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ABSTRACT 

Studying the dynamics of pathogen transmission within wildlife populations 

presents an array of challenges.  Where populations are socially structured, this 

can influence parasite transmission, impacting on the effectiveness of disease 

management strategies.  In this thesis, I focus on a well-studied social mammal, 

the European badger (Meles meles) which is a key wildlife reservoir of a 

disease of economic importance; bovine TB (caused by infection with 

Mycobacterium bovis).  The social structuring, characteristic of high density 

badger populations, is of well-established importance in the transmission of 

bovine TB and has resulted in unexpected management outcomes.  However, 

little is known about the role of kin structure or host genotype on transmission 

dynamics.  In this thesis, I combine traditional spatial epidemiology and 

ecological analysis of a well-studied badger population with more novel genetic 

and genomic approaches.  Firstly, I investigate the role of kin structure within 

badger social groups in determining early life infection risk (Chapter 3).  Using 

host genotype data, I demonstrate that cubs who are related to infected adults 

experience enhanced infection risks.  I then explore the role of badger genotype 

on outcomes of M. bovis exposure and demonstrate that inbred badgers are 

more likely to show evidence of progressive infection (Chapter 4).  Where the 

social structure of badgers is stable and unmanaged, this is predicted to result 

in a stable spatial distribution of M. bovis infection.  Motivated by an observation 

of change in the spatial distribution of M. bovis infection in the study population, 

in the absence of management, I characterise the attrition of a spatially stable 

infection distribution (Chapter 5).  To explore the drivers of this, I detect 

changes in the genetic population structure (Chapter 6) and present evidence 

that the population has experienced a period of demographic flux.  Finally, I use 

a novel dataset generated by whole genome sequencing of M. bovis isolates 

and present evidence of spatial spread of M. bovis infection across the study 

population (Chapter 7).  To conclude, I discuss how my findings demonstrate 

how genetic and genomic approaches can complement traditional wildlife 

epidemiology approaches, how they contribute to our understanding of 

heterogeneity in transmission dynamics and discuss their implications for 

wildlife disease management.   
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CHAPTER 1: General Introduction 

 

1.1 Introduction 

The five data chapters within this thesis have been written as stand-alone 

pieces of work with the ultimate aim of being published as scientific papers.  

The purpose of this introductory chapter is to introduce the central themes 

which draw together each of these distinct pieces of work and to illustrate how 

each of them contribute to our understanding of disease epidemiology, both 

within the particular context of the disease system from which they are drawn, 

but also their more general implications.  I will also suggest why each work area 

covered by this thesis may be of practical value in terms of informing 

management interventions within the specific context from which the data are 

collected.  As four of the five data chapters rely on the use of molecular data, 

either at the level of the host or the pathogen, Chapter 2 consists of a stand-

alone literature review exploring the applications of molecular epidemiological 

techniques to wildlife disease research. 

1.2 Spatial Epidemiology 

How does a pathogen spread across an area? What affects the rate of this 

spread? Why do clusters of disease appear in certain places? Spatial 

epidemiology aims to describe and analyse geographic variations in disease in 

relation to demographic, environmental, behavioural, genetic and infectious risk 

factors (Elliott and Wartenberg 2004).  It is focused on understanding the 

causes and consequences of spatial heterogeneity in infectious diseases 

(Ostfeld, Glass et al. 2005).  Often, in considering where disease is present and 

where it is not, we are trying to uncover underlying causes, predictors or risk 

factors (Doll 1980).  Turning this on its head, we can use the observed 

distribution of disease as a signal for social contact, using the spatial 

arrangement of infection to tell us something about the social structure and 

demography of a population, although this is dependent on having an 

understanding of the transmission mechanisms relevant to the pathogen in 

question.  Often, infected hosts are spatially clustered; this could be driven by 

the pathogen itself having limited dispersal, by vectors or reservoirs of infection 
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being spatially restricted or by susceptible hosts being spatially clumped 

(Ostfeld, Glass et al. 2005).  Uncovering the mechanisms which govern the 

spatial pattern and rate of spread of pathogens (Ostfeld, Glass et al. 2005) 

across landscapes is crucial in informing disease modelling (Gaudart, Rebaudet 

et al. 2013) and aids prediction of rates of spread and disease emergence in 

new areas (Plowright, Eby et al. 2015).  From the most simplistic approach of 

plotting cases of disease on a map to carrying out complex analyses such as 

Bayesian models of spatial diffusion, a wide range of approaches can be used 

to describe and understand the processes by which disease distributions 

change. 

1.3 Social Structure and Pathogen Transmission 

As well as spatial clusters of hosts resulting in clusters of infection, social 

structure within host populations can lead to further aggregation.  Even though 

two individuals are spatially proximate to each other, if social boundaries exist 

which deter contacts between them, transmission opportunities may be limited 

(Loehle 1995).  R0, the ‘basic reproductive number’ is a term widely used by 

epidemiologists.  It refers to the expected number of secondary cases caused 

by a typical infectious individual in a completely susceptible population 

(Macdonald 1952).  If R0 is less than 1, then the population of infected 

individuals cannot grow and the pathogen is expected to fade to extinction.  

However, if R0 is greater than 1, then the pathogen can spread through the 

population (Anderson, May et al. 1992).  In a randomly mixing population 

uniform transmission risk is assumed between all members of the population. 

However in the case of socially structured populations, contact rates between 

individuals will vary, depending on social membership.  One suggested driver 

for the evolution of social boundaries is reduction in the risk of disease 

transmission and such mechanisms may be of comparable importance to 

physical and immunological barriers (Loehle 1995).  However, as it has been 

frequently noted that disease and parasites are more common in larger social 

groups (Alexander 1974, Côté and Poulinb 1995), higher parasitism risk may 

represent a cost of social living.  Avoidance of disease transmission is predicted 

to favour rigid membership of social groups, however this conflicts with 

inbreeding avoidance and the drive to move group in order to improve food 
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availability, mating opportunities or social position (Loehle 1995). An individual 

may face a trade-off between these different drivers.  

Whether a disease persists or dies out in a socially structured population is 

likely to depend on whether it has an acute or chronic progression. When 

compared with an acute disease of the same R0, chronic diseases with longer 

infectious periods allow more time for host mixing to occur and therefore are in 

contact with an effectively larger population. This means that a chronic disease 

is more likely to invade a structured population than an acute disease of the 

same R0. (Cross, Lloyd-Smith et al. 2005). Studies of human pathogens have 

demonstrated that social structure, or ‘community’ structure within contact 

networks can have a major impact on disease dynamics (Salathé and Jones 

2010, Cauchemez, Bhattarai et al. 2011).  Within animal populations, the 

importance of social structure in transmission of infectious diseases is being 

increasingly recognised (see review in Tompkins, Dunn et al. 2011).  An 

individual’s position or rank within a socially structured population may influence 

the likelihood of it becoming infected (Böhm, Hutchings et al. 2009) as 

demonstrated in social animals such as meerkats (Drewe 2010).  Certain 

“super-spreader”  individuals within a population may contribute to a 

disproportionate number of secondary infections (Lloyd-Smith, Schreiber et al. 

2005), due to a particular behavioural or biological trait or their position within a 

social network. For example, individuals who overcome social group boundaries 

are likely to be important in allowing pathogens to be transmitted between 

groups (Salathé and Jones 2010, Weber, Carter et al. 2013). 

As well as being spatially clustered, individuals can be genetically clustered.  

Often the two are linked, with spatial clusters of individuals being made up of 

clusters of relatives, for example if young do not disperse (natal philopatry).  

Considering genetic distance (or relatedness) between individuals offers an 

alternative way of considering structure within a population.  As well as the 

different contact rates within and between social groups, a relatedness structure 

also exists. This reflects the relatedness both of individuals within the same 

social group and between individuals in the group and those who have 

dispersed elsewhere.  Where kin-biased association exists (i.e. relatives spend 

more time together or engage in closer contacts than non-relatives) this adds 

further heterogeneity to inter-individual contact rates.  Kin structure, defined as 
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the spatial aggregation of related individuals (Hatchwell 2010), is proposed to 

increase individual disease transmission risk in directly transmitted pathogens 

(Dharmarajan, Beasley et al. 2012), because transmission rates are expected to 

be higher between related individuals than between non-related individuals. 

Bovine tuberculosis (bTB), a chronic disease caused by infection with the 

pathogen Mycobacterium bovis, remains a critical issue in livestock farming in 

several parts of the world, including the UK.  The European badger (Meles 

meles) is a known reservoir of the pathogen.  Since the 1970s when badgers 

were first implicated as a potential source of the disease in cattle (Gallagher, 

Muirhead et al. 1976), there has been much debate over the most effective 

management strategy.  UK governments of the day have commissioned several 

comprehensive reviews of the scientific evidence and a broad swathe of 

research (Krebs, Anderson et al. 1997, Bourne, Donnelly et al. 2007).  There is 

no doubt that this is one of the most intensively studied disease systems in the 

world.  Transmission of M. bovis between badgers and cattle is thought to be 

possible both directly, as a result of badgers and cattle coming into ‘nose to 

nose’ contact with each other (Little, Naylor et al. 1982), and indirectly, via 

contact with a shared infected environment, which is thought to be the 

predominant transmission route (Drewe, O'Connor et al. 2013, Woodroffe, 

Donnelly et al. 2016).  In terms of transmission amongst badgers, the pathology 

of M. bovis infection observed in badgers post mortem suggests that aerosol 

based transmission is the most common route (Clifton-Hadley, Wilesmith et al. 

1993, Gallagher and Clifton-Hadley 2000), although bite-wounding is also likely 

to be an important transmission route (Clifton-Hadley, Wilesmith et al. 1993, 

Gallagher and Clifton-Hadley 2000) and has been associated with a more acute 

presentation of disease (Gallagher and Nelson 1979, Clifton-Hadley, Wilesmith 

et al. 1993, Gallagher and Clifton-Hadley 2000). 

It is well documented that the social structure typical of moderate to high 

density, managed and unmanaged badger populations can have a marked 

impact on the persistence and transmission of bTB (bovine TB) (Delahay, 

Langton et al. 2000, Carter, Delahay et al. 2007).  At moderate to high 

densities, badgers live in social groups in defended territories, limiting 

population mixing, such that members of different social groups are less likely to 

come into close contact than members of the same social group (Weber, Carter 
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et al. 2013).  This heterogeneity in contact behaviour is thought to drive the 

clustered distribution of M. bovis infection in badger populations (Delahay, 

Langton et al. 2000, Woodroffe, Donnelly et al. 2005).  Additionally, bovine 

tuberculosis in badgers is a chronic disease, caused by a slow growing 

mycobacteria, with infected badgers persisting and reproducing successfully 

despite infection (Tomlinson, Chambers et al. 2013).  The presence of stable 

social structure within a population favours prolonged close contact between 

individuals, which in studies of human tuberculosis, has been suggested to 

generally be required in order for transmission to occur (Beggs, Noakes et al. 

2003) .  Kin structure within social groups can add further complexity to 

transmission dynamics, as has been demonstrated in a small number of studies 

(Grear, Samuel et al. 2010, Dharmarajan, Beasley et al. 2012, Vander Wal, 

Edye et al. 2013).  However, to date, the role of kin structure on infection 

transmission within badger social groups has not been explored.  This is likely 

to be significant, as many badgers remain in their natal group throughout their 

lives (Roper 2010), resulting in marked kin structure within badger social 

groups.  In my first data chapter, I explore how social structure and kin structure 

within the social group boundaries predict the likelihood of infection with M. 

bovis in early life.  This has implications for disease management, as M. bovis 

infection in cubs is thought to be associated with more progressed disease, 

compared to that in adults (Gallagher and Clifton-Hadley 2000) and therefore a 

higher risk of onward transmission.  This has been attributed to the 

underdeveloped immune system of cubs (Tomlinson, Chambers et al. 2013), 

such that individuals who are exposed to M. bovis in early life are less able to 

contain the infection and are more likely to progress to disseminated infection, 

resulting in excretion of M. bovis bacilli through a range of routes (Clifton-

Hadley, Wilesmith et al. 1993, Gallagher and Clifton-Hadley 2000).  An 

understanding of the risks of acquiring infection in early life also has key 

implications for the success of vaccination campaigns, which only have access 

to cubs once they are above the ground and less dependent. 

1.4  Between and Within Individual Variation 

As well as the role of social structure in creating heterogeneity in transmission 

rates within a population, further complexity is found when we look closer at 

variation amongst individuals, both in terms of their behaviour and their 
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immuno-genetic profiles.  It has been stated that ‘the contribution that host and 

pathogen genotypes make to disease outcomes has, until recently, been 

overlooked by policy makers, yet it is biologically untenable that genetic 

variation of both organisms does not play a role.’ (Allen, Minozzi et al. 2010).  

Individual variation in immune response can be strongly influenced by variation 

in an individual’s genetic background (Ardia, Parmentier et al. 2011).  Mating 

between related individuals, known as inbreeding, results in a reduction in 

genetic variation in the resultant offspring.  Inbreeding may be associated with a 

depressed immune response, if the loss of genetic variability is within loci 

involved in parasite defence (O'Brien and Evermann 1988).  An individual’s 

genetic background is an important determinant of variation in antibody 

responses and immune system activation (Ardia, Parmentier et al. 2011).   

Alongside genetic sources of inter-individual variation in immune response, life 

history theory predicts that immune responses should be flexible and 

responsive to changing environmental contexts; if there is no immunological 

challenge present in the form of a pathogen which limits life history success 

then there is no selection pressure for an individual to invest in immune 

response (Ardia, Parmentier et al. 2011).  Individuals who invest more in certain 

facets of immune response face trade-offs, as they have less resource to invest 

in other life-history functions, or even other aspects of the immune response 

(Ardia, Parmentier et al. 2011).  It has been proposed that, although individuals 

can invest differently in immune responses, based on the selection pressures 

present in a given environment, underlying genetic and physiological factors 

can constrain this flexibility (Ardia, Parmentier et al. 2011) i.e. some individuals 

have a greater genetic bank from which to select an appropriate immune 

response than others.  It can be difficult to discern when an individual is 

mounting a sub-optimal immune response because of a lack of underlying 

allelic diversity or due to a resource trade-off with another function (Ardia, 

Parmentier et al. 2011).  Environmental conditions, such as food availability 

(Lochmiller, Vestey et al. 1993, Chandra 1996) and weather (Sevi, 

Annicchiarico et al. 2001) can also influence host condition, with sub-optimal 

conditions resulting in reduced immune responses.  Immune responses can 

vary over an individual’s life history; juveniles and adults can mount divergent 

responses to the same pathogen challenge and older individuals are predicted 
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to have less flexibility in their immune responses.  Chronic stress has been 

shown to depress the immune system (Padgett and Glaser 2003), so individuals 

may have compromised immune responses at certain life stages associated 

with ‘stressful’ events such as dispersal and resource competition (Gallagher 

and Clifton-Hadley 2000).  These phenomena create within individual variation 

in immune responses. 

There is substantial evidence of a genetic component to inter-individual 

variation in susceptibility to infection with bacteria of the M. tuberculosis 

complex, of which M. bovis is a member (Lyons, Frodsham et al. 2009, Barreiro, 

Tailleux et al. 2012). However, less is known about the influence of genetic 

variation on M. bovis infection progression, with limited data from wild 

populations (Acevedo-Whitehouse, Vicente et al. 2005).  Inbreeding depression 

has been linked to increased susceptibility to bovine TB infection in free-living 

(Dorman, Hatem et al. 2004, Trinkel, Cooper et al. 2011) and captive (Briles 

2012) wildlife and livestock (Allen, Minozzi et al. 2010, Brotherstone, White et 

al. 2010, Vordermeier, Ameni et al. 2012).  In wild boar, genetic heterozygosity 

was an important predictor of both risk of infection with bovine TB and 

progression of disease (Acevedo-Whitehouse, Vicente et al. 2005).  A study 

investigating the immune responses of red deer experimentally challenged with 

M. bovis suggested that nearly half of the observed variation in response was 

attributable to host genetic variation (Griffin and Mackintosh 2000).  However, 

no published studies to date investigate inbreeding depression and bovine TB 

progression in badgers.  In Chapter 4 I use microsatellite marker data to explore 

whether individual genetic heterozygosity predicts the progression of M. bovis 

infection in exposed badgers.  In terms of practical applications, uncovering 

whether there is any evidence of a genetic component to bTB progression in 

badgers may have important implications for modelling infection spread in 

badger populations, particularly at the moving edge of the epidemic front where 

populations may not have previously been exposed to M. bovis and may 

therefore be more naïve in terms of their immune responses.  Population 

management strategies, such as culling, may also influence the extent of 

inbreeding within a population; either increasing it by reducing the number of 

available mates or decreasing it by enhancing population movement.  
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Additionally, the efficacy of vaccination may vary between individuals based on 

their genotype. 

1.5 Changing spatial and temporal patterns 

From exploring the role of social structure and individual variation on disease 

dynamics, in Chapter 5 I take a step back to consider the study population as a 

whole, capitalizing on its long temporal scale to look for spatial and temporal 

trends in M. bovis infection distribution.  As discussed above, pathogens are 

often spatially clustered; driven by limited pathogen dispersal, spatially 

restricted reservoirs or hosts being spatially clumped (Ostfeld, Glass et al. 

2005), with social structure and potentially kin structure generating further 

substructure.  These drivers of aggregation can be altered by external factors. 

For example, climate change may cause a vector to move outside of its current 

spatial range (Kovats, Campbell-Lendrum et al. 2001), or population 

management can alter host social structure (Carter, Delahay et al. 2007) or 

ranging behaviour (Ramsey, Spencer et al. 2002, Riordan, Delahay et al. 2011, 

Blackwood, Streicker et al. 2013), resulting in changes to clustering patterns 

(Jenkins, Woodroffe et al. 2007).   

Significant changes in the spatial distribution of M. bovis infections in badgers 

have been noted in response to population management (Jenkins, Woodroffe et 

al. 2007).  Since they were first implicated as a potential source of TB 

transmission to UK cattle, badgers have been the subject of various culling 

strategies (Krebs, Anderson et al. 1997).  In 1998 the Randomised Badger 

Culling Trial (RBCT) was initiated.  This large-scale field experiment was 

designed to provide a scientifically robust evaluation of the effect of culling 

badgers on cattle TB breakdowns (Krebs, Anderson et al. 1997).  Thirty 100 

square kilometre study areas were matched into treatment triplets; ‘reactive’ 

areas where badgers were removed on and surrounding farms that had 

experienced disease in cattle (known as a herd breakdown), ‘proactive’ areas 

where as many badgers as possible were removed and ‘control’ areas, where 

no action was taken (Donnelly, Woodroffe et al. 2005).  The ‘reactive’ treatment, 

which represented the most similar approach to the pre- RBCT badger culling 

strategies (Donnelly, Woodroffe et al. 2003) was linked to a 27% increase in the 

incidence of cattle herd breakdowns and was abandoned early for this reason.  
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In the proactive areas, cattle TB incidence was 23% lower, with the benefit 

increasing over successive culls, although in the land surrounding these areas, 

it increased by 25% (Donnelly, Wei et al. 2007).  This increase was attributed to 

culling-induced changes in badger behaviour, a phenomenon which was termed 

‘social perturbation’.  Culling was linked to disruption of the social organisation 

of the badger population, resulting in enhanced movements amongst animals 

surviving the cull, and potentially exacerbating disease spread (Carter, Delahay 

et al. 2007).  Badger group territories became consistently larger in culled 

areas, demonstrating that culling had had marked impacts on the spatial 

organisation of badger populations (Woodroffe, Donnelly et al. 2006).  Radio-

tracking studies of the behaviour of badgers during the RBCT also identified 

disruption in territoriality in culled areas, and showed that surviving individuals 

moved between groups more often and had larger home ranges than animals in 

unculled areas (Riordan, Delahay et al. 2011).  Spatial clustering of M. bovis 

infections in badgers taken during sequential culls reduced, which was 

attributed to surviving individuals ranging more widely (Jenkins, Woodroffe et al. 

2007).   

To assess when major changes have occurred to a system as a result of 

management interventions, it is valuable to have an understanding of the 

spatio-temporal distribution of disease under unmanaged conditions.  Prompted 

by an untested observation that the spatial arrangement of M. bovis infections in 

the Woodchester badger population had destabilised from spatial persistent foci 

(Delahay, Langton et al. 2000), in my third data chapter I describe the spatio-

temporal arrangement of M. bovis infections within this study population over a 

two decade period. I use a range of methods, including those employed during 

the RBCT, to assess whether the distribution of M. bovis infection has 

substantially changed in this unmanaged population.   

1.6 Genetic Population Structure and Pathogen Transmission 

Understanding gene flow through a host population can provide insights into 

contact events between spatially distant individuals which may go undetected 

by observational methods and are not logistically possible to capture using 

techniques such as radio-collaring over a long period (Altizer, Bartel et al. 

2011).  Population genetic approaches can characterize historic host dispersal 
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patterns and potentially help predict pathogen spread (Streicker, Winternitz et 

al. 2016).  Differences in dispersal patterns between the sexes can mean that 

one sex may be more important in pathogen spread (Streicker, Winternitz et al. 

2016).  Investigating the spatial scale of genetic correlation among hosts can 

provide insights into the distribution and potential spread of disease (Blanchong, 

Robinson et al. 2016).  Having explored the fluctuations in the spatio-temporal 

distribution of M. bovis in the study population, in Chapter 6 I use genetic 

approaches to determine whether these fluctuations may result from temporal 

change in movement behaviour in the Woodchester badger population.  

Previous studies on this population have linked inter-social group movement to 

TB incidence (Rogers, Delahay et al. 1998, Vicente, Delahay et al. 2007), with 

years of high movement followed by years of increased incidence risk (Rogers, 

Delahay et al. 1998).  However, these studies have relied entirely on the 

capture-mark-recapture data. It has been previously noted that extra-group 

mating can be commonplace in badger populations (Carpenter, Pope et al. 

2005, Annavi, Newman et al. 2014).  Visualising the genetic population 

structure allows us to gain a different perspective on possible opportunities for 

M. bovis transmission amongst badgers, rather than relying solely on the 

capture dataset.  Forays into other social group territories to seek mating 

opportunities may be ephemeral and may not be detected by trapping at main 

setts or by delineating social territory boundaries.  Here, I use the longitudinal 

capture records in combination with host genotype data in order to gain a more 

complete picture of movement and demography within the Woodchester badger 

population.  This will contribute to a currently limited body of work in which host 

genetic structure has been used to understand pathogen spread and host 

movement at a restricted spatial scale (Cullingham, Merrill et al. 2011, 

Mazé‐Guilmo, Blanchet et al. 2016) rather than as a larger scale landscape 

genetics approach (Biek and Real 2010) looking at host population structure 

across regions (Blanchong, Samuel et al. 2008, Lee, Ruell et al. 2012), 

countries (Lang and Blanchong 2012, Vander Wal, Edye et al. 2013) or 

continents (Streicker, Winternitz et al. 2016).  Also, as management 

interventions such as culling have been noted to result in changes in genetic 

population structure (Pope, Butlin et al. 2007), related to movement patterns, it 

will be valuable to quantify the changes that can occur within a unmanaged 

system as a result of natural demographic processes.   



23 

An alternative or ideally additional approach to considering host genetic 

population structure is to consider the genetic population structure of the 

pathogen itself (Blanchong, Robinson et al. 2016).  Comparing pathogen 

genotypes is based on a fairly straightforward rationale. Mutations in conserved 

nucleotide sequences are identified that can be used to determine how samples 

are related to each other; closely related samples will share most of the same 

mutations (Blanchong, Robinson et al. 2016).  As I explore in Chapter 2, the 

development of technological advances such as whole genome sequencing has 

allowed differentiation between even very closely related samples.  However, 

whole genome sequencing has rarely been used to examine the transmission 

dynamics of a bacterial pathogen in wildlife (Kamath, Foster et al. 2016).  For a 

pathogen such as M. bovis which is highly clonal (Smith, Gordon et al. 2006), 

with an extremely low mutation rate (Biek, O'Hare et al. 2012), there are few 

informative differences between isolates. More traditional genotyping 

approaches based on typing only small genomic regions are therefore unlikely 

to be able to distinguish between M. bovis isolates at a fine spatial scale.  My 

final data chapter (Chapter 7) capitalizes on the recent availability of whole 

genome sequence data for M. bovis isolates from the Woodchester badger 

population.  M. bovis sequence data from badgers has only recently become 

available, hence very little work has been published in this area (Biek, O'Hare et 

al. 2012).  This final approach uses host genotype data as an explanatory factor 

for pathogen genetic structure.  Pathogen genetic structure is expected to 

reflect host genetic structure, as dispersal of hosts drives the dispersal of 

pathogens (Mazé‐Guilmo, Blanchet et al. 2016).  A high and significant 

correlation between pairwise distances between genotypes of a host and those 

of the pathogen they are harboring would indicate that host and parasite 

dispersal rates are strongly related to each other (Nieberding, Durette-Desset et 

al. 2008). In this final chapter, I use the available sequence data in order to 

examine strain diversity within the badger population over a decade long period, 

to consider whether there is genetic evidence for spatial spread of infection 

across the study site and to further investigate the impact of kin structure of 

transmission.  Finally, in Chapter 8 I discuss the overall findings from the thesis, 

place them within the context of the wider field of research, discuss their 

management implications and outline potential directions for future research.   
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CHAPTER 2: Literature Review 

  

What has molecular epidemiology ever done for wildlife disease 

research?  

2.1 Abstract 

The increasing availability of novel molecular techniques has transformed the 

study of human health and disease epidemiology.  However, uptake of such 

approaches has been more conservative in the field of wildlife disease 

epidemiology.   I consider the reasons for this and discuss current and potential 

applications of molecular techniques in a variety of relevant areas within the 

field of wildlife disease research.  These include conducting wildlife disease 

surveillance, identifying sources of pathogen emergence, uncovering host-

pathogen dynamics and managing current outbreaks, including the 

development and monitoring of wildlife vaccines.  I highlight key examples of 

applications of molecular epidemiological approaches to wildlife disease 

scenarios and draw parallels from human disease research to suggest potential 

future directions.  The potential value of next generation sequencing 

technologies to the field of wildlife disease research is discussed and initial 

applications are highlighted, balanced against consideration of the challenges 

involved.  Using a wide range of examples drawn from research into human, 

livestock and wildlife diseases I demonstrate the value of using molecular 

epidemiological approaches at all scales of wildlife disease research, from 

pathogen strains circulating at a global scale to intra-individual host pathogen 

dynamics.  The potential future contribution of these technologies to the field of 

wildlife disease epidemiology is substantial.  In particular they are likely to play 

an increasingly important role in helping us to address a principal challenge in 

the management of wildlife diseases which is how to tease apart the 

transmission dynamics of complex multi-host systems in order to develop 

effective and sustainable interventions.  
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2.2 Introduction 

Since its emergence in the 1970’s, the term ‘molecular epidemiology’ has 

appeared in a vast number of publications in a wide range of scientific 

disciplines.  Initially the term was used primarily in the study of human cancer to 

describe the process of identifying biomarkers within populations which 

improved identification of subgroups at greater risk of developing disease 

(Vineis and Perera 2007).  However, the term is now widely used in the field of 

infectious disease biology, where it has been defined as involving ‘the various 

techniques derived from immunology, biochemistry and genetics for typing and 

sub-typing pathogens’ (Tibayrenc 1998).  A broader definition that goes some 

way to capturing the breadth of the subject is ‘a science which utilises molecular 

biology to define the distribution of disease within a population and relies 

heavily on integration of traditional epidemiological approaches to identify the 

etiological determinants of this distribution’ (Snow 2011).   The influence of 

molecular epidemiology in the field of human health research has been 

extensive.  Ongoing surveillance of the spatio-temporal distribution of disease 

strains has helped uncover drivers of disease transmission (Liu, Graber et al. 

2008), infer the geographic origin of pathogens (Hemelaar, Gouws et al. 2011) 

and provided a baseline against which changes can be detected (Koopmans, 

Vinjé et al. 2000).  In addition, transmission routes of zoonotic pathogens have 

been identified (Feng and Xiao 2011, Salyer, Gillespie et al. 2012), and the 

evolutionary provenance of pathogenic strains (Byrnes, Li et al. 2010) and 

antibiotic resistance mechanisms (Hoffmann, Minkah et al. 2007, Kumarasamy, 

Toleman et al. 2010) have been pinpointed.  Molecular technologies have also 

been widely used in the development of vaccines against human pathogens 

and in responsive investigations of disease outbreaks (Gardy, Johnston et al. 

2011, Rasko, Worsham et al. 2011, Grad, Lipsitch et al. 2012).  In this review, I 

will explore similar applications of molecular technologies in the field of wildlife 

diseases and suggest directions for future applications. 

2.3 Bibliometrics 

A comprehensive literature search for journal articles published since 1980 

using the term ‘molecular epidemiology’ revealed over 111,000 results.   In 
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order to consider the growth of molecular approaches in epidemiology, the 

proportion of ‘molecular epidemiology’ articles within ‘epidemiology’ articles for 

the fields of clinical, livestock, zoonoses and wildlife research were calculated.  

Time series analysis and forecasting of publication trends illustrate the 

proportion of ‘epidemiology’ papers incorporating molecular epidemiological 

approaches for each of the four categories (Fig 2.1).  When the overall numbers 

of ‘molecular epidemiology’ publications within each field are considered, 

unsurprisingly the vast majority fall within the field of human clinical research 

(Fig 2.2).  The application of molecular epidemiological techniques in livestock, 

zoonoses and wildlife disease research has steadily grown from the mid 2000’s 

onwards, but such studies still represent only a small proportion of the total 

observed.  The origin of the term in human clinical research is indicated by its 

earlier appearance in this field, filtering into the other fields shortly afterwards 

(Fig 2.1).   Time series forecasting indicates that the proportion of ‘molecular 

epidemiology’ publications is predicted to increase relatively steeply in the fields 

of livestock and zoonotic research, but the trend is less certain in the field of 

wildlife disease research as indicated by the wider confidence intervals (Fig 

2.1).   
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Fig 2.1 Time series analysis and forecasting of the proportion of ‘epidemiology’ journal articles 

that are ‘molecular epidemiology’ in the fields of clinical research, livestock research, zoonoses 

research and wildlife research.  Based on ISI Web of Science search within topic field 

conducted in April 2014.  Time series forecasting carried out using the ‘forecast’ package in R 

(Hyndman and Khandakar 2007). 
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Fig 2.2 Number of ‘molecular epidemiology’ journal articles published in the fields of clinical 

research, livestock research, zoonoses research and wildlife research.  Search conducted using 

ISI Web of Science in April 2014 

The bias towards human disease is perhaps not surprising or unexpected given 

that molecular approaches  were first developed in this field and human 

diseases naturally attract a greater level of attention and funding than diseases 

of animals.  It may also reflect the greater focus on non-infectious diseases 

related to genetic or environmental factors in human systems, for example the 

large number of studies which employ molecular epidemiological approaches to 

identify biomarkers associated with cancer.  In general, diseases of livestock or 
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wildlife have only been considered important when agriculture or human health 

is potentially threatened (Daszak, Cunningham et al. 2000), which is consistent 

with the smaller number of publications and conservative uptake of molecular 

epidemiological techniques in the field of non-zoonotic wildlife disease.  There 

are also a range of practical challenges involved in any study of disease 

epidemiology in wild populations, including  access to individuals, absence of 

validated diagnostic tests, logistics and costs of sampling, poor baseline 

surveillance and inherent uncertainty surrounding species ecology and 

behaviour (Delahay, Smith et al. 2008).  Nevertheless, as we draw parallels with 

studies using molecular techniques in other fields, we will see that there are 

many potentially valuable applications of molecular methods to the 

epidemiology of disease in wildlife populations.  In this review, I consider how 

molecular epidemiological approaches can help wildlife managers address key 

questions about disease dynamics and I suggest directions and opportunities 

for their wider application in this field. 

2.4 Molecular methods 

Although DNA based techniques have been in use for less than fifty years 

(Medini, Serruto et al. 2008) during recent decades a wide range of molecular 

techniques have emerged for the study of pathogens.  One example is typing 

based on 16S ribosomal RNA (rRNA), in which the percentage of sequence 

similarity of rRNA molecules between samples is used to classify species (99% 

sequence identity is used as the cut-off between separate species) (Medini, 

Serruto et al. 2008).  In alternative techniques, other genomic elements are 

sequenced and used as the basis of classification such as housekeeping gene 

fragments in MLST (multi-locus sequence typing) and enzyme profiles in MLEE 

(multi-locus enzyme electrophoresis) in bacteria.   However, these systems can 

struggle to distinguish amongst very similar strains (Achtman 2001), such as 

members of the Mycobacterium tuberculosis complex (Frothingham 1995, 

Köser, Ellington et al. 2012) or strains of Bacillus anthracis (Keim, Smith et al. 

2001), the causative agent of anthrax.   

 The choice of an appropriate molecular typing technique requires an 

understanding of the genomic structure of the pathogen in question.  Bacterial 

genomes consist of a core genome, common to all strains, dispensable genes 
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which are not present in all strains and genomic islands; clusters of contiguous 

genes with a specialised function (e.g.  virulence) (Relman 2011).  Classical 

methods of classifying bacterial pathogens are based on phenotypic 

characteristics such as cellular structure (Medini, Serruto et al. 2008), colony 

morphology (Baron, Hummel et al. 1996) and antibiotic susceptibility (Harwood, 

Whitlock et al. 2000).  In contrast, viral pathogens contain small genomes, are 

highly diverse and some can evolve very rapidly (Fierer, Breitbart et al. 2007).  

For example, the ability of the influenza virus to rapidly change its antigenic 

profile requires continual development of vaccines (Relman 2011).  Genetic 

diversity in fungal pathogens depends on a) the mode of reproduction of the 

species; sexual or asexual and b) the presence of ‘transposable elements’; 

mobile genetic elements which can insert themselves within genes, changing 

their structure and function (Daboussi 1997).  Protozoans such as the human 

pathogens Trypanosoma brucei and Leishmania major have genomes with 

species specific surface antigens and variable strategies of invading hosts and 

evading immune responses.  Conservation of gene order between species is 

high, indicating the presence of a strong selection pressure to conserve certain 

gene clusters and their associated function (El-Sayed, Myler et al. 2005).   

The underlying genomic structure and diversity within a particular pathogen will 

influence the choice of typing method.  All the typing techniques described 

above are fundamentally limited as they only examine a small section of the 

host genome.   Depending on the biology of the pathogen, the section under 

examination will vary in the degree to which it is representative of the whole 

genome.   For example, the typing methods traditionally used to categorize 

strains of Mycobacterium bovis (the causative agent of bovine TB) are 

spoligotyping (spacer-oligonucleotide typing) and VNTR (Variable Number 

Tandem Repeat) typing, both of which are based on small, hyper-variable 

genomic regions that are generally evolving at a higher rate than the rest of the 

genome (Joshi, Harris et al. 2012).   Such methods are therefore potentially 

more useful for differentiating between species than detecting finer scale intra-

specific variation, although this will depend largely on the genetic diversity 

within the particular pathogen complex under examination.  Rapidly evolving 

viruses may generate sufficient diversity for intra-specific strains to be 

differentiated on the basis of more restricted areas of the genome than bacterial 
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pathogens, but only by examining the complete genome of a species can  finer 

genetic structuring be uncovered (Medini, Serruto et al. 2008).  The 

development of ‘next generation’ sequencing approaches, which base 

classification on the identification of SNPs (Single Nucleotide Polymorphisms - 

single base substitutions; insertions or deletions) that vary between individual 

genomes, has facilitated the rapid sequencing of whole genomes, opening the 

door for studies which were previously impossible.   In order to construct a 

phylogenetic tree from a group of sequenced isolates, phylogenetically 

informative SNPs (i.e. those shared by two or more isolates) are identified 

through the examination of the maximum sequenceable genome of each 

isolate.   SNPs occur in both coding and non-coding regions, but those in the 

latter are less likely to exert a phenotypic effect and therefore are less likely to 

be affected by selective pressures.   Hence, whole genome sequencing infers 

phylogenetic relationships from the maximum amount of genetic information 

available.    

