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Abstract 
 
 

CD200 is a transmembrane protein with known immunoregulatory activities exerted via its 

receptor, CD200R. The Kaposi’s sarcoma associated-herpesvirus (KSHV) ORF K14 lytic 

cycle gene product, vOX2, shares 36% protein identity with cellular CD200. Both vOX2 and 

CD200 ligate CD200R with similar affinity. The main aim of this project was to determine 

whether vOX2 and CD200 regulate the function of human leukocytes. Thus, vOX2, CD200 

and an inactive KSHV protein KCPmut were fused to the Fc region of human IgG1. 

vOX2:Fc and CD200:Fc exerted no effect upon isolated neutrophils, but suppressed 

granulocyte oxidative activity in whole blood by up to 25%. B lymphoblastoid cells were 

engineered to express full-length vOX2 or CD200 and utilized as antigen-presenting cells for 

Epstein Barr Virus-specific human T cell clones. vOX2 and CD200 suppressed IFNγ 

production by up to 50% in seven CD8+ CD200R+ T cell clones and one CD4+ CD200R+ 

clone. Mechanistically, vOX2 and CD200 suppressed the phosphorylation of ERK1/2, p38 

and Akt kinases. This is the first evidence of a role for both cellular CD200 and KSHV 

vOX2 in negatively modulating antigen-specific T cell activity. The negative regulation of T 

cells by vOX2 probably contributes to KSHV evasion of antigen-specific T cell responses 

during lytic replication.  
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HIV   Human immunodeficiency virus 
HLA   Human leukocyte antigen 
HMEC   Human microvascular endothelial cells 
HOCl   Hypochlorous acid 
HRP   Horseradish peroxidase 
HSV   Herpes simplex virus 
HVS   Herpesvirus saimiri 
ICAM-1  Intercellular adhesion molecule 1 
IFA   Immunofluorescence assay 
Ig   Immunoglobulin 
IgSF   Immunoglobulin Superfamily 
IL   Interleukin 
IL8RB   Interleukin 8 receptor beta 
IFN   Interferon 
IM   Infectious mononucleosis 
iNOS   Inducible nitric oxide synthase 
IP3    Inositol 1,4,5-triphosphate 
IP10   Interferon-inducible protein 10 
IRF   Interferon regulatory factors 
ISRE   Interferon-stimulated response element 
ITAM   Immunoreceptor tyrosine-based activation motif 
JNK   c-Jun amino-terminal kinase 
KCP   KSHV complement control protein 
KS   Kaposi’s sarcoma 
KSHV   Kaposi’s sarcoma-associated herpesvirus 
LAL   Limulus amoebocyte lysate 
LANA   Latency-associated nuclear antigen 
LAT   Linker for activation of T cells 
LBP   Lipopolysaccharide binding protein 
LCL   Lymphoblastoid cell line 
LEC   Lymphatic endothelial cell 
LPS   Lipopolysaccharide 
mAb   Monoclonal antibody 
MAPK   Mitogen activated protein kinase 
MCD   Multicentric Castleman’s Disease 
mCD200/R  Murine CD200 / CD200 receptor 
MCP-1   Monocyte chemotactic protein 1 
MDM   Monocyte-derived macrophage cells 
MHC   Major histocompatibility complex 
MIF   Macrophage migration inhibitory factor 
MIP   Macrophage inflammatory protein 
MIR   Modulator of immune recognition 
M-MLV RT  Moloney Murine Leukemia Virus Reverse Transcriptase 
MM   Multiple myeloma 
MPO   Myeloperoxidase 
mRNA   Messenger ribonucleic acid 
MS   Multiple sclerosis 
MV   Myxoma virus 
NADPH  Nicotinamide adenine dinucleotide phosphate 
NFAT   Nuclear factor of activated T cells 
NF-κB   Nuclear factor-κ B 
NK   Natural killer cell 
NO   Nitric oxide 
NOD   Non-obese diabetic mice 
NOS   Nitric oxide synthase 
ORF   Open reading frame 
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PAMP   Pathogen-associated molecular patterns 
PBMC   Peripheral blood mononuclear cell 
PBML   Peripheral blood mononuclear leukocyte 
PBS   Phosphate buffered saline 
PCR   Polymerase chain reaction 
PECAM  Platelet/endothelial cell adhesion molecule   
PEL   Primary effusion lymphoma 
PFA   Paraformaldehyde 
PFU   Plaque-forming units 
PHA   Phytohaemagglutinin 
PHOX   Phagocyte oxidase 
PI3K   Phosphatidylinositol 3-kinase 
PIP2   Phosphatidylinositol-4,5-biphosphate 
PKB/C   Protein kinase B or protein kinase C 
PKR   Protein kinase dsRNA-regulated 
PMA   Phorbol 12-myristate 13-acetate 
PVDF   Polyvinylidene fluoride 
RA   Rheumatoid arthritis 
rCD200/R  Rat CD200 / CD200 receptor 
RDA   Representational difference analysis 
(t)RBF   (Telomerised) rhesus fibroblasts 
RCP   RRV complement control protein 
RFP   Red fluorescent protein 
RLU   Relative light units 
ROS   Reactive oxygen species 
RRV   Rhesus rhadinovirus 
RTA   Replication and transcription activator  
SCID   Severe combined immunodeficiency 
SDS-PAGE  Sodium dodecyl sulphate polyacrylamide gel electrophoresis 
SEM   Standard error of the mean 
SHIP   Src homology 2 domain containing inositol phosphatase 
siRNA   Short interfering ribonucleic acid 
SLP-76   Src homology 2 domain-containing leukocyte protein of 76 kDa 
SOX   Shutoff and endonuclease 
SPR   Surface plasmon resonance 
Stat4   Signal transducer and activator of transcription 4 
STI   Sexually transmitted infection 
TAP   Transporter associated with antigen processing protein 
T-bet   T box transcription factor 
TCR   T cell receptor 
Th   T helper cell 
TGFβ   Transforming growth factor-β  
TLR   Toll-like receptor 
TMB   3,3’5,5’-Tetramethyl-benzidine 
TNF   Tumour necrosis factor 
TPA   12-O-tetradeconoylphorbol-13-acetate 
Treg   Regulatory T cell 
TRIM   T cell receptor-interacting molecule 
UL   Unique long region 
US   Unique short region 
VEGF   Vascular endothelial growth factor 
VSV-G   Vesicular stomatitis virus envelope glycoprotein 
WT   Wild type 
Zap70   ζ-chain associated protein kinase 70  
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Chapter 1.   Introduction 

 
Though Kaposi’s sarcoma (KS) was described in the nineteenth century, its aetiological 

agent, Kaposi’s sarcoma-associated herpesvirus (KSHV), was not identified until 1994 

(Chang et al., 1994). KSHV is also the aetiological agent of primary effusion lymphoma 

(PEL) and Multicentric Castleman’s disease (MCD) (reviewed by Rezaee et al., 2006). 

Proteins encoded by the virus appear to exert immunoregulatory effects upon the infected 

individual, and thus may be potential therapeutic agents for the treatment of autoimmune 

diseases and transplant recipients. 

The overall aim of this research project was to elucidate the mechanisms of action of 

KSHV vOX2 and its cellular counterpart, CD200, on innate and adaptive immunity in vitro 

and ex vivo (see Section 1.9 for specific objectives). This introduction provides a brief 

history of KS and the identification of KSHV as an infectious aetiological agent. The vOX2 

protein expressed by a KSHV lytic gene, ORF K14, and its cellular counterpart, CD200, a 

protein with known immunoregulatory activities are then discussed, followed by an overview 

of innate and adaptive immune responses, focusing on neutrophils, monocytes and T cells. 

Experimental methodologies are explained in detail in Chapter 2. The activities of 

recombinant soluble forms of vOX2 and CD200 on human granulocytes, monocytes and 

lymphocytes are described in Chapters 3 and 4. Data presented in Chapter 5 illustrate the 

roles of native vOX2 and CD200 expressed on the surface of antigen-presenting cells 

(APCs) in modulating the response of antigen-specific human T cell clones to stimulation. 

The mechanism behind the suppression of T cell activity by vOX2 and CD200 is examined 

in Chapter 6. Data presented in Chapter 7 relate to the expression of CD200R, the cognate 

receptor for CD200, by human T cells. Another viral homologue of CD200 encoded by 

rhesus rhadinovirus (RRV), and three human cytomegalovirus (CMV) proteins are described 
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in Chapter 8 with reference to their role in modulating the activity of human T cell clones. 

Methodologies are described in detail in Chapter 2 and will be referred to throughout, and 

lists of materials and raw data are included in the Appendices. Final conclusions are drawn in 

Chapter 9.     

Names originally assigned to the proteins and viruses of interest in this thesis have 

altered over the years. KSHV was formally named human herpesvirus 8 (HHV-8), but will 

be referred to as KSHV in this thesis, out of respect for the scientists who isolated it (Chang 

et al., 1994). CD200, a human glycoprotein originally named OX-2, will be referred to by its 

newer title of CD200. 

1.1. Herpesviruses 

 
The herpesviruses share a structure distinct from any other virus, with an outer envelope 

enclosing a proteinaceous tegument, surrounding an icosahedral protein capsid which itself 

encloses a double-stranded DNA genome of 125-290 kbp (Davison et al., 2009). KSHV, like 

all herpesviruses, exists in two replicative states, latent and lytic. Latently infected cells 

contain an extrachromosomal circularised genome, known as an episome (reviewed by Wen 

and Damania, 2009). The infected cells contain very few viral transcripts and no viral 

particles as the virus does not replicate during latency. Therefore, latency allows the virus to 

remain dormant in the host due to the minimal expression of viral antigens, thus reducing the 

immune response. However, replication of the virus is essential for maintaining infection. 

The replicative phase of the viral lifecycle is known as the lytic cycle, and requires the 

transcription of genes that mediate the switch from latency to lytic replication (see Section 

1.3.3). Genes are expressed in sequence during lytic replication, and can be subdivided into 

immediate-early genes that are regulators of transcription, and early or late genes, 

responsible for viral DNA synthesis and virion assembly (Wen & Damania, 2009). 
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Figure 1.1 Herpesviridae phylogenetic tree. The distribution of herpesviruses within three subfamilies of the 

Herpesviridae family (prior to the revised taxonomic classification (Davison et al., 2009)). The phylogenetic 

relationship of 36 herpesviruses to six representative viruses (boxed) was determined. They were divided into 

subfamilies by PCR strategies using consensus-degenerate hybrid oligonucleotide primers (CODE-HOP) 

derived from a gene encoding a DNA polymerase that is highly conserved across the Herpesviridae family. The 

illustration is reproduced from Rose (Rose, 2005).   

 

Three families of Herpesviridae are incorporated into the order Herpesvirales. The 

Herpesviridae family comprises mammalian, bird and reptile herpesviruses, the 

Alloherpesviridae comprises fish and frog herpesviruses, and a bivalve herpesvirus is the 

sole member of the Malacoherpesviridae family (Davison et al., 2009). The family 

Herpesviridae is further divided into three subfamilies, the alphaherpesvirinae, 

betaherpesvirinae and gammaherpesvirinae (Figure 1.1), of which KSHV is a member 

(Davison et al., 2009). The gammaherpesvirinae subfamily encompasses four genera, 

macaviruses, percaviruses, lymphocryptoviruses and rhadinoviruses. The 
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lymphocryptoviruses include Epstein Barr virus (EBV). KSHV is classed as a rhadinovirus 

along with herpesvirus saimiri (HVS), and RRV (Davison et al., 2009). Initially, the γ1-

lymphocryptoviruses were believed to infect only Old World primates, great apes and 

humans, and the γ2-rhadinoviruses to infect New World primates (reviewed by Damania and 

Desrosiers, 2001). However, the discovery of KSHV in humans, in 1994 (Chang et al., 

1994), closely followed by the isolation of RRV from Old World rhesus macaque 

(Desrosiers et al., 1997), disproved this hypothesis. Members of both genera naturally infect 

Old and New World primates.  

1.2. Kaposi’s sarcoma (KS) 

 
First described by the Hungarian physician Moritz Kaposi (originally Kohn), in 1872, KS, a 

dermal pigmented sarcoma, was primarily diagnosed in elderly Mediterranean men. KS 

originally presented as a geographically distinct disease, occurring in equatorial Africa and 

the Mediterranean (reviewed by Cohen et al., 2005). However, a sharp increase in cases of 

KS in homosexual men in the 1980s correlated with human immunodeficiency virus (HIV) 

infection and the acquired immune deficiency syndrome (AIDS) epidemic. Subsequent 

epidemiological studies suggested an infectious causative agent for KS. This agent was 

subsequently identified in 1994 as KSHV (Chang et al., 1994). KS is associated with HIV 

infection, and is an AIDS-defining disease. However, though HIV infection increases the 

risk of developing KS, the main risk factor is infection with KSHV, with or without HIV 

infection (Beral & Newton, 1998).  

 
KS can be subdivided into four clinical categories: 

(i) Classic KS, first identified by Kaposi in elderly Mediterranean men is uncommon 

world-wide, but prevalent in Mediterranean populations. It is usually not the cause of death. 

The disease is isolated to lower limb dermis, the involvement of visceral organs is rare, and 
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progression slow (reviewed by Cohen et al., 2005). Brown et al. examined a cohort of HIV-

negative classic KS patients in Italy to identify possible risk factors for the disease (Brown et 

al., 2006b). Both KS patients and healthy individuals were seropositive for KSHV, though a 

higher proportion of KS individuals had KSHV-infected peripheral blood mononuclear cells 

(PBMCs). EBV was identified in a higher percentage of PBMCs than KSHV in both groups, 

but appeared to be independent of the risk for developing classic KS. Individuals with KS 

exhibited lower concentrations of erythrocytes and lymphocytes (including CD4+ and CD8+ 

T cells), and increased numbers of monocytes. These factors are associated with a higher risk 

for developing classic KS. The individuals with the highest risk for developing KS were 

those below the age of 69 and with low levels of circulating lymphocytes, suggesting that 

pre-existing immunosuppressive factors may increase the risk of KSHV-infected individuals 

developing KS (Brown et al., 2006b). 

(ii) AIDS-associated KS (or epidemic KS) is prevalent in HIV-positive homosexual 

men, but less common in HIV-negative haemophilic patients, and is an AIDS-defining 

condition. These observations suggested that blood is not a primary mode of virus 

transmission. Though the incidence of KS in HIV-positive individuals was once 30-50% 

(Cannon et al., 2003), highly active antiretroviral therapy (HAART) has reduced its 

incidence in HIV-infected populations. Disease onset of AIDS-associated KS is significantly 

more rapid, and progression is more aggressive than the classic form, affecting the visceral 

organs in conjunction with the skin, causing rapid morbidity (reviewed by Horenstein et al., 

2008). 

(iii) Endemic KS, noted in young men and children of equatorial Africa following the 

original descriptions of KS, is now one of the most common cancers in several African 

countries, presumably due to the rapid increase in HIV infection on this continent. Prior to 

the AIDS epidemic, KS was rare in the USA, Europe and Northern and Southern Africa 
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(Parkin, 2006). Since the rapid spread of HIV, KS incidences have increased across the USA 

and Europe and the rest of the developed world (0.1% of total cancer cases), but KS was still 

more prevalent in developing countries in 2002 (1.1% of all cancers). Due lack of data, the 

incidence of KS in developed countries was estimated based on data collected by US 

Surveillance Epidemiology and End Results, a component of the National Cancer Institute 

(Parkin, 2006). KS disease course may be slow or aggressive, depending on the HIV status 

of the individual or perhaps immunological suppression due to exposure to regional volcanic 

soils (Ziegler et al., 2003). The risk for developing KS in Uganda, where it is the most 

common cause of cancer in males, may be attributed to more than just increasing rates of 

HIV-infection. Ziegler and colleagues identified twelve risk factors associated with KS in 

Ugandan patients, including geographical location, wealth, religion, ownership of goats or 

pigs, and alcohol intake (Ziegler et al., 2003). A longitudinal study of the rates of KS in a 

defined region of Uganda (Kampala) between 1991 and 2006 revealed that KS is still the 

most prevalent cancer in males, but that the incidence of KS has declined over time (Parkin 

et al., 2010). The incidence of KS in females of that region has remained constant, but the 

age of onset has increased slightly, from the 20s to the late 30s. These authors suggest that 

the decrease in incidence and increased age of onset of KS may be due to the availability of 

anti-retroviral therapy for HIV infection (Parkin et al., 2010). 

Oral transmission of KSHV between sexual partners or between mother and child 

seems likely (Mbulaiteye & Goedert, 2008). Quantifying KSHV load in breast milk and 

saliva by amplifying the KSHV ORF26 gene by polymerase chain reaction (PCR) revealed 

the absence of KSHV in breast milk from all of the mothers sampled (Brayfield et al., 2004), 

though 29% of the mothers had detectable KSHV in cells isolated from their saliva. 

However, only 21% of infants (up to 12 months old) with anti-KSHV antibodies were born 

to mothers whose saliva was positive for KSHV (Brayfield et al., 2004).  Mbulaiteye and 
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colleagues quantified the KSHV viral load in saliva samples from mothers (with unknown 

HIV status) and their children in Uganda (Mbulaiteye et al., 2006). Two of six mother-child 

pairs who were seropositive for KSHV were infected with the same strain of KSHV 

(genotype A5), sharing 100% homology with the K1 gene, suggesting direct transmission of 

the virus. Amino acid changes in the K1 gene between other mother-child pairs may be due 

to selective pressure on the virus to evolve. However, this study did not identify whether the 

virus was transmitted from mother to child, or vice-versa (Mbulaiteye et al., 2006). Please 

see Section 1.3.8 for further discussion of the modes of transmission of KSHV. 

Whitby and colleagues agreed with the view that endemic forms of KS are attributed 

to environmental factors, and that such factors cause latent KSHV infections to become 

lytically active, thus increasing viral shedding and risk of transmission (Whitby et al., 2007). 

Extracts from plants, marine animals and fungi gathered worldwide were examined for their 

ability to induce lytic replication of KSHV in latently infected BCP-1 cells. 5.1% of 

compounds extracted from African regions were activators of KSHV replication, and were 

more potent activators, in comparison with 4.7% of samples taken from the rest of the world. 

However, the percentages of KSHV-reactivating extracts obtained from both the Caribbean 

and South America (5.6%) and The Philippines and Indonesia (7.2%) were higher than those 

taken from Africa (5.1%). Examining four extracts that appeared to induce KSHV 

reactivation, these authors found that the majority of KSHV messenger ribonucleic acids 

(mRNAs) investigated were induced by exposure to the extracts, including early lytic cycle 

mRNAs of K14, encoding vOX2. The use of many of the activating extracts in medicines, 

basket making and food suggests that a large proportion of the population may be exposed to 

them. A further consideration is the fact that many traditional medicines used in Africa are 

chewed before administration, thus predicting a mechanism for oral transmission of the virus 

(Whitby et al., 2007). Similarly, exposure to saliva by the sucking of insect bites on children 
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by their KSHV-seropositive mothers is a possible mechanism of transmission (Coluzzi et al., 

2003). 

(iv) Iatrogenic KS; KSHV can be transmitted by organ transplantation, primarily to 

recipients of donor kidneys, and involves the visceral organs in nearly 50% of cases. 

Therefore, transplant recipients are at 500-1000 times greater risk than the general 

population of developing KS (the incidence of KS is dependent on geographical location). 

Continued prophylactic immunosuppression subsequent to transplantation extends disease 

progression, which generally spontaneously regresses upon the withdrawal of suppression 

(Cannon et al., 2003).  

1.3. Kaposi’s sarcoma-associated herpesvirus (KSHV) 

1.3.1. The identification and sequencing of KSHV 

 
In 1994 Chang and colleagues discovered a unique virus in KS tissues from AIDS patients 

(Chang et al., 1994). KS had been observed to occur more frequently in homosexual AIDS 

patients as opposed to those with haemophilia, suggesting an infectious causative agent, 

transmitted by certain sexual practices rather than by blood – haemophiliacs are infected 

with HIV through receiving contaminated blood products – though no known virus could be 

identified. The representational difference analysis (RDA) technique was employed to 

identify DNA sequences specific and unique to KS tissue, and absent from healthy tissue. 

Two sequences (330bp and 631bp) showed homology to herpesviruses, principally EBV 

(Chang et al., 1994). This herpesvirus has a double-stranded deoxyribonucleic acid (DNA) 

genome and is associated with nasopharyngeal carcinoma and lymphoma (Young & 

Rickinson, 2004). EBV is also the causative agent of infectious mononucleosis (IM), more 

commonly known in the UK as glandular fever. EBV infects most individuals 

asymptomatically, and is transmitted by oropharyngeal secretions, subsequently infecting B 
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cells (Young & Rickinson, 2004). The unique gamma herpesvirus-related sequences were 

confined almost entirely to KS tissue in AIDS patients, therefore Chang and colleagues 

named the newly identified virus ‘KSHV’. 

Russo et al. published the genomic sequence of KSHV in 1996, following analysis of 

KSHV-infected PEL cell lines (Russo et al., 1996). They compared the KSHV genome with 

that of EBV and HVS and found that the majority of the KSHV genes shared protein identity 

and sequence similarity with those of HVS and EBV. Russo et al. estimated the genome of 

KSHV to be approximately 165kb in size, incorporating a 145kb coding region with 85 

ORFs (Russo et al., 1996). The coding region may be subdivided into seven highly 

conserved regions, separated by genes unique to KSHV or its subfamily (Jarviluoma & 

Ojala, 2006). Concurrently, Moore and colleagues published data confirming that the KSHV 

sequences identified by Chang et al. were similar to those of other gammaherpesviruses, 

especially HVS, but encoded a new, distinct virus (Moore et al., 1996).  

Renne and colleagues generated a body cavity-based lymphoma cell line (BCBL-1) 

for the laboratory culture and propagation of KSHV (Renne et al., 1996b). They analysed 

body cavity-based lymphomas from AIDS patients, and identified one sample infected with 

KSHV in the absence of EBV. Treatment of these cells with a phorbol ester induced cell 

proliferation and cytotoxicity, and increased KSHV DNA copy number. This indicated that 

the cells were latently infected with KSHV, and that lytic replication could be induced 

(Renne et al., 1996b). By analysing KSHV-infected BCBL-1 cells and KS lung lesion tissue, 

Renne and colleagues estimated the genome size of KSHV to be between 160 and 170kb 

(Renne et al., 1996a), thus concurring with Russo et al. KSHV DNA isolated from latently-

infected BCBL-1 cells had a circular episomal conformation, similar in size and structure to 

EBV, whereas BCBL-1 cells treated with 12-O-tetradeconoylphorbol-13-acetate (TPA), a 

phorbol ester that induces lytic replication of the virus, contained linear KSHV DNA (Renne 
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et al., 1996a). The KSHV genome is illustrated in Figure 1.2 (reproduced from Rezaee et 

al., 2006). 

Utilising the herpesvirus-like sequences isolated from KS tissue by Chang et al., 

Ambroziak and colleagues identified a fragment of the KSHV genome in 13 KS biopsies. 

Control skin samples taken from each of the individuals (HIV-positive and negative 

homosexual men) were positive and negative for KSHV, though the positive results were 

later believed to be due to contamination with KS cells. PBMCs isolated from KS patients 

were consistently positive for KSHV, in contrast to those taken from HIV-positive and 

negative controls, with the virus predominantly confined to CD19+ B cells. These authors 

attempted to define the mode of transmission of KSHV, testing semen and saliva for the 

virus, but could not detect the fragment in these fluids by PCR (Ambroziak et al., 1995). 

Huang et al. identified KSHV DNA fragments in AIDS-associated, Classic, and African 

endemic (HIV-infected and HIV-negative) KS lesions. KSHV DNA was absent from HIV-

negative healthy skin samples. Analysis of viral DNA sequences revealed nucleic acid 

alterations in the majority of AIDS-associated and African KS samples, though the viral 

sequence in Classic KS was predominantly unchanged, indicating a divergence of viral 

infection in distinct populations (Huang et al., 1995).  

Zong et al. examined the myriad of studies that used PCR to identify KSHV in 

clinical samples (Zong et al., 2007). In conjunction with several reports successfully 

identifying KSHV in KS lesions or PBMCs, such as Huang et al., 1995, multiple reports 

have been published that falsely claim to identify KSHV in other disease tissues, such as 

multiple myeloma (Rettig et al., 1997). The large number of studies reporting false-positive 

data for KSHV in clinical samples were primarily due to the low copy number of KSHV 

DNA in tissue, the generation of short and incomplete PCR sequences of KSHV genes, and 

contamination of the PCR reactions with KSHV DNA from PEL cell lines in the laboratory 
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(Zong et al., 2007). In fact, contamination of PCR assays was a problem throughout the 

identification of KSHV in clinical samples, and will be discussed further in Section 1.3.8.  

 

 

 

 

Figure 1.2 A genetic map of KSHV. The KSHV genome is approximately 170kbp in size, bordered by direct 

repeats at each end that ligate, resulting in circularisation of the DNA. Proteins encoded by the virus are 

illustrated as alternately coloured regions, depending on their origin of inheritance. vOX2 is encoded by open 

reading frame K14. This Figure is taken from Rezaee et al. (2006). 
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1.3.2. KSHV virion structure 

 
Structurally, KSHV resembles the other members of the Herpesviridae family. It comprises a 

cell-derived lipid envelope, enclosing an icosahedral capsid, in turn encapsidating the 

double-stranded DNA genome (Trus et al., 2001).  

 

 

 

Figure 1.3 A density map of the KSHV capsid (24 Å resolution). A density map of the KSHV icosahedral 

capsid was generated following electron microscopy to visualise KSHV virions. The major capsid protein 

forms hexamers and pentamers, known as structural capsomers, and thus creating the ‘floor’ of the capsid. The 

protruding capsomers are evident on the surface of the capsid, as are the KSHV protein triplexes, the trigonal 

structures on the capsid floor. This Figure is taken from Trus et al. (2001). 

 

 

 

The capsid and envelope are linked by a tegument composed of globular proteins, and viral 

glycoproteins are positioned in the envelope. The viral genome (double-stranded DNA) is 

encapsidated in the nucleus of infected cells. Budding through the inner nuclear membrane 

forms a lipid envelope, and subsequent budding from the outer nuclear membrane releases 

capsids into the cytoplasm (Mettenleiter et al., 2006). Cryo-electron microscopy analysis of 

the KSHV capsid by Trus et al. who isolated KSHV virions from BCBL-1 cells, revealed an 

icosahedral capsid (Figure 1.3) composed of a major capsid protein, two ‘triplex’ proteins, 
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and a minor capsid protein, ORF65 (Trus et al., 2001). Translocation of the capsids to the 

trans-Golgi network is the final stage of viral construction, and is assisted by viral tegument 

proteins. At the trans-Golgi network, viral glycoproteins and tegument proteins are 

assembled and the viral envelope added, creating a virion coated with a cellular vesicle. 

Coating of the virus with a host-derived envelope enables fusion with the host cell’s plasma 

membrane and viral dissemination (Mettenleiter et al., 2006).   

 

1.3.3. KSHV replication 

 
Analogous to other members of the Herpesviridae family, the KSHV lifecycle has both 

latent and lytic replicative phases. A minority of its proteins are expressed during latency, in 

order to avoid detection by the host’s immune system. Lytic replication requires the 

expression of many more proteins, and lytic genes are expressed in phases following 

reactivation of the virus. Sun et al. investigated the kinetics of KSHV gene expression during 

the viral lifecycle (Sun et al., 1999). Treatment of KSHV-infected BC-1 cells, a PEL cell 

line, with sodium butyrate induced the transcription of lytic KSHV genes, and subsequent 

lytic replication of the virus. Immediate-early genes (e.g. ORF50) were defined as those 

resistant to an inhibitor of protein synthesis, cycloheximide; early genes (e.g. ORF K2) were 

resistant to phosphonoacetic acid but not cycloheximide; and late lytic genes (e.g. ORF65) 

were inhibited by both (Sun et al., 1999).  

Latently-infected endothelial ‘spindle’ cells dominate KS lesions (discussed further 

in Section 1.3.4). However, only a small proportion of KSHV-infected endothelial cells are 

able to maintain latent KSHV infection in vitro, illustrated by a loss of viral episomes 

(Grundhoff & Ganem, 2004). These data indicate that lytic replication (as observed in some 

KS tumour cells) is necessary for the maintenance of infection in vivo (Grundhoff & Ganem, 

2004). The latency-associated nuclear antigen (LANA) encoded by ORF73, is one of the few 
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KSHV proteins expressed in cells latently infected with KSHV. LANA prevents lytic 

replication of KSHV by silencing the expression of genes that mediate the switch between 

latency and lytic replication, including the KSHV replication and transcription factor (RTA) 

encoded by ORF50. Li et al. generated a LANA deletion mutant of KSHV within a bacterial 

artificial chromosome (BAC), and infected an endothelial cell line with the recombinant 

virus (Li et al., 2008). Deleting LANA increased the number of infectious KSHV virions 

secreted into the culture supernatant by infected cells, indicating increased lytic replication. 

RTA transcripts were amplified in cells infected with LANA-negative KSHV, along with 

MTA transcripts (ORF57) and protein expression (Li et al., 2008). MTA is essential for 

KSHV lytic replication, and binds directly to RTA, forming a complex that can then bind to 

KSHV gene promoters, thus initiating gene transcription and thus promoting the switch to 

lytic replication (Palmeri et al., 2007). RTA induced the expression of MTA and other lytic 

genes ORF59 and ORF-K8.1 (Li et al., 2008). Thus, expression of LANA inhibits the 

concurrent expression of RTA, and the silencing of LANA increases RTA expression, in turn 

increasing lytic gene expression and viral replication.    

So, the repression of RTA by LANA must be removed in order for KSHV to switch 

from latency to lytic replication. Cheng et al. identified two cellular kinases, Pim-1 and Pim-

3 that could reactivate recombinant KSHV in epithelial (Vero) and endothelial cells (Cheng 

et al., 2009). Recombinant KSHV is a double-reporter virus that constitutively expresses 

green fluorescent protein (GFP). Upon lytic replication, recombinant KSHV expresses red 

fluorescent protein (RFP) by the activity of the RTA-responsive promoter of polyadenylated 

nuclear RNA (PAN), an abundant KSHV lytic transcript. Pim-1/3 interacted directly with 

LANA in reactivated KSHV-infected cells, but not in latently infected cells, phosphorylating 

the LANA protein. The Pim-LANA interaction also prevented the binding of LANA to 

KSHV terminal repeats, thus preventing the LANA-mediated inhibition of lytic gene 
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transcription (Cheng et al., 2009). The mitogen-activated protein (MAP) kinases, 

extracellular signal related kinase (ERK), c-Jun amino-terminal kinase (JNK) and p38, are 

also implicated in KSHV reactivation (Xie et al., 2008). Pharmacological inhibition of the 

ERK, JNK and p38 pathways subsequently suppressed the production of virions by phorbol 

ester-treated BCBL-1 cells, during the early stages of lytic replication. A concurrent 

reduction in the expression of RTA appeared to be due to the indirect inhibition of activator 

protein-1 complex (AP-1), a downstream target of the kinase signalling pathways, and a 

transcription factor that binds to and activates the RTA promoter (Xie et al., 2008).            

Kedes and Ganem examined the abilities of several anti-viral drugs to prevent KSHV 

lytic replication in BCBL-1 cells. Acyclovir, ganciclovir, cidofovir and foscarnet, drugs 

efficacious in the treatment of other human herpesviruses, were studied, with cidofovir 

appearing to exert the most potent inhibition on KSHV replication, whereas a HIV protease 

inhibitor (A77003) had no effect. KSHV seemed to be insensitive to acyclovir. The isolation 

of potential anti-viral treatment for KSHV is important clinically, but also highlights the fact 

that the human herpesviruses are distinct in their responses to anti-viral compounds (Kedes 

& Ganem, 1997). 

 

1.3.4. Transcriptional reprogramming of KSHV-infected cells 

 
KS lesions result from proliferation and vascularisation of endothelial tissue, and may be 

identified by distinctive endothelial ‘spindle’ tumour cells derived from vascular or 

lymphatic tissue. Data presented by Wang and colleagues agree with that of others, 

suggesting that KSHV infects either lymphatic endothelial cells (LECs) or blood vascular 

endothelial cells (BECs), and then induces transcriptional reprogramming of the cells, 

resulting in their de-differentiation (Wang et al., 2004). The analysis of KS tissue biopsies by 

gene expression microarray isolated 1,482 genes specific to KS tissue, including cells 
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expressing markers of both LECs and BECs. The KS signature gene expression was 

associated with more LEC markers, such as CD206, than markers of BECs. The high KSHV 

copy number in LECs suggests that this cell population provides an optimal environment for 

viral replication or viral entry into the cell (Wang et al., 2004).  

Wang and colleagues suggest a mechanism for the KSHV-induced dedifferentiation 

of LECs and BECs. The expression of PROX1, a homeobox transcription factor crucial to 

differentiation of the two cell types by upregulating LEC markers and downregulating BEC 

markers, is increased overall in KS tissue, but specifically downregulated in KSHV-infected 

LECs. This suggests that KSHV induces LECs to de-differentiate towards a BEC phenotype 

(Wang et al., 2004). The work of Hong et al. supports the notion of KSHV-induced 

reprogramming of lymphatic and vascular endothelium (Hong et al., 2004). These authors 

confirmed that the expression of PROX1 is isolated to healthy cultured human LECs, and not 

BECs. The infection of human dermal microvascular endothelial cells (DMVECs) with 

KSHV, upregulated LEC-specific genes including PROX1. These data suggest that an LEC 

phenotype is induced by KSHV-infection. However, only a portion of LEC-specific genes 

were upregulated. The infection of BECs with KSHV also induced PROX1 expression, to a 

level comparable with that in primary LEC. Short interfering RNA (siRNA) silenced the 

expression of PROX1 in KSHV-infected BECs, and downregulated the expression of LEC 

markers induced by KSHV, indicating a primary role for PROX1 in KSHV-mediated 

lymphatic reprogramming (Hong et al., 2004). The above data show that KSHV-infected 

spindle cells do not belong to any specific lineage, thus suggesting that the de-differentiation 

induced by KSHV results in the generation of a new lineage of cells adapted to provide 

optimal conditions for the virus to survive.  

Spindle cells release proinflammatory cytokines, thus promoting the survival of 

KSHV-infected cells within the KS tumour (Grossmann et al., 2006). The expression of the 
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KSHV latent gene product, vFLIP (ORF K13/ORF71) by endothelial cells induces the 

‘spindle’ phenotype and cytokine secretion, via activation of the transcription factor nuclear 

factor-κ B (NF-κB). NF-κB regulates genes that promote cell proliferation and anti-

apoptosis, therefore indicating a means for survival of KSHV-infected spindle cells in vivo 

(Grossmann et al., 2006). 

 

1.3.5. Angiogenic and oncogenic properties of KSHV 

 
The characteristic red pigmented lesions of KS are due to tumour angiogenesis, and 

rupturing of the newly synthesised weak blood vessels. Pro-angiogenic factors have been 

identified in KS lesions, including Int-2, vascular endothelial growth factor (VEGF), and 

angiopoietin-1 and 2 (ANG-1/2) (Kang et al., 2008). KS lesions during early stages of 

pathogenesis are also filled with pro-inflammatory factors such as interferon-γ (IFNγ), 

tumour-necrosis factor-α (TNFα) and interleukin-1β (IL-1β), IL-2, IL-6 and IL-8, produced 

by infiltrating monocytes/macrophages and lymphocytes (Kang et al., 2008). KSHV 

infection causes endothelial cells to upregulate angiogenin, an angiogenic factor that 

increases endothelial cell proliferation and migration to the walls of blood vessels under 

construction (Sadagopan et al., 2009). Both latent (ORF 73, encoding LANA) and lytic 

(ORF 50, encoding RTA) KSHV genes upregulated angiogenin gene expression in 

endothelial cells, and secretion of the protein. Angiogenin could be detected in adjacent 

uninfected cells, indicating that it is endocytosed and therefore can act in a paracrine as well 

as autocrine fashion (Sadagopan et al., 2009). In addition to its role in upregulating 

angiogenesis, angiogenin also increased the survival of KSHV-infected, serum-starved 

endothelial cells, by inhibiting their apoptosis, and thus putatively contributing to KSHV 

oncogenesis (Sadagopan et al., 2009).  
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vIL-6 produced by KSHV infected cells may also play a role in inducing 

angiogenesis. Though the majority of KS lesions contain IL-6, a minority contain vIL-6 and 

both appear to be crucial factors in KS pathogenesis, suggesting that vIL-6 may exacerbate 

the effects mediated by endogenous IL-6 (Aoki et al., 1999). Two KSHV lytic genes 

encoding either glycoprotein B (gB), expressed on the viral envelope and involved in KSHV 

egress, or glycoprotein K8.1 (gK8.1), which facilitates KSHV virion binding to host cells 

and viral egress, induced the production of VEGF by KSHV-infected cells (Subramanian et 

al., 2010). Inhibiting the expression of gB and gK8.1 by transfection of KHSV-infected 

BCBL-1 cells with siRNA directed against the two genes, in turn suppressed the expression 

of VEGF and IL-6, and secretion of VEGF. Inhibiting gB and gK8.1 also reduced capillary 

tube formation by endothelial cells cultured in BCBL-1 conditioned medium (Subramanian 

et al., 2010). Thus, KSHV plays several roles in promoting angiogenesis; the reader can refer 

to Kang et al. for a detailed discussion (Kang et al., 2008).       

Several KSHV proteins have been implicated in promoting tumourigenesis during KS 

pathogenesis. Bais et al. proposed that the viral G protein-coupled receptor (vGPCR) 

encoded by KSHV possesses tumourigenic and angiogenic properties. vGPCR induces 

intracellular signalling cascades subsequent to the phosphorylation of MAP kinases, JNK 

and p38. The KSHV vGPCR is encoded by ORF74, and is commonly observed in KS lesions 

(Bais et al., 1998). These authors expressed the vGPCR in fibroblasts, and injected these 

cells into nude mice (lacking a functional thymus and T cell population). Tumours formed in 

the nude mice and were associated with vGPCR expression. Putative angiogenic properties 

of vGPCR were illustrated by angiogenesis in KSHV-infected mice, and the proliferation of 

endothelial cells cultured in conditioned vGPCR-transfected cell medium (Bais et al., 1998). 

Further in vivo data regarding the role of vGPCR on tumourigenesis were generated by 

Thirunarayanan and colleagues, who demonstrated that tumour formation in nude mice by 
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vGPCR-expressing fibroblasts, could in turn induce tumourigenesis in immunocompetent 

mice (Thirunarayanan et al., 2007). KS occurs in immunocompromised individuals, 

correlating with the formation of vGPCR-expressing tumours in nude mice. However, 

transplantation of vGPCR-expressing tumours from nude mice to immunocompetent mice 

results in rapid oncogenesis and tumour formation in human leukocyte antigen (HLA)-

matched recipients, indicating that vGPCR tumours may develop mechanisms to evade the 

host response (Thirunarayanan et al., 2007). 

KSHV proteins contribute to tumourigenesis by altering the host cell cycle. Cell 

cycle proteins such as cyclin D are crucial for progress of the cell cycle, forming complexes 

with cyclin-activated kinases (cdks), and their interaction is prevented by specific inhibitors 

to prevent aberrant continuous cell cycling. KSHV v-cyclin (encoded by latent gene ORF72), 

a homologue of cyclin D, is resistant to cyclin/cdk inhibitors and thus drives the cell cycle 

resulting in excessive proliferation of cells latently infected with KSHV (Jarviluoma & 

Ojala, 2006). 

LANA plays an important role in KS tumourigenesis as well as in the maintenance of 

KSHV latency. Both LANA expression and KSHV infection upregulate the expression of 

Survivin and the cellular protein it encodes. Survivin is involved in the inhibition of 

apoptosis, and upregulated in many cancers, including lung, breast and prostate (Lu et al., 

2009). LANA upregulates the expression of survivin by forming complexes with Sp-1 and 

p53 transcription factors, which then bind directly to the upstream promoter of Survivin. In 

vivo, KS tissues highly express survivin, and blocking its expression in KSHV-infected cells 

by small hairpin interfering RNA (shRNA) slowed their proliferation (Lu et al., 2009).  

c-Myc, a transcription factor that is found in a mutated form in many cancers, and 

facilitates cell proliferation and survival, is expressed by KSHV-infected PEL cell lines (Liu 

et al., 2007). Though the wild-type form of c-Myc is expressed by KSHV-infected cells, its 
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half-life is prolonged, apparently due to LANA-mediated inhibition of c-Myc 

phosphorylation at threonine 58. The reduced phosphorylation of threonine 58 in the 

presence of LANA, in turn reduces c-Myc ubiquitination, and enhances the phosphorylation 

of the serine 62 residue of c-Myc. The modification of c-Myc phosphorylation by LANA 

contributes to decreased apoptosis and increased c-Myc transcriptional activity, thus 

enhancing oncogenesis (Liu et al., 2007).  

 

1.3.6. Genetic risk factors for KSHV infection and KS development 

 
The genetic profiling of both classic KS patients and KSHV-seropositive individuals 

revealed specific cytokine haplotypes conferring a higher risk for KS development (Brown et 

al., 2006a). Two polymorphisms of Interleukin-8 receptor beta (IL8RB), a gene encoding a 

GPCR with high affinity for IL-8, were associated with reduced incidence of Classic KS 

(Brown et al., 2006a). IL-8 (a neutrophil chemoattractant) is highly expressed in AIDS-KS 

cell lines, KS tissue biopsies, and KS serum, in comparison to controls and promotes cell 

proliferation and angiogenesis (Masood et al., 2001). The KSHV vGPCR is a homologue of 

the human IL-8 receptors, and is constitutively active, stimulating cells to secrete IL-6 and 

IL-8 via the upregulation of cellular transcription factors (Montaner et al., 2004). The 

inflammatory infiltrate characteristic of KS lesions is produced by KSHV-infected spindle 

cells as well as infiltrating monocytes and lymphocytes; it promotes the survival of B cells 

and the development of spindle cells and enhances KSHV DNA load (Monini et al., 1999). 

Though the function of the specific IL8RB polymorphisms associated with reduced KS 

incidence is unknown, it is possible that these receptors have reduced affinity for their 

ligand, thus reducing the IL-8/vGPCR/IL-8R feedback pathway, and altering the 

inflammatory phenotype characteristic of KS lesions. An alteration in cytokine production 

may also impact the T cell response to infection.  
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Foster et al. demonstrated that the inheritance of certain polymorphisms of IL6 

increased the likelihood of HIV-positive homosexual men developing KS (Foster et al., 

2000). Individuals who were homozygous for the IL6-174 GG allele, associated with 

increased IL-6 production, were more likely to develop KS, whereas fewer individuals with 

KS expressed the IL6-174 CC allele, associated with reduced cytokine production (Foster et 

al., 2000). These data support the notion that increased cytokine production is associated 

with increased KS disease pathology.   

Alkharsah et al. reported an association between HLA alleles, responsible for 

presenting viral peptide antigens to T cells, and the shedding of KSHV in saliva (Alkharsah 

et al., 2007). Real-time PCR quantitation of KSHV DNA load in cells from the saliva of a 

large cohort of mothers and children in South Africa revealed an association between the 

HLA-A*68.01 and HLA-DRB1*04 alleles and increased shedding of KSHV in saliva, 

though the increased risk associated with these alleles was for virus shedding, and therefore 

transmission, rather than KSHV infection (Alkharsah et al., 2007). Again, these data suggest 

that suppression of T cell responses, possibly due to inefficient presentation of viral peptides 

by HLA molecules, may underlie the increased KSHV DNA load.    

The statistical analysis of a closely interrelated population in French Guinea with 

high KSHV seroprevalence revealed that KSHV transmission is related to the inheritance of 

an unidentified recessive gene (with unknown function) from mother to child (Plancoulaine 

et al., 2003). The study indicated that the KSHV infection of children born to seronegative 

mothers may be due to genetic susceptibility of the child, who is homozygous for an 

uncharacterised recessive gene. Therefore, individuals who may be deemed to be at lower 

risk for KSHV infection because their family members are seronegative for KSHV, actually 

are still at risk due to increased genetic susceptibility to infection (Plancoulaine et al., 2003).       
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1.3.7. The role of KSHV in other diseases 

 
KSHV is the aetiological agent of both KS and PEL, and is associated with MCD (Bouvard 

et al., 2009). The identification of KSHV in other disease tissues has been controversial and 

unconfirmed, and will not be discussed further. Marcelin and colleagues examined the 

KSHV load in clinical samples from KS, PEL and MCD patients (Marcelin et al., 2007). 

Using real-time PCR to amplify LANA (ORF73) they detected a higher viral load of KSHV 

in PBMCs from patients with active KS, in comparison to those in remission from the 

disease. KSHV load was also positively correlated with HIV infection. Similarly, PBMCs 

from individuals with active MCD also carried a greater KSHV copy number, in comparison 

to those in remission (Marcelin et al., 2007). Lymphomatous effusion fluid, extracted from 

the pleural or peritoneal cavities of PEL patients, contained the highest KSHV DNA copy 

number, and MCD blood samples had a higher KSHV load than KS PBMCs. The presence 

of high numbers of CD4+ T cells in individuals in remission from KS suggests that increased 

viral load in the active disease is due to immunosuppression (Marcelin et al., 2007).  

Cesarman et al. confirmed that KSHV is present in PEL tissue (first described by 

Chang et al., 1994), demonstrating that lymphomatous B cell effusions in HIV-negative 

lymphoma patients were positive for KSHV (Cesarman et al., 1996). PEL is now classified 

as a KSHV-associated disease. It is commonly AIDS-associated and presents in 

immunosuppressed individuals, such as post-transplant recipients, as well as the elderly, with 

a median survival time of less than six months (Carbone & Gloghini, 2008). Brimo and 

colleagues examined effusions from four HIV-positive PEL patients, and found that two of 

the four samples expressed T cell markers, CD3, CD43 and CD45RO, and two expressed 

CD45 a marker of lymphomas. These data contrasted with current literature which 

predominantly report a phenotype similar to neither B nor T cells, and consistent expression 

of CD45 (Brimo et al., 2007). All samples expressed CD30, a marker of both B and T cells, 
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and were infected with KSHV (Brimo et al., 2007). The prevailing opinion is that PEL cells 

originate as B cells and then differentiate towards a mature plasma B cell. However, B cell 

maturation is interrupted and they adopt a null phenotype, downregulating B cell-specific 

genes (Carbone & Gloghini, 2008). Most PEL cells are latently infected with KSHV, and 

oncogenesis of PEL is thought to be driven by the same genes that drive KS tumourigenesis, 

including LANA and v-cyclin (see Section 1.3.5) (Carbone & Gloghini, 2008). 

MCD is another B cell lymphoma, characterised by KSHV-infected plasmacytic 

cells. In contrast to PEL, MCD cells are usually not co-infected with EBV (Carbone & 

Gloghini, 2008). Characterising KSHV-infected cells isolated from the lymph nodes of MCD 

patients, Chadburn et al. identified the expression of PR domain containing 1 with zinc 

finger domain ⁄ B lymphocyte-induced maturation protein 1 (PRDM1⁄BLIMP1), a 

transcription factor that is essential for the maturation of plasma cells, and that represses 

genes that promote proliferation (Chadburn et al., 2008). The mature plasmacytic phenotype 

of MCD cells contrasts with their continuous proliferation, suggesting that their terminal 

differentiation is blocked by KSHV infection. PRDM1 ⁄BLIMP1 was also expressed by PEL 

cells, but CD27, a marker of memory B cells, was solely expressed by MCD cells, indicating 

that though MCD and PEL cells have a similar phenotype, they are derived from B cells at 

different stages of differentiation (Chadburn et al., 2008).  

KSHV itself can induce a primary disease in both immunosuppressed and 

immunocompetent individuals, though it is rarely reported. Symptoms, including fever, 

arthralgia (joint pains), splenomegaly (enlargement of the spleen) and cervical 

lymphadenopathy (swelling of the lymph nodes), have been observed (Dukers & Rezza, 

2003). Oskenhendler reported a sudden onset of symptoms in a HIV-positive homosexual 

male (Oksenhendler et al., 1998). KSHV was detected (by PCR) in a cervical lymph node 

subsequent to recent KSHV seroconversion (Oksenhendler et al., 1998). Symptoms 
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attributable to a systemic viral infection were also noted in an immunodeficient (HIV-

negative) child (Sanchez-Velasco et al., 2001). Post-mortem analysis revealed KSHV 

infection of bone marrow, lymph node, spleen and PBMCs, as well as non-lymphoid tissues 

including the lung, liver and kidney. EBV could be detected in the spleen and lymph node 

only, and CMV was undetectable (Sanchez-Velasco et al., 2001).  

 

1.3.8. Transmission of KSHV 

 
The sudden manifestation of KS in homosexual young men in the early 1980s was a primary 

indicator of the AIDS epidemic, and suggested transmission of an infectious agent. Analysis 

of the AIDS cases reported to the Centers for Disease Control (CDC) in the USA revealed an 

incidence of KS of 15%, 20,000 times greater in the HIV-infected population than in the 

general population. The high risk groups for developing KS included homosexual and 

bisexual men, HIV-infected individuals of Caribbean or African descent, HIV-positive 

haemophiliacs and HIV-positive heterosexual women (Beral et al., 1990).   

Early studies suggested that KSHV infected male sexual organs, and thus was 

transmitted by infected semen. Initially, quantifying KSHV infection by nested PCR for 

ORF26 revealed KSHV infection of semen in the majority of the HIV-positive men sampled 

(91%), in comparison to HIV-uninfected individuals (23%) (Lin et al., 1995). Staskus et al. 

identified KSHV in prostatic tissue of HIV-infected and some uninfected individuals by in 

situ RNA hybridisation (Staskus et al., 1997). These data correlate with a possible sexual 

mechanism of transmission, though  KSHV in the prostate appeared to be latent and may not 

therefore contribute to shedding of virions, but perhaps virus-infected cells into the semen 

(Staskus et al., 1997).  

Quantifying KSHV infection (by PCR) of the sexual organs and semen of the healthy 

population revealed a low incidence of KSHV infection in the urinary tract, female genital 
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tract, glans and foreskin (Monini et al., 1996). However, KSHV was detected at high 

frequency in prostatic tissue (44%), sperm (91%) and semen (81%) of the healthy population 

(Monini et al., 1996). Shortly after this, Howard et al. reported that KSHV was more easily 

detected in the peripheral blood than semen, and that it was confined to HIV-positive 

homosexual males (Howard et al., 1997). They detected KSHV DNA by nested PCR in the 

semen of only six of 24 (25%) HIV-infected homosexual men, and found no evidence of 

KSHV infection in the semen of 115 healthy males. However, KSHV was detected in the 

blood of 12 (50%) of the HIV-positive men, both with and without KS, indicating that 

infection of the peripheral blood is more common than seminal infection (Howard et al., 

1997). An overview of KSHV detection in semen and prostate highlighted discrepancies 

between results generated by different research groups, and questioned the use of amplifying 

PCR for detecting low viral copy numbers in tissue (Blackbourn & Levy, 1997). 

KSHV infection of the sexual organs and fluids is now widely disputed, and current 

opinion is that transmission by saliva and nasal discharge are the most likely modes of 

infection. Evidence for KSHV infection of the saliva was published in 1997 by Vieira et al., 

who identified KSHV DNA in saliva and PBMCs of HIV-negative and HIV-positive KS 

patients (Vieira et al., 1997). KSHV DNA was present in both cells and cell-free fractions of 

saliva, as an encapsidated virion (it is known that EBV is shed into the saliva as an 

encapsidated virion). KSHV virions in saliva were able to persistently infect the 293 cell line 

(derived from human embryonic kidney cells) for at least eleven passages, though EBV, 

present in the saliva at a ten-fold greater concentration than KSHV, infected 293 cells only 

briefly (Vieira et al., 1997). 

Blackbourn and colleagues detected KSHV in the majority of HIV-infected KS 

patient PBMCs, saliva and nasal fluid by PCR (Blackbourn et al., 1998). The presence of 

KSHV in saliva and nasal fluid was variable, with some individuals presenting with KSHV-
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positive saliva but not nasal secretions, or vice-versa, and some with detectable KSHV in 

both fluids. KSHV could also be observed in either secretion in KSHV (and HIV) infected 

individuals asymptomatic for KS. KSHV was present in both cellular components and fluid 

components of these secretions, indicating viral shedding from infected cells. EBV, CMV 

and HHV-6 were also present in saliva and nasal discharge, and were most prevalent in KS 

patients (Blackbourn et al., 1998). 

Pauk et al. examined mucosal secretions from 27 KSHV-seropositive homosexual 

men, of whom 11 were seropositive for HIV (Pauk et al., 2000). Using PCR for a fragment 

of ORF26, KSHV was detected in saliva and oral epithelial cells in 12% of the men. Both 

buccal (mouth) and pharyngeal (throat) epithelial cells expressed KSHV gene transcripts 

associated with latency, and the buccal cells also expressed transcripts associated with lytic 

replication, thus indicating shedding of the virus. However, KSHV DNA was also detected 

in 5% of semen samples. Interestingly, the consecutive testing of individuals for KHSV 

DNA by PCR over several weeks revealed inconsistent results, suggesting that studies 

collecting samples upon just one occasion may produce false-negative results (Pauk et al., 

2000).  

Contradictory data concerning the sites of KSHV infection may be due to 

contamination of the PCR assays used to detect KSHV DNA. A study conducted by Pellett et 

al. of the PCR techniques used in five laboratories to detect KSHV in semen, highlighted 

high rates of contamination during PCR experiments (Pellett et al., 1999). All five 

laboratories analysed positive and negative controls and semen samples from the same 

individuals in parallel. Three laboratories produced positive results for negative controls, 

with contamination primarily occurring in experiments that include a nested PCR step 

(utilising two sets of primers). Low copy numbers of KSHV DNA in positive samples may 



Chapter 1: Introduction   

  27 

account for inconsistent results, in addition to possible contamination during sample 

collection and PCR analysis (Pellett et al., 1999).    

In addition to the method of PCR for detection of fragments of the KSHV genome, 

immune serological assays were developed to aid diagnosis of KSHV infection, with less 

risk of contamination and subsequently more reliable results. A commonly used 

immunofluorescence assay measures the binding of anti-KSHV antibodies from test serum to 

KSHV-infected reactivated BCBL-1 cells (murine antibody-enhanced IFA). Binding is 

detected by mouse anti-human human IgG monoclonal antibodies and fluorescently tagged 

secondary antibodies. Of 91 American and 28 African individuals with KS, anti-lytic 

antibodies to KSHV were identified in the serum of 97% of individuals by this method. 

However, the detection of anti-latent antibodies was inconsistent (Lennette et al., 1996). 93% 

of homosexual HIV-positive men from an American cohort tested positive for KSHV, in 

comparison to 23% of HIV-positive heterosexual intravenous drug users and 21% of HIV-

positive women. These data correlate with current opinion that the risk of KSHV 

transmission is relatively low, but that it rises with HIV-infection and sexual practises. In 

agreement with current estimates that KSHV seroprevalence is higher in central sub-Saharan 

Africa than in the USA, Lennette et al. estimated that KSHV seroprevalence ranged from 

32% in Zimbabwe, to 100% in the Ivory Coast, in comparison to only 18-28% of individuals 

in the USA, from a study of healthy volunteers (Lennette et al., 1996).  

Simpson and colleagues used an enzyme-linked immunosorbent assay (ELISA)-

based technique to detect KSHV seroprevalence (Simpson et al., 1996). A recombinant 

KSHV ORF65 protein was used for the detection of anti-KSHV antibodies in the sera of KS 

patients, identifying them in between 81 and 94% of cases. In comparison, detection of anti-

KSHV antibodies by a rabbit antibody-linked IFA, similar to murine antibody-enhanced 

IFA, produced similar results. However, detection of KSHV DNA in peripheral blood 
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mononuclear cells by PCR was not as accurate, and detected only half of the ELISA and 

IFA-seropositive cases (Simpson et al., 1996). Using the assay developed by Lennette et al. 

to confirm KSHV seronegativity in a cohort of individuals, and another existing assay, 

LANA-IFA (detecting anti-LANA antibodies in sera by characteristic nuclear punctuate 

staining of sera-treated BCBL-1 cells), to confirm KSHV infection of KS patients and 

HIV+/- homosexual men, Martin et al. developed an assay with increased sensitivity for 

detection of KSHV (Martin et al., 2000).  An enzyme-based immunoassay for the binding of 

anti-KSHV antibodies in sera to lysed KSHV virions was highly specific and sensitive for 

KSHV, based on correlations between samples deemed KSHV-positive and negative by the 

two older methods (Martin et al., 2000). A comprehensive analysis of common techniques 

for detecting KSHV, and commercial assay, demonstrated that LANA-IFA has high 

specificity for KSHV but low sensitivity, whereas two commercial assays showed the 

opposite (Nascimento et al., 2007). The test with the highest specificity and sensitivity for 

KSHV was a whole-virus ELISA (Nascimento et al., 2007), with similar methods to the 

assay developed by Martin et al. Taken together, these data show that no one method of 

KSHV detection is infallible, and in addition to controls, at least two methods of diagnosis 

must be used.       

The KSHV genome is moderately conserved between individuals, with the exception 

of some nucleotide polymorphisms. However, there is high variation between the ORF K1 

and ORF K15 genes, thought to be due to divergence between populations (Zong et al., 

2007). Zong and colleagues examined the constant region of the KSHV genome in 150 

samples from KSHV-positive individuals to determine KSHV genomic variation between 

populations (Zong et al., 2007). Excluding the hypervariable ORF K1/K15 genes, the 

samples could be divided into distinct genotypes/subtypes. Six genotypes were prevalent in 

sub-Saharan Africa (B, N, Q, R, F and G), two in aboriginal populations from the Pacific rim 
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region (D and E), and three in Eurasion populations (A/C, J and K or M) (Zong et al., 2007). 

Importantly, only one KSHV genotype could be identified in any individual. Variability in 

the KSHV unique regions due to nucleotide polymorphisms means that there is also 

significant variation within each genotype. Investigating other disease tissues in which 

KSHV had been reported, for example multiple myeloma, revealed contamination with DNA 

from the BCBL-1 cell line, with the KSHV genome matching the specific BCBL-1 KSHV 

genotype (Zong et al., 2007). Thus, contamination of clinical samples with KSHV DNA 

from other sources, and the reliance of PCR for only a small fragment of KSHV ORF26 

contributed to false positive results.                

Though KSHV may not be transmitted via genital secretions, rather by saliva, 

individuals infected with other sexually transmitted infections (STIs) in addition to HIV, are 

at higher risk of KSHV infection (Kedes et al., 1996). These observations indicate a sexual 

mode of transmission. HIV-negative syphilis patients are at higher risk (8%) of KSHV 

infection than the general population (1%), with a higher risk associated with homosexual 

individuals (27%) over heterosexual (6%) (Kedes et al., 1996). Blackbourn et al. revealed an 

association between KSHV seroprevalence (quantified by murine antibody-enhanced IFA) 

and the number of sexual partners (Blackbourn et al., 1999). HIV-positive and negative 

homosexual men had a higher risk of KSHV infection that was associated with oral and/or 

anal sexual intercourse, but did not correlate with HIV infection (Blackbourn et al., 1999). 

Pauk and colleagues reported similar findings (Pauk et al., 2000). Analysing a cohort of 

HIV-seronegative homosexual men, both KSHV-positive and negative, for risk factors for 

KSHV infection, revealed a positive correlation between KSHV infection and age, number 

of male sexual partners, HIV-positive sexual partners, STIs and having a partner with KS 

(Pauk et al., 2000).  
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1.3.9. The immunobiology of KSHV 

 

KSHV encodes several genes that serve to regulate the host immune response upon infection. 

KSHV K14 encodes the vOX2 protein with known granulocyte-regulatory capacity (Rezaee 

et al., 2005). vOX2 will be discussed in section 1.6.1 and is the subject of this thesis.  

In addition, the KSHV genome expresses two genes, K3 and K5 that encode 

modulator of immune recognition (MIR)1 and MIR2 proteins with the ability to 

downregulate major histocompatibility complex I (MHCI) on the surface of the infected cell. 

Both MIRs can downregulate the surface expression of MHCI, though only MIR2 

downregulates CD86, intercellular adhesion molecule 1 (ICAM-1) (Tomescu et al., 2003) 

and platelet/endothelial cell adhesion molecule (PECAM) (Mansouri et al., 2006). MIR1 and 

MIR2 ubiquitylate lysine residues on the cytoplasmic tails of CD86 and MHCI, thus 

inducing endocytosis and targeting these proteins for degradation (Coscoy et al., 2001). 

CD80 is not normally endocytosed by MIR1 or MIR2, but the addition of three lysine 

residues to the cytoplasmic tail of a mutant CD80 targets the protein for degradation by the 

MIRs. The MIRs express Zn fingers of the PHD family on their cytoplasmic tails, similar to 

the RING fingers found in cytosolic E3 ubiquitin (Ub) ligases. These Zn E3-Ub ligase-like 

regions direct E2 Ub-conjugating enzymes to MHCI and CD86, thus resulting in 

ubiquitylation, endocytosis and subsequent degradation of the proteins (Coscoy et al., 2001). 

Targeting of the MHC-antigen presentation pathway by viruses is discussed further in 

section 1.8.2. 

Downregulation of MHC can lead to targeting by NK cells. KSHV bypasses this by 

downregulating ligands of activatory receptors on NK cells (Thomas et al., 2008). MIR2 

targets MHC class I-related chains (MIC)A and B ligands for NKG2D, and activation-

induced C-type lectin (AICL), a ligand for NKp80, for ubiquitylation, thus reducing NK-
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mediated lysis of infected cells (Thomas et al., 2008). The KSHV lytic cycle gene ORF37 

encodes the lytic shutoff and exonuclease (SOX) protein which shuts off host cell gene 

expression. So in contrast to the MIRs which target specific cell surface proteins that signal 

to immune mediators such as T cells, SOX causes general suppression of gene expression by 

enhancing the degradation of cellular mRNA (Glaunsinger & Ganem, 2004).   

 Another cellular pathway hijacked by KSHV is the complement cascade. The 

complement system is a cascade of events triggered by the binding of complement proteins 

to antibody-antigen complexes (classical pathway), a lectin-bound pathogen (lectin 

pathway), or by direct interaction of complement components with the surface of a 

microorganism (alternative pathway). The activation of the pathway by any of the three 

interactions ultimately leads to C3 convertase, bound to the pathogen, which in turn cleaves 

and activates the C3 component. C3 in its variable cleaved forms enhances the innate 

immune response by opsonising the pathogen, thus targeting it for destruction by phagocytes, 

and by promoting inflammation (Murphy, 2008). KSHV complement control protein (KCP), 

a cell-surface lytic cycle protein encoded by ORF4, contains four complement control 

protein (CCP) domains - a formation that is shared by all other known regulators of the 

complement pathway - and shares homology with host complement regulators such as decay-

accelerating factor (DAF) (Spiller et al., 2003). KCP enhances the degradation of classical 

C3 convertase, and mildly accelerates the decay of alternative C3 convertase, in addition to 

aiding the degradation of C3 convertase products C3b and C4b, thus suppressing 

complement regulation of KSHV infection in vivo (Spiller et al., 2003).  

Furthermore, one of the most important cellular responses to viral infection, the IFN 

pathway, is also targeted by KSHV. KSHV encodes four homologues of cellular interferon 

regulatory factors (IRFs), transcription factors involved in initiating IFN gene expression. 

Cellular IRFs contribute to an anti-viral state by participating in the transcription of IFN and 
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IFN-responsive genes (reviewed by Areste and Blackbourn, 2009). KSHV vIRF-2 directly 

inhibits the activity of cellular IRF-3, and enhances its degradation, thereby disrupting the 

IFN signalling pathway (Areste et al., 2009).  

 Other putative KSHV immunomodulatory mechanisms have been identified (Figure 

1.4) and the reader is referred to a detailed discussion by Aresté and Blackbourn, 2009 

(Areste & Blackbourn, 2009).  

