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Melanocortin receptor accessory proteins (MRAPs) are regulators of the melanocortin

receptor family. MRAP is an essential accessory factor for the functional expression

of the MC2R/ACTH receptor. The importance of MRAP in adrenal gland physiology

is demonstrated by the clinical condition familial glucocorticoid deficiency type 2. The

role of its paralog melanocortin-2-receptor accessory protein 2 (MRAP2), which is

predominantly expressed in the hypothalamus including the paraventricular nucleus, has

recently been linked to mammalian obesity. Whole body deletion and targeted brain

specific deletion of the Mrap2 gene result in severe obesity in mice. Interestingly, Mrap2

complete knockout (KO) mice have increased body weight without detectable changes

to food intake or energy expenditure. Rare heterozygous variants of MRAP2 have been

found in humans with severe, early-onset obesity. In vitro data have shown that Mrap2

interaction with the melanocortin-4-receptor (Mc4r) affects receptor signaling. However,

the mechanism by which Mrap2 regulates body weight in vivo is not fully understood

and differences between the phenotypes of Mrap2 and Mc4r KO mice may point toward

Mc4r independent mechanisms.

Keywords: melanocortin receptors, accessory proteins, adrenal function, obesity, knockout mouse model

The Melanocortin Receptor Family

Melanocortin receptors (MCRs) comprise a family of five, class A, G protein-coupled receptors
designated MC1R-MC5R with diverse physiological roles. MCRs are found in chordates and are
regarded as having evolved from a single ancestral receptor, possibly corresponding most closely
to MC4R (Dores, 2013). Signaling by MCRs has primarily been observed as occurring through the
stimulatory α unit Gs which activates adenylyl cyclase to produce cAMP, although other pathways
have been implicated (Yang, 2011). Receptor properties such as biased agonism (MC4R) and
constitutive activity (MC3R and MC4R) have also been reported (Nijenhuis et al., 2001; Breit et al.,
2011).

The melanocortin agonist ligands for MCRs, adrenocorticotropic hormone (ACTH) and the
melanocyte stimulating hormones αMSH, βMSH, and γMSH, are neuropeptides derived by
enzymatic cleavage from proopiomelanocortin (Pritchard et al., 2002). Their relative potencies
are set out together with the natural antagonists in Table 1. The natural peptide antagonists
comprise agouti and agouti related protein (AgRP) (Cone, 2006). Agouti was first discovered
as a high affinity MC1R antagonist, following studies on genetic determinants of yellow coat
color and obese phenotype observed in agouti mouse strains (Lu et al., 1994). Agouti-related
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TABLE 1 | Natural ligands of the melanocortin receptor family (Kiefer et al., 1997; MacNeil et al., 2002; Cone, 2006).

Receptor Relative potency of agonists Antagonists Main site of expression Primary Function

MC1R αMSH = βMSH = ACTH > γMSH Agouti Melanocytes Pigmentation, inflammation

MC2R ACTH only Adrenal cortex Adrenal steroidogenesis

MC3R αMSH = βMSH = ACTH ≈ γMSH Agouti; AgRP CNS, GI tract, Kidney Energy homoestasis, inflammation, Entrainment to meal intake

MC4R αMSH = βMSH = ACTH >> γMSH Agouti; AgRP CNS Energy homeostasis, thermogenesis, appetite regulation, erectile function

MC5R αMSH > βMSH = ACTH >> γMSH Exocrine cells Exocrine function, regulation of sebaceous glands

protein (AgRP) was later identified as a MC3R and MC4R
antagonistic peptide almost identical in size and genomic
structure to Agouti (Ollmann et al., 1997; Shutter et al., 1997).
Since then it has been shown that both Agouti and AgRP can act
as inverse agonists in cAMP assays inhibiting MC1R and MC4R
constitutive activity respectively (Vage et al., 1997; Chai et al.,
2003). However, such inverse agonists to the MC4R can act as
agonists through intracellular ERK1/2 signaling (Breit et al., 2011;
Mo and Tao, 2013). A number of additional molecules have been
shown to alter MCR function in a variety of ways including β-
defensin 3 (Beaumont et al., 2012; Swope et al., 2012), attractin
(also known as mahogany), and mahogunin (He et al., 2001).