The current next generation sequencing (NGS) technologies are based on 

breaking the original genome into fragments, which are then extensively 

sequenced to yield short read sequences.  These reads can then either be 

mapped to a reference genome (where present) or assembled against each 

other (“de novo” assembly) in order to identify potential SNPs.  SNPs which 

successfully pass the required quality checks can then be used to produce 

phylogenetic trees and inform transmission models.   The cost and required 

infrastructure for these technologies have so far limited their widespread uptake 

(Metzker 2010).   However, costs are rapidly falling (Köser, Ellington et al. 

2012), uptake is increasing and the incorporation of NGS into routine human 

disease surveillance (Roetzer, Diel et al. 2013) and clinical diagnostics (Boyd 

2013) appears to be imminent.   Full sequence data has all the potential 

applications of strain typing but at a far higher resolution and gives the 

opportunity to determine the extent of the differences amongst strains rather 

than to simply distinguish them from one another.  However, there are 

challenges in these approaches in relation to the storage, quality control and 

manipulation of the enormous amounts of data that they generate (Pop and 

Salzberg 2008).  Also, lack of standardisation in bioinformatics protocols limits 

the extent to which sequences can be compared across laboratories (Köser, 
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Ellington et al. 2012) and technologies (Metzker 2010).  Nevertheless, NGS has 

enormous potential to uncover fine-scale disease transmission dynamics, which 

may otherwise remain hidden to epidemiologists.   

2.5 Disease surveillance 

The importance of surveillance for wildlife diseases is well established (Artois, 

Bengis et al. 2009).  Ongoing surveillance can act as an early warning system 

for outbreaks of new or emerging diseases, allowing pre-emptive management 

interventions and potentially helping to inform assessment of risk related to 

conservation interventions such as translocations of endangered populations 

(Artois, Bengis et al. 2009).   

It is important to assess the extent of genetic diversity within a pathogen 

population as this has implications for how refined molecular tools need to be in 

order to investigate disease transmission events.   For example, with a low 

diversity pathogen such as Bacillus anthracis, the most divergent strains are 

thought to be 99.99% similar in terms of nucleotide sequencing (Rasko, 

Worsham et al. 2011) and therefore most isolates will appear homogenous, no 

matter how rigorous the sequencing method.   In contrast, within the HIV-1 virus 

there is a wealth of genetic diversity which is organised into ‘subtypes’ within 

which genetic variation can range between 8 and 17% and can be as much as 

35% amongst sub-types (Hemelaar, Gouws et al. 2011).   Genetically diverse 

populations of the virus, termed ‘quasi-species’, can be harboured by a single 

host individual (Domingo and Holland 1997).   Only through ongoing 

surveillance of circulating strains can the intrinsic genetic diversity of a 

pathogen be captured.   

Ongoing surveillance of strain diversity can inform the development of 

diagnostic tests which may be employed for the identification and potentially 

selective removal of infected individuals in livestock and wildlife populations.  

The removal of test positive individuals could potentially exert a selection 

pressure on pathogen populations, with selection favouring strains that produce 

a weak or negative diagnostic test response.  Hence, diagnostic test 

development is ideally an ongoing process, which seeks to keep one step 

ahead of such selection pressure.  An example from human health is that of 

Neisseria meningitides, the bacterial cause of Meningitis A.  Molecular 
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approaches indicate that within this bacterial complex, there are a number of 

clonal groups, some of which cause disease and others which live commensally 

within human hosts (Achtman, van der Ende et al. 2001).  Horizontal gene 

transfer between group members can generate genetic diversity.  The identity of 

the most frequent genotype in a population can vary as changing forces of 

selection favour different strains (Achtman, van der Ende et al. 2001) with clear 

implications for the design of effective vaccines.   

Comparison of pathogen genotypes in regions where infection is endemic 

versus those where infections only occur sporadically, may uncover genetic 

differences associated with the two scenarios, related for example to 

pathogenicity factors.  Molecular typing may also have important applications in 

detecting the emergence of new pathogenic strains in populations.  In the case 

of bacteria, the jump from benign to pathogenic could potentially occur relatively 

rapidly, through the acquisition of a genomic island which codes for a 

pathogenicity factor (Hacker and Carniel 2001) and molecular typing may aid 

the detection of such events. 

2.6 Phylogeography 

Molecular techniques are widely used to describe the spatio-temporal 

distribution of variant pathogen strains.  For example, the characteristic home 

ranges of M. bovis genotypes in cattle have been mapped across the affected 

areas of the UK (Smith, Dale et al. 2003).   Routine mapping of this kind may 

identify the appearance of atypical strains in an area; this may indicate that a 

‘novel’ transmission event has occurred (e.g. the translocation of an infected 

host animal from another region).  Geographic differences in virulence between 

pathogen strains may also occur, as has been identified for the fungal pathogen 

Cryptococcus gatti (Byrnes, Li et al. 2010).  Spatial mapping exercises can also 

tell us something about the evolution of pathogen strains as geographically 

dispersed genotypes may be considered more likely to be ancestral strains than 

those with a restricted home range (Smith, Dale et al. 2003).  Examining the 

prevalence of disease in a region can also be used to infer risk factors which 

could inform management strategies.  Incorporating molecular information into 

these investigations can provide greater insight into possible causes than 
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simply comparing populations with and without disease (Cowled, Ward et al. 

2012).   

By examining the strains that are appearing at the moving edge of an epidemic 

front it may be possible to gain insights into the factors that are driving disease 

spread.  For example, molecular epidemiology may be a useful tool in 

determining the proximate causes of new cases of bovine tuberculosis infection 

in UK cattle at the fringes of the endemic areas, helping to distinguish whether 

infection is seeded from livestock movements or the presence of infected 

wildlife.   A very different example, focused on conservation of a highly 

threatened species is provided by devil facial tumour disease (DFTD) in 

Tasmanian devils (Sarcophilus harrisii), where identifying the location of the 

disease front has informed management options.   Geographic differences have 

been noted in the epidemiology and population effects of DFTD on devils.   

Genotyping techniques have recently been applied suggesting that distinct 

lineages of the pathogen may have different epidemiological outcomes 

(Hamede, Pearse et al. 2015), hence pathogen genetics may contribute to 

observed inter-population differences. 

When phylogenetic trees of a particular pathogen are overlaid with 

epidemiological data (such as geographic location of outbreaks) they can be 

used to map spatial disease spread.   This can help epidemiologists infer where 

transmission events have occurred and therefore potentially to predict and 

manage future disease risks.  For example, examining the geographic 

localisation of strains of Mycobacterium leprae, the bacterial cause of leprosy in 

humans, indicated that global disease spread was most likely linked with 

historic human migration patterns and trade routes (Monot, Honore et al. 2009).  

Epidemiological linkages between particular populations or geographic locations 

can be identified if shared genotypes are recorded more often than would be 

expected by chance (Archie, Luikart et al. 2009).  Host geography has also 

been found to play a role in rates of pathogen evolution.   In the case of 

Lyssavirus (rabies) in bat populations, rates of viral evolution by nucleotide 

substitution vary depending on whether the host species is in a temperate or 

tropical environment, which may be related to differences  in the seasonality of 

bat activity and the influence of climate on rates of virus transmission (Streicker, 

Lemey et al. 2012).  Examining pathogen phylogenies can provide an 
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understanding of rates of new strain emergence, helping epidemiologists to 

predict and prepare for new disease outbreaks.  Also, where transmission rates 

vary between strains of the same pathogen, either due to differences in 

infectivity amongst strains or the availability of susceptible hosts, this could be 

identified through considering rates of spread.  Phylogeographic investigations 

have been conducted on a wide range of human pathogens, including the 

zoonotic bacteria Yersinia pestis (Vogler, Chan et al. 2011), Dengue Virus 

(Nunes, Faria et al. 2012) and influenza (Chang, Ding et al. 2007).   In the case 

of vector-borne diseases, the same approach can be used to investigate 

distributions, as carried out in a study of Triatoma infestans, the primary insect 

vector of Chagas disease (Perez de Rosas, Segura et al. 2011).  

Phylogeographic approaches have also been used, albeit to a lesser extent, in 

wildlife and livestock diseases, for example to consider the ecological drivers 

behind foot and mouth disease (FMD) in cattle (de Carvalho, Santos et al. 

2013), rates of viral evolution driving infectious bursal disease virus in farmed 

poultry (Cortey, Bertran et al. 2012) and the role of the global expansion of fish 

farming in the spread of salmonid proliferative kidney disease (Henderson and 

Okamura 2004).   

2.7 Roots of emergence 

The construction of pathogen phylogenetic trees has made an enormous 

contribution to the study of human disease, leading to the emergence of the 

field of evolutionary medicine (Bull 1994).  Virulence is known to differ amongst 

pathogen strains and this variation is the result of evolutionary processes.  

Genetic signatures in pathogen phylogenies allow us to look back at the 

underlying ecological selection pressures which have previously been exerted 

on a pathogen, and shaped its evolution (Biek and Real 2010).   Correct 

inference of ancestry (i.e.  determining which strains of a particular pathogen 

are ancestral and which are descendant) is key to building a clear picture of 

pathogen population structures (Medini, Serruto et al. 2008).  For example, the 

population structure of Mycobacterium bovis genotypes in the UK suggests a 

‘clonal expansion’ of genotype evolution from a common ancestor, through a 

combination of selection and ‘ecological opportunity’ as invasion into new 

geographic areas occurred (Smith, Dale et al. 2003).  Inferring ancestry is also 

extremely valuable for dating disease transmission events and tracing cross-
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species transmission in multi-host disease complexes, such as SIV /HIV and 

Hepatitis B in humans and non-human primates (Starkman, MacDonald et al. 

2003, Neel 2010).  If a pathogen has been transmitted from one species to 

another, the phylogeny within the recipient species should be nested within that 

of the source species (Archie, Luikart et al. 2009).  Disease introduction through 

migration or translocation events can be suggested where there is a genetic 

mismatch with resident strains, as was recently been inferred for some species 

of blood parasites in wild birds in Japan where strains of Leucocytozoon from 

migratory and resident birds were phylogenetically separated (Yoshimura, 

Koketsu et al. 2014).  Hence, phylogenetic investigation can be used to identify 

risk factors for future disease outbreaks. 

A substantial body of work exists where whole genome sequencing has been 

applied to the study of human viral pathogens, such as influenza  and HIV 

(Henn, Boutwell et al. 2012) and  in recent years this approach has also been 

applied to investigations of viral pathogens in wildlife, including the detection of 

Highlands J Virus in a critically endangered species of crane (Ip, Wiley et al. 

2014), the development of a genome database of orbiviruses (Maan, 

Belaganahalli et al. 2013) and an investigation into encephalitis cases in captive 

polar bears (Szentiks, Tsangaras et al. 2014).  Recently, the phylogeny of the 

pathogenic fungus Geomyces destructans, the causative agent of white-nose 

disease in bats (Blehert 2011) was produced, indicating that the introduction 

into North America originated in Europe (Leopardi, Blake et al. 2015).  A 

number of pathogens of veterinary importance have had at least one isolate 

sequenced, including African swine fever virus (Chapman, Darby et al. 2011), 

Mycoplasma haemofelis (the causative agent of Feline Infectious Anaemia) 

(Barker, Darby et al.) and Streptococcus equi (Paillot, Darby et al. 2010), 

although these studies have focused primarily on describing pathogenicity 

factors, rather than epidemiological outcomes.   

The potential for next-generation sequencing to infer the origin and population 

structure of veterinary and wildlife pathogens is substantial.  We may expect 

uptake to be initially greater in the fields of zoonotic and livestock diseases, 

where the potential human ‘cost’ is perceived to be higher.  As illustrated above, 

phylogenetic approaches offer so much more than an opportunity to delve 

backwards into the evolutionary history of a pathogen.  They can also help us to 
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understand the drivers of the current distribution of pathogens and help us 

predict their likely distribution in the future. 

2.8 Routes of transmission  

When investigating the dynamics of infection in a given host population we 

reasonably assume that transmission is more likely to have occurred between 

individuals infected with the same strain of a pathogen than amongst those 

infected with different strains (Wylie, Cabral et al. 2005).  Pathogen genotyping 

can therefore help to rule out or implicate particular transmission pathways, 

which may be valuable in tracing the initial source of infection and preventing 

further disease spread.  The availability of next generation sequencing 

technologies has allowed contact networks and transmission pathways to be 

inferred with greater confidence and accuracy (Gardy, Johnston et al. 2011).  

Given the relatively recent availability of these technologies, and their 

decreasing cost, their full potential in the field of human health has yet to be 

realised (Walker, Ip et al. 2013) and  to date their  use  in relation to livestock 

and wildlife diseases has been limited.  However, there are notable examples 

such as studies of TB in cattle and badgers in the UK (Biek, O'Hare et al. 2012), 

TB in cattle and livestock in New Zealand (Crispell, Zadoks et al. 2017), 

brucellosis in livestock and wildlife (Foster, Beckstrom-Sternberg et al. 2009, 

Kamath, Foster et al. 2016) and MRSA in livestock (Price, Stegger et al. 2012).  

In studies of human pathogens such as M. tuberculosis (Cook, Sun et al. 2007, 

Gardy, Johnston et al. 2011, Walker, Ip et al. 2013) MRSA (Harris, Cartwright et 

al. 2013), Clostridium difficile (Eyre, Cule et al. 2013) and Chylamidia 

trachomatis (Wylie, Cabral et al. 2005), genotyping of pathogenic isolates has 

informed contact tracing, suggested the existence of undetected carriers and 

helped to both construct and verify the conclusions of social network analysis  of 

disease outbreaks.   Clinical disease outbreaks in human populations are often 

treated on a ‘case by case’ basis, on the understanding that no two events are 

epidemiologically identical.  On the other hand, wildlife disease managers are 

often called upon to use simple management strategies to tackle disease in 

multiple socially-structured populations, without information on the particular 

transmission dynamics in each situation.  The overlaying of data on pathogen 

strain diversity onto ecological information could be used in wildlife populations 

to assess transmission rates in relation to population structure (e.g. social 
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groups, herds etc.).  In the case of the European badger the prevailing social 

structure in high density populations has been associated with the clustering of 

infection within social groups (Delahay, Langton et al. 2000).  Disruption of this 

social structure, as observed following culling, leads to a reduction in this 

clustering, as surviving individuals range more widely (Jenkins, Woodroffe et al. 

2007).  Further understanding of the role of social behaviour in the spread of 

infection may be achievable by investigating the genetic diversity of M. bovis 

strains in badger populations.  If social structure acts as a barrier to disease 

spread then we would expect the genetic distance between M. bovis strains 

within badger social groups to be shorter than that observed between 

individuals in different social groups.  Wherever wildlife is implicated as a 

reservoir of zoonotic and/or livestock disease, such approaches may be 

valuable in identifying chains of disease transmission between species and 

could potentially indicate the direction of disease transmission.   

In order to make meaningful inferences about transmission dynamics, a 

pathogen must be acquiring mutations within an epidemiologically meaningful 

timeframe and the genotyping method applied must have the ability to detect 

this variation (Grad, Lipsitch et al. 2012).  Epidemiologists studying pathogens 

with very little variation between strains will require a typing method that is able 

to detect small differences between isolates.  Where discrimination between 

isolates is not possible using conventional methods, whole genome sequencing 

(WGS) may be the only tool suitable for looking at fine-scale transmission 

dynamics.   The exceptionally high level of genetic resolution achievable using 

WGS means that even sequencing a restricted number of isolates can reveal a 

wealth of epidemiologically valuable information.  Where access to long term 

wildlife studies is possible, a ‘phylodynamic’ approach (Grenfell, Pybus et al. 

2004) of overlaying pathogen phylogenies onto well documented 

epidemiological systems is potentially very powerful.  Novel molecular 

approaches are not a replacement for traditional epidemiological investigations, 

but are complimentary, allowing a finer scale approach.  For this reason, long 

term, well-studied epidemiological systems are the ideal scenarios in which to 

explore the contribution of cutting-edge sequencing to uncovering the drivers of 

disease transmission.  Examples of such well-studied systems include TB 

infection in wild badgers (Delahay, Langton et al. 2000) and meerkats (Drewe 
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2010), chronic wasting disease in white-tailed deer (Williams, Miller et al. 2002) 

and DFTD in Tasmanian devils (Hamede, Bashford et al. 2009).  It is important 

to note however that, even with the added resolution provided by WGS, there 

are considerable challenges to identifying pathogen transmission chains.  The 

point at which mutations are acquired in a given transmission sequence is 

unknown and when mutation rates are slow compared to pathogen generation 

time, closely related isolates may appear genetically identical as they lack 

informative mutations (Kao, Haydon et al. 2014). 

2.9 Host-pathogen dynamics 

Pathogens can have widely differing  effects in different host species, as is the 

case for the Squirrel Parapox Virus which causes severe disease in the 

European Red Squirrel (Sciurus vulgaris) but has no observed effects on the 

North American  Grey Squirrel (Sciurus carolinensis) (Sainsbury, Nettleton et al. 

2000).  Variability in the observed costs of pathogen infection has also been 

observed amongst individuals of the same species.  Heterogeneities in 

susceptibility to infection among individuals can affect the estimation of the 

transmission parameter R0 (the basic reproductive number) (Hudson, Rizzoli et 

al. 2002).  In such instances molecular techniques may allow us to distinguish 

between differences in pathogenicity which arise from strain variation and those 

which reflect heterogeneity in host immune responses.  Scaling up these effects 

can impact on host population dynamics  as regulation by a pathogen requires 

its per capita impact to outweigh the intrinsic population growth rate (Hudson, 

Rizzoli et al. 2002).  If the per capita impact on host fitness is widely variable 

amongst individuals, then inferring population regulation is more complicated.  

Variation in how a pathogen physiologically affects individuals within a 

population has implications for onward transmission and persistence of disease 

(Cross, Lloyd-Smith et al. 2005).  For example, inter-individual variation in the 

amount or concentration of pathogenic material excreted and the duration over 

which this occurs, is likely to affect the number of secondary cases observed.  

Ignoring this individual heterogeneity and assuming that each infected individual 

contributes to the same number of secondary infections can lead to highly 

inaccurate estimations of R0.  Molecular techniques can also allow us to 

examine individual variation in susceptibility and resistance within a host 

population by assessing the genetic basis of the immune response; an 
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approach known as immunogenetics. Recently, individuals who have apparently 

recovered from infection have been identified in Tanzanian devils (to DFTD) 

(Wright, Willet et al. 2017) and in European red squirrels (Chantrey, Dale et al. 

2014)(to infection with parapox virus). In both of these cases, recovery from 

infection had never previously been documented.  Individuals with greater allelic 

diversity within immune genes such as the major histocompatibility complex 

(MHC) are able to mount an appropriate immune response against a greater 

variety of pathogens (Castro-Prieto, Wachter et al. 2012).   Accounting for 

heterogeneity in individual susceptibility and for differential strain pathogenicity 

is likely to allow R0 to be estimated with a greater degree of accuracy. 

It has been suggested that immunogenetic data should be used more widely to 

complement wildlife management decisions, particularly where populations are 

restricted or fragmented with a limited gene pool, as is often the case for highly 

endangered species (Acevedo-Whitehouse and Cunningham 2006).  A key 

example of this approach is investigation into the spread by biting of a 

contagious cancer amongst Tasmanian devils which is thought to have caused 

a 90% population decline (Siddle, Marzec et al. 2010).  The absence of an 

immune response in infected devils is thought to be linked to the limited genetic 

diversity within their MHC complex (Siddle, Kreiss et al. 2007).   Examination of 

MHC genetic diversity within devil populations in other areas of Tasmania, 

where the disease is absent or at low prevalence, have identified some unique 

profiles which may confer disease resilience.  If this were the case, then 

selective breeding and translocation of resilient individuals has been suggested 

as a means of controlling disease spread (Hamede, Lachish et al. 2012).  In 

contrast, as MHC profiles are likely to be adapted to local pathogenic selection 

pressures, a poor choice of origin or destination could leave a translocated 

individual unable to cope with a different pathogen community and so at a 

selective disadvantage (Castro-Prieto, Wachter et al. 2012).  Hence, the 

application of sequence-based approaches to assess the immunogenetic 

characteristics of populations of endangered species may have the potential to 

increase the likelihood of successful translocation (Boyce, Weisenberger et al. 

2011). 

Molecular epidemiology also allows us to zoom in to an even finer scale than 

that of inter-individual variation, and to consider intra-individual host-pathogen 
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dynamics.   Infectious pathogens persist in the context of a co-evolutionary 

arms race with the host (Acevedo-Whitehouse and Cunningham 2006) which 

can be considered as a habitat ‘patch’  occupied by a parasite ‘community’ 

(Hudson, Rizzoli et al. 2002).  Where an individual host is infected with multiple 

strains of the same pathogen, strain competition can occur, with certain strains 

favoured owing to their faster growth rate or ability to grow in a certain tissue 

(Bull 1994).  It is interesting to consider however, that the traits which allow a 

particular strain to dominate within the host environment, may not necessarily 

optimise onward transmission although they may increase pathogen virulence 

(Bull 1994).  However, outcomes of multiple infection on evolution of virulence 

and subsequent effects on individual host fitness are variable (Rankin, Bargum 

et al. 2007).  The application of suitable molecular techniques to detect multiple 

strains of a pathogen within a host and  to detect within-host pathogen strain 

evolution or strain competition may have important  implications, as for example 

the scale of competition between bacterial strains is thought to influence the 

evolution of virulence (Griffin, West et al. 2004).  Comparative genomics 

studies, in which the aim is to link genetic sequence differences between strains 

with phenotypic differences in the host (e.g.  differential pathogenicity), have 

acquired valuable additional resolution from the development of next generation 

sequencing technologies (Hu, Wang et al. 2012).   

Understanding variations in the impact of pathogens both amongst and within 

individuals may be critical to achieving effective management at the population 

level.  Furthermore, disregarding heterogeneity in host responses and failing to 

acknowledge within host-pathogen dynamics (such as the role of multiple 

infection) may result in unexpected, potentially adverse, outcomes of 

management interventions.  Molecular approaches have much to offer at both 

scales of analysis. 

2.10 Vaccine development and monitoring 

Vaccination  is currently  being used or considered as a management option in  

several high profile wildlife disease scenarios, including the control of  bovine 

TB in badgers in the UK (Chambers, Rogers et al. 2010, Carter, Chambers et 

al. 2012), chlamydia in koalas in Australia (Carey, Timms et al. 2010) and 

haemorrhagic disease and myxomatosis in rabbits in Europe (Spibey, McCabe 
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et al. 2012).  Molecular epidemiology has a key role to play in the development 

of effective vaccines for wildlife and monitoring their impacts on disease 

epidemiology.  Vaccine development against human pathogens has greatly 

benefited from technological advances in gene sequencing, and now the 

sequences of many pathogens are available.   This has led to the emergence of 

the field of ‘reverse vaccinology’ which typically involves mining the pathogen 

sequence for antigens that may be suitable as vaccine targets (Serruto, Serino 

et al. 2009).  In pan-genome reverse vaccinology, multiple isolates of a 

pathogen species are considered.   This is based on the idea of the existence of 

a ‘pan-genome’, which acknowledges that any single isolate of a pathogen does 

not exhibit all the genetic diversity within that species, especially if they are 

capable of generating genetic diversity through recombination or horizontal 

gene transfer.   Consequently, it is necessary to sequence multiple genomes in 

order to get a better measure of the entire genomic repertoire of a species 

(Tettelin, Riley et al. 2008).  In comparative reverse vaccinology, sequences of 

pathogenic strain isolates are compared with those of non-pathogenic isolates 

of the same species, in order to identify antigens associated with pathogenicity.   

The first human pathogen for which a vaccine has been developed and recently 

licensed using this approach is Serogroup B Meningitis (N.meningitidis), 

responsible for 80% of meningitis cases in Europe (Santolaya, O'Ryan et al. 

2012).    

As well as informing the development of vaccines, genome sequencing 

technologies also have applications for monitoring the effectiveness of vaccine 

deployment.   As an increasing proportion of a population is immunised the 

selection pressure favouring strain variants that are unaffected by vaccination 

will grow.  The emergence of these strains, known as ‘escape mutants’ could be 

monitored by sequencing isolates before and after vaccination to look for new 

mutations related to immunity in the targeted proteins (Seib, Dougan et al. 

2009).   This sort of approach could be extremely valuable in monitoring the 

impacts of vaccination in wildlife populations.  Comparing the genetic diversity 

of pathogen populations before, during and after vaccine deployment could 

provide valuable information on the potential emergence of resistant strains or 

differential vaccine performance against variant strains.  Strain typing could also 

help monitor reversion to virulence of live vaccines, as vaccination has on 
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occasion been observed to result in clinical disease.  This was recently reported 

in a red fox (Vulpes vulpes) in which strain typing was able to identify the live 

rabies vaccine as the aetiological agent (Hostnik, Picard-Meyer et al. 2014).  

Live vaccines, such as the oral rabies vaccine, may be derived from multiple 

strains.  Genetic characterisation of these strains can uncover the genetic basis 

for their attenuation (Geue, Schares et al. 2008).  Population coverage of 

vaccines which may be horizontally transmissible within a population (Angulo 

and Juan 2007) could also be monitored using molecular diagnostics. 

Understanding the antigenic diversity of a pathogen is key in vaccine design, 

and is only possible through ongoing surveillance as the most frequent 

antigenic strain of a pathogen in a population may change in response to the 

selection pressure of immunisation (Achtman 2001), favouring new antigenic 

types which are able to evade the acquired immunity of the host  (Bull 1994).  

Pathogens such as HIV, malaria and influenza have particularly high antigenic 

diversity (Buckee, Recker et al. 2011).  A vaccine must either induce cross-

immunity to all antigenic strains of a pathogen circulating within a population, or 

different vaccines may be required according to which antigenic strain is 

predominant in a given situation.  Different strains of a pathogen may also vary 

in terms of the magnitude or type of immune response invoked (Wedlock, Denis 

et al. 2007).  In the case of human seasonal influenza, it has been suggested 

that it is the changing immune response within the host population which 

creates the conditions for the emergence of the next dominant strain (Recker, 

Pybus et al. 2007).  Molecular typing approaches offer powerful tools for 

furthering our understanding of antigenic diversity in wildlife populations and the 

role of vaccination in disease control. 

2.11 Identifying reservoirs 

Another key challenge for wildlife managers is identifying populations that may 

act as reservoirs of infection for livestock, humans or other wildlife of 

conservation or economic importance.   Assessment of the risks of onward 

spread requires a clear understanding of transmission dynamics within and 

amongst the species concerned (Hudson, Rizzoli et al. 2002).   Disease 

reservoirs can potentially be composed of one or more epidemiologically 

connected populations or environments where the pathogen can be 
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permanently maintained and genetic pathogen characterisation can be a 

powerful tool for identifying such reservoirs (Haydon, Cleaveland et al. 2002).  

Molecular techniques may be of value in inferring transmission routes amongst 

multiple host species, although confusion can arise if pathogens are capable of 

remaining infectious in the environment.  Inter-specific transmission has been 

inferred through strain comparison of Giardia  (Feng and Xiao 2011) and 

Cryptosporidium in human and animal hosts (Xiao and Ryan 2004).  

Transmission between wildlife and commercially important livestock can also be 

inferred through comparing pathogen genotypes, as demonstrated  for bovine 

TB in cattle and badgers in the UK (Woodroffe, Donnelly et al. 2005, Biek, 

O'Hare et al. 2012, Goodchild, Watkins et al. 2012), bovine TB in cattle and 

wildlife in New Zealand (Crispell, Zadoks et al. 2017) and for Babesia bovis and 

B.  bigemia, the bacteria responsible for Cattle Tick Fever in white-tailed deer in 

the USA (Holman, Carroll et al. 2011).  Recently, whole genome sequencing 

was used to demonstrate multiple instances of cross species transmission of 

Brucella abortus infection between reservoir hosts (Kamath, Foster et al. 2016). 

 Molecular typing techniques provide valuable insights into multi-host systems 

when considering populations of conservation concern.   Examples include 

hookworm and Feline Leukaemia Virus transmission from domestic cats (Felis 

catus) to the critically endangered Iberian lynx (Lynx pardinus) (Meli, Cattori et 

al. 2009, Millan and Blasco-Costa 2012) and transmission of canine parvovirus 

and rabies from domestic dogs (Canis lupus familiaris) to endangered African 

wild dogs (Lycaon pictus) (Woodroffe, Prager et al. 2012).  Strain typing of 

pathogens can also indicate the presence of an undetected wildlife reservoir, or 

even multiple reservoirs, where strain diversity appears too high to have been 

generated by mutation alone.   However, in order to make such assessments, a 

sufficient number of samples should ideally be available from all host species in 

the system under study, and any host-related variation in pathogen mutation 

rates should be known (Kao, Haydon et al. 2014).   

2.12 Management strategies 

One of the greatest challenges faced by wildlife disease managers is 

unpredictability in the outcome of interventions.   This is in part due to the 

fundamental challenges of working with free-ranging wildlife, but is exacerbated 
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by a lack of reporting when unintended outcomes occur, which has limited the 

degree to which we can learn from past interventions (Lloyd-Smith, Cross et al. 

2005).  Coupling genetic information from hosts and pathogens, with ecological 

factors can help to predict patterns of disease emergence, spread and control 

(Biek and Real 2010).  Employing molecular approaches can help managers to 

monitor the epidemiological impacts of interventions with a potentially high 

degree of resolution and hence allow a more informed approach to refining 

management actions.   Where a novel or re-emerging pathogen appears and 

wildlife populations are implicated, either as the reservoir or target of disease, 

managers may be called on to advise on potential interventions.   Rapid 

molecular typing can quickly reveal a wealth of information about a disease 

outbreak and help to identify true transmission events, trace individual contacts 

and identify the true source of a particular pathogen.  In the field of public 

health, molecular strain typing has been used to trace the source for outbreaks 

of a wide range of pathogens including E.coli (Grad, Lipsitch et al. 2012), TB 

(Gardy, Johnston et al. 2011), pneumonia (Snitkin, Zelazny et al. 2012) and 

even deliberately introduced pathogens associated with bioterrorism  (Rasko, 

Worsham et al. 2011).   Molecular epidemiological investigations during an 

outbreak can also suggest the existence of undetected carriers through using 

pathogen phylogenies in association with social network analysis, as conducted 

in investigations of human TB outbreaks (Walker et al.  2013) and can help 

identify super-spreading individuals who make a disproportionately large 

contribution to secondary infections (Woolhouse et al.  1997).  Through the 

comparison of multiple isolates from the same host individual over time, 

pathogen micro-evolution can be examined (Gardy et al.  2011).  Understanding 

the rate at which a pathogen can acquire mutations has important implications 

for choosing appropriate diagnostic tests, predicting the emergence of new 

strains and informing potential intervention strategies, such as vaccination.  

Comparison of pathogen strains prior to and during an outbreak can indicate 

whether the epidemic is due to a genetic change in the pathogen or rather to 

some social or environmental trigger (Gardy et al.  2011).  The genetic diversity 

amongst isolates associated with a particular disease outbreak can also provide 

information about the size of the initial infection; limited diversity among isolates 

may indicate a population bottleneck has occurred, suggesting the outbreak 

could have been caused by few initially infected individuals (Grad et al.  2012).   
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However, this requires pre-existing knowledge regarding what level of diversity 

is typical for that pathogen, which highlights the importance of ongoing disease 

surveillance.    

Molecular epidemiological investigations have been carried out on a wide range 

of disease outbreaks in livestock, including Newcastle disease in poultry (Gould 

et al.  2001), FMD in cattle (Cottam et al.  2006) and bluetongue virus in sheep 

(Maan et al.  2004), (Barros et al.  2007).  Of these, only the investigation of 

FMD employed complete genome sequencing.  Examples of molecular 

epidemiological  investigations in wildlife include studies on outbreaks of 

phocine distemper in seals on the Danish coast (Line Nielsen et al.  2009), 

salmonella in passerines (Hernandez et al.  2012), viruses of anthropogenic 

origin in protected ape populations (Köndgen et al.  2008) and the source of 

DFTD in Tasmanian devils (Murchison et al.  2012). 

A major wildlife disease outbreak which represents a real threat to global 

biodiversity is the recent emergence of amphibian chytridiomycosis, caused by 

the fungus Batrachochytrium dendrobatidis.  This pathogen has been isolated 

from all continents where its hosts are found (Fisher et al.  2009) and is thought 

to be the principal cause of decline in over 200 species of amphibian.  There is 

substantial variation in observed host responses to infection with some species 

appearing to be resistant whilst others succumb quickly to its lethal effects, and 

virulence has been found to vary amongst strains (Blaustein et al.  2005).   The 

full genomes of two geographically diverse chytrid isolates were sequenced and 

used to identify areas of variation within the genome.   Low sequence diversity 

was observed between the two isolates, but genomic areas with some variation 

were targeted by multi-locus sequence typing of a global set of chytrid isolates 

which were used to create a phylogenetic tree, illustrating the geographic origin 

of each isolate and its host species (James et al.  2009).  From examining the 

tree, it was apparent that all the isolates could feasibly have originated from a 

single clonal lineage as, in one host animal, the same chytrid sequence 

diversity existed as was found in the whole global sample (James et al.  2009).  

This molecular signature is consistent with the rapid spread of a novel 

pathogen, and hence movement of animals for trade purposes has been 

suggested as a potential explanation for its current global distribution (Fisher et 

al.  2009).    
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Combining molecular epidemiological approaches, in particular high resolution 

sequencing, with traditional epidemiological techniques may be a powerful 

approach in disease outbreak investigation.  This is made even more powerful 

where data is also available from background pathogen surveillance. 

2.13 Discussion 

The value of molecular epidemiology in the study of human disease is well-

established.  We now have at least one complete genomic sequence for nearly 

all bacteria responsible for human disease.   An extraordinary amount of genetic 

diversity has been uncovered, including variation from within apparently clonal 

cultures (Medini, Serruto et al. 2008).  Phylogenetic tools can be applied to 

genetic sequence data within open source packages such as BEAST 

(Drummond, Suchard et al. 2012) providing powerful insights into pathogen 

spread within host populations.  Also, pathogen sequence data can improve the 

performance of disease transmission models by reducing the number of 

candidate transmission trees (Kao, Haydon et al. 2014), as pathogen genetic 

data is integrated with epidemiological data to inform transmission model 

construction within a Bayesian framework (Jombart, Cori et al. 2014).  Despite 

the particular challenges involved in applying molecular technologies in the field 

of wildlife disease, the emergence of a number of high profile zoonotic diseases 

and dramatic declines in the abundance of some wildlife populations in recent 

years have raised awareness of this area of study (Daszak, Tabor et al. 2004) 

and  the application of cutting edge molecular tools is increasing.    

The application of molecular technologies poses significant challenges even 

when used in tandem with traditional epidemiological approaches.  Techniques 

such as whole genome sequencing produce huge amounts of data which can 

be expensive to store and computationally costly to handle.  However the 

availability of online ‘cloud’ storage provides a potential solution (Baker 2010) 

and as uptake of these technologies increases we can expect further 

developments in data storage and handling capabilities.  DNA amplification 

required for next generation sequencing can introduce sequencing errors and a 

lack of standardised quality control procedures between laboratories can add 

uncertainty to sequence data (Kao, Haydon et al. 2014).  Particular challenges 

for the application of molecular approaches in wildlife populations include the 
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presence of multiple hosts and the possibility of environmental persistence of 

the pathogen.  Such circumstances mean that even whole genome sequencing 

cannot pick out individual transmission pathways as there will often be multiple 

routes by which the same pattern of genotypes could have arisen.   

Future developments in molecular technology could have exciting applications 

in the field of wildlife disease.  Rapid, field sequencing of isolates from 

populations and their environment (for example using hand-held sequencers) 

could allow a ‘forensic’ approach to investigating disease outbreaks, in which 

localised management might be tailored to the particular source of infection.  