 

 

 

Figure 1.4. Immunobiology of KSHV. KSHV is known to infect endothelial cells, B cells, macrophages and 

DCs.  Known immunomodulatory pathways targeted by KSHV upon infection of cells are illustrated, including 

downregulation of MHC by MIR1 and MIR2, concurrent downregulation of NK receptor ligands, and the 

suppression of granulocyte activity by KSHV vOX2. This Figure is reproduced from Aresté and Blackbourn, 

2009. 
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1.4. Rhesus rhadinovirus (RRV) 

 
Shortly after the identification of KSHV in human tissue by Chang and colleagues (Chang et 

al., 1994), a rhadinovirus (RRV) with homology to KSHV was isolated from an Asian Old 

World primate, the rhesus macaque (Macaca mulatta) (Desrosiers et al., 1997). Members of 

the macaque colony showed antibody reactivity to HVS. Fibroblasts isolated from these 

animals developed cytopathic effect (CPE) during culture, and the virion DNA isolated from 

these cells induced CPE in transfected recipient cells (Desrosiers et al., 1997). RRV is a 

member of the genus rhadinovirus of the subfamily gammaherpesvirinae (Davison et al., 

2009). The rhadinoviruses are grouped into two distinct lineages, RV1, and RV2. KSHV 

(from humans), retroperitoneal fibromatosis herpesvirus strains RFHVMm and RFHV Mn 

(from two macaque species) and Chlorocebus rhadinoviruse ChRV1 (from the African green 

monkey) are grouped into RV1 (Rose et al., 1997). RRV (from macaque) and ChRV2 (from 

African green monkey) cluster within the RV2 group by nucleotide and amino acid identity 

and CG content (Greensill et al., 2000). The lack of a human virus in the RV2 group has led 

to a search for the missing member, though none has been identified so far.      

The genes of one RRV isolate (H26-95) encoding DNA polymerase and glycoprotein 

B were sequenced and compared to homologous regions of other members of the 

rhadinovirus genus (Desrosiers et al., 1997). The glycoprotein B shared 65.5% amino acid 

identity with KSHV gB, and 54.4% identity with HVS gB. RRV H26-95 also appeared to 

encode some genes not conserved across the rhadinovirus genera, but that are present in 

KSHV. One example is the RRV homologue of human IL-6, sharing 18.5% amino acid 

identity with KSHV vIL-6 (Desrosiers et al., 1997).  

Searles and colleagues examined another RRV isolate, 17577 (Searles et al., 1999). 

These authors described a virus with 79 ORFs, nearly all shared with KSHV, though 12 

ORFs did not have homologues in the HVS genome. A comparison of the newly identified 
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RRV 17577 strain with RRV H26-95, revealed several base changes resulting in amino acid 

substitutions, though most changes appear to be silent mutations (Searles et al., 1999). 

However, some genes such as ORF4 differ between the strains and exist as isoforms due to 

alternative splicing (Mark et al., 2007).  

An important parallel between KSHV and RRV is the presence of genes encoding 

vIRFs. KSHV encodes four vIRFs, whereas RRV encodes eight, four of which show high 

sequence similarity to the other four, suggesting a gene duplication event. KSHV vIRF1, 

encoded by ORF K9, shares some homology with five of the RRV vIRFs (Searles et al., 

1999). However, for the purposes of this project, it is the viral homologues of CD200 

encoded by both KSHV (K14) and RRV (R14) that are of most significance, and will be 

discussed in Sections 1.6.1 and 1.6.2. 

1.5. CD200  

1.5.1. The identification of CD200 and its receptor(s) in rodents 

 
CD200 is a type I transmembrane glycoprotein and a member of the immunoglobulin 

superfamily (IgSF). CD200 contains two IgSF domains, regions predicted to interact with 

either cell surface molecules or soluble factors, and thus initially indicating the existence of a 

CD200 receptor (CD200R). The short cytoplasmic tail of CD200 lacks any known signalling 

motifs, further supporting the concept that CD200 functions as an extracellular receptor 

ligand.  

The extracellular domain of rat CD200 (rCD200) was fused in-frame to domains 3 

and 4 of rat CD4. The resulting soluble recombinant protein ligated a specific receptor on rat 

macrophages. Ligation of rCD200 with the rat CD200R (rCD200R) was inhibited by an 

epitope binding at the N-terminal domain of the putative receptor, thus identifying a likely 

site of interaction (Preston et al., 1997). When rat peritoneal macrophages were treated with 
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pervanadate (an irreversible tyrosine phosphatase inhibitor), an anti-phosphotyrosine band 

associated with immunoprecipitated rCD200R was isolated from the cellular lysates (Preston 

et al., 1997). Thus, macrophage tyrosine kinases phosphorylate intracellular rCD200R 

tyrosine residues, and subsequent dephosphorylation is inhibited by pervanadate (Wright et 

al., 2000). rCD200 is expressed in several tissues, including vascular endothelium (Ko et al., 

2009), DCs, B cells, thymocytes, neurons, lymphocytes (Barclay, 1981) and macrophage-

like cells infiltrating the central nervous system (CNS) (Matsumoto et al., 2007). The 

rCD200R is expressed on DCs, microglia (Wright et al., 2000) and monocytes/macrophages 

(Dick et al., 2001). 

Chen and colleagues demonstrated that cells derived from mice pre-immunised with 

allogeneic DCs, expressed a gene showing homology to rCD200 (Chen et al., 1997). The 

gene was believed to encode a 25kDa protein, similar to rCD200, though high glycosylation 

of rCD200 renders the protein approximately 47kDa in weight. The amino acid sequence of 

the putative murine CD200 (mCD200) protein shared 92% identity with human CD200 and 

77% with rCD200. Regions with highest similarity are the transmembrane and cytoplasmic 

domains. Conserved residues were identified in the disulphide bonds between Ig-like 

domains and amongst N-glycosylation sites. Neither the human nor the rodent CD200 

proteins contain known signalling sequences in their cytoplasmic domains, suggesting a 

requirement for interaction with a specific signalling receptor (Chen et al., 1997). mCD200 

is expressed by neurons and endothelial tissue of the CNS (Koning et al., 2009), B cells, 

DCs, and endothelial of the spleen (Hoek et al., 2000). 

The murine CD200R (mCD200R1) was cloned and sequenced, revealing two IgSF 

domains, similar to mCD200, several N-linked glycosylation sites, and a single 

transmembrane domain (Wright et al., 2000). However, the receptor has a longer 

cytoplasmic domain than its cognate ligand, with two conserved tyrosine residues, and a 
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third located within an NPXY motif. NPXY can bind adaptor molecules, thus indicating an 

intracellular signalling role for the mCD200R1 (Wright et al., 2000). mCD200R1 is 

expressed by macrophages, DCs, mast cells, T cells, granulocytes and monocytes (Wright et 

al., 2003) and microglia (Hoek et al., 2000). It is also found in bone marrow, lymph nodes, 

spleen and lung tissues, with a similar expression pattern to human CD200R (Wright et al., 

2003). 

Wright and colleagues identified three mCD200R-like family members in mice, 

sharing homology with mCD200R1 (Wright et al., 2003). These homologues bind DAP12, 

an activatory adaptor protein, probably by a positively charged lysine in their transmembrane 

domains, suggesting that the mCD200R family members play a contrasting role to the 

inhibitory mCD200R1. In mouse mast cells, the genes encoding the homologues are paired 

with the gene encoding DAP12 on chromosome 16. The homologues have short, apparently 

non-signalling cytoplasmic tails, though may bind as yet unidentified ligands (Wright et al., 

2003). 

Sequencing of mCD200R1 by Gorczynski et al., confirmed that there is a family of 

four receptors sharing considerable homology in their transmembrane regions, but 

expressing distinct N-terminal domains (Gorczynski et al., 2004b). The genes encoding 

mCD200R1-4 are clustered on chromosome 16, in the same region as mCD200 (Gorczynski 

et al., 2004b). The mCD200R subtypes have an alternative nomenclature: mCD200R2 

(mCD200RLc), mCD200R3 (mCD200RLb), mCD200R4 (mCD200RLa), but will be 

referred to by their numerical code in this thesis. Their short cytoplasmic tails suggest that 

mCD200R2-4 may signal in a different manner, or may be functionally inactive (Gorczynski 

et al., 2004b). The four receptor subtypes appear to be differentially distributed, with 

mCD200R1/4 localising predominantly to thymus and PBMCs, and CD200R2/3 expressed 

in bone marrow (Gorczynski et al., 2004a).  
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Voehringer et al. identified a fifth member of the mCD200R family by a BLAST 

search of the NCBI database (Voehringer et al., 2004). The putative mCD200R5 

(mCD200RLe) sequence matched part of two sequences entered into the NCBI database by 

other researchers, derived from non-obese diabetic (NOD) mice. However, Voehringer could 

not detect the mCD200R5 in tissue extracted from C57/BL6 mice (Voehringer et al., 2004). 

Using surface plasmon resonance (SPR) to measure binding affinities of mCD200:Fc for 

mCD200R1-5, Hatherley et al. demonstrated that mCD200 is not a ligand for mCD200R2-4 

(Hatherley et al., 2005). Akkaya et al. analysed the expression of the mCD200R2-5 in 22 

mouse strains, and demonstrated that mCD200R3/4 were expressed in the majority of the 

strains (20-21 of 22), whereas mCD200R2 was expressed in less than 50% of the strains (10 

of 22). Interestingly, fragments of the gene encoding mCD200R5 were detected in the strains 

not expressing mCD200R2. All of these mouse strains expressed mCD200R1, though two 

different sequences were found, differing by seven amino acids (Akkaya & Barclay, 2009). 

Taken together, these data suggest that mCD200 is the cognate ligand of mCD200R1, and 

that the putative mCD200R1 homologues are not involved in mCD200-mediated  

immunosuppression discussed in Section 1.5.3. 

 

1.5.2. The identification of CD200 and its receptor in humans 

 
By scanning the NCBI database with the sequence encoding rCD200R, Wright and 

colleagues identified a putative gene encoding the human CD200R (CD200R) (Wright et al., 

2003). CD200R incorporates a single transmembrane domain and a large cytoplasmic tail 

containing three conserved tyrosine residues (Figure 1.4). It is a highly glycosylated type I 

cell surface glycoprotein that binds human CD200 (Wright et al., 2003). CD200R shares 

closest homology with human herpesvirus entry protein HveC, a protein that interacts with 

herpes simplex virus (HSV) envelope glycoprotein D, thus enabling viral entry into host 
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cells. Wright et al. also identified a homologue of the human CD200R gene, located on 

chromosome 3 and clustering with human CD200 and CD200R, though the homologue 

appeared not to be expressed (Wright et al., 2003).  
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Figure 1.5 Illustration of the human CD200R and its cognate ligand, CD200. Both proteins traverse the cell 

membrane with a single transmembrane domain, and express two immunoglobulin superfamily-like domains 

extracellularly. CD200 has no known signalling domains, but the CD200R has three conserved tyrosine 

residues in its cytoplasmic tail through which it signals.  

 

Vieites et al. also identified the CD200R on chromosome 3q13 by using a bioinformatics 

approach to compare the sequences of rCD200R and mCD200R1 with the human genome 

(Vieites et al., 2003). They determined that the 52kb gene encoded a protein sharing 53% 

amino acid identity with rCD200R, and 52% identity with mCD200R1. Hydrophobicity 

studies of the putative gene product suggested that the hCD200R spans the plasma 

membrane, flanked by putative long N-terminal and short C-terminal tails, and comprises 
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nine potential N-glycosylation sites and one O-glycosylation site, in addition to the presence 

of a cleavable signal peptide (Vieites et al., 2003). Two isoforms of CD200R were 

transcribed, due to the insertion of exon 5, one encoding a cell surface receptor, and one a 

truncated soluble protein. Each transcript was also alternatively spliced at exon 2 resulting in 

the generation of four different CD200R isoforms. mRNA transcripts for the four CD200R 

isoforms were identified in the thymus, spleen, liver and placenta (Vieites et al., 2003).  

Wright et al. confirmed that human CD200 bound to CD200R with a binding affinity 

of ~0.5μM, and its specificity was determined by blocking with an anti-CD200R antibody 

(Wright et al., 2003). CD200 appears to have a wide distribution throughout the body, and 

was detectable in several endothelia including kidney glomeruli and tonsil vascular 

endothelium, peripheral nerve bundles and central nervous tissue, particularly the cerebellum 

(Wright et al., 2001). CD200 is expressed across the brain, particularly upon neuronal cell 

bodies and axons, but not by astrocytes or microglia (Koning et al., 2009). In contrast, 

CD200R expression in the CNS is restricted to microglia and PBMCs (Koning et al., 2009). 

CD200R is also expressed by T cells, neutrophils, monocytes and basophils, and mRNA 

transcripts of CD200R were identified in bone marrow, lymph nodes, spleen and lung tissues 

(Wright et al., 2003).  

The high number of glycosylation sites on CD200 results in an unusually large sugar 

content, amounting to 70% of the weight of the protein (Wright et al., 2000). Extensive 

glycosylation dictates that the production of CD200 for use in biological assays must be 

carried out in eukaryotic cell lines, and that the protein may be generated in different forms, 

dependent on the level of glycosylation and resultant protein folding (reviewed by Walsh and 

Jefferis, 2006).  
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1.5.3. Immunosuppressive activities of CD200 in vivo 

 
Evidence for the in vivo role of CD200 was demonstrated by Hoek and colleagues, who 

emphasised the importance of CD200 to immune regulation by deleting mCD200 in mice 

(Hoek et al., 2000). The expression of mCD200R1 increases in CD200-/- mice, with a 

simultaneous elevation in activated macrophages, and aggregates of activated microglia (the 

macrophages of the CNS). Facial nerve transection results in microglial activation in healthy 

animals but this activation is markedly accelerated in mCD200-/- mice, and is mirrored in 

mCD200-/- mice with experimental autoimmune encephalomyelitis (EAE) (Hoek et al., 

2000). Increased incidence and more severe pathology of collagen-induced arthritis (CIA), a 

murine model of rheumatoid arthritis (RA), are also evident in mCD200-/- mice. These data 

indicate a hyperactivation of T lymphocytes, principal initiators of EAE and CIA, in 

mCD200-/- animals (Hoek et al., 2000). Concurring with these data, blocking the interaction 

between mCD200 and mCD200R1 increased EAE pathology (Wright et al., 2000). EAE, a 

murine model of multiple sclerosis, is characterised by demyelination occurring due to 

microglial activation and macrophage-containing infiltrates traversing the blood brain 

barrier. A more severe pathology developed in animals treated with an anti-mCD200R1 

antibody, thus blocking mCD200-mCD200R1 interaction and inhibiting the mCD200-

mediated downregulation of macrophage activity (Wright et al., 2000). Data published by 

Rijkers et al. differ slightly (Rijkers et al., 2007). These authors found no alteration in the 

number of myeloid cells in 14 month old mCD200-/- animals, and only 25% of knockout 

mice had an increased number of circulating and splenic myeloid cells at 8-12 weeks of age 

(Rijkers et al., 2007). 

mCD200-mCD200R1 interaction controls macrophage activity in vivo, consequently 

preventing severe inflammatory responses to infection and thus reducing pathology. Murine 

alveolar macrophages exist in an antigenic environment and express higher basal levels of 
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mCD200R1 than myeloid cells in other anatomical sites (Snelgrove et al., 2008). Alveolar 

macrophages rapidly upregulated mCD200R1 expression in response to stimulation by IL-10 

and transforming growth factor-β (TGFβ) and during influenza infection. Epithelial cells 

from the alveolar space expressed mCD200, and induced excessive cytokine secretion from 

mCD200R1-/- alveolar macrophages in comparison to those from wild-type (WT) mice. 

Though the expression of mCD200 by alveolar epithelial cells remained stable throughout 

influenza infection in WT mice, the level of mCD200 expressed by CD4+/CD8+ lung and 

lymph node T cells increased. Interestingly, T cells at the site of infection appeared to lose 

mCD200 expression. When mCD200 was deleted from the animals, a greater pathology and 

severity of disease occurred, and was associated with greater inflammation and macrophage 

and T cell activity, though viral titres were similar between WT and mCD200-/- mice. 

Blocking mCD200-mCD200R1 interaction with an antibody provoked a similar response to 

infection. Conversely, administering soluble mCD200:Fc to WT animals reduced disease 

severity and infiltrating numbers of T cells (Snelgrove et al., 2008).  

mCD200 is expressed by microglia, neurons, and neural and vascular endothelial cell 

populations inhabiting the retina. Murine experimental autoimmune uveoretinitis (EAU) is 

characterised by infiltrating CD4+ T cells, microglial activation, and consequent damage to 

the retina and photoreceptors (Broderick et al., 2002). mCD200-/- mice developed more 

severe EAU than WT mice, and had enhanced numbers of infiltrating macrophages, though 

there was a disease incidence of 100% for both groups (Broderick et al., 2002). Increased 

macrophage infiltration into the retina of mCD200-/- mice suggested an interaction between 

mCD200R1-expressing macrophages and mCD200-expressing endothelial cell populations, 

thus preventing excessive macrophage infiltration of the retina in WT animals (Broderick et 

al., 2002). The role of CD200/CD200R interaction may be more significant in the CNS in 
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contrast to the rest of the body, because cell infiltration and inflammatory responses must be 

minimal in order to preserve the isolation of the CNS from the periphery. 

 

1.5.4. Structure and function of soluble recombinant CD200 proteins 

 
Much experimental data on the properties and functions of CD200 are based on observations 

of the activities of CD200:Fc fusion proteins (Figure 1.5). The fusion of proteins to the Fc 

domain of human immunoglobulin G1 (IgG1) molecule is used therapeutically to confer a 

longer half-life on the protein (Kamei et al., 2005). Fc-fusion proteins have a longer half-life 

than the native protein, but can have reduced biological activity when both are compared at 

the same concentration in vivo (Harris et al., 2002). The binding of Fc to the neonatal Fc 

receptor (FcRn) in endosomal compartments results in increased Fc recycling back to the 

plasma membrane and thus reduced lysosomal degradation. Fc-FcRn binding is enhanced at 

lower pH (5/6) in the endosome and reduced at a higher pH of 7.4 at the cell surface. 

Therefore, engineered Fc fusion proteins must exhibit these preferential binding properties in 

order to maximise the release of Fc from FcRn at the cell surface. Employment of the Fc 

method renders frequent drug administration unnecessary, thus reducing possible toxicity 

from high concentrations, and is useful for examining protein activity in biological research 

(Kamei et al., 2005). 

 Gorczynski and colleagues examined the role of mCD200:Fc in murine CIA. CIA 

was markedly inhibited by either repeated infusions of mCD200:Fc fusion protein 

(Gorczynski et al., 2001) or an anti-mCD200R1 monoclonal antibody (mAb) (Gorczynski et 

al., 2002a). mCD200:Fc reduced cytokine secretion, including TNFα and IFNγ. TNFα is the 

primary cytokine associated with rheumatoid arthritis in humans and is indicative of CIA 

(Gorczynski et al., 2001). mCD200:Fc-mediated inhibition of CIA pathology was associated 

with reduced expression of IL-1β, TNFα and IL-10 mRNA transcripts in the mCD200R1-
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expressing synovium, without affecting the numbers of circulating T cells, indicating a 

specific role for mCD200, rather than a general suppression of inflammation (Simelyte et al., 

2008). mCD200:Fc also reduced circulating anti-collagen antibodies in collagen-immunised 

mice, and increased specific antibody subtypes, eg. IgG2b (Gorczynski et al., 2001). 

Subsequent investigations by this group indicated that targeting the mCD200R1 prevented 

CIA-onset (Gorczynski et al., 2002a). They also demonstrated symptom-alleviation of 

arthritic mice by administration of mCD200:Fc, and by mCD200R1 ligation (Gorczynski et 

al., 2002a).  

 

 

 

 

Figure 1.6 Cartoon illustrating the proposed structure of soluble Fc fusion proteins. The extracellular 

region of the native protein (ie. vOX2, CD200 or a control, mutant KSHV complement control protein, 

KCPmut) was fused in-frame with the Fc region of human IgG1 (including the IgG1 hinge region). Upon 

expression of the protein in a ‘producer’ cell, the Fc-protein is secreted from the cell and forms a dimeric 

structure in solution.  

 

 

Cherwinski and colleagues demonstrated mCD200-mediated inhibition of an in vivo model 

of allergy (Cherwinski et al., 2005). The induction of passive cutaneous anaphylaxis in mice, 
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by injecting IgE from a sensitised mouse into another to induce type I hypersensitivity, was 

inhibited by ligation of the mCD200R1 with an anti-mCD200R1 antibody, in a dose 

dependent manner (Cherwinski et al., 2005). 

mCD200:Fc administration also extends the survival of allografts in vivo  

(Gorczynski et al., 1999). Skin and renal allograft survival time was extended significantly in 

mice treated with mCD200:Fc, but was reduced in mice who received anti-mCD200 

antibodies (Gorczynski et al., 1999). mCD200:Fc and an anti-mCD200R1 antibody also 

prolonged the survival of rat islet xenografts in mice, grafted in response to streptozocin-

induced diabetes (Gorczynski et al., 2002b). The observed immunosuppression by 

mCD200:Fc was blocked by simultaneous infusion of anti-mCD200 antibodies. CTL activity 

decreased upon mCD200:Fc and anti-mCD200R1 administration, along with the production 

of IFNγ and IL-2 (Gorczynski et al., 2002b).   

Taken together, the current literature shows that the ligation of the CD200R by its 

cognate ligand suppresses the immune response. When mCD200 is deleted, inflammation 

and disease pathology are enhanced (Hoek et al., 2000; Broderick et al., 2002 and Snelgrove 

et al., 2008). Stimulating CD200R by ligating with its ligand has the opposite effect, 

reducing inflammation (Gorczynski et al., 2001; Gorczynski et al., 2002a) and suppressing 

the immune response to allogeneic stimulation (Gorczynski et al., 1999). Thus, the 

expression of homologous proteins by viruses would be presumed to dampen the immune 

response to infection, and will now be discussed.    

1.6. Viral homologues of CD200 

1.6.1. KSHV vOX2 (ORF K14) 

 
KSHV vOX2, encoded by ORF K14, a lytic cycle gene, is expressed at the cell surface as a 

type I transmembrane protein. It is a glycosylated protein having five potential N-
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glycosylation sites positioned in the extracellular region. N-glycosylation increases vOX2 

protein size from approximately 40kDa to the 55kDa mature form (Chung et al., 2002). 

vOX2 and CD200 share approximately 36% protein identity. vOX2 is weakly expressed on 

the surface of JSC-1 cells (a primary effusion lymphoma cell line) latently infected with 

KSHV and EBV, and its expression markedly increases during lytic replication induced by 

TPA (Chung et al., 2002).  

KSHV RTA appears to be crucial for the lytic replication of KSHV, and also 

regulates vOX2 gene expression (Zhang et al., 2005). Zhang et al. examined the possible 

mechanisms underlying RTA regulation of vOX2 gene expression (Zhang et al., 2005). The 

vOX2 promoter incorporates an interferon-stimulated response element (ISRE)-like domain. 

ISREs bind IRFs, a family of transcription factors, by a conserved N-terminal DNA-binding 

domain. RTA shows specificity for the vOX2 ISRE-like sequence and binds directly; this 

binding is inhibited by deletions in the RTA activation domain. The interaction between the 

vOX2 ISRE-like domain and RTA may be explained by a low sequence similarity between 

RTA and human IRF DNA-binding domains that bind to ISREs. These data suggest that 

RTA regulates the vOX2 promoter by the ISRE-like domain. Several other ISRE-containing 

genes in the KSHV genome may also be regulated in a similar manner by RTA, including 

vIL-6 (Zhang et al., 2005). 

Though CD200 has been studied extensively, vOX2 has received less attention in the 

literature. However, Rezaee and colleagues described the inhibitory action of vOX2 on 

human neutrophils, phagocytic cells of the immune system (Rezaee et al., 2005). These 

authors created a vOX2 fusion protein by fusing extracellular vOX2 in-frame with the Fc 

domain of human IgG1, and expressed the soluble protein in a Chinese Hamster Ovary 

(CHO) cell line for large-scale production. vOX2:Fc significantly reduced neutrophil 

oxidative burst induced by opsonised Escherichia coli (E. coli) in comparison to human 
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IgG1, though did not affect the ingestion of fluorescent E. coli by these cells (Rezaee et al., 

2005).  

Rezaee and colleagues defined a possible mechanism for the inhibition of neutrophil 

activity by vOX2:Fc (Rezaee et al., 2005). Upon stimulation by recombinant IFNγ, U937 

monocytic cells generated the cytokine IL-8, a neutrophil chemoattractant. Incubating 

stimulated U937 cells with vOX2:Fc downregulated IL-8 production, thus demonstrating an 

indirect regulatory mechanism to control neutrophil activity. Additional inflammatory 

cytokines generated by stimulated macrophages, including IL-1β, IL-6, TNFα and 

macrophage inflammatory proteins were not affected, indicating that vOX2 specifically 

regulates IL-8 production (Rezaee et al., 2005).  

The in vivo regulation of neutrophil activity by vOX2:Fc was demonstrated in the 

murine carrageenan footpad model, a model of acute inflammation. The inoculation of 

BALB/c mice with carrageenan, a seaweed extract, induced an acute neutrophil-driven 

inflammation measured as footpad thickness, that was significantly reduced by pre-treatment 

with vOX2:Fc, in comparison to human IgG (Rezaee et al., 2005). 

Foster-Cuevas et al. examined the putative interaction between soluble vOX2 and human 

CD200R (Foster-Cuevas et al., 2004). Soluble vOX2, created by fusing the extracellular 

region of vOX2 to domains 3 and 4 of rat CD4, bound CD200R with an almost equal affinity 

to CD200. The interaction between surface vOX2 or CD200, and CD200R, reduced TNFα 

production by moderately activated macrophages, indicating an immunoregulatory role for 

vOX2 when expressed at high concentrations during lytic replication of KSHV (Foster-

Cuevas et al., 2004).  

 Shiratori and colleagues provided evidence of an interaction between vOX2 and the 

human CD200R on other cells of the immune system (Shiratori et al., 2005). Human 

CD200R is highly expressed on basophils, a member of the granulocyte family. Ligation of 
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CD200R with either CD200 or vOX2 expressed on B lymphoblastoid cells inhibited basophil 

activation by FcεRI (Shiratori et al., 2005). Further evidence for vOX2- and CD200-

mediated suppression of the immune response comes from studies of natural killer (NK) 

cells. CD200-expressing cells and reactivated KSHV-infected BC1 cells, presumed to be 

expressing vOX2, inhibited the lytic activity of CD200R-expressing NK cells, and their 

production of IFNγ (Shiratori et al., 2005). 

Chung et al. examined the in vitro activities of soluble vOX2 on myeloid cells and 

concluded that vOX2:Fc exerts pro-inflammatory activities (Chung et al., 2002). These data 

contradict those of Rezaee et al. (2005) and Foster-Cuevas et al. (2004). PBMCs from 

healthy individuals were treated with soluble human CD200 or vOX2 proteins, created by 

fusing the extracellular regions of vOX2 or CD200 to Glutathione S-transferase (GST). 

vOX2-GST induced IL-1β and TNFα production by PBMCs, specifically 

monocytes/macrophages, but CD200-GST exerted no stimulatory effects. vOX2-GST-

induced cytokine secretion was increased upon IFNγ-stimulation, and it induced the 

production of IL-6 and monocyte chemotactic protein 1 (MCP-1). Native vOX2 expressed 

on a B cell line also increased cytokine secretion by U937 cells stimulated with IFNγ (Chung 

et al., 2002). These data appear incongruous with the large amounts of data generated on 

CD200 activity and function, as a viral homologue would be expected to be adapted by a 

virus for the purposes of immune suppression and therefore evasion and not immune 

activation. 

Salata et al. engineered CD200R-positive, primary human monocyte-derived 

macrophage (MDM) cells to express full-length vOX2 tagged with haemagglutinin (HA) 

(Salata et al., 2009). When vOX2 was expressed by these cells, they secreted greater 

concentrations of pro-inflammatory cytokines, TNFα, IL-1β, IL-6 and IFNγ. However, upon 

stimulation of the vOX2-expressing cells by IFNγ, cytokine secretion was reduced in 
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comparison to control cells. Interestingly, CD200R mRNA transcript levels inversely 

correlated with those of the cytokines. The CD200R-negative THP-1 human monocytic cell 

line was engineered to express vOX2-HA, and differentiated into a macrophage phenotype, 

before co-culturing with CD200R-positive MDM cells. In both the presence and absence of 

IFNγ, vOX2-expressing THP-1 cells induced the secretion of IL-6 and TNFα from CD200R-

positive MDM cells. CD200R mRNA expression levels were also reduced in the MDM cells 

co-cultured with vOX2-expressing THP-1 cells (Salata et al., 2009). The authors suggest that 

vOX2 favours an inflammatory state and downregulates its receptor, CD200R. vOX2 

expression also led to increased phagocytic activity by the vOX2-MDM cells, though this 

was reversed upon treatment with IFNγ. Along with a decrease in CD200R expression, 

vOX2 also reduced the percentage of MHC-I and MHC-II-expressing MDM cells, though 

this phenomena was reversed slightly upon IFNγ-stimulation of the cells (Salata et al., 2009). 

These data, like those of Chung et al. are contradictory to the multitude of studies showing 

an anti-inflammatory role for CD200, and indicate that the role of vOX2 must be further 

elucidated.  

 

1.6.2. RRV vOX2 (ORF R14) 

 
RRV vOX2 is encoded by RRV ORF R14. The ORF is quoted as R14 or R15 by different 

authors; for the purposes of this thesis, the gene will be referred to as R14. It is a late lytic 

protein (Pratt et al., 2005). Langlais et al. initially described the structure and certain 

functions of RRV vOX2  (Langlais et al., 2006). Two sequenced RRV strains, H26-95 and 

17577 are used by researchers. The two RRV vOX2 proteins have an identical amino acid 

sequence and therefore the protein encoded by both strains will be referred to as RRV vOX2. 

RRV vOX2 shares 30% protein identity with human CD200, and 28% identity with KSHV 

vOX2, and like these two proteins it contains Ig-like domains (Langlais et al., 2006). These 
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authors engineered an RRV vOX2:Fc-fusion protein, and deglycosylated it with N-

glycosidase F, revealing a core protein size of 53kDa. The glycosylated RRV vOX2 protein 

existed in a dimeric form, similar to human CD200. Both RRV vOX2:Fc and human 

CD200:Fc proteins reduced TNF transcript and protein levels in THP-1 cells in response to 

IFNγ treatment (Langlais et al., 2006). MDM cultures prepared from RRV-negative rhesus 

macaques were incubated with RRV vOX2:Fc and human CD200:Fc proteins. Both proteins 

suppressed the basal secretion of TNF, though the RRV vOX2:Fc was more effective. Cell-

surface and cytoplasmic RRV vOX2 were visualised by monoclonal antibody labelling and 

confocal microscopy in cells 52hrs post-infection with RRV. A secreted form of the protein 

was also isolated from the supernatants of infected cells (Langlais et al., 2006).  

Thus, RRV vOX2 exists in two forms, a transmembrane, cell-surface protein, similar 

to KSHV vOX2 and CD200, but also as a truncated and probably secreted protein. Pratt and 

colleagues identified two splice variants of RRV vOX2, resulting from the bicistronic 

transcription of R14 and downstream ORF74, encoding a viral GPCR (Pratt et al., 2005). 

Splicing of the biscistronic transcript generated a 2.1kb cDNA, encoding full-length RRV 

vOX2, with expression localised to the cellular membrane and cytosol of cells transduced 

with the 2.1kb transcript tagged with HA. They also identified a 1.7kb cDNA, localising 

predominantly to the cytosol, and present in the supernatant of CHO cells engineered to 

express the HA-tagged 1.7kb construct. Both isoforms of RRV vOX2 had a similar size of 

40kDa, rather than the predicted 28kDa, possibly due to glycosylation. It could be presumed 

that the secreted form of RRV vOX2 has the same activity as the transmembrane protein, as 

only the extracellular domain of the protein (fused to human IgG1 Fc) has been examined 

functionally. However, the function of soluble RRV vOX2 has not been investigated. The 

binding affinity of RRV vOX2 for human CD200R has also not been elucidated. 
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1.6.3. Other viral homologues of CD200 

 
Several other viruses encode viral homologues of CD200, including HHV-6 and 7, CMV, 

and myxoma virus (MV). HHV-6 and 7 encode CD200 homologues with the ability to bind 

to human CD200R (Shiratori et al., 2005), but their functions have not been elucidated. MV, 

lethal to European rabbits but causing a mild infection in American rabbits who have adapted 

to the virus, encodes a viral homologue of CD200, which will be referred to as MVvOX2 for 

clarity. MVvOX2 is encoded by the M141R ORF, and comprises a 21kDa protein, expressed 

on the plasma membrane of infected cells. It does not appear to be crucial for either viral 

infection or replication in the host, though the myxomatosis pathology is reduced in mice 

infected with a mutant MV virus lacking MVvOX2 (MVvOX2KO) (Cameron et al., 2005). 

Macrophage activity is enhanced in the absence of MVvOX2. These data suggest that an 

increased immune response in the absence of MVvOX2, as evidenced by increased T cell 

activity thus clearing viral infection, results in the attenuated pathology noted in 

MVvOX2KO-infected animals. PBMCs isolated from animals infected with MVvOX2KO 

generate higher concentrations of inducible nitric oxide synthase (iNOS), a marker of 

macrophage activation, than those from animals infected with wild-type MV. These data 

suggest that the expression of MVvOX2 dampens the activation of macrophages (Cameron 

et al., 2005). Later work by these researchers confirmed that iNOS expression was induced 

in murine macrophages infected with MVvOX2KO, along with transcripts for granulocyte-

colony stimulating factor (G-CSF) and TNFα (Zhang et al., 2009). Increased TNFα 

transcripts and protein secretion were due to increased activity of the NF-κB transcription 

factor in the absence of MVvOX2 (Zhang et al., 2009). Thus, MVvOX2 suppresses 

macrophage activity, concurring with data for KSHV vOX2 (Rezaee et al., 2005) and CD200 

(Broderick et al., 2002). 
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The English isolate of rat CMV (CMV-E) encodes a homologue of CD200, encoded 

by the ORF e127, that is absent from the Maastricht rat CMV isolate (CMV-M). The CMV-

E vOX2 shares 56% protein identity with rat CD200, and 46% identity with human CD200. 

The viral gene was most likely derived from the rat genome, as it shows greater similarity 

with rat and mouse CD200, than KSHV and HHV-7 vOX2s (Voigt et al., 2005).   

No other data concerning the function of viral homologues of CD200 have been 

published. 

1.7. Innate immune response 

 
The innate immune response does not recognise or ‘remember’ pathogens, but rapidly 

responds to all foreign bodies and microorganisms that traverse the external barriers. Initially 

the phagocytic myeloid cells, including macrophages and neutrophils, recognise pathogens 

and destroy them by the secretion of toxic substances such as reactive oxygen species and 

anti-microbial enzymes. Cells of the innate immune system recruit mediators of the adaptive 

immune response, a system that expands from birth and generates memory cells that respond 

to every microorganism that the body encounters- a process known as immunological 

memory (Murphy, 2008). Two major cell populations that mediate the innate immune 

response are neutrophils and monocytes, and will be discussed below.     

 

1.7.1. Neutrophil function 

 

Neutrophils are the largest subpopulation of granulocytes. They are phagocytic cells of the 

immune system, either exocytosing cytotoxic proteins in response to microbial infection 

(Faurschou & Borregaard, 2003), or generating anti-microbial reactive oxygen species 

(ROS) (Dahlgren & Karlsson, 1999).  
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Stimulation of neutrophils induces the migration of active cytosolic nicotinamide 

adenine dinucleotide phosphate (NADPH)-oxidase components, p47PHOX, p67PHOX and 

p40PHOX (PHOX: phagocyte oxidase), to the plasma membrane. The interaction of 

phosphorylated p47PHOX with the cytoplasmic tail of membrane-bound p22PHOX (p22PHOX 

forms the cytochrome b558 complex with gp91PHOX at the plasma membrane) is the last stage 

of NADPH oxidase assembly (Dang et al., 2006). The assembled NADPH oxidase complex 

catalyses an oxidation of NADPH, forming NADP+ and H+, and transferring an electron to 

extracellular O2 (Dahlgren & Karlsson, 1999). The ‘priming’ of neutrophils by GM-CSF and 

TNFα involves a partial phosphorylation of p47PHOX, possibly explaining the subsequent 

rapid phosphorylation and formation of NADPH oxidase upon neutrophil stimulation. 

fMLP, a bacterial peptide and neutrophil chemoattractant, acts upon fMLP GPCRs 

located on neutrophil secretory vesicles, to induce a rapid oxidative response. fMLP 

stimulation is limited in healthy individuals due to inaccessibility of the intracellular fMLP 

receptors. Superoxide burst is dependent upon the mobilisation of secretory vesicles (and 

therefore fMLP receptors) to the cell surface and can only be induced in ‘primed’ neutrophils 

(Karlsson et al., 1995). GM-CSF was used to ‘prime’ isolated neutrophils before fMLP 

stimulation in the following experiments.  

Karlsson et al. examined the mechanisms underlying neutrophil oxidative burst 

induced by E. coli (Karlsson et al., 1995). The priming of neutrophils by Gram-negative 

bacteria appears to be due to LPS. LPS, a component of endotoxin isolated from the walls of 

Gram-negative bacteria, has the ability to induce inflammatory reactions, mediated by 

ligating with CD14, a glycosylphosphatidylinositol (GPI)-anchored protein, and with LPS-

binding protein (LBP, present in mammalian serum). This interaction results in cell 

activation (Nick et al., 1996). Inhibiting LPS activity by polymyxin B prevents an E. 

coli/fMLP-induced superoxide burst from neutrophils. However, the role of LPS is uncertain, 
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as LPS-coated latex beads failed to prime neutrophils for fMLP activation (Karlsson et al., 

1995). Neutrophils react to LPS, but in a more subdued manner in comparison with their 

response to fMLP. fMLP stimulation results in rapid adhesion of isolated neutrophils to 

endothelial cells, and though LPS causes a similar degree of activation and adhesion, the 

time course is significantly slower, suggesting induction of distinct signalling pathways.  

It is unclear which intracellular signalling cascades are induced by LPS in 

neutrophils. LPS-stimulation results in the phosphorylation of p38 but not ERK or JNK MAP 

kinases approximately 20mins following stimulation, in a dose-dependent manner. p38 

activation by LPS is independent of protein kinase C (PKC) phosphorylation, unlike 

stimulation by PMA (Nick et al., 1996). Ward et al. demonstrated that superoxide production 

by neutrophils in response to E. coli-stimulation can be enhanced by priming the neutrophils 

with TNFα or LPS, and can be reduced by administering a p38 inhibitor SB203580 (Ward et 

al., 2000).  

The degranulation of neutrophils is another cytotoxic facility of these cells, and 

involves the release of antimicrobial enzymes. During each stage of neutrophil 

differentiation from the myeloblast precursor, distinct secretory granules are formed. The 

earlier azurophilic (or primary) granules contain MPO, whereas the later granules are 

peroxidase-negative. Upon stimulation of neutrophils by a bacterium, the azurophilic 

granules exocytose and release predominantly MPO and defensins (Faurschou & Borregaard, 

2003). MPO reacts with H2O2 generated by the NADPH oxidase complex, and then oxidises 

chlorine, tyrosine and nitrate to produce microbiocidal compounds, including hypochlorous 

acid (HOCl). Defensin proteins form pores in bacterial membranes, and can attract 

monocytes, CD4+ and CD8+ T cells to the site. Exocytosis of non-peroxidase secretory 

vesicles incorporates several proteins into the plasma membrane of the neutrophil, such as 

fMLP receptors, and the β2-integrin CD11b, and L-selectin which both enable neutrophil-
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endothelial cell adhesion. The azurophilic granules will not be exocytosed until there is a 

strong stimulus. The mechanism of degranulation is incompletely understood, but appears to 

occur in stages, linked to increasing concentrations of cytosolic Ca2+ (Faurschou & 

Borregaard, 2003).  

There are few reports describing neutrophil function in KS patients. However, Ellis et 

al. investigated neutrophil function in AIDS patients suffering from KS (Ellis et al., 1988). 

These individuals suffer from greater numbers of bacterial infections than the healthy 

population. The enhanced propensity for infection in these individuals may be due to 

impaired neutrophil function. Neutrophil chemotaxis appeared normal in AIDS-KS, but 

functionality was reduced (Ellis et al., 1988).  

 

1.7.2.     Monocytes 

 

Monocytes circulate in the blood, continuously traversing the endothelial barrier in response 

to infection, and differentiating into phagocytic macrophages in the tissues. Circulating 

monocytes are also phagocytic, though they do not often encounter infection in the 

bloodstream (Murphy, 2008). Macrophages secrete cytokines into the surrounding tissue, 

activating other macrophages. They also recruit neutrophils by producing IL-8, and 

monocytes by MCP-1, from the bloodstream to the tissue. IL-8 is a potent neutrophil 

chemokine, it exists in three forms due to post-translational processing, and binds to one of 

two seven-transmembrane receptors (IL-8Rα and IL-8Rβ) that are then internalised and 

rapidly recycled back to the cell surface. Cognate receptor binding by IL-8 induces a 

Ras/MAPK-mediated intracellular signalling pathway. The consequences include shedding 

of L-selectin from the cell surface, and enhancement of integrin expression, leading to 

epithelial cell adhesion and migration of neutrophils into the tissue. IL-8 also stimulates 

neutrophil oxidative burst and degranulation (Mukaida, 2003). The activation of monocytes 
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depends primarily on the cell-surface expression of TLRs that are activated by bacterial 

pathogen-associated molecular patterns (PAMPs), such as LPS, and are regulated by P2 

receptors activated by ATP, ADP, UTP and UDP (Ben Yebdri et al., 2009).   

1.8. Adaptive immune response 

 
Following the rapid innate immune response to non-self antigens, lymphocytes differentiate 

and proliferate, creating long-term effector cells that mediate ‘immunological memory’. 

These memory responses provide adaptive immunity to infection. Cells generated as part of 

the adaptive immune response recognise specific antigens and are recruited when the innate 

response is not sufficient to control the pathogen. B cells, T cells and professional APCs are 

crucial components of this system, and their interaction will be discussed below.  

 

1.8.1. T cell development 

 

T cells and B cells derive from a common lymphoid progenitor cell in the bone marrow, but 

T cell maturation occurs in the thymus. Miller reported in 1961 that the excision of the 

thymus from neonatal mice resulted in reduced numbers of lymphocytes and a tolerance of 

allogeneic skin grafts, indicating a suppressed immune response (Miller, 1961). Murine 

models of immune-suppression can be generated by preventing the development of the 

thymus. Deletion of the Winged-helix nude (Whn) gene in ‘nude mice’ leads to defects in 

development of the thymus and an associated T cell-deficiency. The resulting disruption in 

signalling between the developing ectoderm and endoderm also results in hairlessness, hence 

the moniker ‘nude’ (Reth, 1995). The importance of the thymus in human T cell 

development was highlighted in a study by Markert et al. A developmental defect leading to 

the lack of a functional thymus in humans, results in a condition known as DiGeorge 

syndrome, characterised by a profound T cell deficiency. Transplantation of allogenic thymic 
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tissue from HLA-matched infants to infants with DiGeorge syndrome, restored the 

production of T cells and their proliferative response to mitogens such as anti-CD3 and 

phytohaemaglutinin (PHA) (Markert et al., 1999).  

T cells develop into distinct lineages in the thymus, defined by their surface 

expression of T cell receptor (TCR) subtypes and co-stimulatory proteins. The TCR gene 

fragments are rearranged during development in the thymus, by the excision of intervening 

gene fragments. For example, the δ-coding regions are deleted in α:β-destined T cells. The 

excised fragments exist as episomes in the T cell, and are depleted by cell division (Spits, 

2002). T cells are regulated by both positive and negative selection; this ensures that the cells 

do not react to host antigens (resulting in autoimmune diseases). A low level interaction 

between newly generated α:β T cells and self-antigen presented by thymic DCs allows the T 

cells to survive (positive selection), whereas a high affinity for self-antigens leads to cell 

death (negative selection) (Spits, 2002).  

Following positive selection, dual-positive CD4+CD8+ α:β T cells differentiate into 

exclusively CD4+ or CD8+ subtypes. CD8+ T cells differentiate into cytotoxic T lymphocytes 

(CTLs) that can directly kill virus-infected cells, and CD4+ cells mature into ‘helper’ (Th) or 

‘regulatory’ (Treg) cells. CTLs can kill target cells by a variety of mechanisms. Upon 

forming a contact with a target cell, cytotoxic granules are exocytosed to the contact, or 

synapse, and perforin is released, forming pores in the target cell membrane. Release of other 

enzymes such as members of the granzyme family can induce apoptosis by cleavage of 

caspases, initiating an apoptotic cascade. CTLs can also kill target cells through a member of 

the TNF receptor death receptor family, Fas. Fas ligands expressed by the CTL ligate to the 

Fas receptor on target cells, inducing apoptosis via a caspase/apoptotic pathway. A common 

response of CTLs to stimulation is the secretion of cytokines such as IFNγ, TNF and IL-2 

(Barry & Bleackley, 2002).  
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IFNγ has a wide range of activities, and is the sole member of the IFN type II family, 

structurally distinct from the type I IFNs such as IFNα. IFNγ binds to the IFNγ-R, initiating a 

signal cascade in the recipient cell and activating the Jak-Stat pathway, leading to 

transcription of IFNγ-responsive genes, often via binding of IRFs to ISRE promotor regions. 

IFNγ is important for amplifying the immune response to viral infection, and achieves this 

by several mechanisms. These include the upregulation of MHCI/II and associated proteins 

such as tapasin, the upregulation of anti-proliferative proteins, upregulation of proteins that 

impede the replication and translation of viral antigens, such as PKR (protein kinase dsRNA-

regulated), and the upregulation of chemoattractants such as MCP-1 (Schroder et al., 2004).  

IL-2 contributes to the development of Tregs, enhances the proliferation of T cells 

and can stimulate NK cells and B cell-Ig secretion. IL-2 binds to the IL-2R, composed of 

three chains which have a high affinity for IL-2 when they form a complex (Murphy, 2008). 

Like IFNγ, IL-2 stimulates T, B and NK cells via the Jak-Stat pathway upon IL-2R ligation. 

As discussed below, IL-2 is important during the T cell response to antigen peptide, and 

assists in the avoidance of anergy. IL-2 is also important as a survival signal for T cells, and 

thus must be present in the culture medium to maintain T cells and T cell clones in long-term 

culture. Therapeutically, IL-2 is used to amplify the number of CD4+ T cells in HIV-positive 

individuals (Rochman et al., 2009). 

The secretion of IFNγ by activated T cells and NK cells, as well as the presence of 

IL-12 produced by cells mediating the innate immune response, activates the signal 

transducer and activator of transcription 4 (Stat4), Stat1 and the T box transcription factor 

(T-bet), inducing the CD4+ T cell to mature into a TH1 cell. The activation of T-bet by IFNγ 

leads to the activation of Runx3, subsequent downregulation of IL-4, and enhanced IFNγ-

responsiveness; IFNγ-responsiveness promotes TH1-differentiation and inhibits TH2-

polarisation. TH1 cells can also stimulate the production of antibodies by the co-stimulation 
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of activated antigen-specific B cells, and can stimulate an infected macrophage to digest 

endocytosed bacteria that have evaded its killing mechanisms (Zhou et al., 2009). In 

contrast, TH2 cells secrete IL-4, IL-5 and IL-13, in response to IL-4-stimulation, leading to 

activation of the Gata3 transcription factor and subsequent TH2-differentiation. IL-4 reduces 

the expression of the IL-12R β-chain, promoting TH2-differentiation and preventing TH1-

polarisation. A third T helper cell subset, Tfh, is differentiated in response to IL-21 

stimulation and controls B cell maturation, though it has not been extensively researched 

(Zhou et al., 2009). 

  

1.8.2. Presentation of antigen to T cells  

 

The recognition of viral antigens by T cells is dependent on the presentation of antigen 

peptides by MHC molecules on the surface of APCs. CD8+ CTLs recognise processed 

peptide presented by MHC class I. Maturing MHCI proteins form a protein-complex in the 

endoplasmic reticulum (ER), known as the peptide-loading complex, including proteins such 

as transporter associated with antigen processing protein (TAP) and tapasin. Briefly, antigens 

are processed and degraded by the proteasomal complex; the resulting peptides are 

transported into the ER by TAP, loaded onto the maturing MHCI protein, and the MHCI-

peptide complex transported to the cell surface via the Golgi apparatus (Hansen & Bouvier, 

2009).  

Viruses have evolved to target various stages of the MHC maturation and protein-

loading pathway. For example, the latent EBV antigen EBNA1 expresses a repetitive Gly-

Ala motif which inhibits the recognition of EBNA1-expressing cells by CTLs (Levitskaya et 

al., 1995). Levitskaya and colleagues reported that EBNA4 motifs commonly recognised by 

CTLs through HLA-A11, were not recognised when inserted into an intact EBNA1 

sequence, and expressed in target cells (Levitskaya et al., 1995). In contrast, cells expressing 
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EBNA4 motifs within a mutant EBNA1 lacking the Gly-Ala motif were recognised and 

killed. It is likely that EBNA1 inhibits the degradation of viral proteins by the proteasome, 

therefore preventing their presentation by MHCI on the cell surface (Levitskaya et al., 1995).  

Human CMV unique short (US) region-encoded glycoproteins can inhibit MHC-

mediated peptide presentation by several mechanisms. US2 and US11 initiate the transport 

of MHCI heavy chains from the ER into the cytosol for degradation by the proteasome. US3, 

a transmembrane glycoprotein, prevents the binding of peptides to the MHCI complex, thus 

retaining MHCI in the ER and preventing its transport to the cell surface (Hansen & Bouvier, 

2009). In contrast, hCMV US6, a transmembrane protein located in the ER, binds to the 

TAP/MHCI complex and prevents the TAP-mediated transport of peptides from the cytosol 

to the ER, possibly by preventing the ability of TAP to transfer peptides into the ER, rather 

than preventing peptide-TAP binding (Ahn et al., 1997).  

KSHV also encodes proteins capable of disrupting MHC-peptide presentation to T 

cells, by initiating the endocytosis of mature MHC proteins from the cell surface and 

directing them for degradation by the endolysosomal pathway. KSHV ORFs K3 and K5 are 

predominantly localised to the ER; expression of these proteins does not alter the maturation 

of the MHC or its translocation to the cell surface, but both K3 and K5 enhance the 

internalisation and degradation of surface MHCI-peptide complexes (Coscoy & Ganem, 

2000).  

Though MHCI is expressed on the majority of cells in vivo, MHCII expression is 

generally restricted to B cells, DCs and macrophages. CD4+ T cells recognise peptide 

presented by MHCII and in turn activate immune effector cells. For example, CD4+ T cells 

recognising non-self antigen presented by a B cell will stimulate that B cell to produce 

antibodies. In contrast to MHCI molecules which bind peptides of 8-10aas, anchored by their 

carboxy and amino termini to the binding cleft, MHCII proteins can bind peptides of over 
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13aas in length that lie in the peptide-binding cleft and are stabilised by hydrogen bonds 

along their length. The variation in peptide-MHC linker regions amongst MHC alleles 

determines the peptides that each MHC complex will bind. Importantly, MHC molecules are 

unstable when they are not bound to peptide, and the stabilisation of the MHC complex upon 

peptide-binding ensures an efficient interaction with responder T cells (Murphy, 2008).   

Normally, antigenic peptides presented by MHC class I or II molecules bind to the 

TCRs of CD8+ or CD4+ T cells respectively, inducing a T cell response such as proliferation 

and/or cytokine production. CD4 and CD8 proteins contribute to the TCR-mediated 

intracellular signalling pathways within the T cell, leading to downstream transcriptional 

activity and generation of cytokines. However, costimulatory proteins, such as CD28, must 

be activated concurrently with TCR-stimulation in order to induce a T cell response. In the 

absence of costimulation, a state known as anergy can be induced. T cell anergy is a 

hyporesponsive state in which a T cell cannot respond to peptide stimulation; for example, 

the proliferative response is curtailed (Wells, 2009). Traditionally, anergy is induced by 

MHC-peptide binding to the TCR in the absence of costimulation, but can also be a result of 

abnormal TCR stimulation. IL-2 production is dependent on CD28 costimulation. However, 

exogenous IL-2 enables T cells to avoid anergy in the absence of CD28 stimulation, and 

anergy can be induced even with CD28-costimulation if IL-2 activity is neutralised. 

Therefore, the anergic state is dependent on TCR/CD28 signalling in addition to IL-2 

signalling through the IL-2R, and appears to be related to elevated intracellular calcium 

levels. Anergic T cells cannot respond effectively to stimuli, their integrin-adhesive 

properties are reduced, and they share a similar phenotype with CD4+ Foxp3+ Tregs. As a 

result, T cells are only fully activated in the appropriate inflammatory environment (Wells, 

2009). 
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1.8.3. Downstream signalling cascades initiated by stimulation of the TCR 

 
An APC presents processed peptide antigen to a T cell via its surface MHC, consequently 

binding the TCR αβ subunits, activating the TCR and initiating a signalling cascade (Figure 

1.6). The ITAM motifs of the TCR ζ chain and CD3 are subsequently phosphorylated by Lck 

or Fyn, Src family kinases that bind to the cytoplasmic tail of CD4 and CD8. Zap70 

translocates to the phosphorylated ITAM tyrosines and binds to them via its two SH2 

domains. Zap70 is subsequently phosphorylated by Lck and is crucial for the development of 

downstream signalling cascades (Au-Yeung et al., 2009). Activated p-Zap70 phosphorylates 

LAT and SLP-76. Deletion of the gene encoding Zap70 in mice leads to severe combined 

immunodeficiency (SCID) due to the inability of T cells to initiate downstream signalling 

events upon antigen-presentation (Au-Yeung et al., 2009). Haas and colleagues observed that 

Zap70 was not phosphorylated in cells lacking functional Lck, confirming the importance of 

this protein in initiating the signalling cascade (Haas et al., 2008). The phosphorylation of 

LAT by Zap70 is crucial for the subsequent phosphorylation and binding of signalling 

proteins such as PLC-γ1 and VAV1. Zap70 directly phosphorylates five tyrosine residues on 

LAT, thus creating docking sites for the signalling proteins. Zap70-mediated 

phosphorylation of LAT is also essential for activation of the Ras pathway downstream of 

PLC-γ1 (Paz et al., 2001). SLP-76 associates with GADS, an adaptor protein that binds to 

phosphorylated LAT. Three tyrosine kinases on SLP-76 are phosphorylated by Zap70 and 

Lck, leading to PLC-γ1 activation and resultant calcium flux. All three tyrosines have similar 

functions. However, Y128 and Y112 are essential for SLP-76-VAV binding, and Y145 

appears to play a greater role in PLC-γ1 activation, downstream calcium flux, and activation 

of calcium-sensitive nuclear factor of activated T cells (NFAT) (Jordan et al., 2006). The 

NFAT transcription factor family member NFATc appears to be responsible for regulating 

IL-4 production by T cells (Fowell et al., 1999). 
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Figure 1.7 Intracellular signalling cascades initiated by TCR-mediated stimulation of a T cell. Upon TCR 

ligation to a MHC-peptide complex a signalling cascade is initiated, ultimately resulting in gene transcription 

consistent with antigen-specific T cells responses (e.g. IL-2 production). The phosphorylation of downstream 

signalling molecules is indicated by red dots. Zap70 is recruited to the ζ TCR subunit and subsequently 

phosphorylated by Fyn or Lck. p-Zap70 then phosphorylates LAT and SLP-76 adaptor proteins which recruit 

and phosphorylate other protein tyrosine kinases. The signalling cascade results in phosphorylation and 

activation of MAP kinases, and is enhanced by co-stimulation through the coreceptor CD28. This illustration is 

adapted from Schwartzberg et al. (2005), Alegre et al. (2001) and Abraham and Weiss (2004). 

 

 

Downstream of the LAT-SLP-76 adaptor complex, several signalling molecules are 

activated, leading to transcription of genes that are required for antigen-specific T cell 

responses. The adaptor protein Ras, activated by PLC-γ1, recruits Raf-1 to the plasma 

membrane following TCR stimulation. Raf-1 is subsequently activated and in turn 

phosphorylates MEK-1 and MEK-2, the upstream initiators of ERK1/2 activation. 

Phosphorylated ERK (p-ERK1/2) is able to translocate to the nucleus and directly activate 

transcription factors such as AP-1, composed of fos and jun (Alberola-Ila & Hernandez-
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Hoyos, 2003). Cleavage of phospholipid phosphatidylinositol-4,5-biphosphate (PIP2) by 

PLC-γ1 generates diacylglycerol (DAG) and inositol 1,4,5-triphosphate (IP3). IP3 binds to IP3 

receptors on the ER, releasing Ca2+ ions into the cytoplasm. Calcium binds to calmodulin in 

the cell, which subsequently activates a phosphatase, Cn. Cn dephosphorylates the 

constitutively phosphorylated NFAT, thus activating it and causing dimerisation with 

another transcription factor, AP-1 (Baine et al., 2009). Both NFAT and AP-1 can bind 

directly to sequences of the IL-2 promoter, though the NFAT-AP-1 complex has a higher 

binding affinity (Chen et al., 1998). 

 Costimulation through the co-receptor CD28 augments the TCR signalling cascade. 

CD80 and CD86, proteins expressed by APCs, bind to CD28 on the surface of resting T 

cells. Activation of phosphatidylinositol 3-kinase (PI3K) by CD28 subsequently 

phosphorylates Akt, a protein which has been identified as the regulator of IL-2 and IFNγ-

secretion in T cells (Alegre et al., 2001). Akt is also phosphorylated by the TCR signalling 

pathway downstream of Ras activation, suggesting that CD28 ligation may just enhance the 

TCR response rather than initiating a distinct signalling pathway.  

A negative co-receptor, CTLA-4, is upregulated on activated T cells and competes 

with CD28 for its ligands. Ligation of CTLA-4 reduces IL-2 secretion, and suppresses 

intracellular ERK and JNK phosphorylation, providing a negative balance to TCR 

stimulation. Reduced activation of the transcription factors AP-1, NFAT and NF-κB have 

also been observed upon cross-linking of CTLA-4 (Alegre et al., 2001). NF-κB is involved 

in the regulation of IL-2 gene transcription, and its activity is increased in response to TCR 

stimulation and costimulation through CD28. NF-κB comprises dimeric complexes of p50, 

p52, RelA, RelB and c-Rel. The c-Rel subunit appears to be crucial for the regulation of IL-2 

transcription, and is translocated to the nucleus upon degradation of inhibitory proteins that 

retain NF-κB in the cytosol (Kalli et al., 1998). The signalling pathways induced by CTLA-4 
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ligation have not been elucidated. However, there is some evidence that CTLA-4 can also 

activate PI3K and Akt, inducing an anergic state rather than stimulating cytokine secretion. 

This pathway also appears to rescue T cells from antigen-dependent cell death, due to the 

inhibition of a pro-apoptotic protein by Akt (Rudd et al., 2009).  

1.9. Aims and objectives of this research project 

 
The overall aim of this project was to elucidate the mechanisms of action of KSHV vOX2 

and its cellular counterpart, CD200, on innate and adaptive immunity in vitro and ex vivo.   

The specific objectives were: 

• To generate a soluble recombinant CD200 Fc-fusion protein 

• To investigate the activities of soluble vOX2:Fc and CD200:Fc in modulating 

primary human leukocyte responses to stimuli, using an inactive protein, KCPmut:Fc, as 

a control 

• To study the activities of full-length native vOX2 and CD200 expressed by antigen-

presenting cells on the response of human T cell clones to cognate peptide antigen 

• To determine the mechanism of action of vOX2 and CD200 in modulating T cell 

responses to cognate peptide antigen 

• To generate antigen-presenting cell lines expressing an RRV homologue of CD200, 

and three putative CMV homologues of CD200, and to investigate their role in 

modulating T cell clone responses to cognate antigen  
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Chapter 2.   Materials and methods 

 
The experimental methodologies used throughout this research project will be outlined and 

described in this chapter, with reference to background literature where applicable. The 

appendices include comprehensive lists of primers and plasmids (Appendix A), antibodies 

(Appendix B), and common solutions and reagents (Appendix C).  

2.1. Creating a CD200:Fc fusion protein 

2.1.1. Polymerase Chain Reaction (PCR)  

 
The PCR assays referenced in this thesis were carried out in a 50μl volume with 4μg/ml 

sense and anti-sense primers. The thermal cycling steps were optimised for each primer pair, 

in particular the annealing and elongation steps. Every PCR reaction contained the 

following; 1.25U proof-reading DNA polymerase (Promega), 2mM deoxyribonucleotide 

triphosphates (dNTPs), and 1x DNA polymerase buffer (Promega). The DNA concentration 

was optimised for each assay. 

 

2.1.2. Construction of the CD200:Fc expression vector 

 
The full-length CD200 gene had been previously inserted into the pBK-CMV vector 

(Rezaee, R. and Blackbourn, B., University of Birmingham).  From this vector, the sequence 

encoding the extracellular region of human CD200 was amplified by polymerase chain 

reaction (PCR; see Section 2.1.1) using gene-specific primers incorporating XbaI and NotI 

restriction enzyme sites (primers 1F and 1R in Table I, Appendix A). The amplified XbaI-

CD200-NotI sequence was then ligated into a blunt-end cloning vector (pCR®-Blunt II-

TOPO, Invitrogen, Table II, Appendix A) and transformed chemically competent One Shot® 

TOP10 E. coli (Invitrogen). Genomic sequencing (University of Birmingham sequencing 
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service) of viable clones yielded several with the correct CD200 sequence, and one of these 

was selected for further investigation. Sequences were analysed by Sequence Scanner 

(version 1.0, Applied Biosystems) and Vector NTI® Advance 10 (Invitrogen) software.   

Transformed bacteria were amplified by overnight incubation in LB broth (Acros 

Organics) containing the appropriate antibiotic for selection (kanamycin, 50μg/ml). DNA 

was extracted from the bacterial cultures by commercial kits (Qiagen or Promega, see 

Section 2.1.3). The CD200 gene was cut from the cloning vector by digesting the adjacent 

restriction sites with XbaI (Promega) and NotI (Promega) and the extract was then run on a 

1% agarose gel beside the digested vector. CD200 was subsequently cut from the agarose gel 

and purified with a commercial kit (Qiagen) before subcloning into the expression vector 

(pTorsten), also digested with XbaI and NotI restriction sites, downstream of the EF1a 

promoter and upstream of the IgG1 Fc sequence (Figure 2.1). Recombinant pTorsten vector, 

ligated with the region of CD200 encoding the extracellular protein domain, was transformed 

into competent DH5α E. coli and the region sequenced (University of Birmingham 

sequencing service) using the gene-specific primers 1F and 1R (Table I, Appendix A).  

 

2.1.3. Extracting and purifying DNA from transformed bacteria 

 
Commercial kits were utilised for the extraction of DNA from transformed bacterial cultures. 

All cultures were prepared in sterile containers by overnight incubation (37oC) with constant 

shaking in LB broth (Table I, Appendix C) with selective antibiotics. The QIAprep® Spin 

Miniprep kit (Qiagen) enable isolation of DNA from small volumes (3ml), the PureYield™ 

Plasmid Midiprep system (Promega) was used for  larger volumes (50-250ml), and the Endo-

free plasmid maxi kit (Qiagen) was used to extract DNA from large volumes of bacterial 

culture (250ml) without endotoxin contamination. Each kit relies on a DNA-binding 
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membrane that enables the washing and purification of the DNA, and the extraneous material 

is discarded by centrifugation following lysis of the bacteria.   
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Figure 2.1 Constructing a CD200:Fc expression vector. The region of CD200 encoding the extracellular 

protein domain was amplified by PCR, and two restriction sites, for enzymes NotI and XbaI, added using 

specific primers. NotI-CD200-XbaI was ligated into the pCR®4-TOPO® sequencing vector, for verification of 

the DNA sequence, then digested out by NotI and XbaI enzymes and ligated into the pTorsten vector, upstream 

of the gene encoding human IgG1 Fc (CD200-pT clone 6). 

 

2.1.4. Transfection of CD200-pT into CHO cells, for subsequent expression of 
CD200:Fc 

 
The CD200-pT plasmid (CD200-pT clone 6) was stably transfected into CHO cells by the 

Lipofectamine (Invitrogen) reagent method. 7x105 cells were seeded into 35mm dishes and 

cultured overnight in pre-transfection medium (Appendix C, Table II). The following day 

lipofectamine reagent (5μl, Invitrogen) was diluted in RPMI 1640 (95μl, Invitrogen) and 

mixed with either RPMI 1640 (10μl) containing 250ng of DNA, or RPMI and water (a 

volume equal to that of the DNA) as a negative control. The reagents were incubated 
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(45mins, room temp.), then 200μl were plated onto cells cultured in RPMI 1640 (800μl) and 

incubated (5 hrs, 37oC, 5% CO2) in a humidified incubator. The pre-transfection medium 

was then removed and replaced with 5ml post-transfection medium, and left for a further 24 

hours. After this time, the medium was replaced with pre-transfection medium, and another 

48 hours later it was replaced with complete medium. At this stage the selective antibiotic 

Hygromycin B was added to the incubating medium at the previously determined optimal 

concentration of 400μg/ml.  