MC1R
Pigmentation and the control of the inflammatory functions
of the immune system are dependent on MC1R. Stimulation
of MC1R in skin and hair follicle cells by αMSH results in
melanogenesis producing dark skin or hair in many species,
including humans (Beaumont et al., 2011). Variants in MC1R in
humans are associated with red hair, pale skin, and increased risk
to skin cancer. This action of αMSH is antagonized in vivo by
agouti (Lu et al., 1994). MC1R is present on human leukocytes,
and onmurinemacrophages, and has been implicated in the anti-
inflammatory properties of αMSH (Star et al., 1995; Catania et al.,
2004).

MC2R
MC2R is unique as it is the only MCR that binds to a
specific ligand ACTH. The receptor is predominantly expressed
in the adrenal gland. In humans, the inability of ACTH to
activate MC2R leads to failure of the adrenal gland to generate
cortisol, resulting in the potentially lethal condition of familial
glucocorticoid deficiency (FGD) (Clark et al., 1993). Mutation in
MC2R leads to FGD type 1. The FGD phenotype was reproduced
in the MC2R knockout mouse, although the mice also had
evidence of mineralocorticoid deficiency (Chida et al., 2007).
MC2R is also found in human and mouse bone where it is
thought to be involved in osteoblast proliferation (Zhong et al.,
2005). Interestingly, patients with FGD type 1 have tall stature
(Elias et al., 2000). MC2R has also been detected in human
subcutaneous fat (Smith et al., 2003) and the developing testis
(O’Shaughnessy et al., 2007). In mouse adipose tissue, MC2R
may be implicated in the release of non-esterified fatty acids from
adipocytes (Moller et al., 2011).

MC3R
MC3R is primarily expressed in the central nervous system in
the arcuate nucleus of the hypothalamus and limbic areas, where
it affects food utilization/partitioning and food anticipatory
behavior (Sutton et al., 2008, 2010; Begriche et al., 2011).
Although loss-of-function mutations in MC3R have been
identified in humans with obesity, there is still uncertainty if
these variants are truly causative (Lee et al., 2007; Mencarelli
et al., 2011). In mice, MC3R is essential for the maintenance
of a circadian rhythm of activity related to feeding behavior
(Begriche et al., 2012). Both central and peripheral MC3R are
involved in energy utilization (Begriche et al., 2011). MC3R
has also been implicated in the anti-inflammatory processes in
murine macrophages (Getting et al., 2006; Leoni et al., 2008;
Montero-Melendez et al., 2014).

MC4R
MC4R is thought to bind principally to αMSH in the
paraventricular nucleus (PVN) of the hypothalamus (CNS), a
region crucial in the control of food intake. Global homozygous
deletion of MC4R in mice results in hyperphagia, increased
fat and lean mass, increased body length, reduced activity, and
reducedmetabolic rate (Huszar et al., 1997; Balthasar et al., 2005).
Inactivating mutations in MC4R are the single most common
form of monogenic obesity in humans (Farooqi et al., 2003).
Common variants near the MC4R locus are associated with
adiposity, body weight, risk of obesity and insulin resistance at
a population level (Chambers et al., 2008; Loos et al., 2008).
The function of MC4R has also expanded over recent years
and involvement in autonomic regulation of thermogenesis and
glycaemia (Berglund et al., 2014), regulation of sympathetic and
parasympathetic control of blood pressure (Sohn et al., 2013) and
anhedonia (Lim et al., 2012) have all been described. A role in
erectile function and sexual behavior have also been reported
(van der Ploeg et al., 2002). Most recently, MC4R expression has
been demonstrated in enteroendocrine L cells and regulates the
release of peptide YY (PYY) and glucagon-like peptide 1 (GLP-1)
(Panaro et al., 2014).

MC5R
The need for MC5R activity in the secretory function of exocrine
glands is well-known (Chen et al., 1997; van der Kraan et al.,
1998). MC5R is widely expressed and mice deficient of Mc5r
have impaired water repulsion and thermoregulation (Chen et al.,
1997). There are some suggestions that MC5R expression in
the zona glomerulosa of the adrenal gland may be involved in
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melanocortin stimulated aldosterone secretion (Vinson et al.,
1980; Griffon et al., 1994; van der Kraan et al., 1998), although this
is not in keeping with the lack of an adrenal phenotype in Mc5r
knockout mice (Chen et al., 1997). Stimulation of MC5R in 3T3-
L1 adipocytes with αMSH has been shown to result in lipolysis,
through cAMP production, and impairment of re-esterification
of fatty acids, through the ERK1/2 pathway (Rodrigues et al.,
2013).