This could be useful for example in the case of bTB in UK cattle, where the 

source of infection is likely to vary widely between herds and geographic 

locations.  In the field of human health, interest is growing in ‘precision 

medicine’ whereby the entire human genome of a patient is sequenced and a 

tailored health plan produced based on the patient’s particular genetic 

composition.  It is conceivable that human genome sequencing will become a 

routine procedure at birth, allowing the development of ‘personalised 

programmes of lifelong health promotion’ (Tonellato, Crawford et al. 2011).  As 

we have seen by considering a variety of examples above, technological 

advances first developed in the field of human health are subsequently 

employed in livestock and wildlife.  It is plausible therefore, that as sequencing 

costs fall, individual level, genome tailored approaches may become attractive 

for the management of disease in wildlife species of very high conservation 

value.  The management of DFTD in individual Tasmanian devils might be a 

case in point (see Table 2.1).   

Developments in the field of metagenomics, in which multiple microbe genomes 

could be sequenced directly from environmental samples (Doolittle and 

Zhaxybayeva 2010) may provide valuable tools for wildlife disease 

management and research.  Such an approach could be used to screen for 

pathogens prior to translocation of threatened species or for clarifying 

transmission routes where a pathogen can persist in the environment.  The 

latter would for example be useful in studies of bTB transmission amongst 

wildlife and livestock, where there is a potential role for environmental 

contamination with M. bovis  (Duffield and Young 1985). 
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In summary molecular technologies allow us to consider pathogens at a wide 

range of spatial and temporal scales; from individual host-pathogen dynamics, 

to global patterns of strain diversity.  Following their emergence in the field of 

human health they have begun to be adopted for the purposes of investigation 

and management of disease in wildlife.  At the present time these tools have a 

range of applications in wildlife disease research from the local investigation of 

disease outbreaks to unearthing the evolutionary history and global spread of 

pathogens.  The potential future contribution of these technologies to the field of 

wildlife disease epidemiology is substantial.  In particular they are likely to play 

an increasingly important role in helping us to address a principal challenge in 

the management of wildlife diseases which is how to tease apart the 

transmission dynamics of complex multi-host systems in order to develop 

effective and sustainable interventions.   
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Table 2.1 Summary of applications of molecular epidemiology to wildlife disease research, 

including key examples 

Application Summary Examples of use in w ildlife  

Disease Surveillance Ongoing surveillance of circulating 

pathogen strains can help to capture the 

intrinsic genetic diversity of the pathogen, 

informing the use and development of 

appropriate diagnostics 

Avian influenza viruses in wild birds 

(Hoye et al. 2010)          Bovine 

tuberculosis in wildlife (Romero et 

al. 2008) 

Phylogeography Spatio-temporal mapping of variant 

pathogen strains can highlight the 

appearance of atypical strains in an area, 

identify geographic differences in 

pathogen virulence and help to infer risk 

factors 

Devil facial tumour disease 

(Hamede et al. 2012)                 

Rabies virus (Streicker et al. 2012)                                                    

Foot & Mouth Disease (de Carvalho 

et al. 2013)                       

Roots of Emergence The construction of phylogenetic trees 

from genotype data can indicate which 

pathogen strains are ancestral and which 

are descendant. This can be useful in 

dating disease transmission between 

populations and multiple host species.  

Leucocytozoon blood parasites in 

wild birds (Yoshimura et al. 2014)                                                                                        

White Nose Disease in bats 

(Chibucos et al. 2013)                

Orbiviruses (Maan et al. 2013) 

Routes of Transmission Pathogen genotyping can help to rule out 

or implicate particular transmission 

pathways, which may be valuable in 

tracing the initial source of infection and 

preventing further disease spread 

Bovine TB in badgers and cattle 

(Biek et al. 2012)                  

Brucellosis (Foster et al. 2009)                                 

Host-Pathogen Dynamics Molecular techniques can allow us to 

examine individual variation in 

susceptibil ity and resistance within a host 

population by assessing the genetic basis 

of the immune response 

Devil facial tumour disease (Siddle 

et al. 2010)                             MHC 

differentiation in Namibian cheetahs 

(Castro-Prieto et al. 2012)                                                                                               

Bovine TB resistance in wild boar 

(Acevedo-Whitehouse et al. 2005) 

Vaccine Development 

and Monitoring 

Molecular epidemiology has a key role to 

play in the development of effective 

vaccines for wildlife and monitoring their 

impacts on disease epidemiology 

Reversion to virulence of rabies 

vaccine strain (Hostnik et al. 2014)                                                                                            

Oral rabies vaccine strains in wildlife 

(Geue et al. 2008) 

Identifying Reservoirs Molecular techniques may be of value in 

inferring transmission routes amongst 

multiple host species. Strain typing of 

pathogens can also indicate the presence 

of an undetected wildlife reservoir, or even 

multiple reservoirs, where strain diversity 

appears too high to have been generated 

by mutation alone 

Rabies in African wild dogs 

(Woodroffe et al. 2012)                 

Feline Leukaemia Virus in Iberian 

lynx (Millan and Blasco-Costa 

2012), (Meli et al. 2009)                                                                            

Cattle Tick Fever (Holman et al. 

2011) 

Management Strategies Employing molecular approaches can help 

managers to identify the sources of 

disease outbreaks and to monitor the 

epidemiological impacts of interventions 

with a potentially high degree of resolution 

Phocine Distemper in seals (Line 

Nielsen et al. 2009)                

Salmonella in passerines 

(Hernandez et al. 2012)                

Viruses in protected ape populations 

(Köndgen et al. 2008) 
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CHAPTER 3: Data Chapter 

Blood thicker than water: Kinship, disease prevalence and group size 

drive divergent patterns of infection risk in a social mammal  

 

3.1 Abstract 

The importance of social- and kin-structuring of populations for the transmission 

of wildlife disease is widely assumed but poorly described.  Social structure can 

help dilute risks of transmission for group members, and is relatively easy to 

measure, but kin-association represents a further level of population sub-

structure that is harder to measure, particularly when association behaviours 

happen underground.  Here, using epidemiological and molecular genetic data 

from a wild, high-density population of the European badger (Meles meles), I 

quantify the risks of infection with Mycobacterium bovis (the causative agent of 

tuberculosis; TB) in cubs.  The risk declines with increasing size of its social 

group, but this net dilution effect conceals divergent patterns of infection risk.  

Cubs only enjoy reduced risk when social groups have a higher proportion of 

test negative individuals.  Cubs suffer higher infection risk in social groups 

containing resident infectious adults, and these risks are exaggerated when 

cubs and infectious adults are closely related.  I further identify key differences 

in infection risk associated with resident infectious males and females.  I link my 

results to parent-offspring interactions and other kin-biased association, but also 

consider the possibility that susceptibility to infection is heritable.  These 

patterns of infection risk help to explain the observation of a herd-immunity 

effect in badgers following low-intensity vaccination campaigns.  They also 

reveal kinship and kin-association to be important, and often hidden, drivers of 

disease transmission in social mammals.   

 

 



52 

3.2 Introduction 

Understanding disease transmission within wildlife populations has important 

applications in the fields of emerging zoonotic diseases (Begon, Hazel et al. 

1999, Jones, Patel et al. 2008), biodiversity conservation (Daszak, Cunningham 

et al. 2000) and livestock health (Gortázar, Ferroglio et al. 2007).  Increasingly, 

the importance of behavioural heterogeneity and social structure on disease 

transmission between individuals is being recognised, with these individual level 

differences scaling up to determine infection dynamics at the population scale 

(Tompkins, Dunn et al. 2011).  However, in wild populations, capturing these 

individual behavioural differences and quantifying the resultant effects on 

disease transmission is challenging, particularly when behavioural associations 

happen out of sight, e.g. in underground setts. 

Heterogeneity in individual transmission rates, defined as variability in the 

contribution of individual hosts to overall rates of pathogen spread (Paull, Song 

et al. 2011), is a key driver of disease dynamics.  Several studies have 

demonstrated a relationship between individual contact dynamics and the 

transmission of infectious diseases (see review in Tompkins, Dunn et al. 2011)).  

For example, an individual’s position within a socially structured population may 

influence the likelihood of it becoming infected (Böhm, Hutchings et al. 2009) as 

demonstrated in social animals such as meerkats (Drewe 2010).  Certain 

“super-spreader” individuals within a population may contribute to a 

disproportionate number of secondary infections (Lloyd-Smith, Schreiber et al. 

2005), due to a particular behavioural or biological trait or their position within a 

social network.  Kin-biased social behaviours have been demonstrated in a 

variety of species (Möller, Beheregaray et al. 2006, Perry, Manson et al. 2008).  

These can include a wide range of behaviours, such as parental care of young, 

mutual grooming (Schino 2001), foraging (Brown and Brown 1996), and helping 

to raise young in the case of co-operative breeders (Russell and Hatchwell 

2001).  This enhanced contact between related individuals is likely to have 

important implications for disease transmission, as these kin-biased social 

behaviours afford potential opportunities for pathogen transfer.  Generally kin 

structure, defined as the spatial aggregation of related individuals (Hatchwell 

2010), is proposed to increase individual disease transmission risk in directly 

transmitted pathogens (Dharmarajan, Beasley et al. 2012), because 
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transmission rates are expected to be higher between related individuals than 

between non-related individuals (e.g.  Canine Distemper Virus in raccoon 

populations (Dharmarajan, Beasley et al. 2012) and Chronic Wasting Disease in 

white-tailed deer (Grear, Samuel et al. 2010)).  A greater understanding of 

heterogeneities in individual disease risk could help to inform management 

interventions and improve the estimation of parameters in epidemiological 

models to facilitate more ecologically realistic simulations and predictions 

(McDonald, Bailey et al. 2016). 

Bovine tuberculosis remains a critical issue in livestock farming in several parts 

of the world, including the UK.  The European badger (Meles meles) is the key 

wildlife reservoir of bovine TB (caused by Mycobacterium bovis) in the UK and, 

as such, has been subjected to a range of control interventions including culling 

and vaccination, with the aim of reducing disease transmission to cattle 

populations.  However, it is well documented that the social structure typical of 

moderate to high density, managed and unmanaged badger populations can 

have a marked impact on the persistence and transmission of TB (Delahay, 

Langton et al. 2000, Carter, Delahay et al. 2007).  As badgers live in social 

groups within defended territories, this can limit population mixing, such that 

members of different social groups are less likely to come into close contact 

than members of the same social group.  This heterogeneity in contact 

behaviour is thought to drive the clustered distribution of M. bovis infection in 

badger populations (Delahay, Langton et al. 2000, Woodroffe, Donnelly et al. 

2005).  This relationship between population structure and TB dynamics has 

been implicated in the unexpected outcomes of management interventions to 

control TB in badgers and cattle, such that reductions in badger density do not 

result in proportional reductions in TB transmission (Woodroffe, Donnelly et al. 

2006, Carter, Delahay et al. 2007, Jenkins, Woodroffe et al. 2007, Riordan, 

Delahay et al. 2011, Bielby, Donnelly et al. 2014).  If social structure limits the 

spread of TB in badger populations, resulting in a naturally aggregated 

distribution of infection, then disruption of this social structure may carry with it 

the possibility of enhanced transmission (Carter, Delahay et al. 2007).  Social 

network analysis has suggested that infected badgers occupy a social position 

within badger populations such that they facilitate transmission of infection 

between social groups (Weber, Carter et al. 2013). 
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Within a socially structured population, it is expected that mixing occurs at two 

scales: ‘local’ mixing, involving high levels of contact between members of the 

same social group; and ‘global’ mixing, involving occasional mixing with 

individuals outside the social group (Ball, Mollison et al. 1997, Böhm, Hutchings 

et al. 2009).  In badgers, local mixing is likely to increase the risk of infection 

amongst cubs born into social groups harbouring infected adults.  Furthermore, 

within the social group a kinship structure will exist, perhaps yielding 

heterogeneity in contact rates at a finer scale among group members.  ‘Pseudo-

vertical transmission’ whereby disease transmission occurs via lactation of 

offspring by infected dams or via the prolonged and repeated periods of close 

social contact both pre- and post-emergence from the underground sett 

environment, has been suggested to play an important role in the maintenance 

of M. bovis infection within badger social groups (Anderson and Trewhella 

1985, Cheeseman, Wilesmith et al. 1988).  The importance of the social group 

environment on early life infection risk in badger cubs has been supported by 

field trials using the now licenced injectable BadgerBCG vaccine (Chambers, 

Rogers et al. 2010): the risk of TB infection in unvaccinated badger cubs 

decreased significantly as the proportion of vaccinated individuals in their social 

group increased (Carter, Chambers et al. 2012).  Other studies have shown that 

the presence of infectious females (i.e.  those detected as excreting 

Mycobacterium bovis) within a social group helps to predict the incidence of 

infection in cubs (Delahay, Langton et al. 2000, Tomlinson, Chambers et al. 

2013) consistent with pseudo-vertical transmission.  However, no study to date 

has considered the impact of kin structure within badger social groups on 

individual infection risk to cubs.   

Here I determine the impact of kinship and infection prevalence in social groups 

on the infection risk to young badgers present in the social group.  I incorporate 

individual genotype data to account for kin structure within badger social 

groups, and TB diagnostic tests of adults and cubs to determine infection 

prevalence and transmission.  I predict that cubs born into social groups where 

resident excretor badgers are present will be at higher risk of testing positive to 

TB in their first year than cubs born into social groups where excretor badgers 

are not present, but further that this effect will be greater when resident 

excretors are related to the cub.   
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3.3 Methods 

All data used in these analyses were collected from the long-term capture-mark-

recapture study at Woodchester Park in Gloucestershire.  Badgers from this 

study population have been routinely trapped, up to four times a year, since 

1976 (Delahay, Walker et al. 2013).  Trapped badgers are brought back to a 

sampling facility, anaesthetised (for full details see Appendix) and a range of 

clinical samples taken (oesophageal  and tracheal aspirates, faeces, urine, 

swabs of bite wounds or abscesses) for the detection of  M. bovis by 

microbiological  culture (Gallagher and Horwill 1977).  Blood samples are 

collected and used for TB diagnostic testing.  Diagnosis of infection is made at 

the individual level, with no reference to other social group members.  The use 

of multiple diagnostic tests to determine disease status in this study helps to 

address the shortcomings in sensitivity of the tests when used in isolation 

(Drewe, Tomlinson et al. 2010).  Between 1990 and 2005, the Brock ELISA 

antibody test (Goodger, Nolan et al. 1994) and the culture of clinical samples 

were the diagnostic tests used to assign TB status to individual badgers.  From 

2006 onwards, the Brock ELISA was replaced with the improved Stat-Pak 

antibody test (Chambers, Crawshaw et al. 2008) and the gamma interferon 

(IFN) test for T-cell responses to M. bovis was introduced (Dalley, Davé et al. 

2008).  The combination of diagnostic tests used provides a biologically 

meaningful picture of the progression of disease within an individual (Tomlinson 

2013).  It is thought that the cell-mediated response (as measured by the 

gamma interferon test) is the first line response to M. bovis exposure, whereas 

the serological response (as measured by the ELISA test and StatPak) takes 

time to develop as infection progresses (Tomlinson 2013).  Some individuals 

then go on to become ‘infectious’, characterised by the excretion of M. bovis 

bacteria via various routes (Pritchard, Stuart et al. 1986, Graham, Smith et al. 

2013).  Due to these changes in diagnostic test use, study period was included 

as a co-variate in these analyses, with Study Period 1 identifying data from 

1990-2005 and Study Period 2 identifying data from 2006-2011.  Culture from 

clinical samples is the only diagnostic approach that has been used throughout 

the entire study period.   

Selection of cubs: 
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In order to select a cohort of cubs for this analysis, first year data from the wider 

population study was selected for badgers first caught as cubs in the population 

between 1990-2011, yielding 1413 cubs for which genotype data were 

available.  A cub which received a positive test result from any of the diagnostic 

tests used in their first year was assigned the status ‘test-positive’ whereas a 

cub with only negative test results in their first year was assigned the status 

‘test-negative’.  Cubs were assigned to their assumed birth social group, based 

on the identity of the group in which they were first trapped.  R software (v 

3.0.2) (R Core Development Team 2013) was used to associate these cubs 

with data (disease status in that year, and sex) of adult badgers (≥1 year old) 

trapped in the same social group in the same year.  Many individuals were 

trapped more than once during a calendar year, but each was assigned to just 

one social group following established assignment rules  (Vicente, Delahay et 

al. 2007).  For each cub, the following metrics were collated: number of resident 

female ‘excretors’ (females from whom at least one M. bovis positive culture 

had been isolated from a clinical sample from a prior trapping event, divided into 

‘relatives’ and ‘non-relatives’ – defined below); number of resident male 

‘excretors’ (males from whom at least one M. bovis positive culture had been 

isolated from a clinical sample from a prior trapping event, divided into ‘relatives’ 

and ‘non-relatives’); number of resident ‘blood test positive’ females (females 

who had at least one positive result to a TB blood test (ELISA, StatPak or 

gamma interferon) from a prior trapping event, divided into ‘relatives’ and ‘non-

relatives’); and number of resident ‘blood test positive’ males (males who had at 

least one positive result to a TB blood test (ELISA, StatPak or gamma 

interferon) from a prior trapping event, divided into ‘relatives’ and ‘non-relatives’) 

Genotyping: 

On first capture of an individual, a hair sample was routinely taken and stored in  

80% ethanol before being submitted for DNA extraction and genotyping 

(Carpenter, Pope et al. 2005).  Genotype data were available for animals 

trapped from 1990 until 2011 inclusive. 22 microsatellite markers were used, 

each with 4-7 alleles, to derive genotypes for 1413 cubs and 470 adults resident 

in their social group of birth. 

Relatedness: 
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The MicroDrop Programme (Wang and Rosenberg 2012) was used to impute 

missing data in the microsatellite data set.  Deviations from Hardy-Weinberg 

equilibrium for each of the 22 microsatellite markers were tested on the 

MicroDrop-corrected dataset using the hwtest function in the ‘adegenet’ 

package (Jombart 2008); none was identified.  The Bartlett test of homogeneity 

in the same package was also used to confirm homogeneity of variance among 

loci (P = 0.78).  Data from all microsatellite markers were therefore used to 

calculate a relatedness matrix.  Relatedness between cubs and resident adult 

members of their birth social group was estimated using the R package 

‘Demerelate’ (v 0.8-1) (Kraemer, Gerlach et al. 2013).  Bootstrap iterations were 

set to 100.  Relatedness was calculated using the Queller and Goodnight rxy 

relatedness estimator (Queller and Goodnight 1989).  This provides an 

unbiased estimate of relatedness based on the population allele frequencies, 

and ranges from -1 to 1 with negative and positive values indicating lower- and 

greater-than-average relatedness, respectively (Grear, Samuel et al. 2010).  A 

negative relatedness value indicates that a pair of individuals had a relatedness 

coefficient lower than the average pairwise relatedness coefficient calculated 

from the whole genotyped population.  The mean relatedness estimate for the 

Woodchester Park population was close to 0, meeting the assumptions of the 

Queller and Goodnight estimator. Pairs of cubs and resident adults where the 

relatedness coefficient was ≥ 0.25 were assigned the status ‘relatives’ as 0.25 is 

the relatedness coefficient between half-sibs (Hedrick 2011).  Where the 

relatedness coefficient was < 0.25, pairs were assigned the status ‘non-

relatives’.  Potential misclassification rates were estimated based on previous 

simulations (Blouin, Parsons et al. 1996) which considered the number of loci 

used (22) and the average heterozygosity of these loci (0.68).  In the current 

dataset it was estimated that 4% of pairs of unrelated individuals may be 

misclassified as full sibling pairs (full siblings should have an expected 

relatedness value of 0.5), and 17% of pairs of unrelated individuals may be 

misclassified as half-sibling pairs.  The ability to distinguish between full siblings 

and unrelated individuals was therefore high (96%) and half siblings were 

correctly distinguished from unrelated individuals more than 80% of the time 

(Blouin, Parsons et al. 1996).   
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Modelling individual infection risk: 

All statistical analyses in this chapter were conducted in R version 3.0.2 (R Core 

Development Team 2013).  In order to investigate factors relating to cub 

infection risk (at a variety of complexities / scales) three distinct analyses were 

carried out, all consisting of generalised linear mixed models constructed via the 

R package ‘lme4’ (v1.0-5) (Bates 2010).  In all cases, social group identity and 

year were included as random effects.  Cub infection status was categorised as 

a binary response variable, with ‘1’ indicating that at least one positive 

diagnostic test result had been recorded for that individual in year one and ‘0’ 

indicating only negative test results being recorded.  All analyses were 

performed with individual cub as the sampling unit.  Cubs from social groups 

where genotype data from less than 3 adults in the group were available were 

excluded from the analysis, resulting in a dataset of 1362 cubs.  Care was taken 

throughout the analysis and interpretation to avoid the term “infected” or 

“uninfected”: issues of test sensitivity mean that some “test-negative” cubs are 

in fact infected.  All the diagnostic tests employed have limitations in terms of 

their sensitivity and specificity, which have been explored in detail elsewhere 

(Drewe, Tomlinson et al. 2010, Buzdugan, Chambers et al. 2016). A recent 

multi-event model constructed for this population demonstrated that at a given 

sampling event, a truly uninfected individual has a 94% probability of testing 

negative to the gamma interferon and StatPak tests and on culture. Under these 

circumstances, the risk of wrongly classifying a truly uninfected badger as 

infected is low. We can therefore have some confidence that those individuals 

identified as ‘test-positive’ in the current study are not truly uninfected 

individuals. To our knowledge, the probability of false negative diagnosis is not 

influenced by phenotypic traits or social group structure, therefore it was 

assumed that false negativity affects all infected cubs equally. 

In the first analysis, the effect of social group size on the risk of each cub testing 

positive to a diagnostic TB test in their first year was investigated, with social 

group size and study period included as fixed effects.  Wald’s chi squared tests 

were used to assess significance of fixed effects. 

To investigate effects of social group composition on the risk of cubs testing 

positive to a diagnostic TB test in their first year, cub infection status was 
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regressed against the number of individuals test-positive to any of the 

diagnostic tests in the social group and the number of individuals test-negative 

to all of the diagnostic tests in the social group (as fixed effects), along with 

study period.  Wald’s chi squared tests were used to assess significance of 

fixed effects. 

Finally, the effects of social group composition and relatedness structure on the 

risk of cubs testing positive to a diagnostic TB test in their first year were teased 

apart, using multi-model inference with model averaging.  A global mixed effects 

model included the following fixed effects: the number of resident female 

excretors (divided into ‘relatives’ and ‘non-relatives’ of each cub); the number of 

resident male excretors (divided into ‘relatives’ and ‘non-relatives’); the number 

of resident blood test positive females (divided into ‘relatives’ and ‘non-

relatives’); the number of resident blood test positive males (divided into 

‘relatives’ and ‘non-relatives’); and the number of test negative group members.  

Small sample sizes of excretor adults prevented us from using analyses that 

considered relatedness as a continuous variable (Grear, Samuel et al. 2010).  

Model averaging was carried out using the ‘MuMIn’  package (v 1.9.13) (Barton 

2011) on the model set generated from the global model, applying a threshold 

delta-AICc value of 6 units, as this is the threshold suggested to be 95% sure 

that the most parsimonious model is included in the top model set (Richards 

2005, Richards, Whittingham et al. 2011).  Parameter estimates and their 

confidence intervals were extracted from the top model set identified through 

the model averaging procedure.  Concerns regarding possible collinearity of the 

explanatory variables were addressed using correlation testing among all fixed 

effects in the global model; the mean correlation was 0.06 and the strongest 

correlation was only 0.36.  The explanatory variables did not suffer Variance 

Inflation Factors greater than 10 and single term regression models produced 

parameter estimates that resembled the results of model averaging in terms of 

sign, size and significance (O’brien 2007).   

To investigate alternative model structures two additional models were 

constructed for comparison with the global model described above.  Firstly, to 

test whether test-negative badgers were differentially affecting cub infection risk 

a fully complex model in which test-negative badgers were disaggregated by 

relatedness and sex was constructed.  Secondly, to test whether sex was 
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adding any information to the model, a model was constructed in which effects 

were collapsed across sexes throughout the model (i.e. grouping together 

related culture positive males and females etc.).  Both of these models had 

higher AIC values than the global model described above (fully complex model, 

delta AIC=15, sex removed model, delta AIC =7), thus supporting the selection 

of the original model structure proposed for further study.  
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3.4 Results 

Of the 1362 cubs included in this analysis, 184 yielded a positive test result 

within their first year (14%).  Summary statistics of social group size and the 

number of adults in each relatedness – disease category are given in Table 3.1.  

In the first analysis, cub risk declined with increasing group size (Wald’s χ2 
(1) = 

6.0, p =0.01), indicating that cubs born into larger social groups were at a lower 

risk of yielding a positive test result in their first year (Fig 3.1a).  Study period 

did not influence the risk of cubs testing positive (Wald’s χ
2 

(1) = 2.6, p =0.11).  In 

the second analysis, where group size was elaborated into the number of ‘test 

negative’ and ‘test-positive’ individuals present in the cub’s natal social group, 

cub risk increased with increasing numbers of test positive individuals (Wald’s 

χ2 
(1) = 35.4, p <0.01, Fig 3.1b) but declined with increasing numbers of test 

negative individuals (Wald’s χ
2
 (1) = 38.0, p <0.01, Fig 3.1c).   
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Table 3.1 Summary statistics of social group sizes and numbers of adults in disease-

relatedness categories. 

Category 
Mean Value 

(SD) 
Median Value Range 

Social Group Size 11 (5.3) 10 3-31 

No. of cubs 3 (2.2) 3 1-12 

Proportion of test positive 

cubs  
0.15 (0.3) 0 0-1 

  Proportion of cubs with at least 1 positive in 

category 
 

Related Residents    

Culture positive ♀  0.04 (0.2) 0.04 0-2 

Culture positive ♂  0.02 (0.1) 0.02 0-2 

Blood test positive ♀  0.13 (0.4) 0.1 0-4 

Blood test positive ♂  0.09 (0.3) 0.07 0-3 

Test negative ♀ 0.7 (1.1) 0.4 0-8 

Test negative  ♂ 0.5 (0.9) 0.4 0-6 

Unrelated Residents    

Culture positive ♀  0.31 (0.6) 0.2 0-4 

Culture positive ♂  0.17 (0.4) 0.15 0-3 

Blood test positive ♀  0.75 (1.2) 0.4 0-6 

Blood test positive ♂  0.44 (0.7) 0.3 0-4 

Test negative ♀ 4.6 (3.4) 0.9 0-18 

Test negative ♂ 3.2 (2.3) 0.9 0-11 
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Fig 3.1 (a) Net dilution of the risk of badger cubs testing positive to tests for bovine tuberculosis 

with increasing social group size.  (b) Increased risk of cubs testing positive within their first year 

with increasing number of test-positive individuals resident in their social group.  (c) Reduced 

risk of cubs testing positive in their first year with increasing number of test-negative individuals 

resident in their social group.  Bold lines indicate line of best fit, dashed lines indicate 95% 

confidence intervals.  Circles summarise the raw data, with the size of symbol proportionally 

scaled to the number of individuals in that category (smallest point indicates 1 data point, 

largest point indicates 373 data points). 

In the final analysis, where test positive badgers were broken down into the 

categories described above, model averaging indicated that several variables 

were important predictors of cub infection risk (Table 3.2).  The risk of a cub 

becoming test-positive in its first year increased most markedly with changes in 

the number of related excretors of both sexes (Figs 3.2 & 3.3).  The presence of 

one related male excretor in their birth social group increases the predicted 

probability of that cub testing positive within their first year by 26%, whereas the 

presence of a related female excretor increases the probability by 15%.  Much 

lower risks are associated with unrelated male or female excretors  (6% and 4% 

respectively; barely credibly different from zero (Fig 3.2 & 3.3)).  The probability 

of test positivity in cubs increased in the presence of blood-test positive female 

relatives in the social group (Fig 3.4, presence of one blood test positive female 

increases risk by 4%), but was not influenced by blood-test positive male 

relatives, nor by blood-test positive unrelated individuals of either sex (Fig 3.2).   
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Table 3.2   Details of top 10 models with a ΔAICc<6 predicting the odds of cubs testing TB positive in their first year (1).  Social group and Study Year were included as 

random effects.  ‘Blood test positive’ indicates individuals who yielded a positive test result to either the ELISA, StatPak or gamma interferon diagnostic test.  Each row in the 

table indicates a model, with a + indicating the inclusion of a given variable within each model.  Degrees of freedom, ΔAICc,  model weight and R2 values are also included for 

each model.  Marginal R2 (R2M) represents the variance explained by fixed factors and Conditional R2 (R2C) represents the variance explained by both fixed and random 

factors (Barton 2011). 

 

Model 

Related 

Excretor  

Males 

Non-

Related              

Excretor 

Males 

Related 

Excretor 

Females 

Non-

Related 

Excretor 

Females 

Related 

blood test 

positive 

Females 

Non-

Related 

blood test 

positive 

Females 

Related  

blood test 

positive 

Males 

Non-

related  

blood test 

positive 

Males 

Uninfected 

Study  

Period 
df ΔAICC ωi R2C R2M 

1 + + + + + +  + + + 12 0.00 0.09 0.35 0.28 

2 + + + + + +  + +  11 0.21 0.09 0.35 0.28 

3 + + + + +   + +  10 0.31 0.08 0.36 0.27 

4 + + + + +   + + + 11 0.53 0.07 0.35 0.27 

5 + + + + + +   +  10 0.58 0.07 0.36 0.27 

6 + + + + + +   + + 11 0.71 0.07 0.36 0.27 

7 + + + + + + + + + + 13 0.93 0.06 0.35 0.28 

8 + + + + + + + + +  12 1.37 0.05 0.35 0.27 

9 + + + + + + +  + + 12 1.52 0.04 0.36 0.27 

10 + + + + + + +  +  11 1.64 0.04 0.36 0.27 



65 

 

 

 

 

Fig 3.2 Factors affecting the risk of badger cubs testing positive for bovine tuberculosis in their 

first year (1990-2005).  Average model coefficients (log odds) calculated for variables included 

in the top model set (Supplementary Table 1).  Arrows indicate 95% confidence intervals.  

Model-averaged regression slopes are considered important if they are consistent and 

directional (i.e. their confidence intervals do not span zero). 
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Fig 3.3 Predicted probability of a cub testing positive for TB in its first year with increasing 

numbers of excretor relatives and non-relatives resident in its social group.  Bold lines indicate 

the line of best fit, dashed lines indicate 95% confidence intervals.  Circles summarise raw data, 

with the size of symbol proportionally scaled to the number of individuals in the category 

(smallest point indicates 3 data points, largest point indicates 1336 data points).  
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Fig 3.4 Predicted probability of a cub testing positive for TB in its first year with increasing 

numbers of blood test positive female relatives resident in its social group.  Bold line indicates 

the line of best fit, dashed lines indicate 95% confidence intervals.  Circles summarise raw data, 

with the size of symbol proportionally scaled to the number of individuals in the category 

(smallest point indicates 5 data points, largest point indicates 1277 data points).  
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3.5 Discussion 

The findings of this study highlight the potential complexities of transmission 

dynamics within wild animal populations.  When the influence of badger social 

group size on transmission risks was considered in isolation, I found that cubs 

born into larger groups were at a lower risk of yielding a positive test result in 

their first year, indicating net negative density dependence and therefore an 

important dilution effect on transmission.  This is consistent with previous 

studies in which M. bovis prevalence was found to be consistently higher in 

small social groups (Woodroffe, Donnelly et al. 2009).  When this simple 

measure of group size was decomposed according to the test history of resident 

badgers, the risk of a test-positive result in cubs was positively related to the 

number of test positive residents and was only diluted by test-negative 

residents.  This is consistent with the herd immunity effect demonstrated  in a 

vaccinated badger population, whereby the infection risk in unvaccinated 

badger cubs was reduced where more than a third of their birth social group 

was vaccinated (Carter, Chambers et al. 2012).  The observation of divergent 

infection risks, associated with numbers of test positive versus test negative 

individuals, highlights the dangers of relying on population-level metrics (such 

as host density) to reveal transmission dynamics (Tompkins, Dunn et al. 2011), 

which  in reality  may be driven by processes operating at a finer scale.   

Further complexity was revealed when social group composition was broken 

down into kin- and non-kin-structure.  The number of related female badgers in 

a cub’s natal social group that were excreting M. bovis bacteria was positively 

associated with the risk of that cub testing positive during its first year.  This is 

consistent with infection risk driven by kin-biased association, i.e.  closer, more 

prolonged or more regular contacts between cubs and female relatives than 

non-relative female group members.  Previous studies within high density 

badger populations have indicated that females are more likely to be related to 

other individuals in their social group (Dugdale, Macdonald et al. 2008), perhaps 

because female badgers are less likely to permanently leave their natal group 

than males (Cheeseman, Cresswell et al. 1988, Rogers, Delahay et al. 1998).  

Therefore a cub may be born into a group where multiple female excretor 
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relatives are present, including their mother and sisters from previous years’ 

litters.  Cubs are born and suckled by their mothers during their first twelve 

weeks of life (Roper 2010) and may be particularly susceptible to infection in 

early life when their immune systems are under-developed, making them 

vulnerable to high infective doses of M. bovis from infectious excretor dams 

(Tomlinson, Chambers et al. 2013).  Behavioural monitoring using radio collars 

shows that females, including younger and non-breeding females, use main 

setts more during this period than sub-adult and adult males (Weber, Bearhop 

et al. 2013).  Cubs may therefore be exposed to infection, both from their 

mother and from other female badgers present in the main sett prior to 

emergence.  Following emergence from the sett, which occurs at around 8 

weeks of age, cubs only spend short periods of time above the ground (Roper 

2010) and will remain closely associated with their mothers after emergence, 

until they are capable of independent foraging.  Above ground, anecdotal 

evidence exists of non-breeding adult females babysitting (Woodroffe 1993) and 

allogrooming cubs, although these behaviours did not appear to be kin-biased 

(Dugdale, Ellwood et al. 2010).  Overall the evidence for alloparental care in 

badgers is considered to be weak (Roper 2010).  In addition to excretor females 

posing a risk to resident cubs, I also demonstrated that the number of female 

relatives in a social group who yielded a positive result to a serological or 

gamma interferon test was associated with a slight but significant increase in 

the risk of resident cubs testing positive in their first year.  This was not the case 

for unrelated females or sero/ gamma interferon positive males.   As expected, 

this risk was far lower than for cubs where related or non-related excretor 

females were resident, reflecting the particular epidemiological importance of 

infectious individuals in maintaining infection within the social group. 

 In contrast to previous work (Tomlinson, Chambers et al. 2013), the presence 

of excretor males in a cub’s social group was a greater risk factor for cub 

infection risk than that of female excretors.  This result is somewhat surprising, 

given our understanding of the greater intensity of cub-female behavioural 

interactions.  Paternal care has not been documented in the European badger 

(Evans, Macdonald et al. 1989) and is not supported by observational studies 

(Dugdale, Ellwood et al. 2010).  The primary route of bTB transmission between 

badgers is considered to be via the respiratory system, such that close and 
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prolonged contact between individuals in setts may facilitate transmission 

(Weber, Bearhop et al. 2013).  Male badgers use more of the underground 

space than females (Kowalczyk, Zalewski et al. 2004), therefore excretor male 

badgers might be more responsible for contaminating the underground sett 

environment than female excretors.  However this does not explain the 

difference in risk presented by related and non-related male badgers.  

Alternatively, opportunities for disease transmission might be due to above-

ground contact as cubs become integrated into the social group following 

emergence.  An observational study of cub social integration following 

emergence noted that as cubs matured they spent more time and engaged in 

play-fights more frequently with adult and sub-adult male group members (and 

less with female group members) (Fell, Buesching et al. 2006).  We do not yet 

know whether these behaviours are kin-biased.   