Approximately three weeks post-transfection, a limiting dilution was performed on 

the hygromycin-resistant CHO cells in order to select a single clone. Viable cells were 

resuspended at concentrations of 1 and 10 cells/ml and these cell suspensions were seeded 

into a 96 well plate (100μl/well). Each well was examined regularly to select those 

containing single colonies, which were brought to confluence, and expanded. A clone 

producing high amounts of CD200:Fc was selected by screening supernatants from all 

clones. Screening was performed by Western Blot detecting IgG1 (Fc) with an anti-human 

IgG (Fc-specific) horseradish peroxidise (HRP)-tagged primary antibody (see Section 2.3 for 

method). The clone (B7) producing the highest amount of Fc (as identified by Western 

blotting), was selected for CD200:Fc protein production and purification.   

2.2. Recombinant Fc-protein production, purification and analysis 

2.2.1. Production of recombinant Fc-fusion proteins 

 
CHO cells stably transfected with vOX2:Fc, KCPmut:Fc or CD200:Fc, were cultured in 

complete CHO medium to maintain stable selection. All cells were maintained at 37oC in 5% 

CO2 in a humidified incubator.  

To prepare ‘producer’ cells, the stably transfected cells were passaged every four 

days by washing twice with phosphate buffered saline (PBS), and trypsinising with 5ml 
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Trypsin-EDTA (Invitrogen). Approximately 60x106 cells were transferred into 1700cm2 

expanded-surface roller bottles. These producer cells were cultured in 200ml RPMI (4% 

foetal bovine serum (FBS), 1% Pen-Strep, 1%L-Glu), without Hygromycin B. The 

concentration of FBS in the culture medium was reduced in order to minimise the number of 

contaminating animal proteins that may interfere with the purification process and later 

applications. After culturing for four days, the culture supernatant was collected and 

centrifuged (4225 x g, 15mins, 4oC) to remove any cellular debris, and the cells discarded. 

The supernatant was then filtered through a 0.22μm vacuum filtration system (Millipore) to 

remove any residual cellular debris. At this point the supernatant was stored for up to one 

week at 4oC and protected from light, to prevent degradation and/or aggregation of the 

protein. 

 

2.2.2. Purification of recombinant Fc-fusion proteins 

 
Recombinant proteins were purified by protein A affinity chromatography. Care was taken to 

ensure that the risk of endotoxin contamination of tubing and all other materials was 

minimal. Tubing was washed with 2M NaOH (60mins), and with 20% ethanol before use. 

All other materials were sterile, disposable consumables where possible, and solutions were 

prepared with endotoxin-free water (Aguettant). Supernatant was passed through the protein 

A column at a rate of 2ml/min (4oC) by a peristaltic pump.  

The following procedure was carried out at 4oC. The protein A column was attached 

to a peristaltic pump with an incorporated spectrophotometer, and PBS passed through to 

stabilise the baseline reading. To elute bovine IgG, which binds with a lower affinity for 

protein A than the Fc-fusion proteins, 0.1M Citrate buffer (pH 5.0) was drawn through the 

column and the filtrate discarded. 0.1M glycine (pH 2.8-3.0) eluted the Fc-fusion proteins, 

and 1ml fractions were collected in sterile tubes. The pH of each protein fraction was 
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neutralised with 1M Tris (pH 9.0) for short-term storage, and the buffer replaced with PBS 

by repeated filter centrifugation through a 50kDa cut-off membrane (Millipore).      

The protein concentration was determined by spectrophotometry (Nanodrop ND-

1000 spectrophotometer). Protein concentration (mg/ml) was calculated as [absorbance ÷ 

extinction coefficient]. The extinction coefficients for 1mg/ml of each protein at 280nm are 

as follows: vOX2:Fc, 1.67; KCPmut:Fc, 1.14; CD200:Fc, 1.27.  

 

2.2.3. Detection of endotoxin in purified recombinant protein stocks 

 
Endotoxin was quantified by a commercial Limulus Amebocyte Lysate (LAL) assay, based 

on the observation that circulating amoebocytes in the Limulus polyphemus crab coagulate in 

response to endotoxin from gram-negative bacteria (Young et al., 1972). The protocol 

provided by the manufacturer was followed. Briefly, four standards were prepared from a 

stock solution of endotoxin (1.0, 0.5, 0.25, 0.1 EU/ml), and plated in duplicate (50μl) into a 

96-well sterile plate warmed to 37oC. Samples and blanks were also plated in duplicate. At 

time 0, LAL (50μl, 37oC) was added to each well, and at time 10mins the synthetic substrate 

(100μl, 37oC) was dispensed into each well in a consistent manner. The reaction was 

terminated at time 16mins with 25% glacial acetic acid (70μl), and the absorbance measured 

at 405-410nm in a multiwell plate reader (Model 680, BioRad).  

A linear curve was plotted for the standards, and the mean blank value subtracted 

from each standard. The endotoxin concentrations (EU/ml) of each sample were calculated 

from the slope of the standard curve.     
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2.3. SDS-PAGE and Western blotting 

2.3.1. SDS-PAGE 

 
Cell lysates were diluted with an equal volume of sample buffer and 20μl was dispensed into 

each well, and the gel run at 100V. A ProSieve colour protein marker (Lonza) was run on 

each gel in order to determine the size of proteins of interest. When the tracking dye reached 

the bottom of the resolving gel the gel was either stained with colloidal coomassie blue or the 

proteins transferred to polyvinylidene fluoride (PVDF) membrane (Millipore).  

 

2.3.2. Western Blotting 

 
In order to detect proteins by immunoblotting, they were transferred from the SDS-PAGE 

gel to PVDF membrane (Millipore), a hydrophobic membrane with an approximate pore size 

of 0.45μm. PVDF membranes were incubated (60mins, room temp.) in 5% Marvel-TBS-

0.05% Tween, or 5% bovine serum albumin (BSA)-TBS-0.05% Tween (for antibody 

detection of phosphorylated proteins) to block non-specific binding sites. Primary antibodies 

were diluted in TBS-0.05% Tween containing 3-5% Marvel milk or BSA, and incubated 

with the membranes (60mins, room temp., or 16hrs, 4oC). After washing off excess primary 

antibody (10mins x3, TBS-0.05% Tween), membranes were incubated (60mins, room temp.) 

in an appropriate dilution of HRP-conjugated secondary antibody (in 5% Marvel-TBS-0.05% 

Tween or 3% BSA-TBS-0.05%). Following a further set of washing steps (10mins, x3, TBS-

0.05% Tween), a enhanced chemiluminescent solution (Table II, Appendix C) was incubated 

(5mins, room temp.) with the membrane before exposure to photographic film. Films were 

developed by an automated developer.  

To re-probe membranes with additional antibodies, they were incubated (5ml, 

35mins, 60oC) in stripping buffer (Table VII, Appendix), and washed (TBS-0.05% Tween, 
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5mins x1, 10mins x2). The Western Blotting procedure was then repeated from the blocking 

step. 

 

2.3.3. Visualising immobilised proteins with colloidal coomassie stain 

 
Following protein separation by SDS-PAGE, the resolving gel was transferred to a closed 

container and incubated in colloidal coomassie blue staining solution (Table II, Appendix C) 

at room temp. overnight. Gels were destained in a 1% acetic acid solution with gentle 

agitation until the background staining had been removed, and the stained protein bands were 

distinct. Gels were then vacuum-dried onto blotting paper.  

 

2.3.4. Extracting the cellular cytosolic fraction for SDS-PAGE 

 
Cells were collected and pelleted (5mins, 200 x g), cooled on ice and washed with ice-cold 

PBS. Pellets were then resuspended in Buffer E (Table II, Appendix C) at 10μl per 1x106 

cells, incubated on ice (5mins), and centrifuged (16060 x g, 4oC, 5mins). Supernatants were 

collected and centrifuged twice (16060 x g, 4oC, 5mins) and the pellets discarded. Lysates 

were frozen immediately at -70oC, or analysed immediately.  

 

2.3.5. Preparing whole cell lysates 

 
BJAB cells were pelleted (200 x g, 5mins), cooled rapidly, and lysed with Nonidet-P40 (NP-

40) buffer (Table II, Appendix C) by pipetting the pellet up and down. The lysate was 

transferred to a cold microtube and placed on a rotator (10mins, 4oC), sonicated, and rotated 

again (10mins, 4oC). The lysate was then centrifuged (16060 x g, 4oC, 30mins), and the 

supernatant transferred to a cold microtube. Lysates were stored at -70oC. 
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2.4. Immunofluorescence assays 

 
Immunofluorescence assays (IFA) were performed on BCBL-1 cells infected with latent 

KSHV, or treated to induce lytic KSHV replication (by stimulation with 20ng/ml phorbol 12-

myristate 13-acetate [PMA] for 4 days). Cells were washed (x3) with PBS and by 

centrifugation (800 x g) were resuspended in PBS containing 0.5% FBS, at 1x107 cells/ml. 

Cells were spotted onto an 8-well microscope slide at 2μl/well. 

Slides were fixed in either ice-cold acetone-methanol (1:1 v/v, 5mins) when probing 

for intracellular proteins, or in 3% methanol-free paraformaldehyde (TAAB) for the 

detection of cell surface proteins. Slides were air-dried after fixing. Cells for intracellular 

staining were incubated in 0.2% Triton x100 in PBS (30mins, room temp.) and non-specific 

binding sites were blocked by incubation in PBS-3% BSA (15mins).  

Primary and secondary antibodies were diluted in PBS containing 3% BSA (the 

dilution factor was optimised for each antibody), and incubated with the cells for 60mins 

(37oC) in a humidified chamber. Excess primary antibody was washed from the slides with 

PBS-0.1% BSA (x2), and a secondary antibody (conjugated to a fluorescent label), was 

incubated with the cells for one hour (37oC in a humidified chamber). Excess secondary 

antibody was washed from the slides twice with PBS-0.1% BSA. Nuclear staining was 

performed by incubating with DAPI (10μg/ml, Sigma) for 30mins at room temp. Coverslips 

were mounted onto slides with ProLong® Gold (Invitrogen) and stored protected from the 

light. Immunofluorescence imaging was performed with a fluorescent microscope (Nikon 

Eclipse E600) and images collected by the Nikon ACT-1 (Nikon Corporation) software 

program.   
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2.5. Functional assays to determine leukocyte activity 

2.5.1. Isolating PBMCs  from peripheral blood 

 
Peripheral blood collected from healthy donors was treated with heparan sulphate to prevent 

coagulation, and diluted 2:3 in RPMI 1640 (Invitrogen). Lymphoprep™ (6ml, Axis-Shield 

PoC) was overlaid with 15ml of the blood/RPMI mix, and the gradient centrifuged (800 x g, 

25mins, room temp.). PBMCs were collected from the primary interface and washed in 

RPMI 1640 (x3, 800 x g, 8mins, room temp.).  

 

2.5.2. Isolation of neutrophils and whole blood leukocytes 

 
Whole blood was collected from healthy donors, and coagulation prevented by adding 

ethylenediaminetetraacetic acid disodium salt solution (EDTA, 1μM, Sigma). The leukocyte-

rich plasma was separated from the erythrocytes by sedimentation with 2% dextran 

(Amersham, 1:6 ratio to blood). Gradient (Percoll, Sigma) centrifugation (250 x g, 20mins) 

segregated the neutrophil and whole blood leukocyte components. To isolate neutrophils 

from the leukocyte population, plasma was carefully dispensed onto a 79% Percoll solution 

(diluted in sterile saline), which rested on a 56% Percoll solution. Neutrophils were collected 

from the 79%:56% Percoll interface. Leukocytes were collected from the 79% 

Percoll:plasma interface. Both cell populations were washed in PBS and resuspended at 2 x 

106 cells/ml (neutrophils) or 4 x 106 cells/ml (leukocytes) in Hank’s balanced salt solution 

(HBSS, Invitrogen) containing calcium and magnesium, and 1% endotoxin-free bovine 

serum albumin (BSA, Sigma). If necessary, erythrocytes were first removed by hypotonic 

lysis in sterile water before the wash step.    
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2.5.3. Chemiluminescence assay to quantify superoxide release from isolated 
neutrophils or whole blood leukocytes  

 
Due to the reductive and chemiluminescent properties of N,N’-dimethyl-9,9-biacridinium 

dinitrate (lucigenin, Sigma), small quantities of superoxide released by leukocytes in 

response to stimuli can be detected. Lucigenin is reduced by superoxide anions as follows:  

[ O2- + Luc2+ ↔ O2 + Luc+ + chemiluminescence ] (Afanas'ev et al., 2001). 

Thus, the chemiluminescent assay was performed by plating 100μl of either 

neutrophils or whole blood leukocytes into wells of sterile tissue culture-treated white 

opaque plates (Greiner) before treatment. The cells were incubated in consistent conditions 

throughout the assay (37oC, 5%CO2, humidified). The cells were pretreated with 

recombinant Fc-fusion proteins (60mins, 37oC, 5%CO2) prior to addition of the priming 

agents, GM-CSF (50ng/ml, 30mins, Sigma) or human recombinant TNFα (50ng/ml, 30mins, 

Serotec). Lucigenin (2.5mM, diluted in HBSS-1%BSA) was added to each well and the plate 

protected from light. Formylmethionyl-leucyl-phenylalanine (fMLP, 10μl, 1μM, diluted in 

HBSS) was injected by the luminometer (Centro LB960, Berthold Technologies) at time 

point 0, and the relative light units (RLU) measured every 60 seconds. Data were collected 

by MicroWin 2000 software (version 4.3, Mikrotek Laborsysteme GmbH) and exported to 

Microsoft Excel for analysis.   

 

2.5.4. Measuring myeloperoxidase (MPO) release from isolated neutrophils 

 
The use of 3,3’5,5’-Tetramethyl-benzidine (TMB, Sigma), a substrate of peroxidase, is a 

popular method for measuring MPO release from degranulating cells, as it is the least toxic 

but sensitive colorimetric substrate available. TMB does not enter cells so its detection of 

MPO is restricted to the MPO released into culture supernatant (Menegazzi et al., 1992). 
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Neutrophils were isolated from the blood of a healthy donor (see Section 2.5.2) and 

100μl dispensed (2x106 cells/ml in HBSS-0.5%BSA) into a sterile 96-well plate. The cells 

were pretreated with vOX2:Fc, KCPmut:Fc or CD200:Fc (60mins, 37oC, 5% CO2) before 

stimulation with TNFα (100ng/ml, 15mins, 37oC, Serotec). MPO release from neutrophil 

azurophilic granules was induced by fMLP-treatment (100nM, 60mins, 37oC, 5% CO2, 

Sigma). Several controls were prepared for each experiment: TNFα alone, fMLP alone, 

TNFα plus fMLP, or no treatment (to determine spontaneous degranulation). Positive 

controls were also included, using the same criteria but incubating each sample with a 1% 

Triton X-100 solution (5μl) for the final 10mins of the fMLP treatment period. 

The 96-well plate was centrifuged (200 x g, 5mins, 4oC) to pellet the cells, and the 

supernatant transferred to another plate. An equal volume of TMB (Sigma) was added to the 

supernatant and a blue colour allowed to develop for 10mins. Absorbance was measured at a 

wavelength of 650nm by a multiwell plate reader (Emax Precision, Molecular Devices). The 

data were collected by the Softmax Pro (Molecular Devices) software.  

 

2.5.5. Commercial (Phagoburst®) assay to measure superoxide release in whole 
blood 

 
The Phagoburst® assay (Orpegen Pharma) relies on the properties of dihydrorhodamine 

(DHR) 123, a fluorogenic substrate that is oxidised to rhodamine (R) 123 by reactive oxygen 

species. The assay can therefore be utilised to measure superoxide production by leukocytes 

in response to a stimulus, opsonised E. coli in the present study. The quantity of R123 per 

cell and the percentage of cells with this oxidative activity can be determined by flow 

cytometric analysis.  

The protocol provided by the manufacturer (Orpegen Pharma) was adhered to. 

Briefly, heparinised whole blood from a healthy donor was pretreated with recombinant 
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proteins (90mins, 37oC, 5%CO2), and aliquoted (100μl) into polystyrene tubes; the blood 

was then cooled in an ice bath (10mins) before proceeding with the assay. A negative control 

was prepared by addition of wash buffer, and a positive control by incubation of blood with 

PMA (1.35μM, Orpegen Pharma). Opsonised E. coli (2x107 bacteria, approximately 25:1 

leukocyte, Orpegen Pharma) were added to each of the pretreated samples and to an 

untreated control (10mins, 37oC). Following addition of the substrate DHR 123 (10mins, 

37oC), the reaction was terminated by lysis of the erythrocytes and fixation of the remaining 

leukocytes, and a DNA staining solution added to all samples and controls.  

Oxidative activity was analysed by flow cytometry (Coulter® Epics® XL™ flow 

cytometer), and a total of 20,000 events collected for each sample. Using the software 

FlowJo7 (Tree Star Inc.) for post-collection analysis, the granulocyte population was defined 

by granularity and size (side scatter vs. forward scatter), and a histogram created in the FL1 

(FITC) channel for the gated population (the gate excluded 95% of cells in the negative 

control). The difference in median fluorescence of each sample versus the E. coli-treated 

control for each individual is representative of the change in oxidative activity.   

 

2.5.6. Determining the percentage of apoptotic neutrophils by flow cytometric 
analysis 

 
The protocol for measuring neutrophil apoptosis by morphological changes was carried out 

as described above, but after 20 hours the cells were incubated with 3,3’-

dihexyloxacarbocyanine iodide (2.3ng/ml, DiOC6, Sigma), a green fluorescent lipophilic dye 

(15mins, 37oC, 5% CO2). Apoptotic neutrophils lose the ability to retain DiOC6 in their 

mitochondria, and so have a lower fluorescence in comparison to live cells. Neutrophils were 

washed and resuspended in PBS before quantification by flow cytometry (Coulter® Epics® 

XL™, BD Bioscience). The neutrophil population was gated on by granularity (side scatter) 
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and size (forward scatter) as the determining characteristics, and a histogram created in the 

FL1 (FITC) channel. The histograms contain two peaks, one representing the viable cells 

that express a high level of fluorescence, and a peak that has shifted to the left due to the loss 

of DiOC6 from apoptotic cells. Neutrophil apoptosis may also be analysed by setting the 

level of fluorescence (FL1) against size, this creates a scatter plot with two neutrophil 

populations, viable and apoptotic.   

 

2.5.7. Evaluating IL-8 production by monocytes adhered to plastic 

 
PBMCs were isolated from human blood (see Section 2.5.1) and resuspended at 4x106/ml in 

complete neutrophil medium (Table II, Appendix C). The cell suspension was aliquoted into 

a 48-well plate (200μl/well) and the monocytes left to adhere (60mins, 37oC, 5%CO2). Non-

adherent cells were then removed by washing four times with PBS, and once with RPMI 

1640 (Invitrogen). The experiments were carried out in 200μl complete neutrophil medium. 

Monocytes were pretreated (60mins, 37oC, 5%CO2) with vOX2:Fc, CD200:Fc or 

KCPmut:Fc (8μg/ml), or with engineered Empty-BJAB, vOX2-EGFP-BJAB or CD200-

EGFP-BJAB cells (see Section 2.8.7/2.8.8), at 4.4x105 BJAB cells/well.  All BJAB cells 

were irradiated with 4000rads by a caesium source prior to use. The monocytes were then 

stimulated with lipopolysaccharide (1μg/ml or 50ng/ml, Sigma), or IFNγ (10ng/ml, R&D 

Systems). After 24 hours of incubation, the medium from each well was centrifuged (200 x 

g, 5mins) to remove any debris, and the supernatant snap frozen at -80oC.  

The concentration of IL-8 in cell culture supernatants was quantified by Enzyme-

linked ImmunoSorbent assay technique (ELISA, R&D Systems). The ELISA method was 

used to quantify both IL-8 and IFNγ later in this study. Briefly, immunosorp ELISA plates 

(Nunc) were coated overnight (4oC) with a capture antibody (2μg/ml anti-IFNγ, Thermo 

Scientific), or were purchased pre-coated with an anti-IL-8 antibody (R&D Systems). Non-
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specific binding to the plate was prevented with ELISA blocking buffer (Table II, Appendix 

C, 2hrs, room temp.), and the plates washed three times with ELISA wash buffer (Table II, 

Appendix C). Culture supernatants were added to the plate (2hrs, room temp.), removed with 

ELISA wash buffer, and an anti-IL-8 (R&D Systems) or anti-IFNγ (Thermo Scientific) 

biotinylated antibody added to each well (1hr, room temp.). After washing three times, 

ExtrAvidin Peroxidase (2μg/ml, Sigma) was added to each well (30mins, room temp., the 

avidin binds with high affinity to the biotinylated antibody), and excess protein carefully 

removed by washing (x4). TMB substrate (Rockland) reacted with the biotin-bound 

peroxidise, resulting in a colorimetric change. The reaction was quenched with 1M HCl and 

the absorbance was measured at 450nm (subtracting 655nm) by a multiwell plate reader.   

 

2.5.8. IFNγ-stimulation of monocytic cell lines 

 
Human monocytic/macrophage cell lines U937 and THP-1 were maintained in complete 

medium (Table II, Appendix C) under normal cell culture conditions, and resuspended at 

6x105 cells/ml for the purposes of this experiment. Empty-BJAB, vOX2-EGFP-BJAB and 

CD200-EGFP-BJAB cells were irradiated (4000rads) by a caesium-137 chloride radiation 

source, washed four times in RPMI 1640 (Invitrogen), and resuspended (6x105 cells/ml) in 

complete medium. Equal volumes of the irradiated BJAB cells and U937/THP-1 cells were 

dispensed into a 24-well plate and stimulated with IFNγ (8ng/ml, Sigma). The supernatant 

was collected after 48 hours, debris pelleted (200 x g, 5mins), and the concentration of IL-8 

quantified by ELISA (R&D Systems, see Section 2.5.8). 

 

2.5.9. Culturing immobilised vOX2:Fc and CD200:Fc with human PBMCs 

 
Biotinylated antibodies anti-CD3 (Miltenyi), anti-CD28 (Miltenyi), and anti-human IgG 

antibody (Calbiochem) were bound to commercial microbeads (0.1pg/bead, 1ml, 4oC, 2hrs) 
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conjugated with an anti-biotin antibody (T cell expansion kit, Miltenyi). Recombinant Fc 

fusion proteins vOX2:Fc, commercial vOX2:Fc, CD200:Fc or KCPmut:Fc were then bound 

to the anti-IgG antibody present on the surface of the microbeads (0.2μM, 2ml, 4oC, 2hrs). 

Protein-binding to the microbeads was confirmed by SDS-PAGE and immunoblotting (see 

Sections 2.2.1 and 2.2.2) with an anti-human IgG (Fc)-HRP antibody (Sigma).  

PBMCs isolated (see Section 2.5.1) from healthy donors were revived from frozen 

stocks, and plated at 1.5x106 cells/well in pre-transfection medium. Protein-antibody-bead 

complexes were pelleted (2400 x g, 5mins) and resuspended in medium (RPMI, 10% FBS). 

Microbeads and PBMCs were cultured at a ratio of one bead per two cells (48h, 37oC, 5% 

CO2). The concentration of IFNγ in the cell culture supernatant was quantified by ELISA 

(see Section 2.5.8, Thermo Scientific). 

2.6. Quantifying CD200R expression by flow cytometry  

2.6.1. Determining CD200R expression on human leukocytes 

 
Please see Appendix B for a complete list of all antibodies used. Isolated human leukocytes 

(see Section 2.5.2) were resuspended in PBS-2% BSA (107 cells/ml) and incubated on ice. 

The cell suspension was aliquoted (100μl) into sterile tubes for flow cytometry, and 

incubated with mouse anti-human CD200R (60mins, 4oC, Abcam). Excess primary antibody 

was washed off with PBS (158 x g, 5mins). Fluorophore-conjugated secondary antibodies 

were incubated with the cells (60mins, 4oC) and the washing step carried out as before. Non-

specific binding sites were blocked with mouse serum (30mins, 4oC, Sigma), and the cells 

washed (PBS, 158 x g, 5mins). Antibody-labelled cells were fixed with 2% 

paraformaldehyde (PFA) and stored at room temp., protected from light before analysis. 

At least 1x105 events were collected for each sample by flow cytometry (Beckman 

Coulter® Epics® XL™), and the cell populations gated according to size (forward scatter) 
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and granularity (side scatter) using the software program FlowJo7 (TreeStar Inc.). 

Histograms were created for each gated population and the CD200R expression determined 

by an upwards shift in fluorescence in comparison to the negative control (secondary 

antibody alone or isotype control).     

 

2.6.2. Cell-surface expression of CD200R by viral peptide-specific T cells 

 
To estimate the percentage of antigen-specific circulating CD8+ T cells in an individual, 

MHC-peptide-fluorophore complexes bound to the T cell receptor (TCR) on these cells can 

be visualised by flow cytometry. The conserved β2-microglobulin (β2-M) light chain of the 

HLA molecule is mutated to create an easily accessible sulfhydryl group on the protein 

surface, to which biotin can bind. Heavy chain MHC subunits (α1, α2 and α3) are then 

generated and non-covalently bound to β2-M, and folded with a synthetic peptide. The biotin, 

complexed with the HLA-peptide molecule, subsequently binds to one of four sites on an 

avidin-fluorophore molecule, thus creating a fluorescent tetrameric unit that can ligate with 

peptide-specific TCRs on T cells (Figure 2.2; (Walter et al., 1998)).   

 PBMCs were isolated from healthy or IM patient donors (see Section 2.5.1) and 

stored frozen in the gaseous phase of liquid N2. On the day of use, the PBMCs were thawed 

rapidly to 37oC, washed (RPMI, 770 x g, 8mins), and dispensed into polystyrene tubes (with 

a minimum of 2x105 cells/tube). The cells were pelleted (770 x g, 8mins) and resuspended in 

50μl PBS-2% FBS, with a 1:50 dilution of fluorophore-conjugated tetramer, The PBMCs 

were incubated (37oC) for between 12-15mins, rapidly cooled to 4oC, and washed in ice-cold 

PBS-2% FBS (770 x g, 8mins, 4oC). The cells were resuspended in an anti-CD200R 

antibody (Abcam, diluted in PBS-2% BSA, 60mins, 4oC), or an IgG1 isotype control 

(Sigma), washed again and then labelled with an anti-mouse-FITC secondary antibody 

(Sigma, diluted in PBS-2% BSA, 60mins, 4oC).  
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Figure 2.2 Generation of MHC-peptide-fluorophore complexes for the identification of peptide-specific T 

cells. (a) Light (β2-M) and heavy chain (α1, α2 and α3) MHC subunits are non-covalently bound to each other, 

and complexed with synthetic viral peptide antigen (not shown). Biotin is then covalently bound to the β2-M 

subunit, and ligated to one of four binding sites on an avidin-fluorophore complex. (b) The viral peptide (back 

circles) complexed with MHC subunits (green), ligates to TCRs on peptide-specific T cells and can be 

visualised by flow cytometry. This illustration is adapted from Walter et al. (1998). 
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The cells were then washed (PBS, 770 x g, 8mins, 4oC) and resuspended in normal 

mouse serum (Sigma, 1:20 dilution in PBS, 30mins, 4oC). They were then labelled with an 

anti-CD4 or anti-CD8-VioBlue antibody (Miltenyi) diluted in PBS-2% BSA (60mins, room 

temp.). After washing (PBS, 770 x g, 8mins, 4oC), the cells were analysed by flow cytometry 

(LSRII, BD Biosciences). FlowJo7 software (TreeStar Inc.) was utilised for post-collection 

analysis of the data. Single staining with anti-CD8-PE (Miltenyi), anti-CD8-VioBlue 

(Miltenyi) or anti-CD200R (Abcam) plus anti-mouse-FITC (Sigma) were used to 

compensate for overlapping fluorescent signals in each sample.  

 

2.6.3. Measuring CD200R expression on the surface of peptide-pulsed T cell clones  

 
T cells (the human CD8+ IM140.1 Y15 T cell clone or the murine B3z T cell hybridoma) 

were cultured overnight (5x104 cells/well, 37oC, 5% CO2) in a round-bottomed 96-well plate. 

Each treatment was carried out in duplicate (to enable labelling with an isotype control 

antibody as well as anti-CD200R). Cells were left untreated or treated with cognate peptide 

antigen (IM140.1: YVLDHLIVV; B3z: SIINFEKL). The human CD8+ T cell clone was also 

treated with phytohaemagglutinin (PHA, 3μg/ml, positive control), and an irrelevant EBV 

peptide (FLRGRAYGL, 5000ng/ml, negative control). Murine B3z cells were also treated 

with murine IFNγ (200U/ml, positive control), an irrelevant EBV peptide (YVLDHLIVV, 

5000ng/ml, negative control), and PHA (3μg/ml, positive control).  

The following day, the cells were harvested with a non-enzymatic cell dissociation 

buffer (Sigma), and dispensed into polystyrene tubes. After washing with PBS (770 x g, 

8mins, 4oC), the cells were labelled with anti-CD200R (Abcam) or an isotype control (mouse 

IgG1, Sigma), (60mins, 4oC) at equal concentrations. All antibodies were diluted in PBS-2% 

BSA. The cells were washed in PBS (770 x g, 8mins, 4oC), labelled with an anti-mouse-

FITC secondary antibody (Sigma, 60mins, 4oC), washed again, and analysed by flow 
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cytometry (Beckman Coulter® Epics® XL™). Post-collection analysis of data was carried 

out with FlowJo7 (TreeStar Inc.) software. 

 

2.6.4. Quantifying the expression of CD200R by T cell clones stimulated by peptide-
pulsed BJAB cells 

 
Engineered BJAB cells were washed (PBS, 200 x g, 5mins), and dispensed into polystyrene 

tubes (2x105 cells/tube). The BJAB cells were then left untreated, or incubated with the EBV 

peptides PRSTVFYNIPPMPLPPSQL (500ng/ml, derived from EBNA2 protein), or 

YVLDHLIVV (50ng/ml, a peptide of the BRLF1 antigen), (60mins, 37oC, 5% CO2). The 

cells were washed twice (PBS, 200 x g, 5mins), resuspended in complete medium (Table II, 

Appendix C) and dispensed into a 96-well flat-bottomed plate. The CD8+ IM140.1 Y15 

(YVL-specific) and CD4+ SL c93 (PRS-specific) T cell clones were washed (RPMI, 770 x g, 

8mins), added to the BJAB cells (4x104/well) and incubated overnight (37oC, 5% CO2).  

The next day the cells were harvested with a non-enzymatic cell dissociation buffer 

(Sigma) and dispensed into polystyrene tubes. After washing (PBS, 770 x g, 8mins, 4oC), the 

cells were incubated with an anti-CD200R antibody (Abcam, 60mins, 4oC), or mouse IgG1 

(Sigma), washed again and then labelled with an anti-mouse-FITC secondary antibody 

(Sigma, 60mins, 4oC). All antibodies were diluted in PBS-2% BSA. The cells were washed 

(PBS, 770 x g, 8mins, 4oC) and resuspended in normal mouse serum (Sigma, 30mins, 4oC). 

The cells were then labelled (60mins, room temp.) with an anti-CD4 or anti-CD8-VioBlue 

antibody (Miltenyi), plus anti-CTLA-4-PE (BD Bioscience), and anti-CD28-APC (BD 

Bioscience), or the matching isotype controls (see Table III, Appendix B). After washing 

(PBS, 770 x g, 8mins, 4oC), the cells were analysed by flow cytometry (LSRII, BD 

Biosciences). FlowJo7 software (TreeStar Inc.) was utilised for post-collection analysis of 

the data. Anti-CD4/CD8-VioBlue (Miltenyi), anti- cytotoxic T lymphocyte antigen-4 
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(CTLA-4)-PE (BD Bioscience) and anti-CD28-APC (BD Bioscience) were used singly to 

compensate for any overlapping fluorescent signal in each sample. To determine the basal 

expression levels of CD200R, the above staining protocol was carried out on T cell clones 

cultured in the absence of BJAB cells.  

2.7. Using human T cell clones as a model system to determine vOX2 and 

CD200 activity 

2.7.1. Cloning antigen-specific T cells from infectious mononucleosis patient PBMCs 

 
PBMCs were isolated from four buffy coats provided by National Blood Service, 

Birmingham, UK (see Section 2.5.1), mixed together and cultured overnight in complete T 

cell cloning medium (Table II, Appendix C) with PHA (10μg/ml, Sigma, 37oC). The 

following day, the PBMCs were washed five times (RPMI, 770 x g, 8mins) and irradiated 

(4000rads, caesium-137 chloride source). PBMCs, previously isolated from an IM patient 

(IM235) and stored in the gaseous phase of liquid N2, were thawed, washed once in T cell 

cloning medium (770 x g, 8mins), and resuspended in T cell cloning medium at 3 cells/ml, 

30 cells/ml and 300 cells/ml. The PHA-stimulated PBMCs were added to each solution at a 

final density of 1x106 cells/ml. Cells from an autologous lymphoblastoid cell line (LCLs, 

prepared by long-term culture of IM235 mononuclear cells) were also irradiated (4000rads, 

caesium-137 chloride source), washed in RPMI 1640 (Invitrogen, 770 x g, 8mins), and 

resuspended in the PHA-treated PBMC/IM235 PBMC suspensions, at a final density of 

1x105 cells/ml. Each cell suspension was dispensed into wells of a round-bottomed 96-well 

plate (100μl/well). After one week a further 100μl of T cell cloning medium was dispensed 

into each well. One week later, any easily identifiable colonies of cells that had expanded in 

culture, were transferred to a 24-well plate, and cultured for a further two weeks in the 

presence of PHA-treated and irradiated PBMCs (1x106 cells/well), and LCLs (1x105 
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cells/well). The cells were then tested for antigen-specificity by the chromium-release killing 

assay (see Section 2.7.2). 

Other T cell clones used in this project were isolated by other investigators. They 

were maintained in cloning medium and restimulated with PHA-treated PBMCs and 

autologous LCLs, as outlined above. 

 

2.7.2. Testing for T cell antigen specificity by chromium-release assay  
 

51Cr-labelled autologous LCLs acted as target cells in this experiment. The LCLs were 

engineered to express two EBV antigens endogenously, by infection with recombinant 

vaccinia virus; the antigens were processed and presented by MHC molecules to the putative 

T cells. Any peptide antigen-specific T cells that had been cloned (Section 2.7.1) would lyse 

only the target LCL expressing its specific antigen, releasing 51Cr into the supernatant.   

LCLs (1x106 cells) were infected with two vaccinia viruses, each engineered to 

express one EBV antigen (16hrs, 37oC, 5% CO2), at a multiplicity of infection (MOI) of 10. 

The EBV antigens were paired as follows: BRLF1+BMRF1, BALF5+BALF2, 

BMLF1+BGLF4, BHLF1+BHRF1, BARF1+BNLF2b, BLLF2+BCRF1, BILF1+BDLF3, 

BLLF1+BALF4, BXLF2+BNRF1, BILF2+BBRF1, BZLF1+BVRF2, LMP1+LMP2, 

EBNA1+EBNA2, EBNA3a+EBNA3b, EBNA3c+LP.   

The next day, the LCLs were washed (RPMI, 770 x g, 8mins), and labelled with 50-

100μCi (1.85-3.7MBq) of 51Cr (Perkin Elmer, 2hrs, 37oC) in sterile tubes. Excess 51Cr was 

removed by washing (x2, RPMI, 770 x g, 8mins) and the LCLs resuspended in complete 

medium (Table II, Appendix C), before dispensing into a v-bottomed 96-well plate (2.5x103 

cells/well). T cells were added to the LCLs at a ratio of 1:1 or 2:1 and incubated for 4-6hrs 

(37oC, 5% CO2). Untreated but radiolabelled LCLs served as a negative control (spontaneous 

release), and a 1% SDS solution induced 100% cell lysis, to serve as a positive control (total 
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release).  100μl of the culture supernatant was aspirated from each well and transferred to 

clean tubes. The live vaccinia virus was killed by overnight incubation in formaldehyde 

vapour.  

51Cr released into the culture supernatant by lysis of the target cells was quantified by 

a Cobra gamma counter (Packard). The % lysis of target cells was calculated as follows: 

(Test cpm - Spontaneous cpm) ÷ (Total release cpm – Spontaneous cpm). The T cells that 

had lysed 24%, or more, of only one vaccinia-target (expressing two antigens), were 

analysed a second time by examining their IFNγ-release in response to known peptides for 

the corresponding antigens (see Section 2.7.3). 

 

2.7.3. Quantifying antigen-specific T cell clone activity by interferon-γ secretion 

 
A B-lymphoblastoid cell line (BJAB) transduced with a retroviral expression vector 

containing vOX2 or CD200 (see Section 2.8.6) were HLA-matched to several human T cell 

clones and acted as APCs in these experiments. BJAB cells transduced with an empty vector 

were used as a control. Engineered BJAB cells were washed once with PBS (200 x g, 

5mins), counted and dispensed into polystyrene tubes (for a final density of 6x104 cells/well). 

EBV peptide antigens (corresponding to each peptide-specific T cell clone) were diluted in 

serum-free RPMI, and added to the BJABs (60mins, 37oC). Molecular-grade dimethyl 

sulfoxide (DMSO) served as a vehicle control. The cells were washed twice in PBS (200 x g, 

5mins) to remove any peptide left in solution, and resuspended in complete medium (Table 

II, Appendix C). 100μl of the BJAB suspension was dispensed into each well of a v-

bottomed 96-well plate (Nunc). The T cell clones were counted, washed once in complete 

medium (770 x g, 8mins), resuspended in complete medium and dispensed onto the BJAB 

cells (100μl, 1x103 cells/well). Following 16 hours of co-culture (37oC, 5% CO2), the 

supernatants were aspirated, and IFNγ concentrations determined by ELISA (Section 2.5.8).   
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2.7.4. Measuring the accumulation of intracellular IFNγ and IL-2 in human T cell 
clones  

 
Engineered BJAB cells were washed in PBS (200 x g, 5mins) and dispensed into polystyrene 

tubes (2.5 x 105 cells). They were then incubated with EBV peptide antigens (60mins, 37oC, 

5% CO2), washed twice (PBS, 200 x g, 5mins), and resuspended in complete medium (Table 

II, Appendix C). Antigen-specific T cell clones were washed in complete medium (770 x g, 

8mins) and dispensed into the tubes containing peptide-pulsed BJAB cells (3x104 T 

cells/tube in 80μl). The cells were centrifuged gently (100 x g, 3mins) and incubated for 

60mins (37oC, 5% CO2) before the addition of 20μl brefeldin A (to make a final conc. of 

7.5μg/ml). Brefeldin A disrupts the structure and function of the Golgi apparatus, thereby 

inhibiting protein transport and resulting in an accumulation of cytokines in the Golgi. The 

cells were then incubated for a further 1, 2 or 4hrs (as indicated in the results section of 

Chapter 5) before fixation with 1.5% formaldehyde (10mins, room temp.). After washing in 

PBS (770 x g, 8mins, 4oC), the fixed cells were resuspended in PBS and stored overnight 

(4oC). 

The next day, the cells were washed with PBS (770 x g, 8mins, 4oC), and incubated 

with anti-CD4 or anti-CD8 fluorophore-conjugated antibodies (Miltenyi, 60mins, 4oC), to 

label the T cell clones. All antibodies were diluted in PBS-2% BSA. After washing with PBS 

(770 x g, 8mins, 4oC), the cells were permeabilised with ice-cold methanol (30mins, 4oC) 

and then washed once with ice-cold PBS, and twice with PBS-2% BSA (770 x g, 8mins, 

4oC). Fluorophore-conjugated antibodies reactive with IFNγ and IL-2 were incubated with 

the cells (BD Biosciences, 60mins, room temp.) and residual antibody washed away with 

PBS (770 x g, 8mins, 4oC). Antibody-labelling of the T cell clones was quantified by flow 

cytometric analysis (LSRII, BD Biosciences), and post-collection analysis of the data carried 
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out with FlowJo7 software (TreeStar Inc.). The cells were labelled with each antibody alone 

to compensate for any overlapping fluorescent signal in each sample.  

 

2.7.5. Investigating intracellular signalling pathways downstream of T cell receptor 
ligation  

 
Engineered BJAB cells (2.5x105) were incubated in 100μl complete medium (Table II, 

Appendix C), with the relevant EBV peptide (60mins, 37oC). T cell clones (final density of 

3x104 cells/well) were added to the BJAB cells and centrifuged (3mins, 150 x g) to place the 

cells in contact with each other. The cells were incubated at 37oC for the appropriate time 

period, and cell activity immediately quenched by addition of 16% formaldehyde (TAAB) to 

produce a final concentration of 1.5% (10mins, room temp.). 

The cells were vortexed lightly between each wash and incubation period to prevent 

clumping. After fixation, the cells were washed twice in ice-cold PBS (770 x g, 8mins, 4oC), 

and incubated with anti-CD4 or anti-CD8-VioBlue antibodies (Miltenyi, 60mins, 4oC). All 

antibodies were diluted in PBS-2% BSA. Residual antibody was removed by washing with 

ice-cold PBS (770 x g, 8mins, 4oC), and the cells permeabilised with 100% methanol 

(30mins, 4oC) to enable labelling of intracellular antigens. Methanol was removed by 

washing once with ice-cold PBS, and twice with PBS-2% BSA (770 x g, 8mins, 4oC), before 

labelling with antibodies directed against the phosphorylated forms of several intracellular 

signalling molecules: anti-phospho-ERK1/2-PE, anti-phospho-p38-Alexa Fluor 647, anti-

phospho-ζ-chain associated protein kinase 70 (Zap70)-Alexa Fluor 647, anti-phospho-Src 

homology 2 domain containing leukocyte protein of 76 kDa (SLP-76)-PE, anti-phospho-

linker for activation of T cells (LAT)-PE, and anti-phospho-Akt-Alexa Fluor 647 (BD 

Biosciences, see Appendix B, 60mins, room temp.). Residual antibody was removed by 

washing with PBS-2% BSA (770 x g, 8mins, 4oC), the cells resuspended in PBS, and 



Chapter 2: Materials and methods   

  90 

analysed by flow cytometry (LSRII, BD Biosciences). FlowJo7 software (TreeStar Inc.) was 

utilised for post-collection analysis of the data. 

 

2.7.6. Phenotyping the engineered BJAB cells 

 
Engineered BJAB cells were washed with PBS (200 x g, 5mins) and dispensed into 

polystyrene tubes (2x105 cells/tube). The cells were incubated with anti-CD80 (Invitrogen), 

anti-CD86 (Invitrogen) or anti-HLA-DR (R&D Systems) antibodies, all diluted in PBS-2% 

BSA (60mins, 4oC), or an isotype control (mouse IgG1, Sigma) before labelling with an anti-

mouse-PE secondary antibody (Invitrogen). Cells were also labelled with anti-HLA-ABC 

directly conjugated with PE (Serotec) or Alexa Fluor 647 (Biolegend); see Table III, 

Appendix B, for matching isotype controls.  

The expression of vOX2 and CD200 on the surface of engineered BJAB cells was 

carried out regularly. BJAB cells were washed with once with PBS (200 x g, 4oC, 5mins), 

labelled with either anti-vOX2 (not commercial) or anti-CD200 (BD Pharmingen), washed 

once with PBS (200 x g, 4oC, 5mins) and labelled with anti-mouse or anti-rabbit 

fluorophore-conjugated secondary antibodies (see Table II, Appendix B). Residual antibody 

was removed by washing with PBS (200 x g, 4oC, 5mins), and protein expression quantified 

by flow cytometry (LSRII, BD Biosciences, or Coulter® Epics® XL™, BD Bioscience). 

 

2.7.7. Quantifying the extent of HLA-ABC internalisation by BJAB cells 

 
Engineered BJAB cells were washed (PBS, 200 x g, 5mins), dispensed into polystyrene 

tubes (2.5x106 cells/tube) and pelleted (200 x g, 5mins). The cells were resuspended in anti-

HLA antibody (W6/32, in-house) diluted in RPMI (10% FBS, 1% Pen-Strep), and incubated 

(60mins, 4oC) with frequent mixing. This step labelled all extracellular HLA-ABC. The cells 

were washed (x3, PBS, 200 x g, 5mins, 4oC), dispensed into x9 polystyrene tubes (for each 
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cell type), and resuspended in warm 500μl of RPMI (10% FBS, 1% Pen-Strep, 37oC). The 

cells were incubated (37oC) for 0, 20, 40 or 60mins, then rapidly cooled and washed (PBS, 

200 x g, 5mins, 4oC). The cells were then incubated with an anti-mouse-FITC secondary 

antibody (Sigma, 60mins, 4oC) to label any HLA remaining on the cell surface. The BJAB 

cells were washed (PBS, 200 x g, 5mins, 4oC), resuspended in PBS, and analysed on a 

Beckman Coulter® Epics® XL™ flow cytometer. Post-collection analysis of data was 

carried out with FlowJo7 (TreeStar Inc.). Each time-point was carried out in duplicate, and 

an isotype control (mouse IgG2a-FITC, BD Biosciences) acted as a control. Cells were 

labelled with each antibody separately in order to compensate for any overlapping 

fluorescent signal in each sample. 

2.8. Constructing an RRV vOX2-expressing cell line 

2.8.1. Infecting rhesus fibroblasts with RRV 

 
Primary and telomerised rhesus macaque fibroblasts (RFB/tRFB) were maintained in 

complete RFB medium (Table II, Appendix C) in a humidified incubator. One hour prior to 

infection with either H26-95 or 17577 RRV strains, confluent cells were treated with 

hexadimethrine bromide (polybrene, 2μg/ml, Sigma) to enhance viral infection. The 

polybrene was removed and replaced with one part infectious virus, and two parts medium. 

At 3 days post-infection the cells were passaged (1 in 3 split), and the virus-containing 

medium divided between each new flask of cells. CPE was visible at 2-5 days post-passage, 

and images captured by a Zeiss Axiovert 40CFL microscope, with Axiovision 4.6 software. 

Virus-containing medium was snap-frozen at -70oC for later infections.    

 

2.8.2. Determining the infectivity of RRV 

 
Primary RFB cells were dispensed into a 6-well plate and allowed to become confluent. 
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Serial dilutions of RRV-containing medium (see Section 2.8.1) were made (ten-fold dilutions 

from 10-1 to 10-7), and 100μl of each dilution added to 3 wells containing confluent RFB 

cells. The cells were incubated with virus for 24hrs (37oC, 5% CO2). 1.4% Nobles agar was 

melted and cooled to 45oC before mixing with 2x medium (see Table II, Appendix C), and 

4ml added to each well after aspirating the virus-containing medium. Once CPE was evident, 

the viral plaques in each well were counted and the number of plaque-forming units (PFU) 

calculated as follows: number of plaques x 10 x dilution factor = PFU/ml. 

2.8.3. Extracting RNA from infected telomerised rhesus fibroblasts 

 
Following the appearance of CPE in infected tRFB cells, they were trypsinised and pelleted. 

RNA was extracted from the cell pellet using a commercially-available kit (Qiagen); briefly, 

the cells were homogenised in lysis buffer, and passed 5-10 times through a 20-gauge needle. 

1 volume of 70% ethanol was added to the homogenised cells, and the solution passed 

through a spin column (≥8000 g, 15sec). The column was then washed several times, and the 

RNA eluted in RNase-free H20. 

 

2.8.4. Northern Blotting 

 
RNA samples (both total RNA and mRNA) were separated on a MOPS/formaldehyde gel 

(see Table II, Appendix C). RNA samples were deproteinised and denatured in the following 

solution: 2.2M formaldehyde, 15% formamide, 0.5x MOPS buffer (Table II, Appendix C, 

15mins, 55oC). Ethidium bromide (2μg, Sigma) was included in the total RNA samples for 

visualisation by UV radiation. Following separation of the RNA, the gel was washed in dH20 

and 10x SSC (Table II, Appendix C), and the RNA transferred to Hybond-N nylon 

membrane (Amersham Biosciences) by capillary blotting in 10x SSC for 48 hours. 

To create a radiolabelled probe, the translated region of the RRV vOX2 gene (R14) 
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was amplified by PCR (primers 2F and 2R, Table I, Appendix A), extracted from an agarose 

gel and purified using a commercially available kit (Qiagen). To radioactively label the 

probe, 25ng of DNA was denatured and then amplified by random priming, incorporating 

deoxycytidine 5’-triphosphate [α-32P] (dCTP, Perkin Elmer), by means of a kit (Invitrogen). 

To remove traces of unincorporated nucleotides, primers, enzymes and salts from the 

labelled probe solution, a series of wash steps was carried out in a filter column (Qiagen). 

Briefly, large DNA fragments (>10kb) and oligonucleotides (≥17 bases) were bound to the 

silica membrane within the column, and all unbound impurities washed through and 

discarded. The probe was eluted with 100μl H20, denatured (95oC, 5 mins), and hybridised 

with the blot.   

The nylon membrane was rinsed in H20, then pre-hybridised in hybridisation buffer 

(30mins, 60oC, Table II, Appendix C). The buffer was discarded and replaced with 30ml 

fresh hybridisation buffer, and 50μl of the radiolabelled probe. The blot was hybridised 

overnight at 60oC, and then washed to remove background signal as follows: rinsed in 2x 

SSC (Table II, Appendix C, 0.1% SDS; washed twice (5mins) in 2x SSC-0.1% SDS, washed 

twice (10mins) in 1x SSC-0.1% SDS; and washed four times (5mins) in 0.1x SSC-0.1% 

SDS, taking care to wash both sides of the membrane. While still damp, the membrane was 

wrapped in plastic, and exposed to hyperfilm (Amersham Biosciences). 

 

2.8.5. Constructing an RRV vOX2-EGFP fusion protein 

 
In order to examine the activities of native vOX2 and CD200, the B lymphoblastoid cell line 

BJAB had been engineered to express by retroviral transduction, transmembrane vOX2 and 

CD200, or an empty vector as control (Colman, C, unpublished). These cells were HLA-

matched to human T cell clones (see Chapters 5, 6 and 7 for detailed descriptions) and 

therefore could be used in a model system of T cell function. In order to determine the 
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function of RRV vOX2 in this system, the same method must be followed in order to express 

the protein in the same cell type and by the same method. However, as there is no antibody 

directed against RRV vOX2, an enhanced green fluorescent protein (EGFP) was used as a 

tag for visualisation.  

cDNA was prepared from RNA extracted from H26-95 RRV-infected tRFB (see 

Section 2.8.3), using 200U of Moloney Murine Leukemia Virus Reverse Transcriptase (M-

MLV RT, Invitrogen), and random primers (Promega), following the manufacturer’s 

instructions (Invirogen). A recombinant ribonuclease inhibitor (40U, RNAseOUT, 

Invitrogen) was included to minimise degradation of the RNA, and all steps carried out 

rapidly on ice.   

The full sequence of RRV vOX2 R14 was amplified by PCR (see Section 2.1 for 

method) incorporating a long ‘buffer’ sequence at either end beyond the coding regions (see 

primers 4F and 4R, Table I, Appendix A). This PCR product was ligated into a commercial 

sequencing plasmid (pCR®-Blunt II-TOPO, Invitrogen, Table II, Appendix A), and 

amplified by transformation of chemically competent One Shot® TOP10 E. coli 

(Invitrogen), and overnight shaking culture in LB broth (Acros Organics) with kanamycin 

selection (50μg/ml). One clone was selected for future investigation following sequencing. 
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(a) 

LANA (ORF73) vOX2 (ORFR14, translated region) GPCR (ORF74)

A: F primer: to amplify vOX2 (adding a Hind II site) before ligation into 
PCR Blunt (5’ end is 63bp upstream of the ORF R14 start codon)

B:   R primer: to amplify vOX2 (adding a PstI site) before ligation into 
PCR Blunt (5’ end is 12bp downstream of the ORF R14 stop codon)

C: F primer: to amplify vOX2 from  PCR Blunt (adding a PacI site), 40bp 
upstream of the ORF R14 ATG 

A
C

B

120646 121407 121704 122732118646 119992(bp)

LANA (ORF73) vOX2 (ORFR14, translated region) GPCR (ORF74)

A: F primer: to amplify vOX2 (adding a Hind II site) before ligation into 
PCR Blunt (5’ end is 63bp upstream of the ORF R14 start codon)

B:   R primer: to amplify vOX2 (adding a PstI site) before ligation into 
PCR Blunt (5’ end is 12bp downstream of the ORF R14 stop codon)

C: F primer: to amplify vOX2 from  PCR Blunt (adding a PacI site), 40bp 
upstream of the ORF R14 ATG 

A
C

B

120646 121407 121704 122732118646 119992(bp)

 

(b) 

RRV vOX2HindIII PstI

PacI EcoRIEGFPRRV vOX2

RRV vOX2HindIII PstI

PacI EcoRIEGFPRRV vOX2

 

 

Figure 2.3 Cloning strategy to construct an RRV vOX2-EGFP fusion protein. (a) The vOX2 gene (ORF 

R14) lies between the genes encoding LANA and the RRV GPCR. The entire ORF was amplified from cDNA 

derived from RRV-infected cells and ligated into a subcloning vector (pCR®-Blunt II-TOPO, Table II, 

Appendix A). (b) The translated region of vOX2 was amplified from pCR®-Blunt II-TOPO by PCR with the 

addition of HindIII and PstI restriction sites, and ligated into the pEGFP-N1 vector, upstream of EGFP. Both 

vOX2 and EGFP were amplified by PCR (as one sequence) with the addition of PacI and EcoRI sites, ligated 

into pCR®-Blunt II-TOPO and then extracted from the subcloning vector by restriction enzymes PacI and 

EcoRI. The retroviral vector pQCXIP was also digested with PacI and EcoRI before ligation with the PacI-

vOX2-EGFP-EcoRI insert.    
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Primers incorporating restriction sites for HindIII and PstI enzymes (primers 5F and 

5R, Table I, Appendix A; and primers A and B, Figure 2.3, a) amplified full-length RRV 

vOX2 R14 (including the ATG start codon, and excluding the stop codon) from pCR®-Blunt 

II-TOPO by PCR, before ligation into the pEGFP-N1 plasmid (digested with HindII and 

PstI), upstream of the EGFP gene to create a vOX2-EGFP chimaera. The vOX2-EGFP 

sequence was then amplified by primers encoding PacI (primer C, Figure 2.3, a) and EcoRI 

(primers 6F and 6R, Table I, Appendix A) and again inserted into (pCR®-Blunt II-TOPO, 

Invitrogen, Table II, Appendix A) for sequencing. Once the sequence was determined to be 

correct and in-frame, vOX2-EGFP was digested by PacI and EcoRI restriction enzymes, and 

inserted into the pQCXIP retroviral vector (Table II, Appendix A), that had been digested 

with PacI and EcoRI. See Figure 2.3 (b) for an overview of the cloning strategy. Digestion 

of the modified plasmid with PacI and EcoRI released a fragment of the correct size. An 

endotoxin-free maxiprep (Qiagen, manufacturers instructions followed) enabled the isolation 

of pure, endotoxin-free copies of the pQCXIP plasmid containing RRV vOX2-EGFP.  

 

2.8.6. Retroviral transduction of BJAB cells 

 
Retroviral transduction was selected to introduce the RRV vOX2-EGFP gene into BJAB 

cells. Once the vOX2-EGFP chimaeric gene had been inserted into the pQCXIP plasmid 

(Table II, Appendix A), it was transfected into a packaging cell line (ie. GP2-293, Clontech), 

stably expressing the viral gag and pol genes, essential for viral particle formation. The 

pQCXIP plasmid confers puromycin resistance and expresses genes necessary for viral 

transcription, packaging and processing. The partition of genes necessary for viral 

production prevents the production of replication-competent virus upon recombination 

events, and means that virus cannot replicate in the target cells as the plasmid lacks the genes 

encoding structural proteins. 
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The packaging cell line, GP2-293 was plated in 60mm culture dishes at 1x106 

cell/plate in complete GP2-293 medium lacking antibiotic (Table II, Appendix C) and 

incubated overnight (37oC, 5% CO2). The following day the medium was replaced, with the 

addition of chloroquine (25μM, Sigma), and cells were co-transfected with 5μg of both 

pQCXIP and the VSV-G plasmid, diluted in RPMI 1640 (1ml, Invitrogen) and lipofectamine 

(20μl, Invitrogen). The vesicular stomatitis virus envelope glycoprotein (VSV-G) facilitates 

virus entry through binding to the lipid bilayer and plasma membrane of the recipient cell, 

and cannot be stably expressed in the packaging cell line due to its toxicity. After 18hrs, the 

medium was aspirated and replaced with complete GP2-293 medium (Table II, Appendix C). 

Following a further 48-72hrs, the virus-containing medium was filtered through a 0.45μm 

filter, aliquoted, and stored at -80oC. Two controls were also prepared: lipofectamine-only 

and pQCXIP-negative.   

The BJAB cells to be transduced were plated out at 2 x 105 cells per well in a 12 well 

plate, in pre-transfection medium (2mls, Table II, Appendix C), containing polybrene 

4μg/ml, Sigma). The retroviral stocks were thawed and 500μl dispensed onto each well. The 

cells were placed under puromycin (1μg/ml, Sigma) selection after 24hrs. Stable selection of 

transduced cells could be visualised via the EGFP fluorescence of those transduced with 

pQCXIP-vOX2-EGFP and both from the killing of the lipfectamine-only control cells, and 

the absence of EGFP in the pQCXIP-negative control. Stably transduced cells were 

maintained in complete medium, and cultured long-term under puromycin selection.    

2.9. Statistics 

 
Statistical analysis of the data was carried out using SPSS 16.0 software (IBM Inc.) and is 

referred to throughout the thesis. Statistical significance is presented as (*p<0.05), 

(**p<0.01) or (***p<0.001). 



Chapter 3: Production and analysis of Fc-fusion proteins  

  98 

Chapter 3. Production and analysis of Fc-fusion proteins 
 

The generation of soluble forms of CD200 and KSHV vOX2 proteins for functional studies 

in in vitro models will be described in this chapter, with reference to the relevant methods 

outlined in Chapter 2. Comparative studies were performed on the engineered soluble 

CD200 and vOX2 proteins, and another engineered KSHV protein, KCPmut:Fc, served as a 

negative control. 

3.1 Producing and analysing CD200:Fc 

 
As discussed in Chapter 1, Fc-fusion proteins have a longer half-life in vivo and are therefore 

often used therapeutically because a low concentration is efficacious (Kamei et al., 2005). 

Fc-fusion proteins are also useful for conducting research into the function of transmembrane 

proteins, negating the need to introduce engineered cells into functional experiments. Fusing 

human IgG1-Fc to the extracellular region of a protein of interest enables the large-scale 

production of the protein by secretion from engineered cells, and its subsequent purification 

and analysis. However, the disadvantage of Fc proteins is their limited stability in storage. 

Oxidation of the methionine residues on the two Fc domains, CH2 and CH3, leads to 

aggregation of the protein, though the high glycosylation of proteins produced by CHO cells 

reduces this risk slightly (Liu et al., 2008). 

Cells had been engineered previously in our laboratory (Rezaee et al., 2005) to 

produce vOX2:Fc, so a similar strategy was adopted to generate CD200:Fc. The CD200 

sequence encoding the extracellular domain of the CD200 protein was fused in-frame with 

the gene encoding the Fc region of human IgG1, in the pTorsten expression vector (see 

Chapter 2.1; CD200-pT clone 6). This insertion results in the expression of a soluble protein 

that will be secreted into the culture medium by cells transfected with the expression vector. 
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CHO cells were transfected with the CD200-pT plasmid, and stable transfectants selected 

with hygromycin B. Limiting dilution of the transfectants (Chapter 2.1.4) isolated a clone 

secreting high levels of the recombinant protein. To test for protein secretion, culture 

supernatants were sampled from several clones, and relative protein concentration was 

determined by SDS-PAGE and immunoblotting (Chapter 2.3) with an anti-human IgG1(Fc)-

specific antibody (Table I, Appendix B). Each clone secreted different quantities of the 

recombinant protein (Figure 3.1). The Fc fragment is the strong lower band, approximately 

26kDa in size. Clone B7 was selected for good protein expression and expanded. The 

CD200:Fc protein is the larger band, of approximately 70kDa. 

The concentration of CD200:Fc protein secreted into the culture supernatant by clone 

B7 cells was enhanced by growing the cells in a small volume of medium in expanded-

surface area roller bottles (Chapter 2.2.1). Due to previous endotoxin-contamination of 

vOX2:Fc generated in this laboratory (data not shown), care was taken to ensure that all 

equipment was disposable and certified endotoxin-free, or was thoroughly sterilised. 

CD200:Fc protein was purified from the culture fluid of clone B7 by protein A affinity 

chromatography (Chapter 2.2.2). Protein A is a component of Staphylococcus aureus 

bacterial cell walls and has high affinity for human IgG1. Contaminating bovine IgG from 

the FBS present in CHO cell culture medium was eluted selectively by lowering the pH 

within the protein A column (Figure 3.2; first peak of the chromatogram), and the 

CD200:Fc-protein was then eluted with a more acidic pH (Figure 3.2; second peak). In this 

manner, pure CD200:Fc was collected for analysis. 

Every batch of CD200:Fc protein was analysed by coomassie blue staining, and 

purified protein resolved by SDS-PAGE and immunoblotting with anti-CD200 and anti-

human IgG(Fc) antibodies. Staining the reduced gel with colloidal blue (Chapter 2.3.3) 

revealed a distinct band of protein that reduced in intensity with reduced protein 
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concentration (Figure 3.3, a). To confirm that the purified protein was CD200:Fc, an SDS-

PAGE gel loaded with proteins from the same batch as that depicted in Figure 3.3 (a), was 

transferred to PVDF membrane and immunoblotted with an anti-CD200:Fc antibody (see 

Table I, Appendix B). The lower protein band (Figure 3.3, b) corresponds to the expected 

48kDa size of monomeric CD200 (Clark et al., 2008), indicating that the larger protein of 

approximately 70kDa (Figure 3.3, a, b) represents dimeric protein resistant to denaturation, 

as described for vOX2:Fc (see Section 3.2). 
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Figure 3.1 Screening CD200-pT-transfected CHO cell clones for optimal CD200:Fc protein production. 

CHO cells, stably transfected with CD200-pT and cloned by limiting dilution, were evaluated for their 

CD200:Fc production. 10μl of culture supernatant from a confluent 24-well plate was subjected to SDS-PAGE, 

followed by immunoblotting with a commercial anti-human IgG1 (Fc) antibody. Four clones (F9, B7, B3 and 

A11) secreting CD200:Fc into the culture supernatant were identified. Clone B7 was selected for further 

analysis and subsequent protein production.  
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Figure 3.2 Purification of CD200:Fc by protein A affinity chromatography. Cell supernatant was passed 

through a protein A column. 0.1M Citrate buffer (pH 5.0) eluted bovine IgG (peak a), which binds with a lower 

affinity to protein A than the Fc-fusion proteins. 0.1M glycine (pH 2.8-3.0) eluted CD200:Fc, seen as the 

second and higher peak (b) in the chromatogram. The identity of the eluted CD200:Fc was confirmed by 

immunoblotting. This figure is also representative of the data obtained in the present thesis during purification 

of vOX2:Fc and KCPmut:Fc recombinant proteins.  
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Figure 3.3 Visualising purified CD200:Fc proteins by staining with colloidal coomassie blue and 

immunoblotting. Recombinant CD200:Fc was purified by affinity chromatography and separated by SDS-

PAGE. (a) Colloidal coomassie staining visualised the protein. (b) CD200:Fc was detected by immunoblotting 

with an anti-CD200 commercial antibody. The amount (μg) of protein loaded in each well is indicated.  
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3.2 Producing and analysing KCPmut:Fc and vOX2:Fc   

 
Stable cell lines expressing engineered soluble forms of KSHV complement control protein 

(KCP), KCPmut:Fc (Mark et al., 2004) and vOX2, called vOX2:Fc (Rezaee et al., 2005) had 

been generated previously. KCPmut:Fc is a soluble and functionally incompetent form of 

KCP, discussed in Chapter 1.3.9.  