The Melanocortin Receptor Accessory
Proteins, MRAP, and MRAP2

Discovery of MRAP and MRAP2
The discovery of MRAP (sometimes referred to as MRAP1)
in 2005 by Metherell et al. has provided insight into a novel
aspect of MCR regulation, previously unknown (Metherell et al.,
2005). By studying the clinical condition FGD it was noted
that only approximately 25% of FGD cases were attributable to
mutations of MC2R (Chan et al., 2009). Failure of MC2R to
traffick to the cell surface in cells other than those derived from
an adrenal lineage suggested the presence of an adrenal specific
accessory protein (Noon et al., 2002). Using whole genome SNP
array genotyping on informative families, mutations in the gene
encoding a protein derived from open reading frame 61 of
human chromosome 21 (C21orf61), corresponding to a murine
adipocyte transmembrane protein (Xu et al., 2002), was identified
to cause FGD type 2 (Metherell et al., 2005). This gene was
subsequently named melanocortin-2-receptor accessory protein
(MRAP). The human MRAP gene contains six exons, exons 5
and 6 are alternatively spliced to give rise to twoMRAP isoforms,
MRAPα (exon1–5), and MRAPβ (exon 1–4 and 6). Exons 1 and
2 are not translated in the human isoforms whilst rodents do
not have the corresponding exons 1 and 2 and produce only
one form of the protein (Webb and Clark, 2010). The translated
small single pass transmembrane domain protein differs from
other known GPCR accessory proteins (Webb and Clark, 2010)
and has been shown to adopt a unique anti-parrallel homodimer
conformation at the cell surface (Sebag and Hinkle, 2007; Cooray
et al., 2008). Both isoforms are present with MC2R in human
adrenal tissue (Metherell et al., 2005). The presence of either
MRAPα or MRAPβ is essential for MC2R cell surface expression
and signaling (Metherell et al., 2005; Roy et al., 2007; Cooray
et al., 2008; Hinkle and Sebag, 2009), but the response of MC2R
to ACTH may differ between the two isoforms, with MRAPα

increasing potency but MRAPβ increasing maximal response
(Roy et al., 2007).

Human C6orf117 was identified as a possible paralog to
MRAP (Metherell et al., 2005). This gene was subsequently
designated MRAP2. The human MRAP2 gene has four exons,
exons 2–4 code for a 205 amino acid residue protein (Chan et al.,
2009). MRAP2 is thought to adopt a similar dual topology at
the cell surface (Chan et al., 2009). Mouse Mrap2 gene differs in
having two small untranslated exons 1 and 1a (Asai et al., 2013).
Zebra fish has a single Mrap and two forms of Mrap2, designated
mrap2a and mrap2b (Agulleiro et al., 2010). Mrap2a and mrap2b
appear to have different actions and appear at differing time

points in zebrafish development (Sebag et al., 2013). Study of the
conservation between the Mraps of lampreys, cartilaginous fish,
teleosts, and tetrapods has indicated that MRAP2 is the ancestral
gene (Webb and Clark, 2010; Dores, 2013).

Tissue Expression of MRAPs
Both MRAPα mRNA and MRAPβ mRNA are found in human
adrenal tissue, testis, breast tissue, ovary, fat, skin, and jejunum,
MRAPα mRNA alone being more widely distributed in digestive
tract tissues, the immune system, and in thyroid and pituitary,
and MRAPβ mRNA alone appearing in brain (Metherell et al.,
2005). Evidence for human MRAP mRNA has been detected in
the hippocampus, prefrontal cortex, cerebellum, and spinal cord,
among other tissues (Gardiner et al., 2002). MRAP expression
clearly extends beyond MC2R expression, where expression of
MC2R has been reported in the adrenal, bone, adipose tissue,
ovaries, testes, skin, and the pituitary (Metherell et al., 2005).
MRAP2 mRNA was detected in human adrenal and brain tissue
(Chan et al., 2009). In mice Mrap2 mRNA was detected by
RT-PCR in a wider number of tissues including hypothalamus,
pons, brainstem, cerebellum, eye, thymus, pituitary, adrenal,
gonads, skin, and fat (Asai et al., 2013). A recent report
demonstrated that MRAP2 expression in human endometrium
was significantly down regulated during endometrial transition
from its pre-receptive state to the receptive state (Hu et al.,
2014), although the physiological significance of this change is
unknown.

