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The electrons found in Dirac materials are notorious for being difficult to manipulate due to the
Klein phenomenon and absence of backscattering. Here we investigate how spatial modulations of
the Fermi velocity in two-dimensional Dirac materials can give rise to localization effects, with either
full (zero-dimensional) confinement or partial (one-dimensional) confinement possible depending on
the geometry of the velocity modulation. We present several exactly solvable models illustrating
the nature of the bound states which arise, revealing how the gradient of the Fermi velocity is
crucial for determining fundamental properties of the bound states such as the zero-point energy.
We discuss the implications for guiding electronic waves in few-mode waveguides formed by Fermi
velocity modulation.

PACS numbers:

I. INTRODUCTION

It is a truth universally acknowledged, that an elec-
tron in possession of a gapless, linear spectrum, must be
in want of a bound state [1]. There is a considerable
resurgence in the importance of such massless fermions
in condensed matter physics due to the rise of so-called
Dirac materials [2], whose charge carriers behave accord-
ing to quasi-relativistic wave equations. Celebrated ex-
amples in two dimensions include graphene or the surface
states of topological insulators. An important property
that is inherent to such Dirac particles is the absence of
backscattering [3], which whilst leading to large electron
mobilities, presents a considerable difficulty in localizing
Dirac electrons [4–12] and hence building practical digital
devices with a well-defined on/off logical state [13].

One interesting method proposed to manipulate these
somewhat elusive quasi-relativistic charge carriers is to
consider systems with a spatially-varying Fermi velocity,
vF = vF (r) [14–16], such that so-called velocity barriers
may form. The resulting ballistic electron transport in
such systems has already been extensively studied [17–
22], as has the effects of applying external electric [23]
and magnetic fields [24] and a superlattice geometry [25–
28]. There are immediately apparent strong analogies in
both acoustics and especially optics, where phenomena
such as super-collimation has been envisaged [29, 30].

Energy-dependent Fermi velocity renormalization has
already been seen in experiments with graphene at en-
ergies close to the Dirac point [31, 32]. Here we instead
consider the problem of Dirac particles that can be de-
scribed with a spatially modulated Fermi velocity. This
situation arises theoretically from both elasticity theory
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with tight-binding calculations, as well as quantum field
theory in curved space [33]. Experimentally, a spatially
dependent Fermi velocity may occur due to ripples in the
material [34, 35], the use of different substrates [36, 37],
superlattices [38–40], atomic scale defects induced by ion
irradiation [41], straining the material [42, 43], by placing
a grounded plane of metal nearby [18] or by judiciously
applying a uniform electric field [44]. Indeed, a spatial
dependence of the Fermi velocity has recently been ob-
served in two different experiments [40, 42]. Moreover,
our work is relevant for a large range of artificial Dirac
materials, which advantageously allow one precise con-
trol over the velocity of the hosted Dirac-like particles.
Examples of artificial Dirac systems include: cold atoms
in an optical lattice [45]; flexural waves in thin plates
[46]; microwaves in a lattice of dielectric resonators [47];
and plasmons in metallic nanoparticles [48].

Previously, most of the theoretical attention on this
topic has been focused on the scattering of two-
dimensional (2D) massless Dirac fermions on square ve-
locity barriers, either single [29], double [49] or multiple
[25–27]. Here we address the bound state problem for 2D
Dirac particles and furthermore we consider non-square
velocity distributions, which are arguably more realistic.
Indeed, smooth electrostatic and magnetostatic potential
barriers are known to lead to effects not found in their
sharp barrier counterparts [50, 51].