KCPmut:Fc was generated in collaboration with our laboratory by Mark et al. by site-

directed mutagenesis of three positively charged lysines (Lys-64, Lys-65, Lys-88) between 

CCP domains 1 and 2, to glutamines, lacking a charge. The KCP-mediated decay of classical 

C3 convertase is almost completely abolished in the mutant protein, along with its ability to 

act as a cofactor in the degradation of C3b and C4b (Mark et al., 2004).         

vOX2:Fc and KCPmut:Fc proteins were produced and purified in parallel with CD200:Fc for 

the experiments outlined in this thesis, and were analysed by SDS-PAGE. Both monomeric 

and dimeric forms of vOX2:Fc were evident when the purified protein was analysed by SDS-

PAGE and subsequent immunoblotting with anti-vOX2:Fc or anti-human IgG1(Fc)-specific 

antibodies (Figure 3.4, a). Previous analysis of vOX2:Fc by mass spectrometry had 

confirmed the presence of dimeric and monomeric protein even under reducing conditions 

(Rezaee, S.A.R., University of Birmingham PhD thesis, 2006). Rezaee reported a dominant 

protein band of approximately 65-70kDa in size. Further stocks of the vOX2:Fc protein were 

produced at the National Biomanufacturing facility under the auspices of Eden Bioscience. 

The immunoblotting pattern for KCPmut:Fc under reducing conditions corresponded 

to that reported previously in the literature (Mark et al., 2004). Two clear bands (of 95kDa 

and 50kDa) correspond to dimeric and monomeric KCPmut:Fc respectively (Figure 3.4, b).  

The concentration of vOX2:Fc protein supplied by Eden Bioscience was quantified 

by analysing vOX2:Fc by SDS-PAGE in concert with serial dilutions of known 

concentrations of BSA (Figure 3.5, a) and mouse IgG2a (Figure 3.5, b).  
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The extent of endotoxin contamination of vOX2:Fc, CD200:Fc and KCPmut:Fc was 

quantified by the LAL assay (see Chapter 2.2.3). High levels of endotoxin of initial batches 

of purified vOX2:Fc had been identified and would confound downstream functional 

analysis. The method of purification was therefore altered and all equipment was sterile and 

certified endotoxin-free where possible. Every batch of purified protein was analysed for 

endotoxin, and all protein with endotoxin contamination >1EU/ml (the limit of resolution of 

the LAL assay) was discarded (Figure 3.6). Protein fractions with low endotoxin 

contamination and high protein concentration were pooled and used in all experiments to 

minimise heterogeneous results from batch to batch variation.     
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Figure 3.4 Analysis of affinity-purified vOX2:Fc and KCPmut:Fc recombinant proteins by Western 

Blot. The proteins were separated by SDS-PAGE. (a) Immunoblotting with first anti-vOX2 monoclonal 

antibody (I), and then anti-vOX2 polyclonal antibody (II) revealed both dimeric and monomeric forms of 

vOX2:Fc (in the sample protein sample). (b) Anti-KCP antibody reacted with dimeric and monomeric forms of 

recombinant KCPmut:Fc. A commercial anti-human IgG1 (Fc-specific) antibody identified the Fc region of the 

recombinant proteins, (a) and (b) bottom panels. The identities of dimeric and monomeric forms of vOX2:Fc 

had been previously confirmed by mass spectrometry (see Rezaee, S.A.R., PhD thesis, 2006).   
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Figure 3.5 Determining the concentration of commercially prepared vOX2:Fc. To determine the 

concentration of vOX2:Fc prepared by Eden Bioscience, the proteins were denatured and separated by SDS-

PAGE, and compared with known amounts of either bovine serum albumin (BSA) (a), or a murine antibody 

IgG2a (b). The gels were stained with colloidal coomassie blue to visualise the proteins. In panel (a), the 

concentration of vOX2:Fc was deduced to be between 0.19 and 0.09mg/ml, and in panel (b), the protein 

concentration was estimated to be between 0.25 and 0.125mg/ml. The protein was thereafter assumed to be 

0.15mg/ml.  
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Figure 3.6 Quantification of endotoxin levels in purified recombinant protein stock solutions. The 

endotoxin levels of purified recombinant protein stocks were quantified by the Limulus amoebocyte lysate 

(LAL) assay. Endotoxin units (EU) are a measure of the level of endotoxin as determined by LAL, and do not 

directly correlate with lipopolysaccharide concentration. Each sample was analysed in duplicate, and the data 

presented as means ± SEM. 
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3.3 Discussion 

   
CHO cell clones stably transfected with CD200-pT were analysed for their production of 

CD200:Fc, and clone B7 was subsequently selected as the highest producer for further study. 

CD200:Fc was purified from this clone for use in in vitro functional assays of neutrophil and 

leukocyte activity (Chapter 4). vOX2:Fc and KCPmut:Fc were also purified from previously 

engineered cell lines, and the immunoblotting profiles (Figure 3.4) were confirmed as 

consistent with previous reports (Rezaee, S.A.R., 2006, PhD thesis) and (Mark et al., 2004). 

Although analysis by SDS-PAGE allows for comparison with the literature and between 

batches of protein, it does not determine functional activity.  

KCPmut:Fc was selected as a negative control for functional experiments. It is 

imperative that the presence of the human IgG1 Fc region is controlled for in these 

experiments, as the Fc domain can bind to specific receptors (FcγRs) expressed on human 

leukocytes, thus initiating either stimulatory or inhibitory responses. In vivo, IgG1 binds to 

pathogens and then to FcγRs expressed on the surface of phagocytic cells, initiating an innate 

immune response. Because aggregates of IgG1 bound to a pathogen can be distinguished 

from soluble antibodies by the phagocyte, monomeric IgG1 binding and dissociating rapidly 

does not initiate a response. IgG1 can stimulate neutrophils to generate reactive oxygen 

species and anti-microbial enzymes, as well as directly inducing killing by NK cells and 

macrophages (Murphy, 2008). Ligation of FcγRs can also suppress the immune response. 

For example, IgG1-FcγRIIB binding inhibits the B cell receptor (BCR)-mediated 

proliferation and maturation of B cells into plasma (antibody-secreting) cells, and negatively 

regulates the activatory FcγRs on macrophages, neutrophils and mast cells (reviewed in 

Nimmerjahn and Ravetch, 2006).      
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 Therefore, any alteration in leukocyte function that occurs as a result of KCPmut:Fc 

treatment can be discounted and assumed to be a result of the Fc domain ligating to its 

receptor on the surface of phagocytic cells. Results obtained with the negative control protein 

may also be a consequence of factors such as endotoxin contamination. As discussed in 

Chapter 1, endotoxin, or lipopolysaccharide (LPS), a component of gram-negative bacterial 

cell walls, is a potent stimulator or ‘primer’ of neutrophils (Nick et al., 1996). The ligation of 

Toll-like receptors (TLRs) on the surface of immune effector cells by endotoxin leads to the 

expression of pro-inflammatory cytokines, thus amplifying the immune response. In vivo, 

administering a low dose of LPS to a healthy human results in a rapid increase in circulating 

TNFα and IL-1β (pro-inflammatory cytokines), closely followed by anti-inflammatory 

cytokines such as IL-10 (Andreasen et al., 2008). Proliferation of neutrophils, monocytes and 

lymphocytes occurs within 90mins of LPS treatment, thus inducing systemic inflammation 

(reviewed in Andreasen et al., 2008). Therefore, the endotoxin content of vOX2:Fc, 

CD200:Fc and KCPmut:Fc is extremely important, and is difficult to control for as many 

components of cell culture medium, such as FBS, are contaminated. In addition to sterilizing 

all equipment, the endotoxin levels within each batch of protein were determined (Figure 

3.6) and any protein with >1EU/ml was discarded. The U.S. Food and Drug Administration 

(FDA, www.fda.gov), uses the LAL assay to quantify endotoxin contamination of drugs and 

medical devices. They recommend an upper limit of 0.5EU/ml for endotoxin contamination 

of drugs, and that no more than 5EU/kg body mass should be administered to humans. For 

our purposes, the protein stocks were diluted substantially and so a concentration of 1EU/ml 

of the stock was chosen as the maximum endotoxin level for these experiments.      
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Chapter 4. The roles of soluble CD200:Fc and vOX2:Fc in 
modulating leukocyte activity 

 
Due to extensive research on the roles of both native CD200 and CD200:Fc in modulating 

the immune response, and data demonstrating a neutrophil-suppressive role for KSHV 

vOX2:Fc (Rezaee et al., 2005), the initial experiments outlined in this chapter investigated 

the influences of vOX2:Fc and CD200:Fc soluble proteins on the function of human 

leukocytes.  

4.1. CD200R is expressed on human leukocytes 
 

Before examining whether vOX2:Fc or CD200:Fc soluble proteins could alter the function of 

primary leukocytes, the expression of human CD200R on granulocytes, monocytes and 

lymphocytes was confirmed by flow cytometry (see Figure 4.1). Both vOX2 and CD200 

bind to human CD200R with similar affinity (Foster-Cuevas et al., 2004). Primary 

leukocytes were isolated from the blood of healthy human donors (Chapter 2.5.2), and 

stained with an anti-CD200R monoclonal antibody and a matched fluorophore-conjugated 

secondary antibody (Chapter 2.6.1). The cell populations were identified and gated in the 

FSC vs. SSC plot (Figure 4.1, a), ie. lymphocytes, monocytes and  granulocytes. Within 

each population, the fluorescence value for the isotype control antibody stained cells was 

compared with that for the cells labelled with anti-CD200R (Figure 4.1, b). A clear shift in 

fluorescence for anti-CD200R stained cells confirmed the expression of cell-surface 

CD200R on all three cell types. Following confirmation of CD200R expression by 

leukocytes, aspects of the function of these cells were analysed in the presence and absence 

of CD200:Fc and vOX2:Fc, as described below. 
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Figure 4.1 CD200R expression on primary human leukocytes. Leukocytes were isolated from healthy 

human donors by gradient centrifugation, and labelled with an anti-CD200R antibody for flow cytometric 

analysis. The three major leukocyte populations were isolated by size and granularity (a), and CD200R 

expression quantified (green), in comparison to the secondary antibody only (blue line), and an isotype control 

antibody (red) (b). These data are representative of two independent experiments carried out with leukocytes 

isolated from two healthy donors. 
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4.2. vOX2:Fc and neutrophil function 
 
Since neutrophils express CD200R (Figure 4.1), for which vOX2 and CD200 are ligands, 

vOX2 and CD200 might regulate neutrophil activity. There are three methods by which the 

function of primary human neutrophils may be measured. The release of superoxide anions 

into the surrounding environment, via the assembly of the NADPH oxidase complex, can be 

measured by reactivity of chemiluminescent substrates with the extracellular superoxide 

anions (Figure 4.2, 1), the oxidative activity of the NADPH oxidase complex can be 

measured by oxidation of a fluorescent compound (Figure 4.2, 2), and the release of 

antimicrobial enzymes from intracellular secretory granules can be measured (Figure 4.2, 3). 

These methods are detailed in Chapter 2.5.3-5. 
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Figure 4.2 Measuring primary human neutrophil activity. Biological activities of human neutrophils 

isolated from whole blood were analysed by three methods. (1) The release of superoxide anions (O2
-) into the 

extracellular milieu was quantified by the subsequent reduction of lucigenin, resulting in chemiluminescence. 

(2) Flow cytometric quantification of the reduction of a fluorogenic substrate within granulocytes gauged the 

intracellular superoxide generation by the NADPH oxidase complex. (3) Neutrophil degranulation, specifically 

the release of myeloperoxidase from neutrophil azurophilic granules, was measured by the activity of the 

enzyme on a peroxidase substrate. 

(3) 

(1) 

(2) 
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4.2.1. Optimisation of the neutrophil superoxide burst chemiluminescence assay 

 
The neutrophil superoxide release assay relies on the reductive and luminescent properties of 

lucigenin (N,N’-dimethyl-9,9-biacridinium dinitrate). Lucigenin is reduced by superoxide 

ions, resulting in chemiluminescence, and therefore can sensitively quantify superoxide 

production by leukocytes (Afanas'ev et al., 2001). 

Although lucigenin reduction is a recognised method for detecting superoxide 

release, initial experiments during the present study revealed high variability in the 

magnitude of the detectable superoxide released by isolated neutrophils. Therefore several 

experiments were undertaken to optimise this assay. Initially, the detectable superoxide 

discharged by neutrophils was suboptimal, with the luminometer detecting less than 500 

RLU for peak superoxide release. To determine whether the cell isolation protocols for both 

neutrophils and whole blood leukocytes were rendering the neutrophils non-functional, a 

maximal release of superoxide was induced by treatment with PMA (2nM). A slow, 

extended increase in superoxide production, reaching approximately 3x104 RLU, in response 

to PMA treatment, was observed in both isolated neutrophils and whole blood leukocytes 

(data not shown), indicating that the cells were functional.    

Next, the neutrophils were incubated in an opaque white high-binding plate instead of 

a black 96-well plate, because the reflective white lining results in an amplification of the 

chemiluminescent signal. Comparison of two priming agents, TNFα and GM-CSF, identified 

GM-CSF as the optimal priming agent (data not shown). Although the magnitude of 

superoxide release was enhanced with GM-CSF treatment, the neutrophils also responded to 

treatment with fMLP alone, indicating that a factor unrelated to the protocol was causing 

non-specific activation of the cells.  

To determine whether either a component of the luminometer plates or the presence 

of a contaminant was activating the neutrophils during treatment, a comparison was made of 
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two methods. Cells were either treated in a luminometer plate, or were incubated in a cell 

culture-treated plate before transfer to a luminometer plate prior to reading. The transfer of 

cells following their treatment results in a low detectable superoxide burst, in comparison 

with those that were not transferred (Figure 4.3, a). These results suggest that only a small 

number of activated neutrophils are transferred due to their adherence to the plastic tissue 

culture plate. Neutrophils remaining in suspension do not produce superoxide anions in 

response to GM-CSF treatment (Johnson & Gomez-Cambronero, 1995), and are more likely 

to be transferred to the luminometer plate than activated adherent cells. However, though the 

superoxide burst produced by the non-transferred cells was substantial, they were still 

activated in the presence of fMLP, but the absence of GM-CSF priming (Figure 4.3, a). 

These data suggest that they may have been reacting to a component of the plate they were 

incubated in, or a reagent contaminant. As a result of these experiments, the neutrophils were 

not transferred from the plate in which they were cultured for superoxide release assays. 

Next, to examine whether an intrinsic component of the luminometer plates being 

used was activating the cells, four 96-well white opaque plates with different properties, 

supplied by three biotechnology companies were compared in parallel with neutrophils 

isolated from one donor. Thus, both high-binding and tissue-culture treated sterile plates 

were sourced for comparison. The neutrophils were non-specifically activated in each plate 

(Figure 4.3, b), regardless of its sterility or binding properties, indicating that either reagent 

contamination or investigator experience was the cause of spontaneous neutrophil priming.  

To determine whether either reagent contamination or investigator experience was 

the cause of neutrophil activation, another researcher (Investigator two, Figure 4.3, c) who is 

highly experienced in neutrophil analyses, performed the experiment in parallel with myself 

(Investigator 1). Investigators 1 and 2 isolated neutrophils in parallel, with separate reagents 

and in separate locations, but from blood taken from the same healthy donor at the same 
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time. The cells isolated by Investigator 2 responded well to GM-CSF, and the magnitude of 

superoxide release from cells treated with fMLP alone was only approximately 25% of that 

detected in neutrophils stimulated with both GM-CSF and fMLP. In contrast, the superoxide 

release from neutrophils isolated by Investigator 1 was of a much lower magnitude, and the 

detectable superoxide released from cells stimulated with fMLP alone was approximately 

50% of the release induced by both GM-CSF and fMLP. These results suggested that reagent 

contamination was the source of variability in the magnitude and duration of superoxide 

release.  

Substituting certified endotoxin-free BSA into the HBSS-1% BSA solution abolished 

all non-specific activation of the neutrophils (Figure 4.3, d). A comparison of the four 

luminometer plates from three sources in parallel with the use of sterile BSA showed no 

substantial differences between the detectable superoxide produced in each plate. Superoxide 

induced by fMLP alone was approximately only 15% of the superoxide release by cells 

treated with GM-CSF and fMLP. The replacement of sterile-filtered BSA with certified 

endotoxin-free BSA eliminated the spontaneous neutrophil activation and facilitated a short, 

defined release of superoxide, visualised as a peak in relative light units 1 minute after 

addition of fMLP. Certified endotoxin-free BSA was used in all subsequent assays, in 

conjunction with sterile, tissue culture-treated white opaque 96-well plates from Greiner; the 

cells were treated and the output read in the luminometer plates without cell transfer. 
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Figure 4.3 Optimisation of a chemiluminescent assay for quantifying neutrophil superoxide 

release. Neutrophils were isolated from the blood of a healthy donor by density gradient centrifugation, and 

primed for superoxide release with either GM-CSF or TNFα (both at 50ng/ml, 30mins, 37oC). Release of 

superoxide from the cells was induced by treatment with fMLP (1μM) and detected by reaction with lucigenin. 

(a) Neutrophils were treated, and either incubated and the output read in a 96-well opaque white microplate, or 

transferred from a cell culture-treated 96-well plate to an opaque plate. (b) Evaluating the impact of microplates 

from different sources on neutrophil superoxide release. Neutrophils were primed and incubated in a range of 

four luminometer plates from three sources to examine whether the sterility or binding properties of each plate 

affect superoxide release. (c) Neutrophils were isolated from the blood of one healthy donor by two 

investigators in parallel using separate reagents, and the superoxide assay then carried out in parallel. (d) The 

BSA used in previous experiments (a, b, c) was suspected to contain contaminants, resulting in the activation of 

neutrophils regardless of any subsequent treatments. To test this suspicion, isolated neutrophils were 

resuspended in buffer containing BSA that was certified as endotoxin-free. The neutrophils were also incubated 

in four test plates to evaluate any differences between the plates (as in b) in addition to replacing the BSA. All 

spontaneous bursting in response to fMLP treatment alone was reduced, compared with (c), suggesting that the 

original BSA was the source of a contaminant activating the neutrophils. 
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4.2.2. Leukocyte and neutrophil superoxide burst in the presence of vOX2:Fc and 

CD200:Fc 

 
Neutrophils and leukocytes were isolated from healthy donor blood. They were primed with 

GM-CSF and stimulated with fMLP to induce a rapid secretion of superoxide anions that 

were quantified by a chemiluminescent assay (Chapter 2.5.3). The typical kinetics of 

superoxide generation by neutrophil and leukocytes are presented in (Figure 4.4, a) and 

(Figure 4.4, b) respectively. Oxidative burst is characterised by a short, sharp increase in 

chemiluminescence, corresponding to superoxide release that gradually exhausts. Incubation 

of either the neutrophils or leukocytes with vOX2:Fc before stimulation did not alter the 

kinetics of oxidative burst, nor the relative amounts of superoxide released at the peak time 

of production, in comparison to either untreated cells, or cells treated with KCPmut:Fc 

(Figure 4.4, c and d). In the leukocyte population, neutrophils are the primary secretors of 

superoxide; however, small subpopulations of basophils and eosinophils can contribute to the 

superoxide production. Monocytes may also directly impact neutrophil activity by the 

production of cytokines such as the potent chemoattractant IL-8. 

To determine the dose-dependent response of neutrophils and leukocytes to the 

recombinant proteins, the oxidative burst of these cells was quantified in the presence of 

increasing concentrations of vOX2:Fc, CD200:Fc or KCPmut:Fc (Figure 4.5). As before, 

the cells were pre-incubated with the recombinant proteins before stimulation, at 

concentrations of 0.8, 4, 8, 16 and 40μg/ml. The superoxide levels at the peak time of release 

(measured as RLU), were calculated as a percentage of the luminescence (RLU) generated 

by stimulated cells without protein treatment. With increasing concentrations of recombinant 

proteins, there was a slight increase in the peak level of superoxide generation. However, this 

increase with vOX2:Fc and CD200:Fc is indistinguishable from cells treated with the control 



Chapter 4: The roles of soluble CD200:Fc and vOX2:Fc in modulating leukocyte activity   

  116 

protein KCPmut:Fc. Therefore, the effect is likely to be non-specific and unrelated to protein 

activity.  
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Figure 4.4 Neutrophil superoxide release is not altered by pre-treatment with vOX2:Fc 

(8μg/ml). Neutrophils or leukocytes were isolated from the blood of a healthy donor by density gradient 

centrifugation, and either pretreated with vOX2:Fc or KCPmut:Fc (8μg/ml, 60mins, 37oC), or left untreated. 

They were then ‘primed’ by treatment with GM-CSF (50ng/ml, 37oC, 30 mins). Superoxide burst was induced 

by treatment with fMLP (1μM) and detected by reaction with lucigenin. Two independent experiments were 

carried out for each cell type, and each treatment was carried out in duplicate. Data were calculated as a 

percentage of the peak superoxide burst from cells treated with GM-CSF and fMLP alone. Examples of the 

rapid superoxide burst in response to fMLP treatment at time 0 are shown in (a) and (b); peak superoxide 

production was quantified, and data pooled, (c) and (d). 
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Figure 4.5 Peak superoxide burst from isolated neutrophils and leukocytes is not altered by vOX2:Fc or 

CD200:Fc. Neutrophils and leukocytes were isolated from the blood of a healthy donor and ‘primed’ with GM-

CSF (50ng/ml, 30mins). Oxidative burst was induced by treatment with fMLP (1μM) and detected by reaction 

with lucigenin. Pretreatment with vOX2:Fc, CD200:Fc or KCPmut:Fc (60mins, 37oC, 5% CO2) of (a) isolated 

neutrophils or (b) leukocytes, generated no significant change, though the trend was for peak superoxide 

production to increase slightly with increasing protein concentrations. Data were pooled from four (a) or three 

(b) independent experiments, each performed on cells from separate donors; all treatments were carried out in 

duplicate. Data were calculated as a % of the peak superoxide burst from control cells treated with GM-CSF 

and fMLP alone, and represented as means ± SEM. 
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4.2.3. The oxidative activity of granulocytes in whole blood is moderately 

suppressed by vOX2:Fc and CD200:Fc 

 
Rather than measuring the generation of superoxide anions by isolated cell populations, a 

more physiologically relevant measure of neutrophil activity is to measure the oxidative 

capacity of the NADPH oxidase complex within granulocytes in situ in whole blood. Briefly, 

whole blood from a healthy donor was incubated with vOX2:Fc, CD200:Fc or KCPmut:Fc 

and then treated with opsonised E. coli (Chapter 2.5.5). Subsequent analysis of the E coli.-

stimulated granulocyte population by flow cytometry enabled us to quantify oxidative 

activity by a shift in fluorescence due to the oxidation of a fluorogenic substrate. Increased 

fluorescence represents increased oxidative activity. Oxidative activity was evident in cells 

stimulated with E. coli, or PMA, in comparison to untreated cells (Figure 4.6, a).  

Both vOX2:Fc and CD200:Fc moderately suppressed the oxidative activity in 

granulocytes (Figure 4.6, b). Treatment with vOX2:Fc (8μg/ml) significantly suppressed 

oxidative activity by 17.12% ± 8.04 SEM (*p<0.05, univariate ANOVA) in comparison to 

the untreated control, and was reduced by 22.3% ± 5.09 SEM (p=0.09, univariate ANOVA), 

when the concentration was increased to 24μg/ml. CD200:Fc was slightly more efficacious, 

with 8μg/ml significantly reducing oxidative activity by 19.13% ± 6.92 SEM (*p<0.05, 

univariate ANOVA) in comparison to control, and 24μg/ml CD200:Fc reducing it by 24.34% 

± 6.07 SEM (*p<0.05, univariate ANOVA). The negative control, KCPmut:Fc, showed a 

mild suppressive effect at 24μg/ml, reducing oxidative burst by 12.17% ± 8.49 SEM (not 

statistically significant), but did not alter oxidation when administered at 8μg/ml (4.26% ± 

4.5 SEM). Oxidative activity was quantified as the median fluorescence for each sample, 

normalised to control (treatment with E. coli alone).     
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Figure 4.6 Treatment with either vOX2:Fc or CD200:Fc reduces granulocyte oxidative activity in whole 

blood. Pre-treatment of heparinised whole blood with vOX2:Fc or CD200:Fc (8 or 24μg/ml, 60mins, 37oC) 

from healthy donors reduces oxidative activity in response to opsonised E. coli and in comparison with blood 

treated with either KCPmut:Fc or E. coli (control) alone. The granulocyte population was gated by size and 

granularity (a, left panel), and the extent of oxidative activity in each sample was determined by flow 

cytometric quantification of the intracellular fluorogenic substrate dihydrorhodamine 123 (a, right panel). (c) 

Representative histograms depicting the percentage shift of granulocytes upon pretreatment with vOX2:Fc 

(8μg/ml), illustrating reduced R-123 fluorescence, and therefore suppressed oxidative activity.  (b) The median 

fluorescence for each sample was normalised to control (treatment with E. coli alone), and data pooled from 

four independent experiments (see Appendix D for raw data). 8μg/ml vOX2:Fc significantly reduced 

granulocyte oxidative activity (F(3, 25) = 3.31; *p<0.05) but the difference was not significant at 24μg/ml 

vOX2:Fc (F(3, 7) = 2.31; p = 0.09). CD200:Fc significantly reduced granulocyte oxidative activity when 

administered at 8μg/ml (F(3, 25) = 3.31; *p<0.05) or 24μg/ml (F(3, 7) = 2.31; *p<0.05). KCPmut:Fc did not 

alter oxidative activity at either 8μg/ml (F(3, 25) = 3.31; p = 0.49) or 24μg/ml (F(3, 7) = 2.31; p = 0.27) when 

analysed by a univariate ANOVA test (SPSS software).  

 
 

4.2.4.  vOX2:Fc and neutrophil degranulation  

 
Primary human neutrophils were treated with vOX2:Fc, CD200:Fc or KCPmut:Fc before 

stimulation with TNFα and fMLP (see Chapter 2.4.4 for method). The absorbance values are 

a relative measure of MPO release, and were normalised for each Fc-protein treatment to the 

absorbance value for cells treated with TNFα and fMLP alone (Figure 4.7). There was a 

trend towards a reduction in MPO release with increasing protein concentration. However, 

treatment with the negative control protein, KCPmut:Fc, also reduced MPO release so no 

specific effect of either vOX2:Fc or CD200:Fc can be inferred.  
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Figure 4.7 Neutrophil degranulation was not altered by pre-treatment with either vOX2:Fc or 

CD200:Fc.  Neutrophils were isolated from the blood of a healthy donor by density gradient centrifugation, and 

pretreated with recombinant proteins (60mins, 37oC). Myeloperoxidase (MPO) release from azurophilic 

granules was stimulated by TNFα (100ng/ml) and fMLP (100nM), and detected by colorimetric reaction with 

TMB, a substrate of peroxidase. Data from three independent experiments, carried out on blood from separate 

donors, were pooled and are presented as means ± SEM; all treatments were carried out in duplicate. 

 

 

4.2.5. vOX2:Fc does not alter neutrophil viability 

 
Once isolated from blood, primary neutrophils have a short lifespan in culture, and 

approximately 50% of the cells will spontaneously apoptose after about 20hrs. The rate of 

apoptosis in the presence of a compound of interest can therefore be determined in 

comparison to untreated control cells. Thus, to determine whether the treatment of 

neutrophils with either vOX2:Fc or CD200:Fc would alter the rate of their spontaneous 

apoptosis, neutrophils from a healthy donor were pretreated in parallel with vOX2:Fc, 

CD200:Fc or KCPmut:Fc. Apoptosis was quantified by flow cytometry (Chapter 2.5.6), by 

determining the percentage of cells that retained the fluorescent dye DiOC6 in their 

mitochondria. Neither vOX2:Fc nor CD200:Fc induced cell death or rescued the isolated 

neutrophils from apoptosis (Figure 4.8), in comparison to control KCPmut:Fc-treated cells. 

A decrease in neutrophil viability after 9 hours, following pre-treatment with vOX2:Fc or 
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CD200:Fc (24μg/ml), also occurred in the cells pretreated with the negative control protein 

KCPmut:Fc (24μg/ml), and so cannot be considered a direct result of either vOX2 or CD200 

activity. GM-CSF and TNFα were included as controls, as the two agents rescue neutrophils 

from and induce apoptosis, respectively. Morphological analysis of neutrophil apoptosis also 

indicated no effect of vOX2:Fc or CD200:Fc (data not shown).   
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Figure 4.8 Neutrophil viability is unaffected by vOX2:Fc. Neither vOX2:Fc or CD200:Fc induced cell death, 

nor rescued neutrophils from apoptosis when co-cultured with primary neutrophils for up to 20 hours. Cell 

viability was determined by flow cytometric quantification of the retention of the fluorescent mitochondrial dye 

(DiOC6). Data were pooled from six independent experiments, carried out with blood from separate donors. 

 

4.3.  The neutrophil chemoattractant, IL-8 

 
Although neither soluble vOX2 (vOX2:Fc) nor CD200 (CD200:Fc) influenced neutrophil 

function directly nor substantially in our assays, the hypothesis was that they may regulate 

monocyte function via surface CD200R, which in turn may deregulate neutrophil function 

indirectly. Thus, the ability of monocytes to secrete IL-8, a potent neutrophil 

chemoattractant, was examined in the context of putative vOX2/CD200-monocyte 

interaction. 
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To determine whether native vOX2 or CD200 could alter the production of IL-8 by 

stimulated monocytes, vOX2 and CD200 were inserted into retroviral vectors, and BJAB 

cells (a B-lymphoblastoid cell line) were transduced to stably express the proteins (Chapter 

2.8.6). Initially, two human monocytic cell lines, U937 and THP-1, were stimulated with 

IFNγ for 48hrs in the presence of BJAB cells (1:1) expressing native vOX2 (vOX2-BJAB), 

CD200 (CD200-BJAB) or transduced with an empty vector (Empty-BJAB) (Figure 4.9, a). 

IL-8 secretion by U937 cells was unchanged in the presence of vOX2 or CD200. However, 

the secretion of IL-8 by THP-1 cells was moderately suppressed by vOX2-BJAB cells, by 

18.55% ± 8.94 SEM in comparison to the Empty-BJAB control and by 23.43% ± 7.94 SEM 

in the presence of CD200-BJAB cells. The difference did not reach significance when the 

data were analysed by one-way ANOVA (SPSS software). To determine the expression of 

CD200R by the two cell lines, unstimulated U937 and THP-1 cells were labelled with anti-

CD200R antibody and co-stained with a fluorophore-conjugated secondary antibody. 

CD200R expression was determined by comparison with control cells stained with both 

isotype control antibody and secondary antibody, or secondary antibody alone (Figure 4.9, 

b). The histograms clearly demonstrate cell surface expression of CD00R on U937 cells, but 

not THP-1 cells.  
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Figure 4.9 vOX2 and CD200 modestly reduce IL-8 production by co-cultured monocytic CD200R- THP-1 

cells, but not CD200R+ U937 cells. (a) BJAB cells expressing native vOX2 or native CD200 (fused in-frame 

with EGFP), were irradiated and co-cultured with two human monocytic cell lines (U937 and THP-1) for 48 

hours. THP-1 and U937 cells were stimulated with IFNγ (8ng/ml) during co-culture with the engineered BJAB 

cells. IL-8 secretion by U937 cells was not altered, but IL-8 secretion by THP-1 cells, co-cultured with 

vOX2EGFP-BJAB or CD200EGFP-BJAB cells, was reduced to 81.45% ± 8.94 SEM and 76.57% ± 7.94 SEM 

of the control respectively. Empty-BJAB cells were used as a control. IL-8 concentration in supernatants was 

determined by commercial ELISA. Data from five (U937) and four (THP-1) independent experiments were 

pooled and are presented as means ± SEM. (b) The expression of CD200R on the surface of U937 and THP-1 

cells was quantified by flow cytometry. Staining with anti-CD200R and a fluorophore-conjugated secondary 

antibody (blue) revealed CD200R expressed on the surface of U937 cells, but not THP-1 cells, in comparison to 

the isotype control-stained cells (green), or cells stained with the secondary antibody only (red).  
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Next, the effects of both soluble and native vOX2 and CD200 on primary human 

monocytes were determined. PBMCs were isolated from the blood of healthy donors, and the 

monocytes isolated by allowing them to adhere to plastic. The adherent monocytes were 

incubated with vOX2:Fc, CD200:Fc or KCPmut:Fc (8μg/ml, 60mins, 37oC) and the basal 

secretion of IL-8 determined by commercial ELISA. The data were pooled and presented as 

mean ± SEM (Figure 4.10, a). There was no demonstrable change in the generation of IL-8 

by monocytes in the presence or absence of vOX2:Fc or CD200:Fc, in comparison to 

untreated cells, or those treated with KCPmut:Fc. Plastic-adherent primary monocytes were 

incubated with vOX2 or CD200-expressing BJAB cells and then stimulated with LPS 

(Figure 4.10, bi). Alternatively, they were incubated with LPS-treated engineered BJAB 

cells (Figure 4.10, bii). In both cases the presence of vOX2 or CD200 on the BJAB cell did 

not alter the IL-8 secretion by monocytes, or in some cases increased it slightly, in 

comparison to empty vector control cells; however the error bars negate any differences 

between the means.  

To investigate the activity of native vOX2 and CD200 on IL-8 producing endothelial 

cells, human microvascular endothelial cells (HMEC), an immortalised cell line, were 

incubated with vOX2/CD200/empty vector BJAB cells for 60mins, stimulated with TNFα, 

and the IL-8 concentration of the supernatant quantified by commercial ELISA after 4hrs. 

vOX2 and CD200 did not alter the production of IL-8 by HMEC cells (Figure 4.11).  
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Figure 4.10 Neither soluble nor native membrane-bound vOX2 or CD200 alter IL-8 secretion by primary 

monocytes. Plastic-adherent monocytes derived from PBMCs were treated with (a) vOX2:Fc, CD200:Fc or 

KCPmut:Fc (8μg/ml, 37oC, 16 hours), or (b) were co-cultured with BJAB cells engineered to express either 

native vOX2 or CD200 fused in-frame with EGFP, or an empty vector. (bi) Monocytes were cocultured with 

untreated engineered BJAB cells and then stimulated with LPS, or (bii) were co-cultured with LPS-treated 

BJAB cells. Supernatants were collected after overnight incubation for IL-8 quantification by ELISA. All 

BJAB cells were irradiated before use (4000rads, caesium-137 chloride source). Data were pooled from three 

independent experiments, and expressed as means ± SEM. 

(i) (ii) 
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Figure 4.11 vOX2 and CD200 do not alter IL-8 production by co-cultured HMEC endothelial cells. BJAB 

cells expressing native vOX2 or native CD200 (fused in-frame with EGFP), were irradiated and co-cultured 

with TNFα-stimulated human microvascular endothelial cells (HMEC) for 4 hours. After 60mins of co-culture 

with the engineered BJAB cells, HMEC were stimulated with TNFα (10U/ml). Empty-BJAB cells were used as 

a control. IL-8 concentration in supernatants was determined by commercial ELISA. Data from three 

independent experiments were pooled and are presented as means ± SEM. 

 

4.4. Do soluble vOX2:Fc and CD200:Fc influence T cell activity? 

 
In order to determine whether the soluble vOX2 and CD200 proteins interact with other 

leukocytes- such as T cells- and whether immobilising the proteins would increase their 

efficacy, another system was developed. The hypothesis was that if the negative stimulus (ie. 

vOX2 or CD200) was presented to the T cell in concert with the positive stimulus (ie. anti-

CD3 and anti-CD28), the negative signal may override the positive. Physiologically, the T 

cell might be expected to recognise vOX2 expressed on the surface of an APC (for example, 

on the surface of KSHV-infected B cells), coincident with cognate antigen (ie. KSHV 

antigens), which is when vOX2 might be expected to offer some protection to the infected 

cell.  
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Figure 4.12 Neither immobilised vOX2:Fc nor CD200:Fc alter the response of PBMCs to stimulating 

anti-CD3 and anti-CD28 antibodies. Commercial microbeads conjugated to an anti-biotin antibody were 

labelled with anti-CD3, anti-CD28 and anti-IgG biotinylated antibodies (0.1pg protein/bead, 4oC, 2hrs). 

vOX2:Fc, commercial vOX2:Fc (EDEN), CD200:Fc or KCPmut:Fc were then bound to the anti-IgG antibody 

(0.2μM, 4oC, 2hrs). (a) Bead-protein complexes were separated by SDS-PAGE and immunoblotted with an 

anti-human IgG1 (Fc) antibody to detect the bead-bound protein (left panel). Fc-proteins dissociated from the 

beads after 15 days (4oC) and was undetectable by immunoblotting (right panel) so only freshly prepared beads 

were used. (b) PBMCs isolated from the blood of healthy donors were stimulated with vOX2:Fc and 

CD200:Fc-loaded micro-beads. After 48hrs of culture, IFNγ release was quantified by ELISA as a measure of T 

cell activation. Two independent experiments were carried out, with PBMCs from six healthy donors, and data 

are represented as means ± SEM.  
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To verify the effects of vOX2 and CD200 on primary T cells, PBMCs were isolated 

from the blood of healthy donors and incubated with microbeads. These beads were 

engineered to present anti-CD3 and anti-CD28 antibodies, and a recombinant protein. The 

proteins were vOX2:Fc, commercially prepared vOX2:Fc (Eden Bioscience), CD200:Fc or 

KCPmut:Fc. The presence of recombinant proteins on the microbeads was confirmed by 

SDS-PAGE and immunoblotting (Figure 4.12, a, left-hand panel). Recombinant proteins 

were found to dissociate from the beads rapidly (Figure 4.12, a, right-hand panel), and were 

therefore produced and used immediately. T cell function was judged by quantifying IFNγ 

secretion, and Fc-protein-negative microbeads acted as a control to gauge the stimulating 

effects of anti-CD3 and anti-CD28. The quantification of IFNγ in culture supernatants by 

ELISA revealed no specific difference in IFNγ secretion by vOX2 or CD200-treated 

cultures, in comparison to KCPmut:Fc (Figure 4.12, b).      

4.5. Discussion  
 
Neither vOX2:Fc nor CD200:Fc directly altered the function of primary neutrophils when 

three parameters were measured: oxidative burst (Figure 4.4 and Figure 4.5), degranulation 

(Figure 4.7), and apoptosis (Figure 4.8). In contrast, treatment of whole blood with either 

vOX2:Fc or CD200:Fc modestly suppressed the oxidative activity of granulocytes (Figure 

4.6), with the data reaching statistical significance. These data agree partially with those of 

Rezaee et al. who demonstrated suppression of neutrophil oxidative burst by vOX2:Fc, 

though CD200:Fc was not analysed (Rezaee et al., 2005). The moderate suppression 

observed in the present study may be due to direct but weak interaction of the recombinant 

proteins with CD200R on neutrophils or with other granulocytic cells, eosinophils and 

basophils. Alternatively, it may be a result of indirect modulation of granulocytic activity via 

another leukocyte subpopulation, such as monocytes. No evidence exists in the literature 
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demonstrating an interaction between vOX2 or CD200 and eosinophils. However, basophils 

have been studied in this context (Shiratori et al., 2005).  

As discussed in Chapter 1, both soluble and native forms of vOX2 and CD200 

suppressed the FcεRI-mediated degranulation of human primary CD200R-expressing 

basophils (Shiratori et al., 2005). In contrast, two research groups have studied mCD200R-

like proteins that are expressed on basophils and appear to act as stimulants. Voehringer and 

colleagues examined the mCD200R1-like proteins, and described the expression of an 

isoform of mCD200R3 with the ability to recruit the adaptor protein DAP12 (Voehringer et 

al., 2004). Stimulation of mCD200R3 on murine basophils with an agonist antibody induced 

degranulation and anaphylaxis in vivo (Kojima et al., 2007). However, these authors 

demonstrated that mCD200 is not a ligand of this receptor (Kojima et al., 2007). Data 

demonstrating a stimulatory property of the mCD200R1-like proteins were gathered in mice 

(Kojima et al., 2007) and not in humans. Human CD200R shares 52% sequence identity with 

mCD200R1 (Vieites et al., 2003), and appears to share its inhibitory properties (Foster-

Cuevas et al., 2004) and (Snelgrove et al., 2008). Thus the evidence gathered by Kojima et 

al. does not disprove our hypothesis that CD200 and vOX2 negatively regulate human 

granulocytes. Basophils comprise less than 1% of circulating leukocytes, which would 

explain the very moderate suppression of granulocyte oxidative activity, if they are the 

primary cell type negatively modulated by vOX2 and CD200.  

It is possible that granulocytes are not directly negatively modulated by vOX2:Fc or 

CD200:Fc, but that an interaction between CD200R on monocytes and the recombinant 

proteins leads to an alteration in cytokine production, such as the neutrophil chemoattractant 

IL-8, thus indirectly influencing granulocyte activity. In the present study, no inhibition of 

IL-8 production by U937 cells could be detected (Figure 4.9, a). Previous data generated in 

our laboratory did demonstrate a suppression of IL-8 secretion by U937 cells (Rezaee et al., 
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2005). However, IL-8 production by stimulated THP-1 cells was modestly inhibited (Figure 

4.9, a), though the inhibition was not statistically significant. Evidence for the suppression of 

IL-8 production by CD200:Fc treatment of U937 cells was published by Jenmalm and 

colleagues (Jenmalm et al., 2006). These authors demonstrated that soluble human CD200 or 

an anti-CD200R antibody suppressed the IFNγ-mediated IL-8 secretion from U937 cells, and 

that the level of inhibition increased with CD200R expression (Jenmalm et al., 2006). 

However, our data are undermined by the absence of CD200R on the suppressible THP-1 

cells, and its presence on the uninhibited U937 cells (Figure 4.9, b). The lack of a negative 

effect on human primary monocytes by CD200 or vOX2 (Figure 4.10) renders these data 

questionable. 

The secretion of IL-8 from the vascular endothelial cell line, HMEC (Figure 4.11) 

was not influenced by native vOX2 or CD200. There is no evidence in the literature 

pertaining to the role of vOX2 or CD200 in modulating endothelial cell IL-8 production. 

However, evidence in the literature indicates that CD200 modifies the interaction of 

endothelial cells with monocytes (Ko et al., 2009). mCD200R1+ monocytes bound to 

mCD200+ vascular endothelial cells and the interaction between mCD200R1 and its cognate 

ligand prevented cell adhesion, thus reducing monocyte influx into the tissues. Ko et al. 

incubated a murine macrophage cell line with a peptide corresponding to the extracellular 

domain of mCD200. The number of macrophages that subsequently adhered to a murine 

brain endothelial line was reduced, possibly due to a concurrent downregulation in integrin 

β2 and ICAM-1 on the macrophage. Adhesion of CD200R+ Jurkat T cells to CD200+ 

HMECs could also be suppressed when the HMEC cells were pre-incubated with an anti-

CD200 antibody (Ko et al., 2009). Therefore, in the present study perhaps the putative 

interaction between HMEC cells and CD200R+ cells should have been analysed, whereas the 

interaction between HMEC and CD200-expressing cells was investigated.  
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Though a vOX2- and CD200-mediated suppression of IL-8 secretion by a monocytic 

cell line, THP-1, was observed, no inhibition of primary monocyte IL-8 secretion occurred 

(Figure 4.11). Primary cells are obviously more physiologically relevant than cell lines and 

our data suggest no effect of either vOX2 or CD200 on primary cells. Very little evidence for 

the interaction between CD200 or vOX2 and monocytes has been published. However, 

soluble CD200:Fc reduced the secretion of IFNγ, TNF, IL-5 and IL-13 from Clostridium 

tetani-stimulated PBMCs, an effect which was isolated to CD200R+ monocytes (Jenmalm et 

al., 2006). Other studies have been carried out on monocyte-related myeloid cells, such as 

microglia, the macrophages of the CNS. Meuth et al. confirmed previous evidence (Wright 

et al., 2000) that blocking CD200-CD200R interaction in the CNS exacerbated disease 

pathology in a murine model of MS (EAE) (Meuth et al., 2008). Inhibiting mCD200R1 

ligation with a blocking antibody enhanced the infiltration of activated macrophages into 

spinal cord lesions of EAE animals. These macrophages were more sensitive to IFNγ and 

exacerbated neuronal cell death (Meuth et al., 2008). These data indicate that CD200-

CD200R interactions are necessary in vivo to prevent excessive myeloid cell response to 

tissue damage. If CD200R ligation to its cognate ligand is prevented, thus exacerbating 

monocyte activity, then CD200-CD200R ligation must exert a suppressive effect. Following 

this premise, CD200 (and hypothetically vOX2) should be able to suppress the activity of 

CD200R+ cells in the present study, again indicating a problem with the recombinant 

proteins. 

   Due to an observation in our laboratory that native, membrane-bound vOX2 and 

CD200 could suppress IFNγ secretion by human T cell clones (Colman and Blackbourn, 

unpublished observations), the activity of unpurified T cells within a PBMC context were 

evaluated following treatment with immobilised vOX2:Fc and CD200:Fc. Neither protein 

influenced T cell IFNγ secretion induced by treatment with anti-CD3 and anti-CD28 
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antibodies (Figure 4.12). The putative negative (vOX2/CD200) and positive (anti-

CD3/CD28) signals were presented to the cells simultaneously, though the stimulus may 

have been too great for the immobilised proteins to surmount.  

The absence of an effect on monocytes, neutrophils or T cells in this study may be 

due to the use of excessive stimuli that vOX2 or CD200 cannot overcome, or may indicate 

that the soluble Fc-fusion proteins are not physiologically active. Therefore, for the 

remainder of this study, the roles of vOX2 and CD200 were determined by the activities of 

full-length vOX2 and CD200 proteins expressed on the surface of B lymphoblastoid cells.  
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Chapter 5. Using antigen-specific T cell clones to investigate the 
activity of native vOX2 and CD200                   

 
The impact of vOX2 and CD200 on T cell function was investigated due to evidence in the 

literature that CD200 suppresses the CTL response, and initial experiments in our laboratory 

that supported this hypothesis (Colman, R. and Blackbourn, D. unpublished observations). 

All subsequent assays were carried out with native vOX2 and CD200 expressed on the 

surface of BJAB cells, in order to reproduce physiological conditions as closely as possible. 

5.1. Evidence for an effect of CD200 on T cell function 
 
The relationship between CD200 and T cells has been examined extensively by one research 

group. Gorczynski et al. observed that the stimulation of mCD200R2 expressed by subsets of 

bone marrow-derived cells, by anti-mCD200R antibodies, led to the maturation of DCs 

unable to effectively induce a CTL response in a mixed lymphocyte culture. The failure of 

these DCs to induce a CTL response appeared to be a result of increased numbers of 

CD4+CD25+ T cells in the mixed lymphocyte culture. So, stimulating mCD200R2 led to the 

development of antigen-presenting DCs that in turn induced the expansion of Tregs, and 

stimulation of mCD200R1 on DCs in vitro reduced CTL activity and IFNγ secretion. In vivo, 

the administration of mCD200R2-derived DCs to mice prior to allografting reduced the CTL 

response to the skin allograft, and concurrently increased the number of CD4+CD25+ T cells 

(Gorczynski et al., 2004b).  

Later work by these researchers indicated that the treatment of anti-CD3/CD28-

stimulated, CD8-depleted thymocytes with a stimulating anti-mCD200R1 antibody reduced 

the number of CD4+CD25+ Treg cells, and their suppressive activity (Gorczynski et al., 

2005). The activity of the T cells was determined by the lysis of 51Cr-containing target cells, 

releasing 51Cr into the supernatant, and by the secretion of IFNγ. The reduced number of 
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Tregs in anti-mCD200R1-treated cultures resulted in increased lysis of target cells and IFNγ 

production. However, the isolation of DCs from a bone marrow culture incubated with anti-

mCD200R2/3 antibodies, and subsequent culture of these DCs with a mixed population of 

cells derived from murine lymph nodes, enhanced the number of CD4+CD25+ Tregs in that 

culture (Gorczynski et al., 2005). Concurring data were published in 2008 by the same 

group, demonstrating that in the absence of mCD200R1 (mCD200R1-/- mice), DCs cultured 

in the presence of mCD200:Fc could induce a Treg subpopulation in a mixed lymphocyte 

culture, in comparison to DCs from WT mice. The transfer of these DCs, developed during 

mCD200:Fc-treatment, to mice undergoing allogeneic skin grafting, promoted graft survival. 

Interestingly, these tolerogenic DCs had an unusual toll-like receptor profile, expressing 

TLR2 and TLR3 and thus presenting with an immature DC phenotype. Stimulating the 

CD200:Fc-treated DCs with TLR ligands such as LPS reduced their tolerogenic potential, 

indicated by an increase in CTL activity, enhanced graft rejection in vivo, and reduced 

numbers of Tregs in the culture (Gorczynski et al., 2008). These data indicate that 

mCD200R subsets have opposite activities, both upregulating and downregulating the 

maturation of suppressive Tregs, via the differential maturation of immature DCs that 

ultimately induce either a tolerogenic response, or activate cytotoxic T cells upon maturation.  

5.2. Optimising a model system to investigate the activity of vOX2 and 

CD200 on T cell function 

 
Initial observations made in our laboratory suggested that full-length vOX2 and CD200, 

expressed on the surface of APCs, could suppress the secretion of IFNγ by human T cell 

clones (Colman, R., unpublished). Therefore, a model system was established to examine the 

putative inhibition of antigen-specific human T cell clones by vOX2 and CD200 expressed 

by APCs. As mentioned in Chapter 4, vOX2 and CD200 were expressed on the surface of a 

B lymphoblastoid cell line (BJAB) by retroviral transduction (Chapter 2.8.6) to provide the 
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APC, and cells transduced with an empty vector acted as a control. The BJAB cells were 

HLA-matched to human EBV antigen peptide-specific T cell clones isolated from the blood 

of IM patients, and a healthy EBV-seropositive donor (see Chapter 2.7.1-2). The BJAB cells 

were therefore able to present exogenous cognate peptide to the T cell clones, eliciting a 

response (see Figure 5.1). Measurable responses to T cell stimulation include the generation 

of cytokines such as IFNγ and IL-2. For the purposes of this study, cytokines were measured 

exogenously by ELISA, and endogenously by flow cytometry. The signalling cascades 

initiated in T cells by peptide-stimulation were later examined by flow cytometry (Chapter 

6).     

 

 

 

Figure 5.1 Antigen-specific human T cell clones: a model system for examining the activities of native 

vOX2 and CD200 expressed on antigen-presenting cells (APCs). In order to determine whether the presence 

of vOX2 or CD200 on APCs alters the response of T cells to cognate peptide, either native vOX2 or native 

human CD200 were expressed on the surface of cells of the BJAB line by retroviral transduction. BJAB cells 

were loaded with exogenous Epstein Barr virus (EBV) antigen peptides, and co-cultured with HLA-matched 

antigen-specific human T cell clones. After 16hrs of co-culture, IFNγ release was quantified by ELISA, 

providing a measure of T cell activation. Phosphorylation of intracellular signalling molecules within the T cell 

clones was analysed by flow cytometry (Chapter 6), in addition to the intracellular retention of IFNγ and IL-2 

cytokines. 
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Initial data presented in this chapter concern the generation of six T cell clones from an IM 

donor. The vOX2 and CD200-mediated suppression of T cell clone activity (measured by the 

production of IFNγ and IL-2) is then discussed, with reference to eight clones isolated from 

three donors. Relevant methodologies are outlined in Chapter 2 and will be referred to 

throughout this chapter. 

5.3. Antigen-specific T cell clones 
 

With thanks to A.R. Rickinson, in the School of Cancer Sciences in Birmingham we are 

fortunate to have access to reagents and expertise regarding the generation of viral antigen-

specific T cell clones. Wallace and colleagues initially reported the cloning of HLA-peptide-

specific T cells directed against EBV antigens, confirmed by the effective killing of HLA-

typed EBV-positive cells. These cytotoxic clones were maintained in long-term culture, and 

retained their antigen specificity (Wallace et al., 1982). Phenotyping cloned antigen-specific 

T cells is now more efficient since the development of fluorophore-conjugated MHC-peptide 

complex tetramers (see Chapter 2.6.2 and Chapter 7). Tetramers specifically label T cells 

directed against an MHC-restricted antigen peptide and therefore can recognise memory T 

cells present at a very low frequency in vivo. Tetramer-labelling of antigen-specific cells in 

the blood enables a simultaneous analysis of surface proteins by flow cytometry, and also 

provides a method for isolating these T cells from a PBMC population. Dunbar and 

colleagues reported that the peptide-specific tetramers did not activate the T cells, and 

confirmed their specificity by culturing cloned T cells (isolated by tetramer-labelling) with 

peptide-loaded HLA-matched target cells (Dunbar et al., 1998).  

The T cell clones analysed in this thesis were primarily isolated from IM patients, a 

disease initiated by primary EBV infection. EBV-specific T cells account for between 1-40% 

of the amplified CD8+ T cell population during IM, and are primarily directed against 

immediate early and early lytic cycle antigens (Hislop et al., 2007). Analysis of T cells from 
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IM donors indicated that the T cells were in an activated state, expressing CD38, but that 

upon regression of disease, the number of T cells directed against lytic antigens diminished. 

The remaining memory T cells directed against latent and lytic antigens were in a resting 

state, regardless of the low level of antigen still present in the infected individual (Hislop et 

al., 2007). The frequency of CD8+ T cells directed against lytic and latent EBV antigens 

varies between individuals, and is described in Chapter 7. A small population of CD4+ 

memory T cells are generated in response to EBV, though they have not been studied 

extensively. CD4+ T cells are directed against latent and lytic EBV proteins and some secrete 

IFNγ in response to peptide stimulation (Hislop et al., 2007).    

In the present chapter, the effect of KSHV vOX2 on antigen-specific T cell responses 

was determined. In parallel, the cellular orthologue CD200 was compared. Thus, T cell 

clones were derived, their peptide-specificity mapped and their reactivity to HLA-matched 

APCs, engineered to express either vOX2 or CD200, determined.  

5.4. Generating T cell clones from the blood of an IM patient 

 
IM patients have a larger CD8+ T cell population than healthy EBV seropositive individuals, 

and therefore the isolation of CD8+ EBV antigen-specific T cells from IM blood is 

facilitated. Briefly, PBMCs from an IM patient (IM235) were diluted to approximately 1 cell 

per well, and incubated with irradiated mixed PMA-stimulated PBMCs and autologous 

lymphoblastoid cell lines (LCLs), which are EBV-transformed mononuclear cells. The 

allogeneic response stimulates the T cells, and the presentation of EBV antigens by the LCLs 

stimulates peptide-specific T cells to proliferate (Chapter 2.7.1). Identifiable clones (visible 

expansion of cells in one well by the naked eye) were expanded by the same method and 

tested for peptide specificity by a 51Cr-release cytotoxicity assay.  
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Clone 
number x

BRLF1 and 
BMRF1

BALF5 and 
BALF2

BMLF1 and 
BGLF4

BHLF1 and 
BHRF1

BARF1 and 
BNLF2b

BLLF2 and 
BCRF1

BILF1 and 
BDLF3

BLLF1 and 
BALF4

BXLF2 and 
BNRF1

BILF2 and 
BBRF1

BZLF1 and 
BVRF2

LMP1 and 
LMP2

EBNA1 and 
EBNA2

 EBNA3z and 
EBNA3b

EBNA3c 
and LP

1 0 0 0 0 0 2 0 0 0 0 0 7 0 4 0
2 0 0 2 0 2 0 0 0 2 2 0 8 0 4 2
3 0 0 4 0 0 0 0 0 0 0 0 6 0 4 0
4 0 0 4 0 0 0 0 0 0 0 0 4 0 0 0
5 0 0 5 0 4 0 1 0 3 0 0 7 0 4 1
6 0 0 4 0 0 0 2 0 1 0 0 9 0 1 1
7 14 0 0 0 0 0 0 2 7 0 0 8 0 5 0
8 0 0 0 0 2 0 0 0 1 0 0 7 0 0 0
9 0 0 6 0 0 0 0 0 0 0 0 6 0 5 0
10 0 0 0 0 0 0 0 0 1 0 0 5 0 0 0
11 0 0 8 0 0 0 0 0 3 0 1 3 0 4 0
12 0 0 1 0 0 0 0 0 0 0 0 3 0 1 0
13 0 0 8 0 0 2 0 0 5 0 0 7 0 4 0
14 0 0 0 0 0 0 0 0 4 0 0 8 1 4 0
15 0 0 12 0 0 0 1 0 7 0 2 8 0 4 0
16 0 0 0 0 3 0 1 0 2 0 0 5 0 0 0
17 0 1 36 0 0 0 2 1 3 3 0 9 3 11 2
18 16 0 5 0 4 0 1 0 6 4 0 8 0 4 1
19 0 0 6 0 0 0 0 0 3 0 3 8 0 1 0
20 0 0 0 0 0 0 0 0 0 0 1 10 0 1 0
21 8 0 4 3 0 0 15 9 26 11 14 24 11 19 14
22 0 0 0 0 15 0 0 0 0 1 0 7 0 0 0
23 0 0 3 0 0 0 2 0 3 0 0 6 0 3 0
24 0 0 5 0 0 0 0 0 4 1 0 10 0 4 0
25 0 0 3 0 0 0 5 0 10 1 5 11 0 7 0
26 0 0 2 0 2 0 0 0 3 0 0 9 0 3 4
27 15 8 0 7 4 2 3 12 18 10 11 11 9 13 5
28 2 1 6 0 0 0 0 0 0 1 0 7 0 2 0
29 25 17 1 13 0 22 24 0 30 19 17 23 19 31 0
30 0 1 0 0 0 0 0 0 0 0 0 10 1 4 0
31 0 0 0 0 0 0 2 0 2 0 0 5 0 0 0
32 0 0 0 0 0 0 3 0 3 0 0 5 0 0 20
33 23 21 25 24 0 4 15 16 34 17 22 28 25 25 0
34 12 8 7 0 2 0 0 2 9 0 5 10 1 8 3
35 1 0 4 0 3 0 1 2 11 0 0 11 0 6 2
36 11 3 0 0 5 0 2 4 7 2 4 14 2 8 0
37 2 0 0 0 0 0 0 0 2 0 3 7 0 2 0
38 0 0 0 0 2 0 0 0 2 0 0 7 0 0 0
39 43 1 23 0 0 0 0 0 8 0 0 5 0 6 0
40 51 2 3 0 2 0 0 0 4 0 2 7 0 6 0
41 26 0 9 0 0 0 0 0 2 0 0 7 0 0 0
42 38 0 11 0 0 0 0 0 5 0 0 12 0 7 5
43 27 12 53 25 0 8 32 28 39 30 24 37 20 30 0
44 0 8 7 6 0 0 4 3 4 2 2 14 2 5 0
45 43 34 47 35 0 13 28 30 46 21 36 42 39 44 0
46 1 1 0 0 3 0 0 0 0 0 0 8 1 0 0
47 34 0 6 1 0 0 1 0 6 0 2 7 0 3 0
48 43 0 4 0 4 0 1 0 6 0 3 10 0 4 1
49 0 0 5 0 0 0 6 0 4 2 2 0 4 6 0
50 36 14 45 40 0 43 36 40 58 25 40 32 42 46 0
51 4 0 13 5 2 7 9 6 13 2 4 11 6 8 3
52 0 3 3 0 1 3 4 1 3 2 2 7 6 0 1
53 0 22 3 0 6 0 3 0 6 0 0 9 0 4 0
54 8 2 5 0 4 7 5 6 14 0 6 11 10 7 2
55 4 0 6 0 2 3 7 0 8 3 1 11 5 6 1
56 2 0 9 0 9 3 8 3 8 2 0 7 2 5 8
57 0 5 0 0 0 14 18 16 29 17 13 27 15 23 9
58 0 4 22 0 0 0 2 1 1 0 1 8 0 0 0
59 0 1 0 51 0 1 1 1 6 0 0 7 1 4 0
60 39 27 0 0 0 0 37 45 55 1 34 39 40 41 0
61 3 0 37 0 1 0 5 0 1 0 0 7 0 0 0
62 4 0 3 0 2 0 2 0 1 3 4 8 3 4 0
63 24 0 2 0 8 0 0 0 4 0 0 8 2 3 0
64 7 16 0 0 12 1 17 19 27 5 16 20 24 9 15
65 7 12 14 0 8 0 10 14 21 5 8 22 11 13 11
66 9 7 19 3 8 7 9 7 16 0 6 25 7 10 1
67 1 0 4 0 0 5 0 0 9 6 2 8 3 2 6
68 17 8 5 0 12 17 13 12 21 13 13 17 15 19 12
69 0 0 15 6 1 4 2 2 8 4 3 6 1 6 6
70 0 5 8 0 4 0 3 1 3 0 4 9 7 2 1
71 43 5 0 0 1 0 0 0 5 0 0 7 1 7 0
72 4 1 2 0 1 0 0 0 4 0 1 7 2 5 0
73 0 2 0 0 0 32 5 0 5 0 0 7 0 4 28
74 23 0 3 0 0 0 36 45 47 34 27 36 37 40 0
75 3 27 26 0 0 2 3 0 1 1 0 7 3 5 0
76 4 0 0 0 0 2 5 0 5 0 0 9 3 3 0
77 33 0 6 4 0 13 4 0 2 0 0 4 1 0 0
78 47 0 2 0 0 5 4 0 6 0 0 6 3 6 0
79 26 0 3 0 6 0 5 2 5 0 0 8 1 3 8
80 11 6 0 0 8 4 12 15 2 6 9 16 10 14 3
81 17 13 3 0 3 0 5 4 14 5 3 10 7 6 0
82 51 0 5 0 2 0 3 0 5 0 1 9 1 3 3
83 5 3 5 7 0 0 8 0 3 3 0 9 6 6 22
84 30 30 33 0 19 10 31 37 26 27 26 28 31 31 9
85 6 5 11 0 7 11 11 8 12 0 6 17 10 13 1
86 30 13 0 0 12 0 5 2 9 0 2 10 2 6 12
87 28 3 23 0 9 15 16 20 32 11 15 32 19 23 7
88 11 0 14 0 1 4 7 6 12 4 5 17 5 11 0
89 20 0 0 0 2 3 4 0 2 0 0 6 1 4 1
90 19 5 6 0 13 4 4 2 10 0 0 5 2 4 19
91 13 19 33 0 0 16 27 29 36 13 22 31 21 25 0
92 0 3 0 0 2 0 0 1 3 0 0 7 1 5 0
93 0 0 0 3 4 1 2 0 1 0 1 6 4 5 0
94 47 0 4 0 4 1 1 1 6 0 0 9 1 4 2
95 5 0 9 0 8 7 5 0 11 1 0 6 6 7 0
96 0 1 3 0 2 3 0 1 4 1 0 4 0 4 2
97 40 0 0 0 0 0 0 0 3 3 1 0 0 0 0
98 0 0 0 0 0 0 0 0 0 0 0 7 1 0 2
99 0 0 5 0 0 0 0 1 3 0 0 6 2 0 2

100 3 0 1 0 0 0 0 0 0 0 3 6 0 2 0
101 0 0 0 0 2 0 0 0 0 0 2 1 2 0 8
102 9 2 12 0 3 0 0 8 11 5 8 6 10 3 0
103 44 0 2 0 0 0 0 0 0 0 1 4 0 0 8
104 0 0 0 0 0 0 1 0 0 0 1 4 1 5 6
105 2 0 10 0 3 1 4 4 0 6 6 6 7 3 0
106 1 0 1 0 4 0 2 0 0 0 0 4 4 1 0
107 0 0 0 0 3 0 0 0 2 0 3 5 1 1 0
108 30 0 2 0 2 0 0 0 0 0 0 5 0 0 1
109 1 0 3 0 0 0 1 0 5 1 0 7 0 0 1
110 2 0 4 0 0 0 0 0 1 0 0 4 1 1 0
111 1 0 5 0 0 0 0 1 0 0 2 6 0 0 10
112 13 0 11 0 1 0 0 0 0 4 9 11 10 0 0
113 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0
114 0 0 3 0 0 0 1 0 0 0 1 4 0 7 1
115 2 0 3 0 0 0 0 0 8 2 3 4 0 3 0
116 0 0 4 0 0 0 1 0 7 0 4 4 2 0 1
117 1 1 5 0 0 1 0 0 2 0 6 5 0 3 24
118 30 2 24 0 0 4 0 7 9 19 19 21 21 2 1
119 0 0 0 0 1 0 0 0 0 0 0 3 0 0 5
120 2 0 7 0 0 0 9 3 1 0 4 3 2 19 0
121 0 0 3 0 0 0 0 0 8 0 1 3 0 2 3
122 4 0 5 0 1 2 2 1 6 0 4 4 5 4 0
123 1 1 0 0 0 0 0 0 0 0 0 4 0 3 2
124 0 2 0 0 1 0 0 1 37 0 2 5 0 5 0
125 2 3 6 0 7 0 0 0 6 0 3 3 4 6 19
126 17 13 13 0 5 10 0 18 27 11 13 18 27 0 1
127 3 0 7 3 1 0 0 3 10 0 3 6 1 0 0
128 1 0 3 0 3 0 7 2 4 0 1 4 3 18 6
129 6 0 8 0 0 4 1 8 11 0 1 9 9 6 3
130 5 2 6 0 0 0 1 0 2 0 2 4 0 4 0
131 2 2 2 0 2 4 5 0 0 0 3 0 0 7 1
132 30 1 7 0 3 2 4 2 4 0 3 5 1 4 0
133 0 0 0 0 5 1 0 0 0 0 0 4 0 3 0
134 11 0 3 0 0 1 0 0 0 0 1 6 0 3 0

EBV antigens expressed by autologous LCLs (target cells)

 
Table 5.1 Screening newly isolated IM235 T cell clones for EBV antigen specificity by quantifying 51Cr 

release from autologous target LCL cells. Each T cell clone was co-cultured with 51Cr-loaded autologous 

LCLs expressing two EBV antigen peptides via infection with vaccinia vectors. Those that responded to one 

target only are highlighted in yellow, and the values represent the % lysis of target cells, calculated from basal 

lysis (LCLs alone) and maximal lysis (SDS-treatment) controls. 
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Figure 5.2 Epitope mapping of newly isolated IM235 T cell clones. (a) A highlight of the 51Cr release assay 

data from 18 cells that responded to co-expressed antigens BRLF1 and BMRF1 (highlighted in yellow in Table 

5.1). Response to antigen is measured as a % of target cells lysed by the T cell clone. (b) The response of these 

18 clones to antigen peptides was determined by IFNγ-release. Putative peptide-specific T cell clones (those 

represented in (a)) were incubated with BJAB cells pulsed with either a common HLA-A2.01-restricted BRLF1 

peptide (striped columns) YVLDHLIVV, or a BMRF1 peptide TLDYKPLSV (black columns) also restricted to 

HLA-A2.01, presented by autologous LCLs. IFNγ production was quantified by ELISA. There was no response 

to a DMSO control (white columns). Responses to antigens other than BRLF1 and BMRF1 were discounted 

because peptides were not available for these antigens. 
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51Cr-loaded autologous LCLs were engineered to express two EBV antigens, and 

incubated with each putative T cell clone (Chapter 2.7.2). The release of 51Cr into the 

supernatant indicated killing of the target cells (LCLs) by antigen-specific T cells (Table 

5.1). Subsequent analysis of responder clones by measuring IFNγ production in response to 

peptide presentation by HLA-matched BJAB cells, revealed six T cell clones, IM235 c48, 

c79, c82, c94, c108 and c132, all with specificity for an HLA-A2.01-restricted BRLF1 

peptide YVLDHLIVV (YVL, Figure 5.2, b). No clones reacted substantially to the 

TLDYKPLSV peptide of BMRF1, also restricted through HLA-A2.01. There was only a 

minimal response to a vehicle control.  