I have shown that the risk to cubs of acquiring infection depends on within-

social-group structuring, particularly linked to kin and sex.  The patterns 

observed are consistent with the ‘herd immunity’ effect in badger social groups, 

where the risk of TB infection in unvaccinated badger cubs decreased by nearly 

80% when more than a third of the social group were vaccinated against TB 

(Carter, Chambers et al. 2012).  Vaccinating a modest proportion of the adults 

in a badger social group may protect unvaccinated cubs indirectly by reducing 

their contact with infected adults.  The results presented here suggest that 

kinship with vaccinated adults will provide cubs with even greater levels of 

protection. 

There is a possible alternative explanation for the higher risk experienced by 

cubs that have a culture positive relative in their social group: susceptibility to 

bTB might be heritable.  We know that cattle breeds show differential 

susceptibility to bTB infection (Vordermeier, Ameni et al. 2012), and that 

heritability of bTB resistance in farmed red deer (Mackintosh, Qureshi et al. 

2000) and of bTB disease outcomes in cattle (le Roex, van Helden et al. 2013) 

can be high.  No published work is currently available on genetic variation in 

bTB susceptibility in badgers and other wildlife hosts.  As the full pedigree of the 

Woodchester Park badger population emerges in the near future, it will allow us 

to tease apart the influence of kin-biased behaviour and heritability in bTB 

transmission dynamics. 
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These findings have clear relevance for the understanding, modelling, 

prediction and management of disease in socially- and kin-structured host 

populations.  Social structure can have major impacts on the success of 

strategies to manage or control disease prevalence and transmission 

(Woodroffe, Donnelly et al. 2006, Carter, Delahay et al. 2007, Riordan, Delahay 

et al. 2011) and the identification of kinship and disease prevalence as 

mediators of density-dependent transmission could provide important insights to 

disease management via targeted vaccination or removal campaigns 

(McCallum, Barlow et al. 2001).  Kin structure is often hard to identify, and the 

behavioural interactions that drive direct transmission of disease are often 

hidden from observation, but their importance to patterns of disease 

transmission make the advent of molecular tools for wildlife disease all the more 

relevant (Benton, Delahay et al. 2014). 

I have confirmed the epidemiological importance of infectious individuals in the 

maintenance and persistence of infection in groups of social mammals.  I have 

demonstrated that kin structure causes within-group heterogeneities in infection 

risks for cubs, either through kin biased association favouring disease 

transmission, heritable susceptibility, or a combination of the two.  Given that 

strategies for the management of disease in wild mammal populations can 

perturb social and kinship structures, these key drivers of disease transmission 

should be considered during the design and delivery of management strategies 

in wildlife reservoirs of disease.  More generally, these findings highlight the 

potential for conflicting impacts of density, disease prevalence, and social- and 

kin- structure, on the transmission of disease.  In badgers, blood is thicker than 

water because kinship with test positive individuals can counteract the dilution 

effect of reduced infection risk with increasing group size. 
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CHAPTER 4: Data Chapter 

 

Badger genetic profiles predict progression of bovine TB (Mycobacterium 

bovis) infection   

4.1 Abstract 

Inbreeding and/or genome-wide homozygosity may be associated with 

compromised immune responses, whereby more homozygous individuals are 

less able to contain or tolerate infection once exposed.  Little is known about the 

genetic basis of bovine TB progression in wild species.  In this chapter I present 

data from a longitudinal population study of European badgers (Meles meles); a 

key wildlife reservoir of bovine TB, caused by Mycobacterium bovis.  I 

investigate associations between marker-based inbreeding estimates, 

describing the probability of an individual inheriting two identical alleles from a 

single ancestor, and individual diagnostic TB test results, capturing aspects of 

the cell-mediated and humoral immune responses to bovine TB exposure.  

Exposed badgers with higher inbreeding coefficients were more likely to test 

positive to an antibody test at a given capture event (indicative of progressed 

disease).  I also found evidence of single locus effects predicting the likelihood 

of an exposed badger becoming culture positive (indicative of infectiousness).  

A significant interaction between age and inbreeding coefficient was noted in 

the antibody response model, with inbreeding costs more apparent among older 

animals.  This finding is consistent with age-specific inbreeding depression in a 

wild mammal and therefore lends support to the mutation accumulation model 

of senescence.   
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4.2 Introduction 

Host genetics play a critical role in determining the outcome of pathogen 

infection at an individual level.  Matings between related individuals have been 

observed to result in offspring which are generally less viable than the 

population mean; this phenomenon is referred to as ‘inbreeding depression’ 

(Darwin 1876, Charlesworth and Charlesworth 1987, Slate, David et al. 2004).  

If such inbreeding effects are powerful, they may go undetected as the most 

inbred individuals do not survive and may therefore go undetected within a 

study population (Keller and Waller 2002).  However inbreeding depression is 

commonly sub-lethal and may vary in fitness costs among life-history stages, 

sexes and environmental conditions (Keller, Reid et al. 2008).  Within human 

populations, inbreeding has been linked to the onset of a range of diseases 

(Rudan, Rudan et al. 2003).  Understanding the causes and consequences of 

inbreeding depression has important applications to conservation (Hedrick and 

Garcia-Dorado , Keller and Waller 2002), as well as our understanding of 

individual behaviour, particularly those involved in active avoidance of mating 

with kin (e.g.  dispersal among mating groups) (Charlesworth and Charlesworth 

1987, Townsend, Clark et al. 2010) and the consequences for infectious 

disease dynamics.   

Inbreeding may be associated with a depressed immune response if the loss of 

genetic variability is within loci involved in pathogen defence (O'Brien and 

Evermann 1988).  However, empirical data on inbreeding depression in 

pathogen response wild populations is very limited in wild populations 

(Spielman, Brook et al. 2004, Townsend, Clark et al. 2009).  In song sparrows, 

cell-mediated immunity to a novel pathogen was lower in individuals with a 

higher inbreeding coefficient (Reid, Arcese et al. 2003).  A similar result was 

found in American crows (Corvus brachyrhynchos), where inbred crows were 

observed to mount weaker immune responses (Townsend, Clark et al. 2010).  

Inbreeding in remnant populations of the highly endangered Tasmanian devil 

(Sarcophilus harrisii) has been associated with low genetic diversity in their 

major histocompatibility complex (MHC), a diverse gene family that plays a 

crucial role in the vertebrate adaptive immune system and in autoimmunity (Sin, 

Dugdale et al. 2012), which is thought to increase their susceptibility to the devil 
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facial tumour disease (DFTD) (Siddle, Kreiss et al. 2007).  Inbreeding has also 

been linked to higher rates of parasitism in a range of species (Coltman, 

Pilkington et al. 1999, Whiteman, Matson et al. 2006, Smallbone, van 

Oosterhout et al. 2016). 

Three hypotheses have been proposed to explain correlations between 

inbreeding and fitness (David 1998).  First, the ‘general effect’ hypothesis, 

which predicts that individuals with lower genome wide heterozygosity, due to 

inbreeding, will suffer fitness disadvantages when compared to individuals with 

higher heterozygosity (David 1998, Kardos, Allendorf et al. 2014).  This may 

occur as inbreeding increases the expression of deleterious recessive alleles or 

through the reduction in heterozygotes in a population where heterozygosity 

conveys a fitness advantage (Keller and Waller 2002).  The ‘general effect’ 

hypothesis assumes that inbreeding is homogenously spread across the 

genome rather than being restricted to particular loci (Slate, David et al. 2004).  

In order for the general effect hypothesis to be true, inbreeding (and therefore 

genome wide heterozygosity) should vary among individuals (Slate, David et al. 

2004, Szulkin, Bierne et al. 2010, Kardos, Allendorf et al. 2014).  Where this is 

the case, heterozygosity in the markers examined should be correlated with 

each other if they are to be a good proxy for genome wide heterozygosity; this 

is termed ‘identity disequilibrium’ (Weir and Cockerham 1973, Kardos, Allendorf 

et al. 2014).   

There are alternatives to the ‘general effect’ hypothesis.  The ‘local effect’ 

hypothesis (also known as associative overdominance) predicts that some 

proportion of the microsatellite marker loci are physically linked with loci that 

influence fitness and hence they are transmitted together.  In this case, 

individuals who are heterozygous at particular marker loci tend to be 

heterozygous at the trait loci (Slate, David et al. 2004, Kardos, Allendorf et al. 

2014).  Where the state (heterozygous or homozygous) of a given loci, or 

subset of loci, is a better predictor of a fitness trait than multi-locus 

heterozygosity, this would support the local effect hypothesis (Annavi, Newman 

et al. 2014).  Finally, the ‘direct effect’ hypothesis predicts that the microsatellite 

marker loci themselves are having a direct effect on the fitness trait being 

measured; this is thought to be unlikely as marker loci are thought to be 
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generally non-functional (Slate, David et al. 2004) but not impossible, with some 

microsatellites documented as having functional roles (Li, Korol et al. 2002, 

Annavi, Newman et al. 2014). 

In terms of inbreeding and susceptibility to infection by members of the 

Mycobacterium tuberculosis (TB) complex, there is evidence from a range of 

species that host genotype has an influence on the outcome of TB infection (le 

Roex, van Helden et al. 2013).  Within the field of human medicine, inbreeding 

depression has been associated with increased susceptibility to TB infection 

(Lyons, Frodsham et al. 2009).  Inbred rabbits have been demonstrated to be 

more susceptible to TB infection than outbred rabbits under experimental 

infection conditions (Dorman, Hatem et al. 2004).  Early experimental infection 

studies on inbred lines of mice suggested that TB resistance may be under 

relatively simple genetic control in mice, as different genetic lines of mice 

segregated distinctly into resistance and susceptible phenotypes, without the 

existence an intermediate level of resistance (Briles 2012).  Inbreeding 

depression has been linked to increased susceptibility to Mycobacterium bovis 

(bovine TB) infection in African lions (Panthera leo) (Trinkel, Cooper et al. 

2011).  In wild boar (Sus scrofa), a wildlife reservoir of bovine TB in Spain 

(Naranjo, Gortazar et al. 2008), genetic heterozygosity was an important 

predictor of both resistance to bovine TB infection and progression of disease 

(Acevedo-Whitehouse, Vicente et al. 2005).   

In the UK, the European badger (Meles meles) is the principal wildlife reservoir 

of bovine TB, with an established role in transmission and persistence of the 

disease within cattle populations.  The social structure and kin structure typical 

of high-density badger populations is known to result in non-random mating 

(Carpenter, Pope et al. 2005), which increases the possibility of mating between 

relatives (Szulkin and Sheldon 2008).  However, to date, there has been no 

investigation of the potential role of inbreeding in bovine TB progression within 

badgers. Previous genetic studies badger populations suggest that extra-group 

mating is commonplace (Evans, Macdonald et al. 1989, Dugdale, Macdonald et 

al. 2007), with around half of all cubs fathered by males from other groups 

(Carpenter, Pope et al. 2005); this behaviour may have evolved to mitigate 

against inbreeding (Durrant and Hughes 2005, Annavi, Newman et al. 2014).  In 
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order for such inbreeding avoidance strategies to evolve, it is assumed that 

there must be a fitness cost associated with inbreeding (Szulkin, Stopher et al. 

2013) .  This could be a reduction in fitness of an individual (e.g.  females who 

mate with relatives have smaller litters), or of offspring (e.g.  inbred offspring are 

smaller, more susceptible to predation or parasitism).  Additionally, inbreeding is 

thought to be usually deleterious in species that are normally outbred, but less 

severe when inbreeding is part of the natural social system (Soulé 1987, 

Pertoldi, Loeschcke et al. 2001).  Mating with a close relative may in fact 

enhance an individual’s inclusive fitness even if inbreeding affects offspring 

fitness (Kokko, Ots et al. 2006), for example a female mating with a close male 

relative (e.g.  a brother) gains the direct fitness benefit in terms of offspring 

production but also an indirect fitness benefit of improving her brothers mating 

success (Kokko, Ots et al. 2006).  Early work on population genetics in a high 

density badger population suggested inbreeding rates were lower than those 

reported in other social mammals (Evans, Macdonald et al. 1989), however 

more recent, pedigree-based findings in a similar density population reported 

that 5% of matings were incestuous (Dugdale, Macdonald et al. 2007). 

In this study, I use data from a long-term population study to investigate the 

relationship between an exposed badger’s estimated inbreeding coefficient and 

their immune responses, as measured using a range of TB diagnostic test 

results.  As inbreeding effects have been reported to differ between the sexes 

(Ebel and Phillips 2016) and between age classes (Charlesworth and Hughes 

1996), I include these factors to allow for such variation.  I predict that exposed 

individuals with higher inbreeding coefficients will be more likely to show signs 

of progressed TB infection (as indicated by an increased likelihood to test 

positive to an antibody test and an increased likelihood of becoming infectious).  

I also predict that the magnitude of the cell-mediated immune response to M. 

bovis infection will be lower for individuals with lower heterozygosity, due to 

compromised immune function.  
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4.3 Methods 

Badger Sampling and TB Diagnostic Tests 

All data used in these analyses were collected from the long-term capture-mark-

recapture study at Woodchester Park in Gloucestershire.  Badgers from this 

study population have been routinely trapped, up to four times a year, since 

1976 (Delahay, Walker et al. 2013).  Trapped badgers are brought back to a 

sampling facility, anaesthetised (for full details see Appendix) and a range of 

clinical samples taken (oesophageal  and tracheal aspirates, faeces, urine, 

swabs of bite wounds or abscesses) for the detection of  M. bovis by 

microbiological  culture (Gallagher and Horwill 1977).  Blood samples are 

collected and used for TB diagnostic testing.  Between 1990 and 2005, the 

Brock ELISA antibody test (Goodger, Nolan et al. 1994) and the culture of 

clinical samples were the diagnostic tests used to assign TB status to individual 

badgers.  From 2006 onwards, the Brock ELISA was replaced with the 

improved Stat-Pak antibody test (Chambers, Crawshaw et al. 2008)  and the 

gamma interferon (IFN) test for T-cell responses to M. bovis (Dalley, Davé et al. 

2008) were introduced (Delahay, Walker et al. 2013).  The combination of 

diagnostic tests provides a biologically meaningful picture of the progression of 

disease within an individual badger (Tomlinson, Chambers et al. 2013).  The 

cell-mediated response (as measured by the gamma interferon test) is likely to 

reflect the first line of defence to M. bovis exposure, whereas serological 

responses (as measured by the Brock ELISA and StatPak tests) take time to 

develop and hence these antibody tests are most sensitive in animals with 

progressed disease [39, 42].  Some individuals go on to become ‘infectious’, 

characterised by the potential excretion of M. bovis bacteria via various routes 

(Pritchard, Stuart et al. 1986, Graham, Smith et al. 2013).  Culture from clinical 

samples is the only diagnostic approach that has been used throughout the 

entire study period.   

Selection of exposed individuals 

To select individuals from the capture database who could be considered to 

have been ‘exposed’ to M. bovis, individuals were identified who had tested 

positive to any TB diagnostic test at any point during their capture history.  This 
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dataset was then restricted to individuals who had been caught in their first year 

(and hence were of known age) and for whom genotype data were available, 

from which an Individual Inbreeding Coefficient (IIC) could be estimated.  The 

resultant dataset was comprised of 3712 capture events from 490 individual 

badgers.  All the diagnostic tests employed have limitations in terms of their 

sensitivity and specificity, which have been explored in detail elsewhere (Drewe, 

Tomlinson et al. 2010, Buzdugan, Chambers et al. 2016).  A recent multi-event 

model constructed for this population demonstrated that at a given sampling 

event, a truly uninfected individual has a 94% probability of testing negative to 

the gamma interferon and StatPak tests and on culture.  Under these 

circumstances, the risk of wrongly classifying a truly uninfected badger as 

infected is low.  We can therefore have some confidence that those individuals 

identified as ‘exposed’ in the current study are not truly uninfected individuals. 

Genotyping: 

On first capture, a hair sample was routinely taken from trapped badgers, and 

stored in 80% ethanol prior to DNA extraction and genotyping (Carpenter, Pope 

et al. 2005).  All genotyping data reported in this study were generated by the 

team headed by T.Burke at the Molecular Ecology Lab, University of Sheffield.  

Genotyping has been routinely carried out on hair samples collected from 1990 

until present, although only data up to 2011 were available for this analysis.  

Genotyping involved the use of 22 microsatellite markers, each with 4-7 alleles.  

This has been demonstrated to be a sufficient number of markers to identify 

deeper relationships between individuals e.g.  differentiating between cousins 

and unrelated individuals (Goodnight and Queller 1999).   

Definitions of ‘inbreeding coefficient’ 

An individual’s inbreeding coefficient can be inferred directly from a pedigree, 

where it refers to the amount of ancestry that is shared by the parents of an 

individual (Keller and Waller 2002).  This measure is therefore determined 

completely by rates of breeding among relatives.  However, in the absence of a 

pedigree, multi-locus heterozygosity (MLH) may be used as a proxy (Keller and 

Waller 2002, Jombart 2008).  If an individual has related parents, it will have 

lower heterozygosity, as many loci will be identical by descent (IBD), with a 
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single gene copy having been passed onto both parents from a single common 

ancestor (Kardos, Allendorf et al. 2014).  MLH can be calculated from a set of 

microsatellite markers and associated with a fitness trait of interest in an 

approach termed heterozygosity-fitness correlations (HFCs) (Slate, David et al. 

2004).  An individual’s inbreeding coefficient (hereafter referred to as IIC) can 

also be estimated directly from microsatellite markers, where it is defined as the 

probability of an individual inheriting two identical alleles from a single ancestor.  

This is the approach used here to determine IIC values. 

All statistical analyses in this chapter were conducted in R version 3.3.2 (R Core 

Development Team 2016).  In order to identify any relationship between badger 

genetic profile and disease progression, a number of metrics were used: 

1. Individual inbreeding coefficient (IIC): As a pedigree was not available 

from which to calculate an inbreeding coefficient for each individual 

(which in a pedigree, is the relatedness between its parents), the R 

package ‘adegenet’ was used (v 1.3-9.2) (Jombart 2008) to generate 

inbreeding estimates from the microsatellite marker data.   

 

2. Multi-locus heterozygosity (MLH): Most studies looking for potential 

inbreeding depression use multi-locus heterozygosity (MLH) as their 

measure and are therefore looking for HFC's (heterozygosity-fitness 

correlations).  A previous study looking at the effect of genotype on M. 

bovis infection risk in wild boar found an association between MLH and 

disease progression (Acevedo-Whitehouse, Vicente et al. 2005); 

Therefore MLH was used as an additional measure of badger genotype 

in order to compare results of the current study with those from the wild 

boar study.  The MLH function in the ‘inbreedR’ package was used 

(Stoffel, Esser et al. 2016) to calculate MLH values.   

 

3. In order to test for single-locus effects, separate consecutive models 

were run using each locus’ status (homozygous vs heterozygous), 

instead of the MLH value and then compared with the MLH value model.  

Models were then constructed containing only the status of the 

'important' (i.e. statistically significant in single models) loci, and 

compared to those in the marker-wide MLH model. 
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Identity Disequilibrium 

To test for the presence of statistically significant identity disequilibrium (David 

1998), the g2 statistic and its standard error for the badger genotypes were 

calculated (using the ‘g2_microsats’ function within the R package ‘inbreedR’ 

[51]).  Following the methodology in a similar study (Harrison, York et al. 2013) 

a randomisation approach was used to quantify the correlation between 

inbreeding estimates and heterozygosity (Balloux, Amos et al. 2004) and to 

calculate the heterozygosity – heterozygosity calculation (HHC) (Balloux, Amos 

et al. 2004) between microsatellites (randomisation code provided by X.  

Harrison, pers comm). 

Modelling immune responses 

Factors relating to badger immune response (using a variety of diagnostic test 

responses) were investigated via three distinct analyses, all consisting of 

generalised linear mixed models constructed using the R package ‘lme4’ (v1.0-

5) (Bates 2010).   

1. Gamma interferon response 

To investigate the effect of IIC on the magnitude of the initial gamma interferon 

response, a subset of the exposed individuals were selected that were 

interferon negative on their first capture with evidence of prior absence of 

infection (i.e. individuals who were previously Stat-Pak and culture negative).  

As the gamma interferon test has only been used on the population since mid-

2006, this resulted in a dataset of 41 individuals.  The response variable was 

the difference in gamma interferon responses to bovine and avian 

mycobacterial antigens (mean optical density of PPD-B (bovine antigen) 

response minus the mean optical density of the PPD-A (avian antigen) 

response), at the incident interferon positive capture event.  A mixed effects 

model was used to investigate the effect of an individual’s IIC on the magnitude 

of their initial gamma interferon response, with sex and age (years) included as 

fixed effects.  Social group and capture year were included as random effects.  

Wald’s chi squared tests were used to assess significance of fixed effects.  Due 

to limitations in the number of observations, interaction terms were not included 

in this model.  IIC values were standardised to mean = 0, SD = 0.5. 
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2. Likelihood of positive antibody test result 

To investigate the effect of IIC on the likelihood of an exposed individual giving 

a positive result to an antibody test at a given sampling event, a  model was 

constructed with test outcome  as a binary response variable (1 = positive, 0 = 

negative).  In both this model and the culture response model below, age, sex 

and IIC were included as fixed effects.  IIC values were standardised to mean = 

0, SD = 0.5.  Two-way interactions between fixed effects were also included.  

Individual ID, social group and capture year were included as random effects. 

3. Likelihood of culture positivity 

To investigate the effect of IIC on the likelihood of an M. bovis positive culture 

result at a given sampling event, a model was constructed with culture result  as 

a binary response variable (1 = positive, 0 = negative).  Fixed and random 

effects were as described for the antibody response model. 
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4.4 Results 

Individual Inbreeding Coefficients. 

The mean Individual Inbreeding Coefficient (IIC) for 490 badgers from the 

Woodchester Park study population with evidence of exposure to M. bovis 

(1990 – 2011) was 0.18 (Fig 4.1).  Figure 4.2 suggests that there is little spatial 

structure in inbreeding in the Woodchester Park population, with more inbred 

social groups appearing across the study area.  It also appears that mean social 

group IIC is not obviously related to mean social group size, with higher 

inbreeding values appearing across a range of group sizes, although this was 

not formally tested. 

 

 

 

 

 

 

 

 

Fig 4.1 Histogram of estimated individual inbreeding coefficients (IIC) for 490 badgers from the 

Woodchester Park study population with evidence of exposure to M. bovis (1990 – 2011).  The 

mean IIC value was 0.18, as indicated by the red line. 



83 

 

Fig 4.2 Average individual inbreeding coefficients (IIC) by social group for all genotyped 

badgers within the Woodchester Park badger population (1990-2011, n = 1534).  The size of 

each circle represents the average number of group members in the social group during this 

time period. 

Identity Disequilibrium 

Weak but significant identity disequilibrium was detected in the genotype 

dataset of 1899 badgers from Woodchester Park (g2 = 0.005, SD = 0.0006, P = 

0.01 based on 100 iterations).  Additionally, a significant heterozygosity – 

heterozygosity correlation (HHC) was detected, consistent with the presence of 

identity disequilibrium (HHC = 0.07 (CI 0.03 – 0.11)).  As heterozygosity 

between the marker loci was significantly correlated in this population, this 

suggests that the heterozygosity of the marker loci would reflect heterozygosity 

at unlinked, functionally important loci; a key requirement for the general effect 

hypothesis of inbreeding depression (Slate, David et al. 2004).  Heterozygosity 

and inbreeding estimates were significantly negatively correlated, based on 100 

iterations (r = -0.08 (CI: -0.10 to -0.07); this is in line with the expected 
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correlation given the number of microsatellites employed and the population 

structure (Balloux, Amos et al. 2004).  This result suggests that the variation in 

heterozygosity among individuals is informative of their inbreeding level 

(Harrison, York et al. 2013). 

Variation in Immune Responses 

Gamma interferon responses 

The magnitude of an individual’s initial gamma interferon response was not 

related to their age (Wald’s χ2 (1) = 1.26, p =0.27), sex (Wald’s χ2 (1) = 1.43, p 

=0.23), or IIC (Wald’s χ2 (1) = 0.38, p =0.54). 

Likelihood of positive antibody test result 

The likelihood of an individual testing positive to an antibody test at a given 

sampling event was influenced by several predictors and their interactions, as 

determined by model averaging and information criteria 
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Table 4.1  Details of the top 12 regression models with a ΔAICc<6 predicting the odds of 

badgers giving a positive antibody test result at a given sampling event.  Individual ID, social 

group and study year were included as random effects.  Each row in the table indicates a model 

with a given set of variables (+).  Degrees of freedom, ΔAICc, model weight and R2 values are 

included for each model.  Marginal R2 (R2M) represents the variance explained by fixed factors 

and Conditional R2 (R2C) represents the variance explained by both fixed and random factors 

(Barton 2011).  

 

From Table 4.1 and Fig 4.3 it is evident that age is a consistently positive 

predictor of antibody test positivity in exposed badgers; this is consistent with 

the antibody tests used being indicative of progressed M. bovis infection 

(Goodger, Nolan et al. 1994, Chambers, Crawshaw et al. 2008) and hence 

more sensitive in individuals who have been infected for a longer time period.  

The interaction between sex and age was included in the top model set, with 

exposed male badgers having a higher probability of giving a positive antibody 

test result as they aged, however the effect was variable (as indicated by the 
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95% confidence intervals touching zero in Fig 4.3).  The interaction between 

age and IIC was in the top four most supported models with a consistent 

directional effect (Fig 4.3), indicating that inbreeding effects on the risk of 

antibody positivity increased with age. 

 

 

 

 

 

 

 

 

 

 

Fig 4.3 Factors affecting the risk of badgers in the Woodchester Park population testing positive 

to an antibody test at a given capture event (1990-2011).  The average model coefficients (log 

odds) shown were calculated for variables included in the top model set (see Table 4.1).  Bars 

indicate 95% confidence intervals.  Model-averaged regression slopes are considered important 

if their confidence intervals do not span zero. 

 

Figure 4.4 illustrates the impacts of inbreeding on the likelihood of antibody test 

positivity with age.  In both male and female badgers, individuals with higher IIC 

values become more likely to test positive to the antibody tests as they age.  

Age related increases in risk are stronger for males than females, such that 

male badgers in the oldest age class are at a higher risk of testing positive to an 

antibody test than females in the same age class.  Also, individuals with higher 

IIC values do not appear to be represented in the older age classes (see Fig 

4.5) consistent with a survival cost to inbreeding, although this was not 

investigated further in the current study   
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Fig 4.4 Changing relationship between IIC and the likelihood of an individual badger giving a 

positive result to an antibody test, shown by sex and age (colour gradient represents age, with 

darkest red = individuals less than one year, up to yellow representing individuals older than 

10).
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Fig 4.5 IIC values for individual badgers (Woodchester Park, 1990-2011) presented by age 

class.   

Likelihood of positive culture result 

The likelihood of an individual testing culture positive at a given sampling event 

was also influenced by several predictors and their interactions, however in 

most cases these effects were variable, as indicated by the confidence intervals 

spanning zero in Fig 4.6.   

From Fig 4.6 and Table 4.2, it is evident that the risk of an M. bovis positive 

culture being obtained from an exposed badger at a given sampling event 

increased consistently with age.  IIC was also a positive predictor of risk, 

appearing in the majority of the top model set (Table 4.2), however, the 

confidence intervals for the estimate span 0 (Fig 4.6), indicating some variability 

in this effect.  The effects of inbreeding increased with age, however in contrast 

to the antibody response model, the estimate for this effect was variable and 

spanned 0.  A positive culture was more likely to be obtained from a male 

badger (sex appears in the majority of the top model set; Table 4.2), again 

however, this effect was variable as evidenced by confidence intervals spanning 

0.  
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Table 4.2 Details of the top 13 regression models with a ΔAICc<6 predicting the odds of an M. 

bovis culture positive sample being obtained from an exposed badger at a given sampling 

event.  Individual ID, social group and study year were included as random effects.  Each row in 

the table indicates a model with a given set of variables (+).  Degrees of freedom, ΔAICc,  model 

weight and R2 values are included for each model.  Marginal R2 (R2M) represents the variance 

explained by fixed factors and Conditional R2 (R2C) represents the variance explained by both 

fixed and random factors (Barton 2011).   
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Fig 4.6 Factors affecting the risk of badgers in the Woodchester Park population testing culture 

positive at a given capture event (1990-2011).  Average model coefficients (log odds) shown 

were calculated for variables included in the top model set (Table 4.2).  Bars indicate 95% 

confidence intervals.  Model-averaged regression slopes are considered important if their 

confidence intervals do not span zero. 

Single locus effects 

The single-locus models were better supported than the MLH models for both 

the antibody response model and the culture response model, as evidenced by 

lower AIC values, (antibody response: single-locus: AIC = 3417, MLH: AIC = 

3430, culture response: single-locus: AIC =1461, MLH: AIC=1465).  The 

separate models, in which each locus was included as a fixed effect, revealed 

that some loci may be more strongly associated with TB test status than others 

(see Table 4.3).  The final set of models for each response variable, where only 

the loci and their interactive effects identified as significant in the individual loci 

models (P < 0.05 in Table 4.3) were included, were the best supported 

(indicated by lower AIC values than the MLH model, antibody response: 

important loci model AIC = 3368 vs 3420 for the MLH model, culture response: 

important loci model AIC = 1411 vs 1465 for the MLH model). 
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In several cases, the same loci are predictors of both the likelihood of a positive 

antibody response and the likelihood of culture positive (e.g. 1gm, 1gs, 1gxl, 

2gxl, 2yl and 2ys).  It is also interesting to note than in the majority of cases, the 

significant interaction identified is with age.   

 

Table 4.3 P values from a series of individual models to assess the strength of associations 

between each locus and TB test status in badgers from Woodchester Park (1990-2011).  In all 

cases Wald’s chi squared tests were used to assess significance.  Significant results (P < 0.05) 

are indicated in black bold, close to significant results (P between 0.05-0.09) are indicated in 

bold grey.   
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4.5 Discussion 

The likelihood of positive responses to tests for M. bovis specific antibodies 

increased with the measure of inbreeding.  This suggests that badgers with 

higher levels of inbreeding are less able to tolerate or contain M. bovis infection 

and are therefore more likely to subsequently exhibit progressed disease. Both 

the antibody tests used in this study (Brock ELISA and Brock TB StatPak) have 

been reported to be more sensitive in individuals with progressed or 

disseminated disease (Chambers, Crawshaw et al. 2008, Chambers, 

Waterhouse et al. 2009) and which may pose the greatest risk of transmitting 

infection (Chambers, Crawshaw et al. 2008).  Further support for this 

interpretation is provided by the observation that inbreeding was a positive 

predictor of the likelihood of bacterial shedding being detected.  These findings 

are consistent with work on wild boar which  demonstrated that individuals with 

lower heterozygosity (indicative of inbreeding) had signs of more progressed 

disease  (Acevedo-Whitehouse, Vicente et al. 2005).  The authors inferred that 

individuals with lower heterozygosity were less successful at mounting an 

immune response capable of containing the M. bovis bacilli within single early 

stage granulomas (Acevedo-Whitehouse, Vicente et al. 2005).  The 

pathogenesis of TB infection in badgers is known to be complex, in that not all 

badgers exposed to infection become diseased, with a proportion mounting a 

successful immune response.  In some cases, lesions develop but these lesions 

remain dormant, such that the animal shows no clinical signs and is not 

infectious (Roper 2010), this may be considered a ‘containment’ or ‘latent’ 

phase (Gallagher and Clifton-Hadley 2000).  It has been suggested that many 

badgers remain in this latent phase throughout their lives (Gallagher and 

Clifton-Hadley 2000).  However, in a proportion of exposed badgers, the 

immune response is insufficient to contain, or ‘wall off’ the bacteria within 

lesions.  The mycobacteria can then escape, spread to new body sites and the 

individual can become infectious, characterised by potentially large amounts of 

bacterial shedding through a range of routes (Gallagher and Clifton-Hadley 

2000).  The amount of bacteria shed by an infectious badger is related to how 

progressed its pathology is (Nolan 1991), hence individuals with evidence of 

more progressed disease are likely to be more important in the onward 

transmission of infection to susceptible individuals.  Interestingly, one of the 
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potential stressors which has been suggested to result in badgers going from 

latent TB infection to active infection is senile deterioration (Gallagher and 

Clifton-Hadley 2000).  The age-mediated inbreeding effect observed in this 

study could suggest that immune responses in inbred badgers deteriorate faster 

with age and hence they are more likely to convert from a latent to an active 

state of infection.  From a management perspective, these individuals may be 

disproportionately important in transmitting infection to susceptible individuals 

within the badger population. 

In the present study, the measure of inbreeding in badgers did not predict the 

magnitude of their initial gamma interferon responses to M. bovis.  The gamma 

interferon response is considered to be essential for protection against 

tuberculosis infection (Cooper, Dalton et al. 1993) and is the first line immune 

response (Tomlinson 2013).  The magnitude of the incident gamma interferon 

response in badgers has been identified as a potential predictor of the likelihood 

of disease progression, with consistently elevated responses observed in 

animals with evidence of advanced disease (Tomlinson, Chambers et al. 2015).  

Other factors may influence the magnitude of the initial gamma interferon 

response, for example the size of the infective dose (Lesellier, Corner et al. 

2009) or the route of infection (Tomlinson, Chambers et al. 2015), in which case 

we would not expect any relationship with inbreeding.   

The results of the current study are consistent with a cost of inbreeding for 

immune responses to M. bovis infection in badgers.  Furthermore, they provide 

evidence for such inbreeding effects to be stronger in older animals.  Natural 

selection is predicted to act more strongly on fitness traits which affect early 

survival or reproductive output than those affecting later life (Medawar 1952).  

As many individuals die before they reach old age through natural competition 

or mortality, there is little selection pressure for traits maintaining long-term 

viability.  Mutations which detrimentally affect fitness in early life and hence 

affect an individual’s subsequent reproductive success will be strongly selected 

against, whereas those affecting fitness in later life when an individual has 

already successfully reproduced may not be filtered out by natural selection 

(Medawar 1952, Hamilton 1966).  This leads to the evolution of a life history 

where mortality increases and reproductive performance declines with age 

(Charlesworth and Hughes 1996).  One evolutionary model of aging, or 
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‘senescence’, is ‘mutation accumulation’ where random, detrimental mutations, 

whose fitness effects are only seen late in life, fail to be purged from a 

population by natural selection and hence accumulate (Medawar 1952).  Under 

the mutation accumulation model of aging, inbreeding related declines are 

predicted to increase with age, as I report in the current study.  If sub-lethal 

effects of inbreeding occurred in early life, selection should act on them to purge 

them from the population.  However, if the sub-lethal effects are only seen later 

in life, they may escape the selection filter.  Within human medicine, inbreeding 

effects on the onset risk of late-acting diseases have been documented (Rudan, 

Rudan et al. 2003).  However, age-specific inbreeding effects have rarely been 

demonstrated in wild populations (Reid, Arcese et al. 2003).  One example is 

from a study of song sparrows (Melospiza melodia)in which annual reproductive 

success was related to individual inbreeding, interacting with individual age 

(Keller, Reid et al. 2008).  As far as the authors are aware, this study represents 

the only other example drawn from a wild population. 

I also noted that individuals with the highest inbreeding values in the study 

population were absent in the older age classes, which is consistent with their 

loss from the population.  This is in line with the results of a number of other 

studies in which survival probabilities were lower for inbred individuals (Gjerde, 

Gunnes et al. 1983, Keller, Grant et al. 2002, Townsend, Clark et al. 2009).  

The potential impact of inbreeding on survival, and interactions with disease 

status within this system are an area worthy of further investigation.  The mean 

IIC value presented here (0.18) is much higher than that reported from a similar 

density badger population (Annavi, Newman et al. 2014), where only 5% of 

individuals were considered to be inbred (based on a cut off IIC < 0.125 

considered to be ‘outbred’’).  However, it is important to note that the IIC 

calculation in this previous study was made from pedigree data rather than 

directly from microsatellite data as has been done in the present study.  In some 

circumstances, inbreeding estimates from pedigrees may only be weakly 

correlated with marker-based estimates (Robinson, Simmons et al. 2013).  

