionality, Multiple Rationales. JEL Classification Numbers: C78, D03, D60.

1 Introduction

Boundedly rational behavior should be expected in some of the non-market environments for

which economists have designed matching mechanisms. Take kidney allocation problems as an
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example. One difficulty with mechanisms that match donors to recipients is that doctors are

reluctant to state complete preferences over kidneys. However, the same doctors do not seem

to have any problem choosing the “best” kidney for a particular patient from a given set. The

limited resources available to test whether a kidney is a good match might drive this apparent

contradiction.1 Alternatively, consider the allocation of elementary school slots. The choices

of a family in which the mother strategically whittles down the options before the father picks

a school are only rationalizable if the parents’ preferences are aligned.2 As a third example

consider the choice of a medical residency program. To reduce the complexity of the choice-

problem a med-school graduate might use a sequence of incomplete rankings to eliminate all but

a few alternatives which she then considers in detail.3

Is the Pareto optimality of matching mechanisms robust to the introduction of boundedly

rational behavior? To answer this question, I consider Papai’s [26] hierarchical exchange mech-

anisms, which comprise many theoretically and practically relevant matching mechanisms.4 I

derive two different preference-relations from choice functions. An agent lightly prefers x to y if

he chooses x from some set that also contains y; he solidly prefers x to y if he never chooses y

when x is also available. While the agents’ light preferences imply a restrictive notion of Pareto

optimality, their solid preferences imply a permissive notion of Pareto optimality.

In line with standard matching theory I find that any Pareto optimum that satisfies the

restrictive notion can be obtained as the outcome of any fixed hierarchical exchange mechanism

for some initial endowment and that any outcome of hierarchical exchange satisfies the permissive

notion of Pareto optimality. In contrast to standard matching theory I find that the set of

outcomes of hierarchical exchange is strictly nested between the two Pareto sets and that different

hierarchical exchange mechanisms cover different sets of outcomes. Agents do not have to stray

far from rational behavior for these two results two hold; in fact I show that minimal deviations

from rational behavior suffice.

1These statements reflect a private conversation with Utku Unver, who was involved in the design and practical

implementation of several kidney exchange mechanisms. Consider the task of choosing the “best” kidney for a

patient from a set S = {a, b, . . . } of ten kidneys. Due to financial constraints doctors may use preliminary tests

to limit the set of kidneys which they examine in detail. If b is eliminated by the preliminary tests, while b turns

out to be better than a according to the detailed examination, this procedure may yield the choices a = c(S) and

b = c({a, b}).
2Xu and Zhou [33] as well as Apesteguia and Ballester [4] characterized choice function that can be explained

via such strategic interplay of different agents.
3Manzini and Mariotti [24] and Mandler [23] characterize choice functions that arise out of such procedures.
4Some subsets of the class of hierarchical exchange mechanisms have been described by Abdulkadiroglu and

Sönmez [2], Svensson [31], Ergin [15], Ehlers, Klaus, and Papai [14], Ehlers and Klaus [12], Kesten [19], Ehlers

and Klaus [13], and Velez [32].
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2 Matchings and Hierarchical Exchange

Fix a set of agents, N = {1, . . . n}, and a set H of equally many objects, called houses. A

submatching σ : Nσ → Hσ is a bijection with Nσ ⊂ N and Hσ ⊂ H; σ(i) is agent i’s match

under σ. Any submatching σ is also interpreted as a set of agent-house pairs: {(i, h) : σ(i) = h}.
If Nσ ∩ Nσ′ = ∅ = Hσ ∩Hσ′ then σ ∪ σ′ : Nσ ∪ Nσ′ → Hσ ∪Hσ′ maps i to σ(i) if i ∈ Nσ and

to σ′(i) otherwise. If Nµ = N , then µ is a matching. Matchings are also denoted as vectors

with the understanding that the ith component of µ represents µ(i). The sets of all matchings

and respectively of all submatchings, that are not themselves matchings, are M and M. The

submatching that matches no one, ∅, is an element of M. The sets of unmatched agents and

houses at some σ ∈M are denoted Nσ and Hσ.