All subsequent experiments on the impact of vOX2 and CD200 on human T cell 

clones were carried out with eight clones (Table 5.2). These included the six CD8+ IM235 

clones (c48, c79, c82, c94, c108 and c132) (Figure 5.2, b). Two previously isolated T cell 

clones were also studied. (i) The CD8+ IM140.1 Y15 clone, also directed against the YVL 

peptide, was derived from an IM patient by another researcher. (ii) The CD4+ SL c93 clone, 

specific for PRSTVFYNIPPMPLPPSQL (PRS) peptide of an HLA-DR-restricted EBNA2 

protein, was isolated from a healthy donor by another researcher. 

 

Clone name Donor Peptide specificity EBV antigen HLA restriction

CD8+ IM140.1 Y15 IM140 (IM patient) YVLDHLIVV BRLF1 (lytic) HLA-A2.01

CD4+ SL c93 ICS3804 (EBV-seropositive donor) PRSTVFYNIPPMPLPPSQL EBNA2 (latent) HLA-DR7, 52a, 52b, 52c

CD8+ IM235 c48 IM235 (IM patient) YVLDHLIVV BRLF1 (lytic) HLA-A2.01

CD8+ IM235 c79 IM235 (IM patient) YVLDHLIVV BRLF1 (lytic) HLA-A2.01

CD8+ IM235 c82 IM235 (IM patient) YVLDHLIVV BRLF1 (lytic) HLA-A2.01

CD8+ IM235 c94 IM235 (IM patient) YVLDHLIVV BRLF1 (lytic) HLA-A2.01

CD8+ IM235 c108 IM235 (IM patient) YVLDHLIVV BRLF1 (lytic) HLA-A2.01

CD8+ IM235 c132 IM235 (IM patient) YVLDHLIVV BRLF1 (lytic) HLA-A2.01

} 'workhorse' clones

 

 

Table 5.2 Summary of the T cells clones utilised in this research project. Donor ID numbers, peptide 

specificities and HLA restrictions are tabulated. Two of the clones acted as ‘workhorse’ clones, and were used 

for extensive investigation into the mechanism of action of vOX2 and CD200. 
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5.5. Expressing vOX2 and CD200 in a B lymphoblastoid cell line 

 
vOX2 is a KSHV lytic cycle protein (Zhang et al., 2005) expressed on the surface of KSHV-

infected cells. To confirm the expression of vOX2, BCBL-1 cells, latently infected with 

KSHV, were first labelled with an anti-LANA antibody to verify KSHV infection (Chapter 

2.4). LANA was identifiable by its characteristic nuclear punctuate staining (Kedes et al., 

1997) in cells latently infected with KSHV (Figure 5.3, a, right panel). Cell surface vOX2 

on BCBL-1 cells latently infected with KSHV was stained with a polyclonal anti-vOX2 

antibody. vOX2 was only detectable on the surface of a small percentage of BCBL-1 cells, 

presumably the small percentage of cells that spontaneously undergo lytic replication of the 

virus (Figure 5.3, b, right panel). However, treating the cells with PMA to induce lytic 

replication of KSHV, enhanced the expression of vOX2 by these cells, indicating that it is 

expressed on KSHV-infected cells in vivo during replication of the virus (Figure 5.3, c, right 

panel). The nuclei of all cells were labelled with DAPI (Figure 5.3, a, b, c, left panels). 

In order to replicate the in vivo expression of vOX2 on KSHV-infected cells, BJAB 

cells were engineered to express full-length vOX2 and CD200 by retroviral transduction (see 

Chapter 2.8.6 for methodology). Either vOX2 or CD200 were inserted into a bicistronic 

expression vector, enabling the co-transcription and translation of the inserted gene and a 

gene conferring puromycin-resistance on the cell. The expression of vOX2 on the surface of 

engineered BJAB cells was determined by labelling cells with a polyclonal anti-vOX2 

antibody and quantifying its fluorescence by flow cytometry (Figure 5.4, a). CD200 

expression was detected with a commercial anti-CD200 monoclonal antibody (Figure 5.4, 

b). vOX2-BJAB, and Empty-BJAB cells stained with anti-CD200 antibody served as 

negative controls, and vice-versa for CD200-BJAB stained with anti-vOX2. Protein 

expression was determined by this method before each functional assay was carried out. 

Full-length vOX2 and CD200 were also generated as EGFP fusion proteins (Figure 5.4, c), 
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by in-frame fusion of the gene encoding the protein of interest and EGFP before insertion 

into the expression vector.   
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Figure 5.3 Immunofluorescence imaging of cell-surface vOX2 on KSHV-infected BCBL-1 cells. BCBL-1 

cells, latently infected with KSHV, were cultured either without PMA, or with PMA (20ng/ml) for four days, to 

induce lytic replication. The cells were then fixed and permeabilised. Intracellular latent nuclear antigen 

(LANA) was detected in both unstimulated (data not shown) and PMA-treated BCBL-1 cells. vOX2 was 

detected (by a polyclonal antibody) on the cell surface of the majority of PMA-treated cells, but very few 

unstimulated cells, as expected. The images on the left depict DAPI staining of the nuclei, and the images on 

the right show antigen-specific fluorescent antibody labelling of LANA or vOX2. Minimal PE-staining evident 

in the DAPI images are a result of spectral bleed-through (cross-over of fluorescence emissions). These images 

are representative of those collected in four independent experiments. 
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Figure 5.4 Expression of vOX2 and CD200 on the surface of engineered B-lymphoblastoid BJAB cells. 

Expression levels of (a) native vOX2 and (b) native CD200 on engineered BJAB cells were determined by flow 

cytometry following incubation of the cells with specific primary antibodies and phycoerythrin-conjugated 

secondary antibodies. (c) BJAB cells engineered to express native forms of vOX2 or CD200 fused in-frame 

with EGFP; protein expression was quantified by flow cytometry (fluorescence in the FL1 channel).   

 
 
 

5.6. Suppression of T cell clone activity by vOX2 and CD200 determined by 

extracellular IFNγ secretion 

 
The secretion of IFNγ into the culture supernatant by peptide-stimulated T cells serves as a 

measure of T cell responses. Empty-BJAB, vOX2-BJAB and CD200-BJAB cells were 

pulsed with peptide and incubated with HLA-matched peptide-specific human T cell clones 
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(Chapter 2.7.3). Our method to grow T cell clones is to culture them with mixed PMA-

stimulated PBMCs to induce an allogeneic response, along with autologous or HLA-matched 

LCLs expressing EBV antigens. Therefore, the T cells are hyper-activated state following 

restimulation. To determine temporal effects, the newly isolated YVL-specific T cells from 

an IM donor (IM235) were analysed over time post-restimulation of the cells. vOX2-BJAB 

cells were not included in every experiment due to their low rate of proliferation and the 

frequently observed loss of vOX2 protein from the cell surface during long-term culture 

(data not shown). All extracellular IFNγ data in this chapter are presented as line graphs, 

with a data point for each peptide concentration and each BJAB cell type. The use of line 

graphs aids the comparison between the three BJAB cell types. The error bars indicate the 

standard error of the mean between triplicate samples within each experiment. Each 

experiment is represented by a separate graph because the IFNγ concentration varied 

between experiments, and normalising the data to that obtained for the Empty-BJAB control 

within each experiment would obscure the pattern of stimulation in relation to peptide 

concentration. 

CD8+ IM235 clone 48 was tested weekly from 21 days to 41 days post-restimulation 

(Figure 5.5). A trend towards suppression of IFNγ-secretion by T cells incubated with 

vOX2-BJAB or CD200-BJAB cells, in comparison with those stimulated by Empty-BJAB 

cells, was observed 21, 35 and 41 days post-restimulation. However, the generation of IFNγ 

by T cells 28 days post-restimulation was not suppressed in the presence of vOX2 or CD200. 

Similarly, the secretion of IFNγ by clone IM235 c79 was reduced by vOX2 and CD200 on 

days 21, 35 and 41 post-restimulation, in comparison to Empty-BJAB-treated controls, but 

was not altered on day 28 (Figure 5.6). Likewise, the response of IM235 c82 was suppressed 

at all time points (14, 21, 28, 35 and 41 days post-restimulation) by vOX2-BJAB and 

CD200-BJAB cells (Figure 5.7). Similarly, the secretion of IFNγ by IM235 c94 T cell clone 
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was also suppressed on days 15, 21, 28, 35 and 41 days post-restimulation (Figure 5.8). 

IM235 c108 T cell IFNγ-secretion was suppressed by CD200-BJAB 15, 21, 35 and 41 days 

post-restimulation (Figure 5.9). 21 days post-restimulation, vOX2-BJAB did not alter the 

concentration of IFNγ deposited by the IM235 c108 T cells, though CD200 suppressed T cell 

activity in this experiment. However, after 35 days, vOX2-BJAB showed a similar 

suppressive activity to CD200-BJAB cells. No suppression of IM235 c108 T cell activity by 

either vOX2 or CD200 was observed on day 21 post-restimulation (Figure 5.9). vOX2 and 

CD200-BJAB cells modestly showed a trend towards inhibiting IFNγ-secretion by IM235 

c132 cells at all time points, with the exception of day 28 post-restimulation (Figure 5.10).   

Two other T cell clones were examined periodically for their suppression by vOX2 

and CD200. These clones were used extensively in later experiments (see Chapters 6 and 7) 

and the ability of vOX2 and CD200 to reduce their IFNγ production was initially determined 

by this method before other experiments were carried out. These two clones were isolated by 

other scientists in the Institute, and their passage numbers are unknown. However, they could 

be successfully restimulated, and proliferated rapidly upon restimulation (data not shown), 

indicating that they have not yet reached senescence. The majority of the experiments carried 

out on these cells are presented in this chapter and are representative of the variation in data 

collected; all experiments were carried out between 14 days and 64 days post-restimulation. 

IFNγ-secretion by the CD4+ SL c93 clone was attenuated in the presence of CD200-BJAB 

cells in nearly every experiment, though the level of suppression varied between experiments 

and with peptide concentration (Figure 5.11). The effect of vOX2-BJAB cells on the CD4+ 

SL c93 was not examined as extensively as CD200-BJAB due to the lack of availability of 

the cells, as explained above. Its inhibitory activity also appears more variable than CD200-

BJAB cells (Figure 5.12). CD200-BJAB cells consistently inhibited IFNγ-secretion by the 

CD8+ IM140.1 Y15 T cell clone, though the level of suppression fluctuated between and 
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within experiments as before (Figure 5.13). Consistent with findings for the CD4+ clone, the 

activity of vOX2 on CD8+ IM140.1 Y15 responses was variable but overall tended towards 

suppression (Figure 5.14).  
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Figure 5.5 vOX2 and CD200-mediated suppression of CD8+ T cell clone IM235 c48 in relation to time 

post-restimulation.  IFNγ-secretion by the YVL-specific T cell clone IM235 c48 was tested weekly, post-

restimulation, to determine the extent of vOX2 or CD200-mediated suppression. BJAB cells engineered to 

express either native vOX2 or CD200, or transduced with an empty vector, served as antigen-presenting cells. 

These BJAB cells were pulsed with BRLF1 peptide YVLDHLIVV for one hour, washed, and then co-cultured 

with the T cell clone for 16 hours (each treatment was carried out in triplicate). IFNγ-release was quantified by 

ELISA. All values represented as 0pg/ml IFNγ were beyond the limit of detection of this ELISA 

(<31.25pg/ml). 
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Figure 5.6 vOX2 and CD200-mediated suppression of CD8+ T cell clone IM235 c79 in relation to time 

post-restimulation.  IFNγ-secretion by the YVL-specific T cell clone IM235 c79 was tested weekly, post-

restimulation, to determine the extent of vOX2 or CD200-mediated suppression. BJAB cells engineered to 

express either native vOX2 or CD200, or transduced with an empty vector, served as antigen-presenting cells. 

These BJAB cells were pulsed with BRLF1 peptide YVLDHLIVV for one hour, washed, and then co-cultured 

with the T cell clone for 16 hours (each treatment was carried out in triplicate). IFNγ-release was quantified by 

ELISA. All values represented as 0pg/ml IFNγ were beyond the limit of detection of this ELISA 

(<31.25pg/ml). 
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Figure 5.7 vOX2 and CD200-mediated suppression of CD8+ T cell clone IM235 c82 in relation to time 

post-restimulation.  IFNγ-secretion by the YVL-specific T cell clone IM235 c82 was tested weekly, post-

restimulation, to determine the extent of vOX2 or CD200-mediated suppression. BJAB cells engineered to 

express either native vOX2 or CD200, or transduced with an empty vector, served as antigen-presenting cells. 

These BJAB cells were pulsed with BRLF1 peptide YVLDHLIVV for one hour, washed, and then co-cultured 

with the T cell clone for 16 hours (each treatment was carried out in triplicate). IFNγ-release was quantified by 

ELISA. All values represented as 0pg/ml IFNγ were beyond the limit of detection of this ELISA 

(<31.25pg/ml). 
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Figure 5.8 vOX2 and CD200-mediated suppression of CD8+ T cell clone IM235 c94 in relation to time 

post-restimulation.  IFNγ-secretion by the YVL-specific T cell clone IM235 c94 was tested weekly, post-

restimulation, to determine the extent of vOX2 or CD200-mediated suppression. BJAB cells engineered to 

express either native vOX2 or CD200, or transduced with an empty vector, served as antigen-presenting cells. 

These BJAB cells were pulsed with BRLF1 peptide YVLDHLIVV for one hour, washed, and then co-cultured 

with the T cell clone for 16 hours (each treatment was carried out in triplicate). IFNγ-release was quantified by 

ELISA. All values represented as 0pg/ml IFNγ were beyond the limit of detection of this ELISA 

(<31.25pg/ml). 
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Figure 5.9 vOX2 and CD200-mediated suppression of CD8+ T cell clone IM235 c108 in relation to time 

post-restimulation.  IFNγ-secretion by the YVL-specific T cell clone IM235 c108 was tested weekly, post-

restimulation, to determine the extent of vOX2 or CD200-mediated suppression. BJAB cells engineered to 

express either native vOX2 or CD200, or transduced with an empty vector, served as antigen-presenting cells. 

These BJAB cells were pulsed with BRLF1 peptide YVLDHLIVV for one hour, washed, and then co-cultured 

with the T cell clone for 16 hours (each treatment was carried out in triplicate). IFNγ-release was quantified by 

ELISA. All values represented as 0pg/ml IFNγ were beyond the limit of detection of this ELISA 

(<31.25pg/ml). 
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Figure 5.10 vOX2 and CD200-mediated suppression of CD8+T cell clone IM235 c132 in relation to time 

post-restimulation.  IFNγ-secretion by the YVL-specific T cell clone IM235 c132 was tested weekly, post-

restimulation, to determine the extent of vOX2 or CD200-mediated suppression. BJAB cells engineered to 

express either native vOX2 or CD200, or transduced with an empty vector, served as antigen-presenting cells. 

These BJAB cells were pulsed with BRLF1 peptide YVLDHLIVV for one hour, washed, and then co-cultured 

with the T cell clone for 16 hours (each treatment was carried out in triplicate). IFNγ-release was quantified by 

ELISA. All values represented as 0pg/ml IFNγ were beyond the limit of detection of this ELISA 

(<31.25pg/ml). 
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Figure 5.11 CD200-mediated suppression of the CD4+ T cell clone SL c93. BJAB cells engineered to 

express native CD200, or transduced with an empty vector, served as antigen-presenting cells. BJAB cells were 

pulsed with PRSTVFYNIPPMPLPPSQL, a peptide derived from EBV EBNA2, for one hour, washed, and then 

co-cultured with the T cell clone for 16 hours (each treatment was carried out in triplicate). IFNγ-release was 

quantified by ELISA. All values represented as 0pg/ml IFNγ were beyond the limit of detection of this ELISA 

(<31.25pg/ml). 
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Figure 5.12 vOX2-mediated suppression of the CD4+ T cell clone SL c93. BJAB cells engineered to express 

native vOX2, or transduced with an empty vector, served as antigen-presenting cells. BJAB cells were pulsed 

with PRSTVFYNIPPMPLPPSQL, an peptide derived from EBV EBNA2, for one hour, washed, and then co-

cultured with the T cell clone for 16 hours (each treatment was carried out in triplicate). IFNγ-release was 

quantified by ELISA. All values represented as 0pg/ml IFNγ were beyond the limit of detection of this ELISA 

(<31.25pg/ml). 
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Figure 5.13 CD200-mediated suppression of the CD8+ T cell clone IM140.1 Y15. BJAB cells engineered to 

express native CD200, or transduced with an empty vector, served as antigen-presenting cells. BJAB cells were 

pulsed with the peptide YVLDHLIVV, derived from EBV BRLF1, for one hour, washed, and then co-cultured 

with the T cell clone for 16 hours (each treatment was carried out in triplicate). IFNγ-release was quantified by 

ELISA. All values represented as 0pg/ml IFNγ were beyond the limit of detection of this ELISA 

(<31.25pg/ml). 
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Figure 5.14 vOX2-mediated suppression of the CD8+ T cell clone IM140.1 Y15. BJAB cells engineered to 

express native vOX2, or transduced with an empty vector, served as antigen-presenting cells. BJAB cells were 

pulsed with the peptide YVLDHLIVV, derived from EBV BRLF1, for one hour, washed, and then co-cultured 

with the T cell clone for 16 hours (each treatment was carried out in triplicate). IFNγ-release was quantified by 

ELISA. All values represented as 0pg/ml IFNγ were beyond the limit of detection of this ELISA 

(<31.25pg/ml).  
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5.7. Suppression of T cell clone activity by vOX2 and CD200, determined by 

intracellular IFNγ and IL-2  

 
Quantifying secreted IFNγ by ELISA relies on a high concentration of the cytokine in the 

supernatant that is accumulated over several hours. Therefore, the T cells are exposed to both 

the putative inhibitory factor (vOX2 or CD200) and the stimulus (peptide) for an extended 

period. If the accumulation of IFNγ within the T cell is measured by a sensitive flow 

cytometric technique, a shorter incubation period is required. This assay was therefore 

established. Empty-BJAB, vOX2-BJAB and CD200-BJAB cells were pulsed with 

exogenous peptide and incubated with HLA-matched, peptide-specific T cell clones for 

60mins. Brefeldin A was then added to the culture to inhibit cytokine secretion, and the cells 

incubated for a further 1, 2 or 4hrs before fixation (Chapter 2.7.4). Accumulated intracellular 

cytokines were then quantified by anti-IL-2 or anti-IFNγ antibodies following 

permeabilisation. Anti-CD4 or anti-CD8 antibodies distinguished the T cells from the BJAB 

cells. To obtain a % change from control, in the presence of vOX2 or CD200-BJAB cells, in 

the presence or absence of peptide, the data were normalised to those for peptide-loaded 

Empty-BJAB controls at each time point,. Please see Appendix D, Tables II and III for the 

raw data. 

IL-2 accumulating within the stimulated CD4+ SL c93 clone was reduced modestly 

by vOX2-BJAB and CD200-BJAB cells at all time points in four independent experiments 

(Figure 5.15, a). In the absence of stimulation, neither vOX2 nor CD200 altered the 

generation of IL-2 by the T cells. The suppressive effect of vOX2-BJAB cells appeared to be 

marginally reduced with time after Brefeldin A treatment. At 1hr post-Brefeldin A treatment, 

T cells incubated with peptide-pulsed vOX2-BJAB contained only 80.62% ± 4.94 SEM of 

the IL-2 present in T cells cultured with Empty-BJAB cells (*p<0.05, by univariate 

ANOVA). In comparison, by 2hrs, levels of IL-2 were increased slightly to 87.59% ± 4.04 
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SEM of control, and by 4hrs were 84.18% ± 17.28 SEM of control, upon stimulation by 

vOX2-BJAB cells. CD200 was slightly more effective at suppressing IL-2 production. At 

1hr post-Brefeldin A treatment, the concentration of IL-2 in cells stimulated by CD200-

BJAB cells was only 70.36% ± 2.19 SEM of control (**p<0.01, by univariate ANOVA). The 

suppression of IL-2 was maintained over time, and at 2hrs-post-Brefeldin A, IL-2 levels 

were 74.4% ± 1.9 SEM of control (**p<0.01, by univariate ANOVA), and were 69.24% ± 

7.46 SEM of control at 4hrs post-Brefeldin A treatment.  

The generation of IFNγ in the CD4+ clone was reduced to a greater degree by vOX2 

and CD200 than IL-2 (Figure 5.15, b). There was a slight reduction in the inhibitory effect 

with time. Peptide-pulsed vOX2-BJAB cells inhibited the accumulation of IFNγ in co-

cultured T cells at 1hr post-Brefeldin A to 63.23% ± 9.3 SEM of control (*p<0.05, univariate 

ANOVA), and IFNγ levels were similar after 2hrs, at 66.65% ± 14.12 SEM of control 

(***p<0.001, univariate ANOVA), but increased after 4hrs, to 67.94% ± 31.33 SEM, in 

comparison to peptide-pulsed Empty-BJAB cells. CD200-BJAB cells also suppressed the 

generation of IFNγ, and were more effective than vOX2. T cells incubated with CD200-

BJAB cells contained only 47.35% ± 5.12 SEM of the IFNγ present in cells stimulated by 

Empty-BJAB for 1hr post-Brefeldin A treatment (**p<0.01, univariate ANOVA). By 2hrs 

post-Brefeldin A, IFN levels had dropped further, to 37.71% ± 5.11 SEM of control 

(***p<0.001, univariate ANOVA), but rose again slightly by 4hrs, to 53.92% ± 10.66 SEM. 

Due to the pronounced CD200-mediated suppression of IFNγ at 2hrs post-Brefeldin A 

treatment, this time point was chosen for all subsequent assays.  

The accumulation of IL-2 in the CD8+ IM140.1 Y15 T cell clone was modestly 

suppressed by vOX2, to 74.07% ± 10.71 SEM of control in three independent experiments. T 

cells co-cultured with peptide-pulsed CD200-BJAB cells also accumulated less IL-2, and 

levels were reduced to 79.63% ± 11.61 SEM of control (Figure 5.16, a), though data did not 
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reach statistical significance. In comparison, the IFNγ generated by these cells was almost 

halved in the presence of vOX2 and CD200, in three independent experiments. T cells 

stimulated by peptide-pulsed vOX2-BJAB cells produced only 62.68% ± 14.39 SEM of the 

IFNγ generated by Empty-BJAB-stimulated cells, and CD200-BJAB were even more 

efficacious, reducing IFNγ to 40.42% ± 13.55 SEM of control (*p<0.05, by univariate 

ANOVA) (Figure 5.16, b).  

IL-2 production by the CD8+ IM235 c48 clone was not altered by vOX2 or CD200 in 

two independent experiments (Figure 5.17, a). Nevertheless, the accumulation of IFNγ in 

CD8+ IM235 c48 cells was dramatically reduced in two independent experiments (Figure 

5.17, b). T cells cultured with peptide-pulsed vOX2-BJAB produced much lower amounts of 

IFNγ (35.72% ± 22.94 SEM) than those cultured with peptide-pulsed Empty-BJAB cells 

(100%). CD200-BJAB cells also suppressed IFNγ production, to 27.51% ± 22.59 SEM of 

the IFNγ generated by cells stimulated by Empty BJAB (Figure 5.17, b).  

IM235 c79 cell activity, measurable by intracellular IL-2 (Figure 5.18, a) and IFNγ 

(Figure 5.18, b) was not altered by vOX2 in three independent experiments. However, cells 

cultured with peptide-pulsed CD200-BJAB cells accumulated only 60.27% ± 17.15 SEM of 

the IFNγ present in Empty-BJAB-stimulated cells (Figure 5.18, b).  

The production of IL-2 by peptide-stimulated CD8+ IM235 c94 T cells was not 

altered by either vOX2 or CD200 in two independent experiments (Figure 5.19, a). 

However, both vOX2 and CD200 were capable of modestly suppressing to varying extents 

the accumulation of IFNγ in this clone. T cells stimulated by vOX2-BJAB contained 80.6% 

± 8.8 SEM of IFNγ present in T cells stimulated by Empty-BJAB, and CD200 reduced IFNγ 

to 66.09% ± 11.5 SEM of control (Figure 5.19, b).  
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Figure 5.15 Expression of vOX2 and CD200 on antigen-presenting cells, reduces the accumulation of 

intracellular IL-2 and IFNγ over time in the CD4+ SL c93 T cell clone. EBV antigen-specific T cell clones 

were incubated for 60mins with cognate antigen peptide-pulsed BJAB cells transduced with an empty vector, or 

engineered to express native vOX2 or CD200. Brefeldin A (7.5μg/ml) was added to the BJAB cell and T cell 

co-culture, and the cells incubated for a further 1, 2 or 4hrs. Intracellular (a) IL-2 and (b) IFNγ were detected 

by fluorophore-conjugated monoclonal antibodies, and quantified by flow cytometry. Data from four 

independent experiments were pooled, normalised to Empty-BJAB + peptide controls at each time point (1hr, 

n=2; 2hr, n=4; 4hr n=2), and presented as mean ± SEM. IL-2 production was not altered by vOX2 or CD200 in 

the absence of peptide, nor after 4hrs of peptide treatment, but was significantly reduced after 1hr (F(2, 3) = 

23.27; *p<0.05 for vOX2-BJAB and **p<0.01 for CD200-BJAB) and 2hrs (F(2, 9) = 5.59; **p<0.01 for 

CD200-BJAB, p = 0.14 for vOX2-BJAB) when analysed by univariate ANOVA (SPSS software). IFNγ 

production was not altered by vOX2 or CD200 in the absence of peptide, nor after 4hrs of peptide treatment, 

but was significantly reduced after 1hr (F(2, 3) = 19.43; *p<0.05 for vOX2-BJAB and **p<0.01 for CD200-

BJAB), and 2hrs (F(2, 9) = 65.68; ***p<0.001 for both vOX2- and CD200-BJAB) when analysed by univariate 

ANOVA (SPSS software).  

*
** **

*

**

***

***
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Figure 5.16 Expression of vOX2 and CD200 on antigen-presenting cells, reduces the accumulation of 

intracellular IL-2 and IFNγ in the CD8+ IM140.1 Y15 T cell clone. EBV antigen-specific T cell clones were 

incubated for 60mins with cognate antigen peptide-pulsed BJAB cells transduced with an empty vector, or 

engineered to express native vOX2 or CD200. Brefeldin A (7.5μg/ml) was added to the BJAB cell and T cell 

co-culture, and the cells incubated for a further 2hrs. Intracellular (a) IL-2 and (b) IFNγ were detected by 

fluorophore-conjugated monoclonal antibodies, and quantified by flow cytometry. Data from three independent 

experiments were pooled, normalised to the Empty-BJAB + peptide control, and presented as mean ± SEM. IL-

2 production was not significantly altered by vOX2 or CD200 in the absence of peptide, nor after 2hrs of 

peptide treatment when analysed by univariate ANOVA (SPSS software). IFNγ production was not altered by 

vOX2 or CD200 in the absence of peptide, but was significantly reduced by CD200 after 2hrs of peptide 

treatment (F(2, 6) = 6.96; p = 0.06 for vOX2-BJAB and *p<0.05 for CD200-BJAB), when analysed by 

univariate ANOVA (SPSS software).  

*
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Figure 5.17 Expression of vOX2 and CD200 on antigen-presenting cells, reduces the accumulation of 

intracellular IFNγ but not IL-2 in the CD8+ IM235 c48 T cell clone. EBV antigen-specific T cell clones 

were incubated for 60mins with cognate antigen peptide-pulsed BJAB cells transduced with an empty vector, or 

engineered to express native vOX2 or CD200. Brefeldin A (7.5μg/ml) was added to the BJAB cell and T cell 

co-culture, and the cells incubated for a further 2hrs. Intracellular (a) IL-2 and (b) IFNγ were detected by 

fluorophore-conjugated monoclonal antibodies, and quantified by flow cytometry. Data from two independent 

experiments were pooled, normalised to the Empty-BJAB + peptide control, and presented as mean ± SEM. IL-

2 production was not significantly altered by vOX2 or CD200 in the absence of peptide, nor after 2hrs of 

peptide treatment when analysed by univariate ANOVA (SPSS software).  IFNγ production was not altered by 

vOX2 or CD200 in the absence of peptide, and the observed reduction in IFNγ with peptide treatment in the 

presence of vOX2 and CD200, does not reach statistical significance (F(2, 3) = 4.56; p = 0.09 for vOX2-BJAB 

and p = 0.07 for CD200-BJAB), when analysed by univariate ANOVA (SPSS software).  
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Figure 5.18 Expression of CD200 on antigen-presenting cells, reduces the accumulation of intracellular 

IFNγ but not IL-2 in the CD8+ IM235 c79 T cell clone. EBV antigen-specific T cell clones were incubated 

for 60mins with cognate antigen peptide-pulsed BJAB cells transduced with an express empty vector, or 

engineered to express native vOX2 or CD200. Brefeldin A (7.5μg/ml) was added to the BJAB cell and T cell 

co-culture, and the cells incubated for a further 2hrs. Intracellular (a) IL-2 and (b) IFNγ were detected by 

fluorophore-conjugated monoclonal antibodies, and quantified by flow cytometry. Data from three independent 

experiments were pooled, normalised to the Empty-BJAB + peptide control, and presented as mean ± SEM. IL-

2 production was not significantly altered by vOX2 or CD200 in the absence of peptide, nor after 2hrs of 

peptide treatment when analysed by univariate ANOVA (SPSS software). IFNγ production was not altered by 

vOX2 or CD200 in the absence or presence of peptide when analysed by univariate ANOVA (SPSS software).  
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Figure 5.19 Expression of vOX2 and CD200 on antigen-presenting cells, reduces the accumulation of 

intracellular IFNγ but not IL-2 in the CD8+ IM235 c94 T cell clone. EBV antigen-specific T cell clones 

were incubated for 60mins with cognate antigen peptide-pulsed BJAB cells engineered to express empty vector, 

native vOX2 or CD200. Brefeldin A (7.5μg/ml) was added to the BJAB cell and T cell co-culture, and the cells 

incubated for a further 2hrs. Intracellular (a) IL-2 and (b) IFNγ were detected by fluorophore-conjugated 

monoclonal antibodies, and quantified by flow cytometry. Data from two independent experiments were 

pooled, normalised to the Empty-BJAB + peptide control, and presented as mean ± SEM. IL-2 production was 

not significantly altered by vOX2 or CD200 in the absence of peptide, nor after 2hrs of peptide treatment when 

analysed by univariate ANOVA (SPSS software). IFNγ production was not altered by vOX2 or CD200 in the 

absence of peptide, and the observed reduction in IFNγ with peptide treatment in the presence of vOX2 and 

CD200, does not reach statistical significance (F(2, 3) = 4.14; p = 0.2 for vOX2-BJAB and p = 0.06 for CD200-

BJAB), when analysed by univariate ANOVA (SPSS software).  
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CD8+ IM140.1 Y15
16hr incubation

vOX2 Extracellular IFNγ Intracellular IFNγ Intracellular IL-2
500ng/ml cognate peptide 93.71% ± 8.7

50ng/ml cognate peptide 78.27% ± 10.4 62.68% ± 14.39 74.07% ± 10.71

16hr incubation

CD200 Extracellular IFNγ Intracellular IFNγ Intracellular IL-2

500ng/ml cognate peptide * 86.29% ± 4.97

50ng/ml cognate peptide  ** 61.26 % ± 10.06 * 40.42% ± 13.55 79.63% ± 11.61

CD4+ SL c93
16hr incubation

vOX2 Extracellular IFNγ Intracellular IFNγ Intracellular IL-2
500ng/ml cognate peptide 89.18% ± 3.15 *** 66.65% ± 14.12 87.59% ± 4.04

50ng/ml cognate peptide 96.91% ± 34.13

16hr incubation

CD200 Extracellular IFNγ Intracellular IFNγ Intracellular IL-2
500ng/ml cognate peptide ** 71.69% ± 8.17 *** 37.71% ± 5.11 ** 74.4% ± 1.9

50ng/ml cognate peptide       58.98% ± 17.74

2hr post-Brefeldin A

2hr post-Brefeldin A

2hr post-Brefeldin A

2hr post-Brefeldin A

 

 

 

Table 5.3 Cumulative data for the production of IFNγ and IL-2 by the CD8+ IM140.1 and CD4+ SL c93 

antigen-specific T cell clones. The secretion of IFNγ into the culture supernatant by T cell clones cocultured 

with either peptide-pulsed vOX2-BJAB or CD200-BJAB cells for 16hrs was quantified by ELISA. The data for 

two peptide concentrations were calculated as a percentage of the data for Empty-BJAB cocultures. The 

accumulation of IFNγ or IL-2 in the T cell clones was quantified by flow cytometry, and the data calculated as 

a percentage of the data for peptide-pulsed Empty-BJAB cocultures. Any statistical significance attributable to 

the vOX2 or CD200-mediated suppression of IFNγ or IL-2 production is indicated by *(p<0.05), **(p<0.01) or 

***(p<0001), as determined by univariate ANOVA (SPSS software).   
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CD8+ IM235 c48
16hr incubation

vOX2 Extracellu lar IFNγ Intracellular IFNγ Intracellular IL-2
500ng/ml cognate peptide      89.84% ± 11.47

50ng/ml cognate peptide * 66.44% ± 5.01 35.72% ± 22.94 94.52% ± 7.13

16hr incubation

CD200 Extracellu lar IFNγ Intracellular IFNγ Intracellular IL-2
500ng/ml cognate peptide * 78.06% ± 5.39

50ng/ml cognate peptide   * 68.04% ± 13.91 27.51% ± 22.59 105.88% ± 1.31

CD8+ IM235 c79
16hr incubation

vOX2 Extracellu lar IFNγ Intracellular IFNγ Intracellular IL-2

500ng/ml cognate peptide 99.5% ± 13.14

50ng/ml cognate peptide 109.9% ± 29.2 104.76% ± 18.71 93.31% ± 2.51

16hr incubation

CD200 Extracellu lar IFNγ Intracellular IFNγ Intracellular IL-2

500ng/ml cognate peptide 90.49% ± 8.12

50ng/ml cognate peptide 74.77% ± 10.41 60.27% ± 17.15 107.86% ± 1.53

CD8+ IM235 c94
16hr incubation

vOX2 Extracellu lar IFNγ Intracellular IFNγ Intracellular IL-2

500ng/ml cognate peptide 99.03% ± 0

50ng/ml cognate peptide    * 66.67% ± 9.43 80.6% ± 8.8 115.31% ± 22.78

16hr incubation

CD200 Extracellu lar IFNγ Intracellular IFNγ Intracellular IL-2

500ng/ml cognate peptide *** 79.52% ± 2.51

50ng/ml cognate peptide    ** 41.34% ± 12.91 66.09% ± 11.5 110.31% ± 21.56

IM235 c82 IM235 c108 IM235 c132
vOX2

500ng/ml cognate peptide *** 67.76% ± 3.95 92.34% ± 5.44 ** 72.09% ± 8.81

50ng/ml cognate peptide * 42.1% ± 29.6 97.53% ± 5.32     78.9% ± 53.89

IM235 c82 IM235 c108 IM235 c132
CD200

500ng/ml cognate peptide *** 69.63% ± 4.57    85.37% ± 6.96 ** 79.74% ± 4.39

50ng/ml cognate peptide     * 56.81% ± 13.16 * 80.69% ± 6.37       83.45% ± 13.71

2hr post-Brefeldin A

2hr post-Brefeldin A

2hr post-Brefeldin A

2hr post-Brefeldin A

Extracellular IFNγ

Extracellular IFNγ

2hr post-Brefeldin A

2hr post-Brefeldin A

 

 

Table 5.4 Cumulative data for the production of IFNγ and IL-2 by the CD8+ IM235 antigen-specific T 

cell clones. The secretion of IFNγ into the culture supernatant by T cell clones cocultured with either peptide-

pulsed vOX2-BJAB or CD200-BJAB cells for 16hrs was quantified by ELISA. The data for two peptide 

concentrations were calculated as a percentage of the data for Empty-BJAB cocultures. The accumulation of 

IFNγ or IL-2 in the T cell clones was quantified by flow cytometry, and the data calculated as a percentage of 

the data for peptide-pulsed Empty-BJAB cocultures. Any statistical significance attributable to the vOX2 or 

CD200-mediated suppression of IFNγ or IL-2 production is indicated by *(p<0.05), **(p<0.01) or 

***(p<0001), as determined by univariate ANOVA (SPSS software).   
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5.8. Discussion 
 

The data presented in this chapter demonstrate a consistent trend towards attenuation by full-

length vOX2 and CD200 proteins of T cell function, measured by cytokine production 

(Tables 5.3-5.4). The suppressive trend is consistent for all eight clones tested, from three 

donors, with two peptide specificities. Both vOX2 and CD200 were able to reduce the 

secretion of IFNγ by eight human antigen peptide-specific T cell clones, when they were 

expressed on the surface of the stimulating APCs. The effect was subtle but consistent, 

despite inherent variability, and more pronounced with higher peptide concentrations. 

CD200 was consistently more effective. Both vOX2 and CD200 also reduced the 

intracellular accumulation of IL-2 and IFNγ in six T cell clones, though to varying degrees 

for each clone. The suppressive activities of CD200, and more particularly, vOX2, were 

variable between experiments and clones, regardless of their passage number or length of 

time post-restimulation. CD200R expression by the T cell clones was investigated (Chapter 

7) though no relationship between CD200R expression and degree of suppression of the 

clones could be determined. It is possible that the levels of expression of vOX2 and CD200 

by the engineered BJAB cells could impact their ability to suppress T cell activity. It was 

observed throughout this study that vOX2 expression levels were lower than those of CD200 

(or at least lower levels of fluorescence were seen during flow cytometric analysis of 

vOX2/CD200 expression; Figure 5.4). It would be interesting in the future to determine 

whether vOX2 is expressed at higher or lower levels by engineered BJAB cells than KSHV-

infected cells induced into lytic replication.    

Indirect evidence for the modulation of cytokines by CD200 in vivo demonstrates that 

CD200 reduces cytokine production (Broderick et al., 2002; Gorczynski et al., 2001; 

Gorczynski et al., 1999). mCD200-/- mice presented with increased IFNγ and IL-10 during 

the development of EAU (Broderick et al., 2002), and the administration of mCD200:Fc to 
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mice exhibiting CIA pathology (Gorczynski et al., 2001), or those that had received 

allografts (Gorczynski et al., 1999), reduced the secretion of inflammatory cytokines, 

including IFNγ, IL-2 and TNFα. Though these authors could not provide a mechanism for 

the CD200-mediated suppression of cytokine production. The modification of cytokine 

profiles may be due to the altered development of T cells in the presence of CD200-treated 

DCs. Gorczynski et al. demonstrated that stimulation of mCD200R2, but not mCD200R1, 

induced a regulatory subset of DCs, which in turn appear to enhance the development of 

Foxp3+ Tregs that have a suppressive function (prolonging the survival of allografts) in vivo 

(Gorczynski et al., 2004b; Gorczynski et al., 2005; Gorczynski et al., 2008). Sato and 

colleagues reported that a subset of bone marrow-derived DCs expressed mCD200R3, and 

that the administration of mCD200R+ DCs to mice presenting with chronic graft-versus host 

disease (cGVHD) reduced its severity and incidence. The reduced cGVHD pathology 

corresponded to reduced TNFα, IL-12 and IFNγ levels in the serum, and with increased 

numbers of CD4+CD25+Foxp3+ Tregs (Sato et al., 2009). The induction of Tregs by CD200 

may partly explain the reduced inflammatory cytokine profiles reported previously, but the 

direct effect of vOX2 or CD200 on antigen-specific cytotoxic T cells has never been 

reported. These two T cell subtypes act in opposition, indicating that if Tregs are 

upregulated, then CTLs must be suppressed.  

Evidence for an indirect suppressive effect of soluble CD200 on CTLs was published 

by Gorzcynski et al., who observed that the addition of mCD200:Fc to a mixed lymphocyte 

cell culture reduced cell-stimulation (by allogeneic stimulator spleen cells) and a subsequent 

CTL response (Gorczynski et al., 1999). Suppression of IFNγ-production (Gorczynski et al., 

2005) and IL-2-secretion (Gorczynski et al., 2004a) by mixed leukocyte cultures was also 

observed upon stimulation of the mCD200R1-4 on the surface of stimulator cells by 

monoclonal antibodies. These observations concur with the data presented in this chapter 
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(Figures 5.5-5.19), that CD200 and vOX2 when expressed on the surface of APCs suppress 

the responses of antigen-specific CTL. The mechanism may depend on vOX2 or CD200 

ligating with the CD200R on the T cell clones. However, this interaction was not examined. 

Thus, an additional explanation for the immunosuppressive activities of CD200 observed by 

Gorczynski and Broderick et al. in their murine studies is that CD200 directly suppresses 

CTL responses, including IFNγ production. 

Interestingly, IFNγ itself can alter the expression of CD200. Transcription of the CD200 

gene and cell surface expression of CD200 were enhanced by treatment of T lymphoid cell 

lines with IFNγ and/or TNFα (Chen et al., 2009). Intracellular signalling pathways initiated 

by the ligation of IFNγ and TNFα with their respective receptors, activates the transcription 

factors STAT1, IRF-1, and NF-κB. Gorzcysnki and colleagues demonstrated that these three 

factors bound to cis-elements upstream of the CD200 transcriptional start site, thus 

enhancing CD200 gene transcription in response to IFNγ or TNFα (Chen et al., 2009). The 

expression of vOX2 is also associated with IFNγ due to the presence of an ISRE-like domain 

within the vOX2 promoter (Zhang et al., 2005). However, Zhang et al. did not demonstrate 

binding of IRFs to the ISRE-like sequence within the vOX2 promoter, though they did show 

binding of RTA and subsequent upregulation of vOX2 transcription (Zhang et al., 2005). 

Given the negative regulation of IFNγ production by CD200 and vOX2 demonstrated in the 

present chapter, and the proposed positive regulation of CD200 by IFNγ (Chen et al., 2009), 

the results together indicate an autoregulatory feedback loop between IFNγ and CD200 to 

maintain homeostasis. 

It would be interesting to discover whether the upregulation of vOX2 (K14) or 

CD200 occurs in our T cell clone model system. Retroviral constructs would have to be 

generated containing the upstream enhancer/promoter regions, before expressing in BJAB 

cells. If the two proteins were upregulated in the presence of IFNγ, this would provide a 
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regulatory feedback mechanism to control the level of suppression exerted by the proteins. 

Their resultant suppression of IFNγ secretion, as observed in our model system, would in 

turn reduce vOX2 and CD200 expression, and failure to effectively reduce IFNγ levels 

would theoretically further induce expression of the suppressive proteins.  

In this study, T cell responses were quantified by cytokine production. However, T 

cell responses to stimulation include CD8+ cytotoxicity, and proliferation. CD200 expressed 

by an APC can alter the proliferative properties of T cells, in addition to their secretion of 

cytokines (Pallasch et al., 2009). The proliferation of, and IFNγ production by, CD200R+ 

autologous T cells in response to CD40L-stimulated CD200+ chronic lymphocytic leukaemia 

cells (CLLs) was increased when ligation of CD200R to its cognate ligand was prevented by 

an anti-CD200 antibody. In a mixed lymphocyte reaction, the percentage of cytotoxic CD8+ 

T cells increased when CD200 was blocked, and the number of Tregs were reduced (Pallasch 

et al., 2009). These data concur with those published by Gorczynski et al. who demonstrated 

that mCD200 can amplify the number of Treg cells in a mixed culture (Gorczynski et al., 

2005). The effect of vOX2 and CD200 on T cell proliferation was not analysed in this study. 

The human T cell clones used for these experiments do proliferate in response to stimuli, but 

they are constitutively active as they are cultured in medium containing IL-2, and they 

require a strong stimulus (allogeneic PBMCs and LCLs) in order to proliferate. The 

proliferative response of primary T cells in the presence of vOX2 or CD200-expressing 

stimulator cells would be interesting to investigate in the future. 

Rygiel and colleagues also demonstrated that CD200 regulates the proliferation of T 

cells in response to infection (Rygiel et al., 2009). The lack of mCD200 in mCD200-/- mice 

exacerbated the immune-mediated pathology associated with influenza infection, by 

increasing T cell activation and load. Increased weight loss and lung damage in mCD200-/- 

mice coincided with amplified numbers of lymphocytes, including CD8+mCD200R1+ T cells 
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in the airways. Depleting CD4+ and CD8+ T cells in these mice attenuated disease pathology 

(Rygiel et al., 2009). The suppressive activity of CD200 may under some circumstances 

have a detrimental effect in vivo. CD200 reduces the T cell response to CLL tumour cells, 

thus preventing effective clearing (Pallasch et al., 2009). CD200 is also expressed by several 

tumour cell lines, including neuroblastoma (Siva et al., 2008). CD200 was highly expressed 

in solid human tumours, in comparison to weak staining of the skin and moderate expression 

in normal ovaries. Ovarian cancer and melanoma cell lines expressing CD200 significantly 

reduced the secretion of IFNγ and IL-2 by allogeneic mixed lymphocyte cultures, whereas 

cells lacking CD200 were unable to alter the cytokine profile (Siva et al., 2008). Data 

published by Stumpfova and colleagues further confirm the ability of CD200 to maintain 

tumours in vivo (Stumpfova et al., 2010). CD200 is expressed by metastatic squamous cell 

carcinoma (SCC) in mice and humans, and deleting mCD200 reduces the metastatic 

potential of these cells (Stumpfova et al., 2010).  

The expression of vOX2 on the surface of KSHV lytically-infected cells (Figure 5.3) 

would presumably reduce the CTL response to infection, thus allowing KSHV to replicate to 

higher titres and facilitate the establishment of persistent infection. Research has been 

continuing to establish whether CD200 may be an effective target for therapy, and the 

development of anti-CD200 monoclonal antibodies for therapeutic treatment of CLL and 

MM is in progress (www.alexionpharm.com). 

Evidence is presented in this chapter that full-length vOX2 and CD200, expressed on 

the surface of non-professional APCs, such as B cells, can directly interact with cytotoxic 

CD8+ and CD4+ T cells and inhibit their responses. The method of this direct interaction is 

not known, though the obvious hypothesis is that both vOX2 and CD200 are ligating 

CD200R expressed on the T cell, as reported previously (Foster-Cuevas et al., 2004). This 

receptor ligation may then initiate an inhibitory signalling cascade, as described by Zhang et 
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al. in murine mast cells (Zhang et al., 2004). Therefore, the rational next step would be to 

examine whether signalling pathways initiated in the T cells clones upon peptide-stimulation 

are altered in the presence of vOX2 or CD200. A modification of intracellular signalling 

cascades would also confirm authenticity of the observed vOX2 and CD200-mediated 

suppression of T cells. These experiments were performed, the putative modification of 

TCR-signalling was examined and the data are presented in Chapter 6. 
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Chapter 6.   vOX2 and CD200-mediated suppression of human 
T cell clones: mechanism of action 

 
The observed attenuation of T cell clone responses by vOX2 and CD200 (Chapter 5) is 

mediated via an unknown mechanism. One likely route is by ligation of the CD200R on the 

surface of T cell clones by vOX2 and CD200. Both molecules bind this receptor with similar 

affinity (Foster-Cuevas et al., 2004). Zhang and colleagues observed a modification of 

signalling pathways within engineered murine mast cells upon ligation of the mCD200R1 by 

mCD200:Fc (Zhang et al., 2004), correlating with decreased cell activity (Cherwinski et al., 

2005). Therefore, the aim of the experiments outlined in this chapter was to identify vOX2 

and CD200-mediated alterations in T cell signalling cascades.  

6.1. Initiation of downstream signalling cascades by ligation of CD200R 

 
As mentioned above, the group of Phillips examined the signalling pathways underlying the 

inhibition of mast cell degranulation by CD200-CD200R ligation that they had reported 

previously (Cherwinski et al., 2005). Initially they engineered primary mouse mast cells to 

over-express mCD200R1. The CD200R1-expressing mast cells were then incubated with 

mCD200:Fc, prior to stimulation by antigen cross-linking of FcεRI. mCD200:Fc-treatment 

suppressed the degranulation of mouse mast cells in comparison to treatment with a control 

Fc-fusion protein (Cherwinski et al., 2005). They then identified the intracellular signalling 

events altered following mCD200R1 ligation by either soluble mCD200:Fc or mCD200 

expressed on NIH3T3 (mouse embryonic fibroblast) cells (Zhang et al., 2004). They 

detected rapid phosphorylation of intracellular mCD200R1 tyrosine residues following 

ligation of the receptor. ‘Downstream of kinase’ (Dok) 1 and 2 adaptor proteins were 

activated by phosphorylation upon stimulation of the mCD200R1. Activated Dok proteins 
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subsequently engaged RasGAP and Src homology 2 domain containing inositol phosphatase 

(SHIP), inhibitory effector molecules involved in the inhibition of MAP kinase signalling 

cascades (Figure 6.1). The recruitment of inhibitory RasGAP and SHIP by the CD200R 

signalling cascade was further substantiated by reduced phosphorylation of Ras (an upstream 

activator of the MAP kinases), and consequently of the MAP kinases ERK, p38 and JNK 

themselves (Zhang et al., 2004). 

Later work by these researchers identified the intracellular mCD200R1 tyrosine 

residues responsible for initiating downstream signalling cascades. Stimulating murine bone 

marrow-derived mast cells (BMMCs) by ligating the mCD200R4 activatory receptor resulted 

in rapid cell degranulation and downstream phosphorylation of p38, JNK and ERK MAP 

kinases (Zhang et al., 2004). This stimulation could be inhibited by treatment with an anti-

mCD200 antibody (Zhang and Phillips, 2006). However, cells expressing a mutant 

mCD200R1 lacking either the Y286 or Y297 tyrosine residues were not inhibited by receptor 

ligation. Both of these residues were required for the phosphorylation of mCD200R1 upon 

ligand binding, as well as Dok1, Dok2 and SHIP phosphorylation. The mutant mCD200R1 

lacking Y286 and Y297 was also unable to associate with Dok and RasGAP. The Src family 

of kinases may be responsible for the initial phosphorylation of mCD200R1 tyrosines, as 

evidenced by the treatment of BMMCs with a Src family kinase inhibitor, completely 

abolishing the phosphorylation of mCD200R1 and Dok1, and the association of RasGAP 

with Dok1 (Zhang and Phillips, 2006).  

Initially, all CD200R-ligation studies were carried out in mouse cells, until Mihrshahi 

and colleagues investigated the human CD200R intracellular tyrosine residues (Mihrshahi et 

al., 2009). These authors engineered U937 cells to express full-length CD200R, or CD200R 

with a truncated cytoplasmic tail, or with each of its three tyrosine residues converted to a 

phenylalanine. IL-8-secretion was reduced in IFNγ-stimulated U937 cells expressing the 
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native receptor, but not those expressing the truncated form of the CD200R. This inhibitory 

effect was induced by free, immobilised and antibody cross-linked anti-CD200 mAb, as well 

as CD200-expressing cells, and a soluble CD200 protein (Mihrshahi et al., 2009). The 

inhibitory activities of immobilised anti-CD200 mAb on LPS-stimulated CD200R-

expressing U937 cells, were abrogated upon deletion of the third intracellular tyrosine 

residue (Y302), and slightly reduced in the absence of the first tyrosine (Y291), though the 

Y294 appeared to be unnecessary for inhibitory signalling (Mihrshahi et al., 2009). 

 

Soluble
mCD200

Activatory receptormCD200R1

Murine mast cell

Soluble
mCD200

Activatory receptormCD200R1

Murine mast cell

 

 

Figure 6.1 Putative intracellular signalling cascades underlying the mCD200-mediated inhibition of 

murine mast cells. The phosphorylation of mitogen-activated protein (MAP) kinases by immunoreceptor 

tyrosine-based activation motif (ITAM)-containing receptors was inhibited by mCD200-mCD200R1 ligation. 

The recruitment of Dok adaptor proteins by the mCD200R1, in turn employed inhibitory effector molecules 

that prevented MAP kinase phosphorylation and subsequent mast cell degranulation and cytokine release 

(adapted from Zhang et al., 2004). 
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 Phosphorylated mCD200R1 recruits Dok1 and 2 adaptor proteins (Zhang et al., 

2004). Using SPR to measure binding affinities, Mihrshahi et al. identified a strong 

interaction between Dok2 and phosphorylated residues Y302 and Y291 of the human 

CD200R. Though Dok1 also bound to these residues, the affinity was ten-fold less than that 

of Dok2. However, the authors demonstrated that Dok1 bound to a phospho-tyrosine residue 

of Dok2, and therefore may be indirectly recruited to the site (Mihrshahi et al., 2009). 

Following stimulation of the mCD200R1 the inhibitory effector protein SHIP is recruited 

(Zhang et al., 2004). Mihrshahi and colleagues confirmed that SHIP has a weak association 

with Dok1, but also demonstrated that SHIP was recruited by truncated human CD200R, 

lacking the signalling region of its intracellular domain, verifying that it does not directly 

interact with CD200R (Mihrshahi et al., 2009). In comparison, both Dok2 and RasGAP were 

phosphorylated upon the ligation of native CD200R by anti-CD200, and were not activated 

in cells expressing the truncated receptor. Inhibiting Dok2 and RasGAP expression by 

interfering RNA abolished the CD200R-mediated inhibition of LPS-stimulated U937 cells. 

Taken together, these data indicate that Dok2 and RasGAP are essential for effective 

CD200R-signalling, being recruited by the CD200R. However, Dok1 and SHIP appear to be 

bystanders since knockdown of these proteins had no effect on CD200R-mediated inhibition 

(Mihrshahi et al., 2009).  

The Dok adaptor proteins have been examined in T cells without reference to 

CD200R ligation. The Dok2 adaptor protein is constitutively weakly phosphorylated in 

CD4+ and CD8+ T cells. However, upon stimulation of the TCR by CD3, Dok 

phosphorylation is markedly increased (Dong et al., 2006). Downstream of TCR signalling, 

Dok2 associates with SHIP1, forming a complex with activated LAT and subsequently 

becoming phosphorylated. When Dok1 and Dok2 were knocked down by siRNA, Zap70, 

LAT, SLP-76, PLC-γ1 and downstream Akt kinase all exhibited greater phosphorylation 
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(Dong et al., 2006). These data indicate that Dok proteins act as negative regulators in 

response to T cell stimulation by ligation of the TCR. Moreover, in concert with the data 

described above, it suggests that ligation of the CD200R may increase Dok activity, thus 

further enhancing inhibitory regulation of T cell function. 

The majority of data regarding CD200R signalling have been collected in mast cells 

or monocytic cell lines. Due to the observed inhibition of human T cell clone activity 

(Chapter 5), the next step was to determine whether vOX2 or CD200 altered signalling 

cascades induced by peptide-stimulation of the TCR. 

6.2. Quantifying phosphorylated signalling molecules in human T cell 

clones by flow cytometry 

 
The identification of phosphorylated proteins exclusively in T cells while they are in co-

culture with antigen-presenting cells is rendered difficult due to the dual cell population. 

Conventional methods such as separating proteins by SDS-PAGE and identifying them by 

western blotting rely on a single cell type. Therefore, flow cytometry was the only viable 

option as the cell populations can be separated on the basis of their phenotype. The advent of 

sensitive flow cytometric techniques for measuring the phosphorylation status of proteins has 

allowed accurate analysis of intracellular signalling cascades. Haas and colleagues compared 

western blotting and flow cytometric techniques and revealed some discrepancies between 

the two in quantifying phospho-protein kinetics (Haas et al., 2008). However, the flow 

cytometric technique involves less manipulation of the cells – they are left intact rather than 

being lysed for SDS-PAGE – and it also enables the quantitative analysis of a larger number 

of samples with greater ease and speed.  

 A protocol was optimised (Chapter 2.7.5) to quantify several intracellular signalling 

molecules within T cells, distinguished from BJAB cells by labelling with anti-CD4 or anti-
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CD8 antibodies. The molecules examined were limited by the availability of phospho-

specific antibodies suitable for flow cytometry (Appendix B, Table I). p-LAT, p-Zap70, p-

SLP-76, p-Akt, p-ERK1/2 and p-p38 levels were examined in T cells stimulated with HLA-

matched Empty-BJAB, vOX2-BJAB or CD200-BJAB cells and cognate antigen. As 

discussed in Chapter 1, Zap70 is recruited by the phosphorylation of CD3 and rapidly 

phosphorylates LAT and SLP-76, forming a complex that in turn recruits and phosphorylates 

other signalling proteins. Downstream of this complex, MAP kinases are phosphorylated and 

initiate transcription (reviewed in Schwartzberg et al., 2005). Akt, a protein kinase is also 

phosphorylated downstream of TCR ligation and following stimulation of the co-receptor 

CD28 (reviewed by Alegre et al., 2001).  

This chapter details the optimisation of the assay and provides the data obtained from 

the T cell-BJAB co-cultures. Two representative clones were selected for these signalling 

assays from the studies revealing vOX2 and CD200 inhibition of T cell function (Chapter 5). 

These T cells were the CD8+ IM140.1 Y15 YVL(BRLF1)-specific and CD4+ SL c93 

PRS(EBNA2)-specific clones.  

 

6.2.1. Optimising the signalling assay 

 
T cell clones were chemically stimulated to induce the phosphorylation of intracellular 

signalling proteins, and thus determine the specificity of phospho-specific antibodies (Figure 

6.2). 5mM H2O2 induced the phosphorylation of Akt, SLP-76, LAT and Zap70, and 

treatment with 20ng/ml PMA resulted in ERK1/2 and p38 phosphorylation. Phosphorylation 

of each of these molecules was readily detected (Figure 6.2, a). 

 Once the efficacy of the phospho-protein-specific antibodies had been confirmed, a 

technique for distinguishing T cell clones from the BJAB cells was optimised. T cell clones 

were labelled with anti-CD4 or anti-CD8 antibodies as appropriate, and dead cells and debris 
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discounted by gating on all live cells in the FSC vs SSC scatter plot. The live cells were then 

analysed by granularity and CD4/CD8 expression (SSC vs. Pacific Blue), revealing a distinct 

T cell population with low granularity and high fluorescence (Figure 6.2, b). Only cells 

within this population were analysed for phospho-protein expression. 

Next, a time-course of T cell-stimulation was carried out to determine what length of 

stimulation resulted in peak phosphorylation of signalling proteins. The CD4+ SL c93 T cell 

clone was incubated with cognate peptide antigen-pulsed Empty-BJAB cells for 2, 5 or 

10mins, the reaction quenched with formaldehyde, and intracellular signalling molecules 

labelled with phospho-specific antibodies (Chapter 2.7.5). The phospho-protein expression at 

each time point was calculated as a % of the median fluorescence for untreated cells. 

ERK1/2, p38, Akt and SLP-76 were noticeably phosphorylated upon peptide stimulation (up 

to 285% of control levels), in comparison to p-LAT and p-Zap70 which were minimally 

increased by peptide-stimulation (Figure 6.3). Optimal protein phosphorylation generally 

occurred at 2 or 5mins post-stimulation. 5mins of stimulation was chosen as the time point 

for all signalling assays, since logistically this treatment time was the most reproducible. A 

peptide concentration of 500ng/ml was chosen for all CD4+ SL c93 signalling assays. This 

concentration was the lowest to induce the phosphorylation of signalling proteins, and higher 

concentrations did not significantly increase protein phosphorylation (data not shown).    
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Figure 6.2 Optimising an intracellular signalling assay for the T cell clones. (a) Testing the efficacy of 

phospho-specific antibodies. The T cells (CD4+ SL c93 or CD8+ IM140.1 Y15 clones) were chemically 

stimulated for 10mins to induce the phosphorylation of intracellular signalling molecules. The stimulating 

agents used were 5mM H2O2 (Akt, SLP-76, LAT and Zap70), or 20ng/ml PMA (ERK1/2 and p38). (b) In order 

to distinguish the T cells from the antigen-presenting cells (BJAB), T cells were labelled with an anti-CD4 or 

anti-CD8 fluorophore-conjugated monoclonal antibody, and characterised within the live cell population by 

their side-scatter value. 
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Figure 6.3 (a) Determining the optimal time after T cell stimulation to measure the phosphorylation of 

signalling molecules (CD4+ SL c93 clone). T cell clones were incubated with antigen peptide-pulsed Empty-

BJAB cells for 2, 5 or 10mins, the reaction quenched with formaldehyde, and the phosphorylation levels of 

seven molecules measured by flow cytometry. The data for three independent experiments were pooled and are 

displayed as a % of no peptide control. 
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Figure 6.3 (b) Determining the optimal time after T cell stimulation to measure the phosphorylation of 

signalling molecules (CD4+ SL c93 clone). Histograms displaying the median fluorescence of cells labelled 

with anti-phospho-protein antibodies following 5mins stimulation with antigen peptide. This time point was 

used for all subsequent assays. These data are from one experiment and are representative of those data 

collected from three experiments, pooled and plotted in (a).  
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6.2.2.   Modification of signalling proteins by vOX2 and CD200 in the CD4+ SL c93 T 
cell clone 

 
Phosphorylation of signalling proteins in the presence or absence of vOX2 and CD200 was 

first examined in the CD4+ SL c93 T cell clone. IFNγ-secretion and the intracellular 

accumulation of IFNγ and IL-2 were reduced in this clone by vOX2 and CD200 expressed 

on the APC (Chapter 5). The MAP kinases, activated downstream of TCR-stimulation, were 

studied initially. ERK1/2 phosphorylation in this T cell clone was significantly reduced by 

vOX2 and CD200 (Figure 6.4) across seven independent experiments. p-ERK1/2 was not 

modified by vOX2 or CD200 in the absence of peptide stimulation.  