In this work, we reveal the dependence of the sup-
ported bound state energy levels on the velocity barrier
parameters and find how the presence of a finite zero-
point (ground state) energy is critically dependent on
the gradient of the velocity barrier. For one-dimensional
(1D) confinement, whilst exponentially growing velocity
barriers have a finite threshold energy for the ground
state, algebraically growing velocity barriers (growing at
most linearly) have a vanishing ground state energy. This
1D geometry of velocity barrier acts as an electron waveg-
uide for massless quasirelativistic particles [50, 52–55],
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with the bound modes propagating along the channel
created by the confining barrier. Such systems are of
great interest to experimentalists hoping to realize elec-
tron optics based on Dirac materials such as graphene
[56]. For zero-dimensional localization (0D), we show
how true confinement in radial velocity barriers acting as
nanoscale quantum dots is indeed possible, and demon-
strate how both an infinite velocity barrier and a smooth,
algebraically growing radial barrier possess a nonvanish-
ing zero-point energy. The proposed bound states may
be revealed in experiments via quantum transport mea-
surements, where the signature of a confined mode is a
jump in the conductance.

It has been shown by Peres [15] that in order to
maintain Hermitian operators, the relevant (and Sturm-
Liouville) 2D Dirac Hamiltonian for this problem is

Ĥ =
√
vF (r)σσσ · p̂

√
vF (r), (1)

where σσσ = (σx, σy) are the spin matrices of Pauli. Eq. (1)
acts on a two-component spinor wavefunction Φ(r), and

the eigenvalues E are found via ĤΦ = EΦ. Continuity of
the probability current leads to the following boundary
condition at an interface r = R√

vF (r)Φ(r)
∣∣∣
r=R+δδδ

=
√
vF (r)Φ(r)

∣∣∣
r=R−δδδ

, (2)

which is directly analogous to what occurs in heterostruc-
tures defined by a position-dependent mass [57]. In what
follows, we make the following assignment of the auxiliary
spinor for convenience Ψ(r) =

√
vF (r)Φ(r). We solve

Eq. (1) for various spatial profiles of the Fermi velocity
vF (r) to unveil the general properties of bound states in
such systems, with the ultimate aim of proposing on/off
logical states in Dirac materials.

The rest of this work is organized as follows. We study
in Sec. II a series of different 1D velocity barriers giving
rise to bound states. Localization in radially symmetric
2D velocity barriers is discussed in Sec. III. Finally, we
draw some conclusions in Sec. IV.

II. VELOCITY BARRIER CHANNELS

We shall consider several toy models of 1D velocity bar-
riers vF = vF (x), each with drastically different spatial
profiles, yet all unified by their integrability. Namely,
we investigate the following 1D velocity barrier chan-
nels: square (Sec. II A), exponential (Sec. II B), linear
(Sec. II C) and square root (Sec. II D), as shown graphi-
cally in Fig. 1. This range of models allows us to identify
how the shape of the velocity barrier influences the prop-
erties of the bound states.

Working in Cartesian coordinates (x, y), we begin by
making the following ansatz for the auxillary spinor

Ψ(x, y) = (Ly)−1/2eiqyy [ψ1(x), ψ2(x)]
T

, due to trans-
lational invariance in the y direction. Here qy is the

wavenumber along the formed trench and (Ly)−1/2 is the
length of the material in the y-direction.
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FIG. 1: (Color online) Profiles of the considered 1D velocity
barriers: the square (short-dashed gray line), the exponen-
tial (solid red line), the linear (long-dashed blue line) and
the square root (dot-dashed green line) channels respectively.
Here we take v1/v0 = 2 for the square velocity barrier.

A. The square velocity barrier

Firstly, we revisit the square model velocity barrier [15,
17–19]. Whilst there has been much focus on scattering
on such a barrier, instead we shall focus our investigation
on the associated bound states that may be supported.
We consider a square barrier of width d, given by

vF (x) =

{
v0, −d2 ≤ x ≤

d
2

v1, x > d
2 , x < −d2

(3)

where the velocity parameters satisfy v1 > v0, as plotted
in Fig. 1 as the short-dashed gray line. Naturally appear-
ing in this problem are the following wavenumbers