I use Pycia and Unver’s [28] ingenious terminology to define Papai’s [26] hierarchical ex-

change mechanisms. For any fixed σ ∈ M define an ownership function oσ : Hσ → Nσ,

with the understanding that agent oσ(x) owns house x at the submatching σ. Any set of own-

ership functions o = (oσ)σ∈M where oσ(x) = oσ′(x) holds for any two submatchings σ ⊂ σ′ with

oσ(x) /∈ Nσ′ and x /∈ Hσ′ defines a hierarchical exchange mechanism. So ownership persists in

the sense that agent i /∈ Nσ′ owns house x /∈ Hσ′ at σ′ if i owns x at a submatching σ of σ′. The

outcome of any hierarchical exchange mechanism is determined through the following trading

process.5

To begin let σ1 = ∅ and k = 1. Round k: each house h ∈ Hσk points to its owner oσk(h),

each agent i ∈ Nσk points to a house in Hσk . Define σ∗ as the submatching that matches each

agent in some pointing cycle to the house he points to. Let σk+1 = σk ∪ σ∗. Terminate the

mechanism if σk+1 is a matching. If not, go on to round k + 1.

At the start of a hierarchical exchange mechanism, agents are asked to point to houses.

Houses in turn point to their owners. At least one cycle of agents and houses forms. Any agent

in such a cycle is matched with the house he points to and leaves the mechanism. When an

owner of multiple houses leaves, his unmatched houses are passed on to the remaining agents

according to the inheritance rule implied by the ownership functions. The remaining agents

are then asked to point to the remaining houses. The procedure is repeated until each agent is

matched. If ôσ(h) only depends on | Nσ |, the number of agents already matched under σ, then

5The restriction to hierarchical exchange mechanisms is not costless. Pycia and Unver [28] define a class of

problems in which hierarchical exchange mechanisms are strictly Lorenz-dominated by some other strategy proof,

Pareto optimal, and non-bossy mechanisms. Abdulkadiroglu, Che, and Yasuda [3] show that the use of ordinal

mechanisms when agents have cardinal utilities may lead to welfare losses, Pycia [29] shows that these losses can

be arbitrarily large.

3



ô is a serial dictatorship. If o∅(h) 6= o∅(h
′) holds for all h 6= h′, then o is Gale’s top trading

cycles mechanism.

For any fixed hierarchical exchange mechanism o and any permutation p : N → N define

a permuted hierarchical exchange mechanism p�o via (p�o)σ(h) = p(oσ◦p(h)) for all

σ ∈M.6 Under p�o agent p(i) takes on the role of agent i under o. If agent i is the ith dictator

according to the serial dictatorship ô then agent p(i) is the ith dictator according to p�ô. If

agent 1 is endowed with houses {e, g, h} at the start of some hierarchical exchange mechanism o

(o∅(e) = o∅(g) = o∅(h) = 1), then agent p(1) is endowed with these houses at the start of p�o.

3 Boundedly Rational Behavior

Fixing N and H, a housing problem is a profile c := (ci)i∈N , where ci : P(H) \ {∅} → H

is agent i’s choice function and ci(S) ∈ S is agent i’s choice from the set S. A choice function

ci is rationalizable if there exists a transitive and complete preference %i, such that ci maps

any S ⊂ H to the %i-maximal element in S.7 Agent i lightly prefers house x to house y if

x = ci(S) holds for some y ∈ S ⊂ H; he solidly prefers x to y, if x ∈ S ⊂ H implies y 6= ci(S).

If i lightly prefers x to y I write xP ∃i y, if his preference is solid I write xP ∀i y. A matching µ′ P ∀-

Pareto-dominates (P ∃-Pareto-dominates) another matching µ′ 6= µ if µ′(i) 6= µ(i) implies

µ′(i)P ∀i µ(i) (µ′(i)P ∃i µ(i)) for all i. A matching µ is P ∀-Pareto-optimal (P ∃-Pareto-optimal)

if there exists no matching µ′ that P ∀-Pareto-dominates (P ∃-Pareto-dominates) it.8

The mechanism o implements the matching o(c) in a housing problem c, if o(c) results

when any agent at any round of the mechanism points to his choice out of all remaining houses.9

If c is rationalizable, agent i points to his most preferred remaining house at any round. A

mechanism o is said to p-implement a matching µ in housing problem c if µ = (p�o)(c) holds

for some permutation p.