The data presented in Figures 6.4 to 6.16 were calculated as the % of Empty-BJAB + 

peptide, using the median fluorescence for each sample. This approach does not take into 

account the shift from basal levels upon stimulation (ie. the shift in fluorescence from ‘no 

peptide’ to ‘+ peptide’ = 100% of the phospho-protein induced by control cells). To 

demonstrate the reduction in the shift from basal to stimulated levels, by vOX2 and CD200, 

the following calculation was carried out. The median fluorescence value for each ‘no 

peptide’ sample was subtracted from the value for its matching ‘+ peptide’ sample in each 

experiment, and then taken as a % of Empty-BJAB-cultures. For example, [(vOX2-BJAB + 

peptide) – (vOX2-BJAB no peptide)] ÷ [(Empty-BJAB + peptide) – (Empty-BJAB no 

peptide)] x 100. The means for each experiment were then calculated. By this method, p-

ERK1/2 in the CD4+ T cell clone SL c93 was reduced to 50.73% ± 11.27 SEM of the 

maximal shift in ERK1/2 phosphorylation when stimulated by vOX2-BJAB. Interestingly, 

CD200 was slightly less effective at suppressing ERK1/2 phosphorylation, and reduced p-

ERK1/2 to 59.73% ± 11.34 SEM of control. The suppression of p-ERK1/2 is statistically 

significant for both vOX2 and CD200; p< 0.001 (indicated by *** in the Figures) when 
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analysed by a univariate ANOVA (SPSS 16.0 software, SPSS Inc.). Statistical significance 

of p<0.01 is signified by **, and p<0.05 by *. 

There was also a trend towards suppression of p38 phosphorylation by vOX2 and 

CD200 (Figure 6.5) in eight independent experiments. p-p38 was reduced in CD4+ T cells to 

74.71% ± 6.68 SEM of the maximum induced by Empty-BJAB, upon stimulation by vOX2-

expressing BJAB cells, and again was reduced by a slightly lesser degree by CD200-BJAB, 

to 80.4% ± 7.02 SEM of control. However, due to high variation between experiments, the 

result was not statistically significant by univariate ANOVA.  

Both peptide-pulsed vOX2 and CD200-BJAB cells significantly suppressed the 

phosphorylation of Akt kinase in the CD4+ T cell clone (Figure 6.6). Again, vOX2 was a 

more potent suppressor of p-Akt, and reduced p-Akt to 65.29% ± 7.26 SEM of control. 

Peptide-pulsed CD200-BJAB cells also suppressed the phosphorylation of Akt, to 77.98% ± 

1.46 SEM of control. Both vOX2 and CD200 significantly suppressed p-Akt (***p<0.001) 

in five independent experiments when analysed by univariate ANOVA.  

Upstream of the MAP kinases, LAT acts as a docking protein for signalling 

molecules, and is directly phosphorylated by Zap70 upon TCR stimulation. In the CD4+ SL 

c93 clone, detection of LAT phosphorylation by peptide stimulation was minimal (as noted 

in Figure 6.3) in four independent experiments, and no modification by vOX2 or CD200 

could therefore be observed in the presence or absence of peptide (Figure 6.7). Detection of 

p-LAT in T cells stimulated by vOX2-BJAB was similar to that in Empty-BJAB-stimulated 

cells (101.72% ± 2.31 SEM of control). Similarly, CD200-BJAB did not alter detectable p-

LAT expression in T cells, which was present at 98.32% ± 3.14 SEM of control levels. SLP-

76 is associated with the LAT complex of adaptor proteins, and is also directly activated by 

Zap70. SLP-76 phosphorylation was detectable upon peptide-stimulation, but neither vOX2 

nor CD200 suppressed its activation (Figure 6.8). The initial protein phosphorylated by TCR 
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stimulation, Zap70, is responsible for activating a cascade of signalling proteins. Zap70 

phosphorylation was readily detectable; p-Zap70 was not suppressed by vOX2 or CD200 

(Figure 6.9).        
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Figure 6.4 vOX2 and CD200-mediated suppression of ERK1/2 MAP kinase phosphorylation in the CD4+ 

SL c93 T cell clone. The CD4+ EBV antigen-specific T cell clone SL c93 was incubated for 5mins with 

cognate antigen peptide-pulsed BJAB cells engineered to express empty vector, native vOX2 or native CD200. 

Intracellular phospho-ERK1/2 was detected by a fluorophore-conjugated monoclonal antibody, and quantified 

by flow cytometry. Phospho-ERK1/2 levels for each sample are normalised to the Empty-BJAB + peptide 

control within each experiment. Each coloured icon indicates an independent experiment. Seven independent 

experiments are plotted on this graph. The mean of each sample group is represented by a black bar. There was 

no significant difference between Empty, vOX2 and CD200-BJAB cells without peptide (F (2, 20) = 0.15; p = 

0.86 across the three groups), when analysed by a univariate ANOVA test (SPSS software). However, vOX2 

and CD200-BJAB significantly suppressed p-ERK1/2 in comparison to Empty-BJAB (F (2, 20) = 12.34; ***p 

< 0.001 for both).   

   

***
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Figure 6.5 vOX2 and CD200-mediated suppression of p38 MAP kinase phosphorylation in the CD4+ SL 

c93 T cell clone.  The CD4+ EBV antigen-specific T cell clone SL c93 was incubated for 5mins with cognate 

antigen peptide-pulsed BJAB cells engineered to express empty vector, native vOX2 or native CD200. 

Intracellular phospho-p38 was detected by a fluorophore-conjugated monoclonal antibody, and quantified by 

flow cytometry. Phospho-p38 levels for each sample are normalised to the Empty-BJAB + peptide control 

within each experiment. Each coloured icon indicates an independent experiment. Eight independent 

experiments are plotted on this graph. The mean of each sample group is represented by a black bar. There was 

no significant difference between Empty, vOX2 and CD200-BJAB cells without peptide (F (2, 23) = 0.08; p = 

0.93 across the three groups), when analysed by a univariate ANOVA test (SPSS software). However, vOX2 

and CD200-BJAB significantly suppressed p-p38 in comparison to Empty-BJAB (F (2, 23) = 7.34; **p < 0.01 

for both).   

 

 

** **
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Figure 6.6 vOX2 and CD200-mediated suppression of Akt kinase phosphorylation in the CD4+ SL c93 T 

cell clone.  The CD4+ EBV antigen-specific T cell clone SL c93 was incubated for 5mins with cognate antigen 

peptide-pulsed BJAB cells engineered to express empty vector, native vOX2 or native CD200. Intracellular 

phospho-Akt was detected by a fluorophore-conjugated monoclonal antibody, and quantified by flow 

cytometry. Phospho-Akt levels for each sample are normalised to the Empty-BJAB + peptide control within 

each experiment. Each coloured icon indicates an independent experiment. Five independent experiments are 

plotted on this graph. The mean of each sample group is represented by a black bar. There was no significant 

difference between Empty, vOX2 and CD200-BJAB cells without peptide (F (2, 12) = 0.15; p = 0.87 across the 

three groups), when analysed by a univariate ANOVA test (SPSS software). However, vOX2 and CD200-

BJAB significantly suppressed p-Akt in comparison to Empty-BJAB (F (2, 12) = 29.48; ***p < 0.001 for both).   

 

*** ***
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Figure 6.7 LAT phosphorylation in the CD4+ SL c93 clone was not altered by vOX2 or CD200 expressed 

by BJAB cells. The CD4+ EBV antigen-specific T cell clone SL c93 was incubated for 5mins with cognate 

antigen peptide-pulsed BJAB cells engineered to express empty vector, native vOX2 or native CD200. 

Intracellular phospho-LAT was detected by a fluorophore-conjugated monoclonal antibody, and quantified by 

flow cytometry. Phospho-LAT levels for each sample are normalised to the Empty-BJAB + peptide control 

within each experiment. Each coloured icon indicates an independent experiment. Four independent 

experiments are plotted on this graph. The mean of each sample group is represented by a black bar. There was 

no significant difference between Empty, vOX2 and CD200-BJAB cells without peptide (F (2, 9) = 0.43; p = 

0.66 across the three groups), when analysed by a univariate ANOVA test (SPSS software). In the peptide-

treated samples, vOX2 and CD200-BJAB did not induce a significant suppression of p-LAT in comparison to 

Empty-BJAB (F (2, 9) = 0.57; p = 0.59 across the three groups).   
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Figure 6.8 SLP-76 phosphorylation in the CD4+ SL c93 clone was not altered by vOX2 or CD200 

expressed by BJAB cells. The CD4+ EBV antigen-specific T cell clone SL c93 was incubated for 5mins with 

cognate antigen peptide-pulsed BJAB cells engineered to express empty vector, native vOX2 or native CD200. 

Intracellular phospho-SLP-76 was detected by a fluorophore-conjugated monoclonal antibody, and quantified 

by flow cytometry. Phospho-SLP-76 levels for each sample are normalised to the Empty-BJAB + peptide 

control within each experiment. Each coloured icon indicates an independent experiment. Five independent 

experiments are plotted on this graph.  The mean of each sample group is represented by a black bar. There was 

no significant difference between Empty, vOX2 and CD200-BJAB cells without peptide (F (2, 12) = 0.29; p = 

0.75 across the three groups), when analysed by a univariate ANOVA test (SPSS software). In the peptide-

treated samples, vOX2 and CD200-BJAB did not induce a significant suppression of SLP-76 in comparison to 

Empty-BJAB (F (2, 12) = 0.31; p = 0.3 across the three groups).   
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Figure 6.9 Zap70 phosphorylation in the CD4+ SL c93 clone was not altered by vOX2 or CD200 

expressed by BJAB cells. The CD4+ EBV antigen-specific T cell clone SL c93 was incubated for 5mins with 

cognate antigen peptide-pulsed BJAB cells engineered to express empty vector, native vOX2 or native CD200. 

Intracellular phospho-Zap70 was detected by a fluorophore-conjugated monoclonal antibody, and quantified by 

flow cytometry. Phospho-Zap70 levels for each sample are normalised to the Empty-BJAB + peptide control 

within each experiment. Each coloured icon indicates an independent experiment. Three independent 

experiments are plotted on this graph.  The mean of each sample group is represented by a black bar. There was 

no significant difference between Empty, vOX2 and CD200-BJAB cells without peptide (F (2, 6) = 0; p = 1 

across the three groups), when analysed by a univariate ANOVA test (SPSS software). In the peptide-treated 

samples, vOX2 and CD200-BJAB did not induce a significant suppression of Zap70 in comparison to Empty-

BJAB (F (2, 6) = 0.97; p = 0.24 across the three groups).   
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6.2.3. Modification of signalling proteins by vOX2 and CD200 in the CD8+ IM140.1 
Y15 T cell clone 

 
Activation of downstream signalling kinases ERK1/2, p38 and Akt was suppressed by vOX2 

and CD200 in the CD4+ SL c93 T cell clone, though the phosphorylation of upstream 

adaptor molecules were not altered. In order to determine whether this selective inhibitory 

activity was cell-type specific, the same experiments were carried out on the CD8+ IM140.1 

Y15 clone, having a different peptide specificity (and HLA restriction). A YVL peptide 

concentration of 50ng/ml was chosen for all CD8+ IM140.1 Y15 signalling assays. This 

concentration was the lowest to induce phosphorylation of signalling proteins and higher 

concentrations did not substantially increase protein phosphorylation (data not shown). The 

phosphorylation of ERK1/2 in the CD8+ T cell clone IM140.1 was dramatically reduced to 

almost basal levels by vOX2 and CD200-expressing BJAB cells (Figure 6.10) in four 

independent experiments. p-ERK1/2 was reduced to only 23.14% ± 10.45 SEM of control 

levels in the presence of vOX2, and was present at only 29.82% ± 12.37 SEM of control 

levels when incubated with peptide-pulsed CD200-BJAB cells. This substantial suppression 

of ERK1/2 phosphorylation was statistically significant when analysed by univariate 

ANOVA (**p<0.001). Likewise, the phosphorylation of Akt kinase was significantly 

reduced by vOX2, to only 62.99% ± 15.85 SEM of control, and was also suppressed by 

CD200-BJAB, to 62.01% ± 6.58 SEM of Empty-BJAB-treated control cells (Figure 6.12). 

This reduction was statistically significant when analysed by univariate ANOVA (**p<0.05) 

in five independent experiments. Similarly to results obtained for the CD4+ clone, a trend 

towards suppression of p38 phosphorylation was observed for the CD8+ clone when 

incubated with peptide-pulsed vOX2 or CD200-BJAB cells (Figure 6.11) in five 

independent experiments. p-p38 was reduced to 77.27% ± 19.12 SEM of control by vOX2, 
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and to 82.05% ± 16.58 SEM by CD200-BJAB. However the trend was not statistically 

significant by univariate ANOVA. 
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Figure 6.10 vOX2 and CD200-mediated suppression of ERK1/2 MAP kinase phosphorylation in the 

CD8+ IM140.1 Y15 T cell clone. The CD8+ EBV antigen-specific T cell clone IM140.1 Y15 was incubated for 

5mins with cognate antigen peptide-pulsed BJAB cells engineered to express empty vector, native vOX2 or 

native CD200. Intracellular phospho-ERK1/2 was detected by a fluorophore-conjugated monoclonal antibody, 

and quantified by flow cytometry. Phospho-ERK1/2 levels for each sample are normalised to the Empty-BJAB 

+ peptide control within each experiment. Each coloured icon indicates an independent experiment. Four 

independent experiments are plotted on this graph. The mean of each sample group is represented by a black 

bar. There was no significant difference between Empty, vOX2 and CD200-BJAB cells without peptide (F (2, 

8) = 0.34; p = 0.73 across the three groups), when analysed by a univariate ANOVA test (SPSS software). 

However, vOX2 and CD200-BJAB significantly suppressed p-ERK1/2 in comparison to Empty-BJAB (F (2, 8) 

= 13.16; **p < 0.01 for both).   

 

** **
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Figure 6.11 A trend towards vOX2 and CD200-mediated suppression of p38 MAP kinase 

phosphorylation in the CD8+ IM140.1 Y15 T cell clone. The CD8+ EBV antigen-specific T cell clone 

IM140.1 Y15 was incubated for 5mins with cognate antigen peptide-pulsed BJAB cells engineered to express 

empty vector, native vOX2 or native CD200. Intracellular phospho-p38 was detected by a fluorophore-

conjugated monoclonal antibody, and quantified by flow cytometry. Phospho-p38 levels for each sample are 

normalised to the Empty-BJAB + peptide control within each experiment. Each coloured icon indicates an 

independent experiment. Five independent experiments are plotted on this graph. The mean of each sample 

group is represented by a black bar. There was no significant difference between Empty, vOX2 and CD200-

BJAB cells without peptide (F (2, 11) = 0.01; p = 0.99 across the three groups), when analysed by a univariate 

ANOVA test (SPSS software). In the peptide-treated samples, vOX2 and CD200-BJAB did not induce a 

significant suppression of p-p38 in comparison to Empty-BJAB (F (2, 11) = 0.73; p = 0.5 for both).   
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Figure 6.12 vOX2 and CD200-mediated suppression of Akt kinase phosphorylation in the CD8+ IM140.1 

Y15 T cell clone. The CD8+ EBV antigen-specific T cell clone IM140.1 Y15 was incubated for 5mins with 

cognate antigen peptide-pulsed BJAB cells engineered to express empty vector, native vOX2 or native CD200. 

Intracellular phospho-Akt was detected by a fluorophore-conjugated monoclonal antibody, and quantified by 

flow cytometry. Phospho-Akt levels for each sample are normalised to the Empty-BJAB + peptide control 

within each experiment. Each coloured icon indicates an independent experiment. Five independent 

experiments are plotted on this graph. The mean of each sample group is represented by a black bar. There was 

no significant difference between Empty, vOX2 and CD200-BJAB cells without peptide (F (2, 12) = 0.02; p = 

0.98 across the three groups), when analysed by a univariate ANOVA test (SPSS software). However, vOX2 

and CD200-BJAB significantly suppressed p-Akt in comparison to Empty-BJAB (F (2, 12) = 4.65; *p < 0.05 

for both).   

 

* *
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In this CD8+ T cell clone, the signalling proteins upstream of the MAP kinases in the TCR 

cascade, SLP-76 and Zap70, were also not affected by vOX2 or CD200. LAT 

phosphorylation was not detectable in these cells upon peptide-stimulation (see Appendix 

D). SLP-76 was noticeably phosphorylated by peptide-pulsed BJAB cells, but was not 

modified by expression of vOX2 or CD200 on the surface of the APC (Figure 6.13) in four 

independent experiments.  
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Figure 6.13 SLP-76 phosphorylation in the CD8+ IM140.1 Y15 clone was not altered by vOX2 or CD200 

expressed by BJAB cells. The CD8+ EBV antigen-specific T cell clone IM140.1 Y15 was incubated for 5mins 

with cognate antigen peptide-pulsed BJAB cells engineered to express empty vector, native vOX2 or native 

CD200. Intracellular phospho-SLP-76 was detected by a fluorophore-conjugated monoclonal antibody, and 

quantified by flow cytometry. Phospho-SLP-76 levels for each sample are normalised to the Empty-BJAB + 

peptide control within each experiment. Each coloured icon indicates an independent experiment. Four 

independent experiments are plotted on this graph. The mean of each sample group is represented by a black 

bar. There was no significant difference between Empty, vOX2 and CD200-BJAB cells without peptide (F (2, 

9) = 0.06; p = 0.94 across the three groups), when analysed by a univariate ANOVA test (SPSS software). In 

the peptide-treated samples, vOX2 and CD200-BJAB did not induce a significant suppression of p-SLP-76 in 

comparison to Empty-BJAB (F (2, 9) = 0.08; p = 0.93 across the three groups).   
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The phosphorylation of Zap70, upstream of LAT and SLP-76, was also not altered by vOX2 

or CD200 in four independent experiments. Zap70 was noticeably phosphorylated in 

response to peptide (Figure 6.14), but p-Zap70 levels in vOX2-BJAB-treated CD8+ cells 

were similar (94.34% ± 8.34 SEM) to those in Empty-BJAB-treated cells (100%). CD200-

BJAB cells also did not affect p-Zap70, with levels in CD200-BJAB-treated CD8+ cells at 

96.12% ± 6.14 SEM of those treated with Empty-BJAB cells.  
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Figure 6.14 Zap70 phosphorylation in the CD8+ IM140.1 Y15 clone was not altered by vOX2 or CD200 

expressed by BJAB cells. The CD8+ EBV antigen-specific T cell clone IM140.1 Y15 was incubated for 5mins 

with cognate antigen peptide-pulsed BJAB cells engineered to express empty vector, native vOX2 or native 

CD200. Intracellular phospho-Zap70 was detected by a fluorophore-conjugated monoclonal antibody, and 

quantified by flow cytometry. Phospho-Zap70 levels for each sample are normalised to the Empty-BJAB + 

peptide control within each experiment. Each coloured icon indicates an independent experiment. Four 

independent experiments are plotted on this graph. The mean of each sample group is represented by a black 

bar. There was no significant difference between Empty, vOX2 and CD200-BJAB cells without peptide (F (2, 

9) = 0.05; p = 0.95 across the three groups), when analysed by a univariate ANOVA test (SPSS software). In 

the peptide-treated samples, vOX2 and CD200-BJAB did not induce a significant suppression of p-Zap70 in 

comparison to Empty-BJAB (F (2, 9) = 0.23; p = 0.8 across the three groups).   
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6.2.4.  Modification of ERK1/2 and p38 by vOX2 and CD200 in the CD8+ IM235 c48 T 
cell clone 

 
Due to the observed vOX2 and CD200-mediated suppression of ERK1/2 phosphorylation, 

and the trend towards reduced p-p38 in both the CD4+ SL c93 and the CD8+ IM140.1 Y15 T 

cell clones, another CD8+ clone was examined. The isolation and clonal selection of IM235 

c48 was described in Chapter 5. IFNγ-secretion by this clone was suppressed by vOX2 and 

CD200, both of which were also able to inhibit the intracellular accumulation of IL-2 and 

IFNγ. The phosphorylation of ERK1/2 was suppressed by vOX2 and CD200 in the CD8+ 

IM235 c48 clone (Figure 6.15) in four independent experiments. p-ERK1/2 levels in T cells 

cultured with peptide-pulsed vOX2-BJAB were reduced to 69.62% ± 16.25 SEM of the 

maximal stimulation by Empty-BJAB, and were reduced to 60.63% ± 8.72 SEM by CD200-

BJAB. The CD200-mediated suppression is statistically significant by univariate ANOVA 

(*p<0.05) but vOX2-mediated suppression of p-ERK1/2 did not reach significance, due to 

the high deviation between experiments. Neither vOX2 nor CD200 altered the 

phosphorylation of p38 in four independent experiments (Figure 6.16).  
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Figure 6.15 vOX2 and CD200-mediated suppression of ERK1/2 MAP kinase phosphorylation in the 

CD8+ IM235 c48 T cell clone. The CD8+ EBV antigen-specific T cell clone IM235 c48 was incubated for 

5mins with cognate antigen peptide-pulsed BJAB cells engineered to express empty vector, native vOX2 or 

native CD200. Intracellular phospho-ERK1/2 was detected by a fluorophore-conjugated monoclonal antibody, 

and quantified by flow cytometry. Phospho-ERK1/2 levels for each sample are normalised to the Empty-BJAB 

+ peptide control within each experiment. Each coloured icon indicates an independent experiment. Four 

independent experiments are plotted on this graph. The mean of each sample group is represented by a black 

bar. There is no significant difference between Empty, vOX2 and CD200-BJAB cells without peptide (F (2, 9) 

= 0.02; p = 0.98 across the three groups), when analysed by a univariate ANOVA test (SPSS software). 

However, CD200-BJAB induces a significant suppression of p-ERK1/2 in comparison to Empty-BJAB (F (2, 

9) = 3.98; *p < 0.05), though vOX2 does not (p = 0.072).   

 

*
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Figure 6.16 p38 phosphorylation in the CD8+ IM235 c48 clone was not altered by vOX2 or CD200 

expressed by BJAB cells. The CD8+ EBV antigen-specific T cell clone IM235 c48 was incubated for 5mins 

with cognate antigen peptide-pulsed BJAB cells engineered to express empty vector, native vOX2 or native 

CD200. Intracellular phospho-p38 was detected by a fluorophore-conjugated monoclonal antibody, and 

quantified by flow cytometry. Phospho-p38 levels for each sample are normalised to the Empty-BJAB + 

peptide control within each experiment. Each coloured icon indicates an independent experiment. Four 

independent experiments are plotted on this graph. The mean of each sample group is represented by a black 

bar. There is no significant difference between Empty, vOX2 and CD200-BJAB cells without peptide (F (2, 9) 

= 0.004; p = 1 across the three groups), when analysed by a univariate ANOVA test (SPSS software). In the 

peptide-treated samples, vOX2 and CD200-BJAB do not induce a significant suppression of p-p38 in 

comparison to Empty-BJAB (F (2, 9) = 0.68; p = 0.5 for both).   
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Mean (normalised to Empty-BJAB data) ± SEM

p-ERK1/2 levels

Empty-BJAB + peptide vOX2-BJAB + peptide CD200-BJAB + peptide

CD4+ (SL c93) 100 *** 50.73% ± 11.27 *** 59.73% ± 11.34

CD8+ (IM140.1 Y15) 100 ** 23.14% ± 10.45 ** 29.82% ± 12.37

CD8+ (IM235 c48) 100  * 69.62% ± 16.25 * 60.63% ± 8.72

p-p38 levels

Empty-BJAB + peptide vOX2-BJAB + peptide CD200-BJAB + peptide

CD4+ (SL c93) 100 ** 74.71% ± 6.68 ** 80.4% ± 7.02

CD8+ (IM140.1 Y15) 100       77.27% ± 19.12     82.05% ± 16.58 

CD8+ (IM235 c48) 100     106.02% ± 14.18   95.61% ± 5.86 

p-Akt levels

Empty-BJAB + peptide vOX2-BJAB + peptide CD200-BJAB + peptide

CD4+ (SL c93) 100 *** 65.29% ± 7.26 *** 77.98% ± 1.46

CD8+ (IM140.1 Y15) 100     * 62.99% ± 15.85    * 62.01% ± 6.58
 

 

 
Table 6.1  A summary of the suppression of intracellular signalling molecules by vOX2 and CD200. The 

‘no peptide’ value for each sample was subtracted from the ‘+ peptide’ value to account for baseline levels of 

phosphorylation. The data for vOX2 and CD200-BJAB were then normalised by calculating the % of the 

Empty-BJAB value within each experiment. The * indicate the degree of statistical significance (* p<0.05; 

**p<0.01; ***p<0.001) as determined by univariate ANOVA (SPSS software). 
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6.3. Mimicking vOX2 and CD200-mediated suppression of p-ERK1/2 with a 

pharmacological inhibitor 

 
In order to determine whether the observed suppression of ERK1/2 phosphorylation by 

vOX2 and CD200 (Figure 6.4/10/15 and Table 6.2), alters the production of IFNγ (as seen 

in Chapter 5) by T cells, pharmacological inhibition of p-ERK1/2 was performed. PD98059 

specifically inhibits MAP kinase kinase (MEK1/ MAPKK1), upstream of ERK1/2, thus 

preventing the phosphorylation of ERK1/2 (Alessi et al., 1995). The effect of PD98059 on 

cell viability was determined by incubating CD4+ SL c93 and CD8+ IM140.1 Y15 T cell 

clones overnight with increasing concentrations of the inhibitor (Figure 6.17). Cell viability 

was quantified by the trypan blue exclusion assay. PD98059 did not alter cell viability in 

comparison to a vehicle-treated control in two independent experiments. The same 

concentrations of PD98059 were administered to BJAB/T cell co-cultures to examine 

whether the inhibitor could suppress IFNγ-secretion. PD98059 mildly suppressed IFNγ-

secretion by CD4+ cells (to 79.1% ± 9.49 SEM of control, 50μM) (Figure 6.17, c), but was 

more efficacious at inhibiting CD8+ cell IFNγ-production (53.16% ± 9.8 SEM of control, 

50μM) (Figure 6.17, d), in three independent experiments. Next, the PD98059 inhibitor was 

introduced to the intracellular signalling assay in an attempt to imitate the inhibition of p-

ERK1/2 by vOX2 and CD200 (Figure 6.18). The T cells were incubated with 1, 5, 10 or 

50μM PD98059, during their stimulation by peptide-pulsed Empty-BJAB cells, or were 

preincubated with PD98059 prior to stimulation. Both treatment and pretreatment with 

PD98059 induced similar results. 

 p-ERK1/2 levels were calculated as before (Section 6.4.2) with data from three 

independent experiments. PD98059 (10μM) induced a similar level of suppression of p-

ERK1/2 in the CD4+ SL c93 clone as either vOX2 or CD200. Thus, PD98059 (10μM) 

reduced p-ERK1/2 phosphorylation to 71.01% ± 12.14 SEM of the control value (Figure 
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6.18, a), compared to suppression by vOX2 (73.38% ± 5.3 SEM) and CD200 (73.44% ± 5.39 

SEM) (Figure 6.4). PD98059 (10μM) was also the optimal concentration for suppressing 

ERK1/2 phosphorylation in the CD8+ IM140.1 Y15 clone. p-ERK1/2 was reduced to 46.36% 

± 3.81 SEM of the Empty-BJAB (no inhibitor) control (Figure 6.18, b), similar to the p-

ERK1/2 levels detected in the presence of vOX2 (48.16% ± 10.52 SEM) and CD200 

(49.05% ± 10.7 SEM) of control (Figure 6.10).  

Having established the concentration of the ERK1/2 pharmacological inhibitor 

required to suppress p-ERK1/2 to a similar extent found with either vOX2 or CD200 (Figure 

6.18), the effects on IFNγ production were determined. T cells were incubated overnight 

with peptide-pulsed Empty-BJAB cells in the presence or absence of 10μM PD98059. 

Across all peptide concentrations in two independent experiments, IFNγ-secretion by CD4+ 

SL c93 cells was reduced in the presence of PD98059 (Figure 6.19), in a similar pattern to 

that observed with the expression of vOX2 or CD200 on the surface of the APC (Chapter 

5.12/5.13). Similarly, IFNγ secretion by incubating CD8+ T cells (IM140.1 Y15) with 

PD98059 reduced extracellular IFNγ at all peptide concentrations (Figure 6.20). PD98059 

treatment also reduced the accumulation of IFNγ within the CD8+ IM140.1 Y15 and CD4+ 

SL c93 T cell clones, to 27.87% ± 1.8 SEM (*p<0.05, t-test), and 67.78% ± 7.27 SEM 

(*p<0.05, t-test) respectively (Figure 6.21). Cumulative data to compare the level of 

suppression of IFNγ production by PD98059, with the extent of suppression by vOX2-BJAB 

and CD200-BJAB (Table 6.3) demonstrate that PD98059 inhibits IFNγ to a greater degree 

than either vOX2 or CD200.  
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(d) CD8+ IM140.1 Y15 IFNγ release 
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Figure 6.17 Testing an ERK inhibitor, PD98059 against T cell viability and activity. (a) CD4+ SL c93 and 

(b) CD8+ IM140.1 Y15 T cell clones were incubated (16h, 37oC) with PD98059, and cell viability determined 

by a trypan blue exclusion assay (% viability = the % of cells that do not absorb trypan blue). Data from two 

independent experiments were pooled. (c) The CD4+ SL c93 and (d) CD8+ IM140.1 Y15 T cell clones were 

incubated with cognate peptide antigen-loaded BJAB cells (500ng/ml PRS peptide or 50ng/ml YVL peptide 

respectively) in the presence of a range of concentrations of PD98059, a pharmacological inhibitor of ERK 

phosphorylation. IFNγ-release was quantified by ELISA and the results normalised to peptide-treated control; 

data were pooled from three independent experiments.  
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(b) CD8+ IM140.1 Y15 T cell clone 
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Figure 6.18 Using a pharmacological inhibitor of ERK phosphorylation to mirror the suppression of 

ERK1/2 phosphorylation by vOX2 and CD200. (a) The CD4+ SL c93 and (b) CD8+ IM140.1 Y15 T cell 

clones were treated with an ERK inhibitor (PD98059) while being stimulated with antigen peptide-pulsed 

BJAB cells. The reaction was quenched after 5mins with 1.5% formaldehyde, and the level of ERK1/2 

phosphorylation quantified by flow cytometric analysis. The level of p-ERK1/2 suppression by vOX2 or 

CD200-BJAB cells found in previous experiments is included in the above graphs, in order to identify the 

concentration of PD98059 that results in an equivalent inhibition of ERK1/2 phosphorylation. Data from (a) 

three or (b) two independent experiments were pooled and presented as a % of p-ERK1/2 levels resulting from 

stimulation by peptide-pulsed BJAB cells.    
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(b) CD4+ SL c93 T cell clone replicate experiment 
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Figure 6.19 Mimicking the activities of vOX2 and CD200 by inhibiting the phosphorylation of ERK1/2 

with a pharmacological inhibitor, PD98059, suppresses the secretion of IFNγ by the CD4+ SL c93 T cell 

clone. BJAB cells transduced with an empty vector were peptide-pulsed and incubated with the T cell clone 

cells for 16hrs. The cells were incubated in the presence or absence of PD98059 (10μM) to suppress phospho-

ERK1/2 levels to the same degree as achieved by expression of either vOX2 or CD200 (see Figure 6.4). IFNγ 

secretion was quantified by ELISA, and the data from triplicate wells pooled and presented as mean ± SEM; 

data from separate independent experiments are presented in each graph.   
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(c) CD8+ IM140.1 Y15 T cell clone replicate experiment 

0

1000

2000

3000

4000

5000

6000

7000

500 250 100 50 25 5 0 DMSO

Treatment (peptide conc. (ng/ml))

IF
N
γ 

co
nc

. (
pg

/m
l)

Empty-BJAB
Empty-BJAB + PD98059

 
 

Figure 6.20 Mimicking the activities of vOX2 and CD200 by inhibiting the phosphorylation of ERK1/2 

with a pharmacological inhibitor, PD98059, suppresses the secretion of IFNγ by the CD8+ IM140.1 Y15 T 

cell clone. BJAB cells transduced with an empty vector were peptide-pulsed and incubated with the T cell clone 

cells for 16hrs. The cells were incubated in the presence or absence of PD98059 (10μM) to suppress phospho-

ERK1/2 levels to the same degree as achieved by expression of either vOX2 or CD200 (see Figure 6.10). IFNγ 

secretion was quantified by ELISA, and the data from triplicate wells pooled and presented as mean ± SEM; 

data from separate independent experiments are presented in each graph.   



Chapter 6: vOX2 and CD200-mediated suppression of human T cell clones: mechanism of action  

  208 

(a)  CD4+ SL c93 T cell clone 

0

10

20

30

40

50

60

70

80

90

100

No peptide PRS (500ng/ml)

Treatment

In
tr

ac
el

lu
la

r I
FN

γ 
le

ve
ls

 (a
s 

a 
%

 o
f p

ep
tid

e 
tr

ea
tm

en
t)

Untreated
PD98059 (10μM)

 
(b)  CD8+ IM140.1 Y15 T cell clone 

0

10

20

30

40

50

60

70

80

90

100

No peptide YVL (50ng/ml)

Treatment

In
tr

ac
el

lu
la

r I
FN

γ 
le

ve
ls

 (a
s 

a 
%

 o
f p

ep
tid

e 
tr

ea
tm

en
t)

Untreated
PD98059 (10μM)

 
 

Figure 6.21 Mimicking the activities of vOX2 and CD200 by inhibiting the phosphorylation of ERK1/2 

with a pharmacological inhibitor, PD98059, suppresses the accumulation of IFNγ in the CD8+ IM140.1 

Y15 and CD4+ SL c93 T cell clones.  (a) The CD8+ IM140.1 Y15 and (b) CD4+ SL c93 T cell clones were 

incubated for 60mins with cognate antigen peptide-pulsed BJAB cells transduced with an empty vector, or 

engineered to express vOX2 or CD200. Brefeldin A (7.5μg/ml) was added to the BJAB and T cell co-culture, 

and the cells incubated for a further 2hrs. Intracellular IFNγ was detected with fluorophore-conjugated 

monoclonal antibodies, and quantified by flow cytometry. Data from three independent experiments were 

pooled, normalised to the Empty-BJAB + peptide control, and presented as mean ± SEM. PD98059 treatment 

did not alter IFNγ production in the absence of peptide, but significantly suppressed the production of IFNγ by 

peptide-stimulated CD4+ SL c93 (F(4, 2) = 5.16; *p<0.05) and CD8+ IM140.1 Y15 (F(4, 2) = 13.71; 

***p<0.001) T cell clones when the data were analysed by an independent two-tailed t-test (SPSS software). 

*

***
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CD8+ IM140.1 Y15

vOX2 CD200 PD98059 vOX2 CD200 PD98059

500ng/ml peptide 93.71% ± 8.7 * 86.29% ± 4.97 71.95% ± 2.65 500ng/ml peptide

50ng/ml peptide 78.27% ± 10.4 ** 61.26 % ± 10.06 45.98% ± 5.21 50ng/ml peptide 62.68% ± 14.39 * 40.42% ± 13.55 *** 27.87% ± 1.80

CD4+ SL c93

vOX2 CD200 PD98059 vOX2 CD200 PD98059

500ng/ml peptide 89.18% ± 3.15 ** 71.69% ± 8.17 82.9% ± 2.35 500ng/ml peptide *** 66.65% ± 14.12 *** 87.59% ± 4.04 * 67.78% ± 7.27

50ng/ml peptide 96.91% ± 34.13 58.98% ± 17.74 65.34% ± 4.49 50ng/ml peptide

Extracellular IFNγ

Extracellular IFNγ

Intracellular IFNγ

Intracellular IFNγ

 
 
Table 6.2 Comparative data illustrating the roles of vOX2, CD200 and the pharmacological ERK1/2 

inhibitor PD98059 in suppressing IFNγ production by the CD8+ IM140.1 Y15 and CD4+ SL c93 T cell 

clones. The presence of either vOX2 or CD200 on the surface of peptide-pulsed BJAB cells suppressed the 

secretion of IFNγ, as well as the accumulation of IFNγ within T cell clones. Treating the T cell clones with 

PD98059 (10μM), to mimic the extent of vOX2 and CD200-mediated suppression of ERK1/2 phosphorylation, 

suppressed the secretion of IFNγ in response to cognate peptide antigen, and the accumulation of IFNγ 

intracellularly.  The data are presented as a percentage of the data for the Empty-BJAB coculture (mean ± 

SEM). The * indicate the degree of statistical significance (* p<0.05; **p<0.01; ***p<0.001) as determined by 

univariate ANOVA or independent two-tailed t-tests (SPSS software). 

 
 
 
 
 

6.4. Phenotyping the engineered BJAB cells 

 
The observed vOX2 and CD200-mediated suppression of T cell cytokine production, and the 

modification of downstream signalling molecules by vOX2 and CD200, may be due to a 

direct interaction between either vOX2 or CD200 and molecules on the surface of the T cell. 

Both vOX2 and CD200 are capable of ligating CD200R with similar affinity (Foster-Cuevas 

et al., 2004) and T cells express CD200R (Chapter 7). However, there is a possibility that 

engineering BJAB cells to express either vOX2 or CD200 alters the expression of other cell-

surface proteins. HLA molecules are crucial for the stimulation of T cells by presenting 

processed antigen peptides to the TCR. Co-stimulatory molecules CD80 and CD86 (B7.1 
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and B7.2) are also crucial for T cell stimulation, and TCR stimulation in the absence of co-

stimulation can result in anergy. CD80 and CD86 bind to CD28 on resting cells, amplifying 

the TCR-mediated stimulation, and bind with higher affinity to CTLA-4, an inhibitory 

receptor that is upregulated on activated cells providing a negative feedback loop to regulate 

T cell activity (Murphy, 2008). Therefore, the expression of HLA-ABC (components of the 

MHC-I complex), HLA-DR (a component of MHC-II), and CD80 and CD86 were quantified 

on the surface of  vOX2- and CD200-expressing BJAB cells in comparison to BJABs 

transduced with the empty vector (Empty-BJAB). 

Cell surface proteins were labelled with antigen-specific monoclonal antibodies (see 

Chapter 2.7.6 and Appendix B, Table I), or an isotype control, and levels quantified by flow 

cytometry. The median fluorescence value for each isotype control was subtracted from the 

value for the antibody-labelled sample, and vOX2-BJAB and CD200-BJAB levels expressed 

as a % of Empty-BJAB control.  HLA-DR expression was slightly reduced on vOX2-BJAB 

cells, to 78% ± 12.04 SEM of control, but was not altered on CD200-BJAB (93.79% ± 9.86 

SEM of control) cells in four independent experiments (Figure 6.22, a). The expression of 

CD80 was also reduced slightly on both vOX2-BJAB, to 78.82% ± 4.0 SEM of control, and 

CD200-BJAB, to 81.77% ± 5.32 SEM of Empty-BJAB control levels, in five independent 

experiments (Figure 6.22, b), and this difference was statistically significant according to 

one-way ANOVA (**p<0.01). In contrast, CD86 levels were modestly amplified on vOX2 

and CD200-expressing cells in five independent experiments, though the results were not 

statistically significant. CD86 expression on vOX2-BJAB was increased to 120.7% ± 16.54 

SEM of control, and to 118.71% ± 6.04 SEM of control, on CD200-BJAB cells (Figure 

6.22, c). 

The reduction of cell-surface HLA-ABC (MHC-I) on vOX2-BJAB and CD200-

BJAB cells was more pronounced, and was significant according to one-way ANOVA 
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analysis of the data (***p<0.001). HLA-ABC levels were reduced to 67.42% ± 2.47 SEM of 

control on vOX2-BJAB cells, and to 71.12% ± 2.12 SEM on CD200-BJAB cells (Figure 

6.23, a). Though surprisingly HLA-ABC expression on BJAB cells expressing vOX2 or 

CD200 fused to EGFP was similar to HLA-ABC on Empty-BJAB cells. HLA-ABC 

expression on vOX2-EGFP-BJAB cells was 86.4% ± 7.85 SEM of the Empty-BJAB control, 

and 89.74% ± 6.1 SEM of control on CD200-EGFP-BJAB cells (Figure 6.23, b).  

To determine whether the observed suppression of cell-surface HLA-ABC on vOX2-

BJAB and CD200-BJAB was due to increased internalisation of the protein, the following 

assay was carried out (Chapter 2.7.7). Briefly, engineered BJAB cells were placed on ice and 

saturated with an anti-HLA-ABC antibody. The cells were then warmed to 37oC and 

incubated for the times indicated (Figure 6.24). HLA-ABC internalisation was quenched by 

placing the cells on ice, and the remaining HLA-ABC antibody-labelled proteins were 

labelled with a fluorophore-conjugated secondary antibody before analysis by flow 

cytometry. Therefore, the more HLA-ABC that can be detected in this assay, as determined 

by higher fluorescence, the less protein has been internalised. The expression of HLA-ABC 

on the surface of vOX2-BJAB and CD200-BJAB was consistently lower than the levels on 

Empty-BJAB cells, but this disparity did not increase with increased incubation times. 

Therefore the rate of internalisation of HLA-ABC was unaffected by vOX2 or CD200.   

Thus, surface HLA-ABC expression is reduced on vOX2-BJAB and CD200-BJAB 

cells, but the rate of internalisation does not change in the presence of either vOX2 or 

CD200. The total amount of HLA-ABC protein in these cells is lower than in Empty-BJAB 

cells, quantification by Western Blot and densitometry was performed (see Chapter 2.3 for 

method). Each densitometric value for HLA-ABC was normalised to the calregulin content 

of that sample. Firstly, the cytosolic fraction was isolated (Chapter 2.3.4) and analysed for 

HLA-ABC content. HLA-ABC expression by vOX2-BJAB was lower than the empty vector 
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control in both experiments (reduced to 30.92% and 62.98% of Empty-BJAB control), but 

HLA-ABC was not reduced to the same extent in CD200-BJAB (78.74% and 87.64% of 

control) (Figure 6.25, a, b). Interestingly, and consistent with flow cytometric data (Figure 

6.23, b), HLA-ABC levels were not reduced overall in BJAB cells expressing vOX2 

(68.09% and 123.59%) or CD200 (91.07% and 96.6%) fused in-frame with EGFP (Figure 

6.25, a, b). Secondly, whole cell lysates were prepared (Chapter 2.3.5). There was a slight 

decrease in HLA-ABC levels in vOX2-BJAB cells (87.41% of control) but a slight increase 

in HLA-ABC in CD200-BJAB cells, to 114.4% of control (Figure 6.25, c). Overall from 

three independent experiments, two analysing cytosol and one cell lysate, HLA-ABC protein 

was reduced to 60.3% ± 16.34 SEM of control in vOX2-BJAB, but was only reduced 

marginally in CD200-BJAB cells, to 93.6% ± 10.71 SEM of the Empty-BJAB control, and 

neither difference reached statistical significance. There was no modification of HLA-ABC 

protein expression in vOX2-EGFP-BJAB cells, which contained 104.85% ± 18.38 SEM of 

control, or in CD200-EGFP-BJAB cells that expressed 103.09% ± 9.39 SEM of Empty-

BJAB control HLA-ABC levels (Figure 6.25, d). 
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Figure 6.22 Cell-surface expression levels of HLA-DR, CD80 and CD86 are not altered by the presence of 

native vOX2 or CD200 on the cell. BJAB cells were engineered to express native vOX2, CD200 or an empty 

vector. Extracellular (a) HLA-DR, (b) CD80 and (c) CD86 levels on the engineered BJAB cells were quantified 

by flow cytometry, using specific monoclonal antibodies conjugated to fluorophores. The data were pooled 

from four (a) or five (b), (c) independent experiments. Neither HLA-DR nor CD86 expression was altered on 

the surface of vOX2- or CD200-BJAB cells in comparison to Empty-BJAB, but CD80 expression was 

significantly reduced on the surface of both vOX2- and CD200-BJAB (F(2, 12) = 8.80; **p<0.01 for both) 

when analysed by one-way ANOVA (SPSS software).  

** **
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Figure 6.23 Cell-surface expression levels of HLA-ABC are reduced on the surface of both vOX2 and 

CD200-expressing cells. BJAB cells were engineered to express native vOX2, CD200 or an empty vector. 

Extracellular HLA-ABC was quantified by flow cytometry, using specific monoclonal antibodies conjugated to 

a fluorophore. (a) BJAB cells expressing native vOX2 or CD200, (b) or those expressing vOX2 or CD200 

fused in-frame with EGFP. Three independent experiments were carried out for each cell type, and the value of 

the isotype control median fluorescence subtracted from the sample before normalising to normalising to the 

fluorescence value obtained for the Empty-BJAB control. HLA-ABC expression was significantly reduced on 

the surface of vOX2-BJAB and CD200-BJAB (F(2, 12) = 96.35; ***p<0.001 for both), but was not altered on 

cells expressing EGFP-tagged vOX2 or CD200, when the data were analysed by univariate one-way ANOVA 

(SPSS software). 

 

 

*** ***
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Figure 6.24 The rate of HLA-ABC internalisation from the cell-surface is not altered when vOX2 or 

CD200 are expressed on the cell. BJAB cells engineered to express either vOX2 or CD200 were labelled with 

an anti-HLA-ABC antibody (unconjugated) on ice for one hour. The cells were then warmed to 37oC and 

incubated for the time indicated on the graph. After rapid cooling on ice the anti-HLA-ABC antibody remaining 

on the cell-surface was labelled with a fluorophore-conjugated secondary antibody and the cells analysed by 

flow cytometry (Beckman Coulter EPICs XL). The data from two independent experiments were pooled, and 

represented as a % (± SEM) of the HLA-ABC remaining on the surface of Empty-BJABs at 0mins. 
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(a) Cytosol fraction replicate 1 (densitometric data)       (immunoblot) 
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(b) Cytosol fraction replicate 2 (densitometric data)       (immunoblot) 
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(c) Whole cell lysate (densitometric data)       (immunoblot) 
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(d) Cumulative data 

Empty-BJAB vOX2-BJAB CD200-BJAB vOX2EGFP-BJAB CD200EGFP-BJAB

Mean 100 60.30 93.60 104.85 103.09

SEM ± 16.34 ± 10.71 ± 18.38 ± 9.39  
 
Figure 6.25 Quantifying HLA-ABC by immunoblotting of engineered BJAB cell lysates reveals a 

downregulation of HLA-ABC in vOX2-expressing cells. Lysates were prepared for BJAB cells engineered to 

express vOX2, CD200, vOX2 or CD200 fused in-frame with EGFP. (a), (b) Cytosolic fractions or (c) whole 

cell lysates were prepared, proteins separated by SDS-PAGE and HLA-ABC quantified by immunoblotting 



Chapter 6: vOX2 and CD200-mediated suppression of human T cell clones: mechanism of action  

  217 

with a specific antibody. Densitometry was carried out on each immunoblot and the data normalised by 

calculating the ratio of HLA-ABC to a calregulin loading control for each sample. (d) The densitometric data 

were then pooled and presented as a % of the Empty-BJAB control. The reduced HLA-ABC expression by 

vOX2-BJAB cells does not reach statistical significance when the cumulative data are analysed by one-way 

ANOVA (SPSS software).  

 

 

6.5. Discussion  

 
vOX2 and CD200 significantly inhibited the activation of ERK1/2 (Figures 6.4/10/15) and 

Akt kinases (Figures 6.6/12), and moderately suppressed p38 phosphorylation (Figures 

6.5/11/16). Flow cytometric analysis of phospho-proteins enables the analysis of a single cell 

population in a mixed culture. The observed phosphorylation of intracellular signalling 

molecules confirmed that as expected, the T cell clones were activated by peptide-pulsed 

BJAB cells. Inhibition of ERK1/2 activation appears to be directly linked to attenuated T cell 

activity. Thus, pharmacological inhibition of ERK1/2 phosphorylation to the level observed 

by vOX2 or CD200 expression on APCs (Figures 6.4/10/15) reduced IFNγ secretion 

(Figures 6.19/20) and intracellular accumulation of IFNγ (Figure 6.21). The level of 

pharmacological inhibition of secretion was similar to that obtained by ectopic expression of 

vOX2 and CD200 on APCs, though slightly greater. 

As mentioned earlier, Zhang and colleagues reported a mCD200R1-mediated 

suppression of ERK1/2, p38 and JNK in murine mast cells, corresponding to decreased 

degranulation and cytokine secretion (Zhang et al., 2004). These authors compared the 

activities of kinase inhibitors and found that inhibiting all three kinases potently reduced 

mast cell degranulation and secretion of TNF and IL-13, whereas inhibiting only p-p38 and 

p-JNK suppressed cell activation to a lesser degree (Zhang et al., 2004). Taken together, the 
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work of Zhang et al. (Zhang et al., 2004) and the present study demonstrate that CD200- and 

vOX2-mediated suppression of ERK1/2 phosphorylation alters cell activity.  

 Decreased ERK1/2 phosphorylation has previously been associated with altered T 

cell activity, and has been correlated with UV-mediated immunosuppression. Mice grafted 

with UV-irradiated tissue, or exposed to UV light, developed many more tumours when their 

lymphocytes were replaced with cells from UV-irradiated animals (Fisher & Kripke, 1982). 

Li-Weber and colleagues demonstrated that UV-mediated immunosuppression is linked to 

the inhibition of T cell activity and to ERK1/2 phosphorylation (Li-Weber et al., 2005). 

Primary human T cells, isolated from peripheral blood, were stimulated by anti-CD3/CD28 

antibodies, or by PMA and ionomycin treatment, and subsequently produced IFNγ, IL-2, IL-

4 and TNFα cytokines. Both the secretion of these proteins and transcription of their coding 

genes were inhibited by UV irradiation, correlating with reduced expression and 

translocation of transcription factors AP-1 and NF-κB. In Jurkat T cells, UV irradiation 

blocked the phosphorylation of ERK1/2 in response to PMA/ionomycin-treatment, but 

surprisingly it enhanced p-JNK and p-p38 levels. The same effects were recapitulated in anti-

CD3/CD28-stimulated human peripheral blood T cells. When p38 was chemically inhibited, 

translocation of NF-κB to the nucleus was restored, and inhibition of JNK prevented the UV-

mediated suppression of ERK1/2 phosphorylation. Inhibiting both p38 and JNK in UV-

irradiated T cells restored IL-2 and IFNγ-secretion in response to stimulation (Li-Weber et 

al., 2005). These published data indicate that ERK1/2 is directly suppressed by JNK and 

p38; however, in the present study p-p38 was not increased above control levels. p-JNK was 

not analysed because there were no suitable phospho-specific antibodies available. It would 

be interesting to determine whether inhibiting p38 and JNK phosphorylation could abrogate 

the vOX2 and CD200-mediated suppression of IFNγ-production.  
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 Further evidence for attenuated T cell responses to peptide resulting from reduced p-

ERK1/2 expression was published by Santos and colleagues. Macrophage migration 

inhibitory factor (MIF), a cytokine expressed by resting and activated T cells, enhances 

ERK1/2 phosphorylation and is associated with rheumatoid arthritis. Deleting the gene 

coding for MIF reduced RA disease severity in mice, apparently due to reduced T cell 

activity in response to antigen stimulation (determined by reduced IFNγ secretion). Reduced 

antigen-stimulation of CD4+ splenocytes isolated from MIF-/- mice correlated with 

suppressed ERK1/2 phosphorylation, and chemically inhibiting p-ERK1/2 also reduced T 

cell proliferation in response to antigen. However, in their model, ERK1/2 phosphorylation 

was suppressed leading to attenuated T cell activity, but p-Akt was not altered (Santos et al., 

2008). These data contrast with those of this study, in which both p-ERK1/2 and p-Akt were 

suppressed.  

Akt kinase is activated by the TCR signalling cascade, but its activity is amplified by 

costimulation through the CD28 receptor following ligation with CD80 or CD86. Akt 

enhances transcription of the IL-2 gene, and augments the production of both IL-2 and IFNγ 

(Kane et al., 2001). Conversely, the suppression of Akt phosphorylation in the present study 

may just enhance the inhibition of T cell activity resulting from the suppression of ERK1/2 

phosphorylation. The pharmacological inhibition of ERK1/2 (Figure 6.18) mimicked the 

degree of inhibition induced by vOX2 and CD200 (Figures 6.4/10/15) and appeared to 

account for the vOX2 and CD200-mediated suppression of IFNγ-secretion (Figures 6.19-

21). In fact, PD98059 was more efficacious at suppressing IFNγ production in response to 

both high (500ng/ml) and moderate (50ng/ml) concentrations of cognate peptide antigen 

(Table 6.2), in comparison to vOX2 and CD200 expressed on the surface of the APC. 

Therefore, the observed suppression of p38 and Akt may have an additive effect upon the 

vOX2- and CD200-mediated inhibition of T cell activity. 
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 Although all phospho-proteins analysed in this study were amplified by chemical 

stimulation (Figure 6.2), not all of them were measurable following peptide stimulation. p-

Zap70, LAT and SLP-76 are activated immediately post-TCR stimulation, and initiate the 

signalling cascade leading to the phosphorylation of ERK1/2, p38 and Akt (Au-Yeung et al., 

2009). All three molecules were phosphorylated by chemical stimulation (Figure 6.2), but 

were not activated to the same extent by peptide stimulation. The amplification of Zap70 

phosphorylation following H2O2 treatment (Figure 6.2) mirrors published data. Haas and 

colleagues analysed the kinetics of Zap70 phosphorylation by flow cytometry, in response to 

CD3 stimulation or H2O2 treatment (Haas et al., 2008). Flow cytometric analysis revealed a 

marked difference between the two stimulating agents. H2O2 treatment increased the 

phosphorylation of Zap70 by tenfold in comparison to anti-CD3 stimulation. H2O2 also 

prolonged the life of the phospho-protein which was still detectable 30mins post-stimulation, 

in contrast to anti-CD3 stimulation which induced peak p-Zap70 levels 1-3mins post-CD3 

stimulation (Haas et al., 2008). These data correlate with the visible increase in p-Zap70 in 

response to H2O2 (Figure 6.2), which contrasts with a greatly attenuated phosphorylation of 

Zap70 in peptide-stimulated T cells 5mins after exposure to peptide-pulsed APCs (Figures 

6.9/14). 

Haas et al. observed similar phosphorylation kinetics for LAT. LAT was rapidly 

phosphorylated and de-phosphorylated in response to CD3 stimulation, but the life of the 

phospho-protein was prolonged by H2O2-treatment (Haas et al., 2008). Rapid 

dephosphorylation may explain the minimal levels of p-LAT observed upon peptide-

stimulation of the CD4+ SL c93 T cell clone (Figure 6.7), and the negligible levels in the 

CD8+ IM140.1 Y15 clone (see Appendix D for raw data). In contrast, LAT was obviously 

phosphorylated upon stimulation of the T cell clones by H2O2 (Figure 6.2). Phosphorylation 

of SLP-76 upon TCR-stimulation ultimately enhances IL-2 production by the stimulated T 
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cell. Overexpression of SLP-76 amplified IL-2 transcription, whereas mutating its signalling 

tyrosine residues abrogated the transcription of the gene coding for IL-2 (Bubeck 

Wardenburg et al., 1996). Thus, SLP-76 phosphorylation is vital for effective T cell 

stimulation via its TCR. SLP-76 was phosphorylated in response to chemical (Figure 6.2) 

and antigen-stimulation (Figures 6.8/13), but inhibition by either vOX2 or CD200 could not 

be detected. The phosphorylation of Zap70, LAT and SLP-76 occurs rapidly upon TCR 

ligation, and therefore the extent of phosphorylation is linked to the number of TCRs 

stimulated on the T cell. In comparison, the signalling cascade amplifies as each subsequent 

protein is activated, which explains the relative ease of detection of p-ERK1/2, p-p38 and p-

Akt, downstream of the LAT-SLP-76 adaptor complex. Thus at this stage inhibition of 

upstream signals cannot be ruled out, but can only be inferred from the reduction in ERK1/2 

phosphorylation. 

It would be reasonable to assume that a ~30% reduction in HLA-ABC expression on 

the surface of APCs engineered to express either vOX2 or CD200 (Figure 6.23), would 

reduce the T cell-stimulating potential of these APCs. However, HLA-DR expression was 

not reduced. The CD4+ SL c93 clone specificity is restricted to HLA-DR subsets 7, 52a, 52b 

or 52c, and ERK1/2, p38 and Akt phosphorylation were reduced in this clone (Figures 

6.4/6), in addition to attenuated IFNγ and IL-2 production (Chapter 5). Overall, p-ERK1/2, 

p38 and p-Akt were not suppressed to a greater degree in HLA-A2.01-restricted CD8+ clones 

IM140.1 and IM235 c48 (see Table 6.1 for a synopsis of the data), indicating that reduced 

HLA expression was unlikely to be a factor in the attenuation of the signalling cascades. 

Expression of CD80 and CD86 were also quantified on engineered BJAB cells. Both CD80 

and CD86 ligate the stimulatory coreceptor CD28, and the inhibitory CTLA4 with a slightly 

higher affinity. The expression of CD80 on vOX2 and CD200-expressing BJAB cells was 

reduced, whereas CD86 expression was modestly increased.  
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 The data presented in this chapter indicate that vOX2 and CD200 alter the activation 

of signalling proteins downstream in the TCR signalling cascade. This modification does not 

appear to be due to altered co-stimulatory protein expression on the cells engineered to 

express either vOX2 or CD200, and therefore must be due to direct interaction between these 

two proteins and proteins expressed by the T cell, such as CD200R. Ligation and subsequent 

phosphorylation of the CD200R by vOX2 and CD200 could not be determined in this study 

due to the lack of specific antibodies suitable for flow cytometric analysis of our mixed cell 

populations. The identification of signalling proteins such as Dok and RasGAP, associating 

with mCD200R1 (Zhang et al., 2004) and human CD200R (Mihrshahi et al., 2009), also 

could not be repeated in this study, again due to a dearth of appropriate antibodies. 

Therefore, the modification of proteins downstream of the TCR signalling cascade cannot be 

proved to be due to CD200R-ligation by vOX2 and CD200. But the effect of vOX2 and 

CD200 on CD200R expressed by the T cells can be determined, and those data are presented 

in the next chapter.    
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Chapter 7.   Modulation of CD200R on T cells by vOX2 and      
CD200 

 
So far, a suppression of human T cell clone activity by vOX2 and CD200 has been observed 

(Chapter 5), and is hypothesised to be due to ligation of these proteins with the CD200R, 

thus leading to downregulation of the TCR signalling cascade (Chapter 6). If CD200R 

ligation negatively regulates the activity of the T cells, then a modification of CD200R 

expression by either stimulatory factors (ie, cognate peptide antigen), or putative negative 

factors (ie. vOX2 and CD200), would alter the ability of vOX2 and CD200 to suppress cell 

activity. The rationale for these studies was that if downstream signalling events initiated by 

CD200R ligation underlie the suppression of T cell clone activity, then the possible 

modulation of CD200R expression should be considered. The regulation of CD200R 

expression on T cells by native vOX2 or CD200 expressed on the surface of an APC was 

investigated in both anergising and stimulating systems.  

 

7.1 Determining the percentage of CD200R+ antigen-specific T cells 

  
Initially, the basal expression of CD200R was measured by flow cytometry on ex vivo 

antigen-specific T cells. In order to detect viral antigen-specific CD8+ T cells in EBV- and 

CMV-infected individuals, PBMCs were isolated from the blood and incubated with MHC-

peptide-fluorophore tetramers (Chapter 2.6.2). Briefly, the tetrameric complexes consist of 

MHC subunits folded with viral antigen peptide, and conjugated to a fluorophore. The cells 

were then stained with anti-CD8 and anti-CD200R antibodies (Table I, Appendix B). The 

CD8+ cells were gated upon within the live population. The CD8+ cells were then distributed 

across a scatter plot by their CD200R or matching isotype control antibody fluorescence, and 
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antigen tetramer fluorescence. The percentage of CD200R+peptide+ cells was calculated for 

each peptide antigen, and the results tabulated (Table 7.1).   

Approximately 65% of CD8+ T cells from a healthy EBV-seropositive donor (A) 

express CD200R (Figure 7.1, panels b and d, upper quadrants). Of Donor A’s 

CD8+CD200R+ T cells, 0.68% were directed against the FLR peptide (Figure 7.1, b, upper-

right quadrant) derived from the EBV latent protein EBNA3A (in comparison to a total 

1.04% FLR+ cells), and 0.42% were specific for the RAK peptide (Figure 7.1, d, upper-right 

quadrant) of the lytic protein BZLF1 (0.68% RAK+ cells in total). Both of these viral 

peptides are restricted through the same MHC subtype, HLA-B8.  Please see Hislop et al. 

(2007) supplemental material for a comprehensive list of EBV antigen peptides and their 

HLA restriction. Examining the CD8+ T cells isolated from an IM patient (IM135) that are 

reactive against the same viral antigen peptides, RAK and FLR, revealed a similar pattern 

(Figure 7.2). 89.17% of IM135’s CD8+ T cells were CD200R positive (Figure 7.2, b and d, 

upper quadrants) and the majority of tetramer-positive cells also expressed CD200R. The 

percentages of peptide-specific CD8+CD200R+ T cells differed quite markedly between 

Donor A and IM135. 0.97% of IM135’s CD8+CD200R+ T cells were positive for FLR, of 

1.12% FLR+ cells in total (Figure 7.2, b, upper-right quadrant), and 15.4% were reactive 

against RAK, of a total 17.45% RAK+ cells (Figure 7.2, d, upper-right quadrant). Donor B 

exhibited a comparable RAK and FLR staining pattern of their CD8+CD200R+ cells to 

Donor A (1.39% FLR+, 1.07% RAK+, Figure 7.3, b and d), as did Donor E (0.92% FLR+, 

2.44% RAK+, Figure 7.4, b and d).       

Donor C also possesses CD8+ CD200R+ RAK and FLR-specific T cells. In addition, 

this donor’s CD8+ T cells were reactive against two CMV proteins; IE1, an immediate early 

protein (ELK peptide), and the early protein pp50 (VTE peptide) (Figure 7.5). See Khan 

(2007) for a comprehensive list of CMV antigen peptides and their HLA restrictions.  
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 Interestingly, though the ELK peptide is restricted through HLA-B8, similarly to 

RAK and FLR, VTE is restricted through HLA-A1, and yet there was no alteration in the 

pattern of CD200R expression. A greater percentage of this donor’s CD8+CD200R+ T cells 

were reactive to the CMV proteins pp50 (VTE peptide, 4.9%, from a total 7.1%, Figure 7.5, 

f) and IE1 (ELK peptide, 7.19% from a total 11.65%, Figure 7.5, h) than the EBV antigens 

EBNA3A (FLR peptide, 0.48% from a total 1.01%, Figure 7.5, b) and BZLF1 (RAK 

peptide, 1.37% from a total 2.01%, Figure 7.5, d). Donor D was also seropositive for both 

CMV and EBV. But this donor’s peptide-specific T cells are restricted through alternative 

HLA epitopes. A high percentage of this individual’s T cells were specific for EBV antigen 

peptides restricted through HLA-B35.01. 1.66% of the CD8+CD200R+ T cells were specific 

for the latent antigen EBNA1 (HPV peptide) from a total of 3.1% HPV+ cells (Figure 7.6, a 

and b), and another 4.85% (from a total 12.37%) were directed against the EPL peptide 

derived from the EBV lytic cycle protein BZLF1, rather than RAK (Figure 7.6, c and d). 

1.53% of Donor D’s CD8+CD200R+ T cells were directed against a CMV antigen pp65 

(NLV peptide), of a total 3.02% NLV+ cells, restricted through HLA-A2 (Figure 7.6, e and 

f). CD8+CD200R+ T cells isolated from Donor F (Figure 7.7, b and d, upper quadrants) were 

reactive with CMV antigen peptides YSE (1.3% of a total 2.33% YSE+ cells, Figure 7.7, b), 

derived from the phospho-protein pp65, and VTE (2.53% of a total 4.69%, Figure 7.7, d), 

derived from the early protein pp50. Both peptides are restricted through HLA-A1. For all 

donors examined in this study, between 56.26% and 89.4% of their CD8+ T cells expressed 

CD200R, and a similar percentage of those T cells directed against viral antigen peptides 

were positive for the CD200R.     
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Figure 7.1 EBV peptide antigen-specific CD8+ T cells from a healthy EBV-seropositive donor express 

CD200R. PBMCs isolated from a healthy EBV-seropositive donor (Donor A), were labelled with an anti-CD8 

fluorophore-conjugated antibody, and co-stained with an anti-CD200R antibody (or an isotype control). To test 

for antigen peptide specificity, the T cells were incubated with EBV peptide-MHC tetrameric complexes for 

15mins at 37oC. CD8+ T cells that are dual-positive for both tetramer and CD200R are shown in the upper-right 

quadrant of each scatter plot. The FLR peptide is derived from the EBV latent protein EBNA3A. In contrast, 

RAK is derived from a lytic cycle protein, BZLF1. Both peptides are restricted through HLA-B8.   