κ =

(
q2y −

(
E
~v1

)2)1/2

, k =

((
E
~v0

)2
− q2y

)1/2

, (4)

which arise when describing the spinor wavefunction in
its evanescent and propagating stages respectively. These
wavevectors automatically restrict the region of bound
states to the fan

~v0|qy| < |E| < ~v1|qy|, (5)

since it is required that both κ and k are real quantities.
The energies of the bound states in the square barrier
follow from the Hamiltonian (1) with the boundary con-
dition Eq. (2), and are determined by the transcendental
equation

tan(kd) =
2 v1v0

κ
k

1 +
(

1− v1
v0

)2 ( qy
k

)2 − ( v1v0 κk)2 . (6)
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FIG. 2: (Color online) Eigenenergies of massless Dirac
fermions in a square velocity barrier, as a function of the
barrier parameter v0/v1, calculated via Eq. (6). The lowest
four states can be seen, from the ground state (red triangu-
lar markers), to higher states (blue diamond markers, green
square markers and orange circular markers respectively).
The region of allowed bound states, arising from Eq. (5), is
denoted by solid black lines. Here we take qyd = 1.

We plot in Fig. 2 the eigensolutions of Eq. (6), as a func-
tion of the barrier strength parameter v0/v1, showing the
four lowest-lying bound states. As is common in 1D bar-
rier problems, there is always at least one bound state,
even for arbitrarily weak barriers with v0/v1 → 1. Upon
taking this limit, one can see from Eq. (6) that the left
hand side of the equation will grow monotonically be-

tween 0 ≤ tan(kd) ≤ qyd
(
v21/v

2
0 − 1

)1/2
. This left hand

side will always be intercepted as the right hand side of
Eq. (6) shrinks to zero as |E| → ~v1|qy| and hence a
bound state solution is guaranteed.

In the ultrastrong barrier limit v1 →∞, Eq. (6) must
be replaced with the equation tan(kd) + k/qy = 0. Now
there are an increasing number of bound states N , which
can be estimated from

N =

⌊
Υ
qyd

π

⌋
, Υ =

(
v21/v

2
0 − 1

)1/2
, (7)

where b...c is the floor function. Inverting Eq. (7) tells us
the threshold velocity barrier strengths above which new
bound states appear, via the approximate relation

v0/v1 '

(
1 +

(
πN

qyd

)2
)−1/2

. (8)

This feature of a changing number of bound states with
a modulation of v0/v1 is shown in Fig. 2. This phe-
nomenon of losing successive bound states into the con-
tinuum as v0/v1 increases towards unity is superficially

reminiscent of the ‘fall-into-the-center’ phenomenon in
relativistic quantum mechanics [58]. The analogue of this
so-called atomic collapse effect in Dirac material physics
(in 1D) sees the lowest lying states diving into the con-
tinuum as the band-gap of the Dirac material is reduced
[59, 60]. A notable distinction here is that whilst con-
ventionally the bound states with fewest nodes are suc-
cessively lost, for the square velocity barrier the nodeless
ground state is always present and instead the highest
lying (highly nodal) states are successively lost with in-
creasing v0/v1. For example, in Fig. 2 and with qyd = 1,
the third, second and first excited states (orange circular
markers, green square markers and blue diamond mark-
ers respectively) disappear one-by-one as v0/v1 increases
at v0/v1 ' 0.11, 0.16, and 0.30 in turn, whilst the ground
state (red triangular markers) persists even as v0/v1 → 1.

In what follows, in Secs. II B- II D, we move on to inves-
tigating non-square velocity barriers, with an emphasis
on the bound modes propagating along the formed Dirac
electron waveguides with wavenumber qy > 0.