Where a pedigree is available, an individual’s IIC is the same thing as the 

relatedness between their parents; this relies on the availability of a deep, 

detailed pedigree.  The IIC elicited directly from microsatellite data is defined as 
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the probability that, at a given locus, two identical alleles have been inherited 

from a common ancestor(Jombart 2008). 

As previously suggested in badgers (Beirne, Waring et al. 2016), the results of 

this study indicate that immune responses of male badgers deteriorate with age 

to a greater extent than those of female badgers (Graham, Smith et al. 2013); 

i.e. they experience stronger ‘immunosenescence’.  Male badgers are known to 

experience more rapid disease progression and higher mortality from M. bovis 

infection relative to females (Graham, Smith et al. 2013, Tomlinson, Chambers 

et al. 2013); in the present study there are no exposed male badgers in the 

oldest age classes.  A previous study of the Woodchester population found no 

evidence for differences in immunosenescence rates between male and female 

badgers, as measured by mean telomere lengths and rates of telomere attrition 

over time (Beirne, Waring et al. 2016).  However, it was noted that within-

individual variation in immunosenescence was greater than that observed at the 

population level, suggesting selective loss of individuals from the population 

who had shorter telomere lengths or whose telomeres degraded faster (Beirne, 

Waring et al. 2016).  This previous study did not take into account host 

genotype; it would be of interest to incorporate individual heterozygosity in order 

to see if inbreeding is linked to faster rates of immunosenescence, which would 

be a possible mechanism for the observed age-related inbreeding effect on 

disease progression in the current study. 

The presence of significant identity disequilibrium in the current study 

population is consistent with the ‘general effect’ hypothesis in which neutral 

marker loci are correlated with genome-wide heterozygosity.  However, testing 

each marker separately also found some evidence of single-locus associative 

effects on bTB progression (see Table 4.3), consistent with the ‘local effect’ 

hypothesis and the best supported models for both responses contained only 

the loci identified as important by the individual models.  These findings are 

consistent with the observation of genetic resistance to bovine TB in wild boar 

where only single-locus effects predicted TB progression, with several of the 

single loci being identified as mapping to regions of the genome with known 

immune function (Acevedo-Whitehouse, Vicente et al. 2005).  However, rather 

than an observed fitness cost being due either to genome wide inbreeding 

depression (where large numbers of recessive genes have a small effect) or 
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due to local effects (where microsatellite markers are linked by chance to a 

functional gene which has a greater effect on immune response), it has been 

suggested that these explanations represent two ends of a spectrum, with true 

populations appearing somewhere along the scale (Balloux, Amos et al. 2004).   

Building on these results, the availability of the badger pedigree for this 

population in the near future will allow us to investigate fitness costs in terms of 

immune responses in the offspring of parents with low heterozygosity.  Fitness 

costs due to parental genetic effects may be important, whereby it is the 

offspring of inbred parents who bear the fitness cost, rather than the inbred 

individuals themselves (Annavi, Newman et al. 2014).  Although it is not 

possible to consider them in the present analyses as parentage data is not 

currently available, these results suggest that it would be an avenue worth 

pursuing, and the combination of parentage data alongside microsatellite based 

estimates of inbreeding (Townsend, Clark et al. 2009) would add value to the 

current study.  The current study did not investigate the relationship between 

susceptibility to becoming infected with M. bovis and inbreeding, as has been 

demonstrated previously in wild boar (Acevedo-Whitehouse, Vicente et al. 

2005).  As the likelihood of a badger becoming infected with M. bovis is affected 

by a range of factors, including early life environment (Benton, Delahay et al. 

2016), social group composition (Tomlinson, Chambers et al. 2013, Benton, 

Delahay et al. 2016), position in the social network (Weber, Carter et al. 2013), 

individual movement behaviour (Woodroffe, Donnelly et al. 2009), age and sex 

(Graham, Smith et al. 2013), these would need to be carefully taken into 

account in order to investigate whether inbreeding coefficients provided an 

additional explanation of susceptibility to infection. 

Variation in immunogenetic profiles amongst badgers may play an important 

role in M. bovis transmission and persistence within the social group and may 

potentially scale up to population level effects.  The results of this study also 

highlight the possibility that single-locus effects may be important determinants 

of M. bovis infection outcomes in badgers.  If single loci are powerful predictors 

of TB progression, as has been found in wild boar (Amos and 

Acevedo‐Whitehouse 2009), then this could have important implications for 

disease management .  For example, genotyping badger populations in areas 

where TB is not yet established may allow better predictions of rates of spread 
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within the badger population.    This has implications for our understanding of 

TB transmission within badger populations.  Additionally, management of 

badger populations through culling may alter the host genetic population 

structure in as yet unknown ways, potentially increasing levels of inbreeding 

through reducing the population density or decreasing inbreeding as surviving 

individuals range more widely (Riordan, Delahay et al. 2011). Further these 

results highlight the importance of considering the role that host genotype plays 

on disease outcomes, an area which until recently has been largely overlooked 

(Allen, Minozzi et al. 2010). Understanding how host genetics influence 

pathogen outcomes can help inform epidemiological models of disease spread 

(Hendricks, Epstein et al. 2017) and, as recently demonstrated in the highly 

endangered Tasmanian devil, can help to predict population level responses to 

pathogens and inform conservation interventions such as translocations and 

reintroductions (Hendricks, Epstein et al. 2017).  

The above findings are consistent with age-specific inbreeding depression in a 

wild mammal; a phenomenon rarely documented in wild populations.  They also 

lend support to the mutation accumulation model of senescence.  A useful next 

step to build on the findings of the current study would be to start to explore 

potential mechanistic links between inbreeding and M. bovis progression in 

badgers; for example, do inbred badgers experience more rapid 

immunosenescence than outbred badgers, are inbred badgers in poorer body 

condition making them more susceptible to disease progression? The links 

between inbreeding, individual condition and disease progression have rarely 

been studied in wild populations (Townsend, Clark et al. 2010), making this an 

area of considerable interest.  
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                                          CHAPTER 5: Data Chapter 

 

Changing spatial patterns of bovine TB infections in a high-density 

badger population 

5.1 Abstract 

The structure of host populations will influence disease distribution and 

persistence but increases in prevalence inevitably cause reductions in disease 

clustering, making it difficult to identify demographic drivers.  The European 

badger is a wildlife reservoir of bovine tuberculosis (caused by infection with 

Mycobacterium bovis) in the UK.  Current understanding suggests that social 

structuring in moderate to high density badger populations promotes the spatial 

clustering of infection.  Culling, as a disease management strategy, can disrupt 

this social structure and hence risk the spread of disease. In this chapter I test 

whether the spatial arrangement of M. bovis infection has significantly changed 

over a 20 year period in an unmanaged, high density population of badgers in 

the south west of England.  During the first decade of the long-term study, M. 

bovis infection remained spatially clustered.  However, during the second 

decade, the spatial distribution of infection became more widespread, 

characterised by a reduction in disease clustering among individual hosts and at 

the social group level.  This occurred against a background of increasing TB 

prevalence in the population.  These findings reveal changes in epidemiological 

trends occurring over relatively long time periods and challenge the view that M. 

bovis distribution necessarily remains stable, and tightly clustered, in badger 

populations which are not subject to management interventions such as culling.  

I suggest that natural perturbation events occur and might be responsible for 

these changes in infection distribution. Spatial and temporal patterns of disease 

prevalence and persistence observed in the field should be used to inform 

ecological and epidemiological models, helping to predict the outcome of 

management interventions.  
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5.2 Introduction 

Empirical data on the spatial and temporal distribution  and persistence of 

pathogens provide invaluable information for transmission models that attempt 

to predict the progression and extent of disease epidemics (Gaudart, Rebaudet 

et al. 2013) and  inform management interventions (Miller and Conner 2005), for 

example determining the required intensity of cull (Fulford, Roberts et al. 2002), 

or the duration of spatially targeted vaccination programmes (Keeling and White 

2010).  Management interventions, particularly the culling of reservoir hosts, 

can disrupt disease dynamics (Woodroffe, Donnelly et al. 2005, Jenkins, 

Woodroffe et al. 2007, Delahay, Smith et al. 2008) with potentially counter-

productive effects on disease prevalence and distribution.  Any attempt to 

predict the impacts of management interventions, requires a baseline 

understanding of how ecological and behavioural processes may drive disease 

dynamics. 

Bovine tuberculosis in UK cattle is continuing to increase in incidence and 

geographical distribution (Godfray, Donnelly et al. 2013).  Infection in European 

badgers (Meles meles) has been implicated in the persistence of the disease in 

cattle since the 1970’s (Gallagher, Muirhead et al. 1976).  Experimental 

evidence for reservoir status of the badger comes from the Randomised Badger 

Culling Trial (RBCT: Krebs et al.  1997).  It has long been suggested that 

badger social structure is itself a barrier to disease transmission between social 

groups (Overend 1980), the disruption of which could result in increased local 

disease transmission.  Field studies have shown that in the wake of culling the 

stable social structure of badger populations is disrupted, resulting in a more 

mobile residual population (Cheeseman, Jones et al. 1981, Woodroffe, Donnelly 

et al. 2006), with potentially higher potential for contact with individuals from 

whom they would previously have been socially  isolated .  Hence clustering of 

M. bovis infection in badgers was observed to decrease in culled populations 

(Jenkins, Woodroffe et al. 2007).  Recent analyses suggest that even small 

scale social perturbations result in measurable behavioural changes among 

survivors, which may be associated with increased disease transmission 

(Bielby, Donnelly et al. 2014). 
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Whilst much consideration has been given to the impact of population reduction 

on M. bovis distribution in badgers, fewer studies have considered the dynamics 

of M. bovis infection in unmanaged populations.  The generally supported 

hypothesis, based both on data from long term epidemiological studies 

(Delahay, Langton et al. 2000)and shorter observations of badger social groups 

subject to population management (Woodroffe, Donnelly et al. 2005, Jenkins, 

Woodroffe et al. 2007) is that TB remains stably clustered in unmanaged, 

naturally infected badger populations.  This finding is primarily based on a long-

term study of an undisturbed population of European badgers (Meles meles) at 

Woodchester Park in south-west England.  Badgers have been trapped, 

sampled and routinely tested for M. bovis infection in the study area since the 

mid-1980s, resulting in three decades of longitudinal information on host 

demography and disease epidemiology.  Diagnostic test results from trapping 

data up to 1996 indicated that M. bovis infection was aggregated in social 

groups in the west of the Woodchester Park study area.  Temporal trends of 

infection were not synchronised between neighbouring social groups, consistent 

with low rates of  transmission  and infected hosts distributed in ‘stable 

persistent foci’ (Delahay, Langton et al. 2000).  With the benefit of a further 

decade of data collection at this site, I am now able to investigate whether this 

pattern has persisted in the long term.  A localised phenomenon of immigration 

and depopulation occurred in four of the social groups in the northern part of the 

study area in the late 1990s.  In these groups cub recruitment fell, immigrant 

adults were trapped at a higher rate than elsewhere in the study area and were 

more likely to go on to exhibit progressive disease (Delahay et al., unpublished).  

Since these observations were made, the spatial and temporal distribution of 

disease has not been formally examined at the population level. 

Here I describe the spatial and temporal distribution of M. bovis infection in the 

Woodchester Park badger population over a 20 year period.  In particular, I 

consider whether the spatial dynamics of M. bovis infection in this population 

have changed over time as a result of natural ecological processes. 
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5.3 Methods 

Badger Sampling, Disease Status & Social Group Allocation 

All data used in these analyses were collected from the long-term trapping and 

sampling study at Woodchester Park in Gloucestershire.  Badgers from this 

study population have been routinely trapped, up to four times a year, since 

1976 (for full details see Appendix).  Data from 1985 – 2005 were included in 

the main analyses.  Data from live trapping and post mortem records were 

included in these analyses.  Between 1985 and 2005, the Brock ELISA & 

culture of clinical samples (Rogers, Cheeseman et al. 1997)  were the 

diagnostic tests used to assign TB status to individual badgers.  From 2006 

onwards, the Brock ELISA was abandoned due to doubts over its performance 

and poor correlation with other test results and new diagnostic tests were 

introduced (Delahay, Walker et al. 2013).  For this reason, data from 2006 

onwards were not included in these analyses.  As many badgers were trapped 

on multiple occasions during a calendar year, each was assigned to one social 

group and one infection status category per year.  Rules used to assign 

badgers to social groups where they were caught in multiple groups within a 

year were as described previously (Vicente, Delahay et al. 2007).  If it was not 

possible to assign a badger to a social group based on these criteria, they were 

excluded from the analysis, however this was only the case for less than 1% of 

capture events.  As the spatial extent of the study area changed between 1985 

and 2005, only social groups falling into a defined ‘core’ area, which was 

consistently trapped throughout the study, were included in analyses.  The 

infection status of each individual animal in a given year was assigned 

according to a one-way progression scheme based on the results of the two 

diagnostic methods (Gallagher, Monies et al. 1998, Graham, Smith et al. 2013).  

Where badgers were caught multiple times per year, they were assigned to their 

most progressed status in that year.  In this way, each individual trapped in a 

given year was given an infection status ‘score’ (Table 5.1).  An average TB 

index was calculated for each social group by year (replicating the approach 

used in (Delahay, Langton et al. 2000)).  
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Table 5.1 Categorisation of infection status of individual badgers in the Woodchester Park study 

area between 1985 - 2005, based on a one way disease progression scheme (Gallagher, 

Monies et al. 1998, Graham, Smith et al. 2013). 

 

Visualisation of Infection Distribution 

The spatial configuration of M. bovis infection during the period of interest was 

visualised using kernel heatmaps, each representing a 7 year period (1985-

1991, 1992-1998 and 1999-2005).  This allowed visual examination of spatial 

patterns in M. bovis infection in GIS outputs (ESRI 2013, ArcGIS Desktop, 

Release 10.2, Redlands, CA: Environmental Systems Research Institute).  The 

‘kernel density’ tool was used to produce kernel maps of individual infection 

scores.  For any given feature this tool calculates the density of other similar 

features in the surrounding neighbourhood as specified by the search radius 

size.  Here, features were individual badgers, weighted by increasing values of 

Infection status   Brock ELISA test 

result  

Culture of clinical 

samples  

Assigned individual 

‘index’ score  

Negative  Negative  Negative  0 

Seropositive  Positive  Negative  1 

Single Site Excretor Positive or Negative  Positive culture from 

one body site only 

(regardless of number 

of positive cultures) 

2 

Multi-Site Excretor Positive or Negative Positive culture 

obtained from 1+ 

body site over 

trapping history 

 

3 
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TB score.  A raster surface is produced, where the density at each output raster 

cell is calculated by adding the values of all kernel surfaces where they overlay 

the raster cell centre. 

Spatio-Temporal Structure 

The methodology employed in the earlier spatio-temporal analysis (Delahay, 

Langton et al. 2000) was reproduced and extended it to more recent time 

periods, using three dimensional spatio-temporal variograms constructed using 

the ‘gstat’  package (Pebesma 2004) in software R version 3.0.2 (R Core Team, 

2013).  As in the original study (Delahay, Langton et al. 2000), these variograms 

plotted the residuals from a model where the response variable was the log 

transformed TB index of each badger social group in each year and the fitted 

factors were year and social group.  The variograms plot half the averaged 

squared differences between the paired residuals against spatial and temporal 

distance.  Changes in spatial autocorrelation over the time period of interest 

were examined using linear mixed effects models, constructed for each year 

which tested for the presence of different spatial autocorrelation structures.  

These were compared with null models in which no spatial autocorrelation 

function was present using AIC comparison, with the lowest AIC values 

indicating the best supported model (Burnham and Anderson 2004). 

Clustering of Infection 

Clustering analyses followed previously established methods (Jenkins, 

Woodroffe et al. 2007) which are expected to be robust to changes in badger 

density.  Badger location was tied to the geographic co-ordinates of the main 

sett (the principal focus of breeding and social behaviour (Roper 2010)) in the 

social group that the animal was assigned to in each year.  Euclidean (smallest 

direct) distances between main sett locations were calculated using the 

‘SpatialTools’ package in R software v 3.0.2 (R Core Development Team 

2013).The following information was calculated for trapping data for each year 

from 1985 – 2005: 

 Infected – Infected Nearest Neighbour Distance: The distance to the 

nearest neighbouring ‘infected’ badger (i.e.  those that had tested 
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positive to any diagnostic test at some point in their previous trapping 

history) from each ‘infected’ badger. 

 Uninfected – Infected Nearest Neighbour Distance: The distance to 

the nearest neighbouring ‘infected’ badger (i.e.  those that had tested 

positive to any diagnostic test at some point in their previous trapping 

history) from each ‘uninfected’ badger (i.e. those that had not up to that 

point tested positive to a diagnostic test). 

For each year of the study, the log ratio of the difference between the distance 

from infected badgers to the nearest infected badger, and the distance from 

uninfected badgers to the nearest infected badger was calculated.  Spatial 

clustering is indicated when the relative distance to the nearest infected badger 

is shorter for infected than for uninfected badgers.  One metre was added to all 

distances to avoid infinite ratios where distances were 0 (indicating that the 

nearest infected badger was in the same social group and therefore assigned to 

the same spatial location).  Changes in clustering patterns are linked by 

definition to changes in prevalence of infection: very high prevalence will 

necessarily yield an un-clustered distribution.  In order to determine whether the 

observed changes in clustering scores were independent of changes in 

prevalence, a permutation testing procedure was used.  In this approach, for 

each year, infection status (i.e. ‘positive’ or ‘negative’) was randomly shuffled 

among spatial locations of trapped badgers and the clustering coefficient 

calculated as described above.  This procedure was carried out 10,000 times in 

order to give a null distribution of the clustering coefficient.  The observed 

clustering coefficient from the true infection status was then compared to this 

null distribution and the percentile of the null distribution at which the true 

clustering value fell was recorded.  The true value was deemed to be 

significantly different from the null distribution where the observation lay in the 

upper or lower 2.5% of the permutated null distribution.  To visualise this, the Z 

score (the number of standard deviations of the true value from the mean of the 

null distribution) was calculated and plotted for each year. 

To investigate whether the variation in clustering observed was related to 

spatial location, social groups were assigned to geographic zones within the 

study area (Fig 5.6).  The clustering score (as defined above) was calculated for 
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each zone independently.  A general linear model was used to test the influence 

of spatial zone and year on clustering score, with an interaction term included.
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5.4 Results 

Between 1985 and 2005, 11,349 post mortem and/or trapping records were 

collected from 2408 individual badgers.  Population prevalence increased 

significantly with study year (F(19,20) = 34.7, P<0.05) but was not significantly 

associated with contemporary estimates of population size (F(18,19) =3.4, P=0.08) 

(see Fig 5.1a) and there was no evidence of an interaction between year and 

estimated population size (F(17,18)=0.003, P=0.9). The total number of badgers 

captured in each infection category by year is shown in Figure 5.1b.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.1 (a) The estimated trends in TB prevalence (dotted line; (Walker 2012)) and population 

size (solid line; (McDonald 2014)) for the Woodchester Park badger population.  (b) The total 

number of badgers captured in the study area each year and the frequency in each TB infection 

class. 
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Visualisation of Infection Distribution 

The kernel maps in Figures 5.2 (a-c) show the distribution of test positive 

animals in the study period over three different time periods.  As these maps 

each cumulatively represent a time-span of 7 years, individual test positive 

animals will in some cases contribute multiple times to the observed output. 

The spatial distribution of M. bovis infection in this study population between 

1985 and 1998, as described previously (Delahay, Langton et al. 2000) is 

illustrated in Figs 5.2a and b.  Test positive badgers were spatially clustered in 

the western region of the study area with very few in the eastern section.  

During Period 2 (1992-1998) infected cases start to appear in the central part of 

the study area, around Honeywell, Cole Park and Old Oak setts although the 

hotspot of infection centred on Jacks Mirey sett persists.  Between 1999 and 

2005, infection spread throughout the study area with the previously infection 

free eastern area, ‘warming up’ considerably.  The previous hotspots of 

infection in the western and southern regions also persisted. 
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Fig 5.2 (a – c) Kernel density maps of the spatial distribution of TB test positive badgers at 

Woodchester Park between a) 1985-1991, b) 1992-1998 and c) 1999-2005.  Warmer colours 

indicate more test positive individuals present or the presence of individuals at a more 

progressed disease state. 

Spatio-Temporal Structure 

Variograms displaying spatio-temporal autocorrelations in TB index are similar 

in the two study periods (Figure 5.3), with dissimilarity increasing rapidly with 

distance in space and time.  However, the second period shows less 

dissimilarity at medium and long distances and at increasing time-lags; this is 

consistent with M. bovis infection becoming less clustered, yielding a pattern of 

greater similarity in TB index scores amongst social groups across the whole 

population. 

c 
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Fig 5.3 Spatio-temporal variograms of dissimilarity in TB index between social groups separated 

in space and time
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Prior to 1998, significant spatial autocorrelation was not detected, however 

between 1998 and 2000 spatial autocorrelation was found in all three years at 

significant or close to significant levels (1998, likelihood ratio statistic = 3.08, P 

= 0.08; 1999, likelihood ratio statistic = 6.41, P = 0.01; 2000, likelihood ratio 

statistic = 3.36, P =0.07).  No significant spatial autocorrelation was identified 

between 2001 and 2005 (see Table 5.2). However, when correction for multiple 

testing was applied based on Benjamini False Discovery Rate (Benjamini and 

Hochberg 1995), no significant spatial autocorrelation was noted in any year. 

Table 5.2 Results of spatial autocorrelation testing by year, using linear mixed effects models 

for TB index data (1985 – 2005).  Where significant, or close to significant spatial 

autocorrelation structures were identified, these are highlighted in bold. 

Year 
Spatial Autocorrelation 

Kernel 

Non-corrected P 

value: spatial models 

vs null model 

Corrected P value 

(spatial models vs 

null model) 

1985 All NS 1 1 

1986 All NS 1 1 

1987 All NS 0.52 – 0.76 1 

1988 All NS 0.55 - 1 1 

1989 All NS 0.13 – 0.20 0.72 – 0.87 

1990 Gaussian 0.07 0.73 – 0.74 

1991 All NS 0.23 - 0.40 1 

1992 All NS 0.94 - 1 1 

1993 All NS 1 1 

1994 All NS 1 1 

1995 All NS 0.68 - 1 1 

1996 All NS 1 1 

1997 All NS 0.98 - 1 1 

1998 Gaussian 0.08 0.73 

1999 Gaussian 0.01 0.73 

2000 Exponential 0.07 0.73 

2001 All NS 1 1 

2002 All NS 1 1 

2003 All NS 1 1 

2004 All NS 0.40 - 1 1 

2005 All NS 0.21 – 0.43 1 
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Clustering of Infection 

A general trend of reducing clustering of infected badgers was observed over 

the study period, as Z scores moved closer to the mean of the null distribution 

(Fig 5.4).  The observed reduction in clustering is therefore greater than that 

expected by chance.   

 

 

 

 

 

 

 

Fig 5.4 The trend in dispersion of TB test positive badgers in the Woodchester Park population 

as revealed by Z-scores.  The plot identifies a gradual increase in dispersion (reduction in 

clustering) of infection through time, independent of expectations due to changes in prevalence.  

The Z-score on the y-axis describes how many standard deviations the observed clustering 

index lies from the mean of a null distribution created by shuffling spatial positions of infected 

and uninfected badgers.  A Z-score of zero indicates random dispersion of infected cases. 

When variation in the extent to which M. bovis infections are spatially clustered 

within the Woodchester population was investigated, the top model identified 

through model averaging included an interaction between year and location, 

and was more than 2 AIC units lower than the null model (Table 5.3).  However, 

Table 5.4 indicates that in most cases parameter estimates span 0, indicating 

that effects are not consistent and directional.  The exception to this is the 

interaction between location and year in the east of the study area (see Fig 5.5), 

where clustering is weakening more rapidly than in the reference zone (South).  

This could be due to infected individuals moving into social groups in the east of 

the study area from outside at a higher rate than in the southern social groups, 

resulting in a less clustered disease distribution.  Alternatively, this trend could 

be indicative of a higher incidence of M. bovis infection over time in the eastern 
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social groups, potentially indicating that the transmission of M. bovis infection 

between social groups is happening more frequently in the eastern social 

groups. 

 

Table 5.3 Details of top models with a ΔAICc<6 predicting the clustering of M. bovis infections 

in the Woodchester population in a given year.  Year, location and their interaction were 

included as fixed effects.  Each row in the table indicates a model, with a + indicating the 

inclusion of a given variable.  Degrees of freedom, ΔAICc, model weight and adjusted R2 values 

are also included for each of the top models, with the null model included for comparison.  

 

 

 

 

 

 

 

 

Model Location Year Location: Year df ΔAICC ωi Adjusted R2 

1 + + + 11 0.00 0.37 0.21 

2  +  3 0.20 0.33 

3 

0.12 

3 + +  7 0.38 0.30 0.16 

Null 

model 

model 

   2 11.97 0.001 N/A 
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Table 5.4 Average model coefficients and relative importance of variables included in the top 

model set (AICc of ≤6) explaining variation in the extent to which M. bovis infections are 

spatially clustered within the Woodchester population.  Parameter names with brackets show 

the effect of that parameter category in relation to the reference category (Location = South).  

The intercept value indicates the coefficient estimate where location is ‘South’ and the year is 

‘1985’.  Parameters highlighted in bold are those with confidence intervals that do not span 

zero, indicating a consistent directional effect on disease clustering.  

 

 

 
Coefficient 

Estimate 
Std.  Error 2.5% 97.5% 

Relative 

Importance 

Intercept -112.1 68.5 -247.5 23.4  

Location (Core North) 23.0 85.4 -146.6 192.6 0.67 

Location (Core South) -37.6 89.3 -214.8 139.5 0.67 

Location (East) -151.8 161.5 -469.4 165.9 0.67 

Location (West) -66.6 100.5 -265.2 132.1 0.67 

Year 0.06 0.03 -0.01 0.12 1 

Core North : Year -0.02 0.06 -0.13 0.09 0.37 

Core South : Year 0.03 0.06 -0.08 0.15 0.37 

East : Year 0.14 0.06 0.03 0.25 0.37 

West : Year 0.06 0.05 -0.05 0.17 0.37 
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Fig 5.5 Fluctuations in disease clustering scores in different zones of the study area.  Missing points indicate that no infected individuals were trapped in that zone in a given 

year, hence the clustering coefficient could not be calculated. 
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5.5 Discussion 

Demographic and behavioural changes in badger populations which have been 

subjected to population management have been widely demonstrated (Carter, 

Delahay et al. 2007) (Riordan, Delahay et al. 2011), with associated 

implications for the distribution of M. bovis infection (Jenkins, Woodroffe et al. 

2007).  However, using data from a long term study of an unmanaged 

population of badgers, I found that the distribution of M. bovis infection can 

change dramatically even in the absence of management.  This demonstrates 

that the accepted understanding of M. bovis infection distribution in unmanaged 

badger populations as stable and persistent (Delahay, Langton et al. 2000), with 

limited spread between social groups, may not represent the full picture.  

Analysis of two decades of data on M. bovis distribution in an unmanaged 

badger population suggests a more dynamic picture, where the spatial 

distribution of infection and the degree to which infection is clustered, can alter 

substantially, as a result of natural processes.   

A reduction in, or lack of spatial clustering has been noted in other studies of M. 

bovis distribution in badger populations (Olea-Popelka, Griffin et al. 2003, 

Jenkins, Woodroffe et al. 2007); however this has always previously been in 

culled populations, in which the social structure is seriously disrupted.  Social 

disruption caused by culling increases the home range of surviving individuals, 

which is hypothesized to result in increased contact rates between individuals 

and elevated opportunities for disease transmission (Riordan, Delahay et al. 

2011).  Additionally, it has been suggested that the stress caused at an 

individual level by this social disruption may result in immunosuppression and 

enhanced disease expression (Macdonald, Riordan et al. 2006, Riordan, 

Delahay et al. 2011).  Badgers which survive culling operations may be more 

likely to move between social groups (Tuyttens, Macdonald et al. 2000, 

Riordan, Delahay et al. 2011).  Territories of social groups are more likely to 

overlap in populations which have been culled (Tuyttens, Delahay et al. 2000).  

In the undisturbed population at Woodchester Park, which has not been subject 

to culling, it is interesting to note a breakdown in disease clustering.  However, 

the rate of decline in clustering observed in this undisturbed population was 

lower than that observed in populations which had been subjected to culling 
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operations.  Clustering (as measured by the percentage difference between the 

nearest neighbor distance between infected badgers and the nearest neighbor 

distance from uninfected badgers to the nearest infected badger) was predicted 

to decline by 15% with each annual cull (Jenkins, Woodroffe et al. 2007), 

compared to a 3% reduction per annum in Woodchester Park.  However, my 

finding of a reduction in disease clustering in an unmanaged population 

provides important baseline information on natural disease dynamics, from 

which to assess the impact of population management. 

It is feasible that natural ecological events could also generate behavioral and 

demographic changes similar to those observed in post- culled badger 

populations: increased movement between groups, increased ranging behavior, 

increased contact rates between members of different social groups, and 

increased territory overlap.  Recently, it has been suggested that perturbation 

effects may occur when even a small number of individuals, or even a single 

individual is removed from a social group (Bielby, Donnelly et al. 2014).  The 

natural loss of individuals from social groups, for example through natural, 

stochastic mortality, might therefore be enough to disrupt the stability of TB 

levels within a social group.  In other wildlife disease systems, such as Chronic 

Wasting Disease (CWD) in deer and M. bovis infection in white-tailed deer, age 

and sex specific prevalence trends have been noted (O’Brien, Schmitt et al. 

2002, Miller and Conner 2005, Grear, Samuel et al. 2006).  These findings 

illustrate how natural changes in the demographic structure of a population can 

lead to changes in observed prevalence patterns.  Demographic changes in the 

population could result in increased movement, which has been linked to 

increased transmission, both in this system (Rogers, Delahay et al. 1998, 

Vicente, Delahay et al. 2007) and other wildlife disease scenarios (Cross, Lloyd-

Smith et al. 2004, Clements, Hygnstrom et al. 2011).  Badger social groups 

occasionally merge together, which may be in response to availability of mates 

or resources within territories (Robertson, Palphramand et al. 2015).  Potentially 

infectious contacts between members of different social groups can occur 

during extra-group mating; this is thought to be favoured where within-group 

genetic relatedness is higher and may represent an inbreeding avoidance 

strategy (Annavi, Newman et al. 2014).  Food availability may affect the size of 

an individual’s home range, seasonal variation in individual home range has 
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been observed and food availability is considered to be the driver of this 

(Palphramand, Newton-Cross et al. 2007).  In dry years when food is scarcer, 

badgers may range more widely in search of food which may increase their 

contact rate with members of other social groups, affording opportunities for 

disease transmission.  This effect has been noted in other systems, for example 

.M. bovis infection in African buffalo where drought conditions favoured 

population mixing, potentially enhancing disease transmission (Cross, Lloyd-

Smith et al. 2004). 

In the second time period considered (1997 – 2005), badger social groups were 

more homogenous in terms of their infection status. Again, this is consistent 

with a breakdown in clustering and may be explained by increased mixing 

between badger social groups during this period.  This period is coincident with 

the identification of a localised phenomenon of immigration and depopulation in 

four contiguous social groups in the ‘Core North’ zone of the study area in the 

late 1990s (Delahay et al., unpublished).  In these groups cub recruitment fell 

and immigrant adults were trapped at a higher rate than elsewhere in the study 

area and were more likely to go on to exhibit progressive disease.  The 

proportion of immigrants that were associated with these unstable groups was 

particularly high after 1999, and coincided with a decline in cub numbers and an 

increase in the prevalence of M. bovis excretors (Delahay et al., unpublished).  

It may be that the social disruption caused by this unusual but natural social 

perturbation resulted in a change in spatio-temporal dynamics at this time, 

either through enhancing disease transmission within these disrupted groups or 

potentially through seeding this part of the population (which had previously not 

had high levels of TB infection) with disease.   

More complete elucidation of the demographic and epidemiological processes 

that have yielded the observed spread of infection through this population, will 

require molecular epidemiological approaches (Benton, Delahay et al. 2014).  

For example, if M. bovis infection has spread spatially from the west to the east 

of the study area over the period of interest (Fig 2), ancestral state 

reconstruction (Cunningham, Omland et al. 1998) of genotyped M. bovis 

isolates may indicate that ‘older’ strains of the bacteria are isolated from the 

west of the study area and eastern strains are derived from these.  An 
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alternative to this process of spread is that infection may have been seeded into 

the population on multiple occasions from outside the core study area.  The 

introduction of new infection from outside the study population, or the 

immigration of infected individuals into the population, may explain why 

clustering broke down more quickly in the eastern edge of the study area (Fig 

5).  Whole genome sequence data are available for a group of M. bovis isolates 

collected from badgers in this population, which will allow us further insight into 

transmission dynamics (see Chapter 6). 

In conclusion, I have demonstrated that even in an undisturbed population, the 

spatial dispersion of this chronic disease is dynamic, and that a reduction in 

disease clustering, as has been previously observed in culled populations 

(Woodroffe, Donnelly et al. 2005, Jenkins, Woodroffe et al. 2007), can occur as 

a result of natural ecological processes.  It is important to note that the 

magnitude of reduction in disease clustering observed here, under natural 

conditions, is lower than that observed previously in response to culling 

operations (Jenkins, Woodroffe et al. 2007).  However, I have shown that even 

in undisturbed badger populations, patterns of TB prevalence, distribution and 

dispersion are dynamic, and it is recommended that these dynamics be 

considered during the design of bTB management programmes.  Beyond this 

context, these findings add to the weight of evidence generated from a variety 

of wildlife disease systems,  highlighting the importance of taking into account 

the impact of natural demographic changes on prevalence patterns, in order to 

refine management strategies and allow more accurate forecasting of disease 

trends (Miller and Conner 2005). 
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CHAPTER 6: Data Chapter 

 

CHAPTER 6: Genetic evidence of demographic changes within an 

unmanaged badger population; implications for TB transmission 

6.1 Abstract 

Host population structure and dispersal patterns are known to influence disease 

transmission, hence fluctuations in these patterns may have epidemiological 

consequences.  Here I characterise temporal fluctuations in the genetic 

population structure of an intensively studied, unmanaged, high density 

population of European badgers (Meles meles); the key wildlife reservoir of 

bovine tuberculosis, Mycobacterium bovis, in the UK and Republic of Ireland.  

Using a combination of observational data from two decades of a capture-mark-

recapture programme, alongside genetic metrics obtained from microsatellite 

analysis, I demonstrate the presence of fine-scale genetic population structure 

and highlight heterogeneity in demographic trends, with important implications 

for M. bovis incidence.  Examination of the genetic structure suggests that the 

population has undergone a period of demographic flux, characterised by a loss 

of genetic isolation by distance between badger social groups, which I suggest 

has resulted in a change in the spatial distribution of M. bovis infection within 

the population. 
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6.2 Introduction 

Social structure, host movement and individual behaviour are important 

determinants of disease transmission in wildlife populations (Delahay, Smith et 

al. 2008).  Genetic sampling of individuals is increasingly being employed to 

provide valuable information on these phenomena which may otherwise be 

difficult or impossible to capture (Huck, Frantz et al. 2008, Banks and Peakall 

2012).  Monitoring  population genetics over time can help to identify changes in 

movement patterns and demographic structure, either in response to natural 

events or  management interventions, which may have important implications 

for disease dynamics (Pope, Butlin et al. 2007).  The genetic structure of 

populations is not always consistent with the geographical proximity of 

individuals.  A seemingly continuous population of individuals may actually be 

genetically structured due to unidentified barriers to gene flow (Evanno, 

Regnaut et al. 2005). 