MRAPs and Melanocortin Receptors In vitro
Several groups have studied the effects of MRAPs on MCR cell
surface expression and function in a number of heterologous
systems. The absolute requirement of MRAP for the MC2R
trafficking and function is clear and recapitulated bymany groups
(Metherell et al., 2005; Roy et al., 2007; Sebag and Hinkle,
2007). Transient transfection ofMRAPα andMRAP2 withMCRs
into CHO cells confirmed that MRAP is necessary for surface
expression of MC2R and showed that MRAP2 also can enable
surface expression of MC2R (Chan et al., 2009). One study
using HEK293 cells reported MC2R surface expression in the
absence of MRAP (Roy et al., 2007), although this may well
have been due to endogenous MRAP2 in some HEK293 cell-lines
(Roy et al., 2010). In addition to surface expression, there are
suggestions that MRAPs could influence the post-translational
glycosylation of MC2R and MC4R (Kay et al., 2013a). MRAP
is essential for MC2R to respond to ACTH and although the
presence of MRAP2 can enable MC2R to respond to ACTH this
is unlikely to be of physiological significance (Gorrigan et al.,
2011). The interplay between MRAP and MRAP2 on MC2R
function is less clear. Some suggest that MRAP and MRAP2 act
in an antagonistic manner whilst others show no effect or an
additive effect onMC2R function in the presence of both MRAPs
(Chan et al., 2009; Agulleiro et al., 2010; Sebag and Hinkle,
2010).

The reported results on other MCRs vary, which in part may
be due to differences in ligands, cell-lines, ratio of MRAP to
MCR expressed or be dependent on the ortholog studied. MRAPs
have no effect on the trafficking of MC1R and MC3R but reduce
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surface expression of MC4R and MC5R (Chan et al., 2009; Sebag
andHinkle, 2009, 2010). In the case ofMC5R,MRAP appeared to
disrupt MC5R dimerization (Sebag and Hinkle, 2009). Reduced
cAMP generation in response to NDP-MSH was demonstrated
for human MC1-5R (Chan et al., 2009). Other groups have also
shown a significant reduction in MC5R signaling in the presence
of MRAPs (Sebag and Hinkle, 2010; Kay et al., 2013b). These
studies however found no change in MC4R potency (Sebag and
Hinkle, 2010) or an increase in MC4R function (Asai et al., 2013;
Sebag et al., 2013). MC4R constitutive activity does appear to
be affected in the presence of MRAP/MRAP2 (Asai et al., 2013;
Kay et al., 2013b; Sebag et al., 2013). The two isoforms of Mrap2
in zebrafish appears to have differing effects on Mc4r function.
Mrap2a inhibits activation of Mc4r whilst Mrap2b suppressed
the constitutive activity of the receptor but greatly increased the
potency of αMSH (Sebag et al., 2013).

MRAPs and Adrenal Disease

MRAP
Loss-of-function mutations in MRAP give rise to FGD type
2 (Metherell et al., 2005). Patients with FGD type 2 present
with symptoms and signs resulting from isolated glucocorticoid
deficiency and excess plasma ACTH (Chung et al., 2010).
FGD type 2 patients present significantly earlier than those
with FGD type 1 individuals harboring MC2R mutations,
with the exception of those patients with missense MRAP
mutations who present later and with a milder phenotype
(Hughes et al., 2010).

In keeping with the importance of MRAP’s role in
glucocorticoid production, with both MRAP and MC2R are
highly expressed in the zona fasciculata. However, the highest
levels of expression are found in the undifferentiated zone,
believed to contain adrenal stem cells, suggesting that MC2R
and MRAP maybe important in adrenal development and/or
maintenance (Gorrigan et al., 2011). The adrenal histology from
deceased FGD patients would support this notion revealing
glomerulosa cell disorganization and loss of fasciculata and
reticularis cells (Clark and Weber, 1998).

MRAP is a critical component of the hypothalamic-pituitary-
adrenal axis, involved in adrenal responsiveness to ACTH and
possibly other adrenal disease processes. In rats, the transcription
of Mrap RNA closely tracks the normal ultradian pulses of
ACTH and, together with similar patterns of transcription
and related protein processing of other components of adrenal
steroidogenesis, suggests that Mrap protein availability is closely
tied to need for signaling in response to ACTH (Liu et al., 2003).