6Abusing notation let p be the restriction of the original permutation p for which σ ◦ p is well-defined.
7Standard housing problems, profiles of linear orders (%i)i∈N on H, are embedded in the set of housing

problems. Given that agents are represented via choice functions (not correspondences), the presence of boundedly

rational behavior is the only difference between the present and the standard definition of housing problems.
8The notion of solid preference P ∀ is identical with (or very similar to) the notions of preference that Bernheim

and Rangel [9], Mandler [22], and Green and Hojman [17] use to compare outcomes in terms of individual

and collective welfare. Rubinstein and Salant [30] show that this notion may not generate the relevant welfare

preference.
9In a working paper version I show that Theorem 1 extends to more general assumptions on behavior. While

my behavioral assumptions pertain to the trading process de Clippel’s [11] behavioral assumptions abstract away

from the process and directly apply to the mechanism as a mapping from set of simultaneous choices to outcomes.
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4 The Result

With boundedly rational behavior hierarchical exchange mechanisms are Pareto optimal in the

following sense:

Theorem 1 Fix a housing problem c and a hierarchical exchange mechanism o. Any P ∃-Pareto

optimum is p-implementable by o. Any matching that is p-implementable by o is P ∀-Pareto

optimal.

For the proof of the first part I fix a P ∃-Pareto optimum µ and show the agents can be

ordered such that no agent would choose a lower ranked agent’s match under µ if his own match

under µ is available. To illustrate the remaining arguments assume that this ordering ranks any

i above all j > i. Define an assignment p of agents to roles in o such that agent i controls µ(i) at

the submatching of µ that matches the i− 1 highest ranked agents: {(1, µ(1)), (2, µ(2)), . . . , (i−
1, µ(i − 1))}. Assume for now that exactly one pointing cycle forms at each round of the

mechanism p�o at c. By the definition of p agent 1 owns house µ(1) when the mechanism

starts. By the construction of the ordering agent 1 chooses µ(1) out of the set of all houses.

So µ(1) and 1 form a cycle and the submatching ({1, µ(1)}) is reached in the first round. By

the definition of p agent 2 owns house µ(2) at {(1, µ(1))}; by the construction of the ordering 2

chooses µ(2) out of all remaining houses and {(1, µ(1)), (2, µ(2))} is reached in the second round.

Proceeding inductively, µ = {(1, µ(1)), (2, µ(2)), . . . , (n, µ(n))} is reached in the nth (and last)

round. The proof adapts the above arguments to the general case with any ordering and multiple

cycles in one round.

Proof To prove the first part fix a P ∃-Pareto-optimal µ. Then, I claim there exists an ordering

f : {1, . . . , n} → {1, . . . , n} of the agents such that µ(f(i)) ∈ S and j > i imply cf(i)(S) 6=
µ(f(j)). So the ith agent (according to the ordering f) never chooses a match µ(f(j)) of a

lower ranked agent f(j) with j > i if µ(f(i)), his own match under µ, is available. To see this

suppose there was no agent i∗, who chooses µ(i∗) whenever it is available. So suppose that for

each agent i there exists a set Si ⊂ H, such that µ(i) ∈ Si and µ(i) 6= ci(Si). Now let each agent

i point to the agent who is matched with ci(Si) under µ. The matching µ′, with µ′(i) = ci(Si)

for any agent i in some pointing cycle and µ(i) = µ′(i) otherwise, P ∃-Pareto dominates µ, a

contradiction. So some agent i∗ chooses µ(i∗) whenever it is available. Set f(1) : = i∗. Since

the restriction of µ to N \ {f(1)} and H \ {µ(f(1))} is also P ∃-Pareto-optimal, the inductive

application of the above arguments implies the existence of the ordering f .

For each i define µi as the submatching of µ that matches the first i − 1 agents according

to the ordering f , so µi := {(f(1), µ(f(1))), (f(2), µ(f(2))) . . . (f(i − 1), µ(f(i − 1)))}. Define p
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such that (p�o)µi(µ(f(i))) = f(i) for all i ∈ N .10 So p is such that the ith agent in the ordering

owns his match under µ at the submatching of µ that matches all agents who are ordered before

him.