Dispersal of individuals is a key ecological process, impacting on conservation 

genetics and population demography (Robertson, Chilvers et al. 2006, Harrison, 

York et al. 2014), and is a key factor in the epidemiology of infectious disease 

(Hess 1996).  Dispersal has been shown to vary between the sexes in a wide 

range of species (Pusey 1987, Goudet, Perrin et al. 2002, Banks and Peakall 

2012, Harrison, York et al. 2014), and amongst individuals of different age 

classes (Harris, Caillaud et al. 2009) and social positions (Bekoff 1977, Ekman, 

Eggers et al. 2002).  Heterogeneity in movement patterns can have important 

consequences for disease transmission, for example a few dispersing 

individuals may be responsible for the majority of pathogen spread across a 

landscape (Smith, Rand et al. 1996).  Understanding the drivers of individual 

dispersal therefore has important consequences for pathogen transmission.  

Demographic or ecological change may lead to spatial and temporal variation in 

dispersal within species (Banks and Peakall 2012), however such processes 

are only likely to be captured using longitudinal datasets.  Due to the logistical 

constraints in collecting field data, dispersal may be inferred entirely from 

genetic analyses (Banks and Peakall 2012, Harrison, York et al. 2014).  Where 

observational data are available, they are often collected over a short-time 

period and may therefore represent transient rather than long-term patterns 

(Harrison, York et al. 2014).  If observational data are only available from a 
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short time period, genetic approaches are considered to better represent these 

long-term patterns in dispersal (Goudet, Perrin et al. 2002, Banks and Peakall 

2012, Harrison, York et al. 2014).  In the current study the availability of detailed 

data from a longitudinal capture-mark-recapture study provides the rare 

opportunity to compare direct, observational data with genetic data from the 

same population (Winters and Waser 2003).   

The European badger (Meles meles) is the key wildlife reservoir of bovine TB in 

the UK and the Republic of Ireland (Delahay, De Leeuw et al. 2002, Abernethy, 

Upton et al. 2013).  In badger populations dispersal is considered to be 

determined by an interaction of individual, social and environmental factors 

(Frantz, San et al. 2010).  Sex-biased dispersal in both directions has been 

documented (female (Woodroffe, Macdonald et al. 1995, Tuyttens, Delahay et 

al. 2000) and male biased (Kruuk and Parish 1987, Cheeseman, Cresswell et 

al. 1988, Rogers, Delahay et al. 1998, Roper, Ostler et al. 2003)).  Population 

density is thought to be important in determining dispersal patterns, with 

delayed dispersal predicted when all suitable surrounding habitat is occupied 

(Frantz, San et al. 2010).  Many individuals do not disperse from their natal 

social group (Roper 2010), resulting in spatial clustering of related individuals 

and hence pronounced genetic structure (Pope, Domingo‐Roura et al. 2006).  

Where dispersal does occur, it is generally to a neighbouring social group, 

although longer distance movements crossing several territories have been 

documented (Roper 2010).The removal of individuals from the population, for 

example through badger culling to attempt to control TB transmission to cattle, 

has been documented to result in detectable changes in the genetic population 

structure, as surviving individuals range more widely and encounter previously 

spatially remote individuals (Pope, Butlin et al. 2007).  This increase in badger 

movement has been linked to increases in M. bovis infection in badgers and 

cattle (Carter, Delahay et al. 2007) and is associated with a decrease in spatial 

clustering of infection in badgers (Donnelly, Woodroffe et al. 2003, Donnelly, 

Woodroffe et al. 2005, Donnelly, Wei et al. 2007, Jenkins, Woodroffe et al. 

2007).   

Chapter 5 of this thesis described a temporal change in the spatial distribution 

of M. bovis infection in the Woodchester Park badger population.  Initially (1982-

1996), M. bovis infection remained spatially clustered, primarily within badger 
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social groups in the south and west of the study area.  However, subsequently 

(1997-2005), infection became more widespread, characterised by a reduction 

in the clustering of infected hosts and greater similarity in measures of TB 

infection at the social group level.  As a result cases of M. bovis infection were 

no longer restricted to the western region of the study area and a new hotspot 

appeared in the previously low prevalence eastern region.  Increases in 

movement between social groups, ranging behavior, contact rates between 

members of different social groups, and territory overlap may have led to the 

observed reduction in M. bovis clustering (Chapter 5).   

A meta-analysis of genetic data from European badger populations across 

Europe demonstrated that genetic isolation by distance (i.e.  spatially proximate 

individuals tend to be genetically closer than spatially distant individuals) is the 

norm over a range of spatial scales (Pope, Domingo‐Roura et al. 2006).  

However, this meta-analysis focused generally on a wider spatial scale than 

considered in the current study (500m – 30 km) and did not investigate within 

population changes in genetic structure over time. The current chapter aims to 

characterise the fine-scale genetic population structure in the Woodchester 

Park population over a two decade period and, in combination with detailed 

observational data, to consider whether this structure has changed over time.  

Genetic and observational data were used in tandem to consider whether 

dispersal patterns had changed over time and whether this was consistent with 

temporal demographic change driving the observed change in TB spatial 

distribution described in Chapter 5.



124 

6.3 Methods 

Badger Sampling 

All data used in these analyses were collected from the long-term capture-mark-

recapture and epidemiological sampling study of a wild badger population at 

Woodchester Park in Gloucestershire (for full details see Appendix).  As limited 

genotype data were available in 1990 and 1991, and genotypes from 2011 to 

the present were not available, only the period 1992-2011 was considered.  

Analyses were restricted to adult badgers (i.e. > 1 year old) in order to control 

for fluctuating cub numbers between years.  This was necessary because if the 

proportion of cubs in the population increased in a particular year, the 

population would appear to be more genetically differentiated as, in most cases, 

cubs remain in their natal group in their first year of life. 

Host Genotyping  

Genotyping of hair samples was carried out on samples obtained from trapped 

badgers from 1992 until 2011.  On first capture, a hair sample was routinely 

taken from each trapped badger, and  stored in 80% ethanol before being 

submitted for DNA extraction and genotyping (Carpenter, Pope et al. 2005).  All 

genotyping data were generated by the Molecular Ecology Lab, University of 

Sheffield.  Genotyping data were derived from 22 microsatellite markers, each 

with 4-7 alleles.   

The MicroDrop Programme (Wang and Rosenberg 2012) was used to impute 

missing microsatellite data.  Deviations from Hardy-Weinberg equilibrium for 

each of the 22 microsatellite markers were tested on the imputed dataset using 

the hwtest function in ‘adegenet’ and none were identified.  The Bartlett test of 

homogeneity in the same package was used to confirm homogeneity of 

variance among loci (P = 0.78). 

Host Genetic Population Structure  

Population structure in the Woodchester badger genotypes was analysed using 

the open-source population genetics programme ‘STRUCTURE’ (v2.3.4) 

(Pritchard, Stephens et al. 2000), which uses a Bayesian clustering method to 

identify linkage disequilibrium in unlinked loci caused by true population 
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structure.  The aim was to identify the smallest number of clusters of genotypes 

(K) within the population that captured the major structuring in the data and then 

to assign individuals to these clusters (Evanno, Regnaut et al. 2005).  Previous 

studies on badger population genetics have shown that extra-group mating is 

commonplace (Carpenter, Pope et al. 2005), therefore at the small spatial scale 

of Woodchester Park pronounced genetic population structure with strong 

divisions between clusters was not expected.  For this reason individuals were 

allowed to be ‘admixed’ such that they could belong to a mixture of clusters 

rather than being exclusively assigned to one cluster.  Allele frequencies were 

allowed to be correlated to account for correlations between the markers used 

as this has been demonstrated to provide more accurate inference of population 

structure (Falush, Stephens et al. 2003).  Social group was not included as a 

prior as the aim was to understand the population structure based purely on the 

genetic information available.  STRUCTURE simulation runs were carried out 

where K was set to 2-9 (20 iterations at each value of K), with a burn-in period 

of 10,000 followed by 30,000 MCMC reps.  Results of this simulation were fed 

into the online STRUCTURE HARVESTER programme (Earl and vonHoldt 

2012) which assesses likelihood values over different values of K from 

STRUCTURE analyses in order to detect the value of K that best fits the data 

(Pritchard, Stephens et al. 2000); this confirmed the optimum value of K to be 6.  

A Q matrix was generated for each genotyped individual indicating the 

proportional membership of that individual to each of the 6 genetic clusters.  

Individual ‘i’ has inherited some fraction of their genome from ancestors in each 

genetic cluster; the Q matrix provides the posterior mean estimates of these 

proportions.   

Genetic cluster membership at the population level was visualised over time by 

assigning adult badgers trapped in the population in a given year to the cluster 

with which they had the highest proportional membership.  For each year, this 

data was visualised in ArcGIS 10.2 in order to examine the spatial arrangement 

of genetic cluster membership of adult badgers, based on their social group of 

residence in that year.  Individuals were assigned to one social group per year 

based on previously established assignment rules (Vicente, Delahay et al. 

2007).  Proportional cluster membership by social group was calculated as the 

proportion of social group members assigned to each of the 6 genotype 
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clusters.  The Whittaker’s beta diversity index (an ecological measure of 

pairwise community differentiation) (Whittaker 1960) was calculated for the 

displayed years in order to illustrate the extent of genetic differentiation between 

social groups in a given year.  This analysis was restricted to social groups 

where more than two genotyped individuals had been trapped in a given year.  

To assess the significance of the Whittaker’s indices in each year, a 

permutation procedure was conducted on the cluster assignment data to 

generate a null distribution in each year as follows; for the genotyped adults in a 

given year, dominant cluster assignments were shuffled 1000 times.  From 

these randomised data, Whittaker’s index was calculated, thus generating a null 

distribution of Whittaker’s indices if there was no genetic differentiation between 

social groups in a given year.  The true Whittaker’s index observed from the 

unshuffled data was then compared to this null distribution and significance 

assessed (p = number of null Whittaker’s index values that were greater than 

the observed value / 1000). 

Testing for Isolation by Distance 

To test whether spatially closer social groups were genetically closer (isolation 

by distance; IBD) in each of the years under consideration (1992 – 2011), a 

pairwise genetic distance matrix was constructed from the badger microsatellite 

data using the R package ‘adegenet’(Jombart 2008).  A corresponding spatial 

distance matrix was produced based on the XY co-ordinates of the social 

groups that the genotyped individuals trapped in a given year were assigned to 

using the R package ‘ecodist’ (Goslee and Urban 2007).  A Mantel test 

permutation procedure (which generates a null distribution by randomising the 

matrices) was used to test for significant isolation by distance using 1000 

permutations in all cases.  The mean genetic distance between social groups 

was calculated for each year.  Also, a Standardised Major Axis (SMA) 

regression was carried out for the spatial and genetic data in each year, using 

the R package ‘smatr’ (Warton, Duursma et al. 2012).  SMA regression is 

favoured over standard least squares regression because it does not assign 

cause and effect in the relationship between genetic and spatial distance, and 

accepts the presence of error in both variables (Harper 2014).  The spatial 

distances between social groups were regressed against the corresponding 
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genetic distances between those groups in order to obtain an intercept and 

slope of the regression line for each year between 1992 and 2011. 

Inter-individual Heterogeneity in Probability of Moving Social Groups 

To determine whether changes in genetic population structure were driven by 

temporal changes in individual dispersal behaviour, variation in the likelihood of 

an individual dispersing from their birth social group was related to the year of 

study and demographic class.  Firstly, an analysis was conducted using a mixed 

effects model on the capture history data only.  The probability of an individual 

moving in a given year was modelled as a binary variable (1 indicating that, at 

the given capture event, that individual had moved from the social group it was 

previously trapped in, and 0 indicating that it had not moved since its last 

capture).  Year (as a factor), badger age (years) and sex were included as fixed 

effects, with individual ID and birth social group included as random effects.  

Analyses investigating heterogeneity in the likelihood of moving were restricted 

to capture records from adult badgers of known age (i.e. those that had first 

been caught as cubs in the study), which had been caught more than once (n = 

3016 capture records).  The number of times an individual had been caught in a 

given year was included as a fixed effect to account for inter-individual 

differences in the numbers of captures.  Birth social group was assigned as the 

first social group a badger was caught in during its first year of life.   

To investigate whether the probability of moving in a given year was related to 

the population size, a Pearson’s correlation test was performed on the annual 

estimates of movement probability from the above model, and the number of 

individuals caught in the population. 

Heterogeneity in Destinations of Group-Moving Individuals 

In the second part of the analysis, the above dataset was restricted to only 

individuals who had moved from their birth social group (n = 590) in order to 

investigate heterogeneity in the destinations of moving individuals.  Firstly, the 

capture data was examined for inter-annual differences in the spatial scale of 

dispersal events (measured as the straight line distance between an individual’s 

birth group and the social group that they had moved into).  A mixed effects 
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model was constructed including year, age and sex as fixed effects, with 

individual ID and birth social group included as random effects. 

The above dataset was then further restricted to badgers for whom a genotype 

was available (n = 509).  Corrected individual assignment indices (AIc); a 

traditional genetic metric of dispersal (Goudet, Perrin et al. 2002, Pope, Butlin et 

al. 2007) were calculated for each badger-capture event in the dataset using the 

R package ‘hierfstat’(Goudet 2005).  The AIc for each individual was calculated 

by determining the likelihood of an individual’s genotype occurring at a given 

location, based on the allele frequencies in the population.  The assignment 

index value was then corrected using the social group mean.  In the current 

context, an individual more likely than average to be assigned to the social 

group (i.e. more likely to be a resident born into the social group) will have a 

positive AIc value, whereas an individual less likely than average to be assigned 

to the social group will have a negative AIc value (i.e. more likely to be an 

immigrant to the social group).  A mixed effects model was constructed where 

the response variable was the variance between an individual’s AIc value in its 

birth group to its AIc value in the social group it had moved to.  A positive 

variance would suggest that an individual had moved into a similar or more 

related social group, whereas a negative variance would suggest that an 

individual had dispersed into a less related social group.  Age and sex were 

included as fixed effects along with year, with individual ID and birth social 

group included as random effects.   

Social Group Population Structure and M. bovis incidence 

A previous study on this population had demonstrated that badger social groups 

diminishing in size were at a higher risk of containing new cases of infection 

than stable or expanding social groups (Vicente, Delahay et al. 2007).  To 

investigate this further, and with the benefit of the availability of the host genetic 

data, a similar analytical approach was used on the current dataset, which 

covered a different temporal period (original study; 1989-2004, current 

analyses; 1992-2011).  As in the original study, analyses were restricted to 

social groups with no resident cases of M. bovis in the previous year (i.e. 

susceptible groups, where no individuals who had tested positive to a TB 

diagnostic test were resident).  A social group was classed as an ‘incident’ case 
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if at least one M. bovis positive individual was detected in any subsequent year, 

based on the diagnostic test procedure used at the time (for details of 

diagnostic test regime, see Appendix) (Vicente, Delahay et al. 2007).  In 

contrast to the previous study, cubs were excluded from the social group size 

calculations.  This was in order to focus on social group size changes driven by 

immigration / emigration of adult individuals or retention of adults in their natal 

group rather than by cub recruitment.  Social groups were categorised based on 

their change in adult group size from the previous year and the change in the 

mean adult social group AIc (see Table 6.1).  Once social groups had been 

categorised for each year, as described above, a linear mixed effects model 

was constructed using the ‘lmer’ function in the R package ‘lme4’.  The 

response variable was whether the social group included an incident case in 

that year (binomial: 1 or 0), with category (Table 6.1) as the explanatory 

variable.  Year and Social Group were included as random effects.  Post-hoc 

testing was carried out to identify any significant differences in incidence risk 

between categories using the ‘mcposthoc.fnc’ function in the 

‘LMERConvenienceFunctions’ package (Tremblay and Ransijn 2015).
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Table 6.1 Categories of social groups based on group size and assignment index trends. 

Category Adult Group Size Trend & 

AIc Trend 

Suggested interpretation 

“Expanding -Falling” 
Adult group size increases, 

mean AIc decreases 

Group size increase, driven 

by adult immigration into 

group 

“Shrinking -Falling” 

Adult group size 

decreases, mean AIc 

decreases 

Dispersal of adults born in 

the group 

“Stable - Falling” 
Adult group size stable, 

mean AIc decreases 

Dispersal of adults born in 

the group compensated by 

arrival of immigrant adults 

resulting in stable group 

size 

“Expanding - Rising” 
Adult group size increases, 

mean AIc increases 

Group growing in size, 

driven by retention of adults 

born in the group (natal 

philopatry) 

“Shrinking - Rising” 

Adult group size 

decreases, mean AIc 

increases 

Group shrinking driven by 

immigrant adults leaving 

group 

“Stable - Rising” 
Adult group size stable, 

mean AIc increases 

Immigrant adults leaving 

compensated by adults 

born in the group remaining  
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6.4 Results 

Host Genetic Population Structure  

Permutation analysis indicated that, in the majority of years, the observed 

Whittaker’s index was significantly larger than if there were no true genetic 

differentiation between social groups (p < 0.01).  The exceptional years were 

1996, 1999, 2007 and 2009, where the observed Whittaker’s index was not 

significantly different from the null distribution in that year (1996; p = 0.06, 1999; 

p = 0.13, 2007; p = 0.9, 2009; p = 0.69).  Fig 6.1 illustrates that badger 

genotypes were generally clustered within social groups in 1992, with social 

groups more genetically differentiated from each other, as indicated by the low 

number of ‘mixed’ social groups (where badger genotypes from multiple clusters 

are represented) and the high Whittaker’s index Z score.  This is consistent with 

badgers from the same genotype cluster (i.e. more genetically similar, related 

badgers) residing together in social groups, resulting in genetically differentiated 

groups.  In contrast, in 1999, = more genotype mixing between social groups is 

evident, with most groups comprising multiple badger genotypes and a lower 

Whittaker’s index Z score, consistent with lower genetic differentiation between 

social groups.  In the final map showing the spatial distribution of badger 

genotypes in 2011, a return towards the 1992 picture is seen, with a lower 

number of ‘mixed’ social groups and the higher Whittaker’s index Z score.   

The Whittaker’s index Z score from the whole time period (Fig 6.2) shows that 

initially in 1992 the observed genetic differentiation between social groups is 

very different from the null distribution, but between 1993 and 1999 it is 

generally close to the null distribution.  This suggests that there is weaker 

genetic differentiation between social groups from 1993 to 1999, consistent with 

higher levels of inter-group mixing.  In the early 2000’s genetic differentiation 

appears to re-establish, consistent with lower levels of inter-group mixing, 

although from the mid 2000’s until 2010 genetic differentiation is low or non-

existent, consistent with a rise in levels of inter-group mixing before re-

establishing to 1992 levels by 2011. 

 

 



132 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6.1 Genotype clustering at the social group level at Woodchester Park, indicating 

proportional membership to each of the six genotype clusters elicited from the STRUCTURE 

analysis in 1992, 1999 and 2011.  Whittaker’s diversity index is shown, with higher values 



133 

indicating more differentiation among communities.  Many individuals were strongly assigned to 

a single genetic cluster, which has been suggested to be indicative of the presence of true 

population structure (Pritchard, Stephens et al. 2000).  

 

 

Fig 6.2 The trend in genetic differentiation between social groups in the Woodchester Park 

population as revealed by Z-scores.  The plot reveals temporal differences in the extent of 

genetic differentiation, independent of expectations due to changes in population size.  The Z-

score on the y-axis describes how many standard deviations the observed clustering index lies 

from the mean of a null distribution created by shuffling genetic cluster assignments among 

genotyped badgers.  A Z-score of zero indicates social groups are not significantly genetically 

differentiated from one another. 
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Isolation by Distance  

Significant Isolation by Distance (IBD) was noted in 1992 (Table 6.2), indicating 

that spatially proximate social groups were more genetically similar to one 

another.  This is consistent with extra-group mating primarily occurring between 

neighbouring social groups and dispersing individuals generally moving to 

spatially proximate groups.  However, between 1993 and 2008, IBD is non-

significant, indicating that spatially proximate social groups are no more likely to 

be genetically similar than spatially distant social groups.  IBD then becomes 

statistically significant again from 2009 to 2011 inclusive. 

Table 6.2 Results of isolation by distance analyses by year, intercept and slope values based 

on SMA regression, p values based on Mantel isolation by distance test procedure in 

‘adegenet’.  Years with significant IBD are indicated in bold. 

Year Intercept (from SMA) Slope of IBD (from SMA) Significance of IBD (from Mantel) 

1992 0.31 0.00012 0.02 * 

1993 0.61 -0.00001 0.77 

1994 0.64 -0.00012 0.69 

1995 0.58 0.00001 0.59 

1996 0.50 -0.00008 0.62 

1997 0.57 -0.00008 0.93 

1998 0.27 0.0001 0.32 

1999 0.25 0.00009 0.08 

2000 0.27 0.00009 0.10 

2001 0.29 0.00009 0.47 

2002 0.59 -0.00009 0.74 

2003 0.61 -0.0001 0.61 

2004 0.32 0.0001 0.44 

2005 0.37 0.00009 0.10 

2006 0.34 0.0001 0.16  

2007 0.35 0.00009 0.08 

2008 0.33 0.0001 0.11 

2009 0.32 0.0001 0.02 * 

2010 0.32 0.00007 < 0.001 * 



135 

 

 

Fig 6.3 Genetic IBD amongst Woodchester badger social groups between 1992 and 2011.  

Raw data are displayed in grey.  Significant IBD regression lines are indicated in red.  Where 

IBD was not supported in a given year, a grey line indicates the estimated intercept from the 

SMA regression between genetic and spatial distances between social groups.  In all years, the 

black dashed line indicates the mean genetic distance between social groups in that year. 

2011 0.32 0.0001 0.004 * 
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Inter-individual Heterogeneity in Probability of Moving Social Groups 

The probability of an individual having moved social groups in a given year was 

higher for males (Wald’s χ
2
 (1) = 44.8, p < 0.001).  Overall, the predicted 

probability of a male badger moving social groups in a given year was double 

that of a female badger (male predicted probability of moving social groups in a 

given year = 22%, female = 11%).  Dispersal probabilities varied significantly 

among years (Wald’s χ2 (19) = 43.2, p = 0.001).  The probability of an individual 

moving social groups in a given year was unrelated to its age (Wald’s χ2 (1) = 

0.02, p = 0.89).  In many years, the average probability of a badger moving 

social group was approximately 10% or less (see Fig 6.4).  However, peaks in 

movement rates were observed from 1997 to 1998 and from 2003 to 2009, 

where the predicted probability of inter-group movement was up to 20%.  The 

annual estimates of the predicted probability of moving were significantly 

negatively correlated to population size, such that movement was more likely at 

lower population densities (Pearson’s correlation coefficient = -0.47, t= - 2.25, p 

= 0.03, see Fig 6.4). 

 

 

 

 

 

 

 

 

 

 

 

Fig 6.4 Predicted probability of an individual badger moving social groups in a given year at 

different population densities.   
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Heterogeneity in Destinations of Group-Moving Individuals 

The spatial distances moved by individuals dispersing from a social group did 

not vary significantly between years (Wald’s χ
2
 (19) = 17.4, p = 0.56).  Males 

tended to move to social groups that were spatially further from their natal group 

than females, although this difference was not statistically significant (Wald’s χ2 

(1) = 2.8, p = 0.10).  The distance moved by badgers was unrelated to their age 

at the time of movement (Wald’s χ2 (1) = 0.11, p = 0.9). 

In the later years of the time period considered, badgers tended to move to 

social groups that they were less related to than in earlier years (Wald’s χ2 (1) = 

10.5, p = 0.001, see Fig 6.5).  However, the average genetic distance between 

social groups remained similar throughout this period (as indicated by the 

dashed black lines in Fig 6.3) which suggests that this effect was not due to 

changing genetic population structure.  Neither age (Wald’s χ2 (1) = 0.67, p = 

0.41) nor sex (Wald’s χ2 (1) = 0.21, p = 0.65) predicted the difference in 

relatedness between the destination and natal social group. These results 

suggest that until 1999, badgers that left their natal social group tended to move 

into social groups where there were related badgers already resident.  As extra-

group mating is thought to primarily take place between neighbouring social 

groups (Carpenter, Pope et al. 2005, Roper 2010) this suggests that badgers 

are generally moving into spatially proximate groups.  However, from 2000 

onwards this appeared to change, with badgers tending to move into social 

groups comprised of increasingly unrelated residents.  
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Fig 6.5 Annual estimates of variance between a badger’s natal assignment index (vAIc) to its 

assignment index in the social group it has moved into.  A negative assignment index is 

consistent with movement into a social group to which an individual is less genetically related.
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Social Group Population Structure and M. bovis incidence 

The likelihood of a badger social group becoming an ‘incident’ case was 

significantly higher for social groups in the ‘Stable – Falling ’ category (see 

Table 6.1) when compared to the ‘Expanding -Falling’ and ‘Stable - Rising’ 

categories (SF vs EF; z(33) = 2.59, p =0.009, SF vs SR; z(33) =2.17, p =0.03, 

marginal R2 = 0.16, conditional R2 =0.53). 

Social groups in the ‘Stable-Falling’ category experienced the highest risk of 

subsequently having incident cases of TB (Fig 6.6).  As illustrated in Fig 6.7, the 

membership flux may be greater in these social groups than that within the 

‘Expanding-Falling’ and ‘Stable-Rising’ groups as a higher proportion of the 

social group is likely to be of immigrant origin.  However, in contrast to the 

previous study no evidence was found of enhanced incidence risk in shrinking 

social groups; although the probability estimates for the shrinking group 

categories were higher than for the expanding group categories (see Fig 6.6; 

ShF vs ExF and ShR vs ExR), these differences were not significant (as 

indicated by overlapping error bars in Fig 6.6). 

 

 

 

 

 

 

 

 

 

Fig 6.6 Predicted probability of social group having an incident case of TB detected in a 

subsequent year, based on demographic category (for full details of categories see Table 6.1; 

ExF = ‘Expanding–Falling’, ShF = ‘Shrinking–Falling’, StF = ‘Stable-Falling’, ExR = ‘Expanding-

Rising’, ShR = ‘Shrinking-Rising’ and StR = ‘Stable-Rising’). Standard errors are displayed. Red 



140 

markers indicate significant differences at the more conservation p value threshold to reflect 

correction for multiple testing, using the ‘mcposthoc.fnc’ function in 

LMERConvenienceFunctions package (incidence risk significantly higher for ‘StF’ category 

compared to ‘ExF; and ‘StR’).  

 

 

Fig 6.7 Schematic for suggested drivers of observed enhanced incidence risk in “Stable – 

Falling” category. 
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6.5 Discussion 

The present study has identified temporal changes in the genetic population 

structure within this high-density badger population suggesting that this 

unmanaged population has undergone a period of demographic ‘flux’.  During 

the period of flux, social groups which were previously relatively isolated appear 

to have become linked by inter-group movements and potentially inter-group 

mating events, resulting in the population becoming increasingly genetically 

homogenous.  Initially, spatially closer social groups were also genetically 

closer, as predicted under models of restricted dispersal across short distances 

(Pope, Domingo‐Roura et al. 2006).  However, for a period of years in the 

middle of the study period, this was not the case, suggesting that inter-group 

movement and mating events were no more likely between spatially proximate 

social groups than between spatially distant social groups.  These changes are 

concurrent with a period of rising M. bovis prevalence and incidence in the 

population (Delahay, Walker et al. 2013) where the previously spatially 

clustered pattern of infection became more diffuse and social groups became 

more homogenous in their disease status (Chapter 5).  In the final years of the 

study period, genetic isolation by distance re-established, consistent with a 

return to the former situation.  A previous study which used only a small number 

of individual genotypes from the Woodchester Park population (N = 20) found 

no evidence of genetic isolation by distance.  This result was attributed to the 

small spatial scale of the study area (Pope, Domingo‐Roura et al. 2006).  

However, using a larger number of genotypes from this population and 

considering the population over a two-decade time period, the present study 

has demonstrated the presence of fine-scale genetic population structure, at a 

very restricted spatial scale and further, that this population structure can 

fluctuate over time, potentially in response to changes in movement patterns 

and population density. 

Visualising the genetic population structure allows us to gain a different 

perspective on possible opportunities for M. bovis transmission amongst badger 

social groups.  For example, forays into other social group territories to seek 

mating opportunities may be ephemeral and are unlikely to be detected by 

observational data or by delineating social territory boundaries.  Shared matings 

between social groups may be driven more by the composition of the social 
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groups, for example the availability of breeding age females, rather than simply 

the spatially proximity to their  social group.  This is supported by observational 

data; in two studies, one of which was based on the Woodchester population, 

male badgers had a tendency to move into social groups with more females, 

and females tended to move into groups with more males (non-significant result 

in Woodchester study) (Macdonald, Newman et al. 2008, Robertson, 

Palphramand et al. 2015).  The decision of whether or not an individual decides 

to leave their natal group is likely to be influenced by a range of  factors 

(Lawson Handley and Perrin 2007), potentially related to current social position, 

the sex-ratio of the group and mate availability or potentially an individual’s 

relatedness to other group members which may favour dispersal as an 

inbreeding avoidance strategy (Moore and Ali 1984).   

Movement is known to be a key driver of TB incidence in badger populations, 

with years of higher movement rates tending to be followed by years with an 

increased TB incidence (Rogers, Delahay et al. 1998).  Where badger 

population density is reduced by management interventions such as culling, this 

favours inter-group movement amongst the surviving individuals (Riordan, 

Delahay et al. 2011).  The present study shows that the probability of inter-

group movement can vary over time in an unmanaged population, with lower 

population densities favouring increased movement.  There are a number of 

drivers which may explain this relationship.  Mate availability is thought to be a 

key driver of dispersal in high-density badger populations, as reproduction 

within the social group is usually monopolised in a given year by a small 

number of residents (Roper 2010).  It is possible that mate availability within 

social groups may be limited at lower population densities; therefore individuals 

may be more likely to seek mating opportunities outside their resident group.  

Territory defence may be less intense at lower population densities, as fewer 

badgers are available to share the cost of maintaining territorial boundaries 

(Roper 2010), which may result in more inter-group movement.  In the 

Woodchester Park population, it has been noted that the delineated territories 

identified annually (Delahay, Brown et al. 2000)  became less distinct in the 

latter years of the present study, suggesting greater territorial overlap, however 

this phenomenon has yet to be formally investigated.  It is interesting to note 

that a number of ‘super-groups’ comprised of merged neighbouring groups, 
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formed from 2000 onwards whereas they were largely absent prior to this point.  

A recent analysis suggested that these merging events tended to occur 

between groups of differing sex ratios, potentially suggesting a response to 

mate availability, however this effect was not statistically significant (Robertson, 

Palphramand et al. 2015).  As the distance moved by dispersing badgers does 

not vary between years, it appears that rather than badgers moving spatially 

further in later years, there have been changes in the connections between 

social groups, such that groups which traditionally were strongly linked by inter-

group movement have become uncoupled and new links between social groups 

which previously lacked gene flow have formed. Further consideration of what 

drives dispersal and gene flow between pairs of social groups, for example 

taking into account sex-ratios and levels of inbreeding, would be required in 

order to further understand the drivers of temporal changes in dispersal 

patterns. 

In the present study, male badgers were both more likely to move social groups 

and also tended to disperse further than female badgers, as has been 

previously documented for badger populations (Kruuk and Parish 1987, 

Cheeseman, Cresswell et al. 1988, Rogers, Delahay et al. 1998, Roper, Ostler 

et al. 2003, Pope, Domingo‐Roura et al. 2006).  As well as bringing individuals 

from previously spatially separated social groups together, the process of 

moving social groups is likely to carry enhanced M. bovis transmission risk as 

moving badgers are more likely to be on the receiving end of aggressive 

encounters as they trespass into a neighbouring territory (Macdonald, Newman 

et al. 2008).  Additionally, movement imposed physiological stress may 

suppress the immune response, such that moving badgers are particularly 

vulnerable to acquiring infection or that latent infection becomes activated 

(Gallagher and Clifton-Hadley 2000).  Male badgers may therefore play a more 

important role in the transmission of M. bovis infection amongst badger social 

groups than female badgers. 

As well as changes in genetic population structure being driven by changes in 

inter-group movement, extra-group mating, which is known to be commonplace 

in badgers (Carpenter, Pope et al. 2005, Annavi, Newman et al. 2014), can 

result in a ‘gamete-dispersal’ effect.  This involves dispersal of an individual’s 

genes over a greater distance than the individual itself permanently disperses 
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over (Winters and Waser 2003).  Temporal changes in the proportion of mating 

which occurred outside the social group may also have contributed to the 

observed changes in genetic population structure, and the future availability of a 

pedigree for this population will help to determine whether such changes have 

occurred. 

The risk of a badger social group experiencing an incident case of M. bovis has 

previously been linked to changes in group size, with shrinking social groups at 

the highest risk, suggesting that the process of group size reduction had the 

most influence on disease dynamics (Vicente, Delahay et al. 2007).  By 

incorporating genetic data with observational data, the present study found that 

the highest incidence risk was associated with social groups where the group 

size was stable but the social group membership was unstable, potentially 

driven by the replacement of residents by immigrants.  These results suggest 

that it may be the proportion of immigrants moving into a social group and the 

associated effect on the social group contact network which carries an 

enhanced transmission risk, rather than any absolute change in group size or 

the number of immigrants into a group (Fig 6.8).  It is likely that the higher the 

proportion of immigrant members joining a social group, the more impact there 

is on the existing within-group contact network.  This disruption may result in 

more within group mixing, resulting in enhanced incidence risk.  An extension of 

the present study would be to determine who is at risk of becoming an incident 

case; the immigrant animals themselves, potentially as a result of the 

movement related stressors described above, as has been previously 

documented in badgers (Rogers, Delahay et al. 1998, Woodroffe, Donnelly et 

al. 2009) or the individuals already resident in the receiving social group. 

The present study suggests that temporal changes in the genetic population 

structure of the Woodchester Park badger population are consistent with a 

demographic change in movement and mating behaviour.  These processes 

may potentially be a response to a fall in population density, and may have 

influenced the incidence and spatial arrangement of M. bovis infections.  

However, an alternative explanation is that the decrease in spatial clustering of 

M. bovis infections (Chapter 5) and increasing incidence observed is due to the 

seeding of infection into the population from either the surrounding, un-sampled 

badger population or from the local cattle population.  Examination of whole 
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genome sequences from both cattle and badgers will allow further investigation 

of the respective roles of local cattle and resident badgers in spatio-temporal 

variations in M. bovis infection in the Woodchester Park badger population.   

The present study has demonstrated the existence of fine-scale genetic 

population structure and temporal variation in its magnitude within a high-

density badger population.  Through coupling genetic and detailed 

observational data, this study has identified a period of demographic change in 

this unmanaged population with implications for M. bovis transmission.  As 

management interventions such as culling have been noted to result in changes 

in genetic population structure, related to movement patterns, it is valuable to 

be able to quantify the changes that can occur within a unmanaged system as a 

result of natural demographic processes.  With increasing interest in using 

genetic methods to help understand badger population structure and disease 

transmission, particularly at the moving front of the current endemic area, this 

study provides a useful demonstration of what host genotype data can tell us 

about population structuring and movement patterns in this system.  In terms of 

its wider application, this study adds to a limited body of work in which host 

genetic structure has been used to understand pathogen spread related to host 

movement at a restricted spatial scale (Cullingham, Merrill et al. 2011, 

Mazé‐Guilmo, Blanchet et al. 2016) rather than as a larger scale landscape 

genetics approach (Biek and Real 2010) looking at host population structure 

across regions (Lee, Ruell et al. 2012), countries (Lang and Blanchong 2012, 

Vander Wal, Edye et al. 2013) or continents (Streicker, Winternitz et al. 2016).  

In some cases, researchers have also incorporated pathogen genetic 

information to investigate how host genetic population structure drives pathogen 

genetic population structure (Lee, Ruell et al. 2012, Streicker, Winternitz et al. 