B. The exponential velocity barrier

As a first example of a smooth velocity barrier, let us
study the exponential velocity barrier, plotted in Fig. 1
as the solid red line, and defined by

vF (x) = v0e
|x|/d. (9)

Here v0 is the minimal Fermi velocity, found at the center
of the barrier, and d is the length scale of the problem,
from which arises the key dimensionless parameter

λ =
|E|d
~v0

, (10)

which is useful for describing the eigenvalues. Upon
solving the coupled equations formed from the Hamil-
tonian (1), one finds the following spinor wavefunction
ψ(x) in region I (x > 0) with the help of the independent
variable change ξ = λe−x/d

ψI(x) = cI√
d
e−x/2d

(
Jqyd+1/2 (ξ)

sgn(E)Jqyd−1/2 (ξ)

)
, (11)

in terms of the Bessel function of the first kind Jα(ξ)
and where cI is some constant. The solution in region
II (x < 0) is found by interchanging the top and bottom
wavefunction components, and making the replacements
x → −x and cI → cII = ±sgn(E)cI . Applying the
boundary condition Eq. (2) at the interface x = 0, one
finds the spectrum of bound states is determined via the
transcendental equation

Jqyd−1/2 (λ) = ±Jqyd+1/2 (λ) , (12)

where the ± corresponds with the ± in the definition of
cII . Eq. (12) can be solved with standard root-finding
methods or indeed graphically, the result of which is
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FIG. 3: Progression of the six lowest bound states energies
with traversal momentum qyd, for massless Dirac particles in
a cusp-like velocity barrier, calculated via Eq. (12).

shown in Fig. 3. There we plot the six lowest lying bound
states as a function of transversal wavevector qyd, reveal-
ing an approximately linear dependence between energy
level and transversal momentum, as well as an approxi-
mately constant level spacing.

One also notices there is a threshold magnitude of
energy at which the first bound state appears. This
zero-point energy can be quantified by taking the limit
qyd→ 0 in Eq. (12), such that one arrives at the analytic
expression

λn,± = π
(
n± 1

4

)
, (13)

where n is a nonnegative (positive) integer when the
+(−) sign is taken. Explicitly, the ground state en-
ergy is λ0 = π/4 ' 0.785. In this small wavevector
limit, the energy level separation is a universal constant
∆λ = π/2 ' 1.57.

The characteristics of this velocity barrier suggest it
can act as a few-mode, Dirac electronic waveguide in di-
rect analogy to the channeling of photons along optical
fibers. The ability to substantially reduce the number of
bound modes propagating along the velocity barrier also
acts to reduce electronic losses due to scattering, which
is enhanced for multimode waveguides supporting many
different modes propagating at several different veloci-
ties.

C. The linear velocity barrier

Now we look at the linear velocity barrier, governed by
the parameters v0 and d and shaped by

vF (x) = v0(1 + |x|/d), (14)

as sketched as the long-dashed blue line in Fig. 1. We
define the useful dimensionless quantity to measure the
energies

γ =
Ed

~v0
. (15)

Proceeding in a similar manner to Sec. II B, one finds the
following spinor wavefunction in region I (x > 0) with the
aid of the variable ξ = 2qyd(1 + x

d )

ψI(x) = cI√
d

(
1 + x

d

)iγ
e−qyx×(
U (1 + iγ, 1 + 2iγ, ξ)
γ−1U (iγ, 1 + 2iγ, ξ)

)
, (16)

where cI is a normalization constant and U(α, β, ξ) is the
Tricomi function or confluent hypergeometric equation of
the second kind [61]. The solution in region II (x < 0)
is found by interchanging the top and bottom wavefunc-
tion components, and making the replacements x→ −x
and cI → cII = ±cI . Ensuring a conserved probability
current via Eq. (2) yields the eigenvalue equation

U (iγ, 1 + 2iγ, 2qyd) = ±γU (1 + iγ, 1 + 2iγ, 2qyd) ,
(17)

where the ± is associated with the ± in the definition
of cII . Although Eq. (17) must be solved numerically,
it is an exact expression and can be solved with any de-
sired accuracy. The result of such computations is shown
in Fig. 4 for the six lowest-lying states as a function
of transversal wavevector qyd. Most noticeable is the
absence of threshold bound state energies as qyd → 0,
markedly different from the sharper, exponential cusp
profile encountered in Sec. II B. Instead, there is a
plethora of bound states with vanishing transversal mo-
menta. This model suggests that the fundamental change
from an exponentially to a linear algebraically growing
velocity barrier manifests itself in the loss of the finite
threshold effect, which may be important for the design
of velocity barriers as guides of electron waves.