I show next that any round of p�o at c that starts with a submatching σ ⊂ µ must end

with a submatching σ′ ⊂ µ. Fix any σ ⊂ µ. To see that house µ(f(i)) ∈ Hσ is owned

by an agent f(j) with i ≥ j, suppose some agent f(j) owns a house µ(f(i)) with j ≥ i (so

(p�o)σ(µ(f(i))) = f(j)). Since σ ⊂ µ and µ(f(i)) /∈ Hσ agent f(i) is not matched at σ. Since

p�o is a hierarchical exchange mechanism and since neither house µ(f(i)) nor agents f(i) and

f(j) are matched under µi ∪ σ we obtain

f(j) = (p�o)σ(µ(f(i))) = (p�o)σ∪µi(µ(f(i))) = (p�o)µi(µ(f(i))) = f(i),

where the last equality follows from the definition of p. We can conclude that (p�o)σ(µ(f(i))) =

f(j) implies i ≥ j and any house µ(f(i)) points to an agent f(j) with i ≥ j. Since cf(j)(Hσ) =

µ(f(i)) implies i ≤ j any unmatched agent f(j) points to a house µ(f(i)) with i ≤ j. Conse-

quently any cycle at σ involves just one agent f(j) and his match µ(f(j)) and any round starting

with a submatching σ ⊂ µ ends with a submatching σ′ ⊂ µ. Since the trading process starts

with ∅ ⊂ µ and since it must end with a matching, we obtain (p�o)(c) = µ and thereby the first

part of Theorem 1.

To see the second part of Theorem 1 fix any µ = (p�o)(c). Assume w.l.o.g. that agents

{1, . . . , j} are matched in the first round of the mechanism. So for each i ≤ j µ(i) is P ∀i -optimal

in H. By the same argument, house µ(i) is P ∀i -optimal in H \ {µ(1), . . . , µ(j)} if agent i is

matched in the second round. Proceeding inductively, we see that µ is P ∀-Pareto-optimal. �

To see that the set of matchings implementable through hierarchical exchange is gener-

ally strictly nested between the sets of P ∃- and P ∀-Pareto optima consider the following two

examples. Example 1 shows that some P ∃-Pareto-inferior matchings are p-implementable by

any hierarchical exchange mechanism. Example 2 shows that not every P ∀-Pareto-optimal

matching is p-implementable. For both examples let H = {x, y, z, w}, N = {1, 2, 3, 4} and let

x �∗i y �∗i z �∗i w rationalize the choice function c∗i . Arbitrarily fix all choices that are not

explicitly mentioned.

10To see that p is well-defined note that p declares agent f(i) to be the owner of µ(f(i)) at µi. Since any

µ(f(j)) with j < i is matched under µi the role of owner of µ(f(i)) at µi differs from the role of owner of µ(f(j))

at µj ⊂ µi for any j < i. So p specifies a role for agent f(i) that differs from the all roles to which p assigns the

agents f(j) with j < i. Since there are equally many roles as there are agents, p is a well-defined bijection.
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Example 1 Define cα such that cα1 : = c∗1, c
α
2 : = c∗2, c

α
3 (S) : = y if y ∈ S, cα3 ({x, z, w}) : = w,

cα3 ({z, w}) : = z, cα4 (S) : = x if x ∈ S, cα4 ({y, z, w}) : = z, and cα4 ({z, w}) : = w. The matching

µα : = (x, y, z, w) is not P ∃-Pareto-optimal in cα since cα3 ({x, z, w}) = w and cα4 ({y, z, w}) = z

imply wP ∃3 z and zP ∃4 w. Fix any hierarchical exchange mechanism o and define p such that

1 initially owns x and 2 owns y at the submatching {(1, x)}, formally (p�o)∅(x) : = 1 and

(p�o){(1,x)}(y) : = 2. If there are exactly two owners at {(1, x)} under p�o, 3 is the other

owner, if there are three owners, let (p�o){(1,x)}(w) = 4. In the first round of the mechanism

agents 1, 2, and 4 point to x while 3 points to y = cα3 (H). Each house h points to its owner

(p�o)∅(h), so house x points to 1. Moreover, y cannot point to 3, since (p�o){(1,x)}(y) = 2

implies (p�o)∅(y) 6= 3. Exactly one cycle forms, and the submatching {(1, x)} is reached. At

{(1, x)} agents 2 and 3 point to y = cα2 ({y, z, w}) = cα3 ({y, z, w}). Given that agent 2 owns

house y at {(1, x)}, agent 2 and y form a cycle. This is the only cycle: if 4 owns a house at

{(1, x)} he points to cα4 ({y, z, w}) = z which is owned by 3 at {(1, x)}. Only 3, 4, z and w are

left in the next round. Since cα3 ({z, w}) = z and cα4 ({z, w}) = w the desired matching obtains:

(p�o)(cα) = µα.