(a) (b) 

(c) (d) 
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Figure 7.2 EBV peptide antigen-specific CD8+ T cells from an IM patient express CD200R. PBMCs 

isolated from an IM patient (IM135), were labelled with an anti-CD8 fluorophore-conjugated antibody, and co-

stained with an anti-CD200R antibody (or an isotype control). To test for antigen peptide specificity, the T cells 

were incubated with EBV peptide-MHC tetrameric complexes for 15mins at 37oC. CD8+ T cells that are dual-

positive for both tetramer and CD200R are shown in the upper-right quadrant of each scatter plot. The FLR 

peptide is derived from the EBV latent protein EBNA3A. In contrast, RAK is derived from a lytic cycle 

protein, BZLF1. Both peptides are restricted through HLA-B8.  

(a) (b) 

(c) (d) 
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Figure 7.3 EBV peptide antigen-specific CD8+ T cells from a healthy EBV-seropositive donor express 

CD200R. PBMCs isolated from a healthy EBV-seropositive donor (Donor B), were labelled with an anti-CD8 

fluorophore-conjugated antibody, and co-stained with an anti-CD200R antibody (or an isotype control). To test 

for antigen peptide specificity, the T cells were incubated with EBV peptide-MHC tetrameric complexes for 

15mins at 37oC. CD8+ T cells that are dual-positive for both tetramer and CD200R are shown in the upper-right 

quadrant of each scatter plot. The FLR peptide is derived from the EBV latent protein EBNA3A. In contrast, 

RAK is derived from a lytic cycle protein, BZLF1. Both peptides are restricted through HLA-B8.   

(a) (b) 

(c) (d) 
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Figure 7.4 EBV peptide antigen-specific CD8+ T cells from a healthy EBV-seropositive donor express 

CD200R. PBMCs isolated from a healthy EBV-seropositive donor (Donor E), were labelled with an anti-CD8 

fluorophore-conjugated antibody, and co-stained with an anti-CD200R antibody (or an isotype control). To test 

for antigen peptide specificity, the T cells were incubated with EBV peptide-MHC tetrameric complexes for 

15mins at 37oC. CD8+ T cells that are dual-positive for both tetramer and CD200R are shown in the upper-right 

quadrant of each scatter plot. The FLR peptide is derived from the EBV latent protein EBNA3A. In contrast, 

RAK is derived from a lytic cycle protein, BZLF1. Both peptides are restricted through HLA-B8.  

 

(b) (a) 

(d) (c) 
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(a) (b) 

(c) (d) 

(h) (g) 

(e) (f) 
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Figure 7.5 EBV and CMV peptide antigen-specific CD8+ T cells from a healthy EBV- and CMV-

seropositive donor express CD200R. PBMCs, isolated from a healthy EBV and CMV-seropositive donor 

(Donor C), were labelled with an anti-CD8 fluorophore-conjugated antibody, and co-stained with an anti-

CD200R antibody (or an isotype control). To test for antigen peptide specificity, the T cells were incubated 

with EBV peptide-MHC tetrameric complexes for 15mins at 37oC. CD8+ T cells that are dual-positive for both 

tetramer and CD200R are shown in the upper-right quadrant of each scatter plot. The FLR peptide is derived 

from the EBV latent protein EBNA3A. In contrast, RAK is derived from a lytic cycle protein, BZLF1. Both 

peptides are restricted through HLA-B8. The ELK peptide is also restricted through HLA-B8 and is encoded as 

part of the CMV protein IE1, an immediate early protein. VTE peptide is restricted through HLA-A1 and is the 

product of an early CMV protein, pp50. 
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Figure 7.6 EBV and CMV peptide antigen-specific CD8+ T cells from a healthy EBV- and CMV-

seropositive donor express CD200R. PBMCs, isolated from a healthy EBV- and CMV-seropositive donor 

(Donor D), were labelled with an anti-CD8 fluorophore-conjugated antibody, and co-stained with an anti-

CD200R antibody (or an isotype control). To test for antigen peptide specificity, the T cells were incubated 

with EBV peptide-MHC tetrameric complexes for 15mins at 37oC. CD8+ T cells that are dual-positive for both 

(a) (b) 

(c) 

(e) (f) 

(d) 
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tetramer and CD200R are shown in the upper-right quadrant of each scatter plot. The NLV peptide is derived 

from a CMV phospho-protein pp65, and is restricted through HLA-A2. HPV peptide is derived from the EBV 

latent antigen EBNA1. In contrast, EPL is derived from the lytic protein BZLF1 (coordinates 54-63). Both HPV 

and NLV are restricted through HLA-B35.01.   
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Figure 7.7 CMV peptide antigen-specific CD8+ T cells from a healthy CMV-seropositive donor express 

CD200R. PBMCs, isolated from a healthy CMV-seropositive donor (Donor F), were labelled with an anti-CD8 

fluorophore-conjugated antibody, and co-stained with an anti-CD200R antibody (or an isotype control). To test 

for antigen peptide specificity, the T cells were incubated with EBV peptide-MHC tetrameric complexes for 

15mins at 37oC. CD8+ T cells that are dual-positive for both tetramer and CD200R are shown in the upper-right 

quadrant of each scatter plot. The VTE peptide is the product of an early CMV protein, pp50. YSE is derived 

from pp65, a viral phospho-protein. Both peptides are restricted through HLA-A1. 

(a) 

(c) (d) 

(b) 
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7.2  Basal expression of CD200R, CTLA-4 and CD28 on human antigen-

specific T cell clones  

 
In addition to CD200R, T cells express two proteins, CD28 and CTLA-4 that act in 

opposition to each other, either amplifying the TCR signalling cascade (CD28) and thus 

enhancing T cell activity, or suppressing TCR-mediated cell activation (CTLA-4). CTLA-4 

and CD28 are expressed on the surface of T cells, and compete for the ligands CD80 (B7.1) 

and CD86 (B7.2) expressed upon the surface of APCs such as dendritic cells, but also on 

endothelia, macrophages, B and T cells. CD28 is expressed on naïve T cells and is activated 

by CD80/86 in conjunction with TCR-ligation, enhancing cell metabolism and proliferation 

(Murphy, 2008). Phosphorylation of the cytoplasmic tail of CD28 following ligation with its 

cognate ligands enables the recruitment and binding of intracellular signalling molecules 

such as PI3K. PI3K activation leads to the activation of the protein kinase B (PKB)/Akt 

pathway, subsequently increasing T cell metabolism by altering several signalling pathways 

(Rudd et al., 2009). In contrast, CTLA-4 is normally absent or at very low levels on the T 

cell surface (though is constitutively expressed on Tregs), but is upregulated by stimulated T 

cells. CTLA-4 has a much higher affinity than CD28 for CD80 and CD86. One method by 

which CLTA-4 inhibits T cell activity is by binding to the TCRζ chain and recruiting 

negative regulatory phosphatases such as SHP, thus dephosphorylating the initial proteins 

involved in the TCR signalling cascade including LAT (Lee et al., 1998). Both CD28 and 

CTLA-4 interact with CD80 and CD86 via a conserved amino acid motif, and although 

CD80 has a higher affinity than CD86 for both receptors, CD86 is more widely expressed 

(reviewed in Sansom and Walker, 2006). CTLA-4 has traditionally been difficult to detect on 

the cell surface by flow cytometry. Alegre and colleagues reported that the majority of 

murine CTLA-4 was localised within the cell, and when expressed on the cell surface, was 

rapidly endocytosed (Alegre et al., 1996).  
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Borriello and colleagues reported that rCD200 shares some amino acid identity with 

murine CD80 and CD86, and that all three proteins express extracellular domains composed 

of IgV- and IgC-like regions (Borriello et al., 1997). rCD200 shared a moderate sequence 

identity of between 24% and 35% with CD80 and CD86, when the extracellular IgV-like and 

IgC-like domains were analysed. However, rCD200 did not bind to murine CD28 or CTLA4. 

Though rCD200 was not a ligand for mCD28, it did induce the proliferation of primary 

CD4+ murine T cells, similar to CD80-CD28 ligation, though without the concurrent 

cytokine production that is evident when CD28 is activated. rCD200-mediated T cell 

proliferation could be inhibited with an anti-rCD200 antibody. Proliferation induced by 

CD80 was not affected by anti-rCD200, thus confirming that rCD200 did not ligate CD28 

(Borriello et al., 1997). A putative similarity between CD200 and ligands for CD28 and 

CTLA-4, further underlines the need to analyse the expression of these receptors on the 

vOX2 and CD200-suppressible T cell clones. 

Initially, the basal levels of CD200R, CD28 and CTLA-4, on CD8+ human T cell 

clones IM235 c48, c79 and c94, and IM140.1 Y15, in addition to the CD4+ T cell clone SL 

c93, were quantified by flow cytometry (Chapter 2.6.4).  

Though CD200R expression was variable between the CD8+ and CD4+ human T cell 

clones (Figure 7.8), its expression was not found to alter over time post-restimulation (data 

not shown), or to be related to proliferative potential in culture (data not shown). Basal 

CD200R expression was quantified for these T cell clones in four independent experiments, 

at 15, 34 and 45 (carried out twice) days post-restimulation. The data were consistent 

between each assay; therefore, one representative data set is presented. Both CD200R and 

CD28 were expressed at variable levels by each clone, but in accordance with the literature, 

CTLA-4 expression was low or undetectable (Figure 7.8). 
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Figure 7.8 Basal expression of CD200R, CTLA-4 and CD28 on human T cell clones. Expression of 

CD200R, CTLA-4 and CD28 were quantified by flow cytometry for five human T cell clones (34 days after 

restimulation). These data are representative of four independent experiments analysing CD200R expression, 

and two independent experiments quantifying CD28 and CTLA-4 expression. 
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7.3 The regulation of CD200R expression on T cell clones by cognate 

peptide antigen-stimulation  

 
Having established that CD200R is expressed on antigen-specific CD8+ T cells ex vivo, and 

on human T cell clones, CD200R levels were measured on T cells cocultured with antigen. 

Initially an antigen-specific murine T cell hybridoma line, B3z, was utilised to optimise the 

expression assay, and then the human T cell clones were evaluated. Briefly, B3z cells were 

cultured overnight with either their cognate antigen peptide SIINFEKL, derived from 

ovalbumin, in the absence of an APC, or with stimulating agents PHA (3μg/ml) or murine 

IFNγ (200U/ml). An EBV antigen peptide YVLDHLIVV derived from the lytic protein 

BRLF1 (henceforth referred to as YVL), served as a negative control (Chapter 2.6.3). Flow 

cytometric analysis of mCD200R1 expression the following day demonstrated that 

mCD200R1 levels on the cell surface increased in a peptide dose-dependent manner upon 

stimulation with cognate antigen peptide, by up to 345% ± 86.2 SEM of the untreated control 

(Figure 7.9). The other stimulating agents failed to alter mCD200R1 expression.     

A similar experiment was carried out with a YVL-specific human T cell clone 

(IM140.1 Y15), without APCs. The T cell clones presented peptide to each other in the 

absence of APCs. Cell death was observed, presumably due to cytotoxic activity of the T 

cells in culture (data not shown). Surprisingly, with increasing concentrations of cognate 

peptide, the CD200R surface expression decreased, by up to 47.67% ± 4.18 SEM of the 

untreated control (Figure 7.10). However, CD200R expression also decreased upon 

stimulation with PHA, to 64.63% ± 1.63 SEM with PHA. Thus, suppression of CD200R 

expression appeared to correlate with stimulation and not with particular stimuli. However,  

the suppression of CD200R expression in the presence of an irrelevant EBV antigen peptide 

(to 73.18% ± 2.96 SEM) is surprising and may be an artefact. 
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Figure 7.9 Dose-dependent elevated mCD200R expression on antigen-specific murine B3z cells with 

increased cognate antigen peptide stimulation. Murine B3z (T cell hybridoma) cells were incubated with the 

cognate peptide antigen SIINFEKL (from chicken egg ovalbumin) at a range of concentrations (16hrs, 37oC). 

The cells were also stimulated with PHA (3μg/ml) or murine recombinant IFNγ (200U/ml), and an irrelevant 

EBV peptide (YVLDHLIVV, 5μg/ml), derived from BRLF1, served as a negative control. Cell surface 

CD200R expression was quantified by flow cytometry, and the data presented as a % of the CD200R 

expression on untreated cells (median fluorescence minus the fluorescence value of an isotype control for each 

sample). Data from four independent experiments were pooled and plotted as the mean ± SEM. 

 

 



Chapter 7: Modulation of CD200R expression on T cells by vOX2 and CD200    

  240 

0

10

20

30

40

50

60

70

80

90

100

110

No peptide Peptide
(5000ng/ml)

Peptide
(500ng/ml)

Peptide
(50ng/ml)

Peptide
(5ng/ml)

Peptide
(0.5ng/ml)

Peptide
(0.05ng/ml)

PHA
(3μg/ml)

Irrelevant
peptide

(5000ng/ml)

Treatment

C
D

20
0R

 e
xp

re
ss

io
n 

(a
s 

a 
%

 o
f u

nt
re

at
ed

 c
on

tr
ol

)

 

 
Figure 7.10 CD200R expression on an antigen-specific human T cell clone decreases with increased 

cognate antigen peptide stimulation. A human T cell clone (IM140.1 Y15) was incubated with its cognate 

antigen peptide YVLDHLIVV (derived from the EBV lytic cycle protein BRLF1) at a range of concentrations, 

in the absence of an antigen-presenting cell (16hrs, 37oC). Cell surface CD200R expression was quantified by 

flow cytometry, and the data presented as a % of the CD200R expression on untreated cells (median 

fluorescence minus the fluorescence value of an isotype control for each sample). Data from three independent 

experiments were pooled and plotted as the mean ± SEM. 

 
 
 
 

7.4 vOX2 and CD200-mediated inhibition of CD200R expression 

 
Since human antigen-specific T cell clones were demonstrated to express CD200R, in 

concert with primary human T cells analysed ex vivo, the investigation focused on whether 

the levels were modulated following the presentation of cognate antigen by HLA-matched 

APCs. The two T cell clones selected for these assays (CD8+ IM140.1 Y15 and CD4+ SL 

c93) had been studied exhaustively to determine the modulation of IFNγ and IL-2 secretion 

(Chapter 5) and downstream signalling events (Chapter 6) by vOX2 and CD200. Briefly, 
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either BJAB cells expressing vOX2 or CD200, or those transduced with an empty vector, 

were pulsed with antigen peptide (at the concentration utilised for all signalling assays), 

washed, and incubated overnight with either of the HLA-matched peptide-specific T cell 

clones. The following day, surface expression of CD200R, CTLA-4 and CD28 on the T cell 

clones was determined by flow cytometry, and the T cells identified by labelling with either 

an anti-CD8 or anti-CD4 antibody. The data were calculated as a percentage of the Empty-

BJAB untreated cocultures, data from five independent experiments were pooled, and 

statistical significance was determined by univariate ANOVA (SPSS software). See 

Appendix D for the raw data.  

CD200R expression on the CD8+ IM140.1 Y15 T cell clone was reduced when the T 

cells were incubated with either vOX2-BJAB cells (to 46.72% ± 0.82 SEM; ***p<0.001) or 

CD200-BJAB (to 45.35% ± 2.67 SEM; ***p<0.001), in comparison to untreated Empty-

BJAB cocultures (Figure 7.11, a). This effect was enhanced upon peptide stimulation, and 

CD200R levels were slightly increased in the Empty-BJAB control culture (to 112.21% ± 

7.18 SEM of untreated control). CD200R levels on T cells incubated with peptide-pulsed 

vOX2-BJAB cells were reduced to only 29.03% 0.54 ± SEM (***p<0.001) of the peptide-

pulsed Empty-BJAB control, and were reduced even further in CD200-BJAB cultures, to 

27.81% 1.06 ± SEM (***p<0.001) of the control (Figure 7.11, a). Cell-surface CTLA-4 

expression was also reduced in the presence of vOX2 and CD200, to 62.37% ± 0.01 SEM 

(***p<0.001), and 63% ± 4.13 SEM (***p<0.001) of the Empty-BJAB cocultures, 

respectively (Figure 7.11, b). When the APCs were loaded with cognate antigen peptide, 

CTLA-4 expression was increased in the Empty-BJAB culture (to 138.66% ± 6.16 SEM), 

but was still considerably reduced in the presence of vOX2 and CD200, to 51.61% ± 6.5 

SEM (**p<0.01) and 59.13% ± 3.64 SEM (**p<0.01) of the peptide-stimulated control 

respectively. In contrast, CD28 expression was unchanged when the CD8+ T cells were 



Chapter 7: Modulation of CD200R expression on T cells by vOX2 and CD200    

  242 

incubated with vOX2-BJAB or CD200-BJAB, in the absence of stimulation (Figure 7.11, c). 

CD28 levels rose when the T cells were stimulated with Empty-BJAB pulsed with cognate 

antigen peptide (130.59% ± 7.47 SEM), were marginally reduced in the presence of vOX2 

(83.94% ± 12.98 SEM) but were unchanged in response to CD200 (96.95% ± 8.82 SEM), in 

comparison to the peptide-treated Empty-BJAB control. 

A similar pattern was observed in the CD4+ T cell clone, SL c93 (Figure 7.12), 

although CD200R expression was not enhanced in the peptide-pulsed control culture (89.9% 

± 4.76 SEM of untreated control). Again, CD200R on the surface of T cells was reduced in 

the presence of vOX2-BJAB (Figure 7.12, a) in the absence of peptide (to 48.25% ± 2.45 

SEM of control; ***p<0.001) and with peptide stimulation (33.9% ± 1.4 SEM; ***p<0.001). 

CD200-expressed by BJAB cells also downregulated CD200R expression (Figure 7.12, a), 

to 44.78% ± 2.2 SEM of control (***p<0.001) in the absence of peptide, and to 30.08% ± 

2.55 SEM of control (***p<0.001) following stimulation with cognate antigen. CTLA-4 

expression on the T cells was increased by stimulation with peptide-loaded Empty-BJAB, to 

122.27% ± 6.19 SEM of the untreated control, and again, was downregulated in the presence 

of vOX2-BJAB (to 64.03% ± 1.8 SEM untreated, ***p<0.001 and 66.91% ± 3.26 SEM, 

stimulated, *p<0.05) or CD200-BJAB (to 61.41% ± 2.15 SEM untreated, ***p<0.001 and 

66.87% ± 6.84 SEM stimulated, *p<0.05), with or without cognate antigen peptide (Figure 

7.12, b). CD28 expression was unaltered, or slightly reduced on vOX2 or CD200-treated 

CD4+ T cells (Figure 7.12, c). CD28 levels were reduced upon peptide stimulation (to 

87.75% ± 5.72 SEM of the untreated Empty-BJAB control), but were not reduced further in 

the presence of peptide-loaded vOX2-BJAB (94.42% ± 0.64 SEM of peptide-treated control) 

or CD200-BJAB (108.42% ± 4.03 SEM of control) cells.     
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Figure 7.11 CD200R and CTLA-4 expression on the CD8+ IM140.1 Y15 T cell clone are reduced when 

vOX2 or CD200 are expressed on the co-cultured antigen-presenting cell. Empty-BJAB, vOX2-BJAB and 

CD200-BJAB cells were left untreated, or pulsed with YVLDHLIVV peptide (derived from the EBV antigen 

BRLF1). Excess peptide was then washed off and the BJAB cells cultured overnight with the CD8+ IM140.1 

Y15 T cell clone specific for the YVL peptide. (a) CD200R, (b) CTLA-4 and (c) CD28 expression levels were 

quantified the next day for the CD8+ population by flow cytometry and the data pooled and expressed as a % of 

the expression on untreated CD8+ T cells cocultured with Empty-BJAB cells. Four independent experiments 

were carried out. CD200-BJAB co-cultures were analysed in three of those experiments, and vOX2-BJAB in 

two. Both vOX2 and CD200-BJAB significantly suppressed CD200R expression in comparison to Empty-

BJAB, both in the absence (F (2, 8) = 443.85; ***p < 0.001 for both) and presence (F (2, 8) = 60.78; ***p < 

0.001 for both) of peptide, when analysed by a univariate ANOVA test (SPSS software). Both vOX2 and 

CD200-BJAB significantly suppressed CTLA-4 expression in comparison to Empty-BJAB, both in the absence 

(F (2, 8) = 90.54; ***p < 0.001 for both) and presence (F (2, 8) = 18.51; **p < 0.01 for both) of peptide, when 

analysed by a univariate ANOVA test (SPSS software). Neither vOX2 nor CD200 significantly altered the 

expression of CD28 (p=0.12 in the absence of peptide and p=0.41 with peptide treatment).  
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Figure 7.12 CD200R and CTLA-4 expression on the CD4+ SL c93 T cell clone are reduced when vOX2 or 

CD200 are expressed on the co-cultured antigen-presenting cell. Empty-BJAB, vOX2-BJAB and CD200-

BJAB cells were left untreated or pulsed with PRSTVFYNIPPMPLPPSQL peptide (derived from the EBV 

antigen EBNA2). Excess peptide was then washed off and the BJAB cells cultured overnight with the CD4+ SL 

c93 T cell clone specific for the PRS peptide. (a) CD200R, (b) CTLA-4 and (b) CD28 expression levels were 

quantified the next day for the CD4+ population by flow cytometry and the data pooled and expressed as a % of 

the expression on untreated cells co-cultured with Empty-BJAB cells. Five independent experiments were 

carried out; both vOX2 and CD200-BJAB co-cultures were analysed in three experiments. Both vOX2 and 

CD200-BJAB significantly suppressed CD200R expression in comparison to Empty-BJAB, both in the absence 

(F (2, 8) = 481.20; ***p < 0.001 for both) and presence (F (2, 8) = 61.01; ***p < 0.001 for both) of peptide, 

when analysed by a univariate ANOVA test (SPSS software). Both vOX2 and CD200-BJAB significantly 

suppressed CTLA-4 expression in comparison to Empty-BJAB, both in the absence (F (2, 8) = 319.46; ***p < 

0.001 for both) and presence (F (2, 8) = 5.34; *p < 0.05 for both) of peptide, when analysed by a univariate 

ANOVA test (SPSS software). Neither vOX2 nor CD200 altered the expression of CD28 (p=0.12 in the 

absence of peptide, and p=0.28 with peptide treatment). 
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7.5 Discussion 

 
The data presented in this chapter confirm that the majority of primary human CD8+ T cells 

express the CD200R on their surface. Moreover, most CD8+ T cells specific for a particular 

viral antigen were also CD200R+. The percentage of T cells reactive against each viral 

peptide differed between donors. Taking the BZLF1 RAK peptide as an example, 

approximately 0.6% of Donor A’s CD8+ T cells were specific for this peptide (Figure 7.1), 

in comparison to ~1.3% of Donor B’s cells (Figure 7.4), and 17% of the IM patient CD8+ T 

cells (Figure 7.2). In contrast, only approximately 1% of IM135 CD8+ T cells were directed 

against the latent antigen EBNA3A FLR peptide, with a similar frequency to Donor A (~1%) 

and Donor B (~2%%). The high percentage of IM T cells directed against an EBV 

immediate-early lytic protein, BZLF1 (RAK) corresponds with a previous report (Steven et 

al., 1997). Presumably it represents a response to the lytically replicating virus during IM 

pathogenesis.  

Responses to EBV latent proteins are usually smaller than the more dominant lytic 

response (Hislop et al., 2007), and the number of CD8+ T cells directed against CMV 

antigens is generally higher than those specific for EBV (Khan, 2007). In fact, CMV 

infection alters the total lymphoid population, increasing the number of circulating CD8+ and 

CD4+ memory T cells, NK cells, and B cells with age (Chidrawar et al., 2009). The data of 

the present study are consistent with these reports (Table 7.1), and demonstrate that most 

viral antigen-specific T cells express CD200R. The lack of readily available KSHV tetramers 

precluded determining the pattern of CD200R expression on T cells directed against this 

virus. 

Cultured murine T cell hybridoma cells express mCD200R1. The observed 

upregulation of mCD200R1 on the surface of stimulated murine T hybridoma cells (Figure 



Chapter 7: Modulation of CD200R expression on T cells by vOX2 and CD200    

  248 

7.9) is consistent with reports in the literature. Torrero and colleagues demonstrated that 

stimulating murine basophils in whole blood by both IgE-independent and IgE-dependent 

means resulted in an upregulation of cell surface mCD200R1, and an increase in the 

percentage of mCD200R1+ cells (Torrero et al., 2009). mCD200R1 was also upregulated on 

basophils in vivo, in response to infection with a parasitic nematode, and in an allergic model 

(sensitisation to ovalbumin). mCD200R1 expression peaked after 1-2hrs of stimulation, and 

was undetectable after 4hrs, indicating rapid cycling of the receptor to and from the plasma 

membrane (Torrero et al., 2009). The data of the present study are inconsistent with these of 

Torrero et al., since mCD200R1 expression increased over 16hrs post-stimulation.  

The opposite result was obtained when human T cell clones were stimulated. Self-

presentation of cognate antigen peptide caused a dramatic reduction in CD200R levels 

(Figures 7.10/11/12). In contrast to the study of Torrero (Torrero et al., 2009), Masocha 

observed that the in vivo LPS-mediated stimulation of murine microglia in the CNS reduced 

mCD200R1 mRNA levels (Masocha, 2009). mCD200R1 mRNA levels were significantly 

diminished 4hrs post-LPS treatment, and were still lower than control levels when the 

animals were sacrificed one year later. These findings are more consistent with those of the 

present study. In humans, CD200R expression in the CNS is dysregulated in the brains of 

Alzheimer’s Disease (AD) patients (Walker et al., 2009). The chronic inflammation in AD 

brains, concomitant with reactive microglia and astrocytes, is associated with reduced 

neuronal CD200 and reduced neuronal, macrophage and microglial CD200R expression. 

Anti-inflammatory cytokines IL-4 and IL-13 amplify macrophage and microglial CD200R 

levels. The near absence of IL-4 in AD and elderly brains may therefore account at least in 

part for attenuated CD200R expression, and an inflammatory phenotype (Walker et al., 

2009). In fact, LPS-induced microglial IL-1β secretion is attenuated by co-culture with wild-

type neurons, but not with neurons isolated from IL-4-/- mice, expressing lower levels of 
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mCD200 (Lyons et al., 2009). To corroborate this finding, the inhibitory effect of wild-type 

neurons on activated microglia can be blocked with an anti-mCD200 antibody (Lyons et al., 

2009). Furthermore, inflammation in the murine CNS induced by proinflammatory cytokines 

in response to a mechanical stress (foot shock) also attenuated mCD200R1 expression by 

hypothalamic microglia (Blandino et al., 2009).  

So, in humans and mice inflammation in the CNS appears to correlate with reduced 

CD200R expression. In the present study, CD200R expressed by the CD8+ IM140.1 Y15 T 

cell clone decreased upon self-presentation of cognate antigen (Figure 7.10), but it did not 

reduce when cognate antigen was presented to the CD8+ IM140.1 Y15 and CD4+ SL c93 T 

cell clones by HLA-matched APCs (Figure 7.11, a, and Figure 7.12, a). This result is 

surprising, because stimulated T cells secrete cytokines such as IFNγ, thus creating an 

inflammatory environment. However, surface CD200R expression was significantly reduced 

in the presence of either vOX2 or CD200, with and without peptide stimulation (Figure 

7.11, a, and Figure 7.12, a). This correlates somewhat with data published by Rygiel, who 

demonstrated that CD200R expression increases on T cells in the absence of CD200 (Rygiel 

et al., 2009). The number of mCD200R1+ T cells were amplified in mCD200-/- mice 

exhibiting a severe pathology in response to influenza infection (Rygiel et al., 2009). These 

data would suggest that the presence of CD200 negatively regulates CD200R expression, 

and data from the present study indicate that vOX2 acts in a similar fashion. 

Consistent with the literature, CTLA-4 expression was barely detectable (Alegre et 

al., 1996), on human T cell clones. However, CTLA-4-expression was detectable on T cell 

clones cultured with BJAB cells, and its expression was significantly downregulated on the 

surface of T cells incubated with vOX2 or CD200-expressing APCs (Figure 7.11, b, and 

Figure 7.12, b), similar to the downregulation of CD200R. Downregulation of CTLA-4 

expression has been observed in vivo. Flores-Borja and colleagues reported reduced CTLA-4 
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expression on regulatory T cells isolated from RA patients, though CD28 expression was 

unaltered (Flores-Borja et al., 2008). Similarly, CD28 expression was not altered by peptide 

stimulation in the present study, nor by either vOX2 or CD200 (Figure 7.11, c, and Figure 

7.12, c), concurring with current opinion that CD28 is expressed on T cells regardless of 

their activation state (Rudd et al., 2009). The downregulation of CTLA-4 on RA Tregs was 

due to rapid internalisation, but it was restored to the surface of the cell by PMA treatment 

(Flores-Borja et al., 2008). Reduced CTLA-4 expression was also observed on umbilical 

cord blood T cells, but was reduced further upon stimulation of these cells (Miller et al., 

2002).  

Jago and colleagues examined basal levels of CTLA-4 on several T cell subsets (Jago 

et al., 2004). T cell clones and memory T cells have large reservoirs of intracellular CTLA-4, 

which is mobilised to the cell surface upon PMA stimulation (Jago et al., 2004). Cycling of 

CTLA-4 to the cell surface appears to be regulated by a transmembrane protein, the T cell 

receptor-interacting molecule (TRIM), which binds to CTLA-4 by a mechanism independent 

of its binding to the TCR/CD3 complex (Valk et al., 2006). CTLA-4 is removed from the 

plasma membrane via binding of the clathrin adaptor protein AP-2 to an intracellular motif; 

phosphorylation of this motif prevents AP-2 binding and thus leads to retention of CTLA-4 

on the cell surface (Valk et al., 2008). Therefore, the downregulation of CTLA-4 on the 

surface of the CD8+ IM140.1 Y15 and CD4+ SL c93 T cell clones incubated with vOX2-

BJAB and CD200-BJAB cells may be due to increased internalisation, presumably in 

response to a negative stimulus being provided by CD200R ligation. CTLA-4 internalisation 

appears to be due to its dephosphorylation, subsequently enabling binding to AP-2 and 

cycling back to the endosomes (Rudd et al., 2009). Activated mCD200R1 recruits 

phosphatases such as SHIP (Zhang et al., 2004) and human CD200R ligation reduces the 

phosphorylation of kinases ERK1/2 and Akt (Chapter 6). Therefore, a potential mechanism 



Chapter 7: Modulation of CD200R expression on T cells by vOX2 and CD200    

  251 

for the downregulation of CTLA-4 expression is its dephosphorylation as a result of the 

CD200R signalling pathway. The consistent expression of CD28 on the T cells (Figure 7.11, 

c, and Figure 7.12, c) is consistent with the literature (Rudd et al., 2009). Because CTLA-4 

has a much higher affinity for CD80 and CD86, ligands that CD28 and CLTA-4 compete for 

(Bhatia et al., 2006), surface CTLA-4 must be downregulated in order for CD28 to function. 

CTLA-4 is expressed on activated T cells and is barely present on the surface of 

unstimulated cells (apart from Tregs). Antigen-specific T cell clones are maintained in an 

activated state due to regular restimulation, and the presence of cytokines such as IL-2 in the 

culture medium. Therefore the downregulation of CTLA-4 on T cell clones in the presence 

of vOX2 and CD200 may be a restoration of basal levels. However, as observed in the 

present studies, CTLA-4 expression was barely detectable on the surface of the T cell clones 

(Figure 7.8) indicating that its expression may not be much higher than on resting T cells. 

The downregulation of two inhibitory molecules, CD200R and CTLA-4 (and no alteration in 

the expression of CD28, an activatory coreceptor), on the surface of T cell clones in the 

presence of vOX2 and CD200, with and without antigen, suggests that vOX2 and CD200 

inhibit the activity of the T cells. Subsequent downregulation of the inhibitory receptors 

would prevent aberrant inhibition of cell activity. CTLA-4 is naturally downregulated on 

resting T cells, and upregulated on activated cells, concurring with our hypothesis that in the 

presence of putative inhibitory factors, vOX2 and CD200, CTLA-4 expression is reduced. 

Thus CD200R may be regulated in a similar fashion to CTLA-4, ie. it is downregulated 

following binding to its ligands, to prevent over-inhibition of T cell activity. 
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Chapter 8.   RRV and CMV homologues of CD200 

 
So far a role for KSHV vOX2 and its cellular counterpart CD200 in the suppression of 

human T cell clone activity has been identified. Homologues of human CD200 have been 

identified in other viruses though their mechanisms of action have not been exhaustively 

researched (some of these are mentioned in Chapter 1). Thus, the little-researched RRV 

CD200-like protein, and three putative human CMV CD200-like proteins were analysed with 

respect to their ability to modulate T cell clone activity. All four proteins were expressed on 

the surface of BJAB cells and then introduced into our model system to determine T cell 

activity by the secretion of IFNγ. Relevant methodologies are described in Chapter 2 and 

will be referred to throughout this chapter. 

8.1. Rhesus rhadinovirus (RRV) 

 
The reader was introduced to RRV in Chapter 1.4. RRV and KSHV are members of the same 

genera of the gammaherpesvirinae subfamily, γ2-rhadinoviruses, though KSHV infects 

humans and the natural host of RRV is the Old World primate, rhesus macaque (Desrosiers 

et al., 1997). RRV enables the investigation of KSHV-like infection in a primate host, and 

induces similar pathology to KSHV (Wong et al., 1999). Wong et al. isolated RRV strain 

17577 from a macaque with a multicentric lymphoproliferative disease and infected RRV-

seronegative macaques with this virus (Wong et al., 1999). These immunosuppressed 

macaques, co-infected with simian immunodeficiency virus (SIV) developed pathology with 

similarity to MCD, though SIV-negative RRV-positive animals rarely develop 

lymphoproliferative disease (Wong et al., 1999). The putative RRV homologue of KSHV 

vOX2, encoded by the RRV ORF R14 (Pratt et al., 2005), was expressed in BJAB cells and 

its biological activity investigated in our human T cell clone model system. As mentioned 
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previously two strains of RRV have been isolated and sequenced, RRV 17577 (Searles et al., 

1999) and RRV H26-95 (Desrosiers et al., 1997). The strains differ by several base changes, 

but the RRV vOX2 proteins share 100% protein identity with each other (Figure 8.1). RRV 

vOX2 shares 30% protein identity with human CD200, and 28% identity with KSHV vOX2, 

and like these two proteins it contains Ig-like domains (Langlais et al., 2006). Initially, 

telomerised rhesus fibroblast cells (tRFB) were infected with both strains of the virus, and 

infectivity determined by plaque assay. The RRV vOX2 transcripts were then analysed by 

Northern Blotting. Due to their identical protein sequences, only the RRV H26-95 strain was 

selected for the generation of full-length EGFP-tagged RRV vOX2.   

 

 

                                                                                                    
                          *        20         *        40         *        60         *        80       
Human CD200    : MERLVIRMPFCHLSTYSLVWVMAAVVLCTAQVQVVTQDEREQLYTPASLKCSLQNAQEALIVTWQKKKAVSPENMVTFSE  
KSHV vOX2      : MSSLFISLPWVAFIWLALLGAVGGARVQGPMRGSAALTCAITPRADIVSVTWQKRQLPGPVNVATYSHSYGVVVQTQYRH  
RRV H26-95 vOX2: MSGGITLTLLLATLATVRCALQTHYAAVPVHSTASLGCVLTTPHDVLIVTWQKQESPSPVNVATYSSEAGTVVQPPFAGR  
RRV 17577 vOX2 : MSGGITLTLLLATLATVRCALQTHYAAVPVHSTASLGCVLTTPHDVLIVTWQKQESPSPVNVATYSSEAGTVVQPPFAGR  
 
                          *       100         *       120         *       140         *       160 
Human CD200    : NHGVVIQPAYKDKINITQLGLQNSTITFWNITLEDEGCYMCLFNTFGFGKISGTACLTVYVQPIVSLHYKFSEDHLNITC  
KSHV vOX2      : KANITCPGLWNSTLVIHNLAVDDEGCYLCIFNSFGGRQVSCTACLEVTSPPTGHVQVNSTEDADTVTCLATGRPPPNVTW  
RRV H26-95 vOX2: VDIPEHKLTRTTLKFFNATLEDEGCYLCIFNAFGVGKLSGTACLTVYVPLSMSVTFYPPINPTQLVCRAEASPAPSVNWT  
RRV 17577 vOX2 : VDIPEHKLTRTTLKFFNATLEDEGCYLCIFNAFGVGKLSGTACLTVYVPLSMSVTFYPPINPTQLVCRAEASPAPSVNWT  
                                   
                          *       180         *       200         *       220         *       240  
Human CD200    : SATARPAPMVFWKVPRSGIENSTVTLSHPNGTTSVTSILHIKDPKNQVGKEVICQVLHLGTVTDFKQTVNKGYWFSVPLL  
KSHV vOX2      : AAPWNNASSTQEQFTDSDGLTVAWRTVRLPRGDNTTPSEGICLITWGNESISIPASIQGPLAHDLPAAQGTLAGVAITLV  
RRV H26-95 vOX2: GVPPELCSEPEVFPRPNGTTLVVGRCNVTSVDPEDLENATCLVTHIGGLAAARPLDPVFSDPLEGTSHYVVGVVAAAAVL  
RRV 17577 vOX2 : GVPPELCSEPEVFPRPNGTTLVVGRCNVTSVDPEDLENATCLVTHIGGLAAARPLDPVFSDPLEGTSHYVVGVVAAAAVL  
                
                          *       260         *        
Human CD200    : LSIVSLVILLVLISILLYWKRHRNQDREP-- :269 
KSHV vOX2      : GLFGIFALHHCRRKQGGASPTSDDMDPLSTQ :271 
RRV H26-95 vOX2: GIFLTGVFLYRSM------------------ :253 
RRV 17577 vOX2 : GIFLTGVFLYRSM------------------ :253 

 
 

 

 

Figure 8.1 Conserved protein identities between human CD200, KSHV vOX2 and RRV vOX2 proteins. 

The translated regions of Human CD200, KSHV K14 (vOX2) and RRV R14 (vOX2) were aligned (GeneDoc 

Version 2.7) to identify conserved residues. Amino acid residues conserved between the RRV vOX2 proteins of 

RRV strains H26-95 and 17577 are highlighted in yellow. Residues conserved between RRV vOX2 and KSHV 

vOX2 or CD200 are highlighted in blue, and those conserved between KSHV vOX2 and CD200 are 

highlighted in grey. Residues conserved across the four proteins are shaded in black. 
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8.1.1. Initial analyses of RRV and RRV vOX2  
 

In order to construct an RRV vOX2 R14-expression vector for the transduction of BJAB 

cells, we must have access to the RRV genome to enable PCR amplification of R14. 

Therefore, susceptible cells were infected with RRV, viral RNA isolated from the cells, and 

cDNA generated via RT-PCR. Initially, macaque cells were inoculated with RRV strains 

17577 and H26-95, and the presence of the virus determined by immunoblotting for the RRV 

complement control protein, RCP (ORF4). Due to the lack of an antibody directed against 

RRV vOX2, RRV infection and replication were detected with anti-RCP antibody, and RRV 

vOX2 (R14) was detected by PCR for R14.  

RRV naturally infects rhesus macaques; therefore, cells derived from macaques are 

utilised for the culture and propagation of RRV. Primary rhesus fibroblasts (RFB) were 

cultured to confluence before infection with either of the two strains of RRV, H26-95 and 

17577 (Figure 8.2, a and b respectively). Productive infection can be determined visually by 

the appearance of viral ‘plaques’, a phenomenon known as cytopathic effect (CPE). CPE is 

characterised as an area of cell clearance resulting from lytic replication of the virus and 

subsequent cell death. The number of plaques, or regions of CPE in a known area, indicates 

the number of plaque forming units (PFU) present in the viral culture. The PFU titre of the 

virus is determined by serially diluting the virus, inoculating susceptible cells and counting 

the number of plaques. In order to prevent the spread of the virus from infected cells to other 

areas of the culture dish, the cells are enveloped in a soft agar (Chapter 2.8.2). The titre of 

each viral stock was determined before subsequent infections of cells.  

tRFB are also susceptible to RRV infection and rapidly proliferate in culture, whereas 

RFB grow more slowly. Thus tRFB were used for the production of RRV stocks and for the 

isolation of RRV RNA. Early CPE was absent in uninfected cells (Figure 8.3, a), but was 
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clearly evident in tRFB infected with RRV 17577 (Figure 8.3, b) and RRV H26-95 (Figure 

8.3, c). Clumped and dying cells were visible in a concentrated area, these will die leaving an 

area of clearing in the cell monolayer.  

 

(a) RRV H26-95 

 

(b) RRV 17577 

 

 

Figure 8.2 Determining the titre of rhesus rhadinovirus (RRV). Primary rhesus fibroblasts (RFB) were 

infected with serial dilutions of RRV strain H26-95 (a), or 17577 (b), then overlayed with complete 

medium/1.4% Nobles agar. Following the appearance of distinct zones of clearance (‘plaques’), indicated by 

arrows, these areas were counted for each virus concentration in order to determine the number of plaque-

forming units (PFU) in the viral stock solution. Each dilution was carried out in triplicate; plates that were not 

100% confluent with RFB were discounted to avoid the inclusion of areas of low cell density as viral plaques. 
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 (a) Uninfected 

 
(b) RRV 17577 

 
(c) RRV H26-95 

 
 

Figure 8.3 Cytopathic effect of rhesus rhadinovirus (RRV) on telomerised rhesus macaque fibroblasts 

(tRFB). Confluent tRFB were treated with polybrene (2µg/ml, 60mins, 37oC) and (a) untreated, or infected 

with RRV strains (b) 17577 and (c) H26-95; the cells were passaged three days later. Approximately 6 days 

after infection, the cytopathic effect of the virus (indicated by arrows) was observed in (b) and (c) in 

comparison to (a) healthy uninfected tRFB.   
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RRV-infected cells were lysed and the presence of the virus confirmed by 

immunoblotting for RCP (Figure 8.4). The RCP protein differs between the H26-95 and 

17577 strains of RRV. RRV H26-95 RCP contains four CCP domains, whereas RRV 17577 

RCP contains eight CCP domains, though both proteins are alternatively spliced and so exist 

as several isoforms (Mark et al., 2007). A marked difference between the immunoblotting 

profiles of H26-95 RCP and 17577 RCP (Figure 8.4), is explained by the expression of 

alternate isoforms and subsequent glycosylation. RCP was clearly present in 17577 and H26-

95-infected cells, and not in uninfected tRFB cells when analysed by immunoblotting 

(Figure 8.4, a). Next, the expression of RRV vOX2 (R14) was determined by RT-PCR. 

RNA was extracted from infected and uninfected tRFB cells. cDNA was generated from 

RNA by random priming (see Chapter 2.8.3/7), and the translated region of the vOX2 R14 

gene amplified by PCR, using primers 2F and 2R (see Appendix, Table I). RRV vOX2 R14 

was absent from uninfected cells but clearly identifiable in infected cells, and the primers 

amplified PCR products with an identical size in cells infected with either RRV 17577 or 

RRV H26-95 (Figure 8.4, b).  

Northern blotting analysis enables the detection of gene transcripts and gene 

expression in cells by the isolation of RNA, and subsequent probing with a radiolabelled 

cDNA sequence matching the gene of interest. Performing northern blotting with RNA 

isolated from RRV-infected cells allowed us to determine whether RRV vOX2 R14 is 

expressed in infected cells and to ascertain whether RRV vOX2 R14 is spliced, resulting in 

protein isoforms. Northern Blotting (Chapter 2.8.4) revealed a full-length transcript of R14, 

of 5.84Kb in length, and a splice variant of 3.74Kb (Figure 8.5, a), consistent with a 

previous report in the literature (Pratt et al., 2005). The transcript sizes were extrapolated 

from the known sizes of a DNA ladder separated on the formaldehyde gel (not shown). The 

presence of RNA in the uninfected control was confirmed by labelling ribosomal RNA with 
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ethidium bromide and viewing under UV light (Figure 8.5, b). Pratt and colleagues infected 

primary rhesus fibroblasts with RRV 17577 and detected two R14 transcripts 72hrs after 

infection by Northern Blotting, suggesting that R14 is a late-lytic gene (Pratt et al., 2005). 

Our data (Figure 8.5) confirm that R14 is expressed as two transcripts, and that they are 

almost certainly present in cells undergoing lytic replication of RRV (the cells were 

harvested for RNA extraction once CPE was evident). Pratt et al. identified a larger RRV 

vOX2 transmembrane protein, localised to the plasma membrane and cytosol of cells 

engineered to express the larger transcript, and an alternate soluble protein present in the 

cytosol and secreted into the supernatant by cells transduced with the smaller transcript (Pratt 

et al., 2005). BJAB cells were engineered to express the larger transmembrane isoform of 

vOX2. 

 

(a) Immunoblotting for RCP     (b) RT-PCR to detect RRV vOX2 (R14) 
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Figure 8.4 Confirming the infection of telomerised rhesus fibroblasts (tRFB) with rhesus rhadinovirus 

(RRV). (a) To ensure that tRFB cells harvested for viral RNA analyses were infected with RRV, cell lysates 

were analysed for expression of the lytic RRV protein RCP. Proteins were separated by SDS-PAGE and RCP 

detected with specific antibodies raised against each RRV strain. Alternative splicing of the RCP gene results in 

different blotting patterns for RCP between RRV strains. Immunoblotting for each strain of RCP was carried 

out on separate immunoblots, and an uninfected control was included for each. Irrelevant lanes were excluded, 

and a representative uninfected control is displayed. (b) RRV vOX2 R14 was amplified from cDNA prepared 

from RRV-infected tRFB, and was absent in uninfected cells (left lane). 
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Figure 8.5 Northern blotting analysis of the rhesus rhadinovirus vOX2 gene (R14). RNA was extracted 

from uninfected or RRV-infected telomerised rhesus fibroblasts (tRFB). (a) RRV vOX2 R14 was detected by 

probing the Northern Blot with a radiolabelled probe, generated from the translated region of the RRV vOX2 

gene by RT-PCR, and labelled by the incorporation of dCTP [α-32P] by random priming. Two transcripts of 

RRV vOX2 R14 were identified. (b) The quality of the ribosomal RNA was visualised by inclusion of ethidium 

bromide, confirming the presence of RNA in the uninfected control lane. All lanes presented here were taken 

from the same exposure of the membrane to hyperfilm, but irrelevant lanes were excluded. 

← 28S 
 
← 18S 

← 5.84 Kb  

 

← 3.74 Kb  

                RRV       RRV 
tRFB     H26-95    17577 
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8.1.2. Generating RRV vOX2-EGFP, and determining its physiological activity     
 

Once the expression of RRV vOX2 R14 in RRV-infected cells had been determined, and the 

existence of two alternative transcripts, as reported in the literature, had been confirmed, a 

strategy to generate full-length RRV vOX2 was developed (Chapter 2.8.6). In order to 

examine the activity of RRV vOX2 in our T cell clone model system, it must be expressed 

by our HLA-matched BJAB cells. The expression of RRV vOX2 must also be quantifiable. 

To achieve this, the sequence encoding full-length RRV vOX2 (from RRV strain H26-95) 

was fused in-frame with EGFP to enable the detection of RRV vOX2 by flow cytometry and 

microscopy. Briefly, the translated region of R14 was cloned into a vector containing EGFP 

(pEGFP-N1). The two genes were then digested from the vector and inserted into a 

bicistronic retroviral expression vector (pQCXIP), to enable the co-transcription of a 

puromycin-resistance gene. BJAB cells were transduced with infectious retrovirus containing 

the R14-EGFP plasmid.  

Transduced BJAB cells were maintained on puromycin selection and RRV vOX2 

protein expression was quantified by the flow cytometric analysis of EGFP fluorescence 

(Figure 8.6). Two populations of RRV vOX2-expressing cells are evident in the histogram; 

both populations are fluorescing more than the Empty-BJAB control cells, indicating that all 

RRV vOX2-EGFP BJAB cells express the protein, but differ in their expression levels. RRV 

vOX2-positive cells were initially isolated by cell-sorting (BD Biosciences, data not shown) 

for cells highly fluorescent in the FL1 channel (EGFP), and then cultured. It was not possible 

to maintain a single highly-expressing population in culture. However, the RRV-EGFP 

expression levels were quantified before each experiment to ensure that the fluorescent 

profile mirrored this histogram (Figure 8.6).    

Due to the observed downregulation of HLA-ABC on the surfaces of BJAB cells 

engineered to express vOX2 or CD200 (Chapter 6.4), HLA-ABC expression on RRV vOX2-
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EGFP-BJAB was quantified by flow cytometric analysis, utilising fluorophore-conjugated 

antibodies. Surprisingly, HLA-ABC expression was slightly increased on the surface of RRV 

vOX2-EGFP-BJAB cells, to 125.24% ± 9.14 SEM of the HLA-ABC on present on the 

surface of Empty-BJAB control cells in two independent experiments (Figure 8.7).    

 

G FP

Em pty-BJA B
RR V vO X2-EG FP-B JAB

G FPG FP

Em pty-BJA B
RR V vO X2-EG FP-B JAB

 

Figure 8.6 Expression of RRV vOX2 fused with EGFP on engineered BJAB cells. BJAB cells were 

transduced with either an empty retroviral vector, or were engineered to express RRV vOX2 tagged with EGFP 

by retroviral transduction. The expression of RRV vOX2-EGFP was determined by flow cytometric analysis of 

EGFP fluorescence (green), in comparison to Empty-BJAB control cells (red). This histogram contains the raw 

data from one experiment, but is representative of three independent experiments.  
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Figure 8.7 HLA-ABC expression on RRV vOX2-expressing BJAB cells is increased. BJAB cells were 

engineered to express RRV-vOX2-EGFP or an empty vector. Extracellular HLA-ABC was quantified by flow 

cytometry, using fluorophore-conjugated monoclonal antibodies. Two independent experiments were carried 

out with each cell type, and the value of the isotype control median fluorescence subtracted from the sample 

before normalising to the fluorescence value obtained for the Empty-BJAB control. The difference in HLA-

ABC expression was not significant when analysed by one-way ANOVA (SPSS software). 
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Figure 8.8 RRV vOX2 does not suppress the activity of human T cell clones. Empty-BJAB, vOX2-BJAB, 

CD200-BJAB or RRV vOX2-EGFP-BJAB cells, were pulsed with either YVLDHLIVV (BRLF1 peptide, 

IM235 and IM140.1 clones) or PRSTVFYNIPPMPLPPSQL (EBNA2 peptide, SL c93 clone) for one hour, 

washed, and then co-cultured with each T cell clone for 16 hours (all treatments were carried out in duplicate). 

IFNγ-release was quantified by ELISA. All values represented as 0pg/ml IFNγ were beyond the limit of 

detection of this ELISA (<31.25pg/ml). These data were gathered from one experiment, but are representative 

of two independent experiments. 
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Interestingly, the slight upregulation of HLA-ABC on the surface of RRV vOX2-

EGFP-BJAB cells, in contrast to the downregulation of HLA-ABC on vOX2-BJAB and 

CD200-BJAB cells, mirrors the opposing functional data obtained for the three proteins. As 

discussed in Chapter 5, both vOX2 and CD200-expressing BJAB cells suppress the activity 

of human T cell clones, as measured by the secretion of IFNγ. In contrast, RRV vOX2-EGFP 

did not suppress IFNγ-secretion by the T cell clones, but in fact appeared to slightly increase 

production of the cytokine (Figure 8.8). The suppressive effect of CD200 (turquoise), and to 

a lesser extent, of vOX2 (red), was evident in comparison to the Empty-BJAB (dashed black 

line) control. However, RRV vOX2-EGFP BJAB cells (green) consistently induced a higher 

secretion of IFNγ than the Empty-BJAB control cells, in all five T cell clones. Data from one 

experiment (error bars denote SEM between duplicates) are presented (Figure 8.8) and are 

representative of two independent experiments. Consistent results were obtained between 

experiments, therefore further analysis was deemed unnecessary.  

8.2. Determining the physiological activities of three putative CMV 

homologues of CD200 

 
Human CMV (HHV-5) can be detected in 40 to 70% of individuals across the World’s 

populations. CMV is usually acquired early in life, without serious pathology in 

immunocompetent individuals (Freeman, 2009). However, the infection of neonates by virus 

dissemination through the placenta can result in organ failure, damage to the CNS, and 

eventual death (Demmler-Harrison, 2009). Similarly, the transmission of CMV to 

immunocompromised hosts causes organ and tissue damage, and can increase the probability 

of graft rejection in CMV-negative individuals. The pathogenesis of CMV in 

immunocompromised individuals is incompletely understood, but immunosuppressive 

properties of the virus may increase the likelihood of infection with other pathogens 

(Freeman, 2009).  
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Sester et al. isolated CD4+ CMV-specific T cells from renal dialysis recipients with 

an anergic phenotype. These CD4+ cells expressed higher levels of programmed death-1 

(PD-1) molecule, a member of the CD28 family and a negative regulator of T cell activity, 

than those isolated from CMV-seropositive immunocompetent or CMV-seronegative 

individuals. The PD-1highCD4+ CMV-specific T cells had a reduced ability to generate IFNγ 

and IL-2, and their numbers were positively associated with CMV viral load (Sester et al., 

2008). Inhibition of T cell activity during CMV viraemia would reduce the immune response 

to infection with other viruses, providing a mechanism for disease pathology in 

immunosuppressed individuals. Other methods of CMV-mediated immunosuppression 

include the expression of viral proteins that inhibit the surface expression of MHC-peptide 

complexes on infected cells. However, cells that abnormally downregulate their MHC-

expression are in danger of recognition and killing by NK cells. CMV-infected cells do 

escape NK-mediated lysis, though their mechanism of evasion is controversial, and there are 

genetic differences between cultured laboratory CMV strains and clinical isolates, rendering 

some research of lab strains inconclusive.  

Wills and colleagues identified a cell-surface viral protein encoded by UL142 that 

conferred resistance against NK killing to autologous fibroblasts engineered to express the 

protein. UL142 is predicted to encode a highly glycosylated transmembrane protein 

containing an MHC class I-like antigen recognition domain, and is a CMV late gene. A 

CMV strain lacking UL142 was not as efficient at preventing NK-lysis of infected cells, in 

comparison to clinical and lab strains expressing UL142, and knockdown of UL142 in 

infected cells increased the sensitivity of the cells to NK killing, but did not completely 

abrogate CMV-mediated protection (Wills et al., 2005). Taken together, these data suggest 

that CMV infection induces immunosuppression by a variety of mechanisms, presumably to 

take into account the myriad T and NK cell specificities and HLA-restrictions of each 
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individual. The variety of immunosuppressive viral proteins expressed by the large (>230 

Kb) CMV genome  (Dunn et al., 2003), suggests that other undefined genes may also encode 

proteins that modify the host’s immune response.  

The CMV genome can be subdivided into a unique short (US) region and a unique 

long (UL) region, and as mentioned previously, the genomes of the laboratory strains all 

differ slightly. Three CMV genes, present in the UL region, UL119, UL120 and UL121 were 

isolated and cloned (Dr. Richard Stanton and Prof. Gavin Wilkinson, University of Cardiff) 

for examination in our model system. There are no published data on the CMV UL119 gene 

(NCBI database, Gene ID3077514); however, UL119 is believed to encode a putative type 1 

membrane protein, with IgG Fc-binding properties, and some similarity to CD200. An 

adjacent gene in the CMV genome, UL120 has also been sequenced (NCBI, Gene 

ID3077520); it is believed to encode a type 1 transmembrane protein, but its functional 

activities have also not been elucidated. The CMV UL121 (NCBI Gene ID3077529) also 

encodes a transmembrane protein. Dunn and colleagues created deletion mutants of the fully 

sequenced Towne strain of CMV, incorporated into a BAC (Dunn et al., 2003). They 

discovered that neither UL119 nor UL121 were required for in vitro replication of the virus 

in human foreskin fibroblasts (Dunn et al., 2003). However, though the genes may not be 

essential for virus replication, they appear to be conserved across species. A distinct strain of 

CMV infects the rhesus macaque (rhCMV); Barry et al. demonstrated that the region 

encoding UL119, UL120 and UL121 in human CMV is conserved in rhCMV. The translated 

gene products showed between 52.1% (for UL121) and 66.3% (UL120) similarity with 

human CMV (Barry et al., 1996). The conservation of these genes, and the observed 

similarity of the UL119 sequence to CD200, indicates that they may play an important 

functional role in the host upon CMV infection. The alignment of KSHV vOX2, human 
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CD200 and CMV 119, 120 and 121 proteins (Figure 8.9) confirms that CMV 119 and 

CD200 share some protein identity. 

 

                                                                                                    
                      *        20         *        40         *        60         *        80       
Human CD200: MERLVIRMPFCHLSTYSLVWVMAAVVLCTAQVQVVTQDEREQLYTPASLKCSLQNAQEALIVTWQKKKAVSPENMVTFSE  
KSHV vOX2  : MSSLFISLPWVAFIWLALLGAVGGARVQGPMRGSAALTCAITPRADIVSVTWQKRQLPGPVNVATYSHSYGVVVQTQYRH  
CMV UL119  : MCSVLAIALVVALLGDMHPGVKSSTTSAVTSPSNTTVTSTTSISTSNNVSSAVTTTVQTSTSSASTSVIATTQKEGHLYT  
CMV UL120  : MYRAGVTLLVVAVVSFGRWDSVTVATTIRVGWWYEPQVKMAYIYEHNDTNLTIFCNTTAYDSPFLASGMMIVLPHRTQFL  
CMV UL121  : MWGCGWSRILVLLLLMCMALMARGTYGAYICSPNPGRLRISCALSVLDQRLWWEIQYSSGRLTRVLVFHDEGEEGDDVHL  
              
                      *       100         *       120         *       140         *       160       
HumanCD200 : NHGVVIQPAYKDKINITQLGLQNSTITFWNITLEDEGCYMCLFNTFGFGKISGTACLTVYVQPIVSLHYKFSEDHLNITC  
KSHV vOX2  : KANITCPGLWNSTLVIHNLAVDDEGCYLCIFNSFGGRQVSCTACLEVTSPPTGHVQVNSTEDADTVTCLATGRPPPNVTW  
CMV UL119  : VNCEASYSYDQVSLNATCKVILLNNTKNPDILSVTCYARTDCKGPFTQVGYLSAFPSNDKGKLHLSYNATAQELLISGLR  
CMV UL120  : TRKVNYSEDMENIKQNYTHQLTHMLTGEPGTYVNGSVTCWGSNGTFGAGTFIVRSMVNKTAGNTNTFIHFVEDSELVENP  
CMV UL121  : TDTHHCTSCTHPYVISLVTPLTINATLRLLIRDGMYGRGEKELCIAHLPTLRDIRTCRVDADLGLLYAVCLILSFSIVTA  
                                                              
                      *       180         *       200         *       220         *       240       
Human CD200: SATARPAPMVFWKVPRSGIENSTVTLSHPNGTTSVTSILHIKDPKNQVGKEVICQVLHLGTVTDFKQTVNKGYWFSVPLL  
KSHV vOX2  : AAPWNNASSTQEQFTDSDGLTVAWRTVRLPRGDNTTPSEGICLITWGNESISIPASIQGPLAHDLPAAQGTLAGVAITLV  
CMV UL119  : PQETTEYTCSFFSWGRHHNATWDLFTYPIYAVYGTRLNATTMRVRVLLQEHEHCLLNGSSLYHPNSTVHLHQGDQLIPPW  
CMV UL120  : AYFRRSDHRAFMIVILTQVVFVVFIINASFIWSWTFRRHKR---------------------------------------  
CMV UL121  : ALWKVDYDRSVAVVSKSYKS------------------------------------------------------------  
 
                      *       260         *       280         *       300         *       320       
Human CD200: LSIVSLVILLVLISILLYWKRHRNQDREP---------------------------------------------------  
KSHV vOX2  : GLFGIFALHHCRRKQGGASPTSDDMDPLSTQ-------------------------------------------------  
CMV UL119  : NISNVTYNGQRLREFVFYLNGTYTVVRLHVQIAGRSFTTTYVFIKSDPLFEDRLLAYGVLAFLVFMVIILLYVTYMLARR  
CMV UL120  : --------------------------------------------------------------------------------  
CMV UL121  : --------------------------------------------------------------------------------  
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Figure 8.9 Conserved protein identity between human CD200, KSHV vOX2 and three CMV proteins. 

The translated regions of Human CD200, KSHV K14 (vOX2) and CMV UL119, UL120 and UL121 were 

aligned (GeneDoc Version 2.7) to identify conserved residues. Amino acid residues conserved between two 

proteins are highlighted in yellow or turquoise. Residues conserved across three proteins are highlighted in 

yellow, and those conserved between KSHV vOX2 and the CMV proteins are highlighted in blue. Residues 

conserved across all five proteins are shaded in black.  

 

 

UL119, UL120 and UL121 were cloned, fused in-frame with GFP, and inserted into the 

retroviral expression vector, pQCXIP, by a member of G. Wilkinson’s research group in 

Cardiff (Stanton, R.). These vectors were sent to our lab in Birmingham where BJAB cells 

were then transduced with the infectious retrovirus, and expanded by antibiotic selection, 
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creating CMV 119-GFP-BJAB, 120-GFP-BJAB and 121-GFP-BJAB. Once stable cell lines 

had been established, the expression of each GFP-tagged protein was determined by flow 

cytometry (Figure 8.10). We do not have access to antibodies directed against CMV proteins 

119, 120 or 121, so GFP expression served as a measure of protein expression. The three 

CMV proteins were expressed to variable levels by the BJAB cells, with CMV 121-GFP 

expressed (or at least fluorescing) better than 120-GFP and 119-GFP. In all cases, the GFP 

fluorescence of each BJAB cell line engineered to express a CMV vOX2 homologue was 

higher than the Empty-BJAB cells, indicating that the CMV proteins were expressed.  

Next, cell-surface HLA-ABC expression was determined by flow cytometric analysis 

with a fluorophore-conjugated monoclonal antibody. The raw data were normalised to the 

isotype control value, and then to the median fluorescent value for Empty-BJAB control. 

Data from three independent experiments were pooled, and the error bars represent the SEM 

between experiments. Similarly to RRV vOX2-EGFP, the CMV vOX2-GFP proteins all 

appeared to amplify the expression of HLA-ABC (Figure 8.11), though none of the 

differences reached statistical significance by one-way ANOVA. CMV 119-GFP-BJAB cells 

expressed 115.03% ± 9.23 SEM of the HLA-ABC expressed by the Empty-BJAB control, 

though the deviation between experiments largely negated this increase. Again, CMV 120-

GFP-BJAB cells expressed higher HLA-ABC (124.67% ± 33.38 SEM) than control cells, 

but the deviation was so large that this increase may be artefactual. The increase in HLA-

ABC expression on CMV 121-GFP-expressing cells is noticeable, with the engineered cells 

expressing 136.37% ± 19.14 SEM of the Empty-BJAB control, but does not reach statistical 

significance by one-way ANOVA.        

The total HLA-ABC protein expression in the cells was determined by lysing the 

engineered BJAB cells, and analysing either the whole cell lysates, or the cytosolic fractions 

(Figure 8.12) by SDS-PAGE and immunoblotting (Chapter 2.3). Interestingly, cytosolic 
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fractionation of the cells revealed a slight increase in HLA-ABC expression in CMV 119-

GFP-BJAB and CMV 120-GFP-BJAB cells (103.74% and 115.31% of control, respectively), 

but a reduction in the HLA-ABC levels of cells expressing CMV 121-GFP, to 78.61% of 

control (Figure 8.12, a), though the difference did not reach statistical significance by one-

way ANOVA. In contrast, whole cell lysates of all three engineered BJAB cell lines 

contained less HLA-ABC than the Empty-BJAB control cells (Figure 8.12, b). 

Cumulatively, neither CMV 119-GFP nor 120-GFP proteins altered the expression of HLA-

ABC. However, CMV 121-GFP-BJAB cells, which showed enhanced surface HLA-ABC 

levels by flow cytometric analysis, consistently and surprisingly contained less total cellular 

protein (Figure 8.12, c). HLA-ABC protein expression was reduced to 74.59% ± 4.01 SEM 

of the Empty-BJAB control in CMV 121-GFP-BJAB cells.  