D. The square root velocity barrier

Finally, we consider a weakly growing square root ve-
locity barrier, graphed in Fig. 1 as the dot-dashed green
line, and with the functional form

vF (x) = v0
√

1 + |x|/d. (18)

One may obtain the spinor wavefunction in region I (x >
0) in an analogous fashion to Sec. II C. We obtain, with
the assistance of the variable ξ = 2qyd(1+ x

d ), the solution

ψI(x) = cI√
d

(
1 + x

d

)1/2
e−qyx× U

(
1− γ2

2qyd
, 32 , ξ

)
γ−1 (2qyd)

1/2
U
(

1
2 −

γ2

2qyd
, 32 , ξ

)
,

 , (19)
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FIG. 4: Progression of the six lowest bound states energies
with traversal momentum qyd, for massless Dirac particles in
a linear velocity barrier, calculated via Eq. (17).

where γ is defined in Eq. (15) and cI is fixed via nor-
malization. The solution in region II (x < 0) is found
by interchanging the top and bottom wavefunction com-
ponents, and making the replacements x → −x and
cI → cII = ±cI . The eigenvalues are wholly governed
by the expression

γ−1 (2qd)
1/2

U
(

1
2 −

γ2

2qd ,
3
2 , 2qd

)
= ±U

(
1− γ2

2qd ,
3
2 , 2qd

)
,

(20)
which is tractable with standard root-searching proce-
dures. Solutions of Eq. (20) are shown in Fig. 5 for the
six lowest-lying states. As was the case for the linear
barrier in Sec. II C, the system observes the vanishing
zero-point energy phenomenon as qyd → 0, which is a
hallmark of algebraic velocity barriers growing at most
linearly.

Upon comparing the corresponding energy level versus
transverse momentum dependences in Fig. 3, Fig. 4 and
Fig. 5 one notices as the velocity barrier growth becomes
shallower the bound state energies lower and the inter-
energy spacing reduces. As soon as the velocity barrier
is growing asymptotically linearly, there is no longer a
threshold effect as qyd → 0 for the zero-point energy, a
characteristic which persists for sub-linear velocity bar-
riers. These features are important for the design of few
electron mode guiding devices, which require robust on
and off logical states.

We should mention that we mostly considered veloc-
ity barrier models growing asymptotically. If these mod-
els were modified such that the spatial profile of vF (x)
instead saturated at some large but finite value, the
corresponding expressions presented in this work [c.f.
Eq. (12), Eq. (17) and Eq. (20)] will slightly overestimate
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FIG. 5: Progression of the six lowest bound states energies
with traversal momentum qyd, for massless Dirac particles in
a square root velocity barrier, calculated via Eq. (20).

the magnitudes of the bound state energies. However, the
low-lying states, which are the main focus of this work,
are unaffected for all practical purposes by this lack of a
saturation.

III. RADIAL VELOCITY BARRIERS

It is worthwhile to also consider axially symmetric ve-
locity barriers vF = vF (r) with the Hamiltonian (1)
to try to achieve total (0D) confinement. We separate
the variables in polar coordinates (r, θ) with the ansatz

Ψ(r, θ) = (2π)−1/2
[
eimθψ1(r), iei(m+1)θψ2(r)

]T
. Here

m = 0,±1,±2... is related to angular momentum quan-
tum number. Explicitly, the spinor wavefunction satisfies
JzΨ = (m + 1/2)Ψ, where the total angular momentum
operator Jz = −i~∂θ + ~σz/2.