One study assessed MC2R, MRAP, and MRAP2 expression
in human adrenal tissue derived from normal and hyperplastic
adrenal gland, and from adrenocortical adenomas and
carcinomas (Hofland et al., 2012). Their data suggested
that the effect of ACTH stimulation on the expression of the
ACTH receptor complex comprising MC2R, MRAP andMRAP2
assists in the production of a functioning complex, although
the level of MRAP2 being insufficient to reduce its sensitivity to
ACTH.

MRAP2
In vitro, MRAP2 has been shown to enable MC2R trafficking to
the cell surface and subsequent signaling. N-linked glycosylation
appears critical in this process (Chan et al., 2009). The dose
of ACTH required to activate the receptor is however 1000
times higher than that compared to MRAP (Sebag and Hinkle,
2010; Gorrigan et al., 2011), which would explain the inability
of MRAP2 to rescue MC2R function in patients with MRAP
mutations. Furthermore, significantly lower levels of Mrap2
expression compared with Mrap expression are found in adult
rat adrenal gland. Unlike Mrap, which is highly expressed in the
zona fasciculata, Mrap2 appears sparsely expressed throughout
the adult adrenal cortex (Gorrigan et al., 2011). Although, Mrap2
appears highly expressed in the developing adrenal gland, to date
no adrenal phenotype have been described in theMrap2 KOmice
(Gorrigan et al., 2011; Asai et al., 2013).

MRAPs and Obesity

MRAP2
MRAP2 was shown to interact with all MCRs and the expression
in the hypothalamus and PVN pointed to a role in central
melanocortin regulation of metabolism and appetite (Chan et al.,
2009). A recent publication describing obesity in rodents and
humans with MRAP2 deficiency has demonstrated that this
is indeed the case (Asai et al., 2013). Furthermore, zebrafish
deficient of MRAP2 isoforms was shown to have disrupted
growth and development supporting the role of MRAP2 in
metabolism homeostasis (Sebag et al., 2013).

Phenotypically, global Mrap2 KO mice on an sv129 genetic
background fed a chow ad libitum diet develop severe obesity
at a young age and were found to be significantly heavier
than their wild type counterparts at approximately 6 weeks
of age. Mrap2−/− mice have increased body length and fat
deposits, whilst percentage lean mass was reduced. Heterozygous
Mrap2+/− mice have an intermediate phenotype (Asai et al.,
2013).

Serum leptin was elevated in Mrap2 null mice, which
normalized following weight loss through food restriction. No
differences in fasting serum insulin concentration, response to
glucose load or serum T3 and T4 levels were detectable between
null and wild-type animals, whilst Mrap2−/− males have lower
24 h urine epinephrine and norepinephrine. AgRP mRNA levels
in the hypothalamus are increased inMrap2 null animals without
changes in POMC mRNA. Although brown fat deposit was
enlarged in obese mice, response to cold challenge normal and
Ucp1 mRNA levels in brown fat increased appropriately when
mice were subjected to 4◦C for 18 h (Asai et al., 2013).

Interestingly, no increase in food intake was detected and
despite paired feeding, Mrap2−/− mice became significantly
heavier in weight compared with Mrap+/+ littermates. Food
restriction in Mrap2−/− mice (90% (females) or 87% (males) of
wild type intake) was required to normalize their weight gain to
that of wild-type Mrap2+/+ mice. Faecal energy content was also
indistinguishable between Mrap2−/− and Mrap2+/+ mice (Asai
et al., 2013).
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Analysis of youngmice prior the divergence of weight between
null and wild-type mice demonstrated indistinguishable 24 h
energy expenditure and respiratory exchange ratio (RER) when
measured by indirect calorimetry. There was no difference in
locomotor activity during the day or night and body temperature
even when challenged by cold was not different (Asai et al., 2013).

Asai et al. demonstrated that Mrap2 was expressed in several
sites of the mouse brain and in the PVN co-localized with
Mc4r expressing neurons (Asai et al., 2013), suggestive of an
MC4R dependent mechanisms. Mrap2−/− mice share some
phenotypic similarities with Mc4r KO mice, which are heavier
with increased length and adiposity. Heterozygous Mc4r+/−

mice have an intermediate weight phenotype (Huszar et al.,
1997). In support of anMC4Rmechanism, mice with conditional
deletion of Mrap2 in Sim1 neurons that express Mc4r were
equally obese and phenotypically similar to global Mrap2−/−

mice (Asai et al., 2013). However, differences exist between
Mrap2−/− and Mc4r−/− mice. In Mc4r−/− mice, obesity is
attributable to hyperphagia and reduced energy expenditure. The
Mc4r null mice also have increased lean mass (Balthasar et al.,
2005; Sutton et al., 2006).