The physiological activities of the putative CMV CD200 homologues were analysed 

in our T cell clone model system. The experiments were carried out as before, using vOX2-

BJAB and CD200-BJAB cells as positive internal controls to ensure that suppression of the 

T cell clones was possible. Three replicate experiments were carried out, though not every 

clone was analysed in each experiment (see Fig. legend for the number of replicates), and the 

data presented are representative of the replicates. KSHV vOX2 was consistently able to 

inhibit the secretion of IFNγ by the T cell clones, in contrast to CD200 which was variable, 

but suppression by one or both proteins was evident for each clone (Figure 8.13). In contrast 

to vOX2 and CD200, but in a similar manner to RRV vOX2-EGFP, the three CMV proteins 

were unable to suppress T cell activity, and in fact consistently amplified IFNγ-secretion in 

comparison to Empty-BJAB control cells.   
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Empty-BJAB

CMV 119-GFP-BJAB

CMV 120-GFP-BJAB

CMV 121-GFP-BJAB

GFP

Empty-BJAB
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GFP  

Figure 8.10 BJAB cells engineered to express three putative CMV homologues of vOX2, fused in-frame 

with GFP. BJAB cells were transduced with a retrovirus containing one of three CMV open reading frames 

(UL119, UL120 and UL121) fused in-frame with GFP. Following selection with puromycin, protein expression 

could be visualised by flow cytometric analysis of GFP. 
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Figure 8.11 Expression of putative CMV homologues of vOX2 does not alter HLA-ABC expression on 

the engineered cell. BJAB cells were engineered to express one of three putative CMV CD200 homologues 

(UL119, UL120 and UL121) fused in-frame with GFP. Extracellular HLA-ABC was quantified by flow 

cytometry, using specific monoclonal antibodies conjugated to a fluorophore. Three independent experiments 

were carried out, and the value of the isotype control median fluorescence subtracted from the sample before 

normalising to the fluorescence value obtained for the Empty-BJAB control. The differences in HLA-ABC 

expression between CMV-expressing BJAB cells and Empty-BJAB did not reach statistical significance by 

one-way ANOVA (SPSS software). 
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(a) Cytosolic fractionation (densitometric data)           (immunoblot) 
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(b) Whole cell lysate (densitometric data)            (immunoblot) 
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(c) Cumulative data 

Empty-BJAB
CMV119-

GFP-BJAB

CMV120-

GFP-BJAB

CMV121-

GFP-BJAB

Mean 100 96.13 101.14 74.59

SEM ± 7.60 ± 14.17 ± 4.01
 

 

Figure 8.12 HLA-ABC protein levels are similar in CMV 119/120/121-GFP-BJAB cells to Empty-BJAB 

control cells.  Protein extracts of engineered BJAB cells were prepared by two methods, isolating either (a) 

cytosolic fractions or (b) whole cell lysates. The proteins were separated by SDS-PAGE and Western Blotting, 

and immunoblotted with an anti-HLA-ABC antibody. Densitometry was carried out on each immunoblot and 

the data normalised by calculating the ratio of HLA-ABC to a calregulin loading control for each sample. (c) 

The densitometric data were pooled and presented as a % of the Empty-BJAB control. Differences in HLA-

ABC expression did not reach statistical significance when the data were analysed by one-way univariate 

ANOVA (SPSS software). 
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Figure 8.13 CMV proteins UL119, UL120 and UL121 do not suppress the activity of CD4+ or CD8+ T cell 

clones. BJAB cells engineered to express an empty vector, native vOX2, native CD200 or one of three putative 

CMV homologues of CD200, were pulsed with either YVLDHLIVV (a BRLF1 peptide, IM235 and IM140.1 

clones) or PRSTVFYNIPPMPLPPSQL (an EBNA2 peptide, SL c93 clone) for one hour, washed, and then co-

cultured with the T cell clone for 16 hours (each treatment was carried out in duplicate). IFNγ-release was 

quantified by ELISA. All values represented as 0pg/ml IFNγ were beyond the limit of detection of this ELISA 

(<31.25pg/ml). The data are representative of replicate experiments in which suppression of T cell clone 

activity by vOX2 or CD200 was evident (IM140.1, n=2; SL c93, n=1; IM235 c48, n=2; c79, n=2; c94, n=3). 
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8.3. Discussion 
 
Previous observations that a homologue of CD200 encoded by RRV (RRV vOX2:Fc) could 

suppress cytokine production by THP-1 cells and primary macrophages (Langlais et al., 

2006), implied that the full-length transmembrane protein may be able to suppress the 

activity of T cell clones in our model system. However, RRV vOX2-EGFP-BJAB cells were 

unable to suppress the secretion of IFNγ by T cell clones, and in fact appeared to exacerbate 

the production of this cytokine (Figure 8.8). An immunogenic protein, R1 has been 

identified in RRV, with homology to the KSHV protein K1. Damania et al. demonstrated 

that the intracellular domain of chimaeric R1 activated BJAB cells. Stimulation of the R1 

cytoplasmic tail induced calcium mobilisation, tyrosine phosphorylation and activated NFAT 

in BJAB cells (Damania et al., 2000). So the presence of lymphocyte-activating RRV 

proteins is not unusual, though obviously further analysis of the RRV vOX2 protein is 

necessary in order to verify its physiological activity.  

Interestingly, the lack of RRV vOX2-mediated suppression correlated with increased 

cell-surface HLA-ABC expression on RRV vOX2-EGFP-BJAB cells (Figure 8.7), in 

contrast with the consistent downregulation of HLA-ABC on the T cell-suppressive vOX2-

BJAB cells (Chapter 6, Figure 6.24). It had been previously noted that both the surface and 

total expression of HLA-ABC by vOX2-EGFP-BJAB and CD200-EGFP-BJAB cells were 

unaltered (Chapter 6, Figure 6.24/5). The difference in HLA-ABC expression by 

vOX2/vOX2-EGFP expressing BJAB cells suggests that tagging vOX2 with EGFP may alter 

its biological properties. However, only untagged vOX2 was investigated in our T cell model 

system. It would be interesting to note the activities of untagged RRV vOX2 in our model 

system. However, the absence of a specific antibody renders its detection impossible.  

The putative CD200 homologues encoded by CMV UL119, UL120 and UL121, have 

unknown activity in vivo, and are not essential for virus replication in vitro (Dunn et al., 
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2003). Again, due to the lack of an antibody for detection, the genes were fused in-frame 

with GFP (Stanton, R., Cardiff) before expressing on the surface of BJAB cells. Cell surface 

expression of HLA-ABC was not altered on CMV 119-GFP-BJAB or CMV 120-GFP-BJAB 

cells, though was enhanced on CMV 121-GFP-BJAB cells (Figure 8.11). In contrast to this, 

total HLA-ABC levels were reduced in CMV 121-GFP-BJAB cells (Figure 8.12). CMV 

121-EGFP-BJAB cells appeared to be more immunogenic than either CMV 119 or 120 in the 

T cell activity experiments (Figure 8.13). Enhanced IFNγ-secretion by T cells stimulated by 

CMV 121-GFP-BJAB cells seems to correlate with enhanced surface HLA-ABC expression, 

suggesting that the SDS-PAGE data may be inaccurate.   

As mentioned briefly in this chapter and in Chapter 1, CMV encodes several proteins 

capable of suppressing the immune response, primarily by inhibiting the expression of 

MHCI by infected cells, thus suppressing T cell activity. Deleting the primary 

downregulators of MHCI (US2, US3, US6 and US11) from a CMV strain, increased the 

number of identifiable CMV-specific CD8+ T cells in CMV-seropositive donors, indicating 

that there is a complex response to many CMV antigens, but that the T cell responses to 

these proteins are partly suppressed by the downregulation of MHCI in infected cells 

(Manley et al., 2004). CMV infection also induces a population of CD4+CD27-CD28- Tregs 

that inhibit the proliferation of PBMCs in response to CMV antigen (Tovar-Salazar et al., 

2009). The suppression of T cell responses by CMV is an important factor enabling CMV 

maintenance in vivo, and may explain the pathology in CMV-seropositive 

immunocompromised individuals, by suppressing the T cell response to other pathogens. 

The proteins encoded by CMV UL119, UL120 and UL121 did not suppress the secretion of 

IFNγ by CTLs in our model system, though like RRV vOX2, these proteins are tagged with a 

fluorescent protein to enable detection. Analysis of the untagged proteins in this system may 

produce different results. 
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Chapter 9.   Conclusions 
 

9.1 Conclusions 
 
The purpose of this study was to investigate the roles of a cellular protein, CD200, with 

known immunoregulatory properties, and a KSHV protein with homology to CD200, in 

modulating human leukocyte function in vitro and ex vivo. Initially, soluble recombinant 

vOX2 and CD200 proteins, fused in-frame with human IgG1 (Fc) were utilised to determine 

the effects of these proteins on granulocyte activity. Rezaee et al. had previously 

demonstrated a suppressive effect of vOX2:Fc on granulocyte oxidative burst in whole blood 

(Rezaee et al., 2005), but had not investigated the function of CD200:Fc, nor examined their 

activities on isolated neutrophils. As discussed previously, Fc-fusion proteins are commonly 

used for researching the activities of transmembrane proteins because they can be produced 

in large quantities, and can be used in vivo at low concentrations (Kamei et al., 2005). 

However, though vOX2:Fc and CD200:Fc moderately suppressed granulocytic oxidative 

activity in whole blood (Figure 4.6), they did not alter the response of primary isolated 

neutrophils to stimulation (Figures 4.4-4.8). Contamination with bacterial endotoxin was an 

issue requiring constant monitoring, and the biological activity and specificity of the 

recombinant proteins could not be readily analysed. Therefore, the direction of the research 

altered slightly, and existing B lymphoblastoid cells engineered to express native vOX2 and 

CD200 on their cell surface were used for all later experiments. This method is more 

physiologically relevant, as vOX2 is expressed by KSHV-infected reactivated B cells 

(Figure 5.4) and CD200 is expressed on the surface of B cells, T cells, endothelia and 

neurons (Wright et al., 2001). 

Initially, cells expressing full-length vOX2 and CD200 were used to determine a 

mechanism for the modest suppression of granulocyte oxidative activity by vOX2:Fc and 
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CD200:Fc. Native vOX2 and CD200 moderately suppressed the release of IL-8, a potent 

neutrophil chemoattractant, from a monocytic cell line. However, these data are questionable 

because though IL-8 production by CD200R-negative THP-1 cells (Figure 4.9, b) was 

suppressed by vOX2 and CD200 (Figure 4.9, a), neither CD200R-positive U937 cells 

(Figure 4.9, b) nor CD200R-expressing primary human monocytes (Figure 4.1) were 

affected by vOX2 or CD200 (Figures 4.9-10).  

Observations had been made in our laboratory that native vOX2 and CD200 

suppressed the secretion of IFNγ by antigen-specific T cell clones (Colman and Blackbourn, 

unpublished). Thus, the focus of this project moved to investigating the putative suppression 

of viral antigen-specific T cell responses by vOX2 and CD200. A model system was 

established and the assays optimised to increase sensitivity and reproducibility (data not 

shown). Fortunately we had access to a library of EBV peptide antigen-specific T cell clones 

and EBV-positive donors from whom further clones could be derived, with thanks to A.R. 

Rickinson and his research group. Six further CD8+ T cell clones, HLA-matched to the 

engineered vOX2-BJAB, CD200-BJAB and Empty-BJAB cells, were derived from an IM 

patient (CD8+ IM235 c48, c79, c94, c108 and c132). Initially, the suppressive activities of 

vOX2 and CD200 on IFNγ production by the T cell clones were measured over time post-

restimulation of the T cells (Chapter 5). The attenuation of T cell responses by vOX2 and 

CD200 was variable but reproducible over time, in the six new clones and in two previously 

isolated clones, CD8+ IM140.1 Y15 and CD4+ SL c93 (Figures 5.-14). The latter clones 

became the ‘workhorses’ and were used extensively in later experiments.  

The obvious drawback of quantifying IFNγ secretion by ELISA is that a threshold 

concentration must be reached before the cytokine can be detected. Thus, the cells must be 

stimulated and cultured for at least 16hrs for the cytokine to accumulate in the culture 

supernatant. In order to reduce the length of time of stimulation, a new assay was optimised 



Chapter 9: Conclusions   

  276 

to quantify the accumulation of IFNγ and IL-2 intracellularly by flow cytometry. The new 

technique was more sensitive and allowed the co-culture of the stimulating peptide-loaded 

BJAB cells with the T cell clones for only 3hrs before assaying cytokine production (Figures 

5.15-5.19). By this method, vOX2 and CD200 were found to suppress IFNγ production more 

consistently, though the suppression of IL-2 was more variable. CD200 was more efficacious 

than vOX2, though the expression of vOX2 by engineered BJAB cells was harder to 

maintain (data not shown) and may have been lower than that of CD200, indicating that 

vOX2 may be somewhat toxic to the cell.        

Thus, a suppressive action of vOX2 and CD200 on the activity of stimulated antigen-

specific T cell clones had been demonstrated. The next step was to determine the mechanism 

underlying this inhibition. Zhang et al. had elucidated the downstream signalling partners of 

mCD200R1, activated upon ligation with mCD200:Fc, that led to the suppression of mast 

cell activity (Zhang et al., 2004). Some of the components identified by these researchers 

that are also involved in the TCR signalling cascade following peptide presentation, and for 

which phospho-specific antibodies for flow cytometry are available, were investigated. Thus, 

a flow cytometric assay was developed and optimised to quantify the phosphorylation of 

three upstream mediators of TCR signalling, Zap70, LAT and SLP-76, and three 

downstream kinases, ERK1/2, p38 and Akt that activate transcription factors and thus 

influence cytokine production. The two ‘workhorse’ clones, CD8+ IM140.1 Y15 and CD4+ 

SL c93 were investigated, along with one of the new clones, CD8+ IM235 c48. Though 

vOX2 and CD200 expression did not alter the phosphorylation of upstream adaptor 

molecules, the phosphorylation of ERK1/2 and Akt was significantly inhibited in all three 

clones, and there was a trend towards suppression of p38 phosphorylation (Table 6.1).  

Therefore, the next question to answer was whether the level of suppression of 

ERK1/2 phosphorylation by vOX2 and CD200 correlated with the level of suppression of 
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IFNγ production. The concentration of a pharmacological inhibitor of ERK1/2, PD98059 

(that inhibits the activation of upstream MEK1/2), at which it suppressed phospho-ERK1/2 

in the flow cytometric assay to the same degree as vOX2 and CD200 was elucidated (Figure 

6.18). This concentration of PD98059 was then administered to the BJAB-T cell cocultures 

and extracellular IFNγ production quantified by ELISA. PD98059 inhibited IFNγ production 

by the workhorse clones in a similar fashion to vOX2 and CD200, but to a greater degree 

(Table 6.2). These results suggest that the inhibitory activity of vOX2 and CD200 may 

reduce over time, as indicated by greater inhibition in the shorter flow cytometric assay, 

whereas PD98059 remains active throughout the culture period.  

In order to elucidate whether the suppressive effects of vOX2 and CD200 were due to 

ligation of the CD200R on the T cell clones, or due to an unrelated factor such as 

downregulation of ligands on the engineered BJAB cells, surface expression of proteins by 

the BJABs were quantified. CD80, a ligand of CD28 and CTLA-4, was significantly reduced 

on vOX2- and CD200-BJAB cells, but conversely, the expression of their alternate ligand 

CD86 was slightly increased (though the difference was not statistically significant) (Figure 

6.22, b, c). CD80 has a slightly higher affinity for CTLA-4 and CD28 than CD86 (reviewed 

in Sansom and Walker, 2006), though the alteration in expression levels was so low that the 

physiological significance is probably slight. The expression of HLA-DR was slightly 

reduced on vOX2-BJAB cells, though the difference was not statistically significant, and it 

was unaltered in CD200-BJAB (Figure 6.22, a). The EBNA2 PRS peptide is restricted 

through HLA-DR-7, 52a, 52b or 52c, and it is this peptide that the workhorse clone CD4+ SL 

c93 is directed against. In contrast, the expression of HLA-ABC was reduced by 

approximately 30% on the surface of vOX2 and CD200-expressing BJAB cells (Figure 6.23, 

a), and was not due to increased internalisation of the protein (Figure 6.24) but to a 

reduction in the total cellular HLA-ABC (Figure 6.25). Interestingly, BJAB cells engineered 
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to express vOX2 and CD200 tagged with EGFP showed no alteration of their surface or total 

HLA-ABC levels (Figures 6.23/5). These data suggest that the EGFP tag may modify the 

activity of vOX2 and CD200, though these proteins were not used in the T cell function 

assays and so conclusions cannot be drawn. The CD8+ clones are directed against the BRLF1 

peptide YVL, restricted through HLA-A2.01. However, the level of suppression of the HLA-

ABC-restricted CD8+ clones was not increased above that of the HLA-DR-restricted CD4+ 

clone overall. Thus, the alteration in the number of MHC molecules on the surface of vOX2 

or CD200-expressing APCs is unlikely to account for their suppressive activities.  

An illustration of the major findings relating to the roles of vOX2 and CD200 in 

modulating antigen-specific T cell function (Figure 9.1) summarises the putative mechanism 

of action of these proteins. Suppression of ERK1/2 phosphorylation correlated with reduced 

IFNγ production, and therefore indicates that gene transcription downstream of this kinase 

was altered. The suppression of phospho-Akt may have an additive effect upon the 

suppression of T cell activity observed in cells in which ERK1/2 phosphorylation is 

inhibited. A trend towards suppression of p38 was also observed, but JNK could not be 

investigated due to a lack of suitable phospho-specific antibodies. Downregulation of JNK 

following the recruitment of inhibitory adaptor molecules to the signalling residues of the 

mCD200R1 has been reported previously (Zhang et al., 2004). Unfortunately, due to the dual 

cell population, the separation of the BJAB and T cells and subsequent analysis of signalling 

molecules associated with the CD200R was impossible. Therefore, the inhibitory pathways 

identified by Zhang et al. and the associated proteins are also illustrated, though the link 

between CD200R signalling and suppression of protein phosphorylation is as yet unknown.  

The lack of inhibition of upstream adaptor molecules Zap70 and SLP-76 may be due 

to the CD200R signalling pathway intercepting the TCR signalling cascade further 

downstream. However, the modulation of some of these upstream proteins is less certain as 
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they are more difficult to detect than the amplified molecules downstream, evidenced by the 

inability of this assay to detect phospho-LAT in the CD8+ IM140.1 Y15 clone (Appendix D).  

 

 
 
Figure 9.1 Proposed inhibition of the T cell receptor (TCR) signalling pathway by vOX2 and CD200. 

Upon TCR ligation to a MHC-peptide complex, a signalling cascade is initiated, ultimately resulting in gene 

transcription (e.g. IL-2 production). The phosphorylation of ERK1/2, p38 and Akt molecules (indicated by red 

dots) was reduced in T cell clones stimulated by vOX2 or CD200-expressing BJAB cells (blue dashed lines) in 

the present study, though levels of phospho-LAT, Zap-70 and SLP-76 were not altered. The pharmacological 

inhibitor of ERK1/2, PD98059, inhibits the phosphorylation of MEK1/2. HLA-ABC (MHC I) cell-surface 

expression was downregulated by BJAB cells engineered to express vOX2 or CD200, though total HLA-ABC 

levels were suppressed in only vOX2-BJAB, in comparison to control cells. Earlier evidence for the inhibition 

of the MAP kinase pathway by ligation of the mCD200R was identified in murine mast cells (Zhang et al., 

2004). The inhibition of Ras and JNK by mCD200R1 ligation, which was not repeated in this study, is 

illustrated by black dashed lines. Amended from Schwartzberg et al. (2005), Alegre et al. (2001), Abraham and 

Weiss (2004) and Zhang et al. (2004). 
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Proteins that may contribute to the vOX2- and CD200-mediated suppression of T cell 

activity are CD200R and two other receptors, specifically the stimulatory CD28, and the 

inhibitory CTLA-4. Native expression of CD200R by antigen specific CD8+ T cells ex vivo 

was confirmed (Figures 7.1-7). CD200R was also detected on the surface of the T cell 

clones, along with barely detectable levels of CTLA-4, consistent with the literature, and 

CD28 (Figure 7.8). In order to discover any modification of CD200R, CD28 or CTLA-4 

expression by vOX2 or CD200, the culture conditions of the extracellular IFNγ assay were 

simulated. After 16hrs of incubation, the T cell clones were analysed for CD200R, CD28 and 

CTLA-4 expression by flow cytometry. Interestingly, the two inhibitory receptors, CD200R 

and CTLA-4, were significantly reduced in the presence of vOX2 and CD200, and this 

downregulation was enhanced when the cells were stimulated with cognate peptide antigen 

(Figures 7.11-12). In contrast, the expression of CD28, a receptor that amplifies the TCR 

signalling cascade, was unaltered. CTLA-4 is naturally upregulated on activated T cells, but 

dowregulated on resting T cells (Jago et al., 2004), likewise the CD200R (Masocha, 2009). 

The similarity between the expression patterns of CD200R and CTLA-4 suggests that both 

receptors may be regulated by similar mechanisms, and that both may be withdrawn from the 

cell surface upon inhibition of the cellular response to peptide stimulation by vOX2 and 

CD200. Both CD200R and CTLA-4 therefore appear to deliver complementary negative 

regulatory signals to T cells. However, the downregulation of CD200R and CLTA-4 must 

first be confirmed to ensure that the flow cytometric data are not a result of an occlusion of 

Ab-binding sites following ligand-receptor ligation. This could be achieved by testing 

several Abs that bind to different epitopes of the proteins, and by investigating whether the 

internalisation of the proteins is altered.    

Having identified a role for both KSHV vOX2 and CD200 in reducing the T cell 

response to antigen, another viral homologue of CD200, RRV vOX2, was studied in a 
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similar fashion. In order to replicate previous studies, the full-length RRV vOX2 protein was 

expressed on the surface of BJAB cells, but was tagged with EGFP to enable detection of the 

protein. RRV vOX2 did not suppress the activity of human T cell clones (Figure 8.8), but in 

fact modestly increased their secretion of IFNγ. Expressing RRV vOX2-EGFP on the surface 

of BJAB cells also increased the expression of HLA-ABC by these cells (Figure 8.7), 

perhaps providing a mechanism for the observed increase in T cell response to peptide. 

Three CMV proteins with unknown physiological properties were also analysed. Similarly to 

RRV vOX2, CMV proteins UL119, UL120 and UL121 (tagged with GFP) did not suppress 

T cell activity, but moderately enhanced it (Figure 8.13). Surface expression of HLA-ABC 

was not altered on the CMV protein-expressing BJAB cells (Figure 8.11), but overall, the 

whole cell load of HLA-ABC was reduced in cells expressing UL121 (Figure 8.12). 

However, again these proteins were tagged with GFP which may have altered their stability 

and activity, and the immunoblotting data were inconclusive. 

There were a number of limitations in the present study that must be addressed. 

Initially, the use of soluble Fc-fusion proteins was deemed to be ineffective and plagued with 

problems so the methodology was altered in favour of cells expressing native vOX2 and 

CD200 proteins. However, though this method is more physiologically relevant, experiments 

involving dual cell populations are limited and are restricted to assays such as flow 

cytometry which allow the distinction of each cell type by antigen labelling. The flow 

cytometric assays used in this study were optimised and showed high specificity and 

reproducibility, but the number of intracellular signalling molecules investigated was limited 

by the availability of antibodies.  

Taken together, these data suggest a role for vOX2 in modulating the immune 

response to KSHV infection, specifically the T cell response to viral antigens presented by 

KSHV-infected cells. Importantly, the suppressive role of vOX2 does not appear to be 
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restricted by HLA allelic variation, nor was it restricted to either CD8+ or CD4+ T cells. 

vOX2 would be expressed by only a small subset of KSHV-infected cells in vivo, because 

KSHV exists mainly in the latent phase of infection. However, the small percentage of cells 

infected with lytically replicating KSHV are important for maintenance of infection by 

propagation and dissemination of the virus. The inflammatory infiltrate characteristic of KS 

lesions promotes the survival of KSHV-infected spindle cells (Grossmann et al., 2006). 

Thus, the primary role of vOX2 is probably not to reduce inflammation, but rather to prevent 

direct killing of KSHV-infected cells by antigen-specific cytotoxic T cells either during lytic 

replication, since vOX2 is a lytic cycle protein, or even during latency or soon after de novo 

infection when in vivo data suggest KSHV lytic gene expression occurs without 

demonstrable virion production (Butler, Nash and Blackbourn, personal communication). 

The demarcation between genes expressed during latency and lytic replication may be 

blurred (see Rezaee et al, 2006 review). In addition, these data suggest a mechanism for the 

reported CD200-mediated suppression of inflammation (Hoek et al., 2000; Snelgrove et al., 

2008; Broderick et al., 2002; Gorczynski et al., 2001). These data are the first to demonstrate 

inhibition of antigen-specific T cell activity by either vOX2 or CD200. 

9.2 Recommendations for future research 
 
Future research in this area should aim to confirm the binding of vOX2 and CD200 to 

CD200R expressed by T cell clones, and to prove specificity of binding by blocking their 

interaction. One method by which this could be achieved would be to examine the level of 

vOX2- and CD200-mediated suppression of T cell clones that have downregulated their 

expression of the CD200R following initial culture with vOX2 or CD200. Another means 

would be to attempt to inhibit the expression of CD200R by retroviral transduction of the T 

cell clones with a vector encoding a small hairpin RNA in order to silence CD200R gene 

expression.  
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 Downregulation of CD200R and CTLA4 proteins on the T cell clones in the presence 

of vOX2 and CD200 should be confirmed to ensure the data are not artefactual, e.g. due to 

occlusion of the Ab-binding sites. The experiments should also be repeated on resting T cells 

ex vivo as their receptor expression levels will differ from cultured T cell clones. The 

observed downregulation of HLA-ABC on the surface of BJAB cells engineered to express 

vOX2 and CD200 should be further examined. Does the reduction in HLA expression 

correlate with reduced vOX2/CD200 expression? Is the HLA targeted for degradation by 

these proteins or is it sequestered within the cell? 

The studies outlined in this thesis should be reproduced in T cell clones with other 

specificities and HLA-restrictions. Replication of these methods in a KSHV antigen-specific 

T cell clone model system would be ideal. Cytotoxicity of the T cells should be analysed in 

conjunction with cytokine production, by labelling perforin in the intracellular granules of 

the T cell clones. 

In addition, the signalling molecules associated with human CD200R should be 

elucidated. This could be achieved by incubating vOX2-BJAB and CD200-BJAB cells with 

CD200R+ human T cell clones in order to stimulate the CD200R. Alternatively, stimulatory 

anti-CD200R Abs can be used if available. CD200R and its associated proteins could be 

isolated by co-immunoprecipitation of cellular lysates, and putative CD200R-signalling 

proteins subsequently identified by mass spectrometry.      

Finally, the activities of the RRV vOX2 protein should be investigated in a relevant 

model system utilising rhesus macaque T cell clones and APCs. 



Appendices   

  284 

Appendix A.  Primers and Plasmids 
 

 

Table I. Primers 

 

Identifying 

number 
Description Sequence 

1F CD200:Fc (sense) 5’ GCTCTAGATGGAGAGGCTGGTGATCA 3’ (XbaI) 

1R 
CD200:Fc (anti-

sense) 
5’ TATGCGGCCGCGCCTTTGTTGACGGTTTGC 3’ (NotI) 

2F 

RRV vOX2 

translated region 

(sense) 

5’ TTAACGCTGCTGCTGGCG 3’ 

2R 

RRV vOX2 

translated region 

(anti-sense) 

5’ ATGCCTAAAACGGCGGCC 3’ 

3F 
Rhesus macaque β-

actin (sense) 
5’ TACGTGGCCATCCAGGCTG 3’ 

3R 
Rhesus macaque β-

actin (anti-sense) 
5’ GATGACCTGGCCATCGGG 3’ 

4F 

Full-length RRV 

vOX2 (sense): for 

ligation into pCR®-

Blunt II-TOPO to 

act as template for 

vOX2-EGFP 

5’ CGTGTCGGTGGCAACCTTTTTG 3’ 

4R 

Full-length RRV 

vOX2 (anti-sense): 

for ligation into 

pCR®-Blunt II-

TOPO to act as 

template for vOX2-

EGFP 

5’ ACCACCCTAAAAAGCCAGCCTC 3’ 
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Identifying 

number 
Description Sequence 

5F 

RRV vOX2 (sense): 

to amplify 

extracellular region 

before ligation into 

EGFP-N1 vector 

5’ TTTTTGAAAAAGCTTTATTGCCGCCGG 3’ 

(HindIII) 

5R 

RRV vOX2 (anti-

sense): to amplify 

extracellular region 

before ligation into 

EGFP-N1 vector 

5’ GGACACGCGCTGCAGCATAGACCTATA 3’ (PstI) 

6F 

RRV vOX2-EGFP 

(sense): to amplify 

vOX2 and EGFP 

before ligation into 

pQCXIP 

5’ CCGGGTGTTAATTAACAACACCGACCG 3’ (PacI) 

6R 

RRV vOX2-EGFP 

(anti-sense): to 

amplify vOX2 and 

EGFP before 

ligation into 

pQCXIP 

5’ GATTATGATGAATTCTCGCGGCCGCT 3’ (EcoRI) 
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Table II. Plasmids 

 

Plasmid name Description 

pCR®-Blunt II-TOPO® 

(Invitrogen) 

Upon ligation of blunt-ended PCR fragments into pCR®-Blunt II-TOPO®, 

the lethal lacZα-ccdB gene is disrupted, allowing growth of bacteria 

containing the recombinant vector on kanamycin (or zeocin)-LB agar. There 

is an EcoRI site on either side of the ligated blunt PCR product, along with 3 

sequencing primer-binding sites to enable analysis of recombinants.    

pTorsten 

pTorsten vector has a multiple cloning site upstream of the gene encoding for 

the Fc region of human IgG1. Ligating a PCR product into this region results 

in the translation of the protein of interest fused in-frame with the IgG1 Fc. 

Once expressed in eukaryotic cells, the soluble Fc-fusion protein will be 

secreted into the growth medium. It incorporates both ampicillin and 

hygromycin B resistance genes.  

EGFP-N1 

(Clontech) 

The EGFP-N1 plasmid contains the gene encoding a variant of GFP, mutated 

to enhance its fluorescence and level of expression. Genes can be inserted 

into the plasmid upstream of EGFP, and downstream of the immediate early 

CMV promoter, via several restriction sites. A neomycin/kanamycin 

resistance cassette is integrated into the plasmid. Cells engineered to express 

the plasmid express the protein of interest fused C-terminally to EGFP.  

pQCXIP 

(Clontech) 

Genes inserted into the pQCXIP plasmid are driven by the immediate early 

CMV promoter (PCMV IE). An internal ribosomal entry site (IRES) 

downstream of the gene of interest, results in dual transcription of a 

puromycin resistance gene in cells- both under control of the PCMV IE.  
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Appendix B.  Antibodies 
 
 

Table I. Primary antibodies 

A n t i g e n Conjugate 
Target 

Species 
Host Application Supplier 

Catalogue 

Number 

p-Akt 

(pS473) 

Alexa Fluor 

647 
Human Mouse FC BD Biosciences 560343 

β-actin n/a Human Mouse WB Sigma A5441 

CD200 n/a Human Goat WB R&D Systems AF2724 

CD200 n/a Human Mouse FC BD Pharmingen 552023 

CD200 PE Mouse Rat FC Abcam ab33739 

CD200R n/a Human Mouse FC Abcam ab24104 

CD200R1 n/a Mouse Goat FC R&D Systems AF2554 

CD200R PE Mouse Rat FC Abcam ab35327 

CD28 APC Mouse Human FC BD Biosciences 559770 

CD4 VioBlue Human Mouse FC Miltenyi Biotec 
130-094-

153 

CD4 PE Human Mouse FC DAKO R0805 

CD4 FITC Human Mouse FC Immunotools 21270043 

CD4 PE/Cy5 Human Mouse FC Caltag 
MHCD040

6 

CD8 PE Human Mouse FC DAKO R0806 

CD8 PE Human Mouse FC Miltenyi Biotec 
130-091-

084 

CD8 VioBlue Human Mouse FC Miltenyi Biotec 
130-094-

152 

CD80 n/a Human Mouse FC Invitrogen 
MHCD800

0 

CD86 n/a Human Mouse FC Invitrogen 
MHCD860

0 

CTLA-4 PE Human Mouse FC BD Biosciences 555853 

p-ERK1/2 

(T202/&204) 

Alexa Fluor 

647 
Human Mouse FC BD Biosciences 612593 
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A n t i g e n Conjugate 
Target 

Species 
Host Application Supplier 

Catalogue 

Number 

p-ERK1/2 

(T202/&204) 
PE Human Mouse FC BD Biosciences 612566 

HLA-ABC n/a Human Mouse FC n/a n/a 

HLA-ABC 

(HC10) 
n/a Human Mouse WB n/a n/a 

HLA-ABC 
Alexa Fluor 

647 
Human Mouse FC BioLegend 311416 

HLA-ABC PE Human Mouse FC Serotec MCA81PE 

HLA-DR n/a Human Mouse FC R&D Systems mAB4869 

IgG 

(Fc-specific) 
Biotin Human Mouse Microbeads Calbiochem 411543 

IgG 

(Fc-specific) 
HRP Human Goat WB Sigma A0170 

IFNγ n/a Human Mouse ELISA 
Thermo 

Scientific 
M700A 

IFNγ Biotin Human Mouse ELISA 
Thermo 

Scientific 
M701B 

IFNγ APC Human Mouse FC eBiosciences 17-7319 

IL-2 PE Human Mouse FC eBiosciences 12-7029 

LANA 25 n/a (Viral) Mouse IFA n/a n/a 

p-LAT 

(pY226) 
PE Human Mouse FC BD Biosciences 558433 

p-p38 

(pT180/pY18

2) 

Alexa Fluor 

647 
Human Mouse FC BD Biosciences 612595 

p-SLP-76 

(pY128) 
PE Human Mouse FC BD Biosciences 558437 

vOX2 1172 n/a (Viral) Rabbit WB, IFA n/a n/a 

vOX2 n/a (Viral) Mouse WB, IFA n/a n/a 

p-Zap70 

(pY292) 

Alexa Fluor 

647 
Human Mouse FC BD Biosciences 558515 
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Table II. Secondary antibodies 

 

Target Species Conjugate Supplier Host Application 
Catalogue 

Number 

Mouse HRP DakoCytomation Goat WB P0447 

Mouse IgG1 
Alexa Fluor 

594 
Invitrogen Goat IFA A21125 

Mouse IgG FITC Sigma Sheep FC F6257 

Mouse IgG R-PE Invitrogen Goat FC P852 

Mouse IgG FITC DAKO Goat FC F0479 

Goat HRP Abcam Rabbit WB ab6741 

Rabbit HRP DakoCytomation Goat WB P0448 

Rabbit IgG 
Alexa Fluor 

594 
Invitrogen Goat IFA A11037 

Rabbit R-PE Invitrogen Goat FC P2771MP 

 

 

 

 

 

Table III. Isotype control antibodies 

 

Antibody Conjugate Supplier Species Application 
Catalogue 

Number 

IgG1 -- Sigma  Mouse FC M5284 

IgG1 APC BD Biosciences Mouse FC 555751 

IgG1 PE/Cy5 Serotec Mouse FC MCA1209C 

IgG2a FITC BD Biosciences Mouse FC 349051 

IgG2a PE/CY5 Immunotools Mouse FC 21335025 

IgG2a PE EBioscience Rat FC 12-4321 

IgG2a κ PE BD Biosciences Mouse FC 555574 

IgG2b PE Ancell Mouse FC 284-050 
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Appendix C.  Reagents and solutions 
 
 

Table I. Reagents and consumables  

Reagents/consumables Supplier 
Catalogue 

Number 

16% formaldehyde (methanol-free) TAAB F017 

1700cm2 expanded cell culture roller bottles Corning 430852 

3,3’-dihexyloxacarbocyanine iodide (DiOC6) Sigma 318426 

3,3’5,5’-Tetramethyl-benzidine (TMB) Sigma T8665 

3,3’5,5’-Tetramethyl-benzidine (TMB) ELISA peroxidase 

substrate 
Rockland TMBE-1000 

5ml polystyrene round bottom tubes BD (Falcon) 352054 

96-well, tissue culture-treated luminometer plates Greiner 655083 

96-well maxi-sorp immunoplates for ELISA Nunc 442404 

96-well v-bottomed plates Nunc 249946 

Bovine serum albumin (endotoxin-free) Sigma A9430 

Brefeldin A (in DMSO) Sigma B5936 

Bursttest (Phagoburst®) Orpegen 10-0200 

Cell dissociation solution (non-enzymatic) Sigma C5789 

Centricon Ultracell YM-50 centrifugal filter device Millipore 4224 

Chloroquine Sigma C6228 

Chromium-51 Perkin Elmer NEZ147010MC 

DAPI (4′,6-Diamidino-2-phenylindole dihydrochloride) Sigma D9542 

Defined foetal bovine serum Hyclone SH30070.02 

Deoxycytidine 5’-triphosphate [α-32P] PerkinElmer 
NEG513H250U

C 

DePex Sigma 317616 

Dextran 500 
Amersham 

Biosciences 
17-0320-01 

DMEM Invitrogen 41966-025 

(PfU) DNA polymerase  Promega M744 

DuoSet ELISA Development kit (Human CXCL8/IL-8) R&D Systems DY208 

Endo-free plasmid maxi kit Qiagen 12362 

Ethylenediaminetetraacetic acid disodium salt solution 

(0.5M) 
Sigma E7889 

ExtrAvidin-peroxidase Sigma E2886 

Foetal bovine serum (FBS) PAA A15-043 
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Reagents/consumables Supplier 
Catalogue 

Number 

Granulocyte-macrophage colony-stimulating factor (GM-

CSF) 
Sigma G5035 

Hanks’ balanced salt solution (HBSS) Sigma H8264 

Hexadimethrine bromide (polybrene) Sigma H9268 

HiTrap Protein A HP column 
Amersham 

Biosciences 
17-0403-01 

Hybond-N nylon membrane for nucleic acid transfer 
Amersham 

Biosciences 
RPN303N 

Hygromycin B Invitrogen 10687-010 

Hyperfilm MP 
Amersham 

Biosciences 
28906846 

Immobilon-P transfer membrane (PVDF) Millipore IPVH07850 

LB broth Acros Organics AC612725000 

L-Glutamine 200mM Invitrogen 25030 

Limulus Amebocyte Lysate (LAL) QCL-1000 Lonza 50-647U 

Lipofectamine reagent Invitrogen 18324 

Lipofectamine 2000 Invitrogen 11668 

Lymphoprep™ Axis-Shield Poc LYS 3772 

M-MLV reverse transcriptase Invitrogen 28025 

Mouse serum Sigma M5905 

N,N’-dimethyl-9,9-biacridinium dinitrate (lucigenin) Sigma M8010 

N-Formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP) Sigma F3506 

Penicillin-Streptomycin (PenStrep) Invitrogen 15070-063 

Percoll Sigma P1644 

Phosphate buffered saline sterile powder (PBS) Sigma D5773 

Phytohaemagglutinin (PHA) Sigma L1668 

ProLong® Gold anti-fade reagent Invitrogen P36934 

ProSieve® colour protein marker Lonza 50550 

Protease inhibitor cocktail tablets Roche 11 836 153 001 

PureYield™ Plasmid Midiprep system Promega A2493 

Puromycin dihydrochloride Sigma P9620 

QIAprep® Spin Miniprep kit Qiagen 27106 

QIAquick® Gel Extraction kit Qiagen 28704 

QIAquick® Nucleotide Removal kit Qiagen 28304 

Random primers Promega C1181 

Random primers DNA labelling system Invitrogen 18187-013 

Recombinant human interferon-γ R&D Systems 285-IF 
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Reagents/consumables Supplier 
Catalogue 

Number 

RNAse OUT Invitrogen 10777-019 
RNeasy Mini Kit Qiagen 74104 

RPMI 1640 Invitrogen 15070-063 

Stericup vacuum filter system (0.22μm membrane) Millipore SCGPU10RE 

Sterile water Aguettant 0459 

T cell expansion kit (microbeads) Miltenyi Biotec 130-091-441 

TOPO TA cloning kit for sequencing Invitrogen K4575 

Trypsin-EDTA Invitrogen 25300 

Tumour necrosis factor-α (TNFα) Serotec PHP051A 

Western Lightning™ Chemiluminescence Reagent Plus PerkinElmer NEL103 

 

 

Table II. Common solutions 

 

Name/Purpose Composition 

Buffer E for cell lysis 

100mM TrisHCl pH 8, 2mM EDTA, 2mM 

EGTA, 1% NP40, 0.5% Na deoxycholate, 0.5mM 

PMSF 

Colloidal coomassie stain for SDS-PAGE 

0.08% coomassie brilliant blue G250, 1.6% 

orthophosphoric acid, 8% ammonium sulphate, 

20% methanol 

Denaturation buffer (southern blotting) 1.5M NaCl, 500mM NaOH 

Complete medium RPMI 1640, 10% FBS, 1% PenStrep 

Complete BJAB medium 
RPMI 1640, 10% FBS, 1% PenStrep, 1μg/ml 

puromycin 

Complete CHO medium 
RPMI 1640, 10% FBS, 1% PenStrep, 400μg/ml 

Hygromycin B 

Complete GP2-293 medium 
DMEM, 10% FBS, 1% PenStrep, 1% L-

Glutamine 

Complete neutrophil medium 
RPMI 1640, 10% FBS, 1% L-Glutamine, 1% 

PenStrep 

Complete RFB medium 
DMEM, 1x non-essential amino acids, 10% 

defined FBS, 1% L-Glutamine 
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Name/Purpose Composition 

Complete T cell cloning medium 

RPMI 1640, 30% MLA supernatant (from the IL-

2-producing gibbon leukaemia MLA 144 line), 

10% FBS, 1% human serum, 1% Pen-Strep, 

50U/ml IL-2 

ELISA coating buffer 0.1M Na2HPO4, pH9 

ELISA blocking buffer 1% BSA, 0.05% Tween 20, PBS 

ELISA stop solution 1M HCl 

ELISA wash buffer 1x PBS, 0.05% Tween 20 

Enhanced chemiluminescence solutions 

Solution 1: 2.5mM luminol, 396μM coumaric 

acid, 100mM TrisHCl pH 8.5; Solution 2: 0.019% 

H2O2, 100mM TrisHCl pH 8.5 

MOPS buffer (10x) 

197mM 3-(N-morpholino)propanesuphonic acid, 

80mM sodium acetate 3-hydrate, 12.7mM EDTA 

sodium salt, pH 7 

MOPS/formaldehyde gel 
0.7M formaldehyde, 1x MOPS buffer, 1.2% 

agarose 

Neutralisation buffer (southern blotting) 1.5M NaCl, 500mM Tris base, pH 7.5 

Nobles agar (virus plaque assay) 

1.4% Nobles agar, 2x DMEM, 2.5% 1M MgCl2, 

1.15% Na bicarbonate, 2% L-glutamine, 4% FBS, 

2% Pen-Strep 

NP-40 buffer (SDS-PAGE) 
20mM Tris HCl (pH 8), 137mM NaCl, 10% 

glycerol, 1% NP-40, 2mM EDTA 

Nucleic acid transfer buffer (20x SSC) 300mM tri-sodium citrate, 3M NaCl, pH 7-8 

Pre-transfection medium RPMI 1640, 10% FBS 

Post-transfection medium RPMI 1640, 20% FBS 

PVDF membrane stripping buffer 
100mM 2-mercaptoethanol, 2% SDS, 62.5mM 

TrisHCl pH 6.7 

Sample loading buffer (2x) 

0.125M TrisHCl pH 6.8, 4% SDS, 18.4M 

glycerol, 286mM 2-mercaptoethanol, 0.004% 

bromophenol blue 

SDS-PAGE running buffer (10x) 
250mM Tris base, 1.92M glycine, 0.01% SDS, 

pH 8.6 

SDS-PAGE transfer buffer (10x) 250mM Tris base, 1.92M glycine 
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Name/Purpose Composition 

SDS-PAGE resolving gel (12%) 

12% bis-acrylamide, 375mM TrisHCl pH 8.8, 

0.1% SDS, 0.08% ammonium persulphate, 

151mM N,N,N,N’-tetramethylethylenediamine 

SDS-PAGE stacking gel 

5% bis-acrylamide, 126mM TrisHCl pH 6.8, 

0.1% SDS, 0.12% ammonium persulphate, 

116mM N,N,N,N’-tetramethylethylenediamine 

TAE (50x) 
2M Tris base, 2M EDTA sodium salt, 50mM 

glacial acetic acid 

TBS (10x) 1.54M NaCl, 2M Tris base 

 

 



Appendices   

  295 

Appendix D.  Raw data 
 
 
 
Table I. Neutrophil Phagoburst assay (raw median fluorescence data) 
 

(8μg recombinant protein)

Donor number T07.116 T07.117 T07.118 T07.102 T07.212 T07.213 T07.214 T07.255 T07.256

E. coli 2.37 2.36 6.75 5.54 6.19 4.83 7.34 5.94 5.76

E. coli 3.28 4.14 6.35 4.86 5.61 9.13 5.95 8.36

E. coli + vOX2:Fc 2.18 3.29 7.04 2.14 5.53 6.46

E. coli + vOX2:Fc 3.12 2.13 3.99

E. coli + CD200:Fc 5.59 6.29 6.29 5.19 6.03

E. coli + CD200:Fc 5.25 3.49 6.13 3.01 3.6

E. coli + KCPmut:Fc 2.34 2.66 6.79 4.68 4.25 6.02 7.81 6.72 5.73

E. coli + KCPmut:Fc 2.09 2.93 7.37 5.75 7.03 7.13

(24μg recombinant protein)

Donor number T07.240 T07.255 T07.256

E. coli 9.1 5.94 5.76

E. coli 6.73 5.95 8.36

E. coli + vOX2:Fc 4.65 6.44

E. coli + vOX2:Fc 4.43 4.72

E. coli + CD200:Fc 5.04 3.54 5.76

E. coli + CD200:Fc 5.33 5.89 5.84

E. coli + KCPmut:Fc 8.12 3.86 5.34

E. coli + KCPmut:Fc 9.66 4.92 5.58

Median fluorescence

Median fluorescence
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Table II. Flow cytometric analysis of intracellular cytokines in the CD4+ SL c93 T 
cell clone (raw median fluorescence data) 
 

 

1hr post-Brefeldin A treatment
28-Apr-09 08-May-09 28-Apr-09 08-May-09

Empty vector
No peptide 596.27 268.83 212.12 136.12
Peptide (50ng/ml) 1106.51 445.16 5385.31 5465
vOX2
No peptide 533.29 238.33 186.3 119.53
Peptide (50ng/ml) 837.47 380.89 2904.27 3963.21
CD200
No peptide 542.16 229.71 185.42 111.36
Peptide (50ng/ml) 754.3 322.99 2273.84 2867.57

2hr post-Brefeldin A treatment
28-Apr-09 08-May-09 01-May-09 05-May-09 28-Apr-09 08-May-09 01-May-09 05-May-09

Empty vector
No peptide 508.11 252.42 447.7 608.99 167.63 128.7 166.25 206.15
Peptide (50ng/ml) 1131.41 472.45 775.42 1003.14 11706.58 7262.72 9212.23 29120.67
vOX2
No peptide 475.82 252.67 396.26 512.82 157.12 123.64 152 174.51
Peptide (50ng/ml) 878.94 405.21 578.47 1126.46 6070.05 5817.27 5827.09 20787.29
CD200
No peptide 427.95 228.72 399.01 523.42 141.69 105.85 159.06 172.93
Peptide (50ng/ml) 825.85 326.93 541.49 858.41 3619.63 2988 4015.58 10243.85

4hr post-Brefeldin A treatment
28-Apr-09 08-May-09

Empty vector
No peptide 514.05 235.94 158.69 114.46
Peptide (50ng/ml) 1210.93 440.3 10531.76 8088.01
vOX2
No peptide 503.84 238.5 162.63 114.85
Peptide (50ng/ml) 810.14 446.72 3855.47 8028.52
CD200
No peptide 504.42 228.98 162.66 110.4
Peptide (50ng/ml) 748.12 337.67 4555.95 5222.93

IL-2 (FL2 Median fluorescence) IFNγ (FL4 Median fluorescence)
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Table III. Flow cytometric analysis of intracellular cytokines in the CD8+ IM140.1 
and IM235 T cell clones (raw median fluorescence data) 
 
 

IM140.1 Y15 15-Jul-09 17-Jul-09 13-Jul-09 15-Jul-09 17-Jul-09 24-Jul-09

Empty vector
No peptide 184.54 68.98 69.87 242.03 498.4 635.84
PRS (500ng/ml) 402.22 199.37 247.04 7731.71 2740.11 20003.12
vOX2
No peptide 174.42 85.99 75.72 238.46 455.18 681.01
PRS (500ng/ml) 378.5 140.78 142.06 5948.53 2115.09 6781.01
CD200

No peptide 183.17 83.62 73.17 245.13 483.83 676.84
PRS (500ng/ml) 413.1 140 162.92 4595.03 1305.75 2836.2

IM235 c48

Empty vector

No peptide 160.4 69.2 201.83 346.66
PRS (500ng/ml) 486.17 341.04 8790.51 18381.05
vOX2

No peptide 161.75 70.11 212.99 469.57
PRS (500ng/ml) 424.87 346.66 5156.5 2349.15
CD200

No peptide 161.58 78.88 203.18 494.97
PRS (500ng/ml) 508.38 365.57 4404.21 903.39

IM235 c79
Empty vector

No peptide 182.66 114.11 87.28 217.54 495.11 645.82
PRS (500ng/ml) 456.94 369.07 363.08 9245.53 575.78 1210.58
vOX2
No peptide 193.55 101.46 86.8 237.6 524.35 638.85
PRS (500ng/ml) 403.88 356.47 344.77 7055.24 563.88 1695.17
CD200

No peptide 194.9 89.36 91.13 227 368.99 659.74
PRS (500ng/ml) 479.51 400.58 399.81 2420.3 426.03 976.11

IM235 c94
Empty vector

No peptide 135.86 57.67 171.61 351.41
PRS (500ng/ml) 179.07 68.09 9859.22 22501.32
vOX2

No peptide 140.78 72.36 173.62 362.34
PRS (500ng/ml) 165.69 94.03 7078.59 20116.25
CD200

No peptide 147.03 76.95 183.69 441
PRS (500ng/ml) 158.93 89.79 7649.53 12283.51

IL-2 (FL2 Median fluorescence) IFNγ (FL4 Median fluorescence)
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Table IV. Flow cytometric analysis of intracellular signalling molecules in the CD4+ 
SL c93 T cell clone (raw median fluorescence data) 
 

 

ERK1/2 Empty-BJAB 26/01/2009 02/02/2009 13/02/2009 17/03/2009 23/03/2009 05/05/2009 03/04/2009
No peptide 190.31 223.71 177.7 179.32 185.31 202.66 179.46
Peptide (500ng/ml) 304.33 338.04 500.18 540.73 441.97 580.09 478.72
Peptide (50ng/ml) 535.44
vOX2-BJAB
No peptide 177.34 207.79 178.8 223.9 159.8 234.41
Peptide (500ng/ml) 212.11 273.5 445.09 276.08 406.37 345.53
Peptide (50ng/ml) 382.8
CD200-BJAB
No peptide 178.45 205.77 159.02 193.58 177.19 203.06 166.01
Peptide (500ng/ml) 188.72 338.35 313.85 516.47 296.06 391.38 304.51
Peptide (50ng/ml) 372.6

p38 Empty-BJAB 23/01/2009 26/01/2009 02/02/2009 13/02/2009 17/03/2009 23/03/2009 05/05/2009 03/04/2009
No peptide 138.24 129.68 175.52 113.63 112.14 117.96 26.13 119.28
Peptide (500ng/ml) 204.46 329.95 257.1 506.55 303.22 346.01 110.79 282.49
Peptide (50ng/ml) 247.48 287.56
vOX2
No peptide 129.51 118.06 160.2 118.91 111.64 112.54 23.39
Peptide (500ng/ml) 179.81 201.4 209.07 419.28 263.32 292.59 115.15
Peptide (50ng/ml) 128.18 246.83
CD200
No peptide 127.63 113.6 151 111.99 112.11 118.93 24.47 111.89
Peptide (500ng/ml) 192.01 206.1 237.42 390.61 309.07 248.03 102.87 225.22
Peptide (50ng/ml) 130.41 255.3

SLP-76 Empty-BJAB 02/02/2009 03/02/2009 13/02/2009 05/05/2009 21/07/2009
No peptide 153.08 117.2 156.81 119.82 78.95
Peptide (500ng/ml) 171.9 129.86 224.85 213.44 117.9
vOX2
No peptide 135.94 114.33 222.21 135.06 83.3
Peptide (500ng/ml) 171.2 119.18 247.93 191.87 152.64
CD200
No peptide 148.55 110.56 175.61 155.27 86.13
Peptide (500ng/ml) 186.29 120.59 279.43 266 130.41

Akt Empty-BJAB 02/02/2009 03/02/2009 13/02/2009 05/05/2009 29/05/2009
No peptide 403.56 344.24 241.46 64.45 210.56
Peptide (500ng/ml) 680.65 435.5 634.85 178.41 608.7
vOX2
No peptide 367.91 310.41 228.96 59.68 211.22
Peptide (500ng/ml) 471.99 370.09 514.37 141.64 525.83
CD200
No peptide 330.82 296.83 211.65 59.11 212.12
Peptide (500ng/ml) 531.44 368.95 518.36 150.25 532.81

LAT Empty-BJAB 02/02/2009 13/02/2009 17/07/2009 29/05/2009
No peptide 127.67 82.91 78.97 88.67
Peptide (500ng/ml) 139.97 93.86 95.67 110.8
vOX2
No peptide 124.11 84.65 76.06 89.9
Peptide (500ng/ml) 133.05 98.66 100.02 113.19
CD200
No peptide 118.42 82.86 67.71 92.35
Peptide (500ng/ml) 125.42 92.51 96.4 115.64

Zap70 Empty-BJAB 17/07/2009 21/07/2009 22/07/2009 15/07/2009
No peptide 166.35 122.29 125.95 170.69
Peptide (500ng/ml) 315.21 179.16 170.12 253.44
vOX2
No peptide 177.7 126.52 116.9 168.74
Peptide (500ng/ml) 298.26 218.58 197.63 224.18
CD200
No peptide 164.56 131.48 119.19 173.71
Peptide (500ng/ml) 305.19 193.02 192.61 263.32
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Table V. Flow cytometric analysis of intracellular signalling molecules in the CD8+ 
IM140.1 Y15 T cell clone (raw median fluorescence data) 
 

ERK1/2 Empty-BJAB 17/03/2009 23/03/2009 24/11/2008 22/05/2009
No peptide 115.57 142.17 244.07 171.08
Peptide (50ng/ml) 357.72 776.62 593.91 327.77
vOX2-BJAB
No peptide 102.11 135.72 221.1 171.36
Peptide (50ng/ml) 212.46 210.69 344.15 346.96
CD200-BJAB
No peptide 114.49 155.67 227.83 144.69
Peptide (50ng/ml) 267.55 227.09 346.69 273.89

p38 Empty-BJAB 17/03/2009 23/03/2009 02/12/2008 22/05/2009 03/04/2009
No peptide 82.12 84.65 121.49 116.68 87.81
Peptide (50ng/ml) 255.12 414.6 184.48 407.66 252.62
vOX2-BJAB
No peptide 80.42 83.19 119.38 124.82
Peptide (50ng/ml) 237.24 190.23 159.57 480.33
CD200-BJAB
No peptide 77.64 85.68 120.85 114.19 76.46
Peptide (50ng/ml) 265.67 177.66 192.59 405.95 174.54

SLP-76 Empty-BJAB 23/03/2009 22/05/2009 09/07/2009 15/07/2009
No peptide 86.14 113.36 136.1 169.53
Peptide (50ng/ml) 175.87 180.51 509.74 355.38
vOX2-BJAB
No peptide 122.7 105.56 140.76 162.27
Peptide (50ng/ml) 112.04 265.92 463.71 332.97
CD200-BJAB
No peptide 96.45 136.11 148.06 145.87
Peptide (50ng/ml) 174.69 191.2 425.81 318.18

Akt Empty-BJAB 17/03/2009 23/03/2009 22/05/2009 09/07/2009 17/07/2009
No peptide 229.76 203.03 302.68 249.92 168.18
Peptide (50ng/ml) 891.17 640.96 1045.78 712.21
vOX2-BJAB 469.18
No peptide
Peptide (50ng/ml) 214.8 204.75 303.69 258.73 167.71
CD200-BJAB 364.82 644.8 967.53 568.79
No peptide 282.02
Peptide (50ng/ml)
No peptide 202.78 179.1 320.73 236.59 154.47
Peptide (50ng/ml) 503.68 522.06 839.5 582.54
Peptide (5ng/ml) 319.9

LAT Empty-BJAB 09/07/2009 15/07/2009 17/07/2009 24/07/2009
No peptide 55.48 66.45 68.4 62.65
Peptide (50ng/ml) 90.15 84.95 62 58.74 No detectable response
vOX2-BJAB
No peptide 57.54 65.39 58.92 50.17
Peptide (50ng/ml) 78.46 87.12 78.72 55.11
CD200-BJAB
No peptide 57.74 67.2 71.19 47.32
Peptide (50ng/ml) 84.83 82.36 80.98 52.47

Zap70 Empty-BJAB 18/11/2008 22/05/2009 09/07/2009 15/07/2009
No peptide 354.01 202.04 276.85 170.69
Peptide (50ng/ml) 421.84 232.69 559.67 253.44
vOX2-BJAB
No peptide 322.99 209.51 277.37 168.74
Peptide (50ng/ml) 315.34 233.34 637.37 224.18
CD200-BJAB
No peptide 289.59 202.56 268.99 173.71
Peptide (50ng/ml) 329.95 228.01 584.18 263.32
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Table VI. Flow cytometric analysis of intracellular signalling molecules in the CD8+ 
IM235 c48 T cell clone (raw median fluorescence data) 
 

 

 

ERK1/2
Empty-BJAB 15/07/2009 17/07/2009 21/07/2009 22/07/2009

No peptide 168.58 118.17 67.31 69.73

Peptide (50ng/ml) 690.53 512.61 234.44 354.71

vOX2-BJAB
No peptide 154.36 116.49 68.96 71.19

Peptide (50ng/ml) 445.4 559.8 129.22 282.88

CD200-BJAB
No peptide 154.33 114.79 66.89 72.27

Peptide (50ng/ml) 338.16 409.38 175.42 265.17

p38
Empty-BJAB

No peptide 74.61 74.75 59.25 43.59

Peptide (50ng/ml) 465.89 353.72 157.43 288.91

vOX2-BJAB

No peptide 72.68 71.09 64.85 42.2

Peptide (50ng/ml) 471.16 454.89 133.28 324.2

CD200-BJAB
No peptide 67.32 76.24 65.18 44.59

Peptide (50ng/ml) 387.01 356.96 172.01 268.55
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Table VII. Flow cytometric analysis of proteins expressed on the surface of the 
engineered BJAB cells (raw median fluorescence data) 
 
 

03/03/2009 10/03/2009 19/03/2009 26/03/2009 02/04/2009 07/05/2009
HLA-ABC isotype

Empty-BJAB 0.34 0.33 0.28 0.33 0.26
vOX2-BJAB 0.29 0.3 0.33

CD200-BJAB 0.29 0.31 0.26 0.32 0.25

HLA-ABC
Empty-BJAB 46.22 40.63 29.55 53.33 43.6
vOX2-BJAB 28.68 33.33 30.09

CD200-BJAB 35.35 30.58 21.55 34.19 29.47

IgG1 isotype
Empty-BJAB 0.3 0.3 0.32 0.29 0.32 0.34
vOX2-BJAB 0.3 0.31 0.24 0.31

CD200-BJAB 0.21 0.25 0.24 0.25 0.22 0.3

HLA-DR
Empty-BJAB 250.35 134.25 177.43 189.88
vOX2-BJAB 144.83 136.15 188.83

CD200-BJAB 192.25 118.66 216.81 166.53

CD80
Empty-BJAB 3.81 4.48 3.57 2.67 2.55
vOX2-BJAB 3.23 2.66 2.16

CD200-BJAB 2.95 3.22 2.74 2.68 2.02

CD86
Empty-BJAB 22.81 21.18 26.5 19.14 24.67
vOX2-BJAB 29.29 23.58 35.41

CD200-BJAB 23.69 31.37 20.63 33.23

02/06/2009 08/07/2009 25/05/2009 25/06/2009
HLA-ABC isotype

Empty-BJAB 82.61 77.94 60.97 72.27
vOX2EGFP-BJAB 82.48 63.22 58.75 72.57

CD200EGFP-BJAB 86.66 71.63 66.7 69.81

HLA-ABC
Empty-BJAB 62385.86 85183.55 57719.1 69141.57

vOX2EGFP-BJAB 41852.82 85823.06 46375.98 67386.52
CD200EGFP-BJAB 45287.92 86332.8 53489.45 63898.68

08/07/2009
HLA-ABC isotype

Empty 77.94
CMV 119-BJAB 82
CMV 120-BJAB 76.46
CMV 121-BJAB 69.99

HLA-ABC
Empty-BJAB 85183.55

CMV 119-BJAB 91134.48
CMV 120-BJAB 87680.77
CMV 121-BJAB 89960.83

Median fluorescence
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Table VIII. Flow cytometric analysis of CD200R, CTLA-4 and CD28 on the surface 
of the CD8+ IM140.1 Y15 T cell clone cocultured with APCs engineered to express 
either vOX2 or CD200 (raw median fluorescence data) 
 
 

CD8+ IM140.1 Y15 T cell clone

CD200R

13/08/2009 11/08/2009 29/08/2009 30/08/2009

Empty-BJAB no peptide 527.87 792.12 1271.75 1463.25

Empty-BJAB + peptide 497.03 864.87 1631.47 1715.28

vOX2-BJAB no peptide 583.81 695.59

vOX2-BJAB + peptide 464.76 507.09

CD200-BJAB no peptide 242.06 393.61 515.02

CD200-BJAB + peptide 128.48 255.15 458.2

CTLA-4

13/08/2009 11/08/2009 29/08/2009 30/08/2009

Empty-BJAB no peptide 271.11 292.6 382.88 441.45

Empty-BJAB + peptide 327.85 427.06 566.63 617.06

vOX2-BJAB no peptide 238.81 275.29

vOX2-BJAB + peptide 329.27 278.32

CD200-BJAB no peptide 165.03 207.64 218.8

CD200-BJAB + peptide 171.09 275.4 344.07

CD28

13/08/2009 11/08/2009 29/08/2009 30/08/2009

Empty-BJAB no peptide 229.12 231.43 263.86 343.26

Empty-BJAB + peptide 282.32 354.05 324.31 423.01

vOX2-BJAB no peptide 237.81 325.63

vOX2-BJAB + peptide 314.32 300.13

CD200-BJAB no peptide 222.73 235.25 238.15

CD200-BJAB + peptide 223.95 376.39 341.27

Median fluorescence
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Table IX. Flow cytometric analysis of CD200R, CTLA-4 and CD28 on the surface 
of the CD4+ SL c93 T cell clone cocultured with APCs engineered to express either 
vOX2 or CD200 (raw median fluorescence data) 

 

 

 

CD4+ SL c93 T cell clone

CD200R

13/08/2009 11/08/2009 29/08/2009 30/08/2009 31/08/2009

Empty-BJAB no peptide 867.03 1360.49 1933.84 2426.5 1652.71

Empty-BJAB + peptide 689.82 1198.5 2063.49 2003.35 1530.3

vOX2-BJAB no peptide 860.78 1282.72 782.94

vOX2-BJAB + peptide 687.05 637.53 559.58

CD200-BJAB no peptide 422.7 560.04 859.24

CD200-BJAB + peptide 184.38 340.67 723.88

CTLA-4

13/08/2009 11/08/2009 29/08/2009 30/08/2009 31/08/2009

Empty-BJAB no peptide 430.29 476.65 605.02 723.64 691.21

Empty-BJAB + peptide 467.76 574.89 879.36 877.69 797.7

vOX2-BJAB no peptide 396.02 479.06 417.68

vOX2-BJAB + peptide 623.49 530.56 553.39

CD200-BJAB no peptide 263.16 275.57 394.87

CD200-BJAB + peptide 260.61 377.02 697.42

CD28

13/08/2009 11/08/2009 29/08/2009 30/08/2009 31/08/2009

Empty-BJAB no peptide 2438.43 1474.64 2695.88 2259.86 2577.51

Empty-BJAB + peptide 1939.8 1548.86 2030.14 1840.96 2510.96

vOX2-BJAB no peptide 2484.79 2082.87 2449.37

vOX2-BJAB + peptide 1902.55 1761.83 2356.16

CD200-BJAB no peptide 2436.25 1443.07 2664.92

CD200-BJAB + peptide 2243.1 1671.6 2064.8

Median fluorescence
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