Example 2 Define cβ such that cβi : = c∗i for i 6= 3, cβ3 (S) : = y if y ∈ S, cβ3 ({x, z, w}) : = z,

and cβ3 ({z, w}) : = w. The matching µβ : = (x, y, z, w) is P ∀-Pareto optimal in cβ. Suppose

o(cβ) = µβ held for some hierarchical exchange mechanism o. Since cβi (H) equals x for agents

i = 1, 2, and 4 while it equals y for agent i = 3 and since the first round must produce a

submatching σ ⊂ µβ only agent 1 and house x are matched in that first round. By the same

logic, only agent 2 and house y are matched in the second round. In the third round, agents 3

and 4 point to cβ3 ({z, w}) = w and cβ4 ({z, w}) = z, contradicting o(cβ) = µβ.

The next example shows that serial dictatorship and Gale’s top trading cycles may p-

implement different sets of matchings with boundedly rational agents. The example sheds some

light on possible extensions of the growing literature on the equivalence between random serial

dictatorship and other random matching mechanisms. According to random serial dictatorship

the order of all agents as dictators is drawn from a uniform distribution over all such orders.

Abdulkadiroglu and Sönmez [1] and Knuth [20] independently found that random serial dicta-

torship is identical to the “core from random endowments” which starts Gale’s top trading cycles

from an endowment that has been randomly drawn from a uniform distribution over all possible

endowments.11 Example 3 shows that the supports of the two random matching mechanisms

differ with boundedly rational behavior.

11This result has been extended to larger sets of mechanisms by Carroll [10], Pathak and Sethuraman [27], Liu

and Pycia [21] and Bade [8].
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Example 3 Let H = {x, y, z}, N = {1, 2, 3} and define cγ such that cγ1({x, y, z}) : = x,

cγ1({x, z}) : = z, cγ2({x, y, z}) : = y, and cγ2({y, z}) : = z. Let x �γ3 y �
γ
3 z rationalize cγ3 . Gale’s

top trading cycles with the initial endowment µγ : = (x, y, z) implements µγ in cγ given that

agents 1 and 2 choose µγ(1) and µγ(2) out of the grand set. For µγ to be p-implementable

via serial dictatorship either 1 or 2 has to be the first dictator. But if either 1 or 2 is the first

dictator, neither one of the two remaining agents would pick µγ(i) as the second dictator.

The choice behavior assumed in Examples 1, 2, and 3 is not wildly irrational. Quite to

the contrary the behavior in each of these examples only minimally deviates from rationality.

To make this statement precise requires a formal way of measuring the degree of irrationality.

However, different theories in the literature use different measures of irrationality. Behavior that

is sequentially rationalizable following Manzini and Mariotti [24] is minimally irrational if two

rationales suffice to explain it. Behavior that can be explained as choices via checklist following

Mandler [23] is minimally irrational if the checklist has length two. The minimal game tree that

may explain boundedly rational behavior following Xu and Zhou [33] has two agents and two

nodes. Kalai, Rubinstein and Spiegler [18], Ambrus and Rozen [6], Apesteguia and Ballester [5]

and Manzini and Mariotti [25] define yet further measures of irrationality.

All these theories agree that ci has to violate WARP at least once to qualify as boundedly

rational. To judge whether ci is minimally irrational according to the theories mentioned above

we need to know ci(S) for a variety choice sets S. Consider a choice set with three elements.

Appropriately renaming of the choice set as X = {x, y, z}, ci({x, y, z}) = x and ci({x, y}) = y

must hold for ci to violate WARP. For ci to be minimally irrational some theories then require

the choice ci({y, z}) = z; others do not.12 What stands out about Examples 1, 2, and 3

is that all choice functions in these examples are either rationalizable or they violate WARP

exactly once. The omission of some (arbitrarily fixed) choices turns out to be more than a

notational convenience. These omitted choices were not used to establish any of the points

made in the examples and we may fix them to fit any desired notion of minimal irrationality.