Now, a finite circular velocity barrier cannot trap parti-
cles (unlike the equivalent 1D case described in Sec. II A)
because the wavefunctions are always described in terms
of standard Bessel functions. These functions are non-
square integrable, as was already encountered in the
case of massless Dirac fermions in an electrostatic bar-
rier [62], since they map onto the scattering states of the
Schrodinger equation. However, an infinite sharp veloc-
ity barrier can lead to bound states, as we shall see in
Sec. III A, and more significantly so too does an alge-
braically smooth velocity barrier model of the inverted
Lorentzian type [63], which is shown to be integrable
in Sec. III B. Both of these aforementioned models ex-
hibit a finite zero-point (ground state) energy. Further-
more, we note there is a general property that states with
m = 0,−1 are marginally non-square-integrable in the
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auxiliary spinor Ψ and so may correspond to extended
states (rather than bound states) in the full spinor Φ
depending on the asymptotics of the velocity barrier.

A. The infinite velocity barrier

The simplest integrable model is the infinite velocity
barrier, defined using the radial distance R as

vF (r) =

{
v0, r ≤ R
∞, r > R

(21)

The Hamiltonian (1) with this sharp velocity barrier
leads to a countably infinite number of bound states, de-
scribed by

En,m = ±~v0
R
ασ,n, σ =

{
m if m ≥ 1,

−m− 1 if m ≤ −2.
. (22)

where ασ,n is the nth positive zero of the Bessel function
of the first kind, satisfying Jσ(ασ,n) = 0. It is understood
that the eigenvalues respect two symmetries: firstly, for
every solution with E there is a solution with −E; and
secondly the eigenvalues are degenerate with the quan-
tum number replacement m → −(m + 1). The energy
levels as a function of angular momentum m are plotted
in Fig. 6 as orange circles. How bound states with in-
creasingly high angular momenta appear at higher ener-
gies and the threshold for the first bound state to appear,
are both features which can be clearly seen. The explicit
threshold energy at which the first bound state appears
is E1,1 = E1,−2 ' 3.83~v0/R.

Notably the m = 0,−1 states are associated with non-
square integrable auxiliary spinors Ψ, which is a common
feature for all radial problems of this type (namely those
with velocity barriers strengths tending towards infinity
as r → ∞). This is because these states have minimal
angular momentum and so are highly susceptible to the
Klein tunneling phenomenon of perfect transmission at
normal incidence. Nevertheless, these extended states
are associated with radial wavefunctions which do decay
algebraically (∼ 1/r), and so may be important for stud-
ies of resonant scattering. These special modes appear
at the degenerate level E1,0 = E1,−1 ' 2.40~v0/R in the
infinite velocity barrier.

B. The inverted Lorentzian velocity barrier

Let us now consider a smooth, algebraic model given
by the inverted Lorentzian

vF (r) = v0(1 + r2/R2). (23)

Working in the variable ξ = r2/R2, one can construct
the radial part of the spinor wavefunction ψ(r) in terms
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FIG. 6: (Color online) Energy levels as a function of m for
the infinite velocity barrier (orange circles) calculated via
Eq. (22); and the inverted Lorentzian velocity barrier (green
triangles) calculated via Eq. (26).

of Gauss hypergeometric functions

ψ(r) = c
R (1 + ξ)

−pm/2× ξ
|m|
2 2F1

([
pm
2 + ER

2~v0

]
,
[
pm
2 −

ER
2~v0

]
, 1 + |m|, ξ

1+ξ

)
Υξ
|1+m|

2 2F1

([
pm
2 + ER

2~v0

]
,
[
pm
2 −

ER
2~v0

]
, pm − |m|, ξ

1+ξ

)

(24)

where we have made use of the following number

pm = 1 + |m|+ |1 +m|, (25)

and with the prefactor Υ = 1
2(1+m)

ER
~v0 when m ≥ 0

and Υ = 2m~v0
ER when m < 0 respectively. One no-

tices the low angular momentum states m = 0,−1
are (marginally) non-square integrable in the auxiliary
spinors Ψ from the r → ∞ asymptotics of the radial
wavefunction, as was foreshadowed in Sec. III A. These
extended states, which reside at the degenerate level
E0,0 = E0,−1 = ±2~v0/R, are fully normalizable in the
full spinor Φ due to the presence of the function Eq. (23).