In humans, disabling mutations of MC4R are the most
common cause of monogenic obesity and found in up to 6%
of severely obese patients (Vaisse et al., 1998; Yeo et al., 1998).
In comparison, genetic screening of two large obese pediatric
cohorts identified only four rare heterozygous MRAP2 variants
(N88Y, L115V, R125C, E24X) in patients with severe early onset
obesity (Asai et al., 2013). The individual carrying the most
damaging variant, E24X variant, was the most severely affected
with a reported BMI of 63 kg/m2 (BMI SDS 4.7) at the age of 19
years.

Data from zebrafish supports the notion that MRAP2 is an
MC4R accessory protein capable of regulating the function of
MC4R (Asai et al., 2013; Sebag et al., 2013). However, several

lines of evidence from theMrap2−/− mice data would suggest the
possibility of Mc4r independent mechanisms. Firstly, Mrap2−/−

mice remain responsive to treatment with MTII, a Mc3r and
Mc4r agonist, whilst anorexic response to MTII is abolished
in Mc4r−/− mice. Secondly, Mrap2−/− and Mc4r−/− double
KOs are less obese compared with Mc4r−/− mice alone and
finally the Mrap2−/− does not completely replicate Mc4r−/−

mice phenotype.
The phenotype of the Mc3r homozygous knockout mice is

of interest. Mc3r−/− animals are not obviously hyperphagic but
eventually become heavier than wild type mice on a standard
chow diet, and have more adipose tissue and smaller bones,
but no significant difference in energy expenditure (Chen et al.,
2000; Begriche et al., 2011). Heterozygous Mc3r knockout mice
are similar to wild type mice (Chen et al., 2000). More recently
it has been shown that MRAP2, but not MRAP, localizes at
the apical plasma membrane in the presence of MC3R in a
polarized cell, MC3R also localizing at the apical membrane
(Park et al., 2014). Receptors and other structures in neurons
have precisely determined locations and are associated with
dedicated trafficking mechanisms in which MRAPs may have
a role.

There is no suggestion that Mrap2 plays a role in MC1R or
MC2R function as Mrap2−/− mice have normal coat color and
corticosterone production (at baseline and when stressed) (Asai
et al., 2013).

MRAP
It is not yet known if MRAP is associated with mammalian
obesity. There is a single case report describing a family with a
splice site mutation of MRAP. Family members homozygous and
heterozygous for the mutation were obese compared with normal
weighted unaffected members (Rumie et al., 2007). As yet the
knockout mouse has not been reported. In murine 3T3-L1 cells,

FIGURE 1 | Schematic Diagram illustrating MRAP and MRAP2 action on MC2R and MC4R, respectively and physiological consequence of MRAP and

MRAP2 deficiency on adrenal steroidogenesis and energy homeostasis.
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ACTH triggers lipolysis and knockdown of Mrap in these cells
substantially inhibits lipolysis (Kim et al., 2013). Furthermore,
the promoter of Mrap was found to include a region binding
the transcription factor PPARγ that regulates adipogenesis in
fibroblasts (Tontonoz et al., 1994; Kim et al., 2013).

Future of MRAPs

The discovery of MRAP and MRAP2 has initiated a paradigm
shift in our understanding of MCR and GPCR signaling
(Figure 1). For MRAP, the ability to functionally express MC2R
in non-adrenal cell lines has opened up many opportunities
including screening for MC2R peptide antagonists (Bouw et al.,
2014). Moreover, the finding that MRAP2 is associated with
mammalian obesity is exciting and could provide a novel
therapeutic target at a time when obesity is at epidemic levels.
There are many scientific questions yet to be answered. For
example, the precise mechanism of how MRAP2 causes obesity

is not fully understood. It is intriguing that no difference in
food intake or energy expenditure was detected in Mrap2−/−

compared to wild-type littermates. This may represent the lack
of sensitivity of the systems in place to detect the relatively
small changes in food intake and energy expenditure. If so this
demonstrates the fine balance in energy homeostasis, where
small changes could tip the scale leading to significant weight
gain. However, in light of the differences between Mc4r−/− and
Mrap2−/− mice, it is likely that MC4R independent mechanisms
as well asMCR independent pathways are at play. The complexity
of these proteins and how they regulateMCR and GPCR function
is only just beginning to be explored.
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