In sum we obtain that, no matter how little irrationality we permit in housing problems and

no matter which theory we use to measure the degree of irrationality, some P ∀−Pareto-optimal

matchings are not implementable by any hierarchical exchange mechanism and some P ∃-Pareto

dominated matchings are p-implementable by any hierarchical exchange mechanism. Finally,

serial dictatorship and Gale’s top trading cycles p-implement different sets of matchings - even

12For ci to be rationalizable by two sequential rationales following Manzini and Mariotti [24] ci({y, z}) = z

must hold. However, in the framework of Kalai, Rubinstein and Spiegler [18], two rationales suffice to rationalize

ci, whether we let ci({y, z}) = z or ci({y, z}) = y.
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if we allow only minimal deviations from rationalizability.

5 Conclusion

Hierarchical exchange mechanisms can be viewed as a version of free trade in matching environ-

ments, where indivisible goods have to be matched to agents without recourse to prices. At any

moment in the mechanism, each house is owned by someone, in the sense that the owner can

freely appropriate or exchange the house. Hierarchical exchange mechanisms allow for a broad

and fine spectrum of initial endowments, ranging from maximal to minimal inequality (from

serial dictatorship to Gale’s top trading cycles).13 Since the results presented here hold for all

hierarchical exchange mechanisms, they automatically hold for any subset thereof. The results

apply in particular if we adopt a more restrictive notion of free trade for matching environments

such as Abdulkadiroglu and Sönmez’ [2] top trading cycles mechanisms or Gale’s top trading

cycles.

Identifying hierarchical exchange mechanisms with free trade the main results of the paper

can be interpreted as versions of the first and second fundamental theorem of welfare economics

for the case of boundedly rational behavior.14 The second part of Theorem 1 corresponds to a

First Welfare Theorem for solid preferences: any matching that arises out of free trade is P ∀-

Pareto optimal. The first part corresponds to a Second Welfare Theorem for light preferences:15

any P ∃-Pareto optimum can be p-implemented by any hierarchical exchange mechanism. Ex-

13The analogy has its limits. Owners are, for example, neither allowed to destroy their houses nor to determine

the heirs of their houses as they leave the mechanism.
14All fundamental theorems of welfare economics with boundedly rational agents that I am aware of concern

market environments with divisible goods. Bernheim and Rangel [9] prove a First Welfare Theorem for markets

that are standard except for the assumption that the agents’ behavior need not be rationalizable. Their notion of

Pareto optimality relies on a notion of preferences that is very similar to the solid preferences defined here. This

result aligns with the first inclusion relation of Theorem 1. Interestingly, Mandler [22] proves a version of the

Second Welfare Theorem that also defines Pareto optimality with respect to P ∀-preferences. This discrepancy is

explained by Mandler’s [22] assumption that agents act fully rationally according to their solid preferences. In

Mandler [22] the choice functions only serve to construct these preferences, individuals are always willing to select

any preference-maximal element of a choice set. I, in contrast, not only use the choice functions to construct

the P ∀-preferences; I also impose that for any agent’s choice in a mechanism there needs to be some set that is

consistent with the underlying facts, such that the agent’s choice can be construed as a choice from this set. The

same comments apply to the comparison between my results and the welfare theorems in Fon and Otani [16].

However there is an additional difference as Fon and Otani [16] assumes intransitive and incomplete preferences.

The assumption of such preferences rules out many irregularities that are permissible in the present framework.
15Due to the finiteness of matching problems this Second Welfare Theorem does without local nonsatiation or

convex upper contour sets.
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amples 1 and 2 show that the respective stronger versions of the two fundamental theorems

do not hold: Some matchings that arise out of free trade are not P ∃-Pareto optimal and some

P ∀-Pareto optima cannot be achieved through free trade.

As a further step one could explicitly model the reasons for particular forms of bounded

rationality and/or decision procedures. One could, for example, assume that patients do have

(linear) preferences over kidneys, but that it is costly to learn these preferences. In this case the

observed bounded rationality can be derived from a fully rational (but unobserved) preference.

An allocation mechanism would then interact with some form of strategic information acquisi-

tion. Bade [7] shows that serial dictatorship is the only ex ante Pareto optimal, non-bossy and

strategy proof mechanism in a matching environment with endogenous information acquisition.

Similarly, one could explicitly model the interaction between family members when selecting a

mechanism for school choice.
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