Terminating the hypergeometric function in Eq. (24)
by setting either of the first two arguments of the hyper-
geometric function to be a negative integer or zero, one
finds the eigenvalues of the system

En,m = ± (2n+ pm)
~v0
R
, n = 0, 1, 2... (26)

Fig. 6 displays as green triangles the energy levels as a
function of m. Most notable is the threshold bound state
energy of E0,1 = E0,−2 = ±4~v0/R at which the first
confined mode with m 6= 0,−1 is found. This confirms
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a finite zero-point energy arises even for this smooth,
algebraically growing velocity barrier model and is not
an artifact of the minimal model of Sec. III A.

These proposals for truly bound states in radial ve-
locity barriers joins a small list of setups which can con-
fine massless Dirac fermions in quantum-dot-like systems.
Recent experimental work has focused on combined elec-
tric and magnetic fields [64] and electron whispering
gallery modes [65], rather than Fermi velocity-induced
effects.

C. Zero-energy states in radial velocity barriers

Zero-energy states associated with Dirac Hamiltonians
are of great interest due to their importance for topo-
logical and Majorana physics. Radial velocity barriers
also admit zero-energy state (E = 0) solutions, which
form the degenerate ground state of the system. We
consider velocity barriers with the short range behavior
vF (r ∼ 0) ∼ r0, such that the spinor solutions to the
eigenproblem (1) for nonnegative m take the form

Φ ∝
(
eimθrm/

√
vF (r)

0

)
, m = 0, 1, 2... (27)

In order to be a normalizable solution for a certain state
m, the velocity barrier must grow asymptotically faster
than vF (r → ∞) ∼ r2(1+m), limiting the degeneracy of
the ground state. Meanwhile, the eigenvector for nega-
tive m is given by

Φ ∝
(

0

ei(m+1)θr−(m+1)/
√
vF (r)

)
, m = −1,−2,−3...

(28)

which is square integrable for a state with quantum num-
ber m as long as the velocity barrier grows at large dis-
tances more rapidly than vF (r → ∞) ∼ r−2m. These
wavefunctions (27) and (28) display the chiral property
of total suppression of the electronic probability density
on one of the the two sublattices, dependent on the sign
of the angular momentum m.

IV. CONCLUSION

We have studied the appearance and nature of bound
states of 2D massless Dirac fermions, which is a nontriv-
ial task due to the phenomena of Klein tunneling, that
may arise in several different velocity barrier configura-
tions, including trench-like and radial geometries. We
have shown how velocity barrier channels growing lin-
early or sub-linearly support bound modes for arbitrar-
ily small transversal wavevectors, whereas algebraically
faster (or indeed exponentially) growing barriers posses
a finite zero-point energy. This geometry is a candidate
to observe the ballistic guiding of few-mode electronic
waves. In contrast, a radial velocity barrier growing al-
gebraically has been shown to have a threshold energy
at which the first bound state appears, as has a simple
circular radial barrier model. Extended states with quan-
tum number m = 0,−1 are not always square-integrable
but do decay algebraically and so may be consequential
for resonant scattering.

These results open up an intriguing avenue to explore
in the ongoing quest to achieve trapping and guiding
of massless Dirac particles [66, 67]. With the ongo-
ing improvements in Fermi velocity engineering, particu-
larly via the fabrication of Dirac materials embedded in
various substrates [37] and controllably strained devices
[68], we hope that velocity waveguides and traps, as well
as the predicted threshold behavior and confinement-
deconfinement transitions of the bound states, can be
demonstrated in the laboratory in the near future.
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