2016).  This is the approach that will be taken in Chapter 7; combining whole 

genome sequence data from a group of M. bovis isolates isolated from the 

Woodchester badger population with host genotype data.
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CHAPTER 7: Data Chapter 

 

Transmission pathways of bovine tuberculosis revealed by Whole 

Genome Sequencing  

7.1 Abstract 

The advent of whole genome sequencing (WGS) of pathogens allows the study 

of fine-scale variation in transmission pathways, across space and through time.  

Here, I employ WGS on Mycobacterium bovis isolates from a well-studied 

reservoir population of badgers in order to resolve fine-scale transmission 

dynamics within the population.  I demonstrate that, in comparison to traditional 

genotyping approaches, WGS adds much higher resolution and allows us to 

address epidemiological questions that traditional approaches could not 

resolve.  I use the sequence data to suggest that infection has spread spatially 

across the study population over the period of a decade and that badger to 

badger transmission is occurring.  Further, I combine genotype data from both 

the badgers themselves with the WGS data from the M. bovis isolates to 

demonstrate that host population genetic structure influences pathogen 

population genetic structure in this population.  I find support for the importance 

of kin structure in M. bovis transmission within badger social groups but suggest 

that inbreeding avoidance may influence contact rates and subsequent disease 

transmission outside of the social group.  These results provide an encouraging 

indication that WGS technologies will have much to add to our understanding of 

bTB transmission within wildlife populations. 
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7.2 Introduction 

The advent of whole genome sequencing (WGS) of pathogens allows the study 

of fine-scale variation in transmission pathways, across space and through time.  

Such approaches have been used powerfully in understanding the transmission 

dynamics of a range of human, wildlife and livestock pathogens (Benton, 

Delahay et al. 2014), including HIV (Henn, Boutwell et al. 2012), influenza 

(Ghedin, Sengamalay et al. 2005, Holmes, Ghedin et al. 2005), Ebola (Gire, 

Goba et al. 2014) and TB (Gardy, Johnston et al. 2011, Bryant, Schürch et al. 

2013, Roetzer, Diel et al. 2013).  In many cases, WGS has uncovered diversity 

between pathogen strains which traditional methods were not able to elucidate 

(Bryant, Schürch et al. 2013, Roetzer, Diel et al. 2013) and hence has proved to 

be a significant step forward in understanding transmission dynamics, 

particularly at a fine scale. 

As discussed in Chapter 5, the spatial distribution of M. bovis infections in the 

Woodchester Park badger population has changed over the course of the 30+ 

year study.  Infection was initially restricted to the western part of the study 

area, however over time infections started to be detected in the east of the area.  

The recent availability of a group of whole-genome-sequenced M. bovis isolates 

collected over a ten year period provides a valuable opportunity to look more 

closely at fine-scale transmission dynamics during this time and allow us to 

determine whether the change in spatial distribution was due to the introduction 

of new infections from an outside source (e.g. the local cattle population) or 

whether it represents spatial spread from west to east via transmission across 

the badger population. 

The typing methods traditionally used to categorize strains of Mycobacterium 

bovis (the causative agent of bovine TB) are spoligotyping (spacer-

oligonucleotide typing) and VNTR (Variable Number Tandem Repeat) typing, 

both of which are based on small genomic regions that are generally evolving at 

a higher rate than the rest of the genome (Joshi, Harris et al. 2012).  Such 

methods are therefore potentially more useful for differentiating between 

organisms at a coarser evolutionary scale than detecting finer scale intra-

specific variation (Joshi, Harris et al. 2012).  The M. tuberculosis complex, of 

which M. bovis is a member, is highly clonal and therefore in this case, the 
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spoligotype pattern can be more confidently used as a proxy for the 

evolutionary history of the complete genome of the cell (Frothingham 1995, 

Smith, Gordon et al. 2006).  Spoligotyping and VNTR typing have had valuable 

contributions as molecular tools in our understanding of M. bovis epidemiology;  

helping to infer transmission events between livestock populations (Smith, 

Gordon et al. 2006, Munyeme, Rigouts et al. 2009), identify probable infection 

sources (Duarte, Domingos et al. 2008) suggest the existence of wildlife 

reservoirs (Pavlik, Dvorska et al. 2002, Santos, Correia-Neves et al. 2009) and 

have also had some value in inferring cross-species transmission events 

(Serraino, Marchetti et al. 1999, Woodroffe, Donnelly et al. 2005, Duarte, 

Domingos et al. 2010, Cunha, Matos et al. 2012).  Within cattle populations in 

the UK, M. bovis spoligotypes are highly geographically clustered, with 

spoligotypes having a typical ‘home range’(Smith, Gordon et al. 2006).  The 

appearance of a non-typical spoligotype outside its characteristic home range 

has been used to demonstrate the need for pre-movement testing of cattle to 

prevent the movement of infected animals and further spread of M. bovis 

infection between cattle populations (Smith, Gordon et al. 2006).   

Despite these valuable applications, spoligotyping and VNTR typing are limited 

in their ability to infer finer-scale transmission dynamics e.g. inferring direction 

of transmission between local populations (Smith, Gordon et al. 2006).  

Epidemiologists wishing to study these finer scale dynamics in pathogens with 

very little variation between strains, such as M. bovis, will require a typing 

method that is able to detect small differences between isolates.  Where 

discrimination between isolates is not possible using conventional methods, 

whole genome sequencing (WGS) may be the only tool suitable for looking at 

fine-scale transmission dynamics (Benton, Delahay et al. 2014).   The 

exceptionally high level of genetic resolution achievable through sequencing the 

whole genome of an organism means that even sequencing a restricted number 

of isolates can reveal a wealth of epidemiologically valuable information (Biek, 

O'Hare et al. 2012).  Where access to long term studies is possible, a 

‘phylodynamic’ approach (Grenfell, Pybus et al. 2004) of overlaying pathogen 

phylogenies onto well documented epidemiological systems is advocated. 

The identification of shared genotypes of M. bovis between wildlife and livestock 

populations has been used to infer transmission in a number of contexts (Lisle, 
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Yates et al. 1995, Serraino, Marchetti et al. 1999, Woodroffe, Donnelly et al. 

2005, Duarte, Domingos et al. 2010, Cunha, Matos et al. 2012, Buddle, Lisle et 

al. 2015, Glaser, Carstensen et al. 2016).  In the UK, where badgers are the 

principal wildlife reservoir of M. bovis, with a key role in transmission to cattle, 

marked spatial correlation of M. bovis spoligotypes of cattle and badger isolates 

has been documented (Woodroffe, Donnelly et al. 2005).  These data have 

been used to support the hypothesis that transmission occurs between the two 

host species with the caveat that they cannot be used to infer to relative 

importance of cattle to badger vs badger to cattle transmission (Smith, Gordon 

et al. 2006).  More recently whole genome sequencing of a limited number of M. 

bovis isolates from badgers and cattle provided evidence for recent 

transmission events between the two hosts, with the suggestion that more 

extensive sampling could allow for the quantification of the extent and direction 

of transmission between badgers and cattle (Biek, O'Hare et al. 2012).   

As well as inferring transmission dynamics between species, the overlaying of 

data on pathogen strain diversity onto ecological information could be used in 

wildlife populations to assess transmission rates in relation to within - population 

structure (e.g. social groups, herds etc.) (Benton, Delahay et al. 2014).  In the 

case of the European badger the prevailing social structure in high density 

populations has been associated with the clustering of infection within social 

groups (Delahay, Langton et al. 2000, Delahay, Langton et al. 2000).  

Disruption of this social structure, as observed following culling, leads to a 

reduction in this clustering, as surviving individuals range more widely (Jenkins, 

Woodroffe et al. 2007).  Further information on the role of social behaviour in 

the spread of infection may be achievable by investigating the genetic diversity 

of M. bovis strains in badger populations.  In Chapter 3 I highlighted the 

importance of badger social group and specifically kin structure in predicting 

infection risk in badger cubs.  If social structure acts as a barrier to disease 

spread then we would expect the degree of genetic similarity amongst M. bovis 

strains within badger social groups to be greater than that observed between 

social groups.  Within social groups, kin structure may also influence 

transmission rates between social group members (Benton, Delahay et al. 

2016).  Examining the genetic distances between M. bovis strains of related and 
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unrelated social group members may shed further light on the influence of 

relatedness structure on M. bovis transmission within badger populations. 

In my final data chapter, I use the pathogen genetic data, derived from whole 

genome sequencing of a group of M. bovis isolates collected from the 

Woodchester badger population, to demonstrate the added value of WGS over 

traditional genotyping approaches in understanding fine-scale TB transmission 

dynamics within a single badger population.  I demonstrate how the availability 

of such sequence data allows epidemiological questions to be addressed by 

specifically using the data to look for evidence of spatial spread of infection 

across the population.  Finally, I use the pathogen genetic data in tandem with 

the host genetic data to consider how host kin structure, both within and outside 

badger social groups, affects pathogen population structure.
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7.3 Methods 

Badger Sampling 

All data used in these analyses were collected from the long-term trapping and 

sampling study at Woodchester Park in Gloucestershire.  Badgers from this 

study population have been routinely trapped, up to four times a year, since 

1976.  At first capture, badgers are tattooed with a permanent ID code.  

Trapped badgers are brought back to a sampling facility, anaesthetised (for full 

details see Appendix) and a range of clinical samples are taken (oesophageal 

aspirates, tracheal aspirates, faeces, urine, swabs of bite wounds or burst 

abscesses) from which M. bovis may be cultured.  Cultures, which have been 

routinely isolated from routine clinical sampling of captured badgers at 

Woodchester, have been archived since 1990. 

Host Genotyping  

On first capture, a hair sample is routinely taken from trapped badgers.  This is 

stored in a tube with 80% ethanol before being submitted for genotyping.  DNA 

extraction and genotyping procedures were as described previously (Carpenter, 

Pope et al. 2005).  All genotyping data reported in this study were generated by 

the team headed by T.Burke at the Molecular Ecology Lab, University of 

Sheffield.  Genotyping of hair samples from this population took place routinely 

from 1990 until present, however only genotype data up to 2011 were available 

for this analysis.  22 microsatellite markers were used, each with 4-7 alleles. 

The MicroDrop Programme (Wang and Rosenberg 2012) was used to impute 

missing data in the microsatellite data set.  Deviations from Hardy-Weinberg 

equilibrium for each of the 22 microsatellite markers were tested on the 

MicroDrop-corrected dataset using the hwtest function in the R package 

‘adegenet’ (Jombart 2008); none were identified.  The Bartlett test of 

homogeneity in the same package to confirm homogeneity of variance among 

loci (P = 0.78). 

Microsatellite data were used from individuals for whom pathogen sequence 

data was available (see below).  This resulted in a dataset of 66 individuals for 

whom host and pathogen genetic information was available. 
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Pathogen Genotyping  

Spoligotyping (spacer-oligonucleotide typing) was carried out routinely on M. 

bovis isolates from Woodchester Park from 1990 onwards; VNTR (Variable 

Number Tandem Repeat) typing began in 2000 but was not routinely carried out 

until 2002 onwards.  Spoligotyping and VNTR genotyping was carried out by 

Noel Smith and the TB Genotyping Group, APHA.   

As part of a collaborative pilot study with the University of Glasgow, 230 

archived M. bovis isolates cultured from samples taken from Woodchester 

badgers between 2000 - 2010 were regrown.  Re-culturing and DNA extraction 

were carried out at the Agri-Food and Biosciences Institute in Northern Ireland 

(AFBINI).  The extracted DNA was sequenced at the Glasgow Polyomics facility 

using an Illumina MiSeq platform.  Bioinformatics, estimation of the molecular 

clock rate and construction of the initial phylogenetic tree of the Woodchester 

badger isolates were carried out by Hannah Trewby; for details see (Trewby 

2016).  For each isolate, 503 high quality single nucleotide polymorphisms 

(SNPs) were identified (Trewby 2016).  The program PhyML v3.0 was used to 

generate a maximum likelihood phylogeny for the concatenated sequences, 

using the HKY nucleotide substitution model and 1000 non-parametric 

bootstraps to assess node support (Trewby 2016).  The phylogeny generated 

previously (Trewby 2016) was visualised using the R package ‘ape’ (Paradis, 

Claude et al. 2004).  Trees display the number of SNP (single nucleotide 

polymorphisms) between isolates.  Analysis was restricted to 163 ‘high-quality’ 

isolates as determined during bioinformatics procedures carried out previously 

(Crispell 2017).   

Pathogen Population Structure 

Lineages of the sequenced isolates were previously assigned, based on a 

threshold of 10 SNP differences between lineages and bootstrap support of 

>99% (Trewby 2016).  From this tree, maps were produced in ArcGIS 10.2 to 

visualise the spatial extent and persistence of the different M. bovis lineages 

identified from the phylogeny.  Previous analysis describing cattle-badger 

transmission clusters within Woodchester Park were also included in the 

visualisation (Crispell 2017).  These clusters were identified as follows; the 163 

isolates from the Woodchester badgers described above and 81 isolates 
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collected from dairy and beef cattle herds between 1997 and 2012, within a 

15km buffer of the study area were used to construct a maximum likelihood 

phylogenetic tree and rooted against a reference sequence – AF2122/97 

(Crispell 2017).  Potential inter-species transmission events were identified 

where clusters of highly genetically related isolates from badgers and cattle 

were noted.  The direction of transmission was inferred based on which host 

species was closest to the root of the clade.  If a clade contained closely related 

isolates from badgers and cattle, and an isolate from a cow was closest to the 

root of the clade, this was taken as an indicator of a potential transmission 

event from cattle to badgers. Full details are here (Crispell 2017). 

In Chapter 5 it was suggested that the spatial distribution of M. bovis infections 

in Woodchester Park was consistent with M. bovis infection being introduced 

initially into badgers in the western social groups of the Woodchester study area 

and subsequent spread to badgers in the eastern social groups.  To test for this, 

a phylogenetic discrete traits analysis was carried out to look for a genetic 

signal of west to east spread (Lemey, Rambaut et al. 2009).  This analysis was 

restricted to high-quality isolates from Lineage 1.  Only 1 isolate per individual 

was included as there is currently no capacity to include individual as a random 

effect within the below analyses.  Where more than 1 isolate was available for 

an individual, the earliest isolate was used (i.e. from the earliest available 

capture event).  If multiple isolates were all obtained at a single capture event, 

an isolate was randomly selected.  This resulted in a dataset of 66 isolates for 

inclusion in the analyses.  Despite low evolutionary rates within these data, 

previous work using tip-date randomisations has shown that the sequences 

contain sufficient temporal-genetic signal to allow the use of Bayesian 

phylogenetics analysis to estimate molecular clock rates (Grenfell, Pybus et al. 

2004, Trewby 2016).  In the current analysis a discrete traits analysis was 

carried out using the Bayesian phylogenetics programme ‘BEAST’ (Drummond, 

Suchard et al. 2012).  The ‘BEAGLE’ library was used to allow more 

computationally efficient likelihood calculation (Ayres, Darling et al. 2011).  Data 

preparation was carried out in the programme ‘BEAUti’ (Drummond, Suchard et 

al. 2012).  Two independent MCMC chains were run for each analysis and log 

files were evaluated in ‘Tracer’ (Rambaut and Drummond 2007) to assess 

convergence, both by visually examining the posterior trace, and by checking 
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that Estimated Sample Size values were greater than 200 for each parameter.  

‘TreeAnnotator’ (Rambaut and Drummond 2013) was used to summarise the 

maximum clade credibility tree from the distribution of posterior trees generated 

during the first analysis (see below) after removing a burnin of 10% of MCMC 

steps.  The programme ‘FigTree’ was used to display the maximum clade 

credibility tree (Rambaut 2007).  Prior settings used for the discrete traits 

analysis were consistent with those used previously (Trewby 2016) for the same 

samples, as follows.  The uncorrelated log normal relaxed clock model 

(Drummond, Ho et al. 2006) was used with a normally distributed prior, 

truncated at zero, with a mean of 0.2 SNPs per year (based on the evolutionary 

rate determined from a different set of genotyped M. bovis isolates from 

Northern Ireland (Trewby 2016, Trewby, Wright et al. 2016) and a wide 

standard deviation of 10 SNPs per genome per year.  The HKY model of 

nucleotide substitution was used (Hasegawa, Kishino et al. 1985, Yang 1994) to 

model the variation in rates at which nucleotides replace each other during DNA 

evolution.  The coalescent Bayesian skyline demographic model, which allows 

population size to be estimated at different points, was also used as a flexible 

demographic prior (Drummond, Nicholls et al. 2002, Drummond, Rambaut et al. 

2005): setting a more restrictive demographic prior (e.g.  exponential growth) 

might have imposed an improper constraint on the estimation of the phylogeny, 

as coalescence rate and population size are interlinked (Ho and Shapiro 2011). 

Bayesian skyline reconstruction (Drummond and Rambaut 2007) was carried 

out in ‘Tracer’ to visualise the effective population size over time by assessing 

the coalescence pattern of the posterior trees. As the coalescence rate of an 

infectious disease is thought to be driven primarily by new transmissions (i.e 

incidence) and is also indirectly linked to the number of infected individuals (i.e 

prevalence) (Volz, Pond et al. 2009, Frost and Volz 2010), the Bayesian skyline 

plot was visualised alongside population level estimates of prevalence and 

incidence in the Woodchester badgers over the same temporal period (Walker 

2012). 

In the first BEAST analysis Bayesian Stochastic Search Variable Selection 

(BSSVS) (Lemey, Rambaut et al. 2009) was used to identify which transition 

states (west to east, with eastern isolates having western ancestors; or east to 

west, with western isolates having eastern ancestors) were significantly 
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supported.  The MCMC process was set to 500 million iterations, sampling 

every 50,000th iteration, with a 10% burnin removed.  The branches of this tree 

were then coloured based on the estimated trait of the most recent common 

ancestor of the branch (is the isolate derived from an ‘eastern’ ancestor or a 

‘western’ ancestor), with posterior values displayed at each node to show how 

well supported this ancestral state is.  ‘SPREAD’ (Bielejec, Rambaut et al. 

2011) was used to calculate Bayes Factor from the east to west and west to 

east transition rates generated in order to determine whether the rates were 

well supported (a Bayes Factor of greater than 10 indicates moderate support 

for a given transition rate, with Bayes Factor greater than 100 indicating strong 

support (Lemey, Rambaut et al. 2009)). 

In a separate BEAST analysis, State Change Count Reconstruction was used 

to estimate of the rate of transition between the two states (west to east vs east 

to west (Minin and Suchard 2008)).  The MCMC process was set to 200 million 

iterations, sampling every 20,000th iteration.  Markov Jump Counts were 

reported, giving estimated counts of the number of transitions between east and 

west. 

Fig 7.1 Spatial division of social groups from west and east of the Woodchester Park study area 

for whom high-quality Lineage 1 M. bovis isolate sequences were available. 
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Isolate Genetic Distance, Social Group & Kin Structure 

The impact on genetic distance between M. bovis isolates of within-individual 

variation, social group membership and kin structure was analysed using 

permutation testing.  Genetic distances between all available pairs of high-

quality M. bovis isolates were included as the response variable in this analysis.  

Isolates were grouped into categories based on relatedness between hosts (as 

estimated using the rxy estimator within the R package ‘Demerelate’(Kraemer, 

Gerlach et al. 2013)) and social group membership as detailed in Table 7.1.  An 

individual’s main social group was defined as the social group that the badger 

had spent the most time in.  This definition was used as ‘main’ social group was 

found to be the best spatial predictor of genetic distance between isolates 

(Crispell 2017).  The dataset was restricted to only include pairwise 

comparisons from isolates collected within 3 years of each other, in order to 

look only at pairwise comparisons between individuals who were likely to have 

been in the population at the same time. This is a conservative estimate, as the 

average life expectancy of adult badgers in the Woodchester population is 4.5 

years.  As the response variable was a pairwise distance, a permutation 

procedure was used to account for the non-independence of samples (i.e. the 

genetic distance between a pair of hosts and the genetic distance between their 

M. bovis isolates are non-independent, as both distance values are collected 

from the same pair of individuals).  To test whether related badgers in the same 

social group had more similar M. bovis isolates than non-related badgers within 

the same social group, a subset of the M. bovis genetic distance dataset was 

created which was restricted to those two categories (‘Related In SG’ and 

‘NonRelated In SG’, see Table 7.1).  M. bovis genetic distances were then 

shuffled across the badgers and the average genetic distance between isolates 

in the two categories calculated.  This process was repeated 10,000 times in 

order to generate a null distribution.  The observed ‘true’ distance between the 

mean of the two categories was then compared to this null distribution and 

significance assessed as follows ((p = number of null mean genetic distance 

values that were greater than the observed value / 1000).  This process was 

repeated to test for significant genetic differences between M. bovis isolates 

from related and non-related badgers outside of an individual badgers social 

group (‘Related Out SG and ‘NonRelated Out SG’, see Table 7.1).  Finally, 
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genetic differences between isolates from the same individual were compared 

with those from related individuals in the same social group (‘Related In SG’ 

and ‘Same Individual’; see Table 7.1). 
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Table 7.1 Categories to describe social group membership and relatedness relationship 

between hosts 

 

Category Description 

NonRel Out SG 

Isolate is from an unrelated individual 

from outside the focal individual’s main 

assigned social group 

Related Out SG 

Isolate is from a related individual from 

outside the focal individual’s main 

assigned social group 

NonRel In SG 

Isolate is from an unrelated individual 

from within the focal individual’s main 

assigned social group 

Related In SG 

Isolate is from a related individual from 

within the focal individual’s main assigned 

social group 

Same Individual 

A different M. bovis isolate (from a 

different body site or different sampling 

occasion) from the focal individual 
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7.4 Results 

Pathogen Genotyping  

The dominant spoligotype within the genotyped isolates from the Woodchester 

badger population is Spoligotype 17 (Fig 7.2) which is also the genotype 

typically found in cattle associated with the Woodchester location (Trewby 

2016).  VNTR typing adds a little more resolution (Fig 7.3); breaking 

Spoligotype 17 down into two VNTR types, although the majority are of one 

VNTR type 17:a.  In contrast, the sequence data available from the whole 

genome sequencing allow the dominant spoligotype 17 to be broken up into 

multiple lineages (see Fig 7.4) and also allow pairwise distances between 

isolates to be estimated (in terms of differing SNP profiles at 503 high-quality 

SNP locations). 

 

 

 

 

 

 

 

 

 

 

Fig 7.2 Spoligotypes of 163 high-quality sequenced M. bovis isolates
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Fig 7.3 VNTR types of high quality M. bovis isolates 
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Fig 7.4 Phylogenetic tree of 163 high quality sequenced M. bovis isolates based on the number 

of SNP differences between isolates.  Node colours indicate which lineage the isolate has been 

assigned to. The tree is rooted on the non Spoligotype 17 isolates, indicated in black. Lineages 

were assigned based on differences of 10 SNPs or greater between isolates (lineage 

assignments by Hannah Trewby, see (Trewby 2016)). VNTR genotypes are displayed. Left-

hand value indicates percentage bootstrap support from the Maximum Likelihood 

phylogeny, and the right-hand value shows posterior probability of the node in the Bayesian 

phylogeny (Trewby 2016). 
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Lineage 1 (Fig 7.5) represents a cluster of spoligotype 17 M. bovis isolates 

which appears to be spatially widespread across the study area and has been 

present over the entire time period from which the sequenced samples were 

isolated.  Over half of the isolates (71/131 high quality isolates available for this 

lineage) have been included in badger-cattle transmission clusters.  The 

majority of these isolates were assigned to badger-cattle transmission clusters 

where the direction of transmission was thought to be from badgers to cattle 

(fewer isolates sourced from the cattle; cattle isolates nested within isolates 

from badgers) (Crispell 2017).  However, 46% of the Lineage 1 badger isolates 

have not been included in any badger-cattle transmission cluster. 

Fig 7.5 Spatial and temporal distribution of M. bovis isolates from Woodchester badgers 

assigned to Lineage 1 (Trewby 2016).  Symbol colour indicates the year when the isolate was 

collected from a badger, with more recently collected isolates marked darker.  Diamonds 

indicate isolates that have been assigned to a badger-cattle transmission cluster (full details 

available (Crispell 2017)), circles indicate unassigned isolates which may be representative of 

badger – badger transmission.  Markers have been dispersed in ArcGIS 10.2 to aid visualisation 

of points collected from individuals in the same social group. 
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Lineage 2 (Fig 7.6) also represents a group of spoligotype 17 isolates which 

were present in the badger population in a number of years.  The majority of the 

isolates of this lineage are linked to a single badger – cattle transmission 

cluster, where transmission from cattle to badgers has been inferred (cattle 

isolates present towards the root of the cluster, suggesting outbreak originated 

in cattle population (Crispell 2017)).  However, there are a couple of isolates in 

this lineage which were not placed in this badger-cattle transmission cluster. 

Fig 7.6 Spatial and temporal distribution of M. bovis isolates from Woodchester badgers 

assigned to Lineage 2 (Trewby 2016).  Symbol colour indicates the year at which the isolate 

was collected from a badger, with more recently collected isolates marked darker.  Diamonds 

indicate isolates that have been assigned to a badger-cattle transmission cluster (full details 

available (Crispell 2017)), circles indicate unassigned isolates which may be representative of 

badger – badger transmission.  Markers have been dispersed to aid visualisation of points 

collected from individuals in the same social group. 
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Four Lineage 3 M. bovis isolates (Fig 7.7) were detected in a single year of the 

study (2000).  All isolates were from a single badger (X090) that was resident in 

Nettle social group in that year.  The isolates were linked to a badger-cattle 

transmission cluster in which cattle to badger transmission was inferred 

(Crispell 2017). 

Fig 7.7 Spatial and temporal distribution of M. bovis isolates from Woodchester badgers 

assigned to Lineage 3 (Trewby 2016).  Diamonds indicate isolates that have been assigned to a 

badger-cattle transmission cluster (full details available (Crispell 2017)).  Markers have been 

dispersed to aid visualisation of points collected from individuals in the same social group.
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Nine of the ten M. bovis isolates from Lineage 4 have been assigned to a 

badger-cattle transmission cluster where the direction of transmission is thought 

to be from cattle to badgers (cattle isolates present towards the root of the 

cluster, suggesting outbreak originated in cattle population (Crispell 2017)).The 

only isolate not assigned to this transmission cluster appears in badger U049 in 

Yew social group; this isolate is somewhat spatially isolated and does not fit 

with the rest of the transmission cluster.   

Fig 7.8 Spatial and temporal distribution of M. bovis isolates from Woodchester badgers 

assigned to Lineage 4 (Trewby 2016).  Symbol colour indicates the year at which the isolate 

was collected from a badger, with more recently collected isolates marked darker.  Diamonds 

indicate isolates that have been assigned to a badger-cattle transmission cluster (full details 

available (Crispell 2017)), circles indicate unassigned isolates which may be representative of 

badger – badger transmission.  Markers have been dispersed to aid visualisation of points 

collected from individuals in the same social group. 

 The west to east transition rate was higher than the east to west transition rate 

(west to east: mean rate = 1.51, HPD intervals 0.045 – 3.744, east to west: 

mean rate = 0.43, HPD intervals 0.09 – 1.34).  ESS values in both BEAST runs 

were >200 indicating good convergence.  The west to east transition rate was 
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well supported (Bayes Factor = 1603) whereas the east to west transition rate 

was not (Bayes Factor <3).  This suggests that there is strong support for west 

to east transitions (i.e. eastern isolates having western ancestors) but no 

support for east to west transitions (western isolates having eastern ancestors) 

and is consistent with M. bovis infection spatially spreading west to east across 

the study area (Fig 7.9). 

Fig 7.9 Bayesian phylogenetic tree built using BEAST of high quality Lineage 1 M. bovis 

isolates.  Branches are coloured based on ancestral trait reconstruction, with support values for 

the ancestral state indicated.  A value of 1 indicates that the assigned ancestral state (east or 

west) was chosen in all the trees generated within the posterior distribution.   
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Fig 7.10 Bayesian skyline plot of effective population size over time (blue line) with population 

level estimates of incidence (red dashed line) and prevalence (black dashed line) generated 

from diagnostic test results from the Woodchester population (Walker 2012). 

From Fig 7.10 there appears to be good agreement between the effective 

population size estimate from the BEAST analysis and the prevalence and 

incidence data. This is consistent with transmission of M. bovis in the 

Woodchester population increasing in the late 90’s, peaking in 2000 before 

flattening off. 
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 Isolate Genetic Distance, Social Group & Kin Structure 

Genetic distances between M. bovis isolates were significantly lower from pairs 

of related individuals within the same social group than from pairs of unrelated 

individuals within the same social group (see Fig 7.11a).  Isolates from 

unrelated group members differed by an average of 6 more SNPs when 

compared to isolates from related group members (mean difference = 7.5, p < 

0.001).  This is consistent with a kin-association model of M. bovis transmission 

within badger social groups.  However, if a related badger was not in the same 

social group, genetic distances between isolates were smaller between 

unrelated group members (mean difference between Related Out SG category 

vs NonRel Out SG = -2.5, p < 0.001, Fig 7.11b).  Isolates from within the same 

individual had significantly shorter genetic distances than isolates from related 

individuals in the same social group, although this distance was only 2 SNPs on 

average.  (p < 0.001, see Fig 7.12). Significant differences between all 

categories are visualised in Fig 7.13.  

 

 

 

 

 

 

 

 

 

Fig 7.11 Permutation results for comparisons of mean genetic distance between M. bovis 

isolates from related and unrelated badgers a) inside the same social group and b) in different 

social groups.  The null distribution based on shuffling isolate genetic distances across the 

categories is shown; in both cases the observed genetic distance between categories (indicated 

in red) is significantly different from the null distribution (p <0.01 in both cases). 
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Fig 7.12 Permutation results for comparisons of mean genetic distance between M. bovis 

isolates from related badgers within the same social group and isolates taken from the same 

individual.  The null distribution based on shuffling isolate genetic distances across the 

categories is shown; the observed genetic distance between categories (indicated in red) is 

significantly different from the null distribution (p <0.01). 
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Fig 7.13 Mean genetic distances between M. bovis isolates obtained from related and unrelated 

individuals.  Isolates are further grouped based on whether they are members of the same 

social group or not.  Red points indicate mean values based on social group membership and 

relatedness, arrows indicate standard errors.  Grey points indicate the average genetic 

distances for individuals in different social groups as compared to isolates from individuals in 

the same social groups.  Significant differences between categories are indicated by dashed 

lines (as determined by permutation testing).   
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7.5 Discussion 

These results describe one of the first applications of whole genome 

sequencing technology to look at M. bovis transmisison within a wildlife 

population.  Examination of the WGS data supports the spatial spread of a 

dominant lineage of M. bovis from west to east across a high density badger 

population over a 10 year period.  This suggests that the change in M. bovis 

spatial arrangement captured in Chapter 5, where infection distribution was 

initially clumped and spatially restricted to the western region of the study area 

and subsequently was more spatially dispersed, is primarily driven by 

transmission from badger social groups in the west of the study area to those in 

the east rather than seeding of infection from the surrounding badger of cattle 

population. Changes in the genetic population structure and badger movement 

patterns (as evidenced in Chapter 6) are potential drivers of this spatial spread, 

resulting in a change from spatially stable infection loci in the west to a more 

widespread infection distribution across the study area, as characterised in 

Chapter 5.  There are other potential explanations; it may be that infection 

prevalence reached a critical level in the western social groups and 

subsequently spilled over into neighbouring groups, driving the west to east 

spatial spread observed.  Alternatively, stochastic events, such as the 

movement of certain individuals transmitting infection between social groups, or 

breeding encounters between individuals from different groups resulting in 

transmission contacts, rather than any population wide demographic change. 

However, given the evidence that movement patterns and population mixing 

patterns have significantly changed, I would suggest that these are the most 

likely explanation for the observed change in spatial distribution of M. bovis 

infection within this study population. 

The spoligotype and VNTR data available for the M. bovis isolates from the 

badger population revealed a near-monoculture of a single spoligotype; 

spoligotype 17.  Although VNTR typing added a little more resolution; in terms 

of looking at fine-scale transmission dynamics within the badger population, the 

options are limited.  In contrast, WGS revealed the presence of multiple 

lineages and further, allowed analysis of pairwise distances between isolates to 

investigate transmission dynamics within badger social groups.  The availability 

of whole genome sequence data from the neighbouring cattle population 
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(Crispell 2017) suggests that there have been multiple occasions where M. 

bovis has been transmitted from the cattle population to the badgers within the 

study area, however on the whole, these lineages have failed to establish.   

WGS revealed the presence of a dominant lineage, Lineage 1, which appeared 

to be spatially widespread across the study area and was present over the 

entire time period from which the sequenced samples were isolated.  Over half 

of these isolates were assigned to badger-cattle transmission clusters where 

the direction of transmission was thought to be from badgers to cattle.  

However, just under half of the Lineage 1 badger isolates were not included in 

any badger-cattle transmission cluster.  These could be examples of badger-

badger transmission events; it has been suggested that the low divergence 

between many of the badger samples in this lineage may be consistent with 

direct transmission of this lineage within the badger population (Trewby 2016).  

It is important to note however that by comparison to the badger infections, M. 

bovis infections from the surrounding cattle population are likely to be 

considerably under sampled, as only one isolate per herd breakdown is sent for 

genotyping.  It may therefore be the case that spillover transmission of the 

cattle-derived infections has gone undetected within the badger population.    

Although other lineages were noted in the badger population, these were 

generally only found in a small number of badgers and were generally linked to 

transmission from the cattle population which failed to establish within the 

badger population.  Lineage 3 and 4 were introduced into the east of the study 

area and therefore may have contributed to the decrease in spatial clustering of 

M. bovis infections noted particularly in the eastern region of the study area, 

which I characterised in Chapter 5..   

The high prevalence of Lineage 1 raises an intriguing possibility that this 

dominant lineage within the badger population is a ‘badger-adapted’ genotype, 

while the introductions from the cattle population are ‘cattle-adapted’ and this is 

the reason that they have failed to persist within the badger population.  

However, given the low effective population size of M. bovis in Great Britain 

(Smith, Gordon et al. 2006) (implying that selective pressures are likely to play a 

lesser role in the evolution of these bacteria compared to genetic drift), in 

addition to the very slow evolutionary rate of M. bovis in general, it has been 

suggested that the evolution of badger- or cattle-adapted lineages would be 
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surprising over the temporal and evolutionary scales covered by these 

sequences (H.  Trewby, pers comms).  A plausible explanation for the 

establishment of Lineage 1 as the dominant lineage within the badger 

population in this study is that it is due to stochastic events, for example a 

critical number of badgers becoming infected with this lineage to allow onward 

transmission.  The distribution of the different lineages within the Spoligotype 17 

group of isolates echoes that of the distribution of spoligotypes; with one major 

dominant lineage and occasional detection of other lineages.  Whether the 

original source of the Lineage 1 infection in the badgers was from cattle or from 

the unsampled badger population surrounding the study area is not known; it 

may be of value to sequence some of the archived M. bovis isolates from the 

Woodchester badgers from 1990 -2000 to shed further light on this. 

Through applying whole genome sequencing to a well characterised host-

pathogen system this study has demonstrated the value of the added resolution 

afforded by whole genome sequencing in capturing spatial spread of M. bovis 

infection across a wildlife reservoir population.  Within the immediate context of 

bovine tuberculosis transmission in the UK, whole genome sequencing is likely 

to be a useful tool in determining the proximate causes of new cases of bovine 

tuberculosis infection in UK cattle at the fringes of the endemic areas, helping to 

distinguish whether infection is seeded from livestock movements or the 

presence of infected wildlife (Benton, Delahay et al. 2014).  Combining whole 

genome sequencing with epidemiology is a promising approach as a means of 

conducting in-depth investigations of M. bovis transmission dynamics, adding 

resolution and helping to distinguish between local persistance or introduction 

(Crispell, Zadoks et al. 2017).  Theoretically, the discrete traits analysis 

approach used in this study could be used to assess the relative transmission 

rates from cattle to badgers and badgers to cattle, as has been attempted 

recently to assess interspecies transmission rates of M. bovis between 

possums and cattle in New Zealand (Crispell, Zadoks et al. 2017).  However, 

this relies heavily on the availability of a balanced sampled of isolates from each 

host species, and estimates of inter-species transmission are sensitive to the 

sampling strategy used (Crispell, Zadoks et al. 2017).  If one population is 

undersampled (De Maio, Wu et al. 2016), or if populations are not sampled 

evenly with reference to the underlying infection prevalence (as would often be 
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the case where infection is present in a wildlife reservoir), the method is likely to 

overestimate the prevalence/occurrence of transitions from the over-sampled to 

the undersampled population, thus generating biased estimates of transition 

rates between populations ((Crispell, Zadoks et al. 2017), H.  Trewby, pers 

comms).  Temporal sampling biases can also influence inter-species 

transmission estimates; if there is dense sampling of wildlife in the early part of 

the time period, followed by later dense sampling of livestock, this has been 

demonstrated to result in the dominant direction of spread being estimated as 

wildlife to livestock (Crispell, Zadoks et al. 2017).  Other analytical options exist 

for estimating inter-species transmission rates however which can better deal 

with such biases, for example (De Maio, Wu et al. 2016).  It should be noted 

also that there is no whole genome sequence information on the M. bovis 

badger population surrounding the Woodchester Park population.  Woodchester 

Park is located in a high-incidence area of cattle TB and, given the observed 

prevalence in the study population it is highly likely that the surrounding badger 

population is also infected to some unknown extent.  Although there are 

modelling approaches which can be employed to deal with an unsampled 

potential reservoir of disease (De Maio, Wu et al. 2016),(J.  Crispell, pers 

comm), it would be valuable to collect M. bovis isolates from the surrounding 

badger population in order to gain a more complete picture of the transmission 

processes operating within the Woodchester population, between the 

Woodchester population and the surrounding badger population, and between 

the badger and local cattle population.   

In addition to helping us understand the changing spatial distribution of M. bovis 

infection within this study population, the availability of the sequence data has 

allowed us to examine the importance of kin structure and social group structure 

on disease transmission in an alternative way to that employed in Chapter 3.  

Shorter genetic distances between M. bovis isolates from related individuals 

within the same social group, as compared to isolates from unrelated individual 

within the same social group, supports the importance of kin structure in 

transmission of M. bovis within badger social groups (Benton, Delahay et al. 

2016).  Outside the social group however genetic distances between isolates 

were shorter between unrelated badgers when compared to related badgers 

outside the social group.  This is consistent with recent findings from social 
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network analysis in this population, where contact rates with related badgers 

outside of the group were lower than those with unrelated badgers outside the 

group; this has been suggested to be an inbreeding avoidance mechanism.  

(Steward 2017).  This result adds further weight to the proposal that where a 

local population is partitioned into small groups there is not a uniform 

transmission rate but rather two; within groups and between groups (Loehle 

1995).  The results described in this chapter support the importance of kin 

structure in disease transmission within badger social groups (as explored in 

detail in Chapter 3), consistent with related individuals having higher contact 

rates and living in closer proximity (Loehle 1995) within the social group.  

However, they also suggest that outside the social group, individuals may 

actively avoid contact with relatives and hence transmission may be more likely 

between unrelated individuals.  In order for such inbreeding avoidance 

behaviours to evolve, kin recognition must be possible and inbreeding 

depression must be severe enough to incur some fitness cost (Pusey and Wolf 

1996).  Whether either of these conditions can be met in badgers is unknown, 

however the results in Chapter 4 suggest a potential survival or fitness cost of 

inbreeding.  This is an area that warrents further investigation and the future 

availability of the pedigree for this population will be of great value in this. 

These results have important implications for our understanding of the 

complexity and heterogeneity in disease transmission rates in socially 

structured populations.  Behaviours such as inbreeding avoidance, which may 

vary in strength depending on the demographic parameters in a given year 

could have important implications for transmission of disease between social 

units and hence favour spatial spread of a pathogen across a landscape.  

Although further work is required to get a more complete picture in the current 

system, these results provide an encouraging indication that whole genome 

sequencing technologies will have much to add to our understanding of fine-

scale transmission dynamics within wildlife disease systems.
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CHAPTER 8: General Discussion and Synthesis 

 

8.1 Overview 

In this final chapter, I will discuss how the research in this thesis has contributed 

to three general areas: spatial epidemiology; the role of social and kin structure 

on pathogen transmission; and the impact of host genotype on infection 

outcomes.  Suggestions for further areas of research are also discussed. 

8.2 Spatial Epidemiology 

Incidence and prevalence of disease are dynamics processes through time. 

When new pockets of disease emerge, it is important to understand whether 

they are driven by spatial spread of existing infection across a population or are 

a result of a new introduction of infection. If it is determined that spatial spread 

has occurred, understanding the drivers of such spread can help to predict 

future disease dynamics.  

8.2.1 Capturing change in pathogen distribution 

One of the motivating factors behind the research proposal for this thesis was a 

particular epidemiological question, based on an observation - specifically that 

the spatial distribution of M. bovis infection within the Woodchester Park badger 

population had changed over time.  This was an untested hypothesis based 

solely on observations from within the research group.  A principal aim of this 

thesis was to test rigorously whether there was empirical evidence of a spatial 

change and further to suggest possible reasons for the change.  Finding an 

answer to this question was important as our existing understanding of how M. 

bovis infection is distributed in badger populations at the outset of this thesis 

was that it tended to remain highly spatially clustered with limited evidence of 

spread between neighbouring social groups (Delahay, Langton et al. 2000) in 

the absence of population management.  Changes in the spatial distribution of 

M. bovis infections as a result of culling badger populations have been well 

documented however (Woodroffe, Donnelly et al. 2005, Woodroffe, Donnelly et 

al. 2006, Jenkins, Woodroffe et al. 2007).  Through analysing spatial trends in 
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M. bovis distribution over a two decade period, I was able to demonstrate that 

the previously clustered, stable spatial distribution of M. bovis infection within 

the Woodchester Park population had broken down, characterised by a 

decrease in spatial clustering (robust to background changes in M. bovis 

infection prevalence at the population level) with badger social groups 

becoming more homogenous in their infection profiles (Chapter 5).  These 

findings revealed changes in epidemiological trends occurring over relatively 

long time periods and also challenged the view that M. bovis distribution 

necessarily remains stable, and tightly clustered, in unmanaged badger 

populations.  However, the rate of the breakdown of spatial clustering observed 

in this unmanaged population is well below that noted as a result of culling 

operations (Jenkins, Woodroffe et al. 2007).  This suggests that although stable 

foci of M. bovis infection can destabilise in the absence of population 

management, the process is far more rapid when it occurs as a result of culling 

induced social perturbation (Jenkins, Woodroffe et al. 2007). 

8.2.2 Genetic Population Structure, Movement and TB transmission 

Once it had been established that a real change had been detected in the 

spatial distribution of M. bovis infections in the study population, attention turned 

to the potential drivers of that change.  The movement of badgers is known to 

be an important predictor of M. bovis incidence risk, with years of high inter-

group movement often followed by years of elevated incidence (Rogers, 

Delahay et al. 1998).  However, previous investigations have relied entirely on 

capture data to infer inter-social group movement (Vicente, Delahay et al. 2007) 

and to calculate population level movement metrics (Rogers, Delahay et al. 

1998). By characterising host genetic population structure in tandem with the 

capture database, I was able to demonstrate that, where initially badger social 

groups were genetically isolated by distance (i.e. spatially closer badger social 

groups were also genetically more similar), this effect disappeared for a 

subsequent period, consistent with more widespread mixing of individuals in the 

population (Chapter 6).  This was supported by the observation that there was 

interannual variation in the probability of an individual badger moving social 

groups, with movement favoured during years of lower population density.  This 

finding has key management implications, as lowering population density 

through culling is therefore likely to increase the individual probability of a 
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surviving badger moving social groups.  Increases in ranging behaviour and 

inter-social group movement have previously been documented in response to 

culling interventions (Tuyttens, Macdonald et al. 2000, Carter, Delahay et al. 

2007, Riordan, Delahay et al. 2011, Bielby, Donnelly et al. 2014).  When 

considering unmanaged populations, a relationship between population density 

and movement has been suggested based on comparing movement 

probabilities from populations of varying densities (Woodroffe, Macdonald et al. 

1995), although some studies report no effect of density on the likelihood of 

badger dispersal (Macdonald, Newman et al. 2008).  The negative relationship 

between population density and movement probability is in line with the ‘social 

fence’ hypothesis (Hestbeck 1982) which predicts low dispersal in high-density 

populations, as a result of an increased individual cost of dispersal. 

Returning to the observation motivating this section of the thesis, I have been 

able to use both genetic and observational data in combination to suggest that 

the Woodchester study population has undergone a period of demographic flux, 

potentially prompted by a fall in population density, favoring inter-group 

movement and transmission of M. bovis infection between social groups which 

were previously socially isolated, with limited interactions between group 

members.  However, there are a few important points to note.  Firstly, the extent 

to which the Woodchester badger population is truly ‘unmanaged’ should be 

considered carefully, as there have been ad hoc reports of illegal culling of 

badgers at the periphery of the study population (D.  Delahay, P.  Spyvee, pers 

comm).  Secondly, the Woodchester study site is not a closed system; rather it 

is surrounded by a wider badger population about whom we have little 

information on M. bovis prevalence.  Thirdly, M. bovis can be transmitted from 

badgers to cattle and the Woodchester study population is close to a number of 

cattle herds, many of which have experienced TB breakdowns at various points 

over the course of the study.  Therefore an alternative explanation for the 

observed change in spatial distribution of M. bovis infections, characterised in 

Chapter 5, is that it is due to the seeding of infection from an outside source, 

such as local cattle or adjacent badger populations.  In Chapter 7 I used 

genomic data from a sample of M. bovis isolates to visualise the multiple 

occasions where infection from badgers to cattle has been inferred but 

apparently not established within the badger population (Crispell 2017). Further, 
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I was able to demonstrate evidence of spatial spread of a dominant lineage of 

M. bovis across the Woodchester badger population, moving from social groups 

in the western region where infection has long been documented, into the 

eastern social groups which were consistently low prevalence for an extended 

period (Delahay, Langton et al. 2000).   

8.2.3 Management Implications 

Whole genome sequencing has only very recently been applied to examining 

transmission dynamics of bacterial pathogens in wildlife (Kamath, Foster et al. 

2016) and hence the results presented in this thesis represent one of the very 

first applications of this technology to M. bovis transmission dynamics in wildlife 

(Biek, O'Hare et al. 2012, Glaser, Carstensen et al. 2016, Crispell, Zadoks et al. 

2017).  There is considerable interest amongst policy makers and scientists as 

to what WGS technologies can reveal about M. bovis transmission dynamics. It 

may provide insights into transmission between badgers and cattle and within 

each of the host populations, with suggestions that it may be possible to 

quantify the role that badgers play in the persistence of TB infection in cattle 

herds.  However, it has been suggested that the most valuable approach to best 

make use of the data provided by these new technologies will be to integrate 

WGS data with existing epidemiological data (Trewby, Wright et al. 2016, 

Crispell, Zadoks et al. 2017).  In this way, more bespoke ‘farm-scale’ 

management interventions may be possible which take into account the 

heterogeneity of transmission routes, including the role of wildlife, in different 

contexts. Given the slow rate at with the M. bovis bacteria accumulates 

mutations (Biek, O'Hare et al. 2012, Trewby, Wright et al. 2016, Crispell, 

Zadoks et al. 2017), it is thought to be unlikely that even WGS of M. bovis 

isolates will be able to uncover transmission links between individual animals, 

however it is likely to be useful to look at transmission dynamics between cattle 

herds (Crispell, Zadoks et al. 2017) or potentially badger social groups.  

Through using the newly available WGS data from the Woodchester Park 

badger isolates in tandem with the extensive epidemiological and ecological 

data available, I have been able to address a particular epidemiological 

question based on an observation of changing spatial distribution of disease.  

This highlights the benefits of a multi- faceted approach, incorporating 

traditional spatial epidemiology to capture changing distributions of infection, 
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using longitudinal datasets to detect demographic trends and relationships, 

coupled with genetic and genomic approaches to capture changes in host 

population structure and to track the pathogen itself through space and time.  

My findings also demonstrate the potential of WGS technologies to reveal 

transmission dynamics of M. bovis at a very restricted spatial scale (Biek, 

O'Hare et al. 2012).This is in contrast  to traditional M. bovis genotyping 

approaches which have largely been used to infer long-distance transmission 

events from  inter-regional differences in strain types (Smith, Dale et al. 2003).  

There is increasing interest in using WGS approaches to inform TB 

management at the farm-level scale, for example to trace the source of 

outbreaks, to identify the local introduction of infection or local persistence 

(Crispell, Zadoks et al. 2017), or to suggest where local wildlife may act as a 

reservoir of infection. 

8.3 The Impact of Social Structure and Kin Structure on Pathogen 

Transmission 

It is well established that social structure influences pathogen transmission 

dynamics in host populations (Loehle 1995). In particular, social structure has 

been found to favour the persistence of chronic diseases such as TB (Cross, 

Lloyd-Smith et al. 2005).  Levels of pathogen infection are expected to be 

higher for social species compared to solitary species (Ezenwa 2004) and for 

individuals in larger social groups (Brown and Brown 1986), as contact rates 

between individuals are higher in social situations, facilitating pathogen 

transmission (Altizer, Nunn et al. 2003, Ezenwa, Ghai et al. 2016).   

8.3.1 Social Group Size and TB transmission 

The relationship between host density and parasite transmission (Anderson, 

May et al. 1992) has been extensively investigated.  Within badger social 

groups, transmission of M. bovis is not considered to be density dependent 

(Cheeseman, Wilesmith et al. 1989) with research findings suggesting higher 

prevalence (Woodroffe, Donnelly et al. 2009) and incidence (Vicente, Delahay 

et al. 2007) in smaller or shrinking social groups.  The research described in 

Chapter 3 confirms that cubs born into larger social groups are at a lower risk of 

testing TB positive in their first year of life, suggesting a dilution effect consistent 

with the result previously reported in badgers (Woodroffe, Donnelly et al. 2009).  
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This is consistent with the ‘anti-parasite’ hypothesis of group-living, where 

enhanced pathogen resistance or tolerance has been associated with group 

living (Ezenwa, Ghai et al. 2016).  By considering the number of test positive 

and test negative residents in a badger social group, I was able to demonstrate 

that the risk of a badger cub testing positive within its first year of life is 

positively related to the number of test positive adults in the group, but 

negatively related to the number of test negative adults.  It is important to note 

that these are not independent factors; groups with a large number of test 

negative adult residents are unlikely to also have a large number of test positive 

adult residents, as badger social groups tend to typically contain four to eight 

adults (Roper 2010).  A badger cub born into a large social group predominantly 

comprised of test negative adults may therefore be at a lower risk of acquiring 

infection than a badger cub born into a smaller social group comprised of 

predominantly test positive adults, even though the badger in the larger social 

group is mixing with a larger number of individuals.   

8.3.2 Parallels with TB transmission in human contexts 

The most risky scenario for a badger cub is likely to be where cubs are born into 

large badger social groups with a high prevalence of TB infection, where there 

is likely to be lots of mixing with infected residents and further, they may be in 

closer proximity to other group members due to a higher number of animals 

sharing the limited sett space.  This is comparable to our understanding of TB 

transmission within human populations.  Transmission of TB in humans is 

considered to be most likely where infected persons are in close contact with 

others in confined spaces, with overcrowding further increasing the risk of 

transmission (Beggs, Noakes et al. 2003).  In humans, TB mortality rates have 

been directly related to the number of people living in a house in a specific 

population (Elender, Bentham et al. 1998), even where there is no relationship 

between overcrowding and TB mortality at a regional scale.  Even though 

prolonged close contact is thought to generally be necessary for transmission of 

TB amongst humans (Antunes and Waldman 2001), there are reports of rapid 

transmission events occurring, for example during long haul flights (Kenyon , 

Valway  et al. 1996) and other scenarios (Houk, Baker et al. 1968, Nardell, 

Keegan et al. 1991) in which infected persons are in close contact with others in 

confined spaces.   
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Returning to the badger context, it is possible that rather than badger social 

group size itself being important in determining infection risks for cubs, an 

interplay of several factors may be involved.  These might include the proportion 

of the group who are already infected, the number of individuals living in the sett 

and the available living space in that sett which determines the extent to which 

individuals are crowded together.  If, as in humans, rapid transmission of TB is 

possible between individual badgers in shared confined spaces (Houk, Baker et 

al. 1968, Kenyon , Valway  et al. 1996) then the extended periods of time 

badgers spend underground in the sett may represent high-risk periods for 

transmission (Corner, Murphy et al. 2011, Ní Bhuachalla, Corner et al. 2014).  

The underground environment of the badger sett, where airflow is restricted, 

humidity is high and temperature is relatively stable (Roper 2010) may favour 

the transmission of TB amongst badgers.  Radio tracking studies suggest that 

badgers tend to rest in underground sleep chambers singly or in pairs, although 

up to five individuals have been recorded sharing a single chamber (Kowalczyk, 

Zalewski et al. 2004).  In the winter, badgers tend to occupy a single sleeping 

chamber (Butler and Roper 1996, Roper, Ostler et al. 2001, Kowalczyk, 

Zalewski et al. 2004).  If chamber sharing were more common in larger social 

groups, due to constraints on available space, this would suggest that inter-

individual transmission risks would be higher for badgers in large social groups 

where a substantial proportion of the group are infected.  There is currently very 

little published work on den-sharing in badgers (Butler and Roper 1996, Roper, 

Ostler et al. 2001, Kowalczyk, Zalewski et al. 2004) and none on whether den-

sharing behaviour changes with social group size and this may be a valuable 

area of future investigation.  Bite-wounding is known to occur between 

members of the same social group as well as being a territory defence 

behaviour (Stewart, Ellwood et al. 1997), has been associated with more rapid 

progression of clinical TB in badgers (Gallagher and Clifton-Hadley 2000), and 

is more frequent at higher population densities (Macdonald, Harmsen et al. 

2004).  However, whether the probability of being bitten is higher in larger social 

groups is currently unknown. 

8.3.3 Kin Structure and Pathogen Transmission 

In addition to uncovering heterogeneities in cub infection risk related to group 

size and composition, I also used host genotype data to show that kin structure 
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within badger social groups adds further complexity to transmission dynamics.  

There is limited published work on the impact of kin structure on pathogen 

transmission dynamics (Grear, Samuel et al. 2010, Dharmarajan, Beasley et al. 

2012, Vander Wal, Edye et al. 2013) and none which focuses on badgers and 

TB.  The research described in Chapter 3 demonstrates that badger cubs have 

higher infection risks in social groups containing resident infectious adults, and 

these risks are exaggerated when cubs and infectious adults are closely 

related.  These results were supported by analysis of the whole genome 

sequences of M. bovis described in Chapter 7, with isolates cultured from 

relatives within the same social group being more genetically similar than those 

from non-relatives within the same social group.  Interestingly, although M. 

bovis isolates from individuals resident in the same social group were more 

genetically similar than those from individuals resident in different social groups, 

consistent with badger social structure limiting transmission between individuals 

in different social groups, when kin structure was accounted for, the 

interpretation of this relationship changed.  Pairwise comparisons of isolates 

from unrelated badgers revealed no significant genetic distance between 

isolates from individuals within the same social group and individuals in different 

social groups.  This suggests that transmission between unrelated badgers is 

just as likely regardless of social group membership, which is surprising.  

Outside the social group, isolates from unrelated badgers were more genetically 

similar than isolates from related badgers.  This is consistent with badgers 

avoiding relatives that reside in other social groups, potentially as an inbreeding 

avoidance strategy.  This result is consistent with recent data generated from 

social network analysis of this population, indicating that badgers spend less 

time with relatives outside of their group (Steward 2017).   

Overall, the results of these studies on heterogeneity in cub infection risk and 

the comparison of the WGS isolates of M. bovis lend strong support to the 

importance of kin structure in disease transmission in badger populations.  The 

results suggest that within the social group itself, kin structure produces 

heterogeneity in contact patterns, with the result that being related to an 

infected individual confers an additional risk of acquiring infection.  Interestingly, 

this conclusion contrasts somewhat with recent findings using proximity collars 

in this population which suggested that, with social groups, adult badgers do not 



184 

spend more time with relatives than non-relatives (Steward 2017).  It should be 

noted however, that as the collars can only be deployed on adult badgers, the 

data generated only represents patterns of contact amongst adults whereas the 

research covered in Chapter 3 of this thesis focuses on infection risk in cubs.  It 

is likely that cubs mix preferentially with kin during early life, particularly their 

mothers (Roper 2010), potentially generating heterogeneity in infection risk 

depending on the infection status of relatives.  Additionally, the proximity collar 

data only describes spatial proximity, registering when adult badgers come 

within half a metre of one another (Steward 2017) rather than describing 

particular behaviours which may enhance transmission risks.  Studies of human 

TB have revealed a strong relationship between transmission risk and spatial 

distance between individuals (Houk, Baker et al. 1968, Beggs, Noakes et al. 

2003, Pantelic, Sze-To et al. 2009). For example in a report of rapid TB 

transmission during a long haul flight, those seated closest to the index case 

were much more likely to acquire infection (Kenyon , Valway  et al. 1996) than 

those seated elsewhere in the aeroplane compartment.  It may be the case that 

behaviours which bring badgers into very close contact, such as grooming, 

which has been linked to enhanced risk of acquiring TB in meerkats (Drewe 

2010) are preferentially performed between relatives.  In badgers the primary 

route of M. bovis infection is the lower respiratory tract following inhalation of 

small infectious aerosol particles (Corner, Murphy et al. 2011), therefore 

behaviours which bring individuals into very close proximity are likely to incur a 

higher transmission risk.  Although a wealth of observational work has been 

carried out on badger behaviour (Roper 2010), very little has taken account of 

kin-structure (Dugdale, Ellwood et al. 2010), hence at this stage it is only 

possible to speculate as to the mechanism of the observed effects. 

8.3.4 Management Implications 

These findings have key management applications as they help us to explain 

the observation of a herd-immunity effect in badgers following low-intensity 

vaccination campaigns (Carter, Chambers et al. 2012).  They also highlight the 

heterogeneity in early life infection risk experienced by badger cubs, which has 

important implications for modelling TB transmission.  From a wider 

perspective, they have highlighted the roles of kinship and kin-association as 

important (Ezenwa, Ghai et al. 2016), and often cryptic, drivers of disease 
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transmission in social mammals.  Even in large, open populations, kin 

association can result in unexpected pathogen transmission outcomes. 

8.4 Host Genotype and Pathogen Exposure Outcomes 

As I have explored above, social structure and kin structure can influence 

exposure risk to M. bovis in badger cubs.  The risks of exposure can vary based 

on social group membership, kin structure (Benton, Delahay et al. 2016) and 

individual behaviour illustrated for example by movement between social groups 

(Rogers, Delahay et al. 1998, Woodroffe, Donnelly et al. 2009) or position within 

a social network (Drewe 2010, Weber, Carter et al. 2013).  However as well as 

heterogeneity in exposure risk, there is also heterogeneity in the outcome of 

exposure.  This is the case in human TB, where it is estimated that over a third 

of the world’s population has been infected with M.  tuberculosis but only a 

minority of those individuals will ever go on to develop clinical disease or ‘active’ 

tuberculosis (Mack, Migliori et al. 2009).  In badgers, the pathogenesis of TB 

infection is known to be complex, as not all exposed badgers become diseased, 

with a proportion mounting a successful immune response.  In some cases, 

lesions develop but may remain dormant, such that the animal shows no clinical 

signs and is not infectious (Roper 2010), which may be considered a 

‘containment’ or ‘latent’ phase (Gallagher and Clifton-Hadley 2000).  It has been 

suggested that many or even the majority of infected badgers remain in a latent 

phase throughout their lives (Gallagher and Clifton-Hadley 2000, Murphy, 

Gormley et al. 2010, Corner, Murphy et al. 2011).  However, in a proportion of 

exposed badgers, the immune response is insufficient to contain, or ‘wall off’ the 

bacteria within lesions.  The mycobacteria can then escape, spread to new 

body sites and the individual can become infectious, characterised by bacterial 

shedding through a range of routes (Gallagher and Clifton-Hadley 2000).  The 

amount of bacteria shed by an infectious badger is related to the progression of 

pathology (Nolan 1991), and so individuals with evidence of more progressed 

disease are likely to be more important in the onward transmission of infection 

to susceptible individuals.    

What factors determine whether an exposed badger goes on to develop clinical 

TB? There are a number of possibilities.  It may be related to the size of the 

infective dose received (Dean, Rhodes et al. 2005), or to the route of 
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transmission (Gallagher and Clifton-Hadley 2000, Gavier-Widén, Cooke et al. 

2009), the condition of the animal at the time of exposure, environmental factors 

or the genotype of the M. bovis strain (Aguilar León, Zumárraga et al. 2009).  

Another possibility is that host genotype influences the outcome of exposure to 

M. bovis.  Although this has been explored in other wildlife species (Dorman, 

Hatem et al. 2004, Acevedo-Whitehouse, Vicente et al. 2005, Trinkel, Cooper et 

al. 2011) and livestock (Allen, Minozzi et al. 2010, Brotherstone, White et al. 

2010, Vordermeier, Ameni et al. 2012), no published work exists on host 

genotype and outcomes of TB exposure in badgers.  In Chapter 4 I used host 

genotype data to investigate how individual inbreeding coefficients influenced 

the likelihood of badgers exposed to M. bovis exhibiting progressed disease (as 

measured by excretion of M. bovis bacilli and the result of a serological test 

known to be more sensitive in individuals with progressed infection (Chambers, 

Crawshaw et al. 2008)).  Exposed badgers with higher inbreeding coefficients 

were more likely to test positive to an antibody test at a given capture event 

(indicative of progressed disease).  The impacts of inbreeding also became 

stronger with age.  I also found evidence of single locus effects predicting the 

likelihood of an exposed badger becoming culture positive (indicative of 

infectiousness).  This is the first demonstration of a link between badger 

genotype and TB progression and only one other published study from wildlife 

links genetic profile to TB progression (Acevedo-Whitehouse, Vicente et al. 

2005).  I also found potential evidence of a survival cost to inbreeding, as I 

observed that the most inbred individuals were not present in the most 

advanced age classes.  Although this did not form part of the formal analysis in 

Chapter 4, it is an avenue that should be explored in future research.   

8.4.1 Management Implications 

The above findings contribute to our understanding in number of areas.  Firstly, 

from an evolutionary perspective, the observed age-mediated inbreeding 

relationship lends support to the mutation accumulation hypothesis of 

senescence.  This has rarely been demonstrated in natural populations (Keller, 

Reid et al. 2008).  Secondly, they suggest further heterogeneity in transmission 

risk, with the outcome of exposure to M. bovis varying between badgers of 

different genetic profiles.  This has implications for our understanding of TB 

transmission in badger populations.  Additionally, management of badger 
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populations through culling may alter the host genetic population structure in as 

yet unknown ways, potentially increasing levels of inbreeding through reducing 

population density or decreasing inbreeding as surviving individuals range more 

widely (Riordan, Delahay et al. 2011).  Finally, if there are true fitness costs to 

inbreeding in badgers, as my findings suggest, then we may expect inbreeding 

avoidance mechanisms to have evolved, such as dispersal (Charlesworth and 

Charlesworth 1987, Townsend, Clark et al. 2010) from social groups or extra-

group mating (Carpenter, Pope et al. 2005, Annavi, Newman et al. 2014), both 

of which are known to occur in badgers.  However, if the fitness costs of 

inbreeding are not seen until later life, when badgers have already successfully 

reproduced then they may not be filtered out by natural selection (Medawar 

1952, Hamilton 1966).  Although there is further work to be done to more 

extensively explore the relationship between inbreeding, M. bovis progression 

and host survival, the results presented in this thesis provide an encouraging 

starting point. 

8.5 Conclusions 

In the same way as using multiple diagnostic tests can improve the likelihood of 

detecting infection, using multiple approaches to capture contact patterns 

amongst individuals may improve the probability of detecting epidemiologically 

important interactions.  The data chapters in this thesis have included a wide 

array of analytical approaches from the fields of spatial epidemiology, genetics 

and genomics to reveal fine-scale transmission dynamics within a single badger 

population and to reveal further heterogeneity in transmission risk incorporating 

kin structure and host genotype.  Through the availability of a detailed dataset 

generated from a valuable long-term study of a badger population, I have 

shown how traditional epidemiological approaches and lines of enquiry can 

complement more recently available data, such as that generated from whole 

genome sequencing.  Currently, the potential of these technologies is vast but 

to a large extent, untested in bacterial pathogens of wildlife (Kamath, Foster et 

al. 2016).  I have been able to demonstrate that, when coupled with ecological, 

genetic and epidemiological data from well-studied systems, they can be 

usefully applied to epidemiological questions and as such are likely to play an 

important future role in our understanding of pathogen transmission, within and 

between wildlife and livestock populations.   
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Further, the results of this thesis have contributed to our understanding of the 

epidemiology of bTB in badgers. A population of badgers has experienced 

spatial spread of bTB infection, in the absence of social perturbation driven by 

management interventions. This breakdown in disease clustering followed a 

period of demographic flux, as detected by changes in badger movement 

patterns and host genetic population structure. There is powerful evidence of 

kin structure in badger social groups strongly influencing transmission risk to 

resident cubs, despite an overall dilution effect of group size. I have presented 

evidence of links between genotype and the progression of bTB infection in 

badgers, however further work is required to determine whether genome wide 

of loci-specific homozygosity is generating this effect. As the challenge of 

managing bTB transmission between badgers and livestock populations 

continues in the UK and other contexts, these results will contribute to our 

understanding of fine-scale transmission dynamics within badger populations 

and have provided new insights into the role of badger genotype on infection 

outcomes.
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Appendix: Badger Trapping and Sampling Regime at Woodchester Park 

 The research included in this thesis is entirely based on data collected from the 

long-term study of a badger population at Woodchester Park, Gloucestershire, 

UK.  The study area consists  of a central wooded valley, with a small number 

of lakes, surrounded by farmland (Delahay, Carter et al. 2006).  Cattle are 

grazed in the core of the study area which is approximately 7 km2 in area (See 

Map 1). The location of the study area falls within the designated ‘High Risk’ 

endemic area for bovine tuberculosis in cattle (DEFRA 2017). 

Map 1 Location of the Woodchester Park study area, with core study area delineated in blue 

(OS Grid Ref: SO 80907 01377; Woodchester Mansion)  
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Long Term Population Study 

The study of this population of badgers naturally infected with M. bovis first 

started in 1975, following the discovery a few years earlier of a badger found 

dead from generalised bovine tuberculosis on a farm in Gloucestershire which 

was experiencing a TB outbreak in its cattle herd (Muirhead and Burns 1974).  

The objective of the study was to provide epidemiological and ecological data to 

inform TB control policy (Delahay, Walker et al. 2013).  It is the only study of its 

kind, detailing the natural dynamics of M. bovis infection in live badgers and is 

also one of the longest running population studies on any wild mammal 

(Delahay, Walker et al. 2013).  The study has been funded since its inception by 

the UK Government, specifically Defra (Department for Environment, Food and 

Rural Affairs, formerly MAFF; Ministry of Agriculture, Fisheries and Food).  

Between 1990 – 2011 (the period on which this thesis primarily focuses, due to 

the availability of badger genotyping data), there were 10,578 live capture 

events of 2003 individual badgers, with each being caught an average of five 

times over the period of study (min = 1, max = 42).  Approximately 93% of 

individuals were first caught as cubs, and hence were of known age. 

Trapping 

Badger traps are deployed at all active main setts four times a year.  A closed 

season of February to April inclusive is observed to avoid the capture of heavily 

lactating females or highly dependent cubs during this period (Tomlinson 2013).  

Traps are pre-baited with peanuts for about four days, before being set to catch 

for two consecutive nights.  Badgers that are trapped on the first night are held 

in the sampling facility overnight following general anaesthesia and sampling, to 

avoid recapture.  Traps are checked early in the morning, and additionally from 

December through to January, late at night, in order to release any adult 

females with evidence of pregnancy or lactation.  Trapped badgers are 

transferred to individual holding cages, which are labelled with the sett of 

capture, and transported to the holding facility where they are placed on a metal 

rack, arranged in social groups to minimise the potential for infection transfer 

between groups (Tomlinson 2013). 
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Image 1 Badger trap as used in routine trapping operations at Woodchester Park (photo credit, 

Amy Griffiths) 

Sampling 

Until 2001, captured badgers were anaesthetized using ketamine hydrochloride 

(Vetalar™ V, Pharmacia and Upjohn, UK) alone (Mackintosh, MacArthur et al. 

1976), but subsequently  this has been used in combination with medetomidine 

hydrochloride (Domitor®, Pfizer, UK) and butorphanol tartrate (Torbugesic®, 

Fort Dodge Animal Health Ltd, UK) (De Leeuw, Forrester et al. 2004).  On first 

capture each badger is tattooed on the belly with a unique identifying code.  At 

each capture badger sex and weight, and the location of the trap were recorded 

(Delahay, Walker et al. 2013).  A variety of other measurements are taken (neck 

circumference and body length, body temperature), along with qualitative 

assessments of body condition, and tooth wear which can be used to estimate 

age (Delahay, Walker et al. 2011).  Differentiation between cubs and adults is 

made on the basis of cubs having a smaller body size, narrower head, bright 

and silky pelage, and the presence of completely unworn and unstained teeth 

(Delahay, Walker et al. 2013).  The year of birth is assigned as the year of 

capture for cubs but is unknown for animals first caught as adults.  When the 

morphometrics described above have been recorded, along with the clinical 

sampling detailed below, badgers are returned to the holding cage from which 
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they had been removed and placed in lateral recumbency for recovery 

(Tomlinson 2013).  Once badgers have recovered from anaesthesia, they are 

offered oral rehydration solution (Lectade Small Animal; Elanco Companion 

Animal Health, Basingstoke, UK) in drinking troughs fixed within the holding 

cages.  Badgers from the first night of capture are held overnight and released 

the following morning.  Badgers from the second night of capture are released 

later the same day.  Release is at the sett of capture, close to sett entrances 

(Tomlinson 2013). 

Diagnostic testing for M. bovis infection 

A range of clinical samples are taken from the anaesthetised badgers in order 

to diagnose M. bovis infection.  Blood is taken from the jugular vein and used 

for serological testing as follows.  Between 1985 and 2005, the Brock ELISA 

(Rogers, Cheeseman et al. 1997) was the serological test used to assign TB 

status to individual badgers.  However, from 2006 onwards, the Brock ELISA 

was abandoned due to doubts over its performance and poor correlation with 

other test results (Delahay, Walker et al. 2013).  From 2006 onwards, the Brock 

ELISA was replaced with the improved Stat-Pak antibody test (Chambers, 

Crawshaw et al. 2008) and the gamma interferon (IFN) test for T-cell responses 

to M. bovis was introduced (Dalley, Davé et al. 2008).  The combination of 

diagnostic tests used provides a biologically meaningful picture of the 

progression of disease within an individual (Tomlinson 2013).  It is thought that 

the cell-mediated response (as measured by the gamma interferon test) is the 

first line response to M. bovis exposure, whereas the serological response (as 

measured by the ELISA test and StatPak) takes time to develop as infection 

progresses (Tomlinson 2013).  A range of clinical samples are taken are also 

taken for the attempted culture of M. bovis; these include oesophageal and 

tracheal aspirates, swabs of open bite wounds or ruptured lymph node 

abscesses, urine and faeces (Tomlinson 2013). 

Delineating social territories 

Badger social group territories are mapped annually using a bait-marking 

technique (Delahay, Brown et al. 2000).  In the spring of each year, active 

badger main setts are fed bait comprised of peanuts, syrup and indigestible 

coloured beads.  Each sett is fed with a different colour of bead such that on 
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surveying the study area after a period of feeding the marked bait, the coloured 

beads are visible in the badger latrines.  In this way, the territorial boundaries 

between the badger social groups can be delineated and visualised using 

ArcGIS